-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmRNA_to_ORF.py
124 lines (103 loc) · 4.52 KB
/
mRNA_to_ORF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""
@author : Julie Bogoin
Master 2 BIB Paris Diderot - 2019-2020
Projet Long
"""
## Import des modules ##
import os
import pandas
import re
from Bio import SeqIO
## Fonctions ##
def listdir_nohidden(path):
for f in os.listdir(path):
if not f.startswith('.'):
yield f
## MAIN ##
fasta_list = listdir_nohidden('./mRNA_fasta')
path = './mRNA_fasta/'
dico={}
annovar_line = []
transcript_name = []
mutation_name = []
mRNA_sens = []
mRNA_antisens = []
gene = []
longueur_mRNA = []
nombre_ORF_sens = []
nombre_ORF_antisens = []
ORF_sens = []
ORF_antisens = []
for file_name in fasta_list:
gene_name = (file_name.split('_')[0])
dico[gene_name+'_mRNA'] = []
dico[gene_name+'_mRNA'].append(SeqIO.to_dict(SeqIO.parse(path+file_name, 'fasta')))
for id in dico[gene_name+'_mRNA']:
for key in id.keys():
if key[5] == 'N':
annovar_line.append(key[0:5])
else:
annovar_line.append(key[0:6])
mRNA_name = re.sub('line(\d)+','',key)
transcript_name.append(mRNA_name[0:9])
mutation_name.append(mRNA_name[9:])
for value in id.values():
orf_sens_list = []
orf_antisens_list = []
mRNA_sens.append(str(value.seq))
mRNA_antisens.append(str(value.seq.complement()))
longueur_mRNA.append(len(str(value.seq)))
gene.append(gene_name)
for cadre in range(3):
#Sens
sens = value.seq[cadre:]
ATG_indice_sens = sens.find('ATG')
TGA_indice_sens = sens.find('TGA')
TAG_indice_sens = sens.find('TAG')
TAA_indice_sens = sens.find('TAA')
orf_TGA_sens = sens[ATG_indice_sens:TGA_indice_sens]
orf_TAG_sens = sens[ATG_indice_sens:TAG_indice_sens]
orf_TAA_sens = sens[ATG_indice_sens:TAA_indice_sens]
if len(str(orf_TGA_sens)) >= 30 and len(str(orf_TGA_sens))%3==0:
orf_sens_list.append(str(orf_TGA_sens))
if len(str(orf_TAG_sens)) >= 30 and len(str(orf_TAG_sens))%3==0:
orf_sens_list.append(str(orf_TAG_sens))
if len(str(orf_TAA_sens)) >= 30 and len(str(orf_TAA_sens))%3==0:
orf_sens_list.append(str(orf_TAA_sens))
#Antisens
antisens = sens.complement()
ATG_indice_antisens = antisens.find('ATG')
TGA_indice_antisens = antisens.find('TGA')
TAG_indice_antisens = antisens.find('TAG')
TAA_indice_antisens = antisens.find('TAA')
orf_TGA_antisens = antisens[ATG_indice_antisens:TGA_indice_antisens]
orf_TAG_antisens = antisens[ATG_indice_antisens:TAG_indice_antisens]
orf_TAA_antisens = antisens[ATG_indice_antisens:TAA_indice_antisens]
if len(str(orf_TGA_antisens)) >= 30 and len(str(orf_TGA_antisens))%3==0 :
orf_antisens_list.append(str(orf_TGA_antisens))
if len(str(orf_TAG_antisens)) >= 30 and len(str(orf_TAG_antisens))%3==0:
orf_antisens_list.append(str(orf_TAG_antisens))
if len(str(orf_TAA_antisens)) >= 30 and len(str(orf_TAA_antisens))%3==0:
orf_antisens_list.append(str(orf_TAA_antisens))
nombre_ORF_sens.append(len(orf_sens_list))
nombre_ORF_antisens.append(len(orf_antisens_list))
ORF_sens.append(orf_sens_list)
ORF_antisens.append(orf_antisens_list)
#Creation dataframe
df = pandas.DataFrame(columns = ['gene','annovar_line','transcript','mutation','mRNA_sens', 'mRNA_antisens','longueur_mRNA','nombre_ORF_sens','ORF_sens','nombre_ORF_antisens','ORF_antisens'])
df['gene'] = pandas.Series(gene)
df['annovar_line'] = pandas.Series(annovar_line)
df['transcript'] = pandas.Series(transcript_name)
df['mutation'] = pandas.Series(mutation_name)
df['mRNA_sens'] = pandas.Series(mRNA_sens)
df['mRNA_antisens'] = pandas.Series(mRNA_antisens)
df['longueur_mRNA'] = pandas.Series(longueur_mRNA)
df['nombre_ORF_sens'] = pandas.Series(nombre_ORF_sens)
df['nombre_ORF_antisens'] = pandas.Series(nombre_ORF_antisens)
df['ORF_sens'] = pandas.Series(ORF_sens)
df['ORF_antisens'] = pandas.Series(ORF_antisens)
print('\nLes mRNA ont ete traites.')
#Export vers csv
pandas.DataFrame.to_csv(df, 'ORF.csv')
print('Le fichier ORF.csv a été généré.\n')
print('Job done.\n')