From ed97c40194bfa71bbd00e404abc9f303cf4c0858 Mon Sep 17 00:00:00 2001 From: Arne Binder Date: Mon, 6 Jan 2025 21:25:48 +0100 Subject: [PATCH] update all pre-commit hooks to via autoupdate --- .pre-commit-config.yaml | 20 +++++++------- dataset_builders/pie/aae2/README.md | 16 ++++++------ dataset_builders/pie/abstrct/README.md | 16 ++++++------ dataset_builders/pie/cdcp/README.md | 2 +- .../conll2012_ontonotesv5.py | 6 ++--- dataset_builders/pie/sciarg/README.md | 10 +++---- src/pie_datasets/core/builder.py | 18 +++++-------- src/pie_datasets/core/dataset.py | 26 ++++++++++--------- tests/dataset_builders/common.py | 2 +- .../pie/sciarg/test_sciarg.py | 8 +++--- tests/unit/builder/test_brat_builder.py | 6 ++--- 11 files changed, 64 insertions(+), 66 deletions(-) diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 9eba8705..22091a76 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -5,7 +5,7 @@ exclude: '^tests/fixtures/.*|^data/.*' repos: - repo: https://github.com/pre-commit/pre-commit-hooks - rev: v4.4.0 + rev: v5.0.0 hooks: # list of supported hooks: https://pre-commit.com/hooks.html - id: trailing-whitespace @@ -23,21 +23,21 @@ repos: # python code formatting - repo: https://github.com/psf/black - rev: 23.7.0 + rev: 24.10.0 hooks: - id: black args: [--line-length, "99"] # python import sorting - repo: https://github.com/PyCQA/isort - rev: 5.12.0 + rev: 5.13.2 hooks: - id: isort args: ["--profile", "black", "--filter-files"] # python upgrading syntax to newer version - repo: https://github.com/asottile/pyupgrade - rev: v3.9.0 + rev: v3.19.1 hooks: - id: pyupgrade args: [--py38-plus] @@ -46,17 +46,17 @@ repos: - repo: https://github.com/myint/docformatter # rev: v1.7.6 # as long as https://github.com/PyCQA/docformatter/pull/287 is not yet released - rev: 06907d0 + rev: v1.7.5 hooks: - id: docformatter args: [--in-place, --wrap-summaries=99, --wrap-descriptions=99] # python check (PEP8), programming errors and code complexity - repo: https://github.com/PyCQA/flake8 - rev: 6.0.0 + rev: 7.1.1 hooks: - id: flake8 - args: ["--ignore", "E501,F401,F841,W503,E203", "--extend-select", "W504", "--exclude", "logs/*"] + args: ["--ignore", "E501,F401,F841,W503,E203,E704", "--extend-select", "W504", "--exclude", "logs/*"] # python security linter # - repo: https://github.com/PyCQA/bandit @@ -68,7 +68,7 @@ repos: # md formatting - repo: https://github.com/executablebooks/mdformat - rev: 0.7.16 + rev: 0.7.21 hooks: - id: mdformat args: ["--number"] @@ -81,7 +81,7 @@ repos: # word spelling linter - repo: https://github.com/codespell-project/codespell - rev: v2.2.5 + rev: v2.3.0 hooks: - id: codespell args: @@ -92,7 +92,7 @@ repos: # python static type checking - repo: https://github.com/pre-commit/mirrors-mypy - rev: v1.4.1 + rev: v1.14.1 hooks: - id: mypy files: src diff --git a/dataset_builders/pie/aae2/README.md b/dataset_builders/pie/aae2/README.md index 81c958a9..e30d5891 100644 --- a/dataset_builders/pie/aae2/README.md +++ b/dataset_builders/pie/aae2/README.md @@ -53,11 +53,11 @@ See [PIE-Brat Data Schema](https://huggingface.co/datasets/pie/brat#data-schema) ### Data Splits -| Statistics | Train | Test | -| ---------------------------------------------------------------- | -------------------------: | -----------------------: | -| No. of document | 322 | 80 | -| Components
- `MajorClaim`
- `Claim`
- `Premise` |
598
1202
3023 |
153
304
809 | -| Relations\*
- `supports`
- `attacks` |
3820
405 |
1021
92 | +| Statistics | Train | Test | +| ------------------------------------------------------------ | -------------------------: | -----------------------: | +| No. of document | 322 | 80 | +| Components
- `MajorClaim`
- `Claim`
- `Premise` |
598
1202
3023 |
153
304
809 | +| Relations\*
- `supports`
- `attacks` |
3820
405 |
1021
