-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathGenotypeTRcorrection.py
249 lines (212 loc) · 8.48 KB
/
GenotypeTRcorrection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
### import libraries ###
import sys
import collections, math
import heapq
### basic function ###
def stop_err(msg):
sys.stderr.write(msg)
sys.exit()
def averagelist(a,b,expectedlevelofminor):
product=[]
for i in range(len(a)):
product.append((1-expectedlevelofminor)*a[i]+expectedlevelofminor*b[i])
return product
def complement_base(read):
collect=''
for i in read:
if i.upper()=='A':
collect+='T'
elif i.upper()=='T':
collect+='A'
elif i.upper()=='C':
collect+='G'
elif i.upper()=='G':
collect+='C'
return collect
def makeallpossible(read):
collect=[]
for i in range(len(read)):
tmp= read[i:]+read[:i]
collect.append(tmp)
collect.append(complement_base(tmp))
return collect
def motifsimplify(base):
'''str--> str
'''
motiflength=len(base)
temp=list(set(ALLMOTIF[motiflength]).intersection(set(makeallpossible(base))))
return temp[0]
def majorallele(seq):
binseq=list(set(seq))
binseq.sort(reverse=True) # highly mutate mode
#binseq.sort() # majority mode
storeform=''
storevalue=0
for i in binseq:
if seq.count(i)>storevalue:
storeform=i
storevalue=seq.count(i)
return int(storeform)
### decide global parameter ###
COORDINATECOLUMN=1
ALLELECOLUMN=2
MOTIFCOLUMN=3
##(0.01-0.5)
MINIMUMMUTABLE=1.2*(1.0/(10**8)) #http://www.ncbi.nlm.nih.gov/pubmed/22914163 Kong et al 2012
## Fixed global variable
inputname=sys.argv[1]
errorprofile=sys.argv[2]
Genotypingcorrected=sys.argv[3]
EXPECTEDLEVELOFMINOR=float(sys.argv[4])
if EXPECTEDLEVELOFMINOR >0.5:
try:
expected_contribution_of_minor_allele=int('expected_contribution_of_minor_allele')
except Exception, eee:
print eee
stop_err("Expected contribution of minor allele must be at least 0 and not more than 0.5")
ALLREPEATTYPE=[1,2,3,4]
ALLREPEATTYPENAME=['mono','di','tri','tetra']
monomotif=['A','C']
dimotif=['AC','AG','AT','CG']
trimotif=['AAC','AAG','AAT','ACC','ACG','ACT','AGC','AGG','ATC','CCG']
tetramotif=['AAAC','AAAG','AAAT','AACC','AACG','AACT','AAGC','AAGG','AAGT','AATC','AATG','AATT',\
'ACAG','ACAT','ACCC','ACCG','ACCT','ACGC','ACGG','ACGT','ACTC','ACTG','AGAT','AGCC','AGCG','AGCT',\
'AGGC','AGGG','ATCC','ATCG','ATGC','CCCG','CCGG','AGTC']
ALLMOTIF={1:monomotif,2:dimotif,3:trimotif,4:tetramotif}
monorange=range(5,60)
dirange=range(6,60)
trirange=range(9,60)
tetrarange=range(12,80)
ALLRANGE={1:monorange,2:dirange,3:trirange,4:tetrarange}
#########################################
######## Prob calculation sector ########
#########################################
def multinomial_prob(majorallele,STRlength,motif,probdatabase):
'''int,int,str,dict-->int
### get prob for each STRlength to be generated from major allele
'''
#print (majorallele,STRlength,motif)
prob=probdatabase[len(motif)][motif][majorallele][STRlength]
return prob
################################################
######## error model database sector ###########
################################################
## structure generator
errormodeldatabase={1:{},2:{},3:{},4:{}}
sumbymajoralleledatabase={1:{},2:{},3:{},4:{}}
for repeattype in ALLREPEATTYPE:
for motif in ALLMOTIF[repeattype]:
errormodeldatabase[repeattype][motif]={}
sumbymajoralleledatabase[repeattype][motif]={}
for motifsize1 in ALLRANGE[repeattype]:
errormodeldatabase[repeattype][motif][motifsize1]={}
sumbymajoralleledatabase[repeattype][motif][motifsize1]=0
for motifsize2 in ALLRANGE[repeattype]:
errormodeldatabase[repeattype][motif][motifsize1][motifsize2]=MINIMUMMUTABLE
#print errormodeldatabase
## read database
## get read count for each major allele
fd=open(errorprofile)
lines=fd.readlines()
for line in lines:
temp=line.strip().split('\t')
t_major=int(temp[0])
t_count=int(temp[2])
motif=temp[3]
sumbymajoralleledatabase[len(motif)][motif][t_major]+=t_count
fd.close()
##print sumbymajoralleledatabase
## get probability
fd=open(errorprofile)
lines=fd.readlines()
