From cc8649bb8615d94b95e6c908fc65b0a9afccd2fb Mon Sep 17 00:00:00 2001 From: HarshaVardhanBabu Date: Wed, 14 Aug 2024 10:10:32 +0530 Subject: [PATCH] Added the notebook for the conversation distillation task (#3347) --- .../distillation_conversational_task.ipynb | 611 ++++++++++++++++++ 1 file changed, 611 insertions(+) create mode 100644 sdk/python/foundation-models/system/finetune/Llama-notebooks/distillation/distillation_conversational_task.ipynb diff --git a/sdk/python/foundation-models/system/finetune/Llama-notebooks/distillation/distillation_conversational_task.ipynb b/sdk/python/foundation-models/system/finetune/Llama-notebooks/distillation/distillation_conversational_task.ipynb new file mode 100644 index 0000000000..43c91de0e6 --- /dev/null +++ b/sdk/python/foundation-models/system/finetune/Llama-notebooks/distillation/distillation_conversational_task.ipynb @@ -0,0 +1,611 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Distillation with Large Language Models\n", + " \n", + "### Notebook details\n", + " \n", + "This sample demonstrates how to train the selected student model using the teacher model, resulting in the creation of the distilled model.\n", + " \n", + "We will use the Meta Llama 3.1 405B Instruct as the teacher model and the Meta Llama 3.1 8B Instruct as the student model.\n", + " \n", + "**Note :**\n", + " \n", + "- Distillation offering is only available in **West US 3** regions.\n", + "- Distillation should only be used for single turn chat completion format.\n", + "- The Meta Llama 3.1 405B Instruct model can only be used as a teacher model.\n", + "- The Meta Llama 3.1 8B Instruct can only be used as a student (target) model.\n", + "- Distllation is currently supported only for Natural Language Inference (NLI) task, Conversational single turn and multi turn (CONVERSATION) and Natural language understanding Question and Answering (NLU_QA) which is a standard task in benchmarking for Natural Language Understanding.\n", + "\n", + "**Prerequisites :**\n", + "- Subscribe to the Meta Llama 3.1 405B Instruct and Meta Llama 3.1 8B Instruct, see [how to subscribe your project to the model offering in MS Learn](https://learn.microsoft.com/en-us/azure/ai-studio/how-to/deploy-models-serverless?tabs=azure-ai-studio#subscribe-your-project-to-the-model-offering)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Install the SDK v2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# %pip install azure-ai-ml\n", + "# %pip install azure-identity\n", + "# %pip install tqdm\n", + "# %pip install mlflow\n", + "# %pip install azureml-mlflow\n", + "# %pip install datasets" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import the required libraries" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# import required libraries\n", + "\n", + "import base64\n", + "import json\n", + "from tqdm.notebook import tqdm\n", + "from azure.identity import DefaultAzureCredential, InteractiveBrowserCredential\n", + "\n", + "from azure.ai.ml import MLClient, Input\n", + "from azure.ai.ml.constants import AssetTypes\n", + "from azure.ai.ml.dsl import pipeline\n", + "from azure.ai.ml.entities import Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prerequisites\n", + "\n", + "An AI Studio project in **West US 3** is required. Please follow [this](https://learn.microsoft.com/azure/ai-studio/how-to/fine-tune-model-llama?tabs=llama-two%2Cchatcompletion#prerequisites) document to setup your AI Studio project" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## AI Studio project settings\n", + "\n", + "Update following cell with the information of the AI Studio project just created." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "SUBSCRIPTION_ID = \"\"\n", + "RESOURCE_GROUP = \"\"\n", + "AI_PROJECT_NAME = \"\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Configure credential\n", + "\n", + "We are using `DefaultAzureCredential` to get access to workspace. \n", + "`DefaultAzureCredential` should be capable of handling most Azure SDK authentication scenarios. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "try:\n", + " credential = DefaultAzureCredential()\n", + " # Check if given credential can get token successfully.\n", + " credential.get_token(\"https://management.azure.com/.default\")\n", + "except Exception as ex:\n", + " # Fall back to InteractiveBrowserCredential in case DefaultAzureCredential not work\n", + " credential = InteractiveBrowserCredential()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Get handle to AI Studio project" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ml_client = MLClient(credential, SUBSCRIPTION_ID, RESOURCE_GROUP, AI_PROJECT_NAME)\n", + "\n", + "ai_project = ml_client._workspaces.get(ml_client.workspace_name)\n", + "ai_project._workspace_id" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pick a teacher model\n", + "\n", + "We support **Meta-Llama-3.1-405B-Instruct** as the teacher model. \n", + "### First deploy the teacher model in Azure AI Studio\n", + "* Go to Azure AI Studio (ai.azure.com)\n", + "* Select Meta-Llama-3.1-405B-Instruct model from Model catalog.\n", + "* Deploy with \"Pay-as-you-go\"\n", + "* Once deployed successfully, you should be assigned for an API endpoint and a security key for inference.\n", + "\n", + "Update the following cell with the information of the deployment you just created." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Llama-3-405B Teacher model endpoint name\n", + "# The serverless model name is the name found in ML Studio > Endpoints > Serverless endpoints > Model column\n", + "TEACHER_MODEL_NAME = \"Meta-Llama-3.1-405B-Instruct\"\n", + "\n", + "# The serverless model endpoint name is the name found in ML Studio > Endpoints > Serverless endpoints > Name column\n", + "# The endpoint URL will be resolved from this name by the MLFlow component\n", + "TEACHER_MODEL_ENDPOINT_NAME = \"Meta-Llama-3-1-405B-Instruct-vum\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pick a student model\n", + "\n", + "We will use **Meta-Llama-3.1-8B-Instruct** as student model. We only support chat completion models that are available for PayGo finetuning in Azure AI Studio." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "STUDENT_MODEL_NAME = \"Meta-Llama-3.1-8B-Instruct\"\n", + "STUDENT_MODEL_VERSION = 1\n", + "\n", + "# retrieve student model from model registry\n", + "mlclient_azureml_meta = MLClient(credential, registry_name=\"azureml-meta\")\n", + "student_model = mlclient_azureml_meta.models.get(\n", + " STUDENT_MODEL_NAME, version=STUDENT_MODEL_VERSION\n", + ")\n", + "\n", + "print(\n", + " \"\\n\\nUsing model name: {0}, version: {1}, id: {2} for fine tuning\".format(\n", + " student_model.name, student_model.version, student_model.id\n", + " )\n", + ")" + ] + }, + { + "attachments": { + "image.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+wAAAIvCAYAAADu0lEmAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhe7N0JYBXV3Tf+L4Ql7IQ17FuACFRwQVGx4o5aBZ7WaqkL1kely1NB+7xq9Q/Cq62+1WoXK+pjS9UilPYBahFcgCigILsSCCQh7CSsAQIEQsj//M6cuXfmLnPn3iRwQ74fHXJn5s7MmTNnzpwz58zcOhUKiIiIiIiIiCip1DV/iYiIiIiIiCiJRG1hP3PmDEqOnUBZ2WmUnT6txtkQT0RERERERBSPunXroH69eqhfvx6aNmmkxv23m4dV2GX0xImTOHykBM2aNUG9eil65SkpbIwnIiIiIiIiikd5+RndCH5aDUeOHkfL5k3RqFFD1KlTx3wjOleFXT4eP1GKkyfL0CqtuZlKRERERERERFXh4KEjaJjaAI1TY1faA83mdss6K+tERERERERE1UPq26Wlp3Ci9KSuh3sJVNjlmXXpBs/KOhEREREREVH1aa3q3cWHS3Q93IuusEutvuR4KZo1bawnEhEREREREVH1ad6sMY6perhXK3ugwn667DTq1a+nJxIRERERERFR9alXr57+VbaYFXYhb62Tt8ETERERERERUfWS+rfUw70EWtjld9b5021ERERERERE1U/q31IP99XCTkRERERERETJQ/8Oe3l5OYr2HULH9DZmMhERERFR7XT6dLn+uSX5yePTqpycbOqlpKBRo4ZolNoQ9eqlmKn+JPu+VZXKxFEk0gJaevKUft5YD6dP65ZRql3q1q2ju7HXr19PpytJX7F+Rz2W3YX70b5tGlJUmo2EFXYiIiIiIkMqtIcOH0XDBvV1hU8qflIglwqb+68qSKtyevj06p8vFW2pcJ88VYa0Fs18V0j1vhWrfWtYH6mpDdCgfn1f26uJ80+VlenfuT55UsVRS/9xFIlU1HW8qTQhFTVdWVPpQtYZKxycf37NP336jDr/5KZNmRrKVTo7rc7BpuqcamBSS/xYYSciIiIi8kEK5UdLjuvPzZo2kSn6s0WV4pNs/GjJMf1JfppZKhNe3PsmP+Vc+e3XhHHnPseKo1ASZ0eOHtMt6mktm+vW1aoKVxDHa/J4+ZkKHCo+ggb166F5syZxpzERq8LOZ9iJiIiIiBSpoEmrrLQ+V1ScMdP0n6Qcl3BKeCXcsQT2zbQEVsX2rb/6T9KOy/76jSMn+X7x4RJVAauL1q1aqL/29KoJF8f1nxo/Lvdw2uj0UQfFR0rUdDOjCrHCTkRERESkSGFbuptLd2dpSbML39bf5BuXcEp47ele5Dt63+rVC1lPtPWfH/Nlf/3GkU2+e/jIMf0G76ZNGpll7fWHbofjHK9Q6aQxUurW1T0y7PlVpVJd4o8ePYq1a9dClvcizfuDBg1Cs2bNzBQKVVq4FssKu2PYoJZmChERERGdTXaZOL1dK1XoVgXlOlIoD/0b+qzruZ1fuPegZ3dam71v7du28lxf+N+aP9/a79hxZJNn1qUrfeu05h7rDd9OsscD51f//AMHj6B5s8ZxPdNerc+wDxgwANnZ2WbMm3z3m2++MWPhCtfOxrKtZkS0zMSwIZlomWrGa6jSnCzMzylWuzMcwzKdO1OKnKz5yCluiUHDU/FCyyvwxsmBeKVgLcZ1N18hIiKqVcpx8nAJTjVoimaN/BWsKbaN82fj6yZX4K6r25spVeDUcVWhKTMjQErTFmic+DuXkoZdJm6nCs911H+qGK4G519LhfovWeb7rYw6K+zB5S0r136D5V+tQWpqQz0uW7vs4oG4cECmGXeHJ3T5qpm/FR/+ZjN6//fNyIg4P/b6D6x4Dx/iNtwzuKVrftE+fzc1hMTTvgPFqrLeIuSZded2rfHgX0uVzD+4G9vQEd1aJbh86Hy9vk5qfVHm67+Wmj3/FHbnHULrjPZoGHF+rOWrZr78csDBg4fRtk1L3zeIqvUZdr+VdbF+/XrzKbK1L4zCqFGO4doLkNYoHcOn5KiqbRzmj9F3N+6eb8ar3Va8OkgdusxX1adwqcXTcbfan2ufzTJTjNLZGHet2s8n16ovZeLusQPRd8Q4DGdlnYiIaog9RftRcuw4DqjCycLPv8KHnyzBJ1nLsGrtBpSWnjTfisOJDfjwg0X4+8IcxLP0geWfYtby/WbsPFS0FrP+tRYHzGiVqcx6N6/A3z/8DLPVMZfh73+fjXfVuvYm1a+E5eOTGV+ofxMjLWZSHJe/Uii3xtV/etyavvDzL7F95+6o86Muf3ARnvz+z/GndY75ez7CY9//T3xXDd/7/kP4wX+9gc8KrWev9/z7WTz2QVHE9cdLltNVDb28tb7iw0fwk4fuxfe/exu+O+IW3DnyFnTt0hHFR47oeYePHLW6lUdZXljhfygQfvn72L9VmO35+vsey1fsxbKPs7E/6nwZ81q+Aifzv8KneccizvdDr+Nkmf7ZLt2aaqbZx8/+jnw6/dVXOHrHHTg6/ObAUDJ8uPms/t5xO8pXrDDfD4ZD/m6d/kv87J871VgwXaz/08/x/NJTWP/OU/jZO5vN90PSjVlePvmdb61vU9T51nhw+d0fTFDHzjp+3/3RL/HcPzfhiMf6rfGT2PrVJp2XRJ6v/tPjccw/sAmrt5e555/6Cs99/4/40nxPL39gIZ78r//F1gNL8NLPX8OnB8zy9nzn8mZ6dc6vq9KN/IqApCN7WmVV+hn2Z599FosWLQoMw4YN04Nz2sSJE823Y+mLVwrUDp84hIJFr+Dm9kX46McXYPjUQjM/ttJi/9+tGsUo9NrkkDEYIzcrZ8/GMmuKJWs2PlJ/uo0cju5oiWGvrkXO7DGw7mMSERElP6mwb87bhq+zN+PKywbi1huH4sZhQ9AnoztWf52DrdulIuPfyewilHRoh/RDe5F7wkz0ofxUGU6dOn9/Txrlsn9lqPI9rOx6Uzvg5rtuw71qGPODK9Dt1FYs+qLIzEwG8pNLah/NWDzscrZd4D5j/u7aXYjde6QSqkfx73kL0bJFc+zYZU+3ZkRb3h7fv/QT4NI+WP6R1aCl5586hgNNb8UfZryFmWr4y6NN8OexUyHNY2eOHsKBkmAFwPwJjMfL/vlwe/m6deqi9ORJrP16A9Zv2KTO6U367zfZOebvJtf+hS6v/4SE/x9qeOm2tsH5+q/H8g7R5sda3v4bOj8e8vvq9k/ABbdn/Q1upwLlmzapffZIXWre6Rz1HSU0nF0v7Y09WWuxLzC9AJ9nNcGgzAbo/+hfMefR3np6aLqxlw8PV/T5zvVFmi9cy5cUo+moifr4zXz9p7ho5fP44atWOo2+/Gb8/VdzkRt1vv1X//E1/8AXU/G7pXsD4/pv/UG4vNdXWLw2uPzJlV9gTa/e6NbqWrw0dxJulZ4E5vuV2b5IdH6KSj9yg6uqVLrC3q9fv0AlXYY2bdqgbdu2rmnynbiktkT3YeMwf9krqgoPfPbsq8ix5qB47VSMG5au73rpIX0kppqZWePS0X2MVIOBGXenIz09HeOkYbt0K+a/ejcGpZpl6qRikJpRrL9pyZk6Eun2OuukY+Sry4LzC2djzKDU4LJjZkPX0bdOwfD0YXhRrk2bnsQQtb304VNCWtqH4G6psZ+cjdlrzSRlmarAA+1x991SRd+KKcMlvOPgbIcvXvYqRqZHCFPpfIzt7t5Wqarsy/6OnG7fPSjF7DHqO92D64y6PpE1Ti0/DFNycjBVhUW+MyyOGyVERFQ7bVIV9t69uroKJ/LzSVKBL1AVdvm5G38O4+sdx5He5WJ0SzuMLTnB/nXSgv7uAkc7qbQMm5bT/AVz8eG2kyjZsRzvzpiLTzZaX8G+bMyf9S+8/d5svD3jYyzaeNTMiOJwPhbNmmt9f9o8zF9/2JrusR7dsv/FdmxeMA9T9XIf4/OtEu4ybP5kLv61/KD1RW0Pls6ap+bL53IUr1mCGdPUMu/9C9OcLdMbv9D7uveLj/U652ep8axdKCndg4/U/gXiwRGuqTM+xYrdjsKhzPuHNe/dWcuxLVKdQrYTab0l27H0X3PN/szD3OV7cNqa4y2lPTLbN0TJMRVvh3di3Scf4117/+ZnO8pcVqv35t2r8Q+Z/4ls9zi2LVbHWLb5noq3L1ZgvqNlXI6xqweFhN3ZMyBSXEgamZajymuHsFz2L+6eBHaLWR1TKK/A9h27MenXf1CTdPstTqoK2ZGjJWjSRH4urALP/vp32LGzMPD90OWD4ypMHwNDf3QN+n/9GVbZ89W/wv5+g57X4PpW2Vi/3Z5jL2++b9YXr6jh07Vcq8XQOd8eP3NG3o4daX/MuPpXhM9fg9//4j18Mv05/HDUD3HdvX/E8sI1+N3Y/8Qtt/0QP/tfaWm2v1+Mz3/3C9x51/0Yfu9z+HB7cP37l/4Rj9z1ML5316N46t87A+sv+OA53HnbaNxx1y/w0hfyE26h25e//sgy8lv19u+rh+9vcL3qExr88Ido8uE8NJk3H/XV59Dx8HCY8V7DcF3RUiw/aMbzs7Cg/TW4vFUFdn8wEY//e5/5fhE+/43Eh9rvH0l8qO8fXYJnx87GJj3/JD5//j/xq6Vl1ve3/xs/+81yNTW4Pef69vx7In7zkToeYx/GcBVnP3x9PUr19xzhU/8Gxht0xC0TH0K/uXPwyUk1XrIJsyZa4Rk+6id4aam8Fb0Is3/xG8w7tgLP3vWfuifI0Y0fYoI6vtZxVMe7xFrf0XVvYoz6jiz/8G/W4KiOjyIs/s3/UcdVTX/wOcyV9L7iLTzwei7y3p2opr+JNYHw1cfQa3pjQdYGM672P2szrh82QI2r/VLfXa2n18HhDbPw1IP/qdf7yO824LCanvv2o3h+qfTfUuvLm4VHxs7CZvP9L3/zS/xd4jdSeNT8XSoef5+1HL+5dzRuUesLxJdZ3jkuLzqUnwK05lVecr8lvvtIjB2o/m6bj/n6AleMrBfG4neFg/DE67Pw/hPXoEXRHDww/EldoW85aDiGZFrP3nRTn4cPHw79Dret0zFufBZS734F7896Hfd3O4l1v7sWY6abwkDOkxj+wBwUX/OEmj8Lrz/aHVvXmktL4VQM6zAKfy0chifel20Owda/jsKQJ9UWU7tj2PBB6Cbfa5iJIWp7w4d1R+hj98NGjlT/qsScZVevc5CVpRJL+zG4e5A1pXRrEYqKCoPd/5eNRfcrxmNOy/vxuoTp/lTMGX+FFebUYRiWqb7/0WwsMwtkTf+rWr4Ic6ZmmXWsxfzp6juZQzBERr3WJ0oL1fKf4ckhQ/DA2u646/77MWZIujWPiIgogg7t26Bv7+7Yu/9Q4LeOnQZf1B/fbMgzYzEcLMC2E63Qs1cqerdvin278wPd4nULepmjQiotw6bltNvlQ3FRGtCo/SCMvHEoruqlJp7Ix3xVETzV5Urcf89I3H9lGvau+hyLtjrW4STfn/sN9rYZiHt+MBIP3tYfF7RqGnM9Eq6DW7Kxrf2VuOee23Brx3LkrslRhdD66NamsdqHrcGK6o7tquLcAj27qyLmxiWYvbEcF952Ox685xZc23wPPl28x/qe7FtRNpaeyMR3v38bbrhc7VefFura3wbfVvs38vKugXCVd79WLT8S91zZDFsWr4Reg56Xi8PtB+sw/+AaFTmReiv0irBeVVZZOn81djb5Fr6r40FNy1+OD1aGH9twx7Hn0Ek0baLWeWQ/Dqu4/P5dah3fH4S2h3Px+Rq7hCOt3vuxfGUpBt92G+6/RqWfLz7Dpzvq49LbVXz84HpcrCrZhY6WcX2snT0onD0DosVFm0wVd23QCC1wkezfNZlorRf2xy5n2wXugoLteO43f8T//f8eQ3r7tnr++g2bcdHA/np+h/R2eO7/exzP/b8/YOvWHWHLu/4e/ArzcKWqnPXHdRdmY0GgW7x8wfxRf4+u+xALDvZHvy6ByY716D/B5eIky8mSodt1rDjkr/ljxkOXt7+Gg0vxh5dew/O/UcPba3X3dnUEceDrFdhw4Ti8979/w28uXIFfPJuNO373Fj58ZzROvfsh1pvlK9QZ0+G25/H36X/BrP9qgj88O0un64q1b+FHc/vjN9PfVPOexeUfv4YPD8r0N/Ho39tholrvnOnP44FednhC9s8n+b60sNvPEgf3z/6r/wTH9b9xjJsJFRXdcfWVu7B4hZXL7V6xFuk3XgZVXweOFeNgiZX61//uaXx44dNqn9V+/2YQ5rz0MQ407Y5+p5ZibaGsZy0W7GiC3Kw1+vv7132Bkl7d0SCwPfXXsb6KkmIsmLtLxf2b+PDfv8Sgj/+m0pj5nsw34VOfrH9lQoPuuKhzAXJ3qPEmLXHRWDk+avn/uRW5L/0N2WiHEb/5CYZiMCZOfwsvf6cdmrYcqCrJb+nj+N6o3Xj2bWmh34t5r2fj+t/I9Dfxmx/1RlO1/uzfyz6qyrJa9u//z9rH/Zc+hNfv7YiMeydi5vSHMMgRvoaXDkbGF18hV4+vxZKNV2H4hTJfpbNDx3S+UXHgIzz963344Z/eVMu/hUdOvYY31HmWkdldV/Zlv/aszFb5yFdYI/tVsR6Lv2iLrupcixge2bCKx5nTc3Hn//wNH/7caowOxlswfKJeSl2djuzplVXpCvv3v/99WC221vCPf/wDM2fOdE276667zLfj1R2Zuo+4ncm3xEhVwazImY8Xxo7E3S9kYaqsettsXaEfNGYqXh1jPQQ+5MmpmDp1KsZIhThTVegrCrFs6jjcPXIsps7/tW65nzPbtD1v3Ypt6s8gNe9uVbke++oyrJ06XG1N1XOfHYvPpKv+MrXNu2Wb8zHlZrVJte616cPx5NQnrQpx9zF4VU2b+uRwhFVzh4+BBHOT2p5usy5chvmbVIJT2zL19RCFaj1v4HDDuzBv7VSMlTBNnY0n2qswq7+lSMWQ4bIHWcjSrfZrkaV25eabVcDUBz0pR81TecDA4UPUt2OtL+hwy7FYo8I3XeKO/fOJiMiDVNgvvjBTD/I5lPwc0uGjJWbM29HcvShp2wm9VDm5Yf/2aHVoD3J8dIuv17QFGqhlUho0RLNW1ovPTmYXYFeDDhhyaRvUk+90GYyrOgBbcuwb527W9zvh2qs7o6GU01t0RbeOKf7W06YXbhzQQs2vjw59VAXxRIkqlqp9uLAT0o/tR84+62t78vejvE1XdFZX3ZzcQ2jR53Jc0EI2Zi2Xsn+nXk5LaYPB13dFswb1Ua9RYzRLleJafTRS+9esaX0rXE174IaLrF/fqdelOzqnHMSW3c596WCFuVUfdFN16DANwteLrfnYUpqGC4epbet46I8b+jTFwa05kVunT+3HsvmfYf78RfjHjI+xsrwDrrpUFS66DMK3L2qv4rIMx0taoJ3c+ygxPRa0FHS+8EoVLrV/DfYge8dJpF841IqPlFR07p6mKtr+RI2LolQ0a1RfbakuGsj+tYj/LcZWi5lVGD9ZVoYyNdjjYrmqZF126SAzbrWwSataqekm7Vw+2AKnKlWqrHZQVRzOHDiErpkdsfATqcyY+Ttn4sd3P4Tvq2HsnyvwwJ8eQj+znFqR+WP9tdcXLzs89nrkb8uWLYLh1ZU1qwU5OO74G2F5oZdP64/RD4zGIz/6IR7+/gX6Jok1uzsGZzaWD2jfuSUyhg1D1/pqRqu26jw5BsklrG7s3dGrp0qLav0NLr0Sl+1UZXS1glxVQUtvVw9rs5bi80UqvtL2YflGa3qrkXegvzrvz1TUR6v2TcwGw8MXr0B8mPXZ44F4V3/K/vY3HLv1FhxXg3wOHRfu9QTH+11zJTZ8thInKg5h7RdNcN0V1oka7M5foCqRLZFeX1UmZb9VhTO9aAM2V3TEoEuLseZrVdBftw5HbxyN64vWYb1a