92 | \* included all relations between claims and premises and all claim attributions. @@ -90,7 +90,7 @@ See further statistics in Stab & Gurevych (2017), p. 650, Table A.1. See further description in Stab & Gurevych 2017, p.627 and the [annotation guideline](https://github.com/ArneBinder/pie-datasets/blob/db94035602610cefca2b1678aa2fe4455c96155d/data/datasets/ArgumentAnnotatedEssays-2.0/guideline.pdf). -**Note that** relations between `MajorClaim` and `Claim` were not annotated; however, each claim is annotated with an `Attribute` annotation with value `for` or `against` - which indicates the relation between itself and `MajorClaim`. In addition, when two non-related `Claim` 's appear in one paragraph, there is also no relations to one another. An example of a document is shown here below. +**Note that** relations between `MajorClaim` and `Claim` were not annotated; however, each claim is annotated with an `Attribute` annotation with value `for` or `against` - which indicates the relation between itself and `MajorClaim`. In addition, when two non-related `Claim` 's appear in one paragraph, there is also no relations to one another. An example of a document is shown here below. #### Example @@ -351,7 +351,7 @@ Three non-native speakers; one of the three being an expert annotator. ### Social Impact of Dataset -"\[Computational Argumentation\] have +"[Computational Argumentation] have broad application potential in various areas such as legal decision support (Mochales-Palau and Moens 2009), information retrieval (Carstens and Toni 2015), policy making (Sardianos et al. 2015), and debating technologies (Levy et al. 2014; Rinott et al. 2015)." (p. 619) @@ -366,7 +366,7 @@ The relations between claims and major claims are not explicitly annotated. "The proportion of non-argumentative text amounts to 47,474 tokens (32.2%) and 1,631 sentences (22.9%). The number of sentences with several argument components is 583, of which 302 include several components with different types (e.g., a claim followed by premise)... -\[T\]he identification of argument components requires the +[T]he identification of argument components requires the separation of argumentative from non-argumentative text units and the recognition of component boundaries at the token level...The proportion of paragraphs with unlinked argument components (e.g., unsupported claims without incoming relations) is 421 diff --git a/dataset_builders/pie/abstrct/README.md b/dataset_builders/pie/abstrct/README.md index 0bbf2daa..eb331e15 100644 --- a/dataset_builders/pie/abstrct/README.md +++ b/dataset_builders/pie/abstrct/README.md @@ -61,7 +61,7 @@ The dataset provides document converters for the following target document types - `LabeledSpans`, converted from `BratDocumentWithMergedSpans`'s `spans` - labels: `MajorClaim`, `Claim`, `Premise` - `BinraryRelations`, converted from `BratDocumentWithMergedSpans`'s `relations` - - labels: `Support`, `Partial-Attack`, `Attack` + - labels: `Support`, `Partial-Attack`, `Attack` See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type definitions. @@ -93,7 +93,7 @@ Morio et al. ([2022](https://aclanthology.org/2022.tacl-1.37.pdf); p. 642, Table - `MajorClaim` are more general/concluding `claim`'s, which is supported by more specific claims - `Claim` is a concluding statement made by the author about the outcome of the study. Claims only points to other claims. -- `Premise` (a.k.a. evidence) is an observation or measurement in the study, which supports or attacks another argument component, usually a `claim`. They are observed facts, and therefore credible without further justifications, as this is the ground truth the argumentation is based on. +- `Premise` (a.k.a. evidence) is an observation or measurement in the study, which supports or attacks another argument component, usually a `claim`. They are observed facts, and therefore credible without further justifications, as this is the ground truth the argumentation is based on. (Mayer et al. 2020, p.2110) @@ -354,7 +354,7 @@ python src/evaluate_documents.py dataset=abstrct_base