diff --git a/weldx/transformations/cs_manager.py b/weldx/transformations/cs_manager.py index 82917fcb3..ad30da89b 100644 --- a/weldx/transformations/cs_manager.py +++ b/weldx/transformations/cs_manager.py @@ -17,7 +17,7 @@ from weldx.exceptions import WeldxDeprecationWarning, WeldxException from weldx.geometry import SpatialData from weldx.time import Time, types_time_like, types_timestamp_like -from weldx.types import QuantityLike +from weldx.types import UnitLike from weldx.util import check_matplotlib_available, dataclass_nested_eq from .local_cs import LocalCoordinateSystem @@ -836,7 +836,7 @@ def create_cs_from_homogenous_transformation( coordinate_system_name: str, reference_system_name: str, transformation_matrix: types_homogeneous, - translation_unit: QuantityLike, + translation_unit: UnitLike, time: types_time_like = None, time_ref: types_timestamp_like = None, lcs_child_in_parent: bool = True, diff --git a/weldx/transformations/local_cs.py b/weldx/transformations/local_cs.py index ab304daac..54c834056 100644 --- a/weldx/transformations/local_cs.py +++ b/weldx/transformations/local_cs.py @@ -24,7 +24,7 @@ types_orientation, ) from weldx.transformations.util import normalize -from weldx.types import QuantityLike +from weldx.types import UnitLike __all__ = ("LocalCoordinateSystem",) @@ -549,7 +549,7 @@ def from_axis_vectors( def from_homogeneous_transformation( cls, transformation_matrix: types_homogeneous, - translation_unit: QuantityLike, + translation_unit: UnitLike, time: types_time_like = None, time_ref: types_timestamp_like = None, ) -> LocalCoordinateSystem: @@ -736,13 +736,13 @@ def as_rotation(self) -> Rot: # pragma: no cover """ return Rot.from_matrix(self.orientation.values) - def as_homogeneous_matrix(self, translation_unit: QuantityLike) -> np.ndarray: + def as_homogeneous_matrix(self, translation_unit: UnitLike) -> np.ndarray: """Get a homogeneous transformation matrix from the coordinate system orientation. Parameters ---------- - translation_unit : QuantityLike + translation_unit : UnitLike Unit the translation part of the homogeneous transformation matrix should represent.