forked from brain-research/self-attention-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
457 lines (393 loc) · 16.8 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The building block ops for Spectral Normalization GAN."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from contextlib import contextmanager
rng = np.random.RandomState([2016, 6, 1])
def conv2d(input_, output_dim,
k_h=3, k_w=3, d_h=2, d_w=2, name='conv2d'):
"""Creates convolutional layers which use xavier initializer.
Args:
input_: 4D input tensor (batch size, height, width, channel).
output_dim: Number of features in the output layer.
k_h: The height of the convolutional kernel.
k_w: The width of the convolutional kernel.
d_h: The height stride of the convolutional kernel.
d_w: The width stride of the convolutional kernel.
name: The name of the variable scope.
Returns:
conv: The normalized tensor.
"""
with tf.variable_scope(name):
w = tf.get_variable(
'w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim],
initializer=tf.zeros_initializer())
conv = tf.nn.bias_add(conv, biases)
return conv
def deconv2d(input_, output_shape,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
name='deconv2d', init_bias=0.):
"""Creates deconvolutional layers.
Args:
input_: 4D input tensor (batch size, height, width, channel).
output_shape: Number of features in the output layer.
k_h: The height of the convolutional kernel.
k_w: The width of the convolutional kernel.
d_h: The height stride of the convolutional kernel.
d_w: The width stride of the convolutional kernel.
stddev: The standard deviation for weights initializer.
name: The name of the variable scope.
init_bias: The initial bias for the layer.
Returns:
conv: The normalized tensor.
"""
with tf.variable_scope(name):
w = tf.get_variable('w',
[k_h, k_w, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
biases = tf.get_variable('biases', [output_shape[-1]],
initializer=tf.constant_initializer(init_bias))
deconv = tf.nn.bias_add(deconv, biases)
deconv.shape.assert_is_compatible_with(output_shape)
return deconv
def linear(x, output_size, scope=None, bias_start=0.0):
"""Creates a linear layer.
Args:
x: 2D input tensor (batch size, features)
output_size: Number of features in the output layer
scope: Optional, variable scope to put the layer's parameters into
bias_start: The bias parameters are initialized to this value
Returns:
The normalized tensor
"""
shape = x.get_shape().as_list()
with tf.variable_scope(scope or 'Linear'):
matrix = tf.get_variable(
'Matrix', [shape[1], output_size], tf.float32,
tf.contrib.layers.xavier_initializer())
bias = tf.get_variable(
'bias', [output_size], initializer=tf.constant_initializer(bias_start))
out = tf.matmul(x, matrix) + bias
return out
def lrelu(x, leak=0.2, name='lrelu'):
"""The leaky RELU operation."""
with tf.variable_scope(name):
f1 = 0.5 * (1 + leak)
f2 = 0.5 * (1 - leak)
return f1 * x + f2 * abs(x)
def _l2normalize(v, eps=1e-12):
"""l2 normize the input vector."""
return v / (tf.reduce_sum(v ** 2) ** 0.5 + eps)
def spectral_normed_weight(weights, num_iters=1, update_collection=None,
with_sigma=False):
"""Performs Spectral Normalization on a weight tensor.
Specifically it divides the weight tensor by its largest singular value. This
is intended to stabilize GAN training, by making the discriminator satisfy a
local 1-Lipschitz constraint.
Based on [Spectral Normalization for Generative Adversarial Networks][sn-gan]
[sn-gan] https://openreview.net/pdf?id=B1QRgziT-
Args:
weights: The weight tensor which requires spectral normalization
num_iters: Number of SN iterations.
update_collection: The update collection for assigning persisted variable u.
If None, the function will update u during the forward
pass. Else if the update_collection equals 'NO_OPS', the
function will not update the u during the forward. This
is useful for the discriminator, since it does not update
u in the second pass.
Else, it will put the assignment in a collection
defined by the user. Then the user need to run the
assignment explicitly.
with_sigma: For debugging purpose. If True, the fuction returns
the estimated singular value for the weight tensor.
Returns:
w_bar: The normalized weight tensor
sigma: The estimated singular value for the weight tensor.
