-
Notifications
You must be signed in to change notification settings - Fork 0
/
api.py
1049 lines (940 loc) · 45.5 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import uvicorn
import io
import requests
from PIL import Image
from redis import Redis
import json
from fastapi import FastAPI,Form,File,UploadFile, Request ,Response, HTTPException, status, Depends
from fastapi.templating import Jinja2Templates
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse,RedirectResponse,StreamingResponse
from typing import List,Optional
import google.generativeai as genai
from fastapi.middleware.cors import CORSMiddleware
from mongo import MongoDB
from helper_functions import get_qa_chain,get_gemini_response,get_url_doc_qa,extract_transcript_details,\
get_gemini_response_health,get_gemini_pdf,read_sql_query,remove_substrings,questions_generator,groq_pdf,\
summarize_audio,chatbot_send_message,extraxt_pdf_text,advance_rag_llama_index,parse_sql_response, extract_video_id
from langchain_groq import ChatGroq
from langchain.chains.conversation.base import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
from langchain_core.prompts import ChatPromptTemplate
from auth import create_access_token
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from datetime import timedelta
from jose import jwt, JWTError
import settings
from models import UserCreate, ResponseText
from sendgrid import SendGridAPIClient
from sendgrid.helpers.mail import Mail
from uuid import uuid4
from agents.tech_news_agent.crew import run_crew
from agents.investment_risk_analyst_agent.crew import run_investment_crew
from agents.agent_doc.crew import run_doc_crew
from agents.job_posting_agent.crew import run_job_crew
from agents.ml_assistant.crew import run_ml_crew
from langchain.agents import AgentExecutor
from langchain_core.prompts import ChatPromptTemplate
from langchain_cohere.react_multi_hop.agent import create_cohere_react_agent
from langchain_cohere.chat_models import ChatCohere
from langchain_community.utilities.sql_database import SQLDatabase
from langchain_community.agent_toolkits import SQLDatabaseToolkit
import tempfile
import shutil
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from groq import Groq
os.environ["LANGCHAIN_TRACING_V2"]="true"
os.environ["LANGCHAIN_API_KEY"]=os.getenv("LANGCHAIN_API_KEY")
os.environ["LANGCHAIN_PROJECT"]="genify"
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
redis = Redis(host=os.getenv("REDIS_HOST"), port=settings.REDIS_PORT, password=os.getenv("REDIS_PASSWORD"))
client = Groq()
mongo_client = MongoDB(collection_name=os.getenv("MONGO_COLLECTION_USER"))
users_collection = mongo_client.collection
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
app = FastAPI(title="Genify By Mohd Aquib",
summary="This API contains routes of different Gen AI usecases")
limiter = Limiter(key_func=get_remote_address)
app.state.limit = limiter
@app.exception_handler(RateLimitExceeded)
async def rate_limit_exceeded_handler(request:Request,exc: RateLimitExceeded):
return JSONResponse(
status_code= status.HTTP_429_TOO_MANY_REQUESTS,
content= {"response": "Limit exceeded, please try later !!!!!!"}
)
templates = Jinja2Templates(directory="templates")
app.allow_dangerous_deserialization = True
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/", response_class=RedirectResponse)
async def home():
return RedirectResponse("/docs")
@app.post("/signup")
async def signup(user: UserCreate):
# Check if user already exists
existing_user = users_collection.find_one({"email": user.email})
if existing_user:
raise HTTPException(status_code=400, detail="Email already registered")
# Insert new user to database with email_verified set to False
verification_token = str(uuid4())
new_user = {
"email": user.email,
"password": user.password,
"email_verified": False,
"verification_token": verification_token
}
users_collection.insert_one(new_user)
# Send verification email
message = Mail(
from_email='[email protected]',
to_emails=user.email,
subject='Verify your email',
html_content=f'Please verify your email using this token: {verification_token}'
)
try:
sendgrid_api = os.getenv("SENDGRID_API_KEY")
sg = SendGridAPIClient(sendgrid_api)
response = sg.send(message)
print(response.status_code)
except Exception as e:
print(e.message)
return {"message": "User created successfully. Please check your email to verify your account."}
@app.post("/verify-email")
async def verify_email(token: str):
# Find user with the provided verification token
user = users_collection.find_one({"verification_token": token})
if not user:
raise HTTPException(status_code=400, detail="Invalid token")
# Mark the user's email as verified
users_collection.update_one({"_id": user["_id"]}, {"$set": {"email_verified": True}})
return {"message": "Email verified successfully"}
# Signin route
@app.post("/token")
async def login(form_data: OAuth2PasswordRequestForm = Depends()):
