forked from brain-research/self-attention-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_imagenet.py
245 lines (197 loc) · 9.06 KB
/
eval_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Generic train."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import flags
import tensorflow as tf
import generator as generator_module
import utils_ori as utils
slim = tf.contrib.slim
tfgan = tf.contrib.gan
flags.DEFINE_string(
# 'data_dir', '/gpu/hz138/Data/imagenet', #'/home/hz138/Data/imagenet',
'data_dir', '/bigdata1/hz138/Data/imagenet',
'Directory with Imagenet input data as sharded recordio files of pre-'
'processed images.')
flags.DEFINE_integer('z_dim', 128, 'The dimension of z')
flags.DEFINE_integer('gf_dim', 64, 'Dimensionality of gf. [64]')
flags.DEFINE_string('master', 'local',
'BNS name of the TensorFlow master to use')
flags.DEFINE_string('checkpoint_dir', 'checkpoint', 'Directory name to load '
'the checkpoints. [checkpoint]')
flags.DEFINE_string('sample_dir', 'sample', 'Directory name to save the '
'image samples. [sample]')
flags.DEFINE_string('eval_dir', 'checkpoint/eval', 'Directory name to save the '
'eval summaries . [eval]')
flags.DEFINE_integer('batch_size', 64, 'Batch size of samples to feed into '
'Inception models for evaluation. [16]')
flags.DEFINE_integer('shuffle_buffer_size', 5000, 'Number of records to load '
'before shuffling and yielding for consumption. [5000]')
flags.DEFINE_integer('dcgan_generator_batch_size', 100, 'Size of batch to feed '
'into generator -- we may stack multiple of these later.')
flags.DEFINE_integer('eval_sample_size', 50000,
'Number of samples to sample from '
'generator and real data. [1024]')
flags.DEFINE_boolean('is_train', False, 'Use DCGAN only for evaluation.')
flags.DEFINE_integer('task', 0, 'The task id of the current worker. [0]')
flags.DEFINE_integer('ps_tasks', 0, 'The number of ps tasks. [0]')
flags.DEFINE_integer('num_workers', 1, 'The number of worker tasks. [1]')
flags.DEFINE_integer('replicas_to_aggregate', 1, 'The number of replicas '
'to aggregate for synchronous optimization [1]')
flags.DEFINE_integer('num_towers', 1, 'The number of GPUs to use per task. [1]')
flags.DEFINE_integer('eval_interval_secs', 300,
'Frequency of generator evaluation with Inception score '
'and Frechet Inception Distance. [300]')
flags.DEFINE_integer('num_classes', 1000, 'The number of classes in the dataset')
flags.DEFINE_string('generator_type', 'test', 'test or baseline')
FLAGS = flags.FLAGS
def main(_):
model_dir = '%s_%s' % ('imagenet', FLAGS.batch_size)
FLAGS.eval_dir = FLAGS.checkpoint_dir + '/eval'
checkpoint_dir = os.path.join(FLAGS.checkpoint_dir, model_dir)
log_dir = os.path.join(FLAGS.eval_dir, model_dir)
print('log_dir', log_dir)
graph_def = None # pylint: disable=protected-access
# Batch size to feed batches of images through Inception and the generator
# to extract feature vectors to later stack together and compute metrics.
local_batch_size = FLAGS.dcgan_generator_batch_size
if FLAGS.generator_type == 'baseline':
generator_fn = generator_module.generator
elif FLAGS.generator_type == 'test':
generator_fn = generator_module.generator_test
else:
raise NotImplementedError
if FLAGS.num_towers != 1 or FLAGS.num_workers != 1:
raise NotImplementedError(
'The eval job does not currently support using multiple GPUs')
# Get activations from real images.
with tf.device('/device:CPU:1'):
real_pools, real_images = utils.get_real_activations(
FLAGS.data_dir,
local_batch_size,
FLAGS.eval_sample_size // local_batch_size,
label_offset=-1,
shuffle_buffer_size=FLAGS.shuffle_buffer_size)
num_classes = FLAGS.num_classes
gen_class_logits = tf.zeros((local_batch_size, num_classes))
gen_class_ints = tf.multinomial(gen_class_logits, 1)
gen_sparse_class = tf.squeeze(gen_class_ints)