"""
w_shape = weights.shape.as_list()
w_mat = tf.reshape(weights, [-1, w_shape[-1]]) # [-1, output_channel]
u = tf.get_variable('u', [1, w_shape[-1]],
initializer=tf.truncated_normal_initializer(),
trainable=False)
u_ = u
for _ in range(num_iters):
v_ = _l2normalize(tf.matmul(u_, w_mat, transpose_b=True))
u_ = _l2normalize(tf.matmul(v_, w_mat))
sigma = tf.squeeze(tf.matmul(tf.matmul(v_, w_mat), u_, transpose_b=True))
w_mat /= sigma
if update_collection is None:
with tf.control_dependencies([u.assign(u_)]):
w_bar = tf.reshape(w_mat, w_shape)
else:
w_bar = tf.reshape(w_mat, w_shape)
if update_collection != 'NO_OPS':
tf.add_to_collection(update_collection, u.assign(u_))
if with_sigma:
return w_bar, sigma
else:
return w_bar
def snconv2d(input_, output_dim,
k_h=3, k_w=3, d_h=2, d_w=2,
sn_iters=1, update_collection=None, name='snconv2d'):
"""Creates a spectral normalized (SN) convolutional layer.
Args:
input_: 4D input tensor (batch size, height, width, channel).
output_dim: Number of features in the output layer.
k_h: The height of the convolutional kernel.
k_w: The width of the convolutional kernel.
d_h: The height stride of the convolutional kernel.
d_w: The width stride of the convolutional kernel.
sn_iters: The number of SN iterations.
update_collection: The update collection used in spectral_normed_weight.
name: The name of the variable scope.
Returns:
conv: The normalized tensor.
"""
with tf.variable_scope(name):
w = tf.get_variable(
'w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.contrib.layers.xavier_initializer())
w_bar = spectral_normed_weight(w, num_iters=sn_iters,
update_collection=update_collection)
conv = tf.nn.conv2d(input_, w_bar, strides=[1, d_h, d_w, 1], padding='SAME')
biases = tf.get_variable('biases', [output_dim],
initializer=tf.zeros_initializer())
conv = tf.nn.bias_add(conv, biases)
return conv
def snlinear(x, output_size, bias_start=0.0,
sn_iters=1, update_collection=None, name='snlinear'):
"""Creates a spectral normalized linear layer.
Args:
x: 2D input tensor (batch size, features).
output_size: Number of features in output of layer.
bias_start: The bias parameters are initialized to this value
sn_iters: Number of SN iterations.
update_collection: The update collection used in spectral_normed_weight
name: Optional, variable scope to put the layer's parameters into
Returns:
The normalized tensor
"""
shape = x.get_shape().as_list()
with tf.variable_scope(name):
matrix = tf.get_variable(
'Matrix', [shape[1], output_size], tf.float32,
tf.contrib.layers.xavier_initializer())
matrix_bar = spectral_normed_weight(matrix, num_iters=sn_iters,
update_collection=update_collection)
bias = tf.get_variable(
'bias', [output_size], initializer=tf.constant_initializer(bias_start))
out = tf.matmul(x, matrix_bar) + bias
return out
def sn_embedding(x, number_classes, embedding_size, sn_iters=1,
update_collection=None, name='snembedding'):
"""Creates a spectral normalized embedding lookup layer.
Args:
x: 1D input tensor (batch size, ).
number_classes: The number of classes.
embedding_size: The length of the embeddding vector for each class.
sn_iters: Number of SN iterations.
update_collection: The update collection used in spectral_normed_weight
name: Optional, variable scope to put the layer's parameters into
Returns:
The output tensor (batch size, embedding_size).
"""
with tf.variable_scope(name):
embedding_map = tf.get_variable(
name='embedding_map',
shape=[number_classes, embedding_size],
initializer=tf.contrib.layers.xavier_initializer())
embedding_map_bar_transpose = spectral_normed_weight(
tf.transpose(embedding_map), num_iters=sn_iters,
update_collection=update_collection)
embedding_map_bar = tf.transpose(embedding_map_bar_transpose)
return tf.nn.embedding_lookup(embedding_map_bar, x)
class ConditionalBatchNorm_old(object):
"""Conditional BatchNorm.
For each class, it has a specific gamma and beta as normalization variable.
