title |
---|
Dataset |
The below table shows transformer which can transform aspects of entity Dataset.
Dataset Aspect | Transformer |
---|---|
status |
- Mark Dataset status |
ownership |
- Simple Add Dataset ownership - Pattern Add Dataset ownership - Simple Remove Dataset Ownership - Extract Ownership from Tags - Clean suffix prefix from Ownership |
globalTags |
- Simple Add Dataset globalTags - Pattern Add Dataset globalTags - Add Dataset globalTags |
browsePaths |
- Set Dataset browsePath |
glossaryTerms |
- Simple Add Dataset glossaryTerms - Pattern Add Dataset glossaryTerms - Tags to Term Mapping |
schemaMetadata |
- Pattern Add Dataset Schema Field glossaryTerms - Pattern Add Dataset Schema Field globalTags |
datasetProperties |
- Simple Add Dataset datasetProperties - Add Dataset datasetProperties |
domains |
- Simple Add Dataset domains - Pattern Add Dataset domains - Domain Mapping Based on Tags |
dataProduct |
- Simple Add Dataset dataProduct - Pattern Add Dataset dataProduct - Add Dataset dataProduct |
Field | Required | Type | Default | Description |
---|---|---|---|---|
tag_pattern |
str | Regex to use for tags to match against. Supports Regex to match a pattern which is used to remove content. Rest of string is considered owner ID for creating owner URN. | ||
is_user |
bool | true |
Whether should be consider a user or not. If false then considered a group. |
|
tag_character_mapping |
dict[str, str] | A mapping of tag character to datahub owner character. If provided, tag_pattern config should be matched against converted tag as per mapping |
||
email_domain |
str | If set then this is appended to create owner URN. | ||
extract_owner_type_from_tag_pattern |
str | false |
Whether to extract an owner type from provided tag pattern first group. If true , no need to provide owner_type and owner_type_urn config. For example: if provided tag pattern is (.*)_owner_email: and actual tag is developer_owner_email , then extracted owner type will be developer . |
|
owner_type |
str | TECHNICAL_OWNER |
Ownership type. | |
owner_type_urn |
str | None |
Set to a custom ownership type's URN if using custom ownership. |
Let’s suppose we’d like to add a dataset ownerships based on part of dataset tags. To do so, we can use the extract_ownership_from_tags
transformer that’s included in the ingestion framework.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "extract_ownership_from_tags"
config:
tag_pattern: "owner_email:"
So if we have input dataset tag like
urn:li:tag:owner_email:[email protected]
urn:li:tag:owner_email:[email protected]
The portion of the tag after the matched tag pattern will be converted into an owner. Hence users [email protected]
and [email protected]
will be added as owners.
- Add owners, however owner should be considered as group and also email domain not provided in tag string. For example: from tag urn
urn:li:tag:owner:abc
extracted owner urn should beurn:li:corpGroup:[email protected]
then config would look like this:transformers: - type: "extract_ownership_from_tags" config: tag_pattern: "owner:" is_user: false email_domain: "email.com"
- Add owners, however owner type and owner type urn wanted to provide externally. For example: from tag urn
urn:li:tag:owner_email:[email protected]
owner type should beCUSTOM
and owner type urn as"urn:li:ownershipType:data_product"
then config would look like this:transformers: - type: "extract_ownership_from_tags" config: tag_pattern: "owner_email:" owner_type: "CUSTOM" owner_type_urn: "urn:li:ownershipType:data_product"
- Add owners, however some tag characters needs to replace with some other characters before extracting owner. For example: from tag urn
urn:li:tag:owner__email:abc--xyz-email_com
extracted owner urn should beurn:li:corpGroup:[email protected]
then config would look like this:transformers: - type: "extract_ownership_from_tags" config: tag_pattern: "owner_email:" tag_character_mapping: "_": "." "-": "@" "--": "-" "__": "_"
- Add owners, however owner type also need to extracted from tag pattern. For example: from tag urn
urn:li:tag:data_producer_owner_email:[email protected]
extracted owner type should bedata_producer
then config would look like this:transformers: - type: "extract_ownership_from_tags" config: tag_pattern: "(.*)_owner_email:" extract_owner_type_from_tag_pattern: true
Field | Required | Type | Default | Description |
---|---|---|---|---|
pattern_for_cleanup |
✅ | list[string] | List of suffix/prefix to remove from the Owner URN(s) |
Matches against a Onwer URN and remove the matching part from the Owner URN
transformers:
- type: "pattern_cleanup_ownership"
config:
pattern_for_cleanup:
- "ABCDEF"
- (?<=_)(\w+)
Field | Required | Type | Default | Description |
---|---|---|---|---|
removed |
✅ | boolean | Flag to control visbility of dataset on UI. |
If you would like to stop a dataset from appearing in the UI, then you need to mark the status of the dataset as removed.
