forked from AnandGokhale/TensorFlow-Tutorials
-
Notifications
You must be signed in to change notification settings - Fork 1
/
mnist.py
186 lines (144 loc) · 6.44 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
########################################################################
#
# Downloads the MNIST data-set for recognizing hand-written digits.
#
# Implemented in Python 3.6
#
# Usage:
# 1) Create a new object instance: data = MNIST(data_dir="data/MNIST/")
# This automatically downloads the files to the given dir.
# 2) Use the training-set as data.x_train, data.y_train and data.y_train_cls
# 3) Get random batches of training data using data.random_batch()
# 4) Use the test-set as data.x_test, data.y_test and data.y_test_cls
#
########################################################################
#
# This file is part of the TensorFlow Tutorials available at:
#
# https://github.com/Hvass-Labs/TensorFlow-Tutorials
#
# Published under the MIT License. See the file LICENSE for details.
#
# Copyright 2016-18 by Magnus Erik Hvass Pedersen
#
########################################################################
import numpy as np
import gzip
import os
from dataset import one_hot_encoded
from download import download
########################################################################
# Base URL for downloading the data-files from the internet.
base_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
# Filenames for the data-set.
filename_x_train = "train-images-idx3-ubyte.gz"
filename_y_train = "train-labels-idx1-ubyte.gz"
filename_x_test = "t10k-images-idx3-ubyte.gz"
filename_y_test = "t10k-labels-idx1-ubyte.gz"
########################################################################
class MNIST:
"""
The MNIST data-set for recognizing hand-written digits.
This automatically downloads the data-files if they do
not already exist in the local data_dir.
Note: Pixel-values are floats between 0.0 and 1.0.
"""
# The images are 28 pixels in each dimension.
img_size = 28
# The images are stored in one-dimensional arrays of this length.
img_size_flat = img_size * img_size
# Tuple with height and width of images used to reshape arrays.
img_shape = (img_size, img_size)
# Number of colour channels for the images: 1 channel for gray-scale.
num_channels = 1
# Tuple with height, width and depth used to reshape arrays.
# This is used for reshaping in Keras.
img_shape_full = (img_size, img_size, num_channels)
# Number of classes, one class for each of 10 digits.
num_classes = 10
def __init__(self, data_dir="data/MNIST/"):
"""
Load the MNIST data-set. Automatically downloads the files
if they do not already exist locally.
:param data_dir: Base-directory for downloading files.
"""
# Copy args to self.
self.data_dir = data_dir
# Number of images in each sub-set.
self.num_train = 55000
self.num_val = 5000
self.num_test = 10000
# Download / load the training-set.
x_train = self._load_images(filename=filename_x_train)
y_train_cls = self._load_cls(filename=filename_y_train)
# Split the training-set into train / validation.
# Pixel-values are converted from ints between 0 and 255
# to floats between 0.0 and 1.0.
self.x_train = x_train[0:self.num_train] / 255.0
self.x_val = x_train[self.num_train:] / 255.0
self.y_train_cls = y_train_cls[0:self.num_train]
self.y_val_cls = y_train_cls[self.num_train:]
# Download / load the test-set.
self.x_test = self._load_images(filename=filename_x_test) / 255.0
self.y_test_cls = self._load_cls(filename=filename_y_test)
# Convert the class-numbers from bytes to ints as that is needed
# some places in TensorFlow.
self.y_train_cls = self.y_train_cls.astype(np.int)
self.y_val_cls = self.y_val_cls.astype(np.int)
self.y_test_cls = self.y_test_cls.astype(np.int)
# Convert the integer class-numbers into one-hot encoded arrays.
self.y_train = one_hot_encoded(class_numbers=self.y_train_cls,
num_classes=self.num_classes)
self.y_val = one_hot_encoded(class_numbers=self.y_val_cls,
num_classes=self.num_classes)
self.y_test = one_hot_encoded(class_numbers=self.y_test_cls,
num_classes=self.num_classes)
def _load_data(self, filename, offset):
"""
Load the data in the given file. Automatically downloads the file
if it does not already exist in the data_dir.
:param filename: Name of the data-file.
:param offset: Start offset in bytes when reading the data-file.
:return: The data as a numpy array.
"""
# Download the file from the internet if it does not exist locally.
download(base_url=base_url, filename=filename, download_dir=self.data_dir)
# Read the data-file.
path = os.path.join(self.data_dir, filename)
with gzip.open(path, 'rb') as f:
data = np.frombuffer(f.read(), np.uint8, offset=offset)
return data
def _load_images(self, filename):
"""
Load image-data from the given file.
Automatically downloads the file if it does not exist locally.
:param filename: Name of the data-file.
:return: Numpy array.
"""
# Read the data as one long array of bytes.
data = self._load_data(filename=filename, offset=16)
# Reshape to 2-dim array with shape (num_images, img_size_flat).
images_flat = data.reshape(-1, self.img_size_flat)
return images_flat
def _load_cls(self, filename):
"""
Load class-numbers from the given file.
Automatically downloads the file if it does not exist locally.
:param filename: Name of the data-file.
:return: Numpy array.
"""
return self._load_data(filename=filename, offset=8)
def random_batch(self, batch_size=32):
"""
Create a random batch of training-data.
:param batch_size: Number of images in the batch.
:return: 3 numpy arrays (x, y, y_cls)
"""
# Create a random index into the training-set.
idx = np.random.randint(low=0, high=self.num_train, size=batch_size)
# Use the index to lookup random training-data.
x_batch = self.x_train[idx]
y_batch = self.y_train[idx]
y_batch_cls = self.y_train_cls[idx]
return x_batch, y_batch, y_batch_cls
########################################################################