74aVe3HZt+zHEGRFEm49Gth++hUD0U3FV0VFC3RLk5dHWtOD4dN/HMvL3zKU6O+1Q5e0vVjz8Wz8/s8rcPDYcRwxy9n099M7Ia1wPRbM+B9M+aJYLSs/ddZWhbsMf3v2NczbWIz6aZIetuFz2ccG2eq4LsHir619lNu81mqD8R4IX9pg3NJ+BRbkqXG1/9lXXgG5bWYHQ75/cuUKbO/ZBge/+AKfqfWWNGmJDRt3Aup8vezrNaqyr+JvZRM88mAaFq87BOxYi7WZA1W9bKtneCTddpF0q8flb4Twmb9VqdIV9qp9hj1UKYqDfagMdaGb/yrGDMtEemodjJphJscgP5smlelB6S1R54KnYD1RYgwfh0fV9WX5+B6okz4M46auNXfEt2KZ1HrVNmc/OwZjxsgwFtPlOl201ap8+zIMI0eoP59NR5aqHZdmTcdnaKjWpav6EayFuv4pOZgy1t7uq1bX9q2Fervdh41Ee5xU9fMcNS0Ls4sGqt0Yhr6m633hsvlqH9vrFn8/67P1HTc2yk0EIiIiN3nJXCy33/xt88nLYeTsPo7yfd/obu3v/qtATSnBlmznLWX/Dp9QFStVkW9nxkWDBqrIoyqNB3avwAzd9VqGeViqKrmRvi8812PGQ6WcKbdahlN6IbN9KXbmSrf4PcgtArr16aw+qz1TXzi4eYG1rzIs3otTqnIudWQtpT68Xriuw3WkAH+3l5+xElvK1TJqBdH2xZeSMpxKbYzWgYAADVNV5an0aOT9VZXrdu3boHP7rhhy3XA8OOpydJaatqrIr/9kHt6dtggffZWDnVb91UFVogM7eBzHyxqiZSvHRuPgFReVYRe+7b99Mnpi/M/+E+Of+L8oLNqnp2/YlIv+F1jPBu/eXYjHnnxOfedB9O3dM2z54N9DWPLZbjQtysKbf5mGN3LK0OqLz0w3XqXz9/Cn99/EDDW8++pDGNreXk7/ibreeAWWN7Uz59vgXX/t74WOhywfDEcLtGrVEq3SWqB10waB+bbA9wLL6z+O5S2h4ydPqeOs2NPTrrkfo1WQZXpTlZjs6fZigfGQ7fshL5yTGy8iuN7If+uP/iEazf1QD/I5dNxEW+TlL7wSQzeuwNqDKzCv5FJc5nj2Wn1Q/xzTeYU1KuMtcN0jtyJDfcq4crCqnKvK+xcFyLhwMAb2zMaS/Gws3zIYQ3uFbMf64PwTnK//dYyHfV/+7kb2zo7op7Kviu2z8OOf/ANHe96Ahx+/FfZDz8HFrA9bp/83/vO9YvS69T48NdI6R0TGj/6I/504GEdnPIv/+MmH2F1RYu1jYHvWPvYKrtD8cf5ticE3tsBXK3dhfdZS9Luif2C+7eipY/pvYLnMW/CzK9uiov5AdU5twJq8NViiPg/sOxD4Yi12r8tGqysHoUFC4Qn/K+lH0lFVqXSFvVqeYQ9YpluOoaqQ3XXD+VZMGdIIF9zyLHIGjcP0tXvwvlSEYyidPwbdO1yEB6anYsyULBR8+YRuYQ8aglcLD+HL1+/H5aoq/bsHLkLaoOBz86FaDrkf998foSU9qlSMvPtm9fcjzFY19qzZH6kr4BjcHa2+HkXmcLXdMZlWl/tBIzGyIbApa61VOW84BEOGD1J7UoT5WVuxNktq6MMxzKP27VofERFRnBo3SsWJE3bH9SB5GZ28dE4G+RyTdIc/1gKXDr9Gd2sfeeM1uLlbYxzcnRvoFh+PRlJbO3EcYU+tN22K1h0H4657Ruru09Id/aqO0b/vuR7zMboU9OrWCiVF23F0905VZW+D3l1keqquTLbqc71+WVtguGOQ7y7bOlzNe+D7zuXvugGD26utqlkRw+yHWm/KqZPuZctUjUpV4qXXYZiUpuh5UX8MuKgXOrcNlibyP/sCX9ftjx+Mvgmjhl+Onp7N5WqbkJZ4Mxonr7ioFFXudhXC1f/9MjPw6E/G6OfWi1S6btqkMRrUr6/nHzl6DON+9oCuwNvfD11e/z34BeYfvAGPTfgJnnzsx3jq8afwcOYKLNTd4vXXrQ/29/VoYIb1b8j8eLmWrxMyrufLP+avnu8Yl4/yQY+rf1zLW/P1Bz2u/rHn29Md7PnWl+3vncIp+av+P7o0C19l9kaGGs+4sDfyisowaNhVGHrNlbj6mquQkWZN36AqXEfN8geLpKJmLR+2fR+kZ7A8vy7PsdvL6b/2+uy/Ml1G5K/f8dDlK/rhuityMX/KCpTcOBjpZr6toiIDl2XuRuGpgbg6sN+90Uq+d+EgDMr/Av/a0R1De1ag/6XdsXbGJ9jQd1CgR4a9PZu9XXtiYNzr+xXFWP7SX7H2mjtxnYrvPV+o+oWqhF/dqwkaqDSvT9vAeuXYyehOfPVJfXzv4SvRrUkDHC2xmkErKlTecuAUGnS+FHdO/AXGnMrCksLe1j6WDQoc16HXZATywlNqA3Y47fDJ39ZXXIUGX87EP1YOwvArHPOtD2id2R8N8ouRrten1qvib1Dn+mpeSwy6ogwbZm8ArhiIhmn9MPTQWkz9ugxDv9VCzfcOj4gUntBxeaeLpCNJT1Wh0hX26pTz6ji8IVfqESNV1VMmTMery4H2j87HslfHYlhmuq/faZ8/9a+qGnsz/rJ2NsaNVJX/9EhV7ZYYMnYqlhWewJfS3L7uBUxd2x2ZpsI7ZJzVxT44jImrJTp15BgVAnlZ/LPywnhg5EgM03MiycQQuaNwMh13vxqy3UCX+yEYLo/GZ2XhhfkfqfUNV1OGYbjayLr5U5Alr6S/WVXY9Xf9rI+IiCg+3+rfG8tXW28PdpKXzrVrk4ac3AJfFXbpDn84rR0ypeuyGTpktkGLI0W6W3y7pupif3g/tumHlo8jP3uvVVA0GqTU1c8025r1bIcWx/ZgzQ4zrWQzVqjP6Z3lOe1w1vd3Yelm86x2+VHsLToe93rC9OmObqf2Ylm2ioOO3dFBT2yB3h0b4+DWddhjtzyXl+JkWCu0g1Sk5bltM6rDdWQnltvhQjlOSkuz0rpLKzSSMNsvoTucj23O3uhOIetFr07ohIPIXmOq7OVFWJp/GE3bd42jxf4wDpacQaMW1mMEOLUH+zwr453QOe0MduVmqyMryrBn6yHXY/etmzREyaG91nwVphVbgjvkFRdIlV4Lav/i+MUBm6sQ7vh7yUXfQu9e3fXPGd5w7dDA9D4ZPXDxwAFRl7P/HshaioNXXqkroaKioj4uU5WwhZ+4fyo5dDm7IhVtvfGKtB6pXNiri/RXqh6RlnP+xc5/4CejH8Fdox/G3ervf//bftAj5Huhy9l/04oxf/xjeHTceNz9xnH87LFb0EpNbvDtn+P/tZ+Du+97GpMnP4N7H5qKtSrhNrjmPjx2ahruvv//4CcPPYZ/FDm7gzvWH4cUlZ/Ib7GL0PU4/9bt0wdlM/+O0u/chhO33YrT06ahbNrfguP/+AfqqO/Y34/0d9AN/fDV5/tUpbOjHrenq09qaIChTzyF9L//F+4a9xtMVvHy4JRsfb5WVFyIoe0/w7/qD9St3BWXDESrz79E+iUXysJh27HW5/gTmG4J/X7ee5P08bvte+MxFffhf54cqHv9pA+5Bqf+MhlPT5qEn/x2LRqoSryQ8Az/di5+O+5XeObvx3HZjWV484lfY9L/eRovrKxv3Yw4tQ3TnvgZ7hv/EiaN+zX+1fN7GN6uPoY+qfZxxs9wt54+Hv/5xgacVN9Pv+IGNJj9Ep555nUsOOAOX0XaFapu+CUWZl6ByxzT1Sfr354/wP/7/jY8o8L/zMu/xo9/8CvMN8/qp6u42vBJLvpd2FKNd8SgCzdg/tf9MEjeFaHOx2jhsVYcEo4of8vlxYUqHVWVOmrFFZIoi/YdQsf08OfPvEjL+caN9utYvfXv39/zt9jn310Ht8xoiIEj7tYviitcOx0frVO19RZ3Yd7W6RiuXx73Kgb1GI91Ax/BvOlPInX+WBWZH6nKuPwcXA7GdZd3xA1Dhwc+Q8ObX8eyFzJVyhqGwifVuv/aAiNez8Krw7bi2ZGj8FfpE3/XPFRMH47i+Xcjc1wqXpj+rNrOVrw68lq8uO4a/GVPFsYUq21eoLbZ4ho8MX0KxmWWYtmUF5AzcjqetN7mhrGpV+CNk33xyLzpGNsyFZlDIrVaF2LqsA5QQdNGvH8Cs++2v6W2mdkD4zepfa1Q+6qmSJi63zIDh7vdj7+oSv7w1K2Y/cJUpKphjKlhW/u6DA0bnsSQKXuQpWZsfXUQejyZg4Yn1bS/WNNEzPWp+XXU/L6vFCBHIpKIiMiHLdt2oWjvAXyrX4ZucRTyG+wr125A8+ZNdUuVPOMe3UEsm/U59nQZjlGXOq+eqrL4jy+xt7uaftEefDJjHbZLV2qowt+lnXHqq4Poec81uEC+uvkLvPvVXpTXr4tW3a/BHZe3wHE1bbaadqp+fVV6KkfTjoNw67CusEIYzvn9FPX9FPX976vvn/JYz97F8/DBsV54cLhVKId0t194HBfa4VL2ZM3Fhzvro//NN2GIVZdQjiN/wWfI2lOGBvVTpI6Jpn0uV/uvymHrP8PbOY1x+/cGByvJ5QVm/+ujQdNOGHnHIKSEhBdNe+DWO76F1mple79YgA+2HEeKio+UlFbo1vQo9jS5GHddHdLsHGG9zXavxaysraraLZVdtd5WPXD7jd9CS2m5d4oUTuO4mvfPtapSLfvWoAV6qu3vTLW3vxlz38tHy+us3g1ayWbM/9cG7NLHNwVNW6kK+v76uNSOx30qTB9txcG6KkwpDdG/TwtsyQeuNdsOPXbBuDiIFf/6HF+XqPWmtMGVd10JeSehF7tM3Kplc1X0l9/7tp7lTua/B4uPoH3btMCL0qKx9y2tZTPX8s6/u/cUovxM5O20btUSjRs1CpteHX/LSo6jomljNAydf+o4Dpyqh9ZNG7qmR/2++Xuo+KivOJIK1+nTp7H/4GE0b9YEKXVTXOs5V3/LSg7jpDqXmjXw9/1q/XuqBIdONUBa0/ru6eo/53E4WXIIZQ3S0KRB+PLH0DRsesTvRzne/v+W6Wf0myWwfNTwx/hbfqZcv4S1dVpz/bZ4P63suwv3e6bPSlXYjx49irVr1wbuQkUjGx80SF0EmlkvBInEqrCbEdGwG64Z+yqmvjAS3QPX72LMH5OpKt/mNz773o9ZY4sxanxOoMIuz2m/OuQCjF+uv4FrpNI6ZDqGqEq3Nak9bn7lBWROeQC/G2Qq7MtexZiR4zEn8NOh6jt/ydLbEsVZ4zBs+O8g9w8s7THiL8sw27zgrnj+GGTeIq34SsNH8GXpFOtFdCHsmwnAzXj/xHwE6usRKuxCfmpu2ANzrPWKhgPxaNYytX9mwa2vIrPHeGxCX/x6Yw6elOCufRLpF72olmmPJ9YU4gVHNwDP9bHCTkRECTp+ohQbcrbol22dOF6KNm3S0L9vT/12bym4RHohXfzKcPzgcVUZs14sF0YV7I6eqBvycrEYy4SJ9v141+OThLmkXNVpm1kvu/MkYShFiuu7VrjKGzVFs0YhK4gYH5FEWm85Th4uwakGEdbrl+/t26xtljdScbw//MaH9EI4erjMI66ixYVjvT6OXaBSq7ajyt6qBqeGJP976LC/yqizwu5nvefT33gq7PLzdfJsfMmxE2gmNyF9rJ9/+df+K9e8Zk0boYG8lyRGerNVa4X9XCktLlRV95ZI9+gPH/6dUhQXFgMto3ej18uUpqqvtIz4XLfn/NJiFBaXItVj/Ymxwl2a6r2//lX1+oiIiBJ35kwF1ufYv7hN1alt65ZVdPOkmkXoqXC22GXillJhV6Vv3XIm3Vx1K1lyjsdbYW/ZvGmVbr8mjBcfKfEVR0Iq7NLKfvzESb1sQ3lDolmf+qD/VlW4OH5+jZeePIW6deugSeNUndbq1vXXLf68rLATERER0XmqSLrlqwq7jy7sVU3KxAcOHkFqakPUq1dXFcJVYVlNV3902TzZxk+fPqMfQWndqrmvCrvsWyO1b3VT6lbJ9mvC+JnyMzjhM45sElcyHC2xXoAg6SGw/ijb4XjtHj9pXkTSpLHkHfV8pzURq8Ke1C+dIyIiIqJapv0gjDoHlXVbamoD/ZvroT9ZJr1BhD2eDPPLTp/W4fVLviuPqojA+nS1w2N7NXz+qdNlccWRkJZRGZo2SdV/5SWDcnNERA2HGef82jVf3tMij09IOpHKulS6/bas+8UWdiIiIiIiRbpDS4X28JFjqKcK3lZLWfK1b5WXW9225eejWjRvon9eLlYloabsW1VJJI6cpEJmd4+XStlRVSlLUcvLOqSHgv2ZahdJE+VqkJ4b8lfq0fKYiXSFl8q6DPH+nBu7xBMRERER+SCVNLuSd+rUaZw8WaY/JxupcDdsWB8NGtQLVL5jVRJqyr5VlUTiKJRdabcr7mVl5Tgj8ajiTSrxdusr1R5SMa+v0pL8zrr12WpRt1vW401jghV2IiIiIiKfdAuaKhvLX6mwyZBspFIgg7Oi4EdN2LeqkmgcRSLxZMedHW/nc9yRN2facv6VIRGssBMRERERxaEmVMrsCkK8lYSasG9VJdE4isYZb7Uh/igyOz2F/k0UK+xERERERERESYhviSciIiIiIiKqgVhhJyIiIiIiIkpCrLATERERERERJSFW2ImIiIiIiIiSECvsREREREREREmIFXYiIiIiIiKiJOT6WTciIiIiIiIiOnv4O+xERETnKfn9Vl6/iYiIaib+DjsRERERERFRDcQKOxEREREREVESYoWdiIiIiIiIKAmxwk5ERERERESUhFhhJyIiIiIiIkpCrLATERERERERJSFW2ImIiIiIiIiSECvsREREREREREmIFXYiIiIiIiKiJMQKOxEREREREVESYoWdiIiIiIiIKAnV7Ap7WSnKzMfoTqMs9peIiIiIiIiIkkrVVNjL9iP3m2VYlrMVx+OoHBfOfRU/e3OlNXJiPd59+X+wqMga9WPD9D/i3RwzEs222XjhLytx3IwSERERERER1QSVrrAfX/Me/vuZKfjzxzlYPmc6fvnMS6oSXWLmxuM0yk44WsyLPsVLv/sUhWY0zIll+GTvAIzINOMHc7B47lRMeGISXltjpoluwzFMfXfJQTNOREREREREVANUssK+Ff+ak4/OI8bh14+PwaNPPIlXf/4dDOnW1MyPQ6NB+NEzP8NN7c04SnHkaKn5HO7AFytxfNClaG3Gj6vKfv126WjfyEwIaIpLBtfDooVbzTgRERERERFR8qtkhb1EVZRTUK++GRWdMtHbrjR/Mx1PvbsEG+b+D556YhJ+9sRL+N3nO83MUOvx7rNTrC7xstzvV+HgobV4+dkX8NT7662vBJRiw6ZS9M5sY8aBxp0GYcjgAehcz0xwaNyrMxrnr4/eWk9ERERERESUZCpZYR+AW29qitzpf8Sv31+CgiNmsu10KY6uXYYl7b6DyS9OxCs/ycCROdMxfZuZ72K1qOtVZH4HT93WCUjLxMOPjcVTI+1+77Y85G5ric7qK760T0ervfuxy4wSERERERERJbtKP8Oefv04TP75UHTevQS/mzQJT/1pPgqcL55Tle47BqdDGuHrdxuJG/sew4b10VrZjfpN0byRNJWnolnzluazUylOnK6n1+lPOjqnleL4CTNKRERERERElOQqXWEXzbsNxb2PP4nfPP1dDDy6HC+/tSzqW9mlkn1kb7E1cladxmn+vBsRERERERHVEFVSYbfVbzUAd9/UDdiWh1wzza0Ux08DrdsFnz1PTDyt66IYB442RfPmZpSIiIiIiIgoyVWuwl70b/z65dnYcFDVwrXTKMgvBjqmo4eZgtMlOGi3bO/6FFn5LXDhpelmgodGqah3uhSRe7Gno327Yuz0+5vtRwpR1KwlAi+gJyIiIiIiIkpylauwtx+KEZn78e6Lz2Pc0y/gv594Hr/LScdPHr4BwcbsQsx5Xs179jmM++16tPruPRhhas7N2zUF8j/F9Dxr3CVzAC4py8bvZL1/+tR6GV1AOi7sdRpb8+2ffduJOc9Nws8efxufHAI2viefX8Ucu0KfvxMHu2WgsxklIiIiIiIiSnZ1KpTy8nIU7TuEjumJdlU/jeNHSnA68LI4Y81U/GxuGzzzzHfQ+kgxyhq1ROOQvuxlUaZbrPXWb94yvAv8ttmYMDcdT/5kCBqbSdGsevMl5N78C9zdzUwgIiI6T+wu3F+J6zcRERGdS3Idb982DSkpKWaKWxU9w14PjSO+zT1IKt2RKuXRplus9Uac3W04bsUyfBKrW/zB+fj46CDcyMo6ERERERER1SBV+tK5MPVS0axZqhmpaqkYcvdIXNjIjEZTLxN3P3ADWptRIiIiIiIiopqgirrEExER0bnALvFEREQ111nqEk9EREREREREVYkVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSEWGEnIiIiIiIiSkLnvMK+depIDBu3DKVmvGZbidcefxVziswoERERERERUYIqXWHfOmU4hk/ZasYSUFqMQjWcfcVY9/5LGPfEc3jq6UkY9+x7WHXCzBIHc7B47lRMeGISXltjpokTOZjzpxfUci/gv9W8cc9NxwbnckREREZxsf/rWzzfJSIiotqh8i3spVuxtRLN493HZiFHVfpTzfjZUpb3KZbU/w4mv/gMfv3803h0wH785S/LcNzMP36iFPXbpaN9IzPBVlYC9L0bv3nxSTU8jQc65eFP7640M4mIiCxHjx5Fr169MGPGDDMlumnTpunvHj9uX4WIiIiIKllhzxqXjkHjN2HTk0OQnp6OcVl6Ksalj8P8nFcxJLUO6ozJUnX6+XhyZCZa1lHjdVpi2AtrA13gpYU+3VpQsZedgpHp8t06SL97OgrN3KpUP+N7+On3MtFcj9VDj0HpaHRwP47ocaBxp0EYMngAOtczE2zNL8WI67ujvh5Ry/VqqUplxYHlXHb9Gy+9+B5WHTTjtm+m46n312Ln3D9i3OOT8OY3MrEEuXP/B089MQk/e/w5/N83l6CgTKafxqq/vIDffWG3vJRimRp/acFOMw7k/uMl/O7z/epTCTa8/6pe58+eeAG/fn8lDlhfISKis6xZs2aYOXMmHnjgAUyfPt1MDSfzHnzwQfzzn/9E48aNzVQiIiKiSlbYhzy7FlNGAH3HzcbatWvx7BCZWorCoqkYM64QrxaewIkpw4CcHF0pL6yoQMWhV5H61Eg8m6NXoVvoiwrt6rss+zu1LPDsVvnuLAybPQbPLjOzY9m1BO/OXh9oJY/HgW37caJVG1OB96GsBIV58/GXj0pw4XVDwpc7sRKv/SkPve+5B5e0MtNsp0txdP18TD9xAya/8DQe+BZQqCrrr61viXufnog/vvwz3IgsvPzWErUv9dC7V1Pkrs8zC6/HqrzTKFqbY24S5GHV+tNo360N8M1s/Cm/O37xslrHi2Mx4qJ0tNbfISKic+G6667Dv//9b4wZMyZipf2dd97RFfp58+Zh2DB1vSQiIiJyqFSFPbVlOlpKX/b0dN3Crj9rqRjzwgsYoiakqmmpw8dh3LB0NbUUxaWZGNR3G7ZGfey9L56cMhaDZF0tR+LukSdVfd9fG/vOFcuwfPFa5Jpx31TlevrCYlysKt7+2jbW493n/6gq1CtxIGMo7hjQ1Ew3Tu/EnN9/CnzvPzGik5kWqn4Gvist/PXrob6qdGetOIzeN30P/XTNvyWG3DsMvfNX4pMioHnf7miVn4cNMisnD0UXDcPlJ/KwTp6dP7IVBSe648Ju6rNaV70T+1GwS26AtES/zM6yBBERnUNSaZ89e7autEsF3SafH3nkEVbWiYiIKKrKP8MeUUuktzQfRfEyvDqyO9K7D8fYF6ZibRzv1ZF6e2Gxv4fkO4/8GX713N0YaMb92YmP/zQfB68cgx9lmkkxDcC9z8oz7E/igbSVeEFVzoNdz0vx9XvvYdHBkzhy1CPc9VIRfDy+GAeOtkDnjmZUNEpFPRxG0V71uX0m+jXaiQ27gIL1O9G+11D067YfX+cAx9fnYVevDPSTZTK/hydHpiLr9y9i3ItT8XFeiUwlIqJzbPjw4brS/vDDD+uK+ltvvcXKOhEREcVUTRV2p0JMHXkF5o9ci8KtWZj+6pMY7qzMV6lUNG8U+tC5lxKsenMqPmk2HI/flkhrdD30uCIDzXdvRa5+3lyoinraDfjVY5fg9Nx/YLGvN8irynu9Ehw4ZEYDWqB9O/mbgQt7lSI3f72qpDfFhZlAvwGdsXX9emzN34/eAwbob0t40gffg//vxafx/41oiuWvT8WiiA/XExHR2WZX2n/0ox/hv/7rv3RXeVbWiYiIyEulK+wtWzZEcaFXk/lWLFvWHpmZppZevBbLKvErcFVHVdb/8ke8e2gQHn34Up9d4YGdc9/DdEfL9ZHthTiS2hStrbfQKS0wdIRaX/vv4IErSvHPd1f6eKZ+AIaoOvfXny8LvLxu59wl2JiWgcvbW+Pde7XBrvXLsLVRBgZK03xmBjpvW4ZF21riwgHmWYRdOdigV1APrTMHoHuzUhw4qucQEVESkEr7Bx98gLlz5+L66683U4mIiIgiq3SFfciYscCLF6FlejpGTo30rPkQjHuhO353RUv9nHvmmK3ongQNCoUL/gd/WX8Sp/euwgvyVnUzWL+5vhNznpPxt/HJIWDje/L5VcwpAtoPaIOi917FuKdfwFNPP4cJ/yjFkAe+g956rW6dR96AC7fNx1/WxO6a3u/eMRhxIgsTnrDW+9KKlrjrJ99BupnfeEAGOuXvwoFe5s32jQbgwka7sBGd0VtPOI3C3Ssx/fnn8N/Pyjr+ga+7DcOt0Z6hJyKic+KWW25hZZ2IiIh8qVOhlJeXo2jfIXRMb2Mmx6m0GIWlqUgPvnUunJ/v1CBlJ4pxoiwVzZtX8f6UFePIicqs9zSOHynB6UYt0TzQ6k9EROer3YX7E79+ExER0Tkl1/H2bdOQkpJiprhVzTPsqfKSuRgVTD/fqUHqS4W4qivron5l11sPjZuzsk5ERERERFTTnYWXzhERERERERFRvFhhJyIiIiIiIkpCrLATERERERERJSFW2ImIiIiIiIiSECvsREREREREREmIFXYiIiIiIiKiJMQKOxEREREREVESYoWdiIiIiIiIKAmxwk5ERERERESUhFhhJyIiIiIiIkpCrLATERERERERJaE6FUp5eTmK9h0yk4iIiIiIiIjobGjfNg0pKSlmzM1VYe+Y3sZMJiIiIiIiIqLqtLtwv2eFnV3iiYiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSEWGEnIiIiIiIiSkKssBMRERERERElIVbYiYiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkVKdCKS8vR9G+Q+iY3sZMjl/x4aP4csXXOHjoMJo1a4Ljx0vRtnVLXHJRf7Rs3tR8i4iIiIiIiIjE7sL9aN82DSkpKWaKW5W0sB8+UoJPspbhgr498cM7b8Udw6/B3f9xM/pfkIGPFnyB3Xv2mW/WZPn4ZMZcfLLRjMZtP1b8ay5mLd9vxiPYtx3r8w+akUT52A4RERERERElvSqpsC/4bDmGXXUpunfpYKZY0tu1xm03DcVnX67CqbIyMzVO5UVYN38epr43G2/LMONjLNp41Mw8m8r1PpwqN6OxHNyJ9VsPmxGhlj+llvdYwbav12L5l99gsxlPTOztuISFs5qcre0QERERERGdJypdYd++qxBt2qShrRoiadqkMS7o0xO5+dvNlHiUI3/hcqwsaYGrb70ND/5gOL57URqKczdgzynzlSR1cksOlucUmTF/ug27Cd8feSX6mPGzIZFwJuJsbYeIiIiIiOh8UekK+57C/WjTqqUZi6x1WgsU7j1gxuKxH4WHz6Btr8Ho1ao+kJKKln0GY9Qdl6NDA/MVcaII+WuysX5NPvYcDmlZDszLRv7uUjNRHMZO9f29J8pxdGu+ml+AA/ZNgFP7g8sUhfcMOF1UoOet37wfp800p9Mlh7Ht0Em17f3W90Jblg/vxGaZvnEnjjqCe7JoF7btOAi1pKX8KPZstMKxWa0j0ra0wPfysfPgGTPR4ZTa1wjriR7OMhTrOLHCWOy6OWLHV6R5juUccRMzPoiIiIiIiChMyrNKRUUFjh0vRbOmjc1k/3buLkL9+vXQrm0rMyWcPOO+f/8h9OrR2Uzxqx6OFORh897DaN2pI1qmht9fOL55CWZ+mod9Famof2o3Vq3KQ0mbnujarC6Or/wU7yzegUOnT6P06CFs2rgJe+p3Q0bbemrJ7Vi8IA9FxduxYksxzpSloG3fdDTYuhz/nLcBO05WoKz0MPLW5+FIm95qfQeQ+/U+lBzdjnVbi1FeVoKtuXnIPtgC3+rezAqMUbB4AZbtLUP5qRPYV3wEhScbY2DPBtixYSf2HzuI7Nx9OHa6FLsKCrBmZzn692mn9hQ4uHY5FhaUoVu/TmiCIiz938+x6mA9NGt4Gls2ZWNjcVv069LI2oitZDPm/+9XWH1Q1ZzLjmHbpm3YfeoM6rfoggHdmgJqf96dl43dx87glNqf/JzNyClJw4AuTaOE8zgWzfgMywuPqzg5iaJdW7B603F07tdBhQnY+8VHmPVNMVKaNkTpzi1Yvukoul/QAanlRVjx7yxk7TiGhg1SsH9LNpZtr4s+Ga2xM+J2oqcXIiIiIiKi2uBoyXE0bdIIdetGbkuvdIW99OQp7NhVhF7do1fGN24uQIsWzfQz7fGph3YdG+JA3has2aAqmruPomHj1mjdTKq3SnkBsj7Zhrr9bsCoq7uja89e6H1qG7IKzuBiVVGsn9YWvb81ABdd0B0ZfXqh9b48rClUFeS+7dWapQJeiD11u+DuUVfggox0NFPrWzQ/Dye6XoEf3NQfGRk98a3+qvLfQiLPqrCfan8xvn/rQFUR7YkuJdvxdVGZqsxKBTuoVc8+6FBcgM31+2DMyCtM5fSYVWFv1B0j77gCA/r0wICG+/F1/jE0ubA72so3tudh87HG6Cvr270RX+bWxYWjvo2LVdxe0DcD/bo5tyLKkf/Zl/jmdEfcPupqDOzTHRf0a4Ejm3aipKmpsLdshZ7dLsDFA3vo/elzaidWbi1BuwFd0D1iOJujfZdOGHzxBer7an09yrDtm1042rwPerQswtrlW1Gnz0249bLO6NG3Jwb16QS5j1K84gtkHWqrwzGgeyf06dsY+9ZswoFWvTFwYKTtEBERERER1W6xKuyRp8ahW5cOKNp7ALsLI78JvvhICfIKdqBPr65mSpya9sCN37sd3x/aC21P7MHihfPx7vzNOC7zduxB4ZkWqkJahqMHD+uhPK0xGpUcxl6Z36gZmjUow/EdBVj/xXKsP6amnSqFs0N2es9vIXCbQq+vKTIvbW8mKCGv12/apoNuDRctmzc0n/xr1LwNmtmrbNoQIe3lQe3boFXdw1gzfzk2S1f+iK/534PtB8+gVfdvoZ1jtvubjdGsBXBy305sXrkCnxeVIaVMxZeZG0njFs2AEwexc+M3WPrFfpyqq+KwROa0QXpaXezb+Bk+X1+Ek+VqS3pjpdhWpBJa+w5odNg6DkcPt0C7pidRXNmX3hMREREREdVSla6w169XDzcMG4LPvliFrdt3m6kWeW593qdL0KxJYzRs4HzoPF4paKYqpTeOugP3X9MBDfbnYKm8Sr2kDKdU1X3LV2ux1B5yy9CqTSurIrx7LWZNm4fZa/aiJK0TBneM0YNAr68+GkStRZ9FKXKjYiguTyvFmqz5eHvGZ1i3L/TN78dxvAxokJpqxiMoKcAn/5iLvy/Jxz5V4R6Q2QLeR+I48hfMw9RZK7F+P5DepxfaBRZIQa/rb8HIC1vgaM5yvPf+XMxdKTXywyg5JY/+5wePgxr2pKShXQtrSSIiIiIiIopPpSvsQrq6337zt7Fh0xa8N/ND/GveZ3j/n/OxZNkaXDt0MNLSmmPB51+Zb8ep3F1JrdelOzqnnsHB/ao22aoxmqoKdrdrrsHw4Y5hWC80U5XIFcu3orz7UIy+43IMuaAzWkd4Bt5Fr+8kDifLz8Y3aIM+V1+Du0bfhGGtSrByyTchLeMt0EzV1U8ci/4St/wvv8GuFt/CvaOuwVWX9kCHRvVDWuBDbF6NxUXNcPVdN2H41d9Cry4NQyr49dF6wGDc9r078IPLWuBwzkqsONgGrZqqWc17uY+DGgZ3sZYiIiIiIiKi+FRJhV3Iz7fdeuNQ3KaGwRf3xw3DLsf37rhBV+a/fcXFaNyoYfyV9qLVmDFjEZZutt9sXo6j+fnYWVofHbq0ATr2Qs8mJVjzWXbwbeunDqNYd98u1b+ZntLAtD6f2oNlW2K8nbxjV3ROPY6cVfb6ZHubsU2vLz66B/uJEhRbo/HbV4D1+Xb1vCFaNqlvPju1R+829XE4fy02mjCe3rFdxY/1WZwqP4OUuqaKXn4Um7P3wrk7YeFUkVaeUtd0+1f7vzEX2wLrO4j8NdsDcd24RWNTmU/BBT3boHzPN/h8h/1WfbXsweDthUrHBxERERERUS1T6ZfOhWqU2lCvp0ljd7/yrp07YPeevSjYthvdu3Y0U2No2gYdThdh7dcbsGJdDtZ8vRnZO0+jbf8huL6vrL8ROnVpiH0bcvDF2k3I3rgJa7J3Ym9FK/Tt2A5tzhRh3fpsrNm4GWtzipHWoTGOHK2PDP2SOOslckjPRJ921ubUBtG1q6xvg1qf2tb6Tfh61wk0atcFnVsUh39/7zas2V/fekmcmWRrnHoM2zZuw+r1m/F1wQn06tsMRRt24oj9MjhxdDeyC8rQPtJL5w5vw7Jla7Dk63xkf6P2rbgBLhx6OXo0c99jadalBU5sycca+Y4K7/qDzdC24VGcaGRtp23j48j5Jgcr1+djbfYOlHVujfr7T6ON2WZYOK/sgfK8TfhK9v+bXOSWp6NzyiGcSlP73foI8leuxcJVOVZc5x5Bo96X4Prean9ad0LHE9uxarWKb7WtbyQ820uQ1qMLWtaPFB/piP8NAEREREREROePWC+dq6Mq6xXl5eUo2ncIHdPbmMnVZ8euQnTplG7G/CrHycMlOFVeH41aNQ689M1Jfuv7xKkI808cxdETKVGXi0avr7whmrXweD48lvJSHD1chgYtmqGhZz/06KLuVwj9PXnBXNMILfGnjquEUB49HGHhLMPxg8dR3qgpmjWKsIBeXxlSmrZA49AH4vW6TgKRlq2C+CAiIiIiIjpf7C7cj/Zt05AS8SXj56DCTkRERERERESxK+xV9gw7EREREREREVUdVtiJiIiIiIiIkhAr7ERERERERERJiBV2IiIiIiIioiTECjsRERERERFREmKFnYiIiIiIiCgJscJORERERERElIRYYSciIiIiIiJKQqywExERERERESUhVtiJiIiIiIiIklCdCqW8vBxF+w6ZSURERERERER0NrRvm4aUlBQz5uaqsHdMb2MmExHR9p2F6No53YwRERHzRSKicFKfTpTUw70q7OwST0QURb169cwnIiISzBeJiM4uVtiJiIiIiIiIkhAr7ERERERERERJiBV2IiIiIiIioiTECjsRERERERFREmKFnYiIiIiIiCgJscJORERERERElIRYYSciIiIiIiKqYgsXLsTf/vY3/TdRrLATERERERERVaH169dj3bp12Lt3r/4r44lghZ2IapWKigocP1FqxoiIiPkiEZFbZfPF48ePIysry4xZZFymxyuhCnth0V5ceOm1epDP56tX//gWWnXI1H+JqOYrLz+D3C07kFewE9t2FpqpVefHP39C5xnzP0682xMR0dlU3fkiEVFNUxX54ty5c1FWVmbGLDIu0+OVNC3sa9etR6eeg85q5fhcbJOIzg3JfPO37kTpyVN6/PCRkhpfOJUbA7xBQESJStZ8seTYMXznP+7Vg3yuKswziSiWqsgXV65ciZ07d5oxN5ku8+ORUIU9vX07fL1ykR7k8/lq3M8ewsE9OfovEdVcoZmvraoLp6///kWdZwy/6TozhYgoOZ2tfJGIqKaoqnxx2bJl5lNkseaHiqvCbt/xlLuTMjjvfDrvhv5wzE/0fGm9llZs53x7WRmkZdvuXn/d8O/hxIlSTH7+Zde67buh9rR//O8HgWXteXYLeeh46Dbt8MSzTRlC78TK+iPNt1vs/88v/69ev8yz10lE507+tvDM1yaZ8K49+8xYYpx5gjPfE9JNXvIDyRdC8wx7Obsrvf1ZhOZnznE7rxl9/0/0PPnrXJaIKJbqzhftspadt9nlIbtsJvPkO6Hjko91zbgEX3y5Qg/y2c5X7XxQypkyzble5plEVFlVlS9mZGSYT5HFmh8qrgp70yZN8O//fRfb81bhyisGm6lukrneO/p7WDj/H3r8jbff1X//5y/TsGbtN3q6tEBtWPs5Mvv0QtOmTXRL/bS//kl/b8LTj+v5sh3ZnrRU2dvbtm0Hvlq51ner938/NTmwTVnHsG9fiX/P+zTQQ8BrmzJuz3eSC4BU8GWefEeWfXDsY64Cunzn47kz9DyJjyVLl5s5RHQudO7QDr26d4o6tG7VwnwzMXZvHDnnI9m5aw86dkzX+V7nTh3wxyl/CbuRZy8/Y+YcnYd4GTRwAHZtWRvYnp0fSQs/EZEf1ZkvSv72nz9+HF27dtblL8n7tm/fqctlsUg+ZueVUvaT5SW/k3zPdvjIUWz6ZqnO+6ScJWVML8wziciPqsoXhw8fjvHjx0cdZH48qvwZdslch151OdLT26mdSsOOnbt1xr1pc55uzZZWbbmredNtd+kMVCrIftWpUwePPfqIGfMmd2mXfvEVLhr0LWRk9NDb+dvUP+GZJ8eZbyRmzr8/QqNGqYFHAeSmg+xX1uIv9bj40ZjRer7MEzmb8/VfIjo3GqtztknjRlGH1IYNzDerhxQ8775zhL5BqQuwquBaUhKssI/4zs36L/MMIjpbqjNfzMsr0A0mXTp31OUvO++TclnR3sq13Isbrvu2Xq+UtaRMJmVMIqLKOtflxWjO2kvn7Gc771KFViEtTnL3NbSVyYtk9pLpExHFY9uOPcjfuivqULj3gPkmEVHtwHyRiMgtWfPFs1Zhl2eIZJCKu1eX+niE3ll1tkrJvKuuvEzf4ZU7vXJjQJ55cnZdT4S0hEmLurTgC9mmhGHY1VfocSJKPi2aN8Wx4yciDidKT+r555Kdd9l/paXdK38jIqqs6swXpWej9HC0e1lKjyLpWSTlsl49uuuW9wMHD6GwcG9gXjzsfFHKYlIm69sng3kmEVVaspYXE3rpXOjLQGK9tEO6P+3eXYjf/PY13R1elpHM+X9efznQJV660UslPtIL4EK3Z7+YRLrU36Eq0PLMpywjL6Rz+s2vJ+gLhnTDl+XmfbQQz0x6MdCq77VNGXe+nMR+4Yk83y7PQNkvLJFl357yW9ezVUSUXFq2aIbuXTqYsaB6KSno3aMzGqU2NFMSIzcj7fzAfvTHzqf8sF+mKctLLyTJZ2Llb0K62Ut3e75AiYjiVZ35opTtpIwnZT0pf/Ub9G3dS1LKZeKRB+/VfyWvvOSKm1BRUaHHbVL5lscL7XKfXQazfbN+o87zJO+Tctx/PjCaeSYRVVp1lxcTVUdlkhXl5eUo2ncIHdPbmMlEROefkmMnULB9ty4c1q9fD726d0YD9Tea3YX7qzVflIq+VNLlBUj8KTgiOheSLV/0Ig0qUtmWhhP+5C4RVZd480Uh9elEST28fds0pKSkmCluZ61LPBHRuda0SSOd6cod0t49usTMfImIznfMF4mI3JItX2QLOxFRFOeyJYmIKBkxXyQiCledLeyssBMRRcGCKRGRG/NFIqJwoRX206dPY8mSJSgoKMDRo0fRrFkz9OzZE1dddRXq1XO32LNLPBEREREREdFZsGfPHrz33ntYs2YNiouLdWVe/q5evRp/+9vfsHevv5cS21hhJyIiIiIiIqoCW7duxaFDh8yY28GDB5GfH9/PTrLCTkRERERERFQFNm3aZD5Ftm3bNvPJn6SqsOdt2Y5fPvuy/pssvvhqHd5+b7Ye/jXvM4T8VOhZl5O7FbM/XISTp06ZKUR0vnvjz9P1kCy27yrEX6d/oPPFd/8+F/v2R76LfLYcOXoM//xggQ4XEdUOzBe9MV8kOneOHDliPkV24MAB88mfKq+wS2X7d6//FSdKT5op/h06dBilJ5OrInrlZQPx4D0j0atHZ7Rp3RJ16pgZ1Uwq5nM/Xhx2g+CgiiP5Uf+GDRqYKUSU7OS8/X+vvKX/xkvy0sOHj5qx5NC1Uzruv/t2DLvqUrRo1hTNmzcxc6rXnqL9mP1hFo4dP2GmWIqPHEVKSl20SWtpphBRsmO+WDWYLxIln1hvjD8VZ8NrUrWwD77kW/jtr59CRs+uZkp85GbBY0/9usrvuEpr9uEjJWjXppWZUrU+/2I1/vy3OfhmQ66ZAhTu3Y+0ls1dNwhOq4O/78AhtGmVZqYQ0flOfgP0/4x/CI/86G4zJT5SsJVC8dOTfptQwdhL0b4DaNa0cbXcQNyydSf++v4HmPfp0sCNy6K9B5DasAGaNG5kTTAKiw6goZreuHGqmUJE5zPmi8wXiWqTuH/WTSrFf3rrb4E7AzdeNxQjbrs+bLrtW/376gxVKtHfZG9CA5WB/eB738Hsf3+iM8yfPPRD/T172RbNm+Hxnz+IVmkt9HTJSP9n6t9x0cB+mDP3Uz3t/tH/oSv3InS7znlVRSrJi79cg+uuHqxbt20bNxdgzTc5OHHiJBrUr49LBl2Afn176nnzF3yhf3R/1559KDl2HF07p+NatXy9lBRd+V+ybI2K84P6u7LOW66/SmW+FZj7yWLdjcmpQYP6GH7dlahfvx4WLl6B9HatsTnfemzgUrXNARdk6Ix71boN2LipAKfKyvR2Mnp2wZWXDTprvQKIzjd+f75I8rI/vP4Otu/crce7du6I//rxfSpvKMXLv39bnfPuliB7/vrszfjrtP/V0yQvLSzap/NJO1+18017vkyzzZm7AKVqu9u279LbtdcpBdnQ8Nj5cFWSPOdDlV9169JR5UG9zFTguNpnuQm5R+3LmTMVaK/yK8k7GzdK1V0zV6/bqPP5rSrckm9edfkgdO/aUX33DJavWo9claeXlZ1WhV17XifM/fjzQH5pS6lbF0OHXKTzOa/89sDBwzq/PaCuJZLHNm/WRLeAtW3DG59EiUjWfFG29+ZfpqtyWAbmffK5LheGzk/GfFEevTx27ASOl5Zi/4Fi3ZvzxmuG6Io280WimsPZqv7KK6+YT9GNHz/efIKuh3v9rFvKs4qcrMeOl+o7gl4ks5v+j3/jh9+/A/fcPQK33jwMO3bu0RmUtIrffMPV6NO7p8oAivHU42N1JnnpRQP0svL32muuQH7BNuTlb8PPHrkXI79zg66YyyDLDrnsImzYmIeLB/VHI5WJCdnmos+X4YzayIQnf6Yyk9Z6/GK1vtOny/HX9/4Xt99yHR4a83297VkffKwzYXv5SKTb/b8/+hzrc/LRQ2V6UhH2UrBtN46WHMO3+vUJVH6ly3rBtl24/tuXY8ilF6Ju3Tq6Et1dZdIS5g2btqBjh7a4duilugC9ZdtOdO7QTle+F6lKd4vmTXH78G+jjcoct+3Ygy6d2utp/TN76c979x/CbTcO1V3yB/bvo++cblXfk5b3Qd/qq6ZfiP0Hi3Xm3jejm8rMt+nt33TtFSozH6gvBrJfaS2bqTCzxk6UiKMlx2Pmi+LDjz5Thaw0PPazB3S+2L59W3z9TQ4G9OuN64ddofO2fFXgkpuR3x1xM6664hLUr1cPnTq2198vU3nZum824ttXDtZ5WWYf68af5Jv2fGFPF5tyC7B02WrcN3oUvjtyOL5auU7nE7JOCY/8/qfkmZLvfr5khb5ZKvOikXz840VfYvnKb9C5YzvPPFRIYVsKkf379gy07JSpbUr+1knldTddOwQX9OmBTXnWi1UkT5LPR46WqALlIAwc0FcVnPfo/Fgq7Gu+2aQKlkX4zk1X6zxO8rvGar0d2rdGH5XHZWZ014VdKYxKvirfkWuH3OCMld+mq3XcqvLTC/v3Vnl1Xd17SVqkiCh+yZovSpnwC5UnSgX/qV+MRf8LeuPTRUsDZcJkzBdbq8q55H1SVhum8q/2bVshr2CHvqnZKq0580WiGkTq07Zly5aZT9FdccUV5hN0PVxusMm5GElcXeLlhE9t2BCvvvaXQDeiG6+7Kq4u7CdLT+Habw/RGYpfknHdOeoW/bmX2ZbcoY2kRYtmMTPU48dP6Gd9mjVtglS1T7HsP3hIh9eu90oBM1tV9uW5oX/861P8+W+z8dXqbJ2z102po58bkh/Ez+jRRUe8xFvTJo3RVF3gTp0s08tb66uLvfsOomHD+mii5tuK9h5EA1XZlv12kvhu06qlbmGX9Up3q9atrHiUC5VcRD//chWylq7SLW8ZPbpGPfBEVHU6prfDJwuX4GePT8KKVd/oPFHyxni0b9cm7t5B1wy9TG9L8pi+qtC6uzDy73o2TG2AtBh5ruQZcmNSCplSIIxFWmikcO18TjNnc4EuPK5Yk42/TPsX3v/nfBQfPhLIh+RmrrQ86bxXFQylhd1+xEcq8k0aN9bDQbVuuVOd5ujRtF8tK9fC1iH74ZXfyjpOl5/WBeCPVKH76+xctf0O+uYoEVWvc5EvSl73H6ryL/mAVMSlTBity3sy5Islqtwm+VRvFTeynGxHytl22Y75IhGJuGtz0n3ojy9PxAP3fg/P/b8/6WfGpVu6X34ySL8kA5LuU9LiLhcE6Rp/283X6ulepLL8wztvxc3XXRGzu3ik59ePHTuuuymNvHWYfiGdPfzH7dfrSrQ8N5Sq9tO+u7rvQLEOk8yTLk4d09viyxVfq4x7Dnbt3ourh1zsuqsZeoNA2M+vtzXhkHHJkO0bHxeowvoN11ymL5ASvsXL1mDj5i16HhFVLylQSr74m+efDORH0mU9Hunt25pPlSe9m2R9Eo7/fvoFdO/aOeaN1UaNGuJ7d9yAkbdd66uVJdJzmtK9smf3zq588Uc/HKm7hkqLz/Hjpbq7p5BxuXlpF0x7de+in8WUG6BZX6zUj/pIIdImhVXJR+181eaV38pw83VX4sJ+vdW0VOQX7MSnWcv5KxtEZwHzRYtXvlio8jx5MZxdwZfelfXqpeiKtWC+SEQirgq7dPWe8c8P9V/J5OQFcX1799Bvdz9X/v6/H+q7qXJRqMwL66KRQmV5+ZlAIVNIF3OZJhmrVNy3bNul39ApFXshrUjt27bWn8W+/QcD4+s35um7tQ+MvkNl2CMwQlX67QKriPaCO7kLK63o0l1KHFHfKTtVpr6XpjP8z75YpVutLru4Py4eeIG+YIRm4ERUPT5ZuFTfuJQCkbwISd6lId0yzxVpzRKSL8pgP8NZVaRF51DxkcANRFvdOnWtivmJUj0s+Gy5fv5SyA1GaemxW4IOHCxW43XQsrm0gB3B6q836u6ZUpgd/d1bdLdRpz1796Odyf+couW3EkbZtrykSd4tIo8K2V1aG9SPXfAmosphvmjxyhel9V/eKG9X8KXXpeSJ8pw580UissX10rnde/Zi5Zpv8PGCJWZK+Es7pDIf6aUezpeE2OyXgUR6YZ398jkhL537zzHf163J9kvo7PFIy1bFi+fkJSDyUjkneSnHbTderVvJV6zO1t3iy1WFXSrK8kx5547tdab8SdYyDFYVZ/mJDxn/VGXOVwy+EOnt2mBd9mas+TpHV/SFvCBEnkOSZ9WFVNjl7Z/SrUpI16fbbr5aP0efk1uAW264Smfs8gz95vxtOiM/pSru8jKT3YX7VGZcoe8IX/StzLCMnYji4+flSpLnrVz9DeZ/8rl+flHY+ZfdA0Y488BIL1eyOV8e55Vv2i1VdqHTOR6aD4uqeMGSvDROnn2Um4c2aR2SXkLy05dSWJUXYxYfPqoLnD26dcIVKm+Urp7y2JAUIuUFm0LGJb5uHDZE33TMWrLS9bNE8vKjG759uc5vxceLlmGH+T1hyeNuvWGovgEQLb/t0L6NzsNXq/xWurXKzYEO7dvi21derF/0RESJSdZ88abrh+qXzklPS2m8kTCEjidTviiNP/LzvdKKLq3t0nPyw0+WoE+vbsjs3Z35IlENI/VpW1W/dC7ut8QnE6msz/1oER5+4G6didvTli5bpSrto/R4Mlm/MR/5BTtw601DdQFWKu1frPhat7jbhVgiSh5+34acTEILqfa0d6bN0u8CcRaWk4EUYu3CpLyUSUivpVVrN6rK/OWuX+YgonOP+WL1Y75IVPOwwh5FpLul8sZP+am4qu4aXxW2bt+tKujr9M/ACbkDK13f5Sc6+LIPouRTEwumQlrb5WVPTs6fN0om8lz7gs+/0u/okB5C0uokb0q9dFA//dwnESUX5ovVj/kiUc3DCjsR0TlQUwumRETVhfkiEVG46qyw8ze/iIiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSEWGEnIiIiIiIiqgJpaWnmU2QdOnQwn/xhhZ2IiIiIiIioCvTt29d8iqx79+7mkz+ssBMRERERERFVgcsuuwzt2rUzY25t27bF4MGDzZg/rLATERERERERVYGUlBTcdddduPjii9GyZUs9Ln9l/O6779bj8ahToZSXl6No3yF0TG9jJhMR0e7C/cwXiYgcmC8SEYWT+nSipB7evm1a1Ip8XBX2gm27sGrdRhw+UmKmhGvUqCEGZGbgwv69zRQiopqpugqm+w8W48uvvsbe/QfNlHD169dDr+6dcdXlg8wUIqJzz0++yPIiEdU21Vlhj6tLfKzMV5w4cVJ9bwPKyk6bKURE5LQhZ4tnZV1IHpqTuzXm94iIkg3Li0REVSeuCnuszNd25kwFDh/1910iotrmYPER8ym2g4f8f5eIKBmwvEhEVHX40jkiIiIiIiKiJMQKOxEREREREVESYoWdiIiIiIiIKAmxwk5ERERERESUhFhhJyIiIiIiIkpCrLATERERERERJSFW2ImIiIiIiIiSECvsREREREREREmIFXYiIiIiOqeOnyjFyjUb8OEnSzD348URh0+yliG/YKdZgoiodmCFnYiIiIjOqeycfKzL3ow9RftRuPdAxGH7zkJkLV2J4iMlZikiovMfK+xEREREdE5t27HHfIpt247d5hMR0fmPFXYiIiIiOqfq1atnPsXWsEED84mI6PxX7RX2iooK7NqzF2u+zsHqKMP6jXkoOXbCLEFERERERERE1V5h/3pDLuYv+EJXzKXSHmlYvmo9Zs75GCdOnDRLEREREREREdVu1V5h37bd3zNJZ85UYCufSSKiGuZQ8REsXb424huN7WHRkpXYXbjPLEFERERE5E+1V9jPVFSYT7HVqVPHfCIiqhm++GodcnK3RnyjsT1s2boTn2Ytx5kzZ8xS8ZMeSB8t/BJ//tscvP3e7IiDzJPvsLcSERER0fmBL50jIqqEvfsPmU/eyk6frlQre76q9O/cXaTfCxKNzJPvyHeJiIiIqOZjhZ2IqBLiaTVPTW1oPsWv+MhR8ym2w3F8l4iIiIiSFyvsREREREREREmIFXYiIiIiIiKiJMQKOxEREREREVESStoKu/zMW9G+g9hTtD/iIPPkO0RE5O3AwcMR81EZCtUgL8QjIiIiouRTp0IpLy9XFeBD6JjexkyOTH42yK8Rtw5Dm1YtMfvDLFVYLDZTvV11+SBk9u6Og4cO498fL0ZZmXchsn79evjOTVejVVoLPb5k+Vr980ley7Vr0wpXXHahDpv4OjsX63PyPH8GqUXzprhk4AXo0a2THi/Ytgur1m3E4SMlejySRo0aYkBmBi7s31uP71dx8OVXX2Pv/oN6PBLZn17dO+t4ONsSiQei893uwv1Jky9K/rYpd6uZ6k2+L8vJTc1/fvApjhw9ZuZEVrduXQy76pLAuZ3M+aKE6fMvV2PXnr1R35gvPxHaqUM7fPuKi/U2xdm6PhCd75IpX0z2/IDlReaLVHtIfTpRUg9v3zYNKSkpZopbXBV2IqLaxE/BlIioNmG+SEQULmkq7CXHTphPVJs1bdLIfCI6v/kpmDJfJMF8kWoL5ovkF/NFqk3Ywk5EdA6wJYmIyI35IhFRuOqssPMt8URERERERERJiBV2IiIiIiIioiTECjsRERERESVk3qdLkV+w04wRUVWL+xn2rKUrXSdlwwb1ccsNV6F1q5Y4frwUcz9ZHPgJIflJjNuHf1t/pnPLPm7OY/LB/M/DfjakebMmuO3Gq9G4cSrWrt+MVWs36OkpKXVx9ZCL0atHZz1OVBv4fVaTeV/NZeeNlwzqh0ED+rim2ZzXOZudf0qeOOyqS81UovMf88XkVpl49yr3SZ64eNlqlJef0ePOPFMq7H16dWMZkWq1pHrpnNdJKYWco0ePuyqEzZo1ZmHmHAs9LrbQYykZdfHhI/p4Scb81er1uOnaIbqQKvNy87cFKvNEtYHfgqkzr7MLS73VuWUXZig5ST739YbN+nOPbp19Fz55baPajPlicks03r3KfSdKS/HxomW47OIBOl+U38t3jrPCTlRDXjonmcKh4iPo17enmQJ06ZyuK4p07kgGLMfl+m9fZqYESYuRnbnK8SvYthNdOqbr8ZYtmmLELcMCLUrNmjTG6dPlOtMmoiA5d6687MJA5U1uaKU2bKhvflHykuO2YdMWfPuKi1EvpZ6ZGpsUYgUr60TepJHAeZ7Uq5eiyxJUfSpzPZLy4A++O9zVk0iWlXUUHy5BamoDdGhv3aiR7zRVx/LosfAyvpQ7p77/L33jgIiqRlwVdskIpNK2OX8b3n5vth6k9VZIRU7mNWzYADPnfGLd4ZNKXvlpPZ/OjR27C/Xfv8/5WB+v9/4+V98ZDbV5y3ZdaLUr8JIZO1vSZT2SOTszciKyCkTO80LOrxJViLFvflFy+mrNen1TOTRP87rOiR07rTzVnifXO1mGiMLJDS45T6QMcmG/PmyBrWaVvR5JXiZ5mhwzyevsnplSMT98pAR7ivbrcVnv4SNHw24EyPH+csU63H7zt313wyei2OJuYS89eRKNGjXEg/eMxMhbh2FP4X59N42Sk/RwkMLn90fcpI9Z507tsXDxClcBUz5L67qzd4STFFZ37irSd22JKDopxEjXwA7pbVgwTWJ2K3m0LqLRrnOSV8o8IfNkkBaoBZ9/pacRkZucY3KeSBlk9dcbA+ceVb9ErkdS4b9zxI36mMkNTfuGpBzHQd/K1OVBqcx/8NHnuuuu80bAFlWOXPtNDq4YPJCNO0RVLK4Ku30i211t5IS0u8Q0Sk3V3Z1OnjylvyN31mR6PF0NqXrIs0t2a7lkrqFd26V1XabZXZ2cpKfEvv2H8B/fuZ4ZMJEHqdBJIWZAv97sLp3k5LlMOV52K7m8PE5etCT5ndd1Tsh1LvTRL7sST0SRyXnVtk0aHxU6S6rietSlYzv91y4v2jdfZJCX0Tm7yEsZsrT0lJ4uz8HLzQIiqjpxVdglA3j373P1X2F3tZGu75IZp7Vsrp8JtEl3GnnxBZ07Ev92F04RqWu7zHdW6m32i0uk8Bo6j4iCJE+UQop0A4z1Yh869+wWJHuQtyjLG4/lRnOs65zchLYfNRKSf0pFhIiCQs8jaaWVm/8tWzTX41R9/FyPpHwX+oikTJPBtmP3Xv1XGuScZBlZvzziYJcN7RuZ0pIvLfpffPW1nk5EVSPut8RLRhDtZx2EnOz2T4XxJzySg/OYOH+2TUj3JrmIhr79Xbqt2T/t4RR6vInOZ37ehiwFUedP6NhCzzVKXpJHSku5nbd5XedCjzevc1Tb+H1LvFTspEv2yVNlelwqc+x9VL38XI/s70iP2NCfq5QyoX2TJfTnLO3jeVrVGUJ/5jf0LfGSp0rPI7k5SlRbJNXPuhER1RZ+C6ZERLUF80UionA14mfdiIiIiIiIiKjqsMJORERERERElIRYYSciIiIiIiJKQqywExERERERESUhVtiJiIiIiIiIkpDrLfGlpaU4c6YcapKZTURERERERESh6tSpg7p1U9CtSwczJX5x/axb82aNVYXd+t1ZIqLabv+BYrRpHfyNWiKi2o75IhGRW926ddEotaEZi19cFfZWac1167oMRES1HQumRERuzBeJiIKkhV2G+vUiV7b9iKvCzgyYiCiIBVMiIjfmi0RE4VLq1jGf4herws6XzhERERERERElIVbYiYiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSEWGEnIiIiIiIiSkJVWmHf8fZ3MfTtXWaMqtyOdzG063fx5g4zXp2yflELjuUuvHntWYrPZFIrji0llZqU5lRY03+6xIycv+R6/UiWGaHoJD10/QUWmtFIGJd0di3BIzHSZGSy3ACVnmVIZPnKWfhTtd048tbqqVPUzHJfvHGXuHObRii6uCrsOsEEDqRjuPZd1LY6T/WIkQnnr0Oe+ZjsJK2wAHOe0DeKBoRdOCPlB7X1RkBSxoUctwTz5lpx/lYifqpFsoWnmtS0G/s78gvMp7Pj/Gr4cBb+1ZDE6Vvi3Zl/6+G8u3E3FG9sX4/C7R9hci8z6azZhbwN5mOI6krz1XIdq/J8OuQcMYM73NHjrjIix8+5TCPkJa4K+3WvyUG0D2RfTF5qxhfdiy7mO1SNhr2k4vufeJiRTWfRjo9no//EJ4DV7oKrnR+smNgXGRM/0p+XPNjJzK1dGBdENYBuLY/vZlqXB/+pzueXcJ0ZJ/8W/nQs8I4pJ0r+eM9sDE7SSrt1nFU43xkO3D7F+vzaUDOXKq8THl7EOI1sOKaZc8Qe3hhmZmmMO6qWZ9gL8Oa15i5RSMbsuoMZV6btvAMV0pXFtP7Z63XeLbLu2i2JEB7pEhNyZ0mvJ9i6HTWs5oIvg1z07Za1QAEgJDzugoG13fB59v6NxRzMx2gzP7Bd1zojtMA7wuSOH9P1Jyu4fDwFFdexDNlutPix42P0B8Cc++xlrTAF7+bJ/trhVJ8jLK+HkLvbnsdEfTe4bJzdePIjx49sz5lGguGXeP0F3tThkW2Z4+drP+S7ahnHMXOlQ0/R0o/iGQfO5eKMG7XsvPeAS27qgf4fzI5zWfJmzk9JNM78Rz7bacZ17jvPbSt9Rszf7GWuehF5+S9isL18yPkUiZ1+Ip2/mis88aRdJzs9mv2Ndf5Gyd+C52P0/CQin/ETNTwex8Sb+/yN53hFzfvM/i50zI/vmJi8y7VeZ3wacgxixavNdbyC4bH3YfCkTcibdHPYfBGMczWE7P8jWZHC6oMzPPcV6IYG62aaHA/nsZX1O8ady4Vtzx2WXDPVFv14RRc7fkLSj4/z+dySVsG+uMTRSqcrxXYDj4rf0OttYNwR9zLNThfB7zviXw3xpfnq4D42rvB45BfWPkcqo/rkiCd3HCQWP4mdZ7LvZr/0vppzSD6bNOo8r0OPuUzzyhO86hTR2NuLeh0TUcp9UY+Xj3y6OkSLO3eaU3EeCHcwD3PlpxGme8ZPJJLeQo6BrMsdrvjpdOCKR2vfAunAdUyc6UO+58izQ/Pw802Fcvr06Ypde/ZVnDxV5nPYWvGHq+6o+EO+e3re63dUpKXb0+U7fSvGfGzmf/xoxeDXtwa/r8bTHloUHI86hKwn/88Vg6/6c0VeYJ4zHIsqxgS2HyM8rvVY340nrPL9wWrbgWX0EB4vea8/Ghif91DI9tMfrZhnvmcNEv7Qac4h0vyQaa71WvucZu9nxG1GGWSfQ+PSjgMf8ePaV3uwl1PhGPPQoxVjzOfBZlnXMTDjge14bVM+pwe3J9t2fTfq4B0/oeEJ7pO1nGzDSgd/VssEj4Mr3CFp0hpX23SG3ZEOvQbP9OMRBxKe4PGxtu8vftQg2zHhi3hM1eDe3/NriC9fjD8u5Ps6TtXx0+eE+Wytw31uu4+jGY+Wv8ngOHaBaT6HyMc6NH8LTdseg2ufQtbtkXZD48CV7u11qmmR8pOYQ7T4iRUe1zIh4fMYwtKGhDtkPFp4XMtJ+KKdz7KOOMKT5viuaz9DtjnvIZ/HOUJ8zFPHxjkeFg+O6c504fyeZ1g9BwmPI+wSd4E4lvTsDFuUYxnhuLi2r+PckaY9j1fswSt+nNP9x0HVD77zRdl3FTd6CI2DkHiKtN96WsRylvM4heZLlRziPF4yhOURgXTkTlM6HTvWrce98vCog6w3WjnCT/yEfscarPAEp/tNY7KcDrcKR/h1zP29SOvzmp5Y/FiDhD/8+9Z6Ipf7vI+XHqLl0wkP5li6hsjHJvKxkOXVvIdCwhSWjtX3QvYlcvzYQ+Q04r4WqHVWSVyEbEviOBBWmReyTVeacIZR5oWH+WwOUp9OdJB8Vf5GU+Ut7BkTf2+6bHfCLff0RXa+dedl4cz5rjto6ffNBzYUxL5btmMh3sETeMbuHtLlXix5x3RO0/NG4pZAF/GhuOv2TViVb0aVaOFBl+twH2Zjng7AEjw3qQfuMtvwG9a8fuPDuq1k9NuECVfJctZdni4PvhTowi7dZgPfl+1XxfMhWbMx5/aRwe56er0FyAsEti8mv2PuaIfN8xaMO9mP8RhhWlgTPpa9BqK/+iNdrHHnSKuLdf464OIeaqq05G5y3O0zd11NN+yY27x9SiBur7tzeGC52BKNn+GY/GAndOmlwn7PdSr+ewRaEqQVIdgdWtKk+RgwHNPsrk3DRmKEioPQFppIYqafiHFgxeuIO+2uVEPxhnT580kfK7V/Ej+yzjkzk71Vp2bR6UdZOLMAl9w5UJ0Pu/Qzs/17SfqRZ8mCXXG73DQSGeazLWr+Vh185LfeFuKRrmORPfGjkHxTiXb+euVvnvlJJXmFx9m6ontF+csz5FjbeZhuIVDXsjd8PDYRM+/r9QTet9ej1jn59vmY4bNFbcQ7wfR13ZNPAO8ttNar8qX+k16xWip2vIsJG5zH3Yvkg6aX2LVWS8x1r/npTu6d/4uoYY1Xvx6VfIRvCWZ80Bf33RSM8/cn9rU+KwlfHz1ZPZ0C21Tiu86dI/oxPuni+xEmbxir4yPe1riwcpbkQ/mOnohdb8aE/Hjyoaom6cEqD1gk3x6P3vqAV2ceHqUcUcn4SeQ8876OVU71XOOilftiH6/qEdol3k+e6XbfkyGPJqvrY8YHznNO7VsVdKm/7s4emPCCVQ7c8fYryDblw8qRY1uACSZvWPjCi+hvl1krXe44f1RDl/joRjieZdJDos++d1EVJfMxcZJAgHc+VgkktFCo+AlrRoSCYeA5/6UDMUFnlsFuJnb3n2Amak2viRI9ltmqgJG7Wm6OqIKdKugudGXqjvci2IMjg6my9FPdnF0p1SDdjqrC2U8/ViE6UPiUgie7xVe57PwlyJMLkjonpNKZuxrm5o+7m6XuiqeXqJnyJq3DXargft97N4d0eUycd35STeznWwODz/eKOCovl0yyjqnfysvZz/uG4pmJVgHKeoeF3+2ZZy0ljBPXmRsbfrsoeuf/ibEqT6v0TXQ13IdgJaca1Zhr1Vlj0sXS+G+0RCpnyU2qFc74VUPYTcBzSpVR9QE/R3n4OYif6NexmqSmXnN7ICM0g5HGTXPsJ682Zbiq6L4/bDwmb3hF1WukfNjDcaOqcqRR0LpJvAQzNjgaaSngrFXYdevcJMezD1Kp8ZN45O4XXsRzgQKe4xkFPc9uJRfWnW+/mYTcPZOLx5sz5ztaICsRVjnZf2qWMyfLtMCdIOsOebBAMgUjZHJlyZ1VZyVK312NcPImIM9xYZU7afZNjcSPZQ/03zAbMzAQvdUFLUMduwnyfLQ+XtYNFPvOnZAKql2gTfyYVE6wRdn/WzqlhSVYYKuqN20mmn6su9LOlnEJny86LTnv/Mq++G+9Ix96DVSFm9lYpS64XaR1Ul0IJ2ww56++s+woeMXRM6JaVDK/zZg4XuUfquD+zhPIvs9nJc4rf/PMT6qJDo8UVsy483oUw463f2GWM5UXdTz9tJDGzPvyHcdEWsM/GB7oLRaLK1944cVAbxphXR9/jh+8NzKOwpOKDzts+gaF5Bl+eiB45//CK6zRSQF8Nu4K5GGhLVeO/GxHAbLNR29WC4++2a9ZNzZt1XOtcjQwGJKPR6zMJgvz3Knz5pzc/Mlz9HBwljFyVwfj0FNYmVCOcejzt+Y57LNQRrDSw/xA66ArPOciD/cVP9EldJ55Xcdqkio4Xtbz4X5vUlYjle/Y555uSFz6BDIq3dNHmLzovp/jnXvkmh4usTgw59G1rwDOG8Qxyx2J5OE109lrYVcXb/2GUPvO1aSBWOHrTrcUbqYAga5yr+CSpfZFVwp/I/GOffe8q7yR1Gdrh5Dug/1eVBlLyN0cr7DKxVdNc70kw3T9k8SScbHdqmANo2F3rVRhndjDdJeXYTYumViA0a5EbSXY6C+dc76Uzl5uKN54B8FlrpqN+wLxUzkZ/dbhB2a9gyf1cHS/in0sdaEl7GUW0go2X+2DdcHufbG6YDtuLkhX8mmwuvDoba4eH+xannD6SVyXB38f6MaX3lVlTmZ6LNKNLDuw7z9XFzw57v4vmJH5ST+RufdjgKrg+LsIycU6z9XzRMIQLIzaLy5xngvxdnc8XyQcF1Lp/GA+snXB23qkJk9XQGWelT8F0vzMgdZx9FsINQW3wPJxFF4jn7+VzG9tcjNT51l+zgmv/M07P4kpofhR4VnqjAPn9cjLLuSqQm2gpVeG0NbeaOGJlff16oFV9rG66kX0d3RpjWWEKgjZ4RmtroOBrvVCpz9ViYqny6MqOF1y8SuBdUpPoHfuCT5aJfSNAEeXcbtQ6Zn/K55hjUryLEf60YMzPTvy6vtm6yUCzLXe9ZKpQDf/Kegf2IefY1W/YJf4yl6rosfP73XvFHu6lC2S+pcodKOFs+ymjul7I4NxoeJpmiN/m7DBEYde5Sw5bq4y4c1YNTEkH9IF976Y/KT/eA/0YNM9yUw69JlnXvea1XMoLDyVzcMT4hU/5kaG7qFnlyXd+XBC55nXdUyJdX2MluYrK/J1zIOf4+V53aj6n1+LHndyI0bmuV9WbcfdQhX/dk8uPci1034MwIgcP7HTiG4Nz1dJzPGITpAVB9YN+vjoRzDUNdx9w9mr3BEjDz/P1JEH2cvLy1G07xDatG5pJhMR0f4DxcwXKYmpwtW1BXimWrpcS8FNWqer5gZwZUhl6rle/4y/W69U/GaOdHetV9OG5rtvBlB8kj5flOMuN0pq/aMI8Un4PKPaJVK+GiDXDbmRHf/NfEl/P8Dva3TenFK3jvkUP6mHt2+bhpSUFDPF7aw+w05ERETJzWrVkRcExt9KklT0IwzBVnurFQZV9twlJSd54VlGlbwMi4iCTOu7/DxmtN4r0rull9+XlBqmF7H05GXeHB1b2ImIomALOxGRG/NFIqJwbGEnIiIiIiIiqmVYYSciIiIiIiJKQqywExERERERESUhVtiJiIiIiIiIklByVdj1mwJ9/Fbi+Uh+JqFaf5vTg2zbx+95V578bmQtOL7ys0G19PfI4+LrfJefrbJ/f7cGOGvnUnWzfuP1rKTjc5n3nU3nMF/Qb31PujiWNBbhXDlvziE6O6KkI6o0+ZmtqvpN9OSVbOkncniSMw+nsym5Kuz565BnPsZDMpWqLwjJzxdU4UkslZOwk01OzKqpwMrJnGjGKj+BUtUqE57qkGzhqR5VnGarW4LnezKrjnMpYZLnJHyzowCr8s1HSgKVObd3IW+D+VgF5Hrr+pk0GaqwIJlU5xCdfyqVL1J1qJ4yfDU5J+mnavPw802NSj+VkFwV9mEvoXB7/D+2X2NsKIhwkvdAxjne3y4P/lPF+0s1+/d26RyTm09SeI+jUnEenu/nz7k0FG9sX48l/E3U80AnPLxoPQpfi/K7uXGy0rha3zvDgdunWJ+raN2C1yMiIqfK5+G6hb629mA+T8RfYdfdWO0766EH3y60myHkLpSVYOzBUbB3rTNCgV93kQsua7eU2nf6B0/ahLxJN4fNDw2P6w6M6YYZDJO9XWnJkPGxmIP5GG2WDd2XuHXpgf7mo96mbpEowCoMRG9rshYeHosr7hytGfb00R8Ac+6zv+PzpHTGa4T9c23TZ0XMV3jyg8c79K5YtP2MJVpYY4fHPt7W4GyFl/T1SJZjflxpoMCR9oLh0WnWtV9WGvXX+h/t/IqdZu1zJXS6XlaNL3TM998TwRmemzGhnxTeTUE7pPuv6w5ojPPdGdbwsEQ/XueU17kUNa/xkx689jdKerDj96oXkZf/Igbb832dT+51hm9PnTtZ0c/f6KKE1SFS/GjOuHXOc6YjtW+BdOPYz/jzEwnnL/CmXpdsy8S/M7yVCE+QHR/B5SOHNfa57cW5ztBjZZ2TS4LHxec6vUl41T454siVhhzTh74d0pLujNewsLjTj/90R+dSrDQWOEciHXPXdSKkDOGVjqLxkS+6zsF4zgdXWJ1p3spPnOdDaNqNmkfJMmo8ON+R18TiFXeeHNcbtf+5Zqot2vGS6Y+8bW1T9t0Ks2O7UcJjry96Gd5b1LirTD4UTYz0EwyL7J8dj444cGwz7Fh6hMe5j/Hm4c5lR294Aiv8NpB4ph93Xhx6rFxpxHVMQo6XK6wqvpzjsv3AuGxPhSFCuaOy6afGqVBOnz5dsWvPvoqTp8piDIsqxqQ/WjHPjOe9fkdF2kOLAvNlfPDrWwPjJ/P/XDHGHv/4Udd39bpc42aaY/3Rps17yD0etl0zzHuob8WYj824Cstg53okPOnB+fJd9zoihaUyg70+9fcqFd6r/lyRpz/LXzXfIzzu/ZP13FHxh3x7vcHvB/Y13kHixg6HPfg6XtGHyOHZWvGHq/pWpNnbCjkmsp/OZaId17DBR1ijh8d5jGU8GLey/TRH+MLTSJRBH8uQ9QTCE7JNiQOf8RoWH87zSw+SNpz7YwYVHtdyrviSZRz7FXqeeAzh++WI45BtRj6WEcIbsn2J80B6iXG8qmPwly86Bgl/pHMpal4Tsg+u9OC9vzHTQ6SwxDGEnzOy/ejnr9fgGVav+AnZh4jnoCyv4sV9LljbdIY/choMHax9lO/p76tt6zzb3s9KhCd4TljnXGjYvMMa5dz2OUTad5kWzKes/XYf7xiD7GdY3mXtW2C6jgs7vmReSL4YaZ8ipFtXWowj3XGonsFvvuiZxgLnQ3DcdV1ypQFn+veZjqINEdKXHkLSs15vWPqONLjzZXf4TJ7p3K+QsEc97yU8Ua8bXoMzruLZjwh5rzOf8jheehsSpzpu1f6pZYLnbOzwuPbb5+Bexh2v1ngl86FoQ7T0owcrLQx2XbfVELKM+1j6C0+kOLK+ay8bfn4F97nq0k942B1hjbBNV3gc63GvV63HGaeu+DLnkD2u06U7fiLFzbkapD6d6CD5qvyNJs4WdukmGeyq1uWmkcgwn0WXXj0Cdzn0HY4u9+INu0tlr4HI+GCs4+6IWpev7h09cEkv07JwrXXH5brX/HWXu+619XhjmBnpch3u62U+226fEph/3Z3Dkbe6Op+dk/1Qf3YUILvfeEzutw65+nMPBG54RQmPdBEMdk0dirtuNx+rU8LHK5a+mPzOvdY+62NSgDx9G20X5r23ydEKbu6a+TkmiYZ1x0K8k+9otZJW4vxNrmd3R7wTTGvXPfkE8N5C1x3MaDIm/j5wJ7PLg+Mx4oPZ5o5qJ9xyTwEmmDuEC194Ef3v9BevnueXh4Uz57vuPqbfN9/9eEavJ/C+vR61zsm3z8eMhO5Q9rXSeCXs+Hg28m4fGYzz16ZghPns53glrah5jaQH4J2PI6SHGPubaHqonGjnr7eYYY0WP+p7SxaZ7SkyL7KReMa175XITzAck9W6JMy45zqVFk3eLRIOj20hHuk6FtkTPwpemyoV1soJ5lOSDvsiO99Kh5UzHNPs/HfYSIzIV9c6+Zw1G3N6jcQtgXzx95jsM7+IeS2npBUtjXlelyStOFsxdQ8Tk9dUIh15kfCMcFyLdfk24mOMISSfVue7HR6rjOa8LjnOBzXvmYl2fu/jvE+ojOpdTo9uCWZ80Bf33RQsC7w/sa/1WYlVjhgxUeWLuiepigsV5t4X28smGh5vscvFVZ8P+bMJ/SeG1FG8rhuVDE88eXj/XpGuSaG8jpekEev6aJHvjkdvkwj0OSTpwBrV+fYzvYLne0Lnl5ZYueN8E2eF3d0VQncNMXM0/UzqejV8hEsmWd8JdOGQBKvnrcfk1eakD+kuEZl5dkOWnbjOZOD+uga5umbowq6ZcS6pTEMK5L0vLsCMj820WFxdaazu3dUu4eNVGeqkXGqOtT34qXhXJqyqsrrCuT01BAvS1UMq8P0nvaLSsMr8NjyBZ/xuz+v8imHEO+59LHRcPBIlF8wVF79i0uXNeOee4E2KanMOjld1kwuXdSPIuhje5dwfr/2tRHo46xIOq6OLpgxSSIzEeeMzIMH8xFNlwgNV4F2Hu1Qc3PfezSHd9qojrOePpLyWU6V5XpdUZdU177x8v1F1nPcxyumVkFg5oprCcy7Kxb5Earjwed2oSnLNDdSZVPwgePPHW7zHqxO6eCSCLl383CQgP+KrsOs7iY4CpLx0xmHH278wzzqYSraaH7gjqE4uu4Aid10Klz7h8+6KSuh25UsX+j7CZF93V+TuJRyZoaOlriqYzMJd6PLSCRn9CjBhUoE+maX1Jvu92cDFPcz86PSdqUBGKftvZlSnhI9XoqyWxgkvBCva1vM5Pgr1iYZV7tThRTwXOIbmWRnHgnNmBsMjrZ/S4uanzJDnaInf8fYrmONoNbbuBs/HhGtfARx3I2PxPL88yN3cOZMczwdJ2nXe0MifjXmBwL6LCaGVxmjUen6A35t0Gf6CMmcc5K7eZD5503ddA70RFLn7bD56Hi/zzNUjWeZio/bPKuTH8dzfuaL3Sx2Dt9W+OtNJjPSZaHo4FxIOqxx/R8F9haPFx1sl8hMvCYfHkjFxvDq+Kg7eeQLZ99lps5rCmmx0K5czr5EeJOazJ3/Xcuv5yBpwvpPmeV2StPLBK4G8zqrwmGObcDrypsPjuN7r3l5Rbry52Pm3I6zSUh2stDl7rC3Bc5NgWrGr6byPUU6PzuoZYPf2ss674HU7ZjkimoTD4y3hcnE1pR9PXteN6gqPlIlmjgxs0/eNIM/jZcqugTTqLpOEphFneo55fjnjoCp+QagmlwmjiK/C3uVeTO7n6KY0cyAmbxhrTtpdyO01EKuuMvNkuA+BLikLMTDQsqKHq2bjPruLg4lY94t1TKSqjO6SQCueDOEtebqFytFVx6q8qULRxB6YEAjPbFwysUCt2+/BshJmoDuq6Y5vS+ynZzYhL9+8FV7FFfL9VWKkK3Z2oNvUz1WlUfbLXbHUJ0PgO+55UUmGK9+XO2h29zOzn57Hy4dEwiMtttNgdW2XYfDq8b7eUu0nrJHDI5WHKerqaU+/Gasmuu/ij1AXYnu98tKOQNfxGDL6rcMPzHKDJ/VwdImz6O71Ki34qhhr3ueXJUqaHfYSVtwzO3jeThqIFc7levXAKjsOVFro73gMwNOw8bqlMBAeGQIFrpcwzZFXTNjguEB5ne8qj3lfn6dmfTPlGNhiH69zxuNcis3kVZMKMPlJ5/H02l8f6cFU+APH3U/hSl+Are87X9To/8ZkJH7SbhQqjelrjFnuBxiJ/iqv14UAOx1Ja4V5JMZ5MU40P/FUifC4SK+gd6DSuZUXxQ6r9/UoGvslP86X8lS2QmAVetR6nfvpK20NxRvvOK7J961Df2chO+o55Odazp89qnE8r0sqrSwdiXcCx/wVXLLUvi7FSEexRMsX5ZrlPAffG+m+Tkal0uc7zrCOBd5xXpdUhWdmcF6263G5asijPMvp3uQRNMnPrPD8HKv6OSuWMcoR0fgIT+QyvDc/5eLIqif9WHmt9diave5AXut13YgRnoTzcIl3R9rSg5/rRozjdd1rVg8xa50hZbCQNOJKz57nV0gcqLJQPI9NJJJ+aqI68iB7eXk5ivYdQpvWLc1kIpKC6XO9/lktXa5l3dI6XemLc6UtwSPXFuCZuLvIS8VOXSRdBROZ9goyFvms8NcA+w8UM18kInJgvujX+XdNpJpBKvoz7nQ/Mrjwp99F3pNJ0shxnkqpW8d8ip/Uw9u3TUNKSoqZ4hb/z7oRUeJMK5y0ugdf3FETme58gVYFGaT3i3T5JSIiIqJzwd2r1BpGYzwr6zUYW9iJiKJgSxIRkRvzRSKicGxhJyIiIiIiIqplWGEnIiIiIiIiSkKssBMRERERERElIVbYiYiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSE6lQo5eXlKNp3yEwiIiIiIiIiIj/at00zn+In9XBZPiUlxUxxc1XYO6a3MZOJiGh34X7mi0REDswXiYjCSX06UbEq7OwST0RERERERJSEWGEnIiIiIiIiSkKssBMRERERERElIVbYiYiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSEWGEnIiIiIiIiSkJVWmHf/uZIXP7mLjNGVW7HX3F5h5F4fYcZr06LHqsFx3IXXr/6LMVnMqkVx7b2kfz3wUVm5FxS6atVh0xruPqv2G4ma3reY1hgRuO3GA+GrrOmqXQcnH1Jk7Yikevi2MVmJFQ1pZdzmYfWwPRDwIKxKj+Mmk49nMVyX7KV4Suf70gZL7PGlHd0GjHXzmQIc8JpNl46jZt9r+nX92oUV4XdmZhcAyO4iqjChdeFOG8dcs3HZCdpJWkLeBQfk5mGXkAi5Qc15cJY1ULTe429eem8cAaG+CoHC2Z8iFHTcnBwjxoW34+uZrrYnrvFfKq9EouDGNeGGqTGnhtJoqacQ3Kcw/IOk7/UvrLBLmzONh/j5VHuS7ScVXvOwS1YmWc+hki+OFiMaXNuxUy5bqph+cOdzPTorDKY4xyL80aid/qpRJqNV5f7sVzv91sYZSZRuLgq7NdPMYWwPQvwfEYmnv/KjIcUyqiaXPtbFd+z8eMuZpzoLNg+bxYGTHoKWO0uKNr5wdpJmeg9aYH+7OciQ0nMdeG0Cw+/xfVmdmV1fXh2la4vqdk3P0JaKGpVHFCVqynpR8I5c8SH+KWjArHg+V8D6lrx9rVmQq3RCT9erPLSKVeb8Tiw3FcJV+Pt87pcospeGR9iWrXcAKtEmqVqUQ3PsG/RXVB0y0xIy7t1xzXyPG/SumCWC+0aFNIiFN7KtThCeKxuMq47S3o9wTtVUcOqu6NZ0+VOlt3KGLirFRIe990ua7vh8+z9ewiz8CHuNPMD23WtM0IriyNM7vgxXb4XBZeP5+6b61iGbDda/NjxceccYNZoe1krTMG7ebK/djjV5wjL6yGkoOt5TNR3g8tGiCMveZHjR7bnTCPB8Eu8PobXdXhkW+b4+doP+a5axnHMXOnQU7T0o3jGgXO5OONGLTv3XeDSW3piwJxZcS5LNld6CKQTc37KeeDMf+RzSNqPzM43rHW6W2HcaSX0XKp6we25zn17X515lPPcFTHOX+d57/9cER7ni4dgOOTY2HFs51eKKz92TBfOeZf9GgOkp4Fd4PGKg9DjFZhvbz/KtUFEC49zuorfQDw60oJ3PmWmq23F1bPLuZ9qsI+Zvf1BE3OQO/H6sPmx0qwr/w+Z52Ttk/u45EZKQzHjx+85ZH8vmG5dYXUeK0fcSHq0499X2vRIP7K9yGWdc+v6KW9hwMSXA/naL7OfwkxH5cmV/lxhVunPOS7Hyvc+uY+bO89wz/N/DfUgy4WETdZhr9u5j+HHOSSNhe6zPT0kLPY6I5WzvMQ+B0XVluElrNb6JU+xw+g8vo68Rg3usAh3XhQaz4HwuOIoehqIHQde4fE4XrG48sVI+bQ7j/eVJyhjJj+F9RMih8MVP478K1b6cS4XFg5XugyPW698KFp4yKcK5fTp0xW79uyTjz7trPjT0BEVf9puRo1tb4yoSEu3p8t3+lb8aKGeVVGxcHzFZW/sNCOKGk975HMz4iVkPdunVlw2dGrFNj0SGo7PK34U2H6M8LjWY303nrDK9y9T2w4so4XHy7Y3xgfGP30kZPvp4ys+NaMWCX/oNKdI80OmudZr7XOavZ8RtxmF7HNoXNpx4CN+XPtqs5dT4fjRI+MrfmQ+X2aWdR0DRcexvR2vbcrn9OD2ZNuu70blHT+h4Qnuk7WcbMNKB1PVMsHj4Ap3SJq0xtU2nWF3pEMvnunHIw4kPMHjY23fX/wosh0TvojHVHHv7/nFb74ocSPx7xwCceJMq4rzeMhnHafqO/qcMJ/9xKfzGFvpIXh8Qo+J67u+hOQrcYiWTjRHegrwSLuh6VzHc1WcLzFZefllQ0OXUfHi2r4znqx8IeY2I8RB2DmkvqPzx4Box8MrPIbEr1yrQo5/IO0ZzjCEHwOPY+oSvv1PVbp2joftq+GZZvU+BPcz7Njq8ymYLwdJeKKnJ80jfrzCY3221u+Km8A8Q9bvOP+FXndY+cGnKOknalmnGsRTXtRhe2RqeJhC4sX6nj0ekq4j7HM0ruMUkh7D0o0zLUh4ouVDMbjWGxp2IzQ9ibBpKkyh6TB0H5zc2/UvUliEPgbR0pGPdB2RvZzsW1i5T7bh3DcZDyl3hhy/QBjCtq/iKUJ4osVR5DiIHR7XMhGPVyQhxzA07WnRj3M0nz4iYXOE0XGM3GGVdQf3wxYr/YTHkTs+QtdrHS97XL4bXL+f8OjpPs/zZCX16UQHyVflbzRV3sLee9JrputOJ9x2bybW55q7jDM+dN3NajX6QyB7S+y7Uzs+xVQ8hYl2FyrpsjntBuuznjcKtwW6Cl2N0SNyXM+sRAsPutyAMZiFueZu36SJPTHabMNvWHP7Px7StasT+vTPwdOXyXLW3b6uD/820JVJuhAHvi/bzzCfK2PRLMwaMSrYPU6vdws2B+60ZuL5aeaRhbB53oJxJ/vxOEaZFtaEj2XGQAxQf6SLNe4aZXWxzlsHXNxTTZWW3BzH3T5zB9R0w465zRFvBeL2+rtuDSwXW6Lxcyt+9XAndO2twn7vDSr+e+JSczylK2CwC5akSfMx4FbMtFvdrh2FUT7fTRAz/USMAyteR91ld2u6Gm9Pu9V8jk0fK7V/Ej+yzlkzeFc0msBz22qQxwRs+pnuQPyr9HHLKPQ2aVenH2XBjC249K6BKlPZpZ9RHdA7Vhe+xZg2JxNjbjHfU/nizMA2rV4RgXlKfOfEORDl/JX0l+vI36TFzu8zbpXPb3MwYHJI12PJb/N+jUF2PqRbRTzyDJXn9TYfvUg6sPM33WKhjufbfrpx+g7PKEx0rc8rv/VKW7FIPmhaiUzryvVT/HTf9k6z+hyaHHz0To7txAxny4+0Cl6Pp/u/Fd79NcPRqqv25VcjInUhjRQ/sc6hT/Ggiu/1IV28Ey8/VE7Uss451vXh1/B89q/1sQmNp2j5YuIk7VrXZot0iX4cvc35kNg1NDb5rn1t3P7my1hvrpmxJHzeV6MqL8N7lfukDJ/n6DnUQZ3Dee4y/Khpwfzj+qefAt791Nqm5K1zHtLLWa3A6lhXtvt2jPBUKp/2LKdXRif8eHJPPP28u2wWuxyagErUuaolPLVMNXSJj85ZoNVDos++d1EVJfMxcZKYgKnzVGIKPZkUP2HtrSuabnJB0N//aiB+qU/4YDcTV3cinRFY02uiRI/lepVZ566WmyOqYKcKWQtclRPHexHswZEBV1n6qW6urk9Wt6OqcPbTj1WoD1yk5QLNbvFVbn3uYmyWi6A6J6Qwk7sagZs/lLjKny+ZkY+DKtS78qHA86XyzN8CXDrBbPOyWRhj3wyMRT+nKusKLu+3S2T08Dj07xkhHN75bWLMc4+yrsnrzI0En12L49RVlQMCVL4EdX2YiYf8x5tTxPjxljtxHUar4zXm3etDus0mXn44P0lDxrncX1VeNOdDtV1D5ca7vjaG3+jxVJnz/hyolnJfxlNY61ynGnzdyFKVZet9Kzn41WpTRqmKbtZe4UnW4xVIfw7VVA5NWLKFpwY6axV2fQfS+ZyFHDw/J5fcicKvMSlwQZTnS0wBQM+zW8mF1TLgt7Ard3Tlbt3rIXd6Ew6ryqxfH2uWM5nJzMDdJysjDxaQquhtiKEnqr5D2BN9QgtsCci172QqctfYvqmR+LHsiQHZszAN0uqkLuLq2P1SxYl1vKwbKM67hNbzMFZmmPgxqZxgi7L/N2bqloPAhU1e0GhmVEqi6ce6y+lsGZfw+aLTUvCtpda+VNcLTs5fztYXoVuN7QpCxkBVSZ+FlZBxVZjJfhm/zPZz/lp3tvUNR826uWJx3Iw05JjXxAqCbnVz5m9yc9V89Fad+e3LjmdFHdcjZcHYn+qKo7VN/y+K2v7mY2adpsI7zWfrXozwROeV33qlrVjU9u18WRduJc/w05LknWZD83/ntUEb8biOa+uZ6Z864kPJc5QR5DnqObcGetNFF/sc6j3pcXU9VMdr2lNYPzoY5+fqWlXTeOaLwnncfP9CjqRd54vu5Jlju9GkmvIEzdrutDdDWyC9JXzenwMJp2uvcl9Y+d55vCyusou8tNDuvaC2b98o0w1lXz1V+R4aMcJTuXy6esrplqsxcdIW/HJCMCzVUg6tRJ2rWsJT20i/eLvvvH+hzzFYQp93iDQeeMYzrucU5HkH+9nQkO1ul2dB7Hnu5zFihUfIMxyRwhI1rPLcjGN7rvnbP6/49I2Q+c5nalzLjq/4k96G+5kVHR77O4H1uvfRXj6wnGu9zvgJPU6Rj1tE8izMI2qItD0l5rGMGCbrmRY7Tqx1eOx/yPNInsckNJ4jPMsULlb8mPCafbgs8DyOTDfhlnjSacoxzXW81Pp0mrDXK2nZuc+h4x5ccRqSfjzjwLkfah/kuIacB5HoYxEaj7JeE/euY2UGP+utSeJ5ht0r74l4XmtW3mZ/V38v0vkUkTtf/NEjzmdi3cfc3/mgxMprPHimB1faNYO9n55pN+S8l2cg/caPa5uR89tIYqbr0PPbmZ9GiL/AMYkaBzsrPl041XEsZQgPZ9Q0FC08Po6la52uNOKVtjws/NzEc3C9YXlCSLj8pll3OnDMk/WFjgfWq/ZD5cs/cuZ/9vZixo9HeNSxdO2XPrbBuPe8VtnTI8334rFsaH4TOl7V4isvWuksUniipmnh3F91Xfb7DHvY9c6Zbl1xGM811AdXuguKnp/EOO9jpk/FtT8heZGXkHXbYY6VjqKma0/meJi4tNbh3A9nXuOOP/mulFcibVPiznV+uvY/5Nw1g+vYRImD6OHxl09HFfVYubcXPj866xl2M2L2J3C8XPunvucqhxpRwhQ9zSpR4y1G+vEKT8g6rSGOuE0izmfS4x1iPcNeR/4pLy9H0b5D6JjexlTjiYhod+F+5ovkj7w9dzQw09lNVKY93xPLK93VnCh5MF8kIgon9elEST28fds0pKSkmCluZ/UZdiIiovOS6U4ZfAGcGuQ59qdZWSciIqLEsYWdiCgKtiQREbkxXyQiCscWdiIiIiIiIqJahhV2IiIiIiIioiTECjsRERERERFREmKFnYiIiIiIiCgJJVeFXX4Cp8NIvB74Uf5aZNFjaDV2sRk5y2TbHR7DAjNafXbh9atrwfFV8Xn5m7vMCEXl63xfjAev/iu2m7HzX+T9XTA289zlD0RENcSCsclUxqjBZR5dLszEg4vMeLWQ+FHXtvP+Gl9LyjEs+1ar5Kqw561DrvkYj+1vjqyGRKJOsKqsxErlJKzAXXWZuRToE81Yt+duMZ+qTmXCUx2SLTzVo4rTbHVL8HxPRrpC7fw5LzVUXZ60C5uzzcc4uMJUq256EFFykGuSVz6UPNcsKUcGwmkPtfYmqTouEwZi7Z4cvH2tNcWKH0d5NaRMGxp/wfJWSBrQg72eTvjx4hwcnLwOdyZFRS88rDW3AmpuhgT2Jfw8qx3l4vNHclXYr/0tDu6ZjR93MePnm+wtEQrNPdHnHO9v14dnq3j/La4340Txsy8OcRS+zqPz/fopqtChCjdrJ2Wi96QF+vPyhzuZuZVlCjVT/P+etxSe7sRbOhwyzOz/a0zihZmIzqIFYx8Cpll5kM4f752FQUl889DOuwNDHHnuOWVaw6uqcrlg7Mu4dNr96GrGbb0zgKnzImxDVd7vfHeUruBbcfcWMNpZGbwVM53xGnrdV2WBX63+aZL0RHCG9S0MmJgs4YrP9jd/iqn3OtLzNODOmtSgQ2Hir7Drbqz2HZvQ1uGQOzohGbO7FcqRcFzrjJCgTGZkD3YmYN/RGzQxB7kTrw+bHxoeV2Ym6xy72BEme7v2HbaHMAsfqgRu5lf2ItOlJwaYj3qb+s7kFqzEQPS2Jmvh4bG44s5xV9OefuccYJbKIK3v+Gy1d8ZrhP1zbdPnie4rPHnB4x16gYm2n7FEC2vs8LjvqDrvNkr6enCRY35caWCLI+0Fw6PTrGu/rDTq7y5ntPMrdpp13f127YdaVo0vcMz3FxbhDM/1eLq/VBDNjZ+QrlGy/cB4jPPdGdbwsEQ/Xkkral5j8dpfZ7oOL4x55G+3vBZW2FyfG7o8EVF1kZ5BmbhUVfJsunFgsVQEY1+z3OU+77Jm1OuAfa2JoywRkQ6LIwx6vc4wxQhP1DKPRx4e47rhip/RW/D8V86bxJW5Ti7GtOxRuC3CjfQBkx9XFdiXw67Zurdc/56OCv7VeFtVEu3WeT+uv6tn5JsBHlzlvihpR+LU/l74NdQPZ6Oa+3gF05VMfwyv62u5HCcT/66yFpAb7VofrV4l+xGyDtkXP/uRuzoHA3o7Gg10A4lVPrPjI2q52BWe0PTj89wLfC+8jEcJqlBOnz5dsWvPPvkYw+cVP0ofX/GpGdv2xoiKtEc+N2PW+GVv7DRjyvapFT+yxxeOd31Xr8s1Ltzrt4RP+/QR93jYdo1PH+lb8aOFZkSF5TLneiQ86cH58l33OiKFpTLs9am/Q1V4h06t2KY/y1/FIzzu/ZP1jKj403Yzarj2NV4SN3Y4bL6OV3SRw7Oz4k9D+1ak2dsKOSayn85loh3XMD7CGj08zmMs48G4le2nOcIXnkai0McyZD2B8IRsU+LAZ7yGxYfz/NIkbTj3x1DhcS3nii9ZxrFfoeeJh/D9csRxyDYjH8sI4Q3ZvsR5IL3EOF7VwV++GBRxP3V6iHxue+9vUKT1utJ0lOOmj5Hz+BIRVZLvfNHkfXqIeJ2Lcs0KnR4hnwzmae7vfvqIuSbobUdad2R2XukcXPmmrE/nzeFhjh4e67oYrczjmYd7XTf0NhzXvkDYRCWvkxKOCMdK4kfCEgiz63tmP3W8hW5LwhqMU2twx58WZbtRyT47vq+PX8jy+rqp9j0QxzGFhtW9L3p9jjQRPCbW/stna5tT1f4504G13sCyrmPt/F74fgTSs6a+G6F8EJHehtmPKMu40l9AaHqR8AXHw9Oh41iqY2LNs/bXf7yfP6Q+negg+ar8jSbOFna5axbsOt31llGu1uGuvXsGWrr1XZcu9+Nt+45fxkD0nvOQnmfdHVLr8tXdqCcuzTB3YM2dpuun+Ou+Ld1UA3f4utyAMY47vdqItwLzr7/rVuSu3mKNVAvZD/Vnxxas7/84ftV/HXL1Z8ddySjhkbvSwTunV2P0CPOxOiV8vGLJxPN2Vyt9TLZgs76rtwtz381x3O0zPSf8HJNEw7rjU0zNc9zdl1bivByszDPzlVHTgmnt+qefAt791HW3M5rek14LdPnq+vDjGDVnlrnL2Am33bsFvzR3SBc8/2sMuMtfvHqeXx4WzPjQ1QOl1egP3Y9nZDyFmfZ61Dp/NeJDTIt619SLuzUlEdvnzULuiFHBOJ/yFkaZz36OV9KKcm577m8MMfM3fU4hpOWFiOgs0a160iV3AZ7Pdl6jY1g0C7Mc+aK7rLAY0+bcil85ykRv73kcvQOt3cq8x0yrs7+yoi20S7wr31T7orv0d5Bu/s71xgpPtDKPjzw8njKqXZas5uuklIPWT3C3+gYe25J4m9YTT18m23W2rIZ2iY/vuEQi5ZpRjrKTro9EeOw0V5W3A3HsizOsrzm69lvX0zG3BNOE+5hYaUDKabj3BrV/psxvi1rOkvQSjI/QepX0PHj6easlf/ubL2O9WnewJ4MHtY3lZj/kkbhBkhb89DSR9KNKIcEeFlLnsNOPj3MPn+JBdY6sV+dSfPFOscRZYQ/pDnLZr90vjXJkzpdOsL4TyJwdiedXq03lwVc3JUdGMHmdleh8drFwdQPWmZaZcS7lrdMVtN4Xb8G0eWZaLM6uT2qQbizVLuHjVRnqwqYqF1YaMoOfindlwqoy0eBzV9ZQ3ZmMVOCtbmUq88t+ChP9bs/r/IphlOM5Qj3obomVIzeS1l78skmX12PqvcGbFNXmHByvZBU7f5O88zx+JwgR1RCmHPeV/5ve8VEVpUA+l4OnV49S2xqFqZedq+64zvBEl3gZ1aoordQVYzWMBmY6y0rVeZ2UGwuYhbnRwmrKKTMTvvFftXpfrCrQCZMGlsxqfpwsVr3qcTyf/TJe3yE3DHo6Ksv+We/YecvRcFSV3Gk9d+I6jFZl1DHvXu/RXZ4SEV+FXd95cWQE0241Myzb33zMPANhMmc1P3D3SVU67YOnE4/KuCPdDQu3GA/alS+dESzA8447lNEFW5esDMt/y5UvphLtP0F2Qp/+W/DLCVv0XTe5C7f+3VmAj8xE30kMVLhk/82M6pTw8UqUZIwI3EkUcjHzdzc+wbDqC4/zZVyScbqflZs1IxgeaQ2XO6d+Krq5jkKJ3BV1tRboO5Yf4pdXvwxM9l9x9jy/PMhd4FnOO+KSdp03NPLUxdfe5x1/xS/n3IrRfi7uaj134jWTLsNbcZ1xIM9T+aHvLjsvKtLSYj56Hi/zzNWDi8zFT+2fVRhK7uenPPfXk4/8zcSJ35s6RERVJpAnm3FF9yhyPescxbWj3JUL3WpsP0tsrp+BfC30up2J559Wldcu92PmpC24s6oaGtT1btDqx3Vei9HO7cUKTzSVKaPKNmapipG9rKPF2ke5xpO8b8mz/KTKH5N74ukJwSuVfiba9ay1tMTG2eMub52v8rBNl2sc5TPfaSsucozsZ8GtMqrzOXspm/u+IRCtnBWjXhXY7mh5idzjPnsmWM/Qu679UraQ3qhmNCr7hkwgvTiPZey03nuShFGlkWlPYf1ou/wVDE8grUg5NOzdFOQlvgq7ygB/ZXetkGHGQKubk84QdyG398DgHT8ZHHf9FmBgoFVQD5fNwhi7m5DJ2N0vIDEHWmU6lwZa8WQIb8mTQi/CXjpnMpVAeGbhUsm8fRfgrYQZ6FYU8uKHxH4KLQe59kVHnTjI81eJ0V2QAl3Ff6oqjbJf7oSuM6+IL1XzoE8Y9X25o5dnjqvZT8/j5UMi4ZEW25mwus3JIBdHP115/YQ1cnik4mu9zdSafj1WTna3SI5SKdJe753Zji5NMfTuvy6QdgZN7Om++63o7vUqLfiqGGve55clSpoNdOUz0+XnWlx343tipR0HKi0McHX383Dt4/ouaiA8MjhurgW6Yanhl9mZ1nThdb7bhSyzXKsZcgxssY/XuWK/xMX5AkxfFWXP/fVar//8zc9NHSKiKqV7vjnza5WPyZvE/Vyz1PS39VutzXS5pju6t18/xWrBs9Yb/ToQKFOElN+icT06JoO5numbv4HrrQqbbr0P3ozwGx63ypRRZVlH/OjBf7nG29WYqMoLnr8qIjdUVPnVbgmWhhJXGUM/NuDcpuMY6yG8TLhgxhZXd/OYpIzhLC8605Yp27peSO0zDbjDer1+ma7dO6Hrw6+5yjzySyy+HzeLVs7yrFdZdK/MPHd3fG/SA8OZJtUg6TekZ2XUcvE0K31b093H0ndal/Nfn8P+yv8UWx15kL28vBxF+w6hY3obM5mI5CI9qffsaulyLeuW1ulz/2zxYjx49RZMjLuLvNxZ/WnIRVmmvYw+i31W+GuA3YX7mS8SETkwXzzHpEI6Y5T7kUE17fJcf40csSVaLkhQlYb9PBTpeFNSkvp0oqQe3r5tGlJSUswUt/h/1o2IEmdal6XVPZFnkZKHeYTB2eLfQXq/+O2yRURERHHTjwwEW5f1MBpVWKa4Gm+bd0Y5H2moenKTX4V9wkDfvRdrF6sruX6BojzmQbUaW9iJiKJgSxIRkRvzRSKicGxhJyIiIiIiIqplWGEnIiIiIiIiSkKssBMRERERERElIVbYiYiIiIiIiJIQK+xERERERERESYgVdiIiIiIiIqIkxAo7ERERERERURJihZ2IiIiIiIgoCbHCTkRERERERJSE6lQo5eXlKNp3yEwiIiIiIiIiIj/at00zn+In9XBZPiUlxUxxc1XY27RuaSYTEdH+A8XMF4mIHJgvEhGFS6lbx3yKX6wKO7vEExERERERESUhVtiJiIiIiIiIkhAr7ERERERERERJiBV2IiIiIiIioiTECjsRERERERFREmKFnYiIiIiIiCgJscJORERERERElIRYYSciIiIiIiJKQqywExERERERESUhVtiJiIiIiIiIklCVVth3vP1dDH17lxmjKrfjXQzt+l28ucOMV6esX9SCY7kLb157luIzmdSKY5tEVHyn/3SJGTk3JG9+JMuMUK2z8KcDqi8NMj+hmkby5K6/wEIzKiSPTO+qzhM1hKVnXfay5qVf+y6Sr8iwBI8kZbjOAl/l4iqOnwjpJ8zZzBf9hOc8oK9j0c7RWiCuCrszslxDbc0oqpzKVLxOuvx1yDMfk52kFVYQzhOmsBKaQUbKD2plwV3iJ6wyVHU3g3gjlPlJ5exC3gbzMQkwPdcOVgU4pDxjriXn+lzekV9gPgV1efCfKNy+HoXvDDdTHLrciyUyb/sUjDCTarLz6hw8B+XiSOmnOsU6XtHDE6NOUaMswYwPhmOaPg/XY8mDncz02iOuCvt1r1kRVbj9I0zu1ReTl5rxRfeii/kOVaNhL6n4/iceZmTTWbTj49noP/EJYLX7omDnBysm9kXGxI/059qYiWobCiLctOyBDJ6rdM51wsOL1Ln62lAzTlT9pAI87fb5mOCoaCx84UVAXSveGGYmnCNW5fwlXGfGqQY7B+XiZEs/TM+1QzU8w16AN681LW4hLe/WHdfI87zJXSKzXGjXF2dXJTU479xad6WWRAiPtH6F3OXV6wneiYoaVt31xJoud7zsVsbA3a+Q8LjvilnbDZ9n799YzMF8jDbzA9t1rTPC3TJHmNzxY1r5soLLe92lC+c4liHbjRY/dnyM/gCYc5+9rBWmYCuZ7K8dTvU5wvJ6CGm19Dwm6rvBZeO8o5gfOX5ke840Egy/xOsv8KYOj2zLHD9f+yHfVcs4jpkrHXqKln4UzzhwLhdn3Khl570HXHJTD/T/YHacy9YSXVTcmI86/vXxLsAqDERva7IWNX26zt/gPDu9D560CXmTbg58x196sfMUNah0mWum2lzp03kuaY5lw/ITZ9hNWrY/q/W8KeuV9dl5liPtRz0nPNKuPS1SfqJ55rdeop9LwXDIduy4iLZNZ/x4CTkHA+sI31c9OOMndFkVX8HwWvEeCIKs1zHuXKc7bqowPGZqLLHTs/uYuLfpzRVWV3q24meh49rhPn/s4xs+T8IbufwQW/S4q12ue20K+k96xUojKo1N2PAE3nfc1I113KKl62hkfdYxlONqn5uOdTnz2jiOZ+IkTatweJTBvNJK1DKP4pzn75oQXKbqz0GP8yyQt1jrC4TbXrdzvhqCYXEeQ0OOnx0PruXC8yHv+JF1R9pmDJ7pJ0a+6Aqvc7+ip5GYxytqeOz9i1yn0Ot1HVsr7LHjQb6n9s2x3WB6Dtn/wP4G4yL6+a449yXi9da9L6HnUa1QoZw+fbpi1559FSdPlfkctlb84ao7Kv6Q756e9/odFWnp9nT5Tt+KMR+b+R8/WjH49a3B76vxtIcWBcejDiHryf9zxeCr/lyRF5jnDMeiijGB7ccIj2s91nfjCat8f7DadmAZPYTHS97rjwbG5z0Usv30Ryvmme9Zg4Q/dJpziDQ/ZJprvdY+p9n7GXGbUQbZ59C4tOPAR/y49tUe7OVUOMY89GjFGPN5sFnWdQzMeGA7XtuUz+nB7cm2Xd+NOnjHT2h4gvtkLSfbsNLBn9UywePgCndImrTG1TadYXekQ6/BM/14xIGEJ3h8rO37ix81yHZM+CIeUzW49/f8Gvzli/axV3/V+W/Fl3w2x9UrfTriN2yeGRKJ37BtOLbvOnfU4E4fXvmkzHPmH/Z+25+t5eY9pML7kFrGsaxsw5l2XPvk4/yNnPYkPNHzW6/BtT4dP879ksFa92DX/srgOK72eNiyXoN838SPY7pX/LiPjxXPwfgJCU9IerIHV3y7hqoOT+whWlhCp0dKBxEHz/QcEj7XsQ5Nz+70pNcTrfzgMbj3w4pfP2myJg3xlBet4/Hn8PiLddx8pOuwQa1Tx736fqQyRmDwWp+9jkjzQsMVc7DSjd8yhivthIbDGV8h65FzxW85QgZ3Go0+3fc56HmemUHCr84vfUwC093nXNj54txnNci1JfxckmVCtuUZP97nva8hQvoJS79e+bQrzN5pxF6353GIEB5riBA3egiJA1k+9ByJOJiwuvYzNO6saaHXlNBjGR5fIeEJC3e0fUmuQerTiQ6Sr8rfaKq8hT1j4u9N15ROuOWevsjOt+6CLJw533WHKP2++VG6kYbYsRDv4Ak8Y3ehkmeJ3jEdP/S8kbgl0BVmKO66fRNW5ZtRJVp40OU63IfZmKcDsATPTeqBu8w2/IY1r9/4kK5dnZDRbxMmXCXLWXeVujz4UqCrjnQhDnxftt/LfK6MrNmYc/vIYFcYvd4C5AUC2xeT3zGPLITN8xaMO9mP8RhhWlgTPpa9BuqWSOlijTtHWl2s89cBF/dQU6Uld5OjFc3cVTTdsGNu8/Ypgbi97s7hgeViSzR+hmPyg53QpZcK+z3XqfjvgUvM8ZTuScGu4ZImzceA4Zhmd08dNhIjVByEtoBGEjP9RIwDK15H3Gl3hx2KNyI9oxeFPlZq/yR+ZJ1zZtbe1qLozLHfUYBslSdM7qeOp/7cI/ioULT0KfmZ45EimVd58qxXX9x3k0mDahvvT+xrfVbkXAqmBzX7ppHIsM8lr/w2ll7Wcr0vBvrfqfYp0PPA+9zWEjp/vfNbL/7y4k3oPzGkm6Hkt/kvYrCdD+m7/v7zVNt9TzofI/OKn8qdv36d+/DIelU47DSr+E0HnulZqHQZaNVV6Xny7fMxQ1qSJK3nO1qfut6MCfk+yw8eYuf/tUuXB3+PyRtexIR+wXNcxDxuifAsY5wr0coYXueZd5lH9i/PUe6TngyVf7Y+8XNQi3aeuYzEM4FzQ4lVhpfykd2zb4f00HB+NzrP+PFx3scvRr4Y87qReDk9MZKfFQQeV5FHVfo7zkVvjvKr2s9nJgLvfByeL7qvKTHO95j1GBLV0CU+uhHvmGfe7SHRZ9+7qIqS+Zg4SbAmoYUmFsVPWDMiXAQCz/kvHYgJ+sQMdu1wdtGxMglrek2U6LHMVpl/7mq5OaIqOSrDWphfgP697Azc8V4Ee3A8d1ll6ae6ubr2WN15q8LZTz/WRShQaJACA7vFR6cKhnLR631xAWZ8bKbF5O6ap+M42VRJfut9bifKK7/14u9c6hu4Cedy+xT3fsT9/GSkdxtUT/z4k2zhOYtUJWOFcx/V4KxUJqSa8v+aS26sRS4vVQfvMkayOU/KPH45b2L7IhV4q+LvbDyotOo472Op9HWjakkjnPW4yhLM2OC4SV8l+P6e6nDWKuxyp27OJMczC3JR8/N8jNxpwYt4LnCnTgq45pkIPc9uJRdWy1LEQlYEcocH7y3EmyF3fhIOq6rgvPlTs5y0TKmTclrgbqF19zKYOVfR20addyCFvntYNSdLnoobOw52vP1K4KZG4seyB/pvmI0Z+tledRFXx26CPB+tj5d1A2XCC8H1SKHafk4l8WNSOcEWZf9vWtZ3EgMXWnlBo5lRKYmmH6tlyNkyLuHzRael4Fs5rX2JdNe8tpMCaQEmTCrQaVl6XWS/pwoXfgqo+mZh8EIuL/CrPKuVInjX27rxYtPnkiM96NYIuyDlld9qjuMvvQjMR2/e53bivPJbL5XIi3V++4rjpkBo/CTCK358nL/5jmtglbwxuZLhSYi1TWdLjazXTyXPMz0LZ/xIK90Hw63edGFpXZ7B9HfDx0v15P/nn7iOm9907VnGSDZe55l3mUe3TjrLfXIdMR8Tl/g5qEU7z7z4KMNb6eRdnWc7W/+9eMZPtZz3MfLFarluVJZ1M2TCta8AE+O5EeQsA0rvZH/HxfN8r8Z6zPnk7LWwD3sJK+6ZHewSMmkgVvi6Yy9vuJ2iUoR9x/oVXLLU7qao5r0zEu/oLpEyjFW5TRx3raTbTr8X9YtQXHeXvMIqmaaaprsu2S2P15pMVRVgMy5e5+j2MgCjYXcDU2Gd2MN035RhNi6ZWIDRrpPWOoGiv3TO+dIFeznpeoPgMlfNxn2B+KmcjH7r8AOz3sGTeji6ccc+lvrkDBwzOzOUO97z1T5YJ6l0nc1znJTSlXAaxppl1DZXjw92LUw4/STO6spnh+fnUNHsy3VPPoHswL7/HLhHjnvlLwix009k7v0YoAoz/rqwSjcpZ7cyKwzBQoT9AhHnuVD5SlhNpeLATsu9BqrCS7CC7GnYeNex+QFGor+KS2c86huLjq6Rfl6QY73syV7m51jVz3EjQJ1LrvPsvZGOcylWfutI2/fN1lP98Dy3fYiYn3jmt168zyUrXVvdJO3vBI+Hym+XOq85zvjxYr+Qx/3iHPtYesWP9/kr+b9jXyapODFzRPRztLrCE1u09Czrve+94HQ5lr7SiGd6Vnr1wCo77Vz1Ivq/40jPrrR+M1ZNrHyrV/Xk/+chz+Pmna6j8y5j2OU3SQd5dhdlU86SyrKed5+jK7rdKOAsgwW6Nle+wpVwmUeVXd/XeZaZNxNxNQBV+Tkoop1ndtzpHnr2vtpxJ9eUGGV4fY2URyrGu6d7lYs946cS571H+omZTyd03bBELQN4hMcSpU5hSF4FdX7EvLHiovZrplmfivvswGND3teU2Od7tHqM3QvRud7amZ/WkQfZy8vLUbTvENq0bmkmExHR/gPFzBcpuahC2tD8+G541F6qsHdtAZ6p6V2JkwzzRXLjeVYTyU2qH+D3cVxLpFL+CjIW+b/ZUNuk1K1jPsVP6uHt26YhJSXFTHE7q8+wExERERER0TlgeidIz1l5eTLVDGxhJyKKgi1JRERuzBeJiMKxhZ2IiIiIiIiolmGFnYiIiIiIiCgJscJORERERERElIRYYSciIiIiIiJKQslVYddvLqylv1cqv6do/+bn2aZ/y7Hyvykam/wkRC04vvKzS7X298jj4Ot8l5+Lcf92aE0gP5cS+P3R85acz2cj3/ArSnjOWv5GRFHp89Dxu8znLWc+JJ8HhP3+9dnllU8nWx6ePBb+VB03/ZvfA6qgPFdN5ZgqK2uexXJWpHJf4Df1z/W5ktySq8Kevw555mM8pHBc9RUklYCrspAnCTKsQi6ZZdVUYCVzSfRCuCO/wHyqOpUJT3VItvBUjypOs9UtwfOdHCRfqSkXuHMU1urI384bHsfEWWBlIYoqR12bJg3Eiu3r8cYwa4qU2wLpSw8RykIRK/lynVPfd5SnFv40WRsCOuHhRetROHEdfsCb+DXIEsz4YDimqfRaqAb/v1NeO1SqzhWp3NflXizRcT0FI8wkCpdcFfZhL6kD9k883MWMn282FEQo9PRAxjne3y4P/lPF+0u4zowTxc+0JMRzw+B8P98pKVQ2f7MqrslaIageUiAbjSkq3qwC67R+L+K58/6GJ1WXhT99BZe8cy9Cs/qMiR8F0ljhOz0w4T73jaGFMwsweeJwZOeHVA569UXGB7Nrzs1pda2bvPrntSoPIYqI5b6ExV9hd3ZdCCvE2IV2M4TclXfdsXcW7F3rjFDgN3dZ7cG+22rfoR08aRPyJt0cNj80PK47QrLOny5xhMnerrl723Us5mA+RptlK93C0KUH+puPepv67nABVmEgeluTtfDwWFxx57qzbE0b/QEw5z77Oz4Ll854jbB/rm36rIj5Ck9+8HiH3qWLtp+xRAtr7PDYx9sanHfyJX09kuWYH1caKHCkvWB4dJp17ZeVRv21/kc7v2KnWftcCZ2ul1XjCx3z/YVFOMNzMyb0kwK+qRiFdNWS7QfGY5zvzrCGhyX68Tq33Okk10y1RYt/mf7I21Z8yL5Y6dWRPqPlt/b0q15EXv6LGGx/x+c5E/08k/1Qx8SRN7ji2DF96Ns+W65jhDUYFtk/Ox4d++rMp0LTi1d4nMu50rwV70PfXhJMvyHznfEzesMTWOG3gBHteBmudBByrLzmuY6XK6zW+RsYl+0HxuX8VGHI+v/bexcwLapzz/dFvJsYMXG8EEiAbmFozuCDipkIiYATxWwH+uyHsOUIMRiFPM5kbyRzjJKnO80EjWcHyU6OEXXIJui0Q9iZhvFEiZuLETXbG0fmAEG7gQgiOhg1VzWCfda7LlVr1Ve1an31fV/3193/Xz/V9a1aVaveWutdl3ddqmKZSvJglv584Qf0+t2T1G9NidEEQBBP0trdM2l6Xv65bCbN2LvDKjt5lHMENXxhPNGDW5z8STRTGPL7qSXRfgghOJ/Zfk45cyg6L8pPAeXi1FkjaM1jVcxDVSgXXT+7PhfhRWVZHLYTd4ky05UnUW845aIVbznw/bLaYOXVG4myOCFPJGt03G1LhcqbR6cVf9nxY8vqKcNLMOmX0IUM7LR0ZJFYcW75m2sK2VzOM4bJGFFQf/od3YKjR492Hzp8pPv9v3yQs23tvu6cv+1+VLu77vn33UNu2Br5s/vie34Tud/f++Pu64z7sb91zpVhOW59zAo/69ijN7jukvvq7dEbRndf95h2C1kutsNhec6J/flcN4w0WSrZTHhif6mQ99Ifd3fJ37wX/h553OfjcP599w/3mnDj86NnLXfjuDFymC0ovbK3dHl+0/3DS0d3DzH3SqQJP6d9TVa6lmwBsmbLY6cxu+O45fsPseQr1ZGMTaZlIpxInsQ9OQ4C47UkPuz8JTfWDft59Cbkca5z4ouvsZ4rmU88W+lzWXGcuGd6WqbIm7g/x3mkLznpVYstrFxM6IZ8huy4sONfxiE/H1/DzyKuiXXVjR83vvUmr0vk3ZzNTQu+hx2HSh+i+7CsUfjuuVKeQF2Rm1dWlZYXO+krtsQ1bh4MlCflvupcc22p7sbPXEa+z0uvlHB993T8rHDccMU97WdznlU9VxQu+yXjx5smJp5Cnx/bQNlCy0W5sY4lyy2xsW6VlIu2LkZ6nyzntc5buvvoDba/Z/PkM1cet2wxmzxHyBLlzZRzVZ7JKIdS4qHQlsi34eViiKzqnItvsNKCNxF3Jelll0OJcOJ2emk93XXP35bEbdqWlK+0LM6oN5LycHxF7hR9Kknr0uepbOPwLNkdedx7yWeO4jWnDI/SRIXv6qVnS4TD8RrnC76n/exp6ZfIu3pz6q2krNHmi1vhZ+m12tLuH6Y/vbGxPV1043KV91mUOcI+ie61phYO+8JMatC/mWGjRkS9LrLHZdhcutes/Rg1nhoeXmj1joiwEj346YygC0fpnq4pqndt6t1h0xun3h2vl6JhU2neKP3bcPXKyH/qrCupa3vgiFEh+DnE7uB+2jV2ES0du4M65e8R8TSxDHl4Sme8hmYSzb5a/6wlhdMrj9G01EyNk2myn7pkb+IhevTBl6xRcN2LF5ImRWU9uIXW7LVGpHmUeO9L9MJe7S+YsSbWtanfvCWlpz+dhtYfRCNyw65fRDOi6XtDafq18cjAlu/eSU2zwuLVm788bFm30ekNPWfeRnd5xqhb6CETjghz6dUbaW1Jj2sIo5WOV8DBx9ZT19Uz4zi/21rTFJBevQOPBI2meV+I4/Ch1tHqtyAv/me0ivwgZ+DMpOki/zdOMNf6y9ui5JcnV1K7yT/2qNfj62nDqHikbNj1P6ClFaa3y0vU1Joo23lt29Z4Ki2XixEVyhPnUc6To70jyE2j8vNZXnqxHsi01m6un741SpcDeX5WGSHDTV1elUZWeRsCl8lES5/CGk5QG9xycX+sq4JY7zl/UunoNNdVZS7V8OWz0HZWl2i/Re1KpublYgpFy8UyZJ33zTh8huMuux7ztdOHUsPYl6jlUr5OjawOu/57wVOi89tgKfUGP6fVjnDKPm5HcF0b3Z/TugfaEZntrLx6Pq8M30ILhi+kXa2/cPXSQ63aWbk2VyEq05/+RJkGuzvdQU6n0z4SuTaB1yP9gi5sU+dEUxe4gNFrlZZu15k+MR0pHf3SDr62dYeeulf+lA+ldNqjNxGNXzbQGifsp7WP6WN5JKYa8fTumlM4vSpBFEyicah0SG8hhnclsopClF+EY98ztNArChvwTW0rhA7zVMFb6Fuh9/PlrxxmrHGf8XWrsi8KN3Cem7BC6+UVtObauJOiZvRCelWDYvGfU94WpTfKkyDSOnzcqXmykVhrOJ9FdY2IH4o7Uv2Un17DhmUbwj6/noHr3p8NyIYR6CGujt+T4K5r5U7QeBmb7LxP6SxnQ3XDusraJVE+CywXGyaM0L96k1qXi+nvVsqux/ztdDbkpN9T46lF+iWmqFdE5QMFvUtl9XxX2w6aLdqE8x68ImVqe0EKtrNqZXPVVn/6DuUZ7LJnykrINVavnuDgqm/oSNSZV/hHI6SiMDTKJCP/qVsCRwlEwWSML2mw/IKWBo0SxKMDSuGq/PZBXbiHZxDuJdpPLW37ZeHCo6W7HlxPFFD4y17hqKDk59cetaRwehVF9aK3fDeufDnzBxmkRWXlHkCye+i54HQLArsxwKPhdO3UIEPXblwcXLXC7e2VPbobqWXKCiKrtz8Pb/7yIBs1bdZ6M9Zdu0Nj73p6NBL2AWp5+EqaHWKgiHCuoR9ovSwdhbPjoHP7S/qXH9m7bL9MiHvK9U9veuk1Tgse15WfeD5VeZS5VqoQqoc+HgFSs0UMufGfRU55W5TC5Ykcbbd1hXvi9e9aIUdK4kb9c9bMhZrJw7q0bmZ0z6BOQyYnvZJ6YJdvuX5WOSRHR+yZWXYcVPPLCzpPhXYKApAKzx4qt+3A+d4xGkT7zdZzw2WLaOnuFdSyW7tz8OWzmpeLIm9mtffUeuwy6qqi5WIFZaa/HvO100WdfJO+Tg+utJcxol2oDcbPabcj5HPqTgjZjrB1Sc2QK8foLzu9GCferXZWTr2RR0PrItG2FG3CNbfQrnlhMhVuZ3mplc2VrT9RGy+l/dcfKc9gF5HFU5CiF9SsGy8Ky4U6cg5R56jx9IKctqC3eRRNrdxC46NRQbldup7mmWkeOrLdFz1oxRNKc2E0isdb6UgeKx9ZU3WU8SYUuHWEnkbB23q6sHW/CDs0kymjKpoWoqf5GIp9Kugl6jKFhogr2htmxPA0oF3RVPGviwKLn8vNQLIwzXrJWxZc4PL53KO3V6erfk5vegVQRB4esW0nNbWdt4u3Lwqaihkia7o8bPiuJIqOX0EvtP7M0a0ZomA34fLLp6IpTTk0jN1B1+jrLm4bEU8x1sipXUIXggxjiT9/KTJ0VlSgz127Ps63/Hkd+7pRI+gFEwdCF5qsKWheRGOJe3UjeXizKm1+s7S5Z8tuq0Hhy++ijHlI5lMd3jpOA0N+evUWPKWsKSqDvk4vjLUbUDnxn4W3vNXoyjU6J6CiCilP0plE9/KbnI0OzttBTeV0HmbIqho/atqdCTsyEmWDPC4TrqGZMp6Vf448nvLNC8e7VQ7JLfQ6X3ol9MAp33L8nHLxwZmW/iTioG1/ecsmAvSntkvFQP9nEn1L6Hb41HXR6G7bSA2OYSbCaHU79BWqo78r0Pjz5TNvuajLEudlW1GZEFYublm3P1425XCIunYbwyuQwuWiz08bO4kXrkWDUr56zNdOPyjKpAnxjCXewmctZbfBvPWGfE6K2xHcJnwqnqJ/45qZtMbEgXheWmPaEWbmgh0HybqxQHoxWe2skHo+BBHOk/KZA+pycW4l7axCNpev3Wf7mbo68qtMf/oTg3gh+7Fjx+iNI2/TJz5+hj4MAODeu++M+llNCgYOm0enQzokaouooKbsp2+VPUWeK3fRqIkqOoaPraCGrYEGfx/gzd++g3JxgMENwbWz3CmA/J3nrm/WR+cQAL1N+eVi0XqmnyAM/kl7swYg2EhcQRc+hfIlSS3bYMVBeoFsBh83SP8qH7bDzz5rCA0ePFgfcSn/s24AgOLonkQedV/a68Z6JeglDFFvKm/cq15mrzMAdYY7G0dtc2gRGmcAFGYS3avXNkcjtgMCPWrdNj57dh6/fNh6ERyoc5BeoJfACDsAAGSAEXYAAHBBuQgAAKVghB0AAAAAAAAAABhgwGAHAAAAAAAAAADqEBjsAAAAAAAAAABAHQKDHQAAAAAAAAAAqENgsAMAAAAAAAAAAHUIDHYAAAAAAAAAAKAOgcEOAAAAAAAAAADUITDYAQAAAAAAAACAOgQGOwAAAAAAAAAAUIcM6hYcO3aM3jjytj4EAAAAAAAAAACAEM4+a4j+VT5sh/P1gwcP1kdcHIP9vHM+oQ8DAAB47fU3US4CAIAFykUAACiF7emi5BnsmBIPAAAAAAAAAADUITDYAQAAAAAAAACAOgQGOwAAAAAAAAAAUIfAYAcAAAAAAAAAAOoQGOwAAAAAAAAAAEAdAoMdAAAAAAAAAACoQ2CwAwAAAAAAAAAAdQgMdgAAAAAAAAAAoA6BwQ4AAAAAAAAAANQhMNgBAAAAAAAAAIA6pKoG+4H7ZtIl9x3SLlB1Dv6ELjl3Jt1zULtrydabB0BaHqJ7JvdQfNYTAyJtBx5c/l6/VTtAHcDly820WbsiRP4789yU4yCT/tu22EbXT/4JHdAuAPoH6Xq9eeEYOnPhNu2qJT2fr7iMOvNc8Xxiq0VZ1XNxl1Fv9Qn6suz5lGWwS4XRCulsqHCqhChkfA25rh3UqX/WO6wrMB76CbKjqLQSSisPBmpHQFLf+6yBodPaTdcqVYAcdg3qisJxXSN58jjQuU//Gmhw/ZbUrQHYYdor5LQtaoAyYBL31OXLQGsb1Ko+KNrO6p366RC9vEv/7IcMv3E9vXV4D73VfpU+Uk36d9yBMMoy2KetFMrICnl4My1rGEPLntXubV+m4focUEOm3CXiez19bZh2A9ADHHi0g8a13Uq03TU0THnwYtsYamzbLH8/c+NQ7Qv6JMO+TM/IMv5+aqaraJ38fRdN096gclTDrnicqo6yvmjoTqZVUp/s9gPqs/4K6/m6GY/QbZZhuHnZHUSirlg1RR8AA4ih9LVtIs+vnKzd5cKjp1z29d8R1Gwqjbu+XG8AQw3WsO/TmUpsidEL1eOa7ufH7plPKFxiRKh0lGtbijwq4zs9kzKcuCDIlFVOZ1THuYfSjDJGvZUJedxeTFPgJP3M891AHfQIzdL+0X2dMFMKK0smN374fsK9Nb6+vF5VKy0T982KHxMfszYQdcwx1yqZ4t5gfl4jp/idcr3cEtN/vGkizo2vLbNA70qPH76frSOx/GrazT1SHr6XTr+g5+BzxTVWmjl66CVLfwTeOLCvKzNuxLU/f4DooukjadyGjjKvBQZHHyI90fmT84Fd/vDvoKlvptxQYbqzb1xd6bmpdNY9zXOa8mviHdTZdQddkCJTZn7xlLemPLigdQ91tk6LzsvNTznyxLJw2pg4NuWVwClvE/nJkTcxkm5fZ5dfAn6W9LpKYcfPrF230ouhhq5Td7hxk3dPp7xN6I/jl7iudmS3LbL0R8rpyK50NI4HKw+JrSplcQ523JXeL0secVw88z38nPzsJl2jZ8uSx4SX0baoMdNW3k/jWpdH5dptQnfXWZ26Tro5Mqnnjdz8vMEyu3HhxrEn3bx1aA6JfGbCNWmdXUZly+Mrh4xfWjvLh18eWxbx7NEzxfGQlc8Yn17b17l5he8p5M5so9oyTaMlTfeX1dnZmSYTp3NCl1g+977p8DNev9XKo+XkI1+9kdADO/6y407JU5N6g3HqMnNfltOWnePCuPl3QgdT4jqTzPjJ0RFHzn4+e61bcPTo0e5Dh4/wz0Be7f7RpBndPzqgnZpX7p3RPeQcc5zPGd09f4v06u7esqh74r2vaodAuIcseEI7fCTCObC6e+Kk1d2vSEdSjie650f3z5HHCUedW46sfP5Ece/oGklpvLxy76LIvWlB4v7nLOrepJ0Klj95zCbNP3HMCVc98xDznKn3zICfORmXJg4C4sd5VoO5Tsgxf8Gi7vn690R9rZMGAhnH5j6+e/Lvc+L78b2dczPxx09SnviZ1HV8D6UHq8U1cTo4cid0UrnFPW3ZLT304dUfTxywPHH6qPuHxY+A76PlS01Tgfu8/YvQcpHjhuPf3qI4sXVVYKcH/5ZxKs6ReUL/DolPO42VPsTpk0wT59wgEuVKACV6IGSSedxg6ZKNe10yvyjkOSXlraLkvqFkyKNQZfnESYk4SFzjxqsrO8s1JC0OU+6rzjXXqvIletZEGRGeluoZ3LInKV/4PW0/5/58rqXf+STlyscnq5v+Sf1J3IvjPpKV/ez0CZfLiQ8OMzSvJM7lcOJ49snDz6XuuWmBeN4F4hpLj/Ll4esDZQygnPaiTDshr6NfTEJv1HnGLeS184j1rHm4+cN9bm88sTxWGeqG46NUb+x2H+PqaEx+uqmwS8ohjXN9GWTJo1B5SOqYPsJ481lCdpYrrV1Tel9+PuvcRDiuTqhzw56X5bPSr0Q+O70SuuZBypN4zpJ4TJaPDN/fukfyOtft6qwhLc2UPOZZEvHD+uy5ZzY6Tey86NzDli0ha+LZ3Xj24I0fn47YspWmT2/A9nTRjctV3mdR9RH2xra7dQ/OUPri3DG0s1P1hGxe+4jTo3fmnEeIdu3L73k5uIlW063UaqZQ8ZTN9svVb+nXTF+Meowm05wZe+j5Lu0UZMlDwy6n66iDfi57g7ZRW+tImqPvESprZ9PixNSuoXR+0x5aMpGvUz1Ew2+8K+rR4inE0fl8/wb9uxK2dlDHjOa4x1GGu49ejnq5xtCydr1kocTPTxx3/ByLqVmPsBZOy4bxNE7seIo1zW5WU6y7dhBNGCmO8kjuHqu3WPcC62nYufeccX8Ut9NmXxVdl0/R+LmKbr9xKA1vFLLPvVzE/0i6SKcnTwWMp4azTuqfEVfROjO1aUozNQe+myBXf1LjQMVr82wzlWoyrSpjjZVMK/F8HD8cZsdat1cdxDS38xRftfEyAQPrbhz/Qj+mN1Oj1l2pP4LNa/fRRbPHi0LlkFzjPK4xb2nBNmrfMIaum67PE+XiuuiealZE5CcoL08Ug5/F5FE5QiBkWhWwRCI/vyhKy9tas4fGLU2M5nD9Yy0B43iN4LK4Ia6Pht94Ny0ro4zPrKtSyNcPQQX1o9TZpdZzirKntaHCurxCsmT16w+fS7T6US37sjtonMmLHD9d1qgzj+B1ufGTRdG6nMvTTqu+5hFoURMq8uRpUO2gxgki/WeLtBk2UtanTE3aFlVC5oNdd8jRUTv/+srF4nC5qOpmBS/DWEyNuk4vVofm4W/3+QhLt5RyqAe4bkmc/xlfPvPqdS7ltMHGRO2sXER+iWZziHL79hmPULseuZ42eyQtWabaMgfuW047dRsnhOb2OC2mLbmV6IFN+TrrqzdydDaPqtcbEquNKuRpbYvLUC+iPevOqLHrHw/e+GEydKTCOrevUYMp8dnYDVq5FV37PkwYSvpncayKPGn0CkJkbZSGpgsXwPL8Z8fTbbLSjaeI2FOGVGWsjvdFiqblTlEBdm7nzhFh4NI+2uwYJ2Zdo7VZa3aqpj+1xpnao6atVYOe1x9l7EeNc26YY1p81dnZuY1eZsNK5AnuxOrcTuGNknpCvmOD8+ZmuqhF6WnINMPQ/JJW3taWtMahNR2SN84TtYbjdemOaOr+LHINn55iuKh3DXVVFufoDxuCqlGtGsamY14iGvUv2s8htpC4rVlZXG/yVAU2aHsj/xpEe1E36GsVT752n48wecowUqvGSDo/aWjVqF3jgzsJXpywPIqf1XPjQaSKmLKYlu1aLtKI2zgjLWO5VpRbb8Q6W5heqTfYuN8n31sh331kdfr66YV6tQ/SYwY795h0tFhrGTjzJ9bApMK9KXQHtUVrOqw1E9LPjJIzatQptHAzFfk9iZ7ewrLyWouF+jruMRIF+LpoREONesUGaTk9kB54hNY2omQvfUphW4BOq+eQeyFNp0bxtBxJ43Z1UDuNp0auxEXa3cbro2V6qQ4U0+vJcGVmGvzF06Qy4hHl8Ld0ypGDqEHLL1jSHhVRVH9Ur6s9Ms7yBSF1ybx4zDxL3EsNwpC6a8W/HI1oGqkqsobxwkjvoOdFA2k4z9IQjYjbdoXkXzVaGvd6q84VhTuqyHCa17rBfOC+m3UjVb8gpz1shKo2+aVGyM5dXkep5LVnUqjZMlZ9JPOP/l0JvJZ0bXN0z+AXD1VQPybL23ooi7PI1R8TD/elzEZz2hZ6rWSuoVW8LpejyHZ9zfqkf/aGPL2Jt1xk7LwU/IUcLhftF93ZcVirePK1+3z0rXTz5TOvXleCKFtm0d36nmW+1NYpi39CtzmddbqOnHMTrZ672Bmsy8NpS/FLFENG5331hldnK6BovSGx23k8A9mesWf5HdxHO/VPg7KrbqJZDzTHM6Pz8MaPh1rVuXVKz42wT7mLXpzbEb/gp2U8vRikQNz4u58omiq9nC561kxJEX7tzbRaTkXi7Qai9jJeqsDTZJruoCW7rCn3jE9WbpyIY85LO8xLFYTynj8h7tHiLe7VErIuHamnTfHWQRe17aNZzssVVMbNfumc/eIYcx1Pcab4mokddF0UP5XR2LQjCveC1pHWNO78tJSVccnLUHhU/RHxDKpS5ql9nVbnAvemrqMb9DXintsXxwV0Yf0pjprKZ+QRBbs+ngdPk9oZPftNokDndK+0AA7Rn3Tc5xhD7RQ2JZ4rI3uam5IhbqybF5rYeSFoRHWgIXTX0WtRkUW6y51YGx6hndKYVlMrO2WHVj7qhU5mavJN9HxTXMlxml/3QDxtmcuhoMaOt6zxcYg6G8fT85F+im0OWdPqBNogifKwNvK8+cVX3mpkAyGKh9IXHmWSIY/Sax7tMtNcLb2WIzNxWs4STWxOA+XPZbGVR+fsoHG28aifxXnZXcgLebiesvRHbkEv8qmgfkyUt9Upi80oih23lTdM88tbXXa27qNlS2w5xXGnbTGNnl8aEj/Fy2JOy3XyXH3tWrKMtFrKk9G26E185WIyL7XsCyoTmWkrN1tlnx2HFaSbD2+7T5FeRvnl8ZZDmvR2Vj7p8rChyG73BYWmPPXmM69eV9BWEOWtXY/JLbRzsGEkPW/kFWXuOGsqO8PLPMcJ485eOhZCs4gdIwu/yM1Mu49mS8yxlgwZWb31hk9nK4i7wvUGI9qIa811N9BOa9r919otPZiT0i0j7ao9YR0Zhpz4ySanzu1nDOKF7MeOHaM3jrxN553zCX0YAADAa6+/iXIR9CrcYGuf7U6N3rxwJr28JND4BqDKoFwEtYc7EG5KdDLyseV0/rYqDEpxByqPQJcx8MNGeVvj+h6YWl45vVdvcMdsB80ZoJ+DZXu6KGyHn33WEBo8eLA+4tKja9gBAAAAEI47imZGIBbDWAcA9GP0MsloBgJvvI69vCnspeiZPnOSM276F71Rb6jZADwiX2kagTQwwg4AABlgJAkAAFxQLgIAQCkYYQcAAAAAAAAAAAYYMNgBAAAAAAAAAIA6BAY7AAAAAAAAAABQh8BgBwAAAAAAAAAA6pD6MtjlN4Ar/y5rn4Q/MRH6fclqI78PXOG3SIPgT3IMgPQV8Rn0ncyBTlB+30bX18M3g3uMenvedHnk22B7q7wCAPRvZN2g325dUv7ot3zLrSfaLWnUSzltvp2uNvPN9H5Dj7el6q2NOkDazCCI+jLYu3ZQp/5ZDvxtxOpnaq4UqlgZcAVU0sCtXmbkBnTRwvpA5z79q3pUIk8tqDd5akOVdbbWFMzvwILLlR5vOB6il3fpn6AEX32kPnujt7rqmAGgjhj2ZXrm8B566/D91KwPxUymVdJvMy1r0IcGKgc30Wq6lV6U8eF+c7s36EvtrNrYDQDUjvoy2KfcJQqdWn/UvxfZtS+lgTaSzu/l5x1+43oR73fhu4mgAkxPfxkdBv09v/dbhtLXtokG4sqi37AtoCv9AG4gzqL7ZcOat3VNd1Bbv+9EBAAAEIyZXYIZbCBB+Qa7PVWpZDqraYjpLTGC4Iwu2I01J8yURpycsh1fa3rwuAHE7gta91Bn67QS/6Q8Tm+anoIey2Tua6Zb3UAd9AjN0tdWPBoybCSN0z/lPWVm3EfP03hqVIclpfIonLizMrI5PmsDUcccc07gqL0drynP59wzsHEdJE9XnN7JHs6s58wjS9Z8eezpdW7vMOvX9Vst/7J0YJ+le7E8Umed51I6GtYrnZW/8nXW5JXkcXmtcG+2/MN7yG15ptGSJjZGdMdPYiob3z9y5+R3W9ZSWbLTq3cpUtYo/M+bgYnDiXdQZ9cddIG+XumWLYu4VxTfpfkivibGJ499XTLvqjTeFt/b0TOPruThlP9JfXHjPSmv/Sxp+S7Vz6e7Uv+EDJZM5p7mXpn10fS7Szo5dna6cQhA/yKRz5wyIZE/E361ITvfx2Ubtw9MPRO3FWxZS8vpjHrJruvEvaIwovv64ycTU/4kyv/U+2YdT5XHj1NvpNQnme2sLHkk/jI8xpyXUY+V1A3p5JbTTGob1ZZT3CuvXnXSUrWzIjdfm3Sb60SajmtPdIh72szpKFmdZ5L3sOLIqVftNjFfa8elrvP4py1nAf0BFdItOHr0aPehw0f4Zw5PdM8/Z1H3Ju165d4Z3UMWPKFdyj3x3le1S3Bgdfd8496yyDlXhuW4GTd8RemxTQtcd8l9NZsWjO6ev0U7hCwT7XBYnnNifz7XDSNNlkow4Yn9JCHvpNXdr8jfvBd45HGfj8OZ0f2jA9qpcZ61XDhujByGoPTKJl2eV7t/NGl09xBzr0Sa8HPa12SlawkBsmbLY6cxu+O45fsPseQr1ZEMZFomwonkSdyT4yAwXkviw85fEtYN+3k0Qh7nOie++BrruZL5xEPpc1lxnLhnelqmyJu4P8d5pC856VULwsrFhH4l41DqQ+zv6JH3eQPg6zPP5/gV8b7A9XfTQp0TxWGgPGnpKfUhCsvVB6+u+Eg8nxN3Ated0CeO98S1tjyZ4Xh1V+WX6FkS92DS4sZGxZP7HAD0JULLxZK8IPKz3SZ0/DgvldSFIr9llm/J+iAfb76XqDplYjJcb7mYlEOF4dRLspwQ7RvnXjnxE0KifFQk758o45kMebyUpI8IN5Fedhkb45fHTQP2c8tw5cfHE2EHyOMjvZxmWa20TaS7QsmfrFeT8shyPnKLa+x0ctJN3TN6NueeIfJkwOcm5InjLxHPJfe075E4lymiPwMEtqeLblyu8j6LMkfYee1QPCoyfHqzMzo8vHFk1GMle3aGfZlW3ThUeTaMp8YNN0g/1UMkwgqaUjmSLmrQo4a6R2rayrCRmWkrrTU9wy6n65LrnWbcH/lPm30VdW7fpxw1gZ9D7A7uo51Ni+n2ph3UKX+PpOHqhEx5eMr6MyYeRbzNmaF/1pLC6ZXHGFrW/mX1zDJN9tHLsmfvEP38gT1W76zuAQ1Jk6Ky8vqvLmtEmkf+uvbQ813aX9DcHuvatCW3Ej2wKagHvLHt7miq9/AbF1Pzhg7dYzmUvjh3H92me0k3L7uDxs0Oi1dv/vKwee0jTk/ymXMecZdnNNxK60w4IszbZzxC7Zm93D7GKB2vgAOPdlDnjOY4zldaaxgD0qu3KFrWeJ+3Sly3ROc3ja88qVSeWO9Zz8d4RpADdYXXsm6L5ee4i9lG7RuuotutZ1l1eDE16pEC1vvmpda1Io1aG1geLmtEvEyP80555f9VtM6UL1OaqbmsdzGoey97do+VBgD0T3x1Vm69VHVC8/0eGrfUbWNWp15qptZEni9ap3uR69qb6YvRUjMu48Pk8VJJOytTHn8ZrthE1597A+1s2xzXsUyPt1FdkvWqrG+stpy0j4rqMz+b/hkqTwl87q7leuR8G7W1jqQ5Jv62dlCHpc9lhRtRpv6AiinTYHenrsjpONpHItekqpeBXNSizlEZScANL7127/btupAOmkah10vytUt36Kk/9nSNbOwpTKoQ1R69iWjcsYHWOGEftT+qj+XhTF1R045qTuH0qgRRMImGrNIhvYUUwJXIKoxV88IWszmVQg1gA35c63Khw6Ky2nUrtYbez5e/cmjmKVb2c1pGUFHY8HtxwnKtl9No9dy4k6Jm9EJ6hVCXZY0k5R0ZvVCeFNcVd6qpbNR7GUrDPeEOH9bbDQyuz/DeBjBAyKmzalEvVU6BjueQeskenDFUUKdXTJo8PnqsTeiW4Z2tO2iOiJ/rHpjmTvHulTaqoZrvnuI6IU7/Myd20HXGQK8IEe7SkbRkmYgTYaDvbFvsdEJVTLn6AyqmPINd9pRZBVO7PdrBjdabdW+ONrKFf9R7KRqJJrPxSMdbz94a2PskGmwmE8rCjd8MGtITFI9kqAKxyiNXutHrFCBehtL5TfvotpZ9sjLgntWdD3QQTRip/bORPXdRxdZDb0YtnF5F4RE5UoWLho2goMqrqKzcq0j2i5+4Q8pey0PUsTaWh0fDae7lQYVUpzUSf+C+5W5vpuxhfoRum7ycyBoBzMObvzzwKEJHi7VeinXXrti6Oujn5pkP/oRu23BV3BPrQ4Qzi+7Welk6YmjHQef2PfqXH9krHc1GEHBPsP7pTS+9tur6rbpTUTyfMqLDOvcqo3hZ433eGuErT2omT46uZCJHAuIXtb3YNkZ7MDofRWWEm3+Teh+XJ6qsWf1oXLZwnDRaZXER3Q1C62mPNcoB6EV8dVZuvVR18vN9FoXrpRyK1ulepDxWnS5HsSuf/VZZOytLHn8ZzjRKQ1PET/uttHOOuwa7Z9uofqQ+W+1FOSvDNmrtdlZiVtbmhTcRRXVyFTt0eQbYhuV0SQtZsxgE8rilz3KWiN0JYc2y5JnA+qeXXm2DDRB4XryZOx+CXLvDa/jkOr7Van2FXCfxavemLavlOpPI31r3wH7y3MjPWtNygNdP2H686Wu3PNH9I14LYvmVrDtJXB+t0+B1FtHxRTocE25i/UvJepjEsybWCcn1Kfa9AlDh6ftrmaNn8cnjPJ+It3v5uVLWJNnn2H5ZONfoTT+nN71CSJUnuZYp6U7ql5seWQTJmhk/vD4nvtZOT7nmZ4F1XUIHMhH3miiui9Mssf6HkWmacjwTf/4yZOms0dfkcbW2apHY4uvCdVqvrzLh8malmS3LRJHOka778rvAkVXEo7uGMSO9dJjzt2iZhBwqnHLiuJTQctHVr/LKGv/z5pFIAxluSrqILRlX6rjIC4nyxCePo196M+nK19lls+v260o27nUT71V5ICvcpO66z2LfLy3eYjJ1t2Q9X8r6voR+OzIZv6BnB6A+CSsX8+ssJ3/a5Z63jnDrALWl1PmpZOd7X9nG+MrFvHopuk5u5jnC6vRUvOEKssqgvOs8VNTOypJH4inDuS1lpYEKX4UbJI+PVJlYFjsc253QHec6RVb7S2LHDdcpOfqeL08YUm/T6pustGJseVhWoyM+/dF+1W6D9TXsNenlbnlr2Afxv2PHjtEbR96m8875hDbjAQDcO9jWuL4mU645bB5x7P11rPz20n3UWvZURO5F5V5huzeYjy2n87cFvv27D/Da62+iXKyYgaErAAwUUC4CUCV4ZHoO0Tq7DcbHlo2kZypek59W94JawvZ0UdgOP/usITR48GB9xKW+vsMOQH9HTxu6oHWkO0Wpz6GXMEzU667kxmuTq7xOCvQDoCsAAABACXpJRfRpVt54HfuSyox1NR19Gi1pWgxjvZ+AEXYAAMgAI0kAAOCCchEAAErBCDsAAAAAAAAAADDAgMEOAAAAAAAAAADUITDYAQAAAAAAAACAOgQGOwAAAAAAAAAAUIfAYAcAAAAAAAAAAOoQGOwAAAAAAAAAAEAdAoMdAAAAAAAAAACoQ2CwAwAAAAAAAAAAdQgMdgAAAAAAAAAAoA4Z1C04duwYvXHkbX0IAAAAAAAAAAAAIZx91hD9q3zYDufrBw8erI+4OAb7Jz5+hj4MAADgzd++g3IRAAAsUC4CAEApg48bpH+VT57BjinxAAAAAAAAAABAHQKDHQAAAAAAAAAAqENgsAMAAAAAAAAAAHUIDHYAAAAAAAAAAKAOgcEOAAAAAAAAAADUITDYAQAAAAAAAACAOgQGOwAAAAAAAAAAUIfAYAcAAAAAAAAAAOoQGOwAAAAAAAAAAEAdAoMdAAAAAAAAAACoQ6pqsB9c9dc0adUh7QJV5+ADNGn4X9N9B7W7ljz+jQGQlofovik9FJ/1xIBIWwAAAKA/wm2Xb9AW7eoPbLlpHJ1z05PaBWrLk7RgeD3pT73JU5+UZbDLDDU8ZZvyAA00m6c25Cjt3h3UpX/WO6wrCx7XDtC3kR1F40qM/LTyAB0BAAAAeADnnGR7Rtcl/bFtgAGrSjhEXbv1zzqgN9KyNveEIdyfKMtgn3r3Tnr9AG+/oKWjRtPSp7R761waps8BNeSy74n4/hndiMgGPcjBx9ZTU+stRNv36yMKUx481zqaGlp/IX8/ef1Q7QsAAGCgMuz6n1H71RupxTJCtnz3TiJRV9x7mT4AgGQo3bhVtCfunqTdoL+jBnwG4AzXCqjBGvb9dN8UPeKWGHlXPa7pfn64l0hfl0xg3WNrwrV7blWP1ZMp8vB0okQvrwwn7onKlPXxb0THuTfMjDJGPWMJedweM3XfUj/zfAtpA22kOdo/uq8TZkpvmSWTGz96yvfj8fXl9eBZaZm4b1b8mPiY8zDRhnnmWiVTPOrOz2vkFL9TrpdbYnqUN03EufG1ZfYo7k2PH76frSOx/Go62n1SHr6XTr+g5+BzxTVWmjl66CVLfwTeOLCvKzNuxLWPPkh04RdGUNPD68u8FgAAwEBl6t0rqalthao3RDumZfct9JDVqevUk3adnmgXyDaQ4+/DrSfd+rVoHZqNaZdc3PYSdbVdEYUt72u33UTYURsmahN45GHstp3v+fV5ue07Pi8RDj9vfJ0rj9N2Edfa4fOzRG5LTj5m4jBXHoGtA8nz1T2KteHddrPfbjD39aal1sn7WF6Ww4RhxVGUvrw58Zzd7vPfk09Il9WPbpNm2RSGFHlydTYhj50GfK7t5rRNus11c0RZ8FxyADJNHhBRdYO9SxTOtEaPwtOd9B0T6SIhrqEfqBF53lp30MV2YZAJZ8yFOkyxPTWT1syzMu289TTPjPQfWEk0z82Y6fIMpRvX3EK72mLllaOIa75HU9nhk1WOcqtRRXrw67R2ljpHjSwm5dlJD9GKSJ4tN11BL7Rqv6duITIVGU2ie+X5K2kGXUnt+tpo5sKwufRk5J9EZMx5FF/D8XOpXdG8RC1tRA9JP/ue+cRxx8+7n+aYOPDEjxl1bb+aaIZJM50pp866knbtFYXNwf1EV4+gFx5Tv3eNHSGfkzO7iU/enpuwIi6c8vTn4YXRtclefT9F42cjrRHycLy0TNlPszlt9u6gTuHDz9EyQY04yzR7ONYBhShA181U/muupA2WHvrI1h9NRhwcXPV1ahm7Usszk9bO2yiPB3Fwi3jOmTR92CSaLcJci0IUAABAEJPoW7LtIAydeXdSU6s1G1PU6XPI1Euivr92fWCb0A/Xk2uujetfmhe3h4rWoT54JoGU35ppxpucRWDabqKep90r6DumDaNHkr3ysGFkte04fq5JkUcaVG3jhfETMMNNtF/bx66nR6MGx5O01upE4bZCHHciDmhhmIHobRf7sWfqpVGoDa/bxbJdJ7dF9ELULs5up3vTktl7J70gno3j8JrvivBFmjXs3q9kyLVx0tt9/nv6bYpscmwKSUY71Kuz+TZXJpzfpZGurm0fe2dCn4u1iwcSVTfYG1p/oHtMhtL0a0crA02wZd1Gp/foHDYajKL7kAbDLfQtk2FYmdaoLBkbE8rJSjr76pfohb3aKciSh4ZNpXlkCq4n6TttI2i2vkeorF1jFyWmdg2lhrHCALyUr1OFw7Drvxf1IHHBFJ3P9x+lf1fC4+tpw9UzdSElkOHup65I2NG0dI0x/JN+fuK44+dYJAxPNcJaOC1HjacmseOClWbNVFOshZFLE0aIozyS+5I1Kq97HPU07Nx7Xr0yilvuGDDX5VM0fq6kpaIyGjZKyH7tVBH/I+hCnZ5cAMcVFeuk/hkhClAz9euymZGhn0eu/qTGgYrXGbPMVDNRkHNBHIhMK/F8HD8c5oZ1lTeoAAAADAyGXf8DWrr7TtlpbLeXuE6P6yVx3hdmxsZPYYQB+rCqmxVsuCyiRh1osTq0WsykbyUMWJ88su5tXRS17bhd8dAXtEPTJYz1i0Xbtb2MZalTZ42glu+qevzgqhW0S9fvqq0g7K8vxDIWiYPSdnFlFGnDy3axMK4vNu1FOdJs2nb+drqXUcoWaZxA1DRLxPmwEbJNy+S3i4u0+yqQNZcQeRI6G2BzlUPTKDs/FGsXDyRqMCU+m3jEVW9F174PE4aS/lkczvxEa3iUN2n0CkJkbZCGpovpLXz9qfHUIjNu3PsUTS2R2xXUUlDJ64GiablLFP6d27lgFQauKEC37N1vZVrrvQhmMxlYUDX9qTWPx9N6eOPlAdWg5/VHGftRJcQVEKbFAwAACIaNjvT2Us8g2ou6odCrbTA9k9CmXHmGibZvjJrl9/oaojnJqc4+LltES3fzKC3X7yOszo3q0HPp7G/Dc+eL0160pl/72umVUIs2aq1kDSJFZwvDszB41oHWd55dU82OnYFAjxnscnTOnuLARk3I9CfZi2ZNreepLmaditPDxnDv6uhopDMP7tGlB7fQfYme3sKy8nSRm9xpJe1R75PqvYwN0rTp7QXgnijbiOIesL0jqKEKuaxLxI2JA+6JNQVi8bQcQU2719NaGk+NXImLtGvh9dEyvVTha3p+Ga7MzHSs4mlSGfGIcvhbTOXIQVRw8wsatUdFFNUf1Sttj4yzfEFIXbKmU8lnwbR4AAAAlSHrdKte4hHlLttA2Gu17faGfiFHLd2Kp7KLNln06dYatcEK45dHtk/tKfIlbR49k0BOc09OL/ahDd15PP09HsF3DGANtxVsA9xuE3Zuf0n/6j2y2vCqXWxPHbfsBtaJzHZ6cWrTRq2NrIUJsLky28y8xMNMeefNGowDYfTcCLsoVOQaJd27ItfcBCUYvz2S10no64avoAufMutUeB0Lr9k2frzWPe5Fy0VkgKWioOMXoURT7hmfrJwJxTHnBRGmd/PgflG4xT1IvMW9SELW1hF6agtv6+lCXtsVFSKMqmyyXzpnv0DCXMdTnCm+5lJeX2LipzIaxu6ga3S4ctpVNF0lPy1l4ZV46RzxtHEh/wax5yTiaUVdVucCT/niNVPqGnHP7YviqeWF9ac4aiqfkUdUbvp4HlO/eQvtip7960TXcrpX2isaoj/puM8xjtaKij4EfqNvl9NrzTLElZJ5gYidF8JeiAJqAXdwDbQXtWy5qQdHG8pA5o0e6FAEoM/ChqZd3z8406rTuV1j1Xdtom2lffKYevcvaN6DZmoyrxE3bcLidWgIysCOp0TLsti03eTsNPOs5n458sjln1bbztPmiZ45sMzhJY5Nwuizp78z3FaI4061X+02GHcMmDZYy25rzbmvXZxDRe2IrDY86498n5MK27EbvO10RWpa5lFhGzVdf/Jl9ZNhU/jI01mPzeVtM3NaWfldbuXMDAE0qFtw7NgxeuPI2/SJj5+hDwMAAHjzt+8ElYvc6OAX7ZiKlI1nfgFNyEt3qgXf8zujflbZNDOurC+9MzGaxbMsAjsB+Xp+2U8PLVdhg73rm2V00vYIPKp3hXrRY407FUPoDV1M5odQ+LpoCdGoW+i5el32NMAJLRdBncIGNo921kH5BAYGaXVCfdbflTH4uEH6V/mwHX72WUNo8ODB+ohLj65hBwAAUMfoaXdqeqZZDlGdGTsDh6H4pnABuGOBR4/MlEkezYuXwgEAKkd/7mveflr6TZRPoOdwZ92qbQ4t6lfGeq2BwQ4AADXGTPtzp4FZ6yvlNDQ97Yx/B01t1I0vHab7RlUO27pnradnm2l0PDq/13o7r7yvLYt4RnNuNM0uET8lslrP6Xvhjgk391lFeCK+0r+nq2R1pkBK/1hWH/ZzJKd1skGa/k1hfr7Ec/EIWOSvrjXh2sclejqq2Yzs5hpnmmrk74sDRWaa8P2EO/YvTUceJS9dEiWI0l5tThx94QclnRzRG6EBAFWA35rPHWL9a1QT9AEuU5/+czZ0apcFDHYAAKgCyU8SRggDxx45lOvcpAGkXvIjXyCzdwc1XU3qhX7it/rUoZ8tNy2kXea7rWuIWqx7Fv6eblHMyDx/l5anMuv7qgpZjzjLUfv91MLfr5X+auSeDcuWCUZWcY7zsiA2oHmdnA6P1yXOSxisDBuRl+6gpdE9c9ib9T1dXqN3C+1KvAwr/r6vH/NG3/K+KazX61ov3Nyybn/8uUnxbNnf9xWGt/WtZt5mr1MGdCXfFOY04emL5prnJqxw9Sfje9Xm+duFLscv3jTGgUhLzzeFzRuwTUcD60RPTuMHAAAA6hUY7AAAUAXsT7rYBpvve8PyO/4CNtAunDVeGFGH6KDzqcMs1NtZo5cGCYP5oeie6u3DlX5Pt1bM+6a7LpkNy9gw45fk6J+M/O6r9UIh7hhYkzCdHxPGOk/xLOdlm57v6co34crPHrEj8X3fCsn8prD9tY+DD1DL7vhbt/7v+46gC0fplwrpkfepdwfGQ2YcsP68VNIB5ehPoe9Vh3xTOH5zNox1AAAAQAGDHQAAepFde5+kLhIG2mXCeBeGT+d286nD/kjKJycTU7qjl45lMWyoZfALA3D7TDXyfmnYtPV89NubecT78fW0q9X+9FGtUG/z5RkWPKJP1051OjWyv+9rZi+ILfrGbTXiYbT1uSm9VWH6Yv43hfl5MF0XAAAAsIHBDgAANUS+bCXre8OjxgsjfT29ID91OIIu3L2CWnanGLUlsIH3kvXNXDUqqsj/nm49IWcgRAYpf+tfezDyu6/2y8d4vbdtkArDkl+eJGcY7Kc59lrrStDf8Z3URupbxz2A0pMHUmdHZH/fV8SH+S3XCHL87acuxwguF6U/9hR9nqZe+ZKKQ/nfFNZr3Gu6fAMAAADoY9SXwS4ra89LhfozTiOsh5EjXNUanfLB61EHQPqK+ESDM4Cg/K5ejtWnVcb3vWGehvzwRtoljWk1ZbiLxlOj8vUy9e6V1BRNlf46vTA2nobv/Z6uj+ilYAtpA5nvt5ZRNmgDO/2lc3aY8cvRpn7zFtoVTb/+OtG1/G1ioxc84rpSWLDG3/qebgKeWi/juSr6Mom+1UrUNXZmWaPr5qVrhb4pfNkiWrr7TmoZm3hzru/7viIOL5ywQscNb1fQmmvNtHtFkW8KR3Gpr7l4+6KypqjLTobkS+fK+KZwvSzfAP0b7ogKyQ9g4CHL8kSb3H4RZ1JvzLs3eOs77T9VN/vl5XN6wj4AeQyqq++ws+Eo1yKWNyWOM0r1vzPLIznraXa1PmnEDeHvjqAnnWmFnBFEA3WNeN694tkr+C4mFyRFvnvLcPxd3DYi/FvLAaTLYz1vGelbDSqJn7Jhg31veQ3c6lBlna01QfmdDfb99K1e+h4zvjc8UOm9sgqAeqe/lIvc9vnOqJ/VvF1QmzZq/VHtdhaHl1wixS/QjOOxVm0eLv+voJaxK1Pb5F696bX2XxE4/tTLa7Pl5bhYQQ1b+0i7spcZON9hl1P6+nEDKXpRkE3I9Nfaot4mjMwIKoELde5dLqMntr/nd9An4cYYj1SXjHQDAADoMeyvbpgvXfSMIazfDVJwAK3voD7z1987kvoL5Rvs0ZRJ3pLTWU2jXW+JqYncWxb52Q17J8yUBj+PxEX+od+ZZVx5nGkfHOZNad+S5R4ndrvTNyueZmm9hVjeU0612U8vJKa/lsqjcOLOmqZjjmd+99aHHa8pz+fcM9AQC5Jnb5zeyak4Wc+ZR5as+fKY9FabPc2J9WvB45Z/WTqw39K9WB6ps85zKR0Nm5aXlb/yddbkleRxea1wb7H8w2RhbHl0b7Tp+OFeZitt+f6ROye/27KWypKdXgBUA/M5tP7fWAOglnBZnaj7uc1h1T9OvZ1SL0VurjOM264/RF0a1RdB7QWr/hDhdeqjhqx6ko8vWKXuy3WOktt6tox2sQkvu43qx98esuvCRDwn2grO/RxZXT/5nJab7x+5M9vMIe2samOevfx2evxMtn7G+mbHuX+qeLXgtBJxabXHU9tKqbqeaBMmjpemu0kzj34wjizJ5Um23qVcm0qePALrnq7u6PjRLnV/2z1wKNNgFxFlvnUre72SL6Zxv/3L3wb+jlE8kRj2t4hfPzCT1hrlMt/wld/pTSLuWfA7s1tuuoJeaNXXPXULUdsKN5FTvyWrepyULFfG963GlNy9O0QF8SSt3S3kTRttz/i2LWfSrO8U+797m4Mc4RTn8/d39aEIX3p5yJfnJWpp099hTqQJP6d5ft5Kvv2bhUfW3O8CT+HpVOb4L+jCNreS2TAv9m8feyddEyKPIP7eMutn/DIsXlu8dLf+fBPDn60Shm7IFLLs/JWjsyJ+sr/jLNh7J7UYf5Emu+aFFYYsjzLSOdxfiOdaGFZ4+/K7KMSvkcszlKyz13GFbMhPLwAAAPWAqJfWjEi8/HI/LV0T10t2vS3f0xDQxojqjzVXEu1eQd8xdVdAB9uWm9T0X3m+qD9bhCEdkVNPbnhQtFu4fhR1Tpdop8QvTMxuF+e1UX342n2qLlwYtTHkVzLmxcYqt33jtgK/A8TU6eI60aaZF30Bgv3KqEMz2qgVtUMLUbydzu/XkJ/TPCgM0atH0Ausn+L3Lv0iWHtUv+fYSHN4Sax+pqa2r6s0ydH1ZJuQ3zui2sxD6cY1rKtWp9Nj66lpjZlJG39dhNPMhW0uXqqo/B+iFdQSvRi0aBtMy5N4+W4sT8LOq+pXX/oPZRrsnEniqdPye8L6N8PfFDa9iLLhLpTtXjPVYtR4ahCZnf2UQomwgkYwin9nljNeVDDyy5CSn0oq9C3ZovBziJ0sGBbR0rHCeLcKCUmGPFzox1NWEt8prhWF0yuP0XGFLdPEvNE44Nu/WRSVlY3lvVbvLI8S73XfWjwjKlBEmnzzFqIHt5R2tKQQf2+Z029R/I1lUXBNv3Z/VNFt+e6d1GR9o9uHN3958H/HWTDqFnrIhCPCXKo/L1U+oyv+HJl8g/rV8Yu++MVqkVEfkF4AAADqhMtmCuNDd8offIBads+k6bpelF+HsOo+2Z5MXTboYyZ9K6AOVDxJax