# Check if user exists in database
user = users_collection.find_one({"email": form_data.username})
if not user or user["password"] != form_data.password:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Incorrect email or password",
headers={"WWW-Authenticate": "Bearer"},
)
# Create access token
access_token_expires = timedelta(minutes=settings.ACCESS_TOKEN_EXPIRE_MINUTES)
access_token = create_access_token(
data={"sub": user["email"]}, expires_delta=access_token_expires
)
return {"access_token": access_token, "token_type": "bearer"}
@app.get("/chatbot",description="Provides a simple web interface to interact with the chatbot")
async def chat(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
@app.get("/blog_generator_ui",description="Provides a simple web interface to interact with the Blog Generator")
async def blog_ui(request: Request):
return templates.TemplateResponse("blog_generator.html", {"request": request})
@app.get("/ats",description="Provides a simple web interface to interact with the Smart ATS")
async def ats(request: Request):
return templates.TemplateResponse("ats.html", {"request": request})
@app.post("/invoice_extractor",description="This route extracts information from invoices based on provided images and prompts.")
async def gemini(image_file: UploadFile = File(...), prompt: str = Form(...)):
image = image_file.file.read()
image_parts = [{
"mime_type": "image/jpeg",
"data": image
}]
output = get_gemini_response(settings.invoice_prompt, image_parts, prompt)
db = MongoDB()
payload = {
"endpoint" : "/invoice_extractor",
"prompt" : prompt,
"output" : output
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=output)
@app.post("/qa_from_faqs",description="The endpoint uses the retrieved question-answer to generate a response to the user's prompt")
async def question_answer(prompt: str = Form(...)):
try:
# Check if the response is cached in Redis
cache_key = f"qa_from_faqs:{prompt}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
out = {"result": cached_response.decode("utf-8")}
else:
print("Fetching response from the API")
chain = get_qa_chain()
out = chain.invoke(prompt)
redis.set(cache_key, out["result"], ex=60)
db = MongoDB()
payload = {"endpoint": "/qa_from_faqs", "prompt": prompt, "output": out["result"]}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=out["result"])
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/qa_url_doc", description="In this route just add the doc or url(of any news article,blogs etc) and then ask the question in the prompt ")
async def qa_url_doc(url: list = Form(None), documents: List[UploadFile] = File(None), prompt: str = Form(...)):
try:
if url:
cache_key = f"qa_url_doc:{prompt}:{str(url)}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
out = {"result": cached_response.decode("utf-8")}
return ResponseText(response=out["result"])
else:
chain = get_url_doc_qa(url, documents)
out = chain.invoke(prompt)
redis.set(cache_key, out["result"], ex=60)
else:
if documents:
contents = [i.file.read().decode("utf-8") for i in documents]
print(contents)
chain = get_url_doc_qa(url, contents)
else:
raise Exception("Please provide either a URL or upload a document file.")
out = chain.invoke(prompt)
db = MongoDB()
payload = {
"endpoint": "/qa_url_doc",
"prompt": prompt,
"url": url,
"documents": "If URL is null then they might have upload .txt file",
"output": out["result"]
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=out["result"])
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/youtube_video_transcribe_summarizer", description="The endpoint uses Youtube URL to generate a summary of a video")
async def youtube_video_transcribe_summarizer_gemini(url: str = Form(...)):
try:
cache_key = f"youtube_video_transcribe_summarizer:{url}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
model = genai.GenerativeModel(settings.GEMINI_FLASH)
transcript_text = extract_transcript_details(url)
response = model.generate_content(settings.youtube_transcribe_prompt + transcript_text)
redis.set(cache_key, response.text, ex=60)
db = MongoDB()
payload = {
"endpoint": "/youtube_video_transcribe_summarizer",
"url": url,
"output": response.text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=response.text)
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/nutritionist_expert",description="This route need image,height(cm),weight(kg) then it extracts edible objects from image and return breif about calories to burn")
async def health_app_gemini(image_file: UploadFile = File(...), height: str = Form(165),weight:str = Form(70)):
image = image_file.file.read()
image_parts = [{
"mime_type": "image/jpeg",
"data": image
}]
health_prompt=f"""
You are an expert in nutritionist where you need to see the food items from the image
and calculate the total calories,and if the person height {height} cm and weight is {weight} kg then it will loose or gain the weight and how much step count should be done to burn this calories.