metric=count_text_tokens ### Curation Rationale -"\[D\]espite its natural employment in healthcare applications, only few approaches have applied AM methods to this kind +"[D]espite its natural employment in healthcare applications, only few approaches have applied AM methods to this kind of text, and their contribution is limited to the detection of argument components, disregarding the more complex phase of predicting the relations among them. In addition, no huge annotated @@ -373,7 +373,7 @@ Extended from the previous dataset in [Mayer et al. 2018](https://webusers.i3s.u #### Who are the source language producers? -\[More Information Needed\] +[More Information Needed] ### Annotations @@ -405,7 +405,7 @@ Two annotators with background in computational linguistics. No information was ### Personal and Sensitive Information -\[More Information Needed\] +[More Information Needed] ## Considerations for Using the Data @@ -426,17 +426,17 @@ scale." (p. 2114) ### Discussion of Biases -\[More Information Needed\] +[More Information Needed] ### Other Known Limitations -\[More Information Needed\] +[More Information Needed] ## Additional Information ### Dataset Curators -\[More Information Needed\] +[More Information Needed] ### Licensing Information diff --git a/dataset_builders/pie/cdcp/README.md b/dataset_builders/pie/cdcp/README.md index 1ea8748c..aa640ed2 100644 --- a/dataset_builders/pie/cdcp/README.md +++ b/dataset_builders/pie/cdcp/README.md @@ -49,7 +49,7 @@ The dataset provides document converters for the following target document types - labels: `fact`, `policy`, `reference`, `testimony`, `value` - if `propositions` contain whitespace at the beginning and/or the end, the whitespace are trimmed out. - `binary_relations`: `BinaryRelation` annotations, converted from `CDCPDocument`'s `relations` - - labels: `reason`, `evidence` + - labels: `reason`, `evidence` See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type definitions. diff --git a/dataset_builders/pie/conll2012_ontonotesv5/conll2012_ontonotesv5.py b/dataset_builders/pie/conll2012_ontonotesv5/conll2012_ontonotesv5.py index 2304006a..d56ed490 100644 --- a/dataset_builders/pie/conll2012_ontonotesv5/conll2012_ontonotesv5.py +++ b/dataset_builders/pie/conll2012_ontonotesv5/conll2012_ontonotesv5.py @@ -447,9 +447,9 @@ def _generate_document_kwargs(self, dataset): pos_tags_feature = dataset.features["sentences"][0]["pos_tags"].feature return dict( entity_labels=dataset.features["sentences"][0]["named_entities"].feature, - pos_tag_labels=pos_tags_feature - if isinstance(pos_tags_feature, datasets.ClassLabel) - else None, + pos_tag_labels=( + pos_tags_feature if isinstance(pos_tags_feature, datasets.ClassLabel) else None + ), ) def _generate_document(self, example, **document_kwargs): diff --git a/dataset_builders/pie/sciarg/README.md b/dataset_builders/pie/sciarg/README.md index 0019bd63..e30552bb 100644 --- a/dataset_builders/pie/sciarg/README.md +++ b/dataset_builders/pie/sciarg/README.md @@ -155,7 +155,7 @@ possibly since [Lauscher et al., 2018](https://aclanthology.org/W18-5206/) prese - `supports`: - if the assumed veracity of *b* increases with the veracity of *a* - - "Usually, this relationship exists from data to claim, but in many cases a claim might support another claim. Other combinations are still possible." - (*Annotation Guidelines*, p. 3) + - "Usually, this relationship exists from data to claim, but in many cases a claim might support another claim. Other combinations are still possible." - (*Annotation Guidelines*, p. 3) - `contradicts`: - if the assumed veracity of *b* decreases with the veracity of *a* - It is a **bi-directional**, i.e., symmetric relationship. @@ -335,7 +335,7 @@ python src/evaluate_documents.py dataset=sciarg_base metric=count_text_tokens ### Curation Rationale -"\[C\]omputational methods for analyzing scientific writing are becoming paramount...there is no publicly available corpus of scientific publications (in English), annotated with fine-grained argumentative structures. ...