-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
74 lines (65 loc) · 2.77 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn
import torch.nn.functional as F
def Entropy(input_):
bs = input_.size(0)
epsilon = 1e-5
entropy = -input_ * torch.log(input_ + epsilon)
entropy = torch.sum(entropy, dim=1)
return entropy
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True, reduction=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.reduction = reduction
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).cpu(), 1)
if self.use_gpu: targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (- targets * log_probs).sum(dim=1)
if self.reduction:
return loss.mean()
return loss
class SupConLoss(nn.Module):
def __init__(self, temperature=0.07, contrast_mode='all',
base_temperature=0.07):
super(SupConLoss, self).__init__()
self.temperature = temperature
self.contrast_mode = contrast_mode
self.base_temperature = base_temperature
def forward(self, anchor_feature, anc_labels, contrast_feature, con_labels):
batch_size = anc_labels.shape[0]
mask = torch.eq(anc_labels.unsqueeze(dim=1), con_labels.unsqueeze(dim=1).T).float().cuda()
# compute logits
anchor_dot_contrast = torch.div(
torch.matmul(anchor_feature, contrast_feature.T),
self.temperature)
# for numerical stability
logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True)
logits = anchor_dot_contrast - logits_max.detach()
# compute log_prob
exp_logits = torch.exp(logits)
log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True))
# compute mean of log-likelihood over positive
mean_log_prob_pos = (mask * log_prob).sum(1) / (mask.sum(1) + 1e-5)
# loss
loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos
loss = loss.view(-1, batch_size).mean()
return loss