You can use this transformer in your source recipe to mark status as removed.
transformers:
- type: "mark_dataset_status"
config:
removed: true
Field | Required | Type | Default | Description |
---|---|---|---|---|
owner_urns |
✅ | list[string] | List of owner urns. | |
ownership_type |
string | "DATAOWNER" | ownership type of the owners (either as enum or ownership type urn) | |
replace_existing |
boolean | false |
Whether to remove ownership from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
For transformer behaviour on replace_existing
and semantics
, please refer section Relationship Between replace_existing And semantics.
Let’s suppose we’d like to append a series of users who we know to own a dataset but aren't detected during normal ingestion. To do so, we can use the `simple_add_dataset_ownership` transformer that’s included in the ingestion framework.
The config, which we’d append to our ingestion recipe YAML, would look like this:
Below configuration will add listed owner_urns in ownership aspect
transformers:
- type: "simple_add_dataset_ownership"
config:
owner_urns:
- "urn:li:corpuser:username1"
- "urn:li:corpuser:username2"
- "urn:li:corpGroup:groupname"
ownership_type: "PRODUCER"
simple_add_dataset_ownership
can be configured in below different way
- Add owners, however replace existing owners sent by ingestion source
transformers: - type: "simple_add_dataset_ownership" config: replace_existing: true # false is default behaviour owner_urns: - "urn:li:corpuser:username1" - "urn:li:corpuser:username2" - "urn:li:corpGroup:groupname" ownership_type: "urn:li:ownershipType:__system__producer"
- Add owners, however overwrite the owners available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_ownership" config: semantics: OVERWRITE # OVERWRITE is default behaviour owner_urns: - "urn:li:corpuser:username1" - "urn:li:corpuser:username2" - "urn:li:corpGroup:groupname" ownership_type: "urn:li:ownershipType:__system__producer"
- Add owners, however keep the owners available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_ownership" config: semantics: PATCH owner_urns: - "urn:li:corpuser:username1" - "urn:li:corpuser:username2" - "urn:li:corpGroup:groupname" ownership_type: "PRODUCER"
Field | Required | Type | Default | Description |
---|---|---|---|---|
owner_pattern |
✅ | map[regx, list[urn]] | entity urn with regular expression and list of owners urn apply to matching entity urn. | |
ownership_type |
string | "DATAOWNER" | ownership type of the owners (either as enum or ownership type urn) | |
replace_existing |
boolean | false |
Whether to remove owners from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
let’s suppose we’d like to append a series of users who we know to own a different dataset from a data source but aren't detected during normal ingestion. To do so, we can use the pattern_add_dataset_ownership
module that’s included in the ingestion framework. This will match the pattern to urn
of the dataset and assign the respective owners.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "pattern_add_dataset_ownership"
config:
owner_pattern:
rules:
".*example1.*": ["urn:li:corpuser:username1"]
".*example2.*": ["urn:li:corpuser:username2"]
ownership_type: "DEVELOPER"
pattern_add_dataset_ownership
can be configured in below different way
- Add owner, however replace existing owner sent by ingestion source
transformers: - type: "pattern_add_dataset_ownership" config: replace_existing: true # false is default behaviour owner_pattern: rules: ".*example1.*": ["urn:li:corpuser:username1"] ".*example2.*": ["urn:li:corpuser:username2"] ownership_type: "urn:li:ownershipType:__system__producer"
- Add owner, however overwrite the owners available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_ownership" config: semantics: OVERWRITE # OVERWRITE is default behaviour owner_pattern: rules: ".*example1.*": ["urn:li:corpuser:username1"] ".*example2.*": ["urn:li:corpuser:username2"] ownership_type: "urn:li:ownershipType:__system__producer"
- Add owner, however keep the owners available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_ownership" config: semantics: PATCH owner_pattern: rules: ".*example1.*": ["urn:li:corpuser:username1"] ".*example2.*": ["urn:li:corpuser:username2"] ownership_type: "PRODUCER"
If we wanted to clear existing owners sent by ingestion source we can use the simple_remove_dataset_ownership
transformer which removes all owners sent by the ingestion source.
transformers:
- type: "simple_remove_dataset_ownership"
config: {}
The main use case of simple_remove_dataset_ownership
is to remove incorrect owners present in the source. You can use it along with the Simple Add Dataset ownership to remove wrong owners and add the correct ones.
Note that whatever owners you send via simple_remove_dataset_ownership
will overwrite the owners present in the UI.
Field | Required | Type | Default | Description |
---|---|---|---|---|
extract_tags_from |
✅ | string | urn |
Which field to extract tag from. Currently only urn is supported. |
extract_tags_regex |
✅ | string | .* |
Regex to use to extract tag. |
replace_existing |
boolean | false |
Whether to remove globalTags from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
Let’s suppose we’d like to add a dataset tags based on part of urn. To do so, we can use the extract_dataset_tags
transformer that’s included in the ingestion framework.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "extract_dataset_tags"
config:
extract_tags_from: "urn"
extract_tags_regex: ".([^._]*)_"
So if we have input URNs like
urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.USA-ops-team_table1,PROD)
urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.Canada-marketing_table1,PROD)
a tag called USA-ops-team
and Canada-marketing
will be added to them respectively. This is helpful in case you are using prefixes in your datasets to segregate different things. Now you can turn that segregation into a tag on your dataset in DataHub for further use.
