-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_CD_sim.m
136 lines (107 loc) · 4.04 KB
/
plot_CD_sim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
%
% This code will compute the coding direction for a selected session and
% plot the projection to the coding direction .
%
%
%
% Ziqiang Wei
load('ephysDataset.mat')
% use simDataset for the analysis
% sr_right : Spike rate of lick R trials in [trial, neuron, tim bin] format
% sr_left : Spike rate of lick R trials in [trial, neuron, tim bin] format
numUnit = size(simDataset.sr_right,2); % number of unit
numTime = length(timeTag); % number of time bin
%% coding direction
meanMatR = squeeze(mean(simDataset.sr_right,1));
% mean spike rate of each neuron at each time bin. Mean was caluclated over
% trials. Then squeezed to be 2 dimensional.
meanMatL = squeeze(mean(simDataset.sr_left,1));
cdMat = meanMatR - meanMatL; % note: this is the simplest way of computing the CD, but it has
% some issues
% figure;
% title('Coding direction correlation across time for Simultaneous Session')
% hold on
% imagesc(timeTag, timeTag, corr(cdMat));
% gridxy([-2.6 -1.3 0],[-2.6 -1.3 0],'Color','k','Linestyle','--') ;
% xlim([-3.0 1.5]);
% ylim([-3.0 1.5]);
% xlabel('Time from movement (sec)')
% ylabel('Time from movement (sec)')
% hold off
%% projection of data to delay-epoch coding direction
timeToAnalyze = timeTag > -0.4 & timeTag < 0;
cdDelay = mean(cdMat(:,timeToAnalyze), 2); % avergae CD duirng the last 400ms of the delay epoch
cdDelay = cdDelay/norm(cdDelay); % normlize CD to be unit vector
cdProjR = meanMatR' * cdDelay; % projecton of lickR trial activity to CD
cdProjL = meanMatL' * cdDelay;
figure;
title('Coding direction projection (one session)')
hold on
plot(timeTag, cdProjR, '-b')
plot(timeTag, cdProjL, '-r')
gridxy([-2.6 -1.3 0],'Color','k','Linestyle','--') ;
xlim([-3.0 1.5]);
xlabel('Time from movement (sec)')
ylabel('Activity projected coding direction')
hold off
%% find the second biggest mode
% acquire spike rate at pre sample epoch to subtract baseline spike rate
sample_start = -2.6;
preR = mean(simDataset.sr_right(:,:,timeTag<sample_start),3);
preL = mean(simDataset.sr_left(:,:,timeTag<sample_start),3);
baseline_matrix = [preR;preL];
rdMat = nan(numUnit,numTime);
% Do SVD at each time point
for t = 1:numTime
data = [ squeeze(simDataset.sr_right(:,:,t)); squeeze(simDataset.sr_left(:,:,t))]; % spike rate at each time point
data = data-baseline_matrix;
[~,~,svd_v] = svd(data); % svd of spike rate
rdMat(:,t)=svd_v(:,1); % extarct the first component
end
% average it and rotate to CD
rdDelay = mean(rdMat(:, timeToAnalyze), 2); % average SVD mode during the last 400ms of the delay epoch
[orth_Delay,along] = func_orthrog_vectors(cdDelay,rdDelay); % rotatet the mode to CD
orth_Delay = orth_Delay/norm(orth_Delay); % normalize it
%% projection of data to second mode
odProjR = meanMatR' * orth_Delay;
odProjL = meanMatL' * orth_Delay;
figure;
title('Projection to second mode, orthogonal to CD (one session)')
hold on
plot(timeTag, odProjR, '-b')
plot(timeTag, odProjL, '-r')
gridxy([-2.6 -1.3 0],'Color','k','Linestyle','--') ;
xlim([-3.0 1.5]);
xlabel('Time from movement (sec)')
ylabel('Activity projected to 2. mode')
hold off
%% variance explained
% first calucalte the square sum of spike rate among all neurons
srR = squeeze(mean(simDataset.sr_right,1));
srL = squeeze(mean(simDataset.sr_left,1));
varR = sum(srR.^2,1);
varL = sum(srL.^2,1);
% square of projection to CD
varCdR = cdProjR'.^2;
varCdL = cdProjL'.^2;
% square of projection to orthogonal direction
varOdR = odProjR'.^2;
varOdL = odProjL'.^2;
figure
subplot(2,1,1)
hold on
plot(timeTag, varCdR./varR,'b')
plot(timeTag, varCdL./varL,'r')
gridxy([-2.6 -1.3 0],'Color','k','Linestyle','--') ;
xlim([-3.0 1.5]);
xlabel('Time from movement (sec)')
ylabel('Variance explained by second mode')
subplot(2,1,2)
hold on
plot(timeTag, varOdR./varR,'b')
plot(timeTag, varOdL./varL,'r')
gridxy([-2.6 -1.3 0],'Color','k','Linestyle','--') ;
xlim([-3.0 1.5]);
xlabel('Time from movement (sec)')
ylabel('Variance explained by orthogonal direction')