Also provide the details of every food items with calories intake is below format
1. Item 1 - no of calories
2. Item 2 - no of calories
----
----
"""
output = get_gemini_response_health(image_parts, health_prompt)
json_compatible_data = jsonable_encoder(output)
db = MongoDB()
payload = {
"endpoint" : "/nutritionist_expert",
"height (in cms)" : height,
"weight (in kgs)" : weight,
"output" : json_compatible_data
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=json_compatible_data)
@app.post("/blog_generator", description="This route will generate the blog based on the desired topic.")
async def blogs(topic: str = Form("Generative AI")):
try:
cache_key = f"blog_generator:{topic}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
model = genai.GenerativeModel(settings.GEMINI_FLASH)
blog_prompt = f""" You are expert in blog writing. Write a blog on the topic {topic}. Use a friendly and informative tone, and include examples and tips to encourage readers to get started with the topic provided. """
response = model.generate_content(blog_prompt)
redis.set(cache_key, response.text, ex=60)
db = MongoDB()
payload = {
"endpoint": "/blog_generator",
"topic": topic,
"output": response.text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=response.text)
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/talk2PDF",description="The endpoint uses the pdf and give the answer based on the prompt provided")
async def talk_pdf(pdf: UploadFile = File(...),prompt: str = Form(...)):
try:
# contents = [i.file.read().decode("utf-8") for i in pdf ]
chain = get_gemini_pdf(pdf.file)
out = chain.invoke(prompt)
db = MongoDB()
payload = {
"endpoint" : "/talk2PDF",
"prompt" : prompt,
"output" : out["result"]
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=out["result"])
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/Text2SQL", description="""This route will generate the SQL query and results from employees table based on the prompt given. \nColumns present in the table are Employee_ID, Name, Department, Title, Email, City, Salary, Work_Experience""")
async def sql_query(prompt: str = Form("Tell me the employees living in city Noida")):
try:
cache_key = f"text2sql:{prompt}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
cached_response = cached_response.decode("utf-8")
cached_data = json.loads(cached_response)
return cached_data
model = genai.GenerativeModel(settings.GEMINI_PRO_1_5)
response = model.generate_content([settings.text2sql_prompt, prompt])
output_query = remove_substrings(response.text)
print(output_query)
output = read_sql_query(remove_substrings(output_query), settings.EMPLOYEE_DB)
cached_data = {"response": {"SQL Query": output_query, "Data": output}}
redis.set(cache_key, json.dumps(cached_data), ex=60)
db = MongoDB()
payload = {
"endpoint": "/Text2SQL",
"prompt": prompt,
"SQL Query": output_query,
"output": output
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return {"response": {"SQL Query": output_query, "Data": output}}
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/questions_generator", description="""The endpoint uses the pdf and generate the questions.
\nThis will be helpful for the students or teachers preparing for their exams or test. """)
async def pdf_questions_generator(pdf: UploadFile = File(...)):
try:
cache_key = f"questions_generator:{pdf.filename}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
out = questions_generator(pdf.file)
redis.set(cache_key, out["output_text"], ex=60)
db = MongoDB()
payload = {
"endpoint": "/questions_generator",
"output": out["output_text"]
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=remove_substrings(out["output_text"]))
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/chat_groq", description= """This route uses groq for faster response using Language Processing Unit(LPU).
\n In model input default is llama-3.1-70b-versatile but you can choose gemma2-9b-it, gemma-7b-it, mixtral-8x7b-32768, llama-3.1-8b-instant, llama3-70b-8192 and llama3-8b-8192.
\n conversational_memory_length ranges from 1 to 10. It keeps a list of the interactions of the conversation over time.