for line in lines:
temp=line.strip().split('\t')
t_major=int(temp[0])
t_read=int(temp[1])
t_count=int(temp[2])
motif=temp[3]
if sumbymajoralleledatabase[len(motif)][motif][t_major]>0:
errormodeldatabase[len(motif)][motif][t_major][t_read]=t_count/(sumbymajoralleledatabase[len(motif)][motif][t_major]*1.0)
#errormodeldatabase[repeattype][motif][t_major][t_read]=math.log(t_count/(sumbymajorallele[t_major]*1.0))
#else:
# errormodeldatabase[repeattype][motif][t_major][t_read]=0
fd.close()
#########################################
######## input reading sector ###########
#########################################
fdout=open(Genotypingcorrected,'w')
fd = open(inputname)
lines=fd.xreadlines()
for line in lines:
i_read=[]
i2_read=[]
temp=line.strip().split('\t')
i_coordinate=temp[COORDINATECOLUMN-1]
i_motif=motifsimplify(temp[MOTIFCOLUMN-1])
i_read=temp[ALLELECOLUMN-1].split(',')
i_read=map(int,i_read)
coverage=len(i_read)
### Evaluate 1 major allele ###
i_all_allele=list(set(i_read))
i_major_allele=majorallele(i_read)
f_majorallele=i_read.count(i_major_allele)
### Evaluate 2 major allele ###
if len(i_all_allele)>1:
i2_read=filter(lambda a: a != i_major_allele, i_read)
i_major2_allele=majorallele(i2_read)
f_majorallele2=i_read.count(i_major2_allele)
### Evaluate 3 major allele ###
if len(i_all_allele)>2:
i3_read=filter(lambda a: a != i_major2_allele, i2_read)
i_major3_allele=majorallele(i3_read)
f_majorallele3=i_read.count(i_major3_allele)
### No 3 major allele ###
elif len(i_all_allele)==2:
i_major3_allele=i_major2_allele
### No 2 major allele ###
elif len(i_all_allele)==1:
#i_major2_allele=majorallele(i_read)
i_major2_allele=i_major_allele+len(i_motif)
i_major3_allele=i_major2_allele
#print line.strip()+'\t'+'\t'.join(['homo','only',str(i_major_allele),str(i_major_allele),'NA'])
#continue
else:
print("no allele is reading")
sys.exit()
## scope filter
#########################################
######## prob calculation sector ########
#########################################
homozygous_collector=0
heterozygous_collector=0
alist=[multinomial_prob(i_major_allele,x,i_motif,errormodeldatabase)for x in i_read]
blist=[multinomial_prob(i_major2_allele,x,i_motif,errormodeldatabase)for x in i_read]
clist=[multinomial_prob(i_major3_allele,x,i_motif,errormodeldatabase)for x in i_read]
ablist=averagelist(alist,blist,EXPECTEDLEVELOFMINOR)
bclist=averagelist(blist,clist,EXPECTEDLEVELOFMINOR)
aclist=averagelist(alist,clist,EXPECTEDLEVELOFMINOR)
#print alist,blist,clist
majora=sum([math.log(i,10) for i in alist])
majorb=sum([math.log(i,10) for i in blist])
majorc=sum([math.log(i,10) for i in clist])
homozygous_collector=max(majora,majorb,majorc)
homomajor1=max([(majora,i_major_allele),(majorb,i_major2_allele),(majorc,i_major3_allele)])[1]
homomajordict={i_major_allele:majora,i_major2_allele:majorb,i_major3_allele:majorc}
majorab=sum([math.log(i,10) for i in ablist])
majorbc=sum([math.log(i,10) for i in bclist])
majorac=sum([math.log(i,10) for i in aclist])
heterozygous_collector=max(majorab,majorbc,majorac)
bothheteromajor=max([(majorab,(i_major_allele,i_major2_allele)),(majorbc,(i_major2_allele,i_major3_allele)),(majorac,(i_major_allele,i_major3_allele))])[1]
##heteromajor1=max(bothheteromajor)
##heteromajor2=min(bothheteromajor)
pre_heteromajor1=bothheteromajor[0]
pre_heteromajor2=bothheteromajor[1]
heteromajor1=max((homomajordict[pre_heteromajor1],pre_heteromajor1),(homomajordict[pre_heteromajor2],pre_heteromajor2))[1]
heteromajor2=min((homomajordict[pre_heteromajor1],pre_heteromajor1),(homomajordict[pre_heteromajor2],pre_heteromajor2))[1]
logratio_homo=homozygous_collector-heterozygous_collector
if logratio_homo>0:
fdout.writelines(line.strip()+'\t'+'\t'.join(['homo',str(logratio_homo),str(homomajor1),str(heteromajor1),str(heteromajor2)])+'\n')
elif logratio_homo<0:
fdout.writelines(line.strip()+'\t'+'\t'.join(['hetero',str(logratio_homo),str(homomajor1),str(heteromajor1),str(heteromajor2)])+'\n')
fd.close()
fdout.close()