Field | Required | Type | Default | Description |
---|---|---|---|---|
tag_urns |
✅ | list[string] | List of globalTags urn. | |
replace_existing |
boolean | false |
Whether to remove globalTags from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
Let’s suppose we’d like to add a set of dataset tags. To do so, we can use the simple_add_dataset_tags
transformer that’s included in the ingestion framework.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "simple_add_dataset_tags"
config:
tag_urns:
- "urn:li:tag:NeedsDocumentation"
- "urn:li:tag:Legacy"
simple_add_dataset_tags
can be configured in below different way
- Add tags, however replace existing tags sent by ingestion source
transformers: - type: "simple_add_dataset_tags" config: replace_existing: true # false is default behaviour tag_urns: - "urn:li:tag:NeedsDocumentation" - "urn:li:tag:Legacy"
- Add tags, however overwrite the tags available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_tags" config: semantics: OVERWRITE # OVERWRITE is default behaviour tag_urns: - "urn:li:tag:NeedsDocumentation" - "urn:li:tag:Legacy"
- Add tags, however keep the tags available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_tags" config: semantics: PATCH tag_urns: - "urn:li:tag:NeedsDocumentation" - "urn:li:tag:Legacy"
Field | Required | Type | Default | Description |
---|---|---|---|---|
tag_pattern |
✅ | map[regx, list[urn]] | Entity urn with regular expression and list of tags urn apply to matching entity urn. | |
replace_existing |
boolean | false |
Whether to remove globalTags from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
Let’s suppose we’d like to append a series of tags to specific datasets. To do so, we can use the pattern_add_dataset_tags
module that’s included in the ingestion framework. This will match the regex pattern to urn
of the dataset and assign the respective tags urns given in the array.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "pattern_add_dataset_tags"
config:
tag_pattern:
rules:
".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"]
".*example2.*": ["urn:li:tag:NeedsDocumentation"]
pattern_add_dataset_tags
can be configured in below different way
- Add tags, however replace existing tags sent by ingestion source
transformers: - type: "pattern_add_dataset_tags" config: replace_existing: true # false is default behaviour tag_pattern: rules: ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"] ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
- Add tags, however overwrite the tags available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_tags" config: semantics: OVERWRITE # OVERWRITE is default behaviour tag_pattern: rules: ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"] ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
- Add tags, however keep the tags available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_tags" config: semantics: PATCH tag_pattern: rules: ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"] ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
Field | Required | Type | Default | Description |
---|---|---|---|---|
get_tags_to_add |
✅ | callable[[str], list[TagAssociationClass]] | A function which takes entity urn as input and return TagAssociationClass. | |
replace_existing |
boolean | false |
Whether to remove globalTags from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
If you'd like to add more complex logic for assigning tags, you can use the more generic add_dataset_tags transformer, which calls a user-provided function to determine the tags for each dataset.
transformers:
- type: "add_dataset_tags"
config:
get_tags_to_add: "<your_module>.<your_function>"
Then define your function to return a list of TagAssociationClass tags, for example:
import logging
import datahub.emitter.mce_builder as builder
from datahub.metadata.schema_classes import (
TagAssociationClass
)
def custom_tags(entity_urn: str) -> List[TagAssociationClass]:
"""Compute the tags to associate to a given dataset."""
tag_strings = []
### Add custom logic here
tag_strings.append('custom1')
tag_strings.append('custom2')
tag_strings = [builder.make_tag_urn(tag=n) for n in tag_strings]
tags = [TagAssociationClass(tag=tag) for tag in tag_strings]
logging.info(f"Tagging dataset {entity_urn} with {tag_strings}.")
return tags
Finally, you can install and use your custom transformer as shown here.
add_dataset_tags
can be configured in below different way
- Add tags, however replace existing tags sent by ingestion source
transformers: - type: "add_dataset_tags" config: replace_existing: true # false is default behaviour get_tags_to_add: "<your_module>.<your_function>"
- Add tags, however overwrite the tags available for the dataset on DataHub GMS
transformers: - type: "add_dataset_tags" config: semantics: OVERWRITE # OVERWRITE is default behaviour get_tags_to_add: "<your_module>.<your_function>"
- Add tags, however keep the tags available for the dataset on DataHub GMS
transformers: - type: "add_dataset_tags" config: semantics: PATCH get_tags_to_add: "<your_module>.<your_function>"
Field | Required | Type | Default | Description |
---|---|---|---|---|
path_templates |
✅ | list[string] | List of path templates. | |
replace_existing |
boolean | false |
Whether to remove browsePath from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
If you would like to add to browse paths of dataset can use this transformer. There are 3 optional variables that you can use to get information from the dataset urn
:
- ENV: env passed (default: prod)
- PLATFORM:
mysql
,postgres
or different platform supported by datahub - DATASET_PARTS: slash separated parts of dataset name. e.g.
database_name/schema_name/[table_name]
for postgres
e.g. this can be used to create browse paths like /prod/postgres/superset/public/logs
for table superset.public.logs
in a postgres
database
transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /ENV/PLATFORM/DATASET_PARTS
If you don't want the environment but wanted to add something static in the browse path like the database instance name you can use this.
transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /PLATFORM/marketing_db/DATASET_PARTS
It will create browse path like /mysql/marketing_db/sales/orders
for a table sales.orders
in mysql
database instance.
You can use this to add multiple browse paths. Different people might know the same data assets by different names.
transformers:
- type: "set_dataset_browse_path"
config:
path_templates:
- /PLATFORM/marketing_db/DATASET_PARTS
- /data_warehouse/DATASET_PARTS
This will add 2 browse paths like /mysql/marketing_db/sales/orders
and /data_warehouse/sales/orders
for a table sales.orders
in mysql
database instance.
Default behaviour of the transform is to add new browse paths, you can optionally set replace_existing: True
so
the transform becomes a set operation instead of an append.
transformers:
- type: "set_dataset_browse_path"
config:
replace_existing: True
path_templates:
- /ENV/PLATFORM/DATASET_PARTS
In this case, the resulting dataset will have only 1 browse path, the one from the transform.
set_dataset_browse_path
can be configured in below different way
- Add browsePath, however replace existing browsePath sent by ingestion source
transformers: - type: "set_dataset_browse_path" config: replace_existing: true # false is default behaviour path_templates: - /PLATFORM/marketing_db/DATASET_PARTS
- Add browsePath, however overwrite the browsePath available for the dataset on DataHub GMS
transformers: - type: "set_dataset_browse_path" config: semantics: OVERWRITE # OVERWRITE is default behaviour path_templates: - /PLATFORM/marketing_db/DATASET_PARTS
- Add browsePath, however keep the browsePath available for the dataset on DataHub GMS
transformers: - type: "set_dataset_browse_path" config: semantics: PATCH path_templates: - /PLATFORM/marketing_db/DATASET_PARTS
Field | Required | Type | Default | Description |
---|---|---|---|---|
term_urns |
✅ | list[string] | List of glossaryTerms urn. | |
replace_existing |
boolean | false |
Whether to remove glossaryTerms from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
We can use a similar convention to associate Glossary Terms to datasets.
We can use the simple_add_dataset_terms
transformer that’s included in the ingestion framework.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "simple_add_dataset_terms"
config:
term_urns:
- "urn:li:glossaryTerm:Email"
- "urn:li:glossaryTerm:Address"
simple_add_dataset_terms
can be configured in below different way
- Add terms, however replace existing terms sent by ingestion source
transformers: - type: "simple_add_dataset_terms" config: replace_existing: true # false is default behaviour term_urns: - "urn:li:glossaryTerm:Email" - "urn:li:glossaryTerm:Address"
- Add terms, however overwrite the terms available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_terms" config: semantics: OVERWRITE # OVERWRITE is default behaviour term_urns: - "urn:li:glossaryTerm:Email" - "urn:li:glossaryTerm:Address"
- Add terms, however keep the terms available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_terms" config: semantics: PATCH term_urns: - "urn:li:glossaryTerm:Email" - "urn:li:glossaryTerm:Address"
Field | Required | Type | Default | Description |
---|---|---|---|---|
term_pattern |
✅ | map[regx, list[urn]] | entity urn with regular expression and list of glossaryTerms urn apply to matching entity urn. | |
replace_existing |
boolean | false |
Whether to remove glossaryTerms from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
We can add glossary terms to datasets based on a regex filter.
transformers:
- type: "pattern_add_dataset_terms"
config:
term_pattern:
rules:
".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"]
".*example2.*": ["urn:li:glossaryTerm:PostalCode"]
pattern_add_dataset_terms
can be configured in below different way
- Add terms, however replace existing terms sent by ingestion source
transformers: - type: "pattern_add_dataset_terms" config: replace_existing: true # false is default behaviour term_pattern: rules: ".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"] ".*example2.*": ["urn:li:glossaryTerm:PostalCode"]
- Add terms, however overwrite the terms available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_terms" config: semantics: OVERWRITE # OVERWRITE is default behaviour term_pattern: rules: ".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"] ".*example2.*": ["urn:li:glossaryTerm:PostalCode"]
- Add terms, however keep the terms available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_terms" config: semantics: PATCH term_pattern: rules: ".*example1.*": ["urn:li:glossaryTerm:Email", "urn:li:glossaryTerm:Address"] ".*example2.*": ["urn:li:glossaryTerm:PostalCode"]
Field | Required | Type | Default | Description |
---|---|---|---|---|
tags |
✅ | List[str] | List of tag names based on which terms will be created and associated with the dataset. | |
semantics |
enum | "OVERWRITE" | Determines whether to OVERWRITE or PATCH the terms associated with the dataset on DataHub GMS. |
The tags_to_term
transformer is designed to map specific tags to glossary terms within DataHub. It takes a configuration of tags that should be translated into corresponding glossary terms. This transformer can apply these mappings to any tags found either at the column level of a dataset or at the dataset top level.
When specifying tags in the configuration, use the tag's simple name rather than the full tag URN.
For example, instead of using the tag URN urn:li:tag:snowflakedb.snowflakeschema.tag_name:tag_value
, you should specify just the tag name tag_name
in the mapping configuration.
transformers:
- type: "tags_to_term"
config:
semantics: OVERWRITE # OVERWRITE is the default behavior
tags:
- "tag_name"
The tags_to_term
transformer can be configured in the following ways:
- Add terms based on tags, however overwrite the terms available for the dataset on DataHub GMS
transformers:
- type: "tags_to_term"
config:
semantics: OVERWRITE # OVERWRITE is default behaviour
tags:
- "example1"
- "example2"
- "example3"
- Add terms based on tags, however keep the terms available for the dataset on DataHub GMS
transformers:
- type: "tags_to_term"
config:
semantics: PATCH
tags:
- "example1"
- "example2"
- "example3"
Field | Required | Type | Default | Description |
---|---|---|---|---|
term_pattern |
✅ | map[regx, list[urn]] | entity urn with regular expression and list of glossaryTerms urn apply to matching entity urn. | |
replace_existing |
boolean | false |
Whether to remove glossaryTerms from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
We can add glossary terms to schema fields based on a regex filter.
Note that only terms from the first matching pattern will be applied.
transformers:
- type: "pattern_add_dataset_schema_terms"
config:
term_pattern:
rules:
".*email.*": ["urn:li:glossaryTerm:Email"]
".*name.*": ["urn:li:glossaryTerm:Name"]
pattern_add_dataset_schema_terms
can be configured in below different way
- Add terms, however replace existing terms sent by ingestion source
transformers: - type: "pattern_add_dataset_schema_terms" config: replace_existing: true # false is default behaviour term_pattern: rules: ".*email.*": ["urn:li:glossaryTerm:Email"] ".*name.*": ["urn:li:glossaryTerm:Name"]
- Add terms, however overwrite the terms available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_schema_terms" config: semantics: OVERWRITE # OVERWRITE is default behaviour term_pattern: rules: ".*email.*": ["urn:li:glossaryTerm:Email"] ".*name.*": ["urn:li:glossaryTerm:Name"]
- Add terms, however keep the terms available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_schema_terms" config: semantics: PATCH term_pattern: rules: ".*email.*": ["urn:li:glossaryTerm:Email"] ".*name.*": ["urn:li:glossaryTerm:Name"]
Field | Required | Type | Default | Description |
---|---|---|---|---|
tag_pattern |
✅ | map[regx, list[urn]] | entity urn with regular expression and list of tags urn apply to matching entity urn. | |
replace_existing |
boolean | false |
Whether to remove globalTags from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
We can also append a series of tags to specific schema fields. To do so, we can use the pattern_add_dataset_schema_tags
transformer. This will match the regex pattern to each schema field path and assign the respective tags urns given in the array.
Note that the tags from the first matching pattern will be applied, not all matching patterns.
The config would look like this:
transformers:
- type: "pattern_add_dataset_schema_tags"
config:
tag_pattern:
rules:
".*email.*": ["urn:li:tag:Email"]
".*name.*": ["urn:li:tag:Name"]
pattern_add_dataset_schema_tags
can be configured in below different way
- Add tags, however replace existing tag sent by ingestion source
transformers: - type: "pattern_add_dataset_schema_tags" config: replace_existing: true # false is default behaviour tag_pattern: rules: ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"] ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
- Add tags, however overwrite the tags available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_schema_tags" config: semantics: OVERWRITE # OVERWRITE is default behaviour tag_pattern: rules: ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"] ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
- Add tags, however keep the tags available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_schema_tags" config: semantics: PATCH tag_pattern: rules: ".*example1.*": ["urn:li:tag:NeedsDocumentation", "urn:li:tag:Legacy"] ".*example2.*": ["urn:li:tag:NeedsDocumentation"]
Field | Required | Type | Default | Description |
---|---|---|---|---|
properties |
✅ | dict[str, str] | Map of key value pair. | |
replace_existing |
boolean | false |
Whether to remove datasetProperties from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
simple_add_dataset_properties
transformer assigns the properties to dataset entity from the configuration.
properties
field is a dictionary of string values. Note in case of any key collision, the value in the config will
overwrite the previous value.