It only uses the last K interactions """)
async def groq_chatbot(question: str = Form(...), model: Optional[str] = Form('llama-3.1-70b-versatile'),
conversational_memory_length: Optional[int] = Form(5)):
try:
memory=ConversationBufferWindowMemory(k=conversational_memory_length)
groq_chat = ChatGroq(groq_api_key= os.environ['GROQ_API_KEY'], model_name=model)
conversation = ConversationChain(llm=groq_chat,memory=memory)
response = conversation.invoke(question)
db = MongoDB()
payload = {
"endpoint" : "/chat_groq",
"question" : question,
"model" : model,
"conversational_memory_length": conversational_memory_length,
"output" : response['response']
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
return {"Chatbot": response['response']}
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/text_summarizer_groq", description= """This route uses groq for faster response using Language Processing Unit(LPU).
\n This route will provide the concise summary from the text provided & and model used is mixtral-8x7b-32768
""")
async def groq_text_summary(input_text: str = Form(...)):
try:
chat = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768",api_key=os.environ['GROQ_API_KEY'])
system = """You are a helpful AI assistant skilled at summarizing text.
Your task is to summarize the following text in a clear and concise manner, capturing the main ideas and key points.
Show result in the points.
"""
human = "{text}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
chain = prompt | chat
summary = chain.invoke({"text": input_text})
summary_text = summary.content
db = MongoDB()
payload = {
"endpoint" : "/text_summarizer_groq",
"input_text" : input_text,
"summary" : summary_text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
return {"Summary": summary_text}
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/RAG_PDF_Groq",description="The endpoint uses the pdf and give the answer based on the prompt provided using groq\
In model input default is llama-3.1-70b-versatile but you can choose mixtral-8x7b-32768, gemma-7b-it, gemma2-9b-it, llama-3.1-8b-instant, llama3-70b-8192 and llama3-8b-8192.")
async def talk_pdf_groq(pdf: UploadFile = File(...),prompt: str = Form(...),
model: Optional[str] = Form('llama-3.1-70b-versatile')):
try:
rag_chain = groq_pdf(pdf.file,model)
out = rag_chain.invoke(prompt)
db = MongoDB()
payload = {
"endpoint" : "/RAG_PDF_Groq",
"model" : model,
"prompt" : prompt,
"output" : out
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=out)
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/summarize_audio", description="""Endpoint to summarize an uploaded audio file using gemini-1.5-pro-latest.""")
async def summarize_audio_endpoint(audio_file: UploadFile = File(...)):
try:
cache_key = f"summarize_audio:{audio_file.filename}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
summary_text = await summarize_audio(audio_file)
redis.set(cache_key, summary_text, ex=10)
db = MongoDB()
payload = {
"endpoint": "/summarize_audio",
"output": summary_text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=summary_text)
except Exception as e:
return {"error": str(e)}
@app.post("/stream_chat",description="This endpoint streams responses from the language model based on the user's input message.")
async def stream_chat(message: str = Form("What is RLHF in LLM?"),llm: str = Form("llama3-70b-8192")):
generator = chatbot_send_message(message,model=llm)
return StreamingResponse(generator, media_type="text/event-stream")
@app.post("/smart_ats", description="""This endpoint is developed using the powerful
Gemini Pro 1.5 model to streamline the hiring process by analyzing job descriptions and resumes.
It provides valuable insights such as job description match,
missing keywords, and profile summary""")
async def ats(resume_pdf: UploadFile = File(...), job_description: str = Form(...)):
try:
cache_key = f"smart_ats:{resume_pdf.filename}:{job_description}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
text = extraxt_pdf_text(resume_pdf.file)
model = genai.GenerativeModel(settings.GEMINI_PRO_1_5)
ats_prompt = f"""
Hey Act Like a skilled or very experienced ATS (Application Tracking System)
with a deep understanding of the tech field, software engineering, data science, data analysis,
and big data engineering. Your task is to evaluate the resume based on the given job description.
You must consider the job market is very competitive and you should provide
the best assistance for improving the resumes. Assign the percentage Matching based
on job description and
the missing keywords with high accuracy
resume:{text}
job description:{job_description}
I want the response as per below structure
Job Description Match": "%","MissingKeywords": [],"Profile Summary": "".
Also, tell what more should be added or to be removed in the resume.
Also, provide the list of some technical questions along with their answers that can be asked in the interview based on the job description.