"""
def __init__(self, num_categories, name='conditional_batch_norm', center=True,
scale=True):
with tf.variable_scope(name):
self.name = name
self.num_categories = num_categories
self.center = center
self.scale = scale
def __call__(self, inputs, labels):
inputs = tf.convert_to_tensor(inputs)
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
axis = [0, 1, 2]
shape = tf.TensorShape([self.num_categories]).concatenate(params_shape)
with tf.variable_scope(self.name):
self.gamma = tf.get_variable(
'gamma', shape,
initializer=tf.ones_initializer())
self.beta = tf.get_variable(
'beta', shape,
initializer=tf.zeros_initializer())
beta = tf.gather(self.beta, labels)
beta = tf.expand_dims(tf.expand_dims(beta, 1), 1)
gamma = tf.gather(self.gamma, labels)
gamma = tf.expand_dims(tf.expand_dims(gamma, 1), 1)
mean, variance = tf.nn.moments(inputs, axis, keep_dims=True)
variance_epsilon = 1E-5
outputs = tf.nn.batch_normalization(
inputs, mean, variance, beta, gamma, variance_epsilon)
outputs.set_shape(inputs_shape)
return outputs
class ConditionalBatchNorm(object):
"""Conditional BatchNorm.
For each class, it has a specific gamma and beta as normalization variable.
"""
def __init__(self, num_categories, name='conditional_batch_norm', decay_rate=0.999, center=True,
scale=True):
with tf.variable_scope(name):
self.name = name
self.num_categories = num_categories
self.center = center
self.scale = scale
self.decay_rate = decay_rate
def __call__(self, inputs, labels, is_training=True):
inputs = tf.convert_to_tensor(inputs)
inputs_shape = inputs.get_shape()
params_shape = inputs_shape[-1:]
axis = [0, 1, 2]
shape = tf.TensorShape([self.num_categories]).concatenate(params_shape)
moving_shape = tf.TensorShape([1, 1, 1]).concatenate(params_shape)
with tf.variable_scope(self.name):
self.gamma = tf.get_variable(
'gamma', shape,
initializer=tf.ones_initializer())
self.beta = tf.get_variable(
'beta', shape,
initializer=tf.zeros_initializer())
self.moving_mean = tf.get_variable('mean', moving_shape,
initializer=tf.zeros_initializer(),
trainable=False)
self.moving_var = tf.get_variable('var', moving_shape,
initializer=tf.ones_initializer(),
trainable=False)
beta = tf.gather(self.beta, labels)
beta = tf.expand_dims(tf.expand_dims(beta, 1), 1)
gamma = tf.gather(self.gamma, labels)
gamma = tf.expand_dims(tf.expand_dims(gamma, 1), 1)
decay = self.decay_rate
variance_epsilon = 1E-5
if is_training:
mean, variance = tf.nn.moments(inputs, axis, keep_dims=True)
update_mean = tf.assign(self.moving_mean, self.moving_mean * decay + mean * (1 - decay))
update_var = tf.assign(self.moving_var, self.moving_var * decay + variance * (1 - decay))
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_var)
#with tf.control_dependencies([update_mean, update_var]):
outputs = tf.nn.batch_normalization(
inputs, mean, variance, beta, gamma, variance_epsilon)
else:
outputs = tf.nn.batch_normalization(
inputs, self.moving_mean, self.moving_var, beta, gamma, variance_epsilon)
outputs.set_shape(inputs_shape)
return outputs
class batch_norm(object):
def __init__(self, epsilon=1e-5, momentum = 0.9999, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train=True):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
# updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train,
scope=self.name)
class BatchNorm(object):
"""The Batch Normalization layer."""
def __init__(self, name='batch_norm', center=True,
scale=True):
with tf.variable_scope(name):
self.name = name
self.center = center
self.scale = scale
def __call__(self, inputs):
inputs = tf.convert_to_tensor(inputs)
inputs_shape = inputs.get_shape().as_list()
params_shape = inputs_shape[-1]
axis = [0, 1, 2]
shape = tf.TensorShape([params_shape])
with tf.variable_scope(self.name):
self.gamma = tf.get_variable(
'gamma', shape,
initializer=tf.ones_initializer())
self.beta = tf.get_variable(
'beta', shape,
initializer=tf.zeros_initializer())
beta = self.beta
gamma = self.gamma
mean, variance = tf.nn.moments(inputs, axis, keep_dims=True)
variance_epsilon = 1E-5
outputs = tf.nn.batch_normalization(
inputs, mean, variance, beta, gamma, variance_epsilon)
outputs.set_shape(inputs_shape)
return outputs
@contextmanager
def variables_on_gpu0():
old_fn = tf.get_variable
def new_fn(*args, **kwargs):
with tf.device('/gpu:0'):
return old_fn(*args, **kwargs)
tf.get_variable = new_fn
yield
tf.get_variable = old_fn
def avg_grads(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads