-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
Copy pathcli-jobs-pipelines-with-components-image_classification_with_densenet-pipeline.yml
51 lines (50 loc) · 1.88 KB
/
cli-jobs-pipelines-with-components-image_classification_with_densenet-pipeline.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# This code is autogenerated.
# Code is generated by running custom script: python3 readme.py
# Any manual changes to this file may cause incorrect behavior.
# Any manual changes will be overwritten if the code is regenerated.
name: cli-jobs-pipelines-with-components-image_classification_with_densenet-pipeline
on:
workflow_dispatch:
schedule:
- cron: "4 6/12 * * *"
pull_request:
branches:
- main
paths:
- cli/jobs/pipelines-with-components/image_classification_with_densenet/**
- infra/bootstrapping/**
- .github/workflows/cli-jobs-pipelines-with-components-image_classification_with_densenet-pipeline.yml
- cli/run-pipeline-jobs.sh
- cli/setup.sh
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: check out repo
uses: actions/checkout@v2
- name: azure login
uses: azure/login@v1
with:
creds: ${{secrets.AZUREML_CREDENTIALS}}
- name: bootstrap resources
run: |
echo '${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}';
bash bootstrap.sh
working-directory: infra/bootstrapping
continue-on-error: false
- name: setup-cli
run: |
source "${{ github.workspace }}/infra/bootstrapping/sdk_helpers.sh";
source "${{ github.workspace }}/infra/bootstrapping/init_environment.sh";
bash setup.sh
working-directory: cli
continue-on-error: true
- name: run job
run: |
source "${{ github.workspace }}/infra/bootstrapping/sdk_helpers.sh";
source "${{ github.workspace }}/infra/bootstrapping/init_environment.sh";
bash -x ../../../run-job.sh pipeline.yml
working-directory: cli/jobs/pipelines-with-components/image_classification_with_densenet