"""
response = model.generate_content(ats_prompt)
redis.set(cache_key, response.text, ex=20)
db = MongoDB()
payload = {
"endpoint": "/smart_ats",
"resume": text,
"job description": job_description,
"ATS Output": response.text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=response.text)
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/advance_rag_llama_index",description="The endpoint build a Router that can choose whether to do vector search or summarization\
In model input default is gemma2-9b-it but you can choose mixtral-8x7b-32768, gemma-7b-it, llama-3.1-70b-versatile, llama-3.1-8b-instant, llama3-70b-8192 and llama3-8b-8192.")
async def llama_index_rag(pdf: UploadFile = File(...),question: str = Form(...),
model: Optional[str] = Form('gemma2-9b-it')):
try:
rag_output = advance_rag_llama_index(pdf,model,question)
db = MongoDB()
payload = {
"endpoint" : "/advance_rag_llama_index",
"model" : model,
"prompt" : question,
"output" : rag_output
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=rag_output)
except Exception as e:
return ResponseText(response=f"Error: {str(e)}")
@app.post("/text2image",description=
"""
This API provides access to the following diffusion models for generating images from text prompts.
Models you can use for generating image are:
1. DreamShaper_v7 - A highly capable and versatile text-to-image model, suitable for a wide range of image generation tasks.
2. Animagine_xl - A specialized model for generating high-quality anime-style images from text prompts.
3. Stable_Diffusion_base - The base version of the popular Stable Diffusion model, suitable for general-purpose image generation.
4. Stable_Diffusion_v2 - The latest version of Stable Diffusion, with improved performance and quality compared to the base version.
""")
def generate_image(prompt: str = Form("Astronaut riding a horse"), model: str = Form("Stable_Diffusion_base"),
token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, os.getenv("TOKEN_SECRET_KEY"), algorithms=[settings.ALGORITHM])
email = payload.get("sub")
if email is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
user = users_collection.find_one({"email": email})
if user is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="User not found")
except JWTError:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
try:
if model in settings.diffusion_models:
def query(payload):
api_key = os.getenv("HUGGINGFACE_API_KEY")
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.post(settings.diffusion_models[model], headers=headers, json=payload)
return response.content
image_bytes = query({"inputs": prompt})
image = Image.open(io.BytesIO(image_bytes))
bytes_io = io.BytesIO()
image.save(bytes_io, format="PNG")
bytes_io.seek(0)
return Response(bytes_io.getvalue(), media_type="image/png")
else:
return ResponseText(response="Invalid model name")
# except requests.exceptions.RequestException as e:
# print(f"Request Exception: {str(e)}")
# return ResponseText(response="Busy server: Please try later")
except Exception as e:
return ResponseText(response="Busy server: Please try later")
@app.get("/get_data/{endpoint_name}")
async def get_data(endpoint_name: str, token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, os.getenv("TOKEN_SECRET_KEY"), algorithms=[settings.ALGORITHM])
email = payload.get("sub")
if email is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
user = users_collection.find_one({"email": email})
if user is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="User not found")
except JWTError:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
cache_key = f"{endpoint_name}"
cached_data = redis.get(cache_key)
if cached_data:
print("Retrieving data from Redis cache")
data = json.loads(cached_data)
return data
print("Retrieving data from MongoDB")
db = MongoDB()
data = db.read_by_endpoint(endpoint_name)
if isinstance(data, list):
redis.set(cache_key, json.dumps(data), ex=60)
return data
@app.post("/news_agent",description="""
This endpoint leverages AI agents to conduct research and generate articles on various tech topics.
The agents are designed to uncover groundbreaking technologies and narrate compelling tech stories
""")
async def run_news_agent(topic: str = Form("AI in healthcare")):
try:
cache_key = f"news_agent:{topic}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
output = run_crew(topic=topic)
redis.set(cache_key, output, ex=10)
db = MongoDB()
payload = {
"endpoint": "/news_agent",
"topic" : topic,
"output": output
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=output)
except Exception as e:
return {"error": str(e)}
@app.post("/query_db",description="""
The Query Database endpoint provides a service for interacting with SQL databases using a Cohere ReAct Agent.
It leverages Langchain's existing SQLDBToolkit to answer questions and perform queries over SQL database.