transformers:
- type: "simple_add_dataset_properties"
config:
properties:
prop1: value1
prop2: value2
simple_add_dataset_properties
can be configured in below different way
- Add dataset-properties, however replace existing dataset-properties sent by ingestion source
transformers: - type: "simple_add_dataset_properties" config: replace_existing: true # false is default behaviour properties: prop1: value1 prop2: value2
- Add dataset-properties, however overwrite the dataset-properties available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_properties" config: semantics: OVERWRITE # OVERWRITE is default behaviour properties: prop1: value1 prop2: value2
- Add dataset-properties, however keep the dataset-properties available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_properties" config: semantics: PATCH properties: prop1: value1 prop2: value2
Field | Required | Type | Default | Description |
---|---|---|---|---|
add_properties_resolver_class |
✅ | Type[AddDatasetPropertiesResolverBase] | A class extends from AddDatasetPropertiesResolverBase |
|
replace_existing |
boolean | false |
Whether to remove datasetProperties from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
If you'd like to add more complex logic for assigning properties, you can use the add_dataset_properties
transformer, which calls a user-provided class (that extends from AddDatasetPropertiesResolverBase
class) to determine the properties for each dataset.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "add_dataset_properties"
config:
add_properties_resolver_class: "<your_module>.<your_class>"
Then define your class to return a list of custom properties, for example:
import logging
from typing import Dict
from datahub.ingestion.transformer.add_dataset_properties import AddDatasetPropertiesResolverBase
class MyPropertiesResolver(AddDatasetPropertiesResolverBase):
def get_properties_to_add(self, entity_urn: str) -> Dict[str, str]:
### Add custom logic here
properties= {'my_custom_property': 'property value'}
logging.info(f"Adding properties: {properties} to dataset: {entity_urn}.")
return properties
add_dataset_properties
can be configured in below different way
- Add dataset-properties, however replace existing dataset-properties sent by ingestion source
transformers: - type: "add_dataset_properties" config: replace_existing: true # false is default behaviour add_properties_resolver_class: "<your_module>.<your_class>"
- Add dataset-properties, however overwrite the dataset-properties available for the dataset on DataHub GMS
transformers: - type: "add_dataset_properties" config: semantics: OVERWRITE # OVERWRITE is default behaviour add_properties_resolver_class: "<your_module>.<your_class>"
- Add dataset-properties, however keep the dataset-properties available for the dataset on DataHub GMS
transformers: - type: "add_dataset_properties" config: semantics: PATCH add_properties_resolver_class: "<your_module>.<your_class>"
Field | Required | Type | Default | Description |
---|---|---|---|---|
input_pattern |
✅ | string | String or pattern to replace | |
replacement |
✅ | string | Replacement string |
Matches the full/partial string in the externalUrl of the dataset properties and replace that with the replacement string
transformers:
- type: "replace_external_url"
config:
input_pattern: '\b\w*hub\b'
replacement: "sub"
Field | Required | Type | Default | Description |
---|---|---|---|---|
input_pattern |
✅ | string | String or pattern to replace | |
replacement |
✅ | string | Replacement string |
Matches the full/partial string in the externalUrl of the container properties and replace that with the replacement string
transformers:
- type: "replace_external_url_container"
config:
input_pattern: '\b\w*hub\b'
replacement: "sub"
Field | Required | Type | Default | Description |
---|---|---|---|---|
pattern_for_cleanup |
✅ | list[string] | List of suffix/prefix to remove from the Owner URN(s) |
Matches against a User URN in DatasetUsageStatistics aspect and remove the matching part from it
transformers:
- type: "pattern_cleanup_dataset_usage_user"
config:
pattern_for_cleanup:
- "ABCDEF"
- (?<=_)(\w+)
Field | Required | Type | Default | Description |
---|---|---|---|---|
domains |
✅ | list[union[urn, str]] | List of simple domain name or domain urns. | |
replace_existing |
boolean | false |
Whether to remove domains from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
For transformer behaviour on replace_existing
and semantics
, please refer section Relationship Between replace_existing And semantics.
let’s suppose we’d like to add a series of domain to dataset, in this case you can use simple_add_dataset_domain
transformer.
The config, which we’d append to our ingestion recipe YAML, would look like this:
Here we can set domains to either urn (i.e. urn:li:domain:engineering) or simple domain name (i.e. engineering) in both of the cases domain should be provisioned on DataHub GMS
transformers:
- type: "simple_add_dataset_domain"
config:
semantics: OVERWRITE
domains:
- urn:li:domain:engineering
simple_add_dataset_domain
can be configured in below different way
- Add domains, however replace existing domains sent by ingestion source
transformers: - type: "simple_add_dataset_domain" config: replace_existing: true # false is default behaviour domains: - "urn:li:domain:engineering" - "urn:li:domain:hr"
- Add domains, however overwrite the domains available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_domain" config: semantics: OVERWRITE # OVERWRITE is default behaviour domains: - "urn:li:domain:engineering" - "urn:li:domain:hr"
- Add domains, however keep the domains available for the dataset on DataHub GMS
transformers: - type: "simple_add_dataset_domain" config: semantics: PATCH domains: - "urn:li:domain:engineering" - "urn:li:domain:hr"
Field | Required | Type | Default | Description |
---|---|---|---|---|
domain_pattern |
✅ | map[regx, list[union[urn, str]] | dataset urn with regular expression and list of simple domain name or domain urn need to be apply on matching dataset urn. | |
replace_existing |
boolean | false |
Whether to remove domains from entity sent by ingestion source. | |
semantics |
enum | OVERWRITE |
Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
Let’s suppose we’d like to append a series of domain to specific datasets. To do so, we can use the pattern_add_dataset_domain transformer that’s included in the ingestion framework. This will match the regex pattern to urn of the dataset and assign the respective domain urns given in the array.
