forked from mindspore-lab/mindcv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvolo_d4_ascend.yaml
66 lines (60 loc) · 1.06 KB
/
volo_d4_ascend.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# system
mode: 0
distribute: True
num_parallel_workers: 8
val_while_train: True
val_interval: 1
# dataset
dataset: 'imagenet'
data_dir: '/path/to/imagenet'
shuffle: True
dataset_download: False
batch_size: 32
drop_remainder: True
# augmentation
image_resize: 224
scale: [0.08, 1.0]
ratio: [0.75, 1.33]
hflip: 0.5
vflip: 0.
interpolation: 'bicubic'
auto_augment: 'randaug-m9-mstd0.5-inc1'
re_prob: 0.25
mixup: 0.2
cutmix: 1.0
cutmix_prob: 1.0
crop_pct: 1.15
color_jitter: [0.4, 0.4, 0.4]
# model
model: 'volo_d4'
num_classes: 1000
pretrained: False
ckpt_path: ''
keep_checkpoint_max: 10
ckpt_save_dir: './ckpt'
ckpt_save_policy: 'top_k'
drop_path_rate: 0.5
dataset_sink_mode: True
amp_level: 'O3'
val_amp_level: 'O3'
ema: True
ema_decay: 0.9995
# loss
loss: 'CE'
label_smoothing: 0.1
# lr scheduler
scheduler: 'warmup_cosine_decay'
lr: 0.00025
min_lr: 0.00001
epoch_size: 300
warmup_epochs: 10
decay_epochs: 290
decay_rate: 0.1
# optimizer
opt: 'adamw'
weight_decay: 0.05
momentum: 0.9
loss_scale_type: 'dynamic'
loss_scale: 1024
use_nesterov: False
drop_overflow_update: True