8eHX+BQdR1D1lGWV49OaNVtFvkTEn+BCdR4wRzrb9dXBRvu4/rQrqFvhW1b4Vht8ZIwM95pfV1C5ZvETXyg8jr4jRQ4ZZRh/Zom7lGiPYiz3aVn8+cNVN+SpUH06hXv6JyJbVHbVb1wlO7o0uR1HVuM5d+USRKE/kC2PX0qFTgJ+k7bSNottEXH4+vpw2jYh2Rg0ymXVdJG4zl2W06nRLy8D2tdp9rGwBDmQY7966YhBLbpXdSl/aRmBFb2euizolGSLlA0b0nS7frQjGkN9XqCSr3O7PR9BG5sWJpj95EFAxsoDVO2E9rH9PH8njcnipS+hKOmlA4vSqh4Ld/K5FVGKvP2fcTW0jvdyWwAa8aMTzbwqp08/DlrxziXm+9VWHGCDcoeBaE0svSt1PXhF5ILwAAAEVg40N1UMsRNTZ6tU9VsAc8qkCxejKnXVyUctt9w4Z6ZBV+ta6b+xC7hFHbuZ0NxhF0Ie2nLXv3U9Mo2xiuQ8rWdevzrkmDuBIKt8GELdc6Qs0+EfLsal1UHXkGEOUZ7LpXL0osnqZhcXDVN3TviTayhX/U2yMKHzNdVk454WnYQb2pTxb8zqzqfYoNwJTpt5WgC9OgKcAS/mSTqLja9stRSB4t3fXg+qBePe93imtF4fQqSgXf/i0qq+yBtL/xzBVvYkq8NYWHR8Pp2qlBhWaXNRJ/cNWKRGHJvdobqWXKCqIyGjDe/OWBe12zv+Ms2Gt6YQU8CvLwlYE9se4UwuSLS+w46NxuTT30IEcnotkIAq5o9E9vesn1UJwfdeNJPJ/qsMO0KgAA6C3kZwUf/Dpd8+BMp3Na1kuJKbJdtlFi10t7d1TBCFajyfHIpZrVZ8itJ7PIaRcXxdvuK6kLRTs5qut0+yJqO1n1pLzOilceNHjYnRkXp8kh6tqtf1YDXUeHDjLUDJ4lsXs9rZXvjxLtchEfLcJWqHR2YGXYsxp59NkdOU/HMsg1rDMNlk2h8t4Wui8xm8XLZTNphtMm5FF1/TugzeyFw354BU0SzxfPABHI44mlonvtF3Jb8cMzk81P08ZLaf/1R8oz2IfNpaVjrW/srhsv162qyDlEnaPG0wuXaj/eeE2CHiHdIjKHGRWU26XraZ6ZGq0jO/XbvyKRin1nVvfmRPKspwt5LXFwA14VetHUj8TLLA7uLTIV6CXqMkoo4or2hhkx/u8UK2RlU+7LPrhC4vO5R3ivTlfz4g1fegVQRB4esS3y7d8QWdPlYcPX/sYzv/PgZ45uzRCFuQl3zm5r6ngODWN30DX6OvnJvMRMATm9XuhCkGEs8ecvRYbOXub5jjMzagS9YOJA6EK8riiHyxY53/qWmykoxT15zb+5Z8tuaz2YL7+LMuYhmU91eOs4DQz56QUAAKCOkO1G0dZJdnZzHWHX98Kgj+ulSXL9e9R+a9sfTzM39QdPWddL4UI7ZnmJVVPUVvw6vTDWqpfy6sksvO1iRXob1Y+/3ZesC1fQhU9Zy/fu/oVVN9v1pLhuDa8PNtfxOvi4DlXv2DFx+nVaow4H4233Feh0MS+As1/a5xr8/nZ6OjyqvlG0PVTnUOMEitvlAt89bT/znMYvmtEr9DJaWhFsOF5JtE6Fx2myyyypzNF1Ti+7DcbvhHDazFo3W0pmcmrDlq+xXhSo9DKR9+btoKaoM6PSNpia7t81Njnaz/ekOB25DR/pM+uslRfmrZdHByKD6uo77ADUEVwA1+obrRx2fXyX9cmC3znnAj/5nWo+1r++14nvsAMAgEt55SKP/tbiW9kA9Af6X7spm7R2Y/9i4HyHHYD+ju4x5VF3Z0pQn0MvYbBH/OXsF6xLAgAAYEYkecQQ9QIAAxk1A4E//7uo3xrrtQYj7AAAkAFG2AEAwAXlIgAAlIIRdgAAAAAAAAAAYIABgx0AAAAAAAAAAKhDYLADAAAAAAAAAAB1CAx2AAAAAAAAAACgDoHBDgAAAAAAAAAA1CEw2AEAAAAAAAAAgDoEBjsAAAAAAAAAAFCHwGAHAAAAAAAAAADqEBjsAAAAAAAAAABAHTKoW3Ds2DF648jb+hAAAAAAAAAAAABCOPusIfpX+bAdztcPHjxYH3FxDPbzzvmEPgwAAOC1199EuQgAABYoFwEAoBS2p4uSZ7BjSjwAAAAAAAAAAFCHwGAHAAAAAAAAAADqEBjsAAAAAAAAAABAHQKDHQAAAAAAAAAAqENgsAMAAAAAAAAAAHUIDHYAAAAAAAAAAKAOgcEOAAAAAAAAAADUITDYAQAAAAAAAACAOgQGOwAAAAAAAAAAUIfAYAcAAAAAAAAAAOqQqhrsB+6bSZfcd0i7QNU5+BO65NyZdM9B7a4lW28eAGl5iO6Z3EPxWU8MiLStQ/pkvG+j6yf/hA5oV8WIODjz3Jtps3bWC1x3Xb9VO/oNgeVbuWnC9dDCbdpRPfpk+yEl7vg5zjx3jNxKnkfW4crvzDLzVf/U0crYvFDEYw10UZJaXnOeSklXjZQnI+19ftUtF0WZre9Tj2Vt75Bej9VUf4KpcTvULnP6nT5w3A0cHS/LYLcLHGerZoNuQMMFrUf5unZQp/5Z77CuoHHRT9AFvq8BYrashkx/B3ERxoHOffoXqCaVlLc9nSb9qWM/Le6G37ie3jq8h95qv0ofsRj2ZXqG/Q7fT836UH8mv1zMafN4OUQv79I/e4x99HyX/lnCNmrfcBWtk+m7h565cag+zvj8qp0HJ9MqeZ/NtKxBH0pQPA9Wkl71RkH94fZQQZunN9rFBx7tIGrbrMqkw3fRNH08j/5UTmfTt/S5LIN92kpV2KiCYAwte1a7t32ZhutzQA2ZcpeI7/X0tWHaDUAPwAX+uLZbiba7jQpTHrzYNoYadYWQbIgMFBAXYShjJrzRUIIciUJnSDWpOE0GMIg7P7UtF4fS17aJ8FdO1u6eQBnD1S7boUe9QW/oDwDFqcEa9n1yypDsTU30QtlTxcobledeEH1dckq4M93D7b1SPUTbUuRR05qcni4ZTtzTkimrbjDyxo1G04McNSAT8rgNS3XfUj/zfDdQBz1Cs7R/dF8nzJTeIEsmN370VJut8fXlNXSttEzcNyt+THzM2kDUMcdcq2SKexf5eY2c4nfK9XJLTFXypok4N762zB6zrvT44fvZOhLLr6bh3CPl4Xvp9At6Dj5XXGOlmaOHXrL0R+CNA/u6MuNGXPvzB4gumj6Sxm3oKPNa4DDlrtKRFdax+5T+sR6o9EuUcWno9Gb4GqMLmxeaa11dcXQwJ7/Y+axUN01ZlfRP6FhUZumwLX138i6TI49z7Zx9sqO48gaz9RxCnuTMpVgW5e/ImwXLmTjXThtfmmSXNX6MnGnlbURG+eZLE5Ynve4sRcmQr7NGry5o3UOdrdOie7vPmd1+cNLEirv4OMtg0tWSx6k/8+WUaJ1kOPyS/OWJu9ri6m1I/NQn5jky2jw52M/q6DTjbYP58NWTbt51dDa6n/ss8r4+PyZPjzL9RfzZbr5PQNyF5cE0AtLLljU0n8l4FXFtXRunV06dIrDrqmT82X7J5/PqT1Zam/tPvIM6u+6gC7R/SF4z9ytUTtt5Xmz5aaUw93TT2sRdtv74dUSnF/+UsGzGXVl6VUSq/qj72fHFcaLcAfpcj3QLjh492n3o8BH+Gcir3T+aNKP7Rwe0U/PKvTO6h5xjjvM5o7vnb5Fe3d1bFnVPvPdV7RAI95AFT2iHj0Q4B1Z3T5y0uvsV6UjK8UT3/Oj+OfI44ahzy5GVz58o7h1dIymNl1fuXRS5Ny1I3P+cRd2btFPB8ieP2aT5J4454apnHmKeM/WeGfAzJ+PSxEFA/DjPajDXCTnmL1jUPV//nqivddJAIOPY3Md3T/59Tnw/vrdzbib++EnKEz+Tuo7vofRgtbgmTgdH7oROKre4py27pYc+vPrjiQOWJ04fdf+w+BHwfbR8qWkqcJ+3f1FeuVh+XMi04fiV8Sz0RMRvVjy7iHSU6SJ0kfPSAv17UpoOuvrgzS8JvWK/WD/j8BXsdss7o+8TpTwpWPoU4c2/ifxTRn7xUfrMVpzzPazyzM0/fjYtSOR1S1ZfmrCfnebsl68DMennq3Iqq3yLSEkT+cy+ulPGhzpuP1MIyXgw+O6ZjJ/SMJQuTnT0k3HTQOlTShyUYK4T4abkr4g0fTYIPcqOm6Rc+aj4ie/v05/S+Kku1SsXQ9MjnSw9sMskuw3mQ8ZvQD2ZnTd9z5LznGl6lMiv7rMm9CdVD1P0VVNcP7KeI3E8IXs2LKPVHpLhuOlnjpXUKcn8ZZfbiftzmqXVG2nxYOer1OdNjeswyi+nk2lYqt95pKe1eK4c/Um/LilPSvwUSa/C+PWHn8GO79L4T5O/MtieLrpxucr7LKo+wt7Ydreesj2Uvjh3DO3sVL0dm9c+4vTWnDnnEaJd+/J7Mw5uotV0K7VO0W5eA9Z+ufot/Zrpi9EU8ck0Z8YeZ41Rljw07HK6jjro57KHaxu1tY6kOfoeobJ2Ni2mVUYuyVA6v2kPLZnI16lepeE33hVNYefpYdH5fP+M9UVlsbWDOmY0x1OpZLj76OWo524MLWvXSxZK/PzEccfPsZia9Qhr4bRsGE/jxE6uqZndrKZYd+0gmjBSHOWR3D1W76Pu4dPTsHPvOeP+KG6nzb4qui6fovFzFd1+41Aa3ihkn3u5iP+RdJFOT57eFo8Ask7qnxFX0TozDWtKMzUHvpsgV39S40DFa/NsM+1rMq1KW1uZgUwr8XwcPxxmx9p6H7npezQvFfo3bKTIG6IsE+nXOGGM9vEh9K1J7HQZOIdYh/bR8zSeGmWaE103PR6FLskTGfmF07vTKk+mrbTW2vK9uqze6HOn0ZIut7w1XLekzGVS5eTfppEVLsHaRu0bxsTxI+qUdW1xnHNZE+cXkZ+nN1NjSPkmmDZ7JC1ZpvLIgfuW006dd1Q+zEmTmlCN8j9Rd0p4JFykf9P9VZ0enH5Pf90Qs4fGLU1MK+b60R4NkyMqIXHgy1+9R3N7/HzTltxK9MAmoZeh8TMQ8LfBsqmsnqwFau3x4ii9uV2xbrp21Bu57VAfVntIxHtrG9HqR+2yRpGsU3xtQm895oXrBtW2U/ASiMXUGFhmFiejnC6jzq03ykmvygjTn/5ADabEZ9PcrtYzRVvRte/DhKGkfxaHGwQ6YZOFjSBE1kZpaLqYNVtvPTuebpOKGU97caaDyIynjvdFiqblTtGI6NzOnSOiQSQaQJs799G4RlM4Wu9FMJu1vqhq+lNrnKlhahpUNeh5/VGNmKiQ5QIW0+Lrh13CiOjaQeNEI7NxAtHLW/fRzoqN2RwabqUX7TwotqgTKWIknZ/bQA5FNZielw1w1kGyKuc6ZMpiWrZruSjzOe+MtBp+/QxRDpAoj9fRDSlTSmuBv25QjIk6TR1m3O9eF/oemN7IX4UJiZ+Bga8N1tcZLtq+A5P0OqVn2oTC3qhafVaAoDq33ujN9Oq/9JjBLkfnWqz1AWzUhKyz4t4muoPaonUI1poJ6WdGyRk1cpJaaafAIyfcQ31PYkSlsKzCwLlnob5Ovw12XTTizw04sirVKr0llkdobSNK9shVp8HcKXvvFTxaZDo1iqflSBq3q4Pa5SjFUDpfpN1tvMctgrgAACQTSURBVD5appfqQDGjUwwbqKYxWDxNKiMeUQ5/o6gcoYsKpuw3tZZHUf1RI1X2yDjLF4TUpfjNtupZHqH2wDVUoJbwSNI+al+r8s/wRqLVLcKIkp2IVmekhtM8rYMxiRxNtssT7szUP0vLYl6zVuvGMN+jg+ZEOpj2Yia9Hi24PFAzseL4UR1TBlnWWPlFjtYEG2o67ufcRKvnxqNjIWlSpKzpNWYslkYvj1yNa72pxjrgrxu8yPqRO1C0224/ePHlr97DKceX3aFnP1UQP/0OXxvMB8dhwXqyRsj2aetyqyxOtHm6rLZvb39BqKJ2qN2m4Nmu7kykLHxtQm895oXrhkfotijv9EQd56GWdW5h/bHS6+A+2ql/5hHUhtfr3ssru/z606fq1Tx4XryZOx9O+jqK5JqHNDevVZRbWWtAeJ2Bvi65vuUAr/cwfu76hDx5GN/allRZed2FdT/H/8AT3ZvuTfjbazScaxd1/0jew10/IeUx50Thus9oro+uc8K14yeZTmWsf+H1JgvElnY/QW5apsrkrjdRYXieP7G+xZsmyXhOXJtOXvxoefUzTBS/lX7xcS03x5PUKeuYk14iPKkTJtzkmpky1tA4cZrQH28c2M8hnoHTNZEP0pBpkYxHDlfHvZNWegsJty8RWi4WjQvWaaVTQg90vMbH/Dj5R+tcfJ2b5t78kXA7+YzX7zr52y6LPfdL+vM9En5RHs6Rp/RaO48K5LMnjuXi1inzF5SudYvu5zx/CBx2mjyeNHH87LImECeOzL05TFuOhNuTJqwDtv46bo5vW/YS3cvBKR/j67z3FGTVDbl5z7lfuJ6ofJCRv3LirsTPyJt4drWFlf8cLpfd0XUJvcyKn1pQzXKxSF7LDDevDebFzZ9uPZnIu+YcqQ9umag2o2c+P4FHjyS2fzJuHD8uM4x/zj2ZjDwYQmZ6Oc8Sms84XvkdEXGYYXGucPJaIn4cv0Q95tfLhB6UxE1CrnLyWmoccXh2fCXdbnqGppW3HGIy9UeTpSP2cb4uKr8qSy+JlCmsPFTwPbP0h7Fl4mcsjb8i5Y8Pe016uVveGvZB/O/YsWP0xpG36bxzPqHNeAAAAK+9/ibKxd6Ee+HXNrvTe8WxSzoXx2un+ZyW8fRivUyvS5MZgH4EykVQHXjEeDmdvw2ftANqZtAF2xf36bqT7emisB1+9llDaPDgwfqIS4+uYQcAAACCkVMtb9DvbYjXsdtrww907qPG6OVuvYmems+fnlsCYx0AAAAIpXO7/eJHkAQj7AAAkAFGkgAAwAXlIgAAlIIRdgAAAAAAAAAAYIABgx0AAAAAAAAAAKhDYLADAAAAAAAAAAB1CAx2AAAAAAAAAACgDqkvg11+NH8m3WM+5j8QSYkD/tSBeUPyJfcd0kc18nz99uTJP6ED+nDF8KeJFm7Tjv6Kfquz3G6mzfqoYfNC4zeGrt+qD1aMuGc10wmAcuHPoiXLEZBNanzx54hSyuNepwfKF65zcuuGeo2fvgu3AxCf4cj6u9fbMJwPStsWIIuM+OL2aEobrbfhPFm9tmE6mxcG2ER1Gj8OA8KmcNm4cSOtWLEic2P/cqgvg71rB3Xqn+VQm4qMjbkqZoDURg4XTonMmBIHw29cT28d3kNvtV+lj1gM+zI9w36H76dmfagsWK4Ba0BOplUy7jbTsgZ9yGLaSvbbQy+2jdFHAAB9xXCwO9zMVj2599HzXfpnH6U0fqrZ4CsYPwO6PlL0O8O8V9L0EL28S//s01S5HVorOI2dsqS65Ql/urNPkxI/1czjReOH64BadzgMZLq6/JVgnn+S+jLYp9wlDKT19LVh2t3f2LUvpdIaSefbz9vf4wAAAHoAu8OtsW2z/P2M9f32ylCdfdULr3dobldxpOJpH82q2ghI/4gf0FcZSl/bJvR6Jb7p3CM4A0dX0Tr5+y6apr0rRQ1aVS+8XqHhVnpRl7UcT+Nab6rabOJ+ET/9kM985jP6Vzp5/knKN9idnqLkVA01DS7qRUr0qro9+lbvmxNmSq+cnO4RX2t6hLgnmt0XtO6hztZpJf5JeZweLT09I5bJ3NdMk76BOugRmqWvrXi6+bCRNE7/lPeUDaN99DyNp0Y+mBcH1cbcb+Id1Nl1B11g7p1osJXGj8LEfUncWGnF8W2uj+PexK/aQnv3YjlY50wYsf5lysM4+lONuFV65cgu4zM87E5LXjcOisUPE8eR2Ox0zNR1HW9Omqc8Wxo6TIbDNelrT9/KkicvLfsmnrImE75GP7etP/zbxJdTLthxZN9PXBedF6qD+9zr9VFJxj295W0F+sBk51/WDyGflYfLyRNZ8P0uuW9bHAfOPRNxq48q3HQukSUzvfLw6I8n/zJ23FUSN8OnN1Nj1KnskSeBkss8aznxY4VrjmfWR8Xjx0tCnlhe1rtE+vF9LD3J0uf4OF8fXr5581eElW8T9VyWPL1GbppWkO+z9Ehgx0Op3rp65MRTnh5ZsvBWVl6zrk3KlJ5uRm/S2qH8DFqfZDxoOfl3yfVqc2XN9vOXi0XR8m6N06wk/0bHEyPFdpynyFJY5x39sfNmjqx23Al5iswIVkymOTP2xLOQMuVJYM4zz1pO/Fj6bI7P2kDUMcf4W/ctHD/5hOUvy4+PJ56Nw4jv69P13uWiiy6iT37yk9rlwsfZvyy6BUePHu0+dPgI/8zhie755yzq3qRdr9w7o3vIgie0S7kn3vuqdgkOrO6eb9xbFjnnyrAcN+OGryg9tmmB6y65r2bTgtHd87doh5Bloh0Oy3NO7M/numGkyVIJJjyxnyTknbS6+xX5m/c2nvsKmdOeU5EWVgAcL2nX+eInKUdJ2uo0Ec8Zxb/k1e4fTbKfjd0zun90QDtzUedPdMIQ+ORJPF9pOjNJuVz4WdznEHC4Cd0vOScVTl9LBkcvi8ePmwf4HtZ1vrRM3jPxXNkYfRPXi/w4f4H+rcPyyiNRz1aSlnVGWLmYU9Z4iPRGpNF8jkf9W8Udx1scDp+bzGcmbifK+A9E6kOcHm64Jl0NrgyMm7YGc122Ptj5wwkjel4Ny2fLI3Q3crNfWnnlIU1e+cxRHLCccfpJv8T9S583keYSN67ccPx49UemV0b+TZzLfqHxk5TfltcrT1RGqHhLixsmGX5aefbKvYvccoHDTpHfK48vfrwk5eH0s9yOHnK4bp5Jxp17TxV2kfKtNCyFTB+PzvrlqS6h5aIkI005fh0Znfj25fsAPRKkxUHymKMrXj1y8zaTbIemo9LJfa5y9Kj0vkx0nZC5tN7ge9rX2PHl81PhZulYGGnyqnCi9HPyb2l8DEl53jQdcuPKDcePK6O8Z5Q+PlkTOiH9AuOnRH5bXp88Vrkj9TMlbpiU+JHnW+HI+zhu9Tyl8hePHy++/JWQ3817STmFfNG5LI99f3aH6kFtYHva3n7/+993f//73+/++7//+2hjNx9PnsvlKu+zKHOEnae5xdMuZI+8/s0MbxwZ9QzLXo5hX6ZVZkpcw3hq3HCD9FM9IyKsoOlKI+miBt3DqHtZpq0Mm/rBUyJXTdGOYZfTdcl1yjPuj/ynzb6KOrfvU46awM8hdgf30c6mxXR70w7qlL9H0nB1Qv2RET+b1z7ijACcOeeR1On+neI5o/hnDm6i1V1Wb/G502hJl9XLGMQeGrfUTX+vPDxVa9uXozjm56gKrE+7luuex23U1jqS5tjP6qPhVlpn8oWQ7/YZj1A755cK4oenRMXTT7n3Vv80ZOr6UPri3H10m+6t3LzsDho3OzBfNokdy0zNNIf43QvxjJFceSSladlXyS1rMuAyk9m8dh9dNHu8yDSH5Hq0cY0cd/7y1ua6JbGOh9DYdne07Gb4jYupeUOH6tHe2kEd9miYHOHZRy9n9fhH+PThEP38gT1WT74eRQwuT66idaaumNJMzQXfdZIkjgPOA2Nop4h7HkFgWZujPCDSIO3dIamEp1eSonXVgUc7qHNGc3TPaSvLe5eJmyYjo3jO12ce6RXlU9P9ZUx7H0rnN+2hJRP5fmoEZfiNdwUt/6pJXa519YvR/ROjXqxrJl8c/Andtsuc69fnmOqXbz6dzZenviie74vqEceTKCunx/paoiuZelS8Heo8h9Cx1jai1Y9Wlm7eesPXjghoY6TrWKWMoWXtuo6S+VfXKVzfNMR5cPiNd6e+TyiNsDZGGnnldIasop3XvmFMrD+i7baunPcbJerVnVE8B9Qbj94s8sc+WvZsGeVJYZuraPwEkJW/ctrp7O5Yq2YVHLhvOe2ce7k6N0Cfe5tTTz2VLrvsMu1SsJuPl0uZBntiOhFPddI+Ern+mtdnbKaLWtQ50bQFThC9fuP27bqQDprCotci8bVLd2iFT0ylyMCZbiUTUnv0JqLSYYOoccI+an9UH+uD2Gsf5WZlNkPjBFWpODjreNQWNcSCGKM6PhJky+NOl5GNgqog9HLpSFqyTOiwqHR2ti0OL0h9FI0fZzqRmuoUChts41qXizwlKqRdt1JraHrsEg2oSJ+JXt5qdUAFyZOeln2RSsqanZ3b6GU2HKaI/CIqsM7tpOMlp7yNSLwHo1JEpWrrX/A7NXz6wJX8s3aYYrMaDyHlSf0Tml6l9FZdZdb2qy1upOXKIwxZEmm2jm4oa0okG97yXs+Op9tk2J7pnxa9Ez9sBKjOVO4YIdNIlPj1WdGT5VuIPPVH0XxfVI+KU7wd6qd4umXXGwJfO6LiNlidULjNU7ycrgyztl9tcWdDnjx7aMn2ZqHrzbR6Yhk6V9jm6o34yWmnR52npZ1ufUGfx40bR+PHj6czzjhD7tldhPIMdtkjbUVOYuThwH0360JTF27CP+pBEZnLrC2Qhe2zt1rr5XyIhDRKJjsE+I3eIT06KmHjwrDgW9Sz0IVF+HoJ7hXeR7e17JOFKveQ7nxANALSjNo6R/Z2tVhrSjguQgoC7o2jO6gtijMuGCqvaL3ycA+uZYBU9Y3vshBZTpe0EN0ePMok6Oqgn5tn5pGbDVep0fkK4odHK+LGT/pb77NRDdPbJi8nWhpqKCl9bl+rGgnDG4lWt8T6XFQeub6JRzBk/uJnVwV5OUZBz1NBWdMwXjS2Ouh5YXQP51GcXcvptl3aAM8pbyuh84FNUX7hHusOM0qrdTrWOY7/kEaCTx94pIZU55aGDTCTpoXLk5qgRpVMbz7DuhxE4fQqrj9y9MOMAjNc3umfxQmQZ8Zi2YnDI/rhL08S5dlCnc66MbnOHtHOpEZ1uSxvrbKYOyw3uEa2Gtn5ibx/3Ej063PP45MnLj9Ly1Z1bm9RPN8X1SMVT2p0W8F5O3VgoYSi7VBGz6CT8Gw8o0sV6JGv3vC1I2rUBiuMnDlht4d4xFT/zqFwm6dwOa1m4MT6w+XSHv27AnLlGUPLlkyWur6unBeDivxUyOaqYbsjk9x2uu48vY9ls2ZF+fRZr8O/fisfE2WfiDfV8VuNjrbymTp1Kn3lK1+R+6KUZ7ALhbm9yZrWsXY8Ldt1gy5kD1Fn43h6Xk5T0tsciqYCbabx0ai73CZ20HVmWkX0ggP7BRs6UkVCXDRheXzdudNo9dx4OifDjRayplYpJdUjoJE8HXQRK3twYikFiaZaJF56UOwzCnuos0sXqlzgdlmZ3RMHSsmEe441hcxkWvu6aMpNGQqpFT5K05DCQFRYL87tiK9pGU8vml5h2RjQU7uMrFHccUfO/UTRFLBp9PzSsNE79aIKHlkxU+EsI84nz5TFSke13yyR2ccJuezGjArXxHlceZmXY/CzmGlrbmWqprd1NsVTUoNoGEnPmziYeAeNazcjW8XjZ9qSW2lndN1NRHNZ98MrYr6ehG4GT+sX8ChqxwZy9FlN5fbL403LPkkFZQ2/jHLDI7RTG7Y81bPTvIgyp7xVveDuS4lCOxAbm3ZE19hToVmnV8mefH3Pc5fTRYlpeOnlrV8fePoij8aaay7YvjgeYfDl3wqw868pi0L0TE7LtMqMdrIbLCbe3Rf2yDjwppePSvRHN+Kie1IVjNly5In1RemBJ34O7qPzJ5jRSX0OxVMkJan1UQXx40WE227r+g1E7YnyVtYfd9CSJtVBYfDpc6XlW1b+8uHNX71NVhujaL7P0SNfvue8fd0DcdzydUHxJNIgrx2ajSg/1prr7KnQIemW0Q711Rus15ntCJ9fBfja8F5E+dFu5e05O2icbXjr9qQc5TXtWx0Hhds8hctpNny5g9Loz030fFMVBoDKkCfSF6MHnvjx2lwa2WkWxaGOuwripzDedrpCpneraC87g0o10uc6ZRAvZD927Bi9ceRtOu+cT+jDAIB8uHEqKopkI68Pwp1Cs+ju+mnk1Qmvvf4mykUAALBAuQgAAKWwPV0UtsPPPmsIDR48WB9xKf+zbgAAPethWsnIS59D94zzKGtZ0/oBAAAAAAAANQcj7AAAkAFGkgAAwAXlIgAAlIIRdgAAAAAAAAAAYIABgx0AAAAAAAAAAKhDYLADAAAAAAAAAAB1iLOG/c233tGHif7NWPVthf+5O/4oIo7hGINjOMbgGI4xOIZjDI7hGINjOMbgGI4xOBZ+7BNnnuFdw+4Y7Kd/9DR9WHgMGkTCS7vghhtuuOE2wA033HAb4IYbbrgNcMNdxP37P/wp/KVz4hq9Fz/ExY6bEm74wx/+sRv+8Id/7IY//OEfu+EPf/jHbvjDH/6x2/L34a5hFwa/CcxcHbmJ9/CHP/zhD3/4wx/+8Ic//OEPf/jDvxr+eThT4j92+kf0YQAAAAAAAAAAANSS3/3+j+V9h11a/Nhjjz322GNf5f2H3d307nvv05/+9J5cr8UVVOjG5/N1777/FxkOE3pf7LHHHnvsscce+3rd5+GMsJ/xsY+KQ3p4PgJuuOGOgRtuuGPC3e8JQ/39v3xAp5xyEp1w/PF0/ODBNOg4+1w/3R9201FRV31w9Ci9++77dNKJJ9DJJ58ofIrJo4Abbrhj4IYb7hi44e459zu/+0M5I+y88J0vNgvg4YYbbrjhhru4+8MPP6Q//OFPdEzszxxyOp16ysl0wgnHl2WsM3w+X8fXczjHjolw//hnGb7v/nDDDTfccMMNN9z17M7DGWEfcsZH1TUqDOyxxx577LGvaM9T4Nm4/tjHqv+OFJ4qP/i44+iUk08Klgd77LHHHnvssce+nvZvv1POCLu8iK/mndjDDTfccMMNd0H3se5uOQ3+9I+eJo9XGw6Xw/+Q711APrjhhhtuuOGGG+5ed+fgjLCfecbp4ppuYeirQBjptgKDP/zhD38D/OHv8//ju+/RccL/I6edoo9Unz/+8c/y9qedcnLJ/SuVH/7whz/84W+54a8cAvjDv5r+b73z+2JviTdhRoHZbvlD7+APf/jDH/6xW/7QuwHuz53BJ55wgnLUiBNOPEGuj2eqLT/84Q//hFv+0Dv4wx/+8Id/7JY/9K5M/zxcg91chD322GOPff3t9zxN//WfnqZO467z/YfHPqQTTkjvLa4W/CK6Y0ePBcmDPfbYY4899thjX5d7D/gOO/bYYz+g9/xCtJ2/7orcefs3/2UT/dd1j1jbJnr29fzrqrF/85135V4c0Lv63nd36ylfQRyiddd/iT53BW/fp2f00Tx4yj3fh8mTJ3z/Gv3TDX9Dl03X23ef18dDr6/u/tnvWrLcsIFeD7wO+6x9Jel7SF97M/3Tqwn/VzfQV02YYlv6q7Trn6Ol7N+L6aj06R/oWXP8Vz+gr/70UPD1vv3rP71ZhPVa5C5nv+ah/05Hjx4NPh977LHHvr/s83AMdnmRaPc4gcANN9xw91P3h8e6aduvttPHh3ws6Hx2i1902rCL6dovfZGunSW2/+1U6nxuO70ZeH0l7rM+c7m476V0foZ/3bmDYWN9Ef2Q5tB//Lw+VCZB8gS6n7njZtr47+6iXz66ln658S76D3u/p4yvKoVfjpsNoP+TviHkELIIef6vUQ/Rt9Zq46oK4Q9Ed/H0ZWN9Mf3fo66h//BJcdDxf57abvglXXk/hym2+6+hA0sto1iH9+x3lxN95Rpq4IO596uV+zxq+OSvaONTsb/4VZXwDaHn2+4xjaNoSdv3YqO9zOvhhhtuuPusO4eUEXa9Vzu44VZ7tYMbbrVXuz7t/vDDbnr8qedpdMOnaOi5/0od95wv9+aHRrr/9dl09nvv0tvs3vMUPfjTn8ut41f/izo3x7/V+V30z9qft3/eIw/ToF+L6/4HG/3aLbaXN4nr/kVfx/58zTqx8XnyKIen9p3i3HR/cT/b/fp26ki6LXmi+8n/cfhF3aEcXvv39MNXz6P/+O2ZNFwfK0Kl8ir3IfrUtWtp1eyh2j2UPjWK6MBBNpLZnXd9dd3nzl5BT9x6ceRmhg8bKvdFwpN7tRug7uLp+/pPvyeM9W+UpIfaXUzf3riCZg2Lz6dPfkrqs3EP+tU/0H0j76Jvf1a7net71n3l/GvowD+up8PazRj/19cuos9fOZs+P11sX11Pr6vDUv7PX7mI/umgdr+6nq7X7sN8jTj/b/7xNer6x5uj69ueLg0/y/2Ziy+gf/9Xl9Nt3/57bbSr41nnw633agc33GqvdnD3MXce7gi7viwKDG69V8ANt9or4O67bmmsP8nG+vDYWLf81T7Q/es36I2TT6Ez2f2vL6W5X/oiXTnsJKIj/5N+M/SL0v2//9t/JXyP0L/8jzfo08LNx+Z+aSKd3rmJnuEWs7juklMP0//7axN+F73y5/NosrxO+c/90l/R3MnnkvlAWnz/p+gZGq38+d5nvUUbN3VF/oZSt5DnubfovMlGnr+iydSp5JH+Onz5v7g7hHNnf5+e+MX3pbFTlGrJO0gYcOdKo8u4n6NHf3keTf8sD6mmna+oqfsgG0az6XNi2/j5tdLgq2r4cj9Q3MXT1+k8kf9Lz3/2DpVOn28bRMv+y0w6Tx5l/+fo2z/+FC2brTpbzJXJ63vMPWwiTadf0lPa+DY+g57+B1pC36AnNv5UbGvpifmv0Ow7nlPXf/Zv6YmWT9MP29iIF89zwyu0QHdSnMd5WJy/9ivnUcNX7oqujzonTPjyf7Z78mcuphm20S6Phl8PtwJuuNVeAXffcPtIjLDL8Xn5Sw3Pww