The config, which we’d append to our ingestion recipe YAML, would look like this: Here we can set domain list to either urn (i.e. urn:li:domain:hr) or simple domain name (i.e. hr) in both of the cases domain should be provisioned on DataHub GMS
transformers:
- type: "pattern_add_dataset_domain"
config:
semantics: OVERWRITE
domain_pattern:
rules:
'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"]
'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]
pattern_add_dataset_domain
can be configured in below different way
- Add domains, however replace existing domains sent by ingestion source
transformers: - type: "pattern_add_dataset_domain" config: replace_existing: true # false is default behaviour domain_pattern: rules: 'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"] 'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]
- Add domains, however overwrite the domains available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_domain" config: semantics: OVERWRITE # OVERWRITE is default behaviour domain_pattern: rules: 'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"] 'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]
- Add domains, however keep the domains available for the dataset on DataHub GMS
transformers: - type: "pattern_add_dataset_domain" config: semantics: PATCH domain_pattern: rules: 'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.n.*': ["hr"] 'urn:li:dataset:\(urn:li:dataPlatform:postgres,postgres\.public\.t.*': ["urn:li:domain:finance"]
Field | Required | Type | Default | Description |
---|---|---|---|---|
domain_mapping |
✅ | Dict[str, str] | Dataset Entity tag as key and domain urn or name as value to map with dataset as asset. | |
semantics |
enum | "OVERWRITE" | Whether to OVERWRITE or PATCH the entity present on DataHub GMS. |
let’s suppose we’d like to add domain to dataset based on tag, in this case you can use domain_mapping_based_on_tags
transformer.
The config, which we’d append to our ingestion recipe YAML, would look like this:
Here we can set domains to either urn (i.e. urn:li:domain:engineering) or simple domain name (i.e. engineering) in both of the cases domain should be provisioned on DataHub GMS
When specifying tags within the domain mapping, use the tag's simple name rather than the full tag URN.
For example, instead of using the tag URN urn:li:tag:NeedsDocumentation, you should specify just the simple tag name NeedsDocumentation in the domain mapping configuration
transformers:
- type: "domain_mapping_based_on_tags"
config:
domain_mapping:
'NeedsDocumentation': "urn:li:domain:documentation"
domain_mapping_based_on_tags
can be configured in below different way
- Add domains based on tags, however overwrite the domains available for the dataset on DataHub GMS
transformers: - type: "domain_mapping_based_on_tags" config: semantics: OVERWRITE # OVERWRITE is default behaviour domain_mapping: 'example1': "urn:li:domain:engineering" 'example2': "urn:li:domain:hr"
- Add domains based on tags, however keep the domains available for the dataset on DataHub GMS
transformers: - type: "domain_mapping_based_on_tags" config: semantics: PATCH domain_mapping: 'example1': "urn:li:domain:engineering" 'example2': "urn:li:domain:hr"
Field | Required | Type | Default | Description |
---|---|---|---|---|
dataset_to_data_product_urns |
✅ | Dict[str, str] | Dataset Entity urn as key and dataproduct urn as value to create with dataset as asset. |
Let’s suppose we’d like to add a set of dataproduct with specific datasets as its assets. To do so, we can use the simple_add_dataset_dataproduct
transformer that’s included in the ingestion framework.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "simple_add_dataset_dataproduct"
config:
dataset_to_data_product_urns:
"urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)": "urn:li:dataProduct:first"
"urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)": "urn:li:dataProduct:second"
Field | Required | Type | Default | Description |
---|---|---|---|---|
dataset_to_data_product_urns_pattern |
✅ | map[regx, urn] | Dataset Entity urn with regular expression and dataproduct urn apply to matching entity urn. |
Let’s suppose we’d like to append a series of dataproducts with specific datasets as its assets. To do so, we can use the pattern_add_dataset_dataproduct
module that’s included in the ingestion framework. This will match the regex pattern to urn
of the dataset and create the data product entity with given urn and matched datasets as its assets.