# Generate the first batch of generated images and extract activations;
# this bootstraps the while_loop with a pools and logits tensor.
test_zs = utils.make_z_normal(1, local_batch_size, FLAGS.z_dim)
generator = generator_fn(
test_zs[0],
gen_sparse_class,
FLAGS.gf_dim,
FLAGS.num_classes,
is_training=False)
pools, logits = utils.run_custom_inception(
generator, output_tensor=['pool_3:0', 'logits:0'], graph_def=graph_def)
# Set up while_loop to compute activations of generated images from generator.
def while_cond(g_pools, g_logits, i): # pylint: disable=unused-argument
return tf.less(i, FLAGS.eval_sample_size // local_batch_size)
# We use a while loop because we want to generate a batch of images
# and then feed that batch through Inception to retrieve the activations.
# Otherwise, if we generate all the samples first and then compute all the
# activations, we will run out of memory.
def while_body(g_pools, g_logits, i):
with tf.control_dependencies([g_pools, g_logits]):
test_zs = utils.make_z_normal(1, local_batch_size, FLAGS.z_dim)
# Uniform distribution
gen_class_logits = tf.zeros((local_batch_size, num_classes))
gen_class_ints = tf.multinomial(gen_class_logits, 1)
gen_sparse_class = tf.squeeze(gen_class_ints)
generator = generator_fn(
test_zs[0],
gen_sparse_class,
FLAGS.gf_dim,
FLAGS.num_classes,
is_training=False)
pools, logits = utils.run_custom_inception(
generator,
output_tensor=['pool_3:0', 'logits:0'],
graph_def=graph_def)
g_pools = tf.concat([g_pools, pools], 0)
g_logits = tf.concat([g_logits, logits], 0)
return (g_pools, g_logits, tf.add(i, 1))
# Get the activations
i = tf.constant(1)
new_generator_pools_list, new_generator_logits_list, _ = tf.while_loop(
while_cond,
while_body, [pools, logits, i],
shape_invariants=[
tf.TensorShape([None, 2048]),
tf.TensorShape([None, 1008]),
i.get_shape()
],
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='GeneratedActivations')
new_generator_pools_list.set_shape([FLAGS.eval_sample_size, 2048])
new_generator_logits_list.set_shape([FLAGS.eval_sample_size, 1008])
# Get a small batch of samples from generator to dispaly in TensorBoard
vis_batch_size = 16
eval_vis_zs = utils.make_z_normal(
1, vis_batch_size, FLAGS.z_dim)
gen_class_logits_vis = tf.zeros((vis_batch_size, num_classes))
gen_class_ints_vis = tf.multinomial(gen_class_logits_vis, 1)
gen_sparse_class_vis = tf.squeeze(gen_class_ints_vis)
eval_vis_images = generator_fn(
eval_vis_zs[0],
gen_sparse_class_vis,
FLAGS.gf_dim,
FLAGS.num_classes,
is_training=False
)
eval_vis_images = tf.cast((eval_vis_images + 1.) * 127.5, tf.uint8)
with tf.variable_scope('eval_vis'):
tf.summary.image('generated_images', eval_vis_images)
tf.summary.image('real_images', real_images)
tf.summary.image('real_images_grid',
tfgan.eval.image_grid(
real_images[:16],
grid_shape=utils.squarest_grid_size(16),
image_shape=(128, 128)))
tf.summary.image('generated_images_grid',
tfgan.eval.image_grid(
eval_vis_images[:16],
grid_shape=utils.squarest_grid_size(16),
image_shape=(128, 128)))
# Use the activations from the real images and generated images to compute
# Inception score and FID.
generated_logits = tf.concat(new_generator_logits_list, 0)
generated_pools = tf.concat(new_generator_pools_list, 0)
# Compute Frechet Inception Distance and Inception score
incscore = tfgan.eval.classifier_score_from_logits(generated_logits)
fid = tfgan.eval.frechet_classifier_distance_from_activations(
real_pools, generated_pools)
with tf.variable_scope('eval'):
tf.summary.scalar('fid', fid)
tf.summary.scalar('incscore', incscore)
session_config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False)
tf.contrib.training.evaluate_repeatedly(
checkpoint_dir=checkpoint_dir,
hooks=[
tf.contrib.training.SummaryAtEndHook(log_dir),
tf.contrib.training.StopAfterNEvalsHook(1)
],
config=session_config)
if __name__ == '__main__':
tf.app.run()