Skip to content

Latest commit

 

History

History
108 lines (87 loc) · 2.71 KB

README.md

File metadata and controls

108 lines (87 loc) · 2.71 KB

BERT_NER

Named entity recognition with BERT

Code to finetune a pretrained BERT model for NER task.

The following library is used for loading pretrained BERT:

https://github.com/huggingface/transformers

Code could, for example, be run on the following dataset: https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus

Training data should be a csv, f.e.:

Sentence #,Word,POS,Tag
Sentence: 1,Thousands,NNS,O
,of,IN,O
,demonstrators,NNS,O
,have,VBP,O
,marched,VBN,O
,through,IN,O
,London,NNP,B-geo
,to,TO,O
,protest,VB,O
,the,DT,O
,war,NN,O
,in,IN,O
,Iraq,NNP,B-geo
,and,CC,O
,demand,VB,O
,the,DT,O
,withdrawal,NN,O
,of,IN,O
,British,JJ,B-gpe
,troops,NNS,O
,from,IN,O
,that,DT,O
,country,NN,O
,.,.,O
Sentence: 2,Families,NNS,O
,of,IN,O
,soldiers,NNS,O
,killed,VBN,O
,in,IN,O
,the,DT,O
...

One can finetune a pretrained BERT model on this data:

python train.py
--data /notebook/nas-trainings/arne/OCCAM/NER_with_BERT/DATA/ner_dataset.csv
--output_dir /notebook/nas-trainings/arne/OCCAM/NER_with_BERT/Fine_tuned_models/ner_en
--epochs 5
--batch_size 64
--gpu 1

And next apply the finetuned model on a set of tokenized sentences:

python test.py
--input_file /notebook/nas-trainings/arne/OCCAM/NER_with_BERT/DATA/test_sentences.txt
--model_dir /notebook/nas-trainings/arne/OCCAM/NER_with_BERT/Fine_tuned_models/ner_en
--output_dir /notebook/nas-trainings/arne/OCCAM/NER_with_BERT/output_folder
--gpu 1

By default inference will be on gpu. To do inference on cpu, set --gpu -1.

On gpu (GeForce RTX 2080 Titan), we obtain an inference speed of 12 000 tokens/s, while on cpu this drops to 660 tokens/s (6 threads, batch size of 32 sentences).

The test.py script will create a file results in the output folder with the NER results in the BIO scheme.

F.e.:

sentence_0 thousands O
sentence_0 of O
sentence_0 demonstrators O
sentence_0 have O
sentence_0 marched O
sentence_0 through O
sentence_0 london B-geo
sentence_0 to O
sentence_0 protest O
sentence_0 the O
sentence_0 war O
sentence_0 in O
sentence_0 iraq B-geo
sentence_0 and O
sentence_0 demand O
sentence_0 the O
sentence_0 withdrawal O
sentence_0 of O
sentence_0 british B-gpe
sentence_0 troops O
sentence_0 from O
sentence_0 that O
sentence_0 country O
sentence_0 . O
sentence_1 iranian B-gpe
sentence_1 officials O
sentence_1 say O
sentence_1 they O
sentence_1 expect O
sentence_1 to O
...