""")
async def query_db(database: UploadFile = File(...), prompt: str = Form(...)):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.' + database.filename.split('.')[-1]) as temp_file:
shutil.copyfileobj(database.file, temp_file)
db_path = temp_file.name
llm = ChatCohere(model="command-r-plus", temperature=0.1, verbose=True,cohere_api_key=os.getenv("COHERE_API_KEY"))
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
toolkit = SQLDatabaseToolkit(db=db, llm=llm)
context = toolkit.get_context()
tools = toolkit.get_tools()
chat_prompt = ChatPromptTemplate.from_template("{input}")
agent = create_cohere_react_agent(
llm=llm,
tools=tools,
prompt=chat_prompt
)
agent_executor = AgentExecutor(
agent=agent,
tools=tools,
verbose=True,
return_intermediate_steps=False,
)
preamble = settings.QUERY_DB_PROMPT.format(schema_info=context)
out = agent_executor.invoke({
"input": prompt,
"preamble": preamble
})
output = parse_sql_response(out["output"])
db = MongoDB()
payload = {
"endpoint": "/query_db",
"input": prompt,
"output": output
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=output)
except Exception as e:
raise Exception(f"Error handling uploaded file: {e}")
finally:
database.file.close()
@app.post("/MediGem",description="Medical Diagnosis AI Assistant")
async def medigem(image_file: UploadFile = File(...)):
image = image_file.file.read()
image_parts = [{
"mime_type": "image/jpeg",
"data": image
}]
model = genai.GenerativeModel(settings.GEMINI_PRO_1_5)
response = model.generate_content([image_parts[0], settings.MEDI_GEM_PROMPT])
db = MongoDB()
payload = {
"endpoint" : "/MediGem",
"output" : response.text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=remove_substrings(response.text))
@app.post("/NoteGem", description="This API endpoint leverages the Google Gemini AI Model to generate comprehensive notes from YouTube video transcripts")
@limiter.limit("5/2minute")
async def process_video(request: Request, video_url: str = Form(...)):
video_id = extract_video_id(video_url)
if not video_id:
raise HTTPException(status_code=400, detail="Invalid YouTube URL")
try:
transcript_text = YouTubeTranscriptApi.get_transcript(video_id)
transcript = " ".join([i["text"] for i in transcript_text])
except (TranscriptsDisabled, NoTranscriptFound):
return {"transcript": "Transcript not available", "error": True}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
try:
cache_key = f"notegem:{video_id}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
model = genai.GenerativeModel(settings.GEMINI_PRO_1_5)
response = model.generate_content(settings.NOTE_GEN_PROMPT + transcript)
summary = response.text
redis.set(cache_key, summary, ex=60)
db = MongoDB()
payload = {
"endpoint" : "/NoteGem",
"video_url": video_url,
"output" : response.text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=summary)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/investment_risk_agent",description="""
This route implements an investment risk analyst agent system using a crew of AI agents.
Each agent is responsible for different aspects of financial trading and risk management,
working together to analyze data, develop trading strategies, assess risks, and plan executions.
NOTE : Output will take more than 5 minutes as multiple agents are working together.
""")
@limiter.limit("2/30minute")
async def run_risk_investment_agent(request:Request,stock_selection: str = Form("AAPL"),
risk_tolerance : str = Form("Medium"),
trading_strategy_preference: str = Form("Day Trading"),
token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, os.getenv("TOKEN_SECRET_KEY"), algorithms=[settings.ALGORITHM])
email = payload.get("sub")
if email is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
user = users_collection.find_one({"email": email})
if user is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="User not found")
except JWTError:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
try:
input_data = {"stock_selection": stock_selection,
"risk_tolerance": risk_tolerance,
"trading_strategy_preference": trading_strategy_preference,
"news_impact_consideration": True
}
print(input_data)
cache_key = f"investment_risk_agent:{input_data}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
report = run_investment_crew(input_data)
redis.set(cache_key, report, ex=10)
db = MongoDB()
payload = {
"endpoint": "/investment_risk_agent",
"input_data" : input_data,
"Investment_report": report
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=report)
except Exception as e:
return {"error": str(e)}
@app.post("/agent_doc",description="""
This route leverages AI agents to assist doctors in diagnosing medical conditions and
recommending treatment plans based on patient-reported symptoms and medical history.