033HD3PzeXjd3d/GbxdP88958OPkcP/PT/EdvP6YH/7106f+KFdJZ9Pp9z6qfpC2Ot6w8fpNfee4ee4Wvk9ix1vvc+/f4d5X/+0DPojdf2yvPf/NVv6I9nDaWzTHhyny7Py4feobM/2Ri5z/r0mXTan/8gzPH082P3WXTmae9T5zaW5Sl6Wfif9dlJ9Jlzs84v4O5RqiBviVsYJVd+jw7M/0/CKKlGeAXdw5vpx2w8/eKnNP2Xs2m+XCNcxfAHrLuS9JU/9C72v+TWtbRNpNMTrd205Mp/kO9i4DXz6776NE1f1UwieznnMz3ulv/Po1nXC+P7QWGMywPK/5lfPi1HyD935Zdkx8Pnlj5NtPc1OmyuF0b7T7/wS5ot4o1a/44uEVcmw1d7z/1z3OKH/MKE+vZD/vlwww033H3enUPpGnbsscce+36+H3zccTT1cxNpT+d+eu31I9HxoD3/+/gYmjf7r2iu2ObN/neWkRvvTzvtY3LvHD/5PJour1EbX3+FMerHnkNn//Z1ennQEdorRBo64mx1PBGu+KX+G7fZJc7LPN9yn3+5luVzp9JO7kRY+8/0TJVfoNdThMoTvH91A82/4ns0qPWn9I9y+nTgdTXef+ayz1LX3uq8IGxA7ytMX0PmecMn0vRP/oYO8Ivpnl5HP3z1afpP/EJFYQRP/mo7db36EM2+4u9oXfLFdT20Fz+E8f1ZmiYMdPmCR+MvtmkiTmSng9h4v23VTDoveb2mNHy5Szketn/yX56n/75hI935n78pPwkZeh322GOPfV/f+0hZw64vSgYCt97BrX/oHdz6h97BrX/oXf26pdH++Uvo1y/vp0MJoz3tfLXTbk32+Xpn+5/7SRpKr9H2X2s3/S96ZsM/07/IRaTsbqBPf/wd+s3Tr9Ih+jiNsjoBlH+0s9yDaDSPzB+K33J/ZP9v6U+nnU5nSbf4995vaa8xwt/5M/1J/mC3uP+m7SSf/LwL6a+F4X7Jx9+n371j/FV4+ofelefuaSqVN3IfXE9f+epvaOFj69SU3rzza+Z+jr4tjLxvPx37P/P409QwSk/fzr2+Ru6nv0+ThVxtWi7Hn+NO+H3FvBhPeahd5Oe+Rdy5Xv3Quxq5A9L38Nq/o88Jg/qnPGU8xV//0Dt9/lfVmnDpf/A5evTVT9OneJnHpYuU4SvuJ/f/ZQ41fHIO/fSxf6AvsX9G+DVzawYNuoQWzP8Nrfzxb7R7EF1y2Wdp84/12nY+n9P69ucif3Z/ae//IZ7jGzSoLSN+kp2ESf8Md2Ssf+dWx1jPOh9uuPUPvYNb/9A7uPUPvatvdx6DugU89eiNI2/TWZ8YIg7xsDxfjD322GPf//fHjnXTzl930vhxo1P9k/sjT/8zPfqnETTv3+lp6Lb/7m205n+yxWvBo+ozJwgDms/rpF/8tz30hvKhs/+NGWHX1x9+gX72y9foI8njOeG+9M8P0zO/LT0ur9/9ZHztySfRafRx+hz7H+6il/a/Ts8csMLlmQNpz1Vw/+Zv36Ezh5weV0yZ6LfEv6qdBmHUrF01U04jzoI/6fbW27+nT3z8DHaJLV8u//41+un1f0c/jNb2aoYJA0vKEhpOtfYJeT7/n2jbEl5HHXp99feH/9vf0pd+/Jocif32pQn/p4SB1/Y0Ncz/Pv3j3/AKbsv/qRXab4Xw069Zt/17ZB+Wvs8s+xJ9Q/xtW8KTvvX1BzqEod9OqnssJnoe/XyK8+g//hdh3A5PkYPDaSO6vVf0aZB4tr+lV+b+g5BNuA9w50U7kZVeJn0lVryo45+m7z3GU+FFeDo+PmXrgQ7PxNG01nXCL12O5P6+H/9X+vK1s+ikE09I9ccee+yx76/7I2++TWefNYQGDx4s3KUkDPYzxCWDxKXq27ncEIIbbrjhhhvuIu533vkjnXrayXTC8cfrKqf6fPDBB/TnP79PZ5zxkVx54IY7zP0arZ3/d7R7vjI2qx8+3HDDDTfccMfuI2++E26w/ys5ws5HxcYGvwFuuOGOgRtuuGM87j/88c903ODj6JSTT1IHasC7774n3/r/0Y+cqg5UUX4J3APQ/Sy1fuEpmv7YIvpMVcJTPyVwww13DNxwwy35Xzkj7Olr2MXFcg833HDDDTfcBd08uv7uu+/L3uNawOG+995f6DRxHyZPHrjhDnNfQm3CWP+3wefDDTfccMMNd3F3Hs4I+9lnnakPMyIUafob4IYb7hi44YY7Jtv9pz+/R3/5y1/o9NM/It3V5He//yOdfOKJdOqpPIJfHXkVcMMNdwzccMMdAzfc1Xe/ceStckbYxUU6DGXxww033HDDDXdx92mnniynrLNxXa2Rdg5Hhvfhh8JYP7mq8sINN9xwww033HD3qDuHaIT9yG/fobM+PkQGoMOQcBBwx8ANN9wxcMMd6v79H/5E7773FzrllJPkS+gGHz+YjpMVVRjd3R/S0aMf0gdHj8pp9qecfCJ99KOnVU0+Bm644Y6BG264Y+CGu1ZuHss48tu3hR1+Rv5L597+3R/pY6Lxo040wYg9N6jkqIh2J/fwhz/8S4/DX+3hD3/L/y8fHKM/v/suHROG91FR7/BIeSjcC328qJ8GDz6OTj31FDrxBFFX9bD88Ic//OEPf/jDH/7V9Gc7nAc1zvjYR/wG+4cffijf5nv88cert/lmhI099thjjz322GOPPfbYY4899thXvv/zu+/JQYzTP3IqHXdcyfvgJdFRnl7IawLZ4GfkXgQCN9xwww033HDDDTfccMMNN9xwV9fNo+unCjvchxxhF8jheP48zl8++ICGnPEx4SVCi9ChR8ANN9wxcMMNdwzccMMdAzfccMfADTfcMYPorXd+RyeeoGa483R49RK6UuQIO3vyEPyJJx5PJ514orzYXGDeXgc33HDDDTfccMMNN9xwww033HBX5n7rnd/TKSedJGzvE6QdbvzSkCPs+rccZT969Ch9cJQXv/+ZPnb6R+ikk06gwTmBAAAAAAAAAAAAoBQ1o/1DOZv9nd/9kU7/6Kl0wvGD5Tvksl42Z3AMdv7JL6Bjw53377//AX0gAmYjnr+jCwAAAAAAAAAAgHCOO26Q/Kzt8ccfF42qs6GeN7rOOAY7w05juJvNHAcAAAAAAAAAAEA4xihnA91sfCxkFnuJwW4whrv5DQAAAAAAAAAAgPIxxnmooW7INNgBAAAAAAAAAADQWxD9/9JLS14BNzF7AAAAAElFTkSuQmCC" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Download the dataset from HuggingFace repo\n", + "\n", + "- For our example, we download and use the Quora dataset: https://huggingface.co/datasets/twodgirl/baize-quora\n", + "- The dataset from hugging face is in the below format\n", + " \n", + " ![image.png](attachment:image.png)\n", + " \n", + "- For this example the data will be transformed into chat completion format and the system prompt is overriden with the one given below\n", + " \n", + " **SystemPrompt**\n", + " ```text\n", + " The following is a conversation between a human and an AI assistant. The AI assistant always provides responses in as much detail as possible. The AI assistant will never ask personal information. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the conversation transcript.\n", + " ```\n", + " \n", + " ---\n", + "\n", + " **Transformed Data**\n", + "\n", + " ```JSON\n", + " {\n", + " \"messages\": [\n", + " {\n", + " \"role\": \"system\",\n", + " \"content\": \"The following is a conversation between a human and an AI assistant. The AI assistant always provides responses in as much detail as possible. The AI assistant will never ask personal information. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the conversation transcript.\"\n", + " },\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": \"I want to know the step by step guide to invest in share market in India.\"\n", + " },\n", + " {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"Sure, I can help with that. Firstly, you need to open a demat and trading account with a registered stockbroker.\"\n", + " },\n", + " {\n", + " \"role\": \"user\",\n", + " \"content\": \"How do I find a registered stockbroker in India?\"\n", + " },\n", + " {\n", + " \"role\": \"assistant\",\n", + " \"content\": \"You can visit the websites of National Stock Exchange (NSE) or Bombay Stock Exchange (BSE) to get a list of registered stockbrokers in India.\"\n", + " }...\n", + " ]\n", + " }\n", + " ```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from datasets import load_dataset\n", + "from pathlib import Path\n", + "import json\n", + "\n", + "\n", + "def load_hf_dataset(\n", + " dataset_name,\n", + " system_prompt,\n", + " train_sample_size=100,\n", + " val_sample_size=100,\n", + " test_sample_size=100,\n", + " train_split_name=\"train\",\n", + "):\n", + "\n", + " full_dataset = load_dataset(dataset_name)\n", + " train_data = full_dataset[train_split_name]\n", + " full_df = train_data.to_pandas()\n", + " conversations = list(full_df.groupby(\"instruction\", sort=False))\n", + " conversations = conversations[\n", + " : train_sample_size + val_sample_size + test_sample_size\n", + " ]\n", + " all_conversations_chat_format = []\n", + " for instruction, conversation_df in conversations:\n", + " conversation = {\"messages\": []}\n", + " conversation_df.reset_index(drop=True, inplace=True)\n", + " for i, row in conversation_df.iterrows():\n", + " if i == 0:\n", + " conversation[\"messages\"].append(\n", + " {\"role\": \"system\", \"content\": system_prompt}\n", + " )\n", + " conversation[\"messages\"].append({\"role\": \"user\", \"content\": row[\"input\"]})\n", + " conversation[\"messages\"].append(\n", + " {\"role\": \"assistant\", \"content\": row[\"output\"]}\n", + " )\n", + " all_conversations_chat_format.append(conversation)\n", + " train_data = all_conversations_chat_format[:train_sample_size]\n", + " val_data = all_conversations_chat_format[\n", + " train_sample_size : train_sample_size + val_sample_size\n", + " ]\n", + " test_data = all_conversations_chat_format[\n", + " train_sample_size\n", + " + val_sample_size : train_sample_size\n", + " + val_sample_size\n", + " + test_sample_size\n", + " ]\n", + "\n", + " return train_data, val_data, test_data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# We can define train and test sample sizes here.\n", + "train_sample_size = 100\n", + "val_sample_size = 100\n", + "system_prompt = \"The following is a conversation between a human and an AI assistant. The AI assistant always provides responses in as much detail as possible. The AI assistant will never ask personal information. The AI assistant always declines to engage with topics, questions and instructions related to unethical, controversial, or sensitive issues. Complete the conversation transcript.\"\n", + "# Sample notebook using the dataset: https://huggingface.co/datasets/cestwc/conjnli\n", + "dataset_name = \"twodgirl/baize-quora\"\n", + "\n", + "\n", + "# Note: train_split_name and test_split_name can vary by dataset. They are passed as arguments in load_hf_dataset.\n", + "# If val_split_name is None, the below function will split the train set to create the specified sized validation set.\n", + "train, val, _ = load_hf_dataset(\n", + " dataset_name=dataset_name,\n", + " system_prompt=system_prompt,\n", + " train_sample_size=train_sample_size,\n", + " val_sample_size=val_sample_size,\n", + ")\n", + "\n", + "print(\"Len of train data sample is \" + str(len(train)))\n", + "print(\"Len of validation data sample is \" + str(len(val)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "! mkdir -p data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_data_path = Path(f\"data/train_quora_{train_sample_size}.jsonl\")\n", + "valid_data_path = Path(f\"data/valid_quora_{val_sample_size}.jsonl\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(train_data_path, \"w\") as f:\n", + " for row in train:\n", + " f.write(json.dumps(row) + \"\\n\")\n", + "\n", + "with open(valid_data_path, \"w\") as f:\n", + " for row in val:\n", + " f.write(json.dumps(row) + \"\\n\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Prepare data inputs\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_data = None\n", + "train_data_name = \"quora_chat_train_data\"\n", + "\n", + "train_data = ml_client.data.create_or_update(\n", + " Data(\n", + " path=train_data_path,\n", + " type=AssetTypes.URI_FILE,\n", + " description=\"Training dataset\",\n", + " name=train_data_name,\n", + " )\n", + ")\n", + "\n", + "train_data_asset_id = f\"azureml://locations/{ai_project.location}/workspaces/{ai_project._workspace_id}/data/{train_data.name}/versions/{train_data.version}\"\n", + "print(f\"{train_data_asset_id=}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "valid_data = None\n", + "valid_data_name = \"quora_chat_valid_data\"\n", + "\n", + "valid_data = ml_client.data.create_or_update(\n", + " Data(\n", + " path=valid_data_path,\n", + " type=AssetTypes.URI_FILE,\n", + " description=\"validation dataset\",\n", + " name=valid_data_name,\n", + " )\n", + ")\n", + "\n", + "valid_data_asset_id = f\"azureml://locations/{ai_project.location}/workspaces/{ai_project._workspace_id}/data/{valid_data.name}/versions/{valid_data.version}\"\n", + "print(f\"{valid_data_asset_id=}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Configure distillation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note:** \n", + "- For each turn in the conversation data, the assistant's response is generated by the teacher model, utilizing the user prompt and the preceding chat history. This synthetic response then replaces the original assistant response in the dataset.\n", + "- The distillation process will proceed using the conversation data generated in this manner." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mlclient_azureml = MLClient(credential, registry_name=\"azureml\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "distillation_pipeline_name = \"oss_distillation_pipeline\"\n", + "distillation_pipeline_component = mlclient_azureml.components.get(\n", + " name=distillation_pipeline_name\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "@pipeline\n", + "def distillation_pipeline(\n", + " teacher_model_endpoint_name: str,\n", + " system_properties: str,\n", + " input_finetune_model: Input,\n", + " train_file_path: Input,\n", + " validation_file_path: Input = None,\n", + "):\n", + " oss_distillation = distillation_pipeline_component(\n", + " teacher_model_endpoint_name=teacher_model_endpoint_name,\n", + " train_file_path=train_file_path,\n", + " validation_file_path=validation_file_path,\n", + " # Finetune\n", + " mlflow_model_path=input_finetune_model,\n", + " model_asset_id=student_model.id,\n", + " system_properties=system_properties,\n", + " ## hyperparams\n", + " learning_rate=2e-5,\n", + " per_device_train_batch_size=1,\n", + " num_train_epochs=3,\n", + " data_generation_task_type=\"CONVERSATION\",\n", + " )\n", + "\n", + " return {\"output_model\": oss_distillation.outputs.output_model}" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "system_properties = {\n", + " \"finetune_oss\": \"True\",\n", + " \"model_asset_id\": student_model.id,\n", + " \"PipelineType\": \"Finetune\",\n", + " \"azureml.PipelineType\": \"Finetune\",\n", + " \"azureml.ModelName\": student_model.name,\n", + " \"azureml.original_model_id\": student_model.id,\n", + " \"azureml.trainingData.assetId\": train_data_asset_id,\n", + "}\n", + "\n", + "json_str = json.dumps(system_properties).replace(\" \", \"\")\n", + "\n", + "system_properties_b64_encoded = base64.b64encode(json_str.encode(\"utf-8\")).decode(\n", + " \"utf-8\"\n", + ")\n", + "print(f\"System properties => {system_properties_b64_encoded}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "train_file_path_input = Input(type=\"uri_file\", path=train_data.path)\n", + "validation_file_path_input = Input(type=\"uri_file\", path=valid_data.path)\n", + "input_finetune_model = Input(type=\"mlflow_model\", path=student_model.id)\n", + "experiment_name = f\"distillation-{TEACHER_MODEL_NAME}\".replace(\".\", \"-\")\n", + "\n", + "finetuning_job = distillation_pipeline(\n", + " teacher_model_endpoint_name=TEACHER_MODEL_ENDPOINT_NAME,\n", + " system_properties=system_properties_b64_encoded,\n", + " input_finetune_model=input_finetune_model,\n", + " train_file_path=train_file_path_input,\n", + " validation_file_path=validation_file_path_input,\n", + ")\n", + "\n", + "finetuning_job.properties.update(system_properties)\n", + "print(f\"job property: {finetuning_job.properties}\")\n", + "\n", + "# pipeline_job.identity = UserIdentityConfiguration()\n", + "finetuning_job.display_name = f\"finetune-{student_model.name}\"\n", + "finetuning_job.experiment_name = experiment_name\n", + "finetuning_job.settings.default_compute_type = \"serverless\"\n", + "finetuning_job.continue_on_step_failure = False\n", + "# pipeline_job.settings.force_rerun = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Submit pipeline job" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Submit pipeline job to workspace\n", + "ft_job = ml_client.jobs.create_or_update(finetuning_job)\n", + "print(f\"Submitted job, progress available at {ft_job.studio_url}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Consuming the distilled model\n", + "\n", + "Once the above job completes, you should be able to deploy the model and use it for inferencing. To deploy this model, do the following:\n", + "\n", + "* Go to AI Studio\n", + "* Navigate to the Fine-tuning tab on the left menu\n", + "* In the list of models you see, click on the model which got created from the distillation\n", + "* This should take you to the details page where you can see the model attributes and other details\n", + "* Click on the Deploy button on top of the page\n", + "* Follow the steps to deploy the model" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}