-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathclassifier.py
33 lines (24 loc) · 1.04 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import tensorflow as tf
import numpy as np
#Global variables
tf.flags.DEFINE_string("image_path", "./images/image1.jpg", "Image to be classified")
label_path = './retrained_labels.txt'
model_path = './retrained_graph.pb'
FLAGS = tf.flags.FLAGS
FLAGS._parse_flags()
image = tf.gfile.FastGFile(FLAGS.image_path, 'rb').read()
labels = [line.rstrip() for line in tf.gfile.GFile("retrained_labels.txt")]
with tf.gfile.FastGFile(model_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
with tf.Session() as sess:
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
#predict
predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image})
#Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
for node_id in top_k:
human_string = labels[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))