NOTE : Output will take some time as multiple agents are working together.
""")
@limiter.limit("2/30minute")
async def run_doc_agent(request:Request,gender: str = Form("Male"),
age : int = Form("28"),
symptoms: str = Form("fever, cough, headache"),
medical_history : str = Form("diabetes, hypertension"),
token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, os.getenv("TOKEN_SECRET_KEY"), algorithms=[settings.ALGORITHM])
email = payload.get("sub")
if email is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
user = users_collection.find_one({"email": email})
if user is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="User not found")
except JWTError:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
try:
input_data = {"gender": gender,
"age": age,
"symptoms": symptoms,
"medical_history": medical_history
}
print(input_data)
cache_key = f"agent_doc:{input_data}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
report = run_doc_crew(input_data)
redis.set(cache_key, report, ex=10)
db = MongoDB()
payload = {
"endpoint": "/agent_doc",
"Gender" : gender,
"Age" : age,
"Symptoms" : symptoms,
"Medical History" : medical_history,
"Medical Report": report
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=report)
except Exception as e:
return {"error": str(e)}
@app.post("/transcriber", description=
"""
This route can transcribe audio and video files of any format into text.
The transcription process uses the OpenAI Whisper model, which is known for its high accuracy and efficiency.
The OpenAI Whisper model is a state-of-the-art speech recognition system designed to convert spoken language into written text.
It leverages advanced machine learning techniques to achieve high accuracy and robustness across various languages, accents, and audio qualities.
The Whisper model is part of OpenAI's efforts to provide powerful tools for natural language understanding and generation.
"""
)
@limiter.limit("15/3minute")
async def transcribe_audio_video(request: Request, file: UploadFile = File(...)):
try:
file_contents = await file.read()
transcription = client.audio.transcriptions.create(
file=(file.filename, file_contents),
model="whisper-large-v3",
prompt="", # Optiona
response_format="json", # Optional
temperature=0, # Optional
)
db = MongoDB()
payload = {
"endpoint": "/transcriber",
"transcription": transcription.text
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return JSONResponse(content={"transcription": transcription.text})
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/job_posting_agent",description="""
This endpoint generates a job posting by analyzing the company's website and description.
Multiple agents work together to produce a detailed, engaging, and well-aligned job posting.
NOTE : Output will take some time as multiple agents are working together.
""")
@limiter.limit("2/30minute")
async def run_job_agent(request:Request,
company_description: str = Form("""Microsoft is a global technology company that develops, manufactures, licenses, supports,
and sells a wide range of software products, services, and devices, including the Windows operating system,
Office suite, Azure cloud services, and Surface devices."""),
company_domain : str = Form("https://www.microsoft.com/"),
hiring_needs: str = Form("Data Scientist"),
specific_benefits : str = Form("work from home, medical insurance, generous parental leave, on-site fitness centers, and stock purchase plan"),
token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, os.getenv("TOKEN_SECRET_KEY"), algorithms=[settings.ALGORITHM])
email = payload.get("sub")
if email is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
user = users_collection.find_one({"email": email})
if user is None:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="User not found")
except JWTError:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid token")
try:
input_data = {"company_description": company_description,
"company_domain": company_domain,
"hiring_needs": hiring_needs,
"specific_benefits": specific_benefits
}
print(input_data)
cache_key = f"job_posting_agent:{input_data}"
cached_response = redis.get(cache_key)
if cached_response:
print("Retrieving response from Redis cache")
return ResponseText(response=cached_response.decode("utf-8"))
jd = run_job_crew(input_data)
redis.set(cache_key, jd, ex=10)
db = MongoDB()
payload = {
"endpoint": "/job_posting_agent",
"Company Description" : company_description,
"Company Domain" : company_domain,
"Hiring Needs" : hiring_needs,
"Specific Benefits" : specific_benefits,
"Job Description": jd
}
mongo_data = {"Document": payload}
result = db.insert_data(mongo_data)
print(result)
return ResponseText(response=jd)
except Exception as e:
return {"error": str(e)}
@app.post("/ml_assistant",description="""
Upload a CSV file and describe your machine learning problem.
The API will process the file and input to provide problem definition, data assessment, model recommendation, and starter code.