\[A\]rgumentative structure of scientific publications should not be studied in isolation, but rather in relation to other rhetorical aspects, such as the +"[C]omputational methods for analyzing scientific writing are becoming paramount...there is no publicly available corpus of scientific publications (in English), annotated with fine-grained argumentative structures. ...[A]rgumentative structure of scientific publications should not be studied in isolation, but rather in relation to other rhetorical aspects, such as the discourse structure. (Lauscher et al. 2018, p. 40) @@ -343,7 +343,7 @@ discourse structure. #### Initial Data Collection and Normalization -"\[W\]e randomly selected a set of 40 documents, available in PDF format, among a bigger collection provided by experts in the domain, who pre-selected a representative sample of articles in Computer Graphics. Articles were classified into four important subjects in this area: Skinning, Motion Capture, Fluid Simulation and Cloth Simulation. We included in the corpus 10 highly representative articles for each subject." (Fisas et al. 2015, p. 44) +"[W]e randomly selected a set of 40 documents, available in PDF format, among a bigger collection provided by experts in the domain, who pre-selected a representative sample of articles in Computer Graphics. Articles were classified into four important subjects in this area: Skinning, Motion Capture, Fluid Simulation and Cloth Simulation. We included in the corpus 10 highly representative articles for each subject." (Fisas et al. 2015, p. 44) "The Corpus includes 10,789 sentences, with an average of 269.7 sentences per document." (p. 45) @@ -367,7 +367,7 @@ The annotation were done using BRAT Rapid Annotation Tool ([Stenetorp et al., 20 ### Personal and Sensitive Information -\[More Information Needed\] +[More Information Needed] ## Considerations for Using the Data @@ -384,7 +384,7 @@ of the different rhetorical aspects of scientific language (which we dub *scitor "While the background claims and own claims are on average of similar length (85 and 87 characters, respectively), they are much longer than data components (average of 25 characters)." -"\[A\]nnotators identified an average of 141 connected component per publication...This indicates that either authors write very short argumentative chains or that our annotators had difficulties noticing long-range argumentative dependencies." +"[A]nnotators identified an average of 141 connected component per publication...This indicates that either authors write very short argumentative chains or that our annotators had difficulties noticing long-range argumentative dependencies." (Lauscher et al. 2018, p.43) diff --git a/src/pie_datasets/core/builder.py b/src/pie_datasets/core/builder.py index bfa0ca63..ae894105 100644 --- a/src/pie_datasets/core/builder.py +++ b/src/pie_datasets/core/builder.py @@ -176,12 +176,10 @@ def _generate_example_kwargs( return None # pragma: no cover @overload # type: ignore - def _convert_dataset_single(self, dataset: datasets.IterableDataset) -> IterableDataset: - ... + def _convert_dataset_single(self, dataset: datasets.IterableDataset) -> IterableDataset: ... @overload # type: ignore - def _convert_dataset_single(self, dataset: datasets.Dataset) -> Dataset: - ... + def _convert_dataset_single(self, dataset: datasets.Dataset) -> Dataset: ... def _convert_dataset_single( self, dataset: Union[datasets.Dataset, datasets.IterableDataset] @@ -204,22 +202,18 @@ def _convert_dataset_single( return result @overload # type: ignore - def _convert_datasets(self, datasets: datasets.DatasetDict) -> datasets.DatasetDict: - ... + def _convert_datasets(self, datasets: datasets.DatasetDict) -> datasets.DatasetDict: ... @overload # type: ignore def _convert_datasets( self, datasets: datasets.IterableDatasetDict - ) -> datasets.IterableDatasetDict: - ... + ) -> datasets.IterableDatasetDict: ... @overload # type: ignore - def _convert_datasets(self, datasets: datasets.IterableDataset) -> IterableDataset: - ... + def _convert_datasets(self, datasets: datasets.IterableDataset) -> IterableDataset: ... @overload # type: ignore - def _convert_datasets(self, datasets: datasets.Dataset) -> Dataset: - ... + def _convert_datasets(self, datasets: datasets.Dataset) -> Dataset: ... def _convert_datasets( self, diff --git a/src/pie_datasets/core/dataset.py b/src/pie_datasets/core/dataset.py index f592cbd4..f3db53c5 100644 --- a/src/pie_datasets/core/dataset.py +++ b/src/pie_datasets/core/dataset.py @@ -179,8 +179,7 @@ def dataset_to_document_type( dataset: "Dataset", document_type: Type[Document], **kwargs, -) -> "Dataset": - ... +) -> "Dataset": ... @overload @@ -188,8 +187,7 @@ def dataset_to_document_type( dataset: "IterableDataset", document_type: Type[Document], **kwargs, -) -> "IterableDataset": - ... +) -> "IterableDataset": ... def dataset_to_document_type( @@ -383,9 +381,11 @@ def map( result_document_type: Optional[Type[Document]] = None, ) -> "Dataset": dataset = super().map( - function=decorate_convert_to_dict_of_lists(function) - if as_documents and function is not None - else function, + function=( + decorate_convert_to_dict_of_lists(function) + if as_documents and function is not None + else function + ), with_indices=with_indices, with_rank=with_rank, input_columns=input_columns, @@ -588,11 +588,13 @@ def map( # type: ignore **kwargs, ) -> "IterableDataset": dataset_mapped = super().map( - function=decorate_convert_to_document_and_back( - function, document_type=self.document_type, batched=batched - ) - if as_documents and function is not None - else function, + function=( + decorate_convert_to_document_and_back( + function, document_type=self.document_type, batched=batched + ) + if as_documents and function is not None + else function + ), batched=batched, **kwargs, ) diff --git a/tests/dataset_builders/common.py b/tests/dataset_builders/common.py index 330881ba..c1f2a81d 100644 --- a/tests/dataset_builders/common.py +++ b/tests/dataset_builders/common.py @@ -33,7 +33,7 @@ def _deep_compare( if re.match(excluded_path, path): return - if type(obj) != type(obj_expected): + if type(obj) is not type(obj_expected): raise AssertionError(f"{path}: {obj} != {obj_expected}") if isinstance(obj, (list, tuple)): if len(obj) != len(obj_expected): diff --git a/tests/dataset_builders/pie/sciarg/test_sciarg.py b/tests/dataset_builders/pie/sciarg/test_sciarg.py index 2a1b1218..c07e9966 100644 --- a/tests/dataset_builders/pie/sciarg/test_sciarg.py +++ b/tests/dataset_builders/pie/sciarg/test_sciarg.py @@ -842,9 +842,11 @@ def test_tokenize_documents_all(converted_dataset, tokenizer, dataset_variant): tokenizer=tokenizer, return_overflowing_tokens=True, result_document_type=TOKENIZED_DOCUMENT_TYPE_MAPPING[type(doc)], - partition_layer="labeled_partitions" - if isinstance(doc, TextDocumentWithLabeledPartitions) - else None, + partition_layer=( + "labeled_partitions" + if isinstance(doc, TextDocumentWithLabeledPartitions) + else None + ), strict_span_conversion=strict_span_conversion, verbose=True, ) diff --git a/tests/unit/builder/test_brat_builder.py b/tests/unit/builder/test_brat_builder.py index 1373a33c..1e403bb7 100644 --- a/tests/unit/builder/test_brat_builder.py +++ b/tests/unit/builder/test_brat_builder.py @@ -107,9 +107,9 @@ def hf_example(request) -> dict: def test_generate_document(builder, hf_example): kwargs = dict() - generated_document: Union[ - BratDocument, BratDocumentWithMergedSpans - ] = builder._generate_document(example=hf_example, **kwargs) + generated_document: Union[BratDocument, BratDocumentWithMergedSpans] = ( + builder._generate_document(example=hf_example, **kwargs) + ) if hf_example == HF_EXAMPLES[0]: assert len(generated_document.relations) == 0