The config, which we’d append to our ingestion recipe YAML, would look like this:
transformers:
- type: "pattern_add_dataset_dataproduct"
config:
dataset_to_data_product_urns_pattern:
rules:
".*example1.*": "urn:li:dataProduct:first"
".*example2.*": "urn:li:dataProduct:second"
Field | Required | Type | Default | Description |
---|---|---|---|---|
get_data_product_to_add |
✅ | callable[[str], Optional[str]] | A function which takes dataset entity urn as input and return dataproduct urn to create. |
If you'd like to add more complex logic for creating dataproducts, you can use the more generic add_dataset_dataproduct transformer, which calls a user-provided function to determine the dataproduct to create with specified datasets as its asset.
transformers:
- type: "add_dataset_dataproduct"
config:
get_data_product_to_add: "<your_module>.<your_function>"
Then define your function to return a dataproduct entity urn, for example:
import datahub.emitter.mce_builder as builder
def custom_dataproducts(entity_urn: str) -> Optional[str]:
"""Compute the dataproduct urn to a given dataset urn."""
dataset_to_data_product_map = {
builder.make_dataset_urn("bigquery", "example1"): "urn:li:dataProduct:first"
}
return dataset_to_data_product_map.get(dataset_urn)
Finally, you can install and use your custom transformer as shown here.
The transformer behaviour mentioned here is in context of simple_add_dataset_ownership
, however it is applicable for all dataset transformers which are supporting replace_existing
and semantics
configuration attributes, for example simple_add_dataset_tags
will add or remove tags as per behaviour mentioned in this section.
replace_existing
controls whether to remove owners from currently executing ingestion pipeline.
semantics
controls whether to overwrite or patch owners present on DataHub GMS server. These owners might be added from DataHub Portal.
if replace_existing
is set to true
and semantics
is set to OVERWRITE
then transformer takes below steps
- As
replace_existing
is set totrue
, remove the owners from input entity (i.e. dataset) - Add owners mentioned in ingestion recipe to input entity
- As
semantics
is set toOVERWRITE
no need to fetch owners present on DataHub GMS server for the input entity - Return input entity
if replace_existing
is set to true
and semantics
is set to PATCH
then transformer takes below steps
replace_existing
is set totrue
, first remove the owners from input entity (i.e. dataset)- Add owners mentioned in ingestion recipe to input entity
- As
semantics
is set toPATCH
fetch owners for the input entity from DataHub GMS Server - Add owners fetched from DataHub GMS Server to input entity
- Return input entity
if replace_existing
is set to false
and semantics
is set to OVERWRITE
then transformer takes below steps
- As
replace_existing
is set tofalse
, keep the owners present in input entity as is - Add owners mentioned in ingestion recipe to input entity
- As
semantics
is set toOVERWRITE
no need to fetch owners from DataHub GMS Server for the input entity - Return input entity
if replace_existing
is set to false
and semantics
is set to PATCH
then transformer takes below steps
replace_existing
is set tofalse
, keep the owners present in input entity as is- Add owners mentioned in ingestion recipe to input entity
- As
semantics
is set toPATCH
fetch owners for the input entity from DataHub GMS Server - Add owners fetched from DataHub GMS Server to input entity
- Return input entity
In the above couple of examples, we use classes that have already been implemented in the ingestion framework. However, it’s common for more advanced cases to pop up where custom code is required, for instance if you'd like to utilize conditional logic or rewrite properties. In such cases, we can add our own modules and define the arguments it takes as a custom transformer.
As an example, suppose we want to append a set of ownership fields to our metadata that are dependent upon an external source – for instance, an API endpoint or file – rather than a preset list like above. In this case, we can set a JSON file as an argument to our custom config, and our transformer will read this file and append the included ownership elements to all metadata events.
Our JSON file might look like the following:
[
"urn:li:corpuser:athos",
"urn:li:corpuser:porthos",
"urn:li:corpuser:aramis",
"urn:li:corpGroup:the_three_musketeers"
]
To get started, we’ll initiate an AddCustomOwnershipConfig
class that inherits from datahub.configuration.common.ConfigModel
. The sole parameter will be an owners_json
which expects a path to a JSON file containing a list of owner URNs. This will go in a file called custom_transform_example.py
.
from datahub.configuration.common import ConfigModel
class AddCustomOwnershipConfig(ConfigModel):
owners_json: str
Next, we’ll define the transformer itself, which must inherit from datahub.ingestion.api.transform.Transformer
. The framework provides a helper class called datahub.ingestion.transformer.base_transformer.BaseTransformer
that makes it super-simple to write transformers.
First, let's get all our imports in:
# append these to the start of custom_transform_example.py
import json
from typing import List, Optional
from datahub.configuration.common import ConfigModel
from datahub.ingestion.api.common import PipelineContext
from datahub.ingestion.transformer.add_dataset_ownership import Semantics
from datahub.ingestion.transformer.base_transformer import (
BaseTransformer,
SingleAspectTransformer,
)
from datahub.metadata.schema_classes import (
OwnerClass,
OwnershipClass,
OwnershipTypeClass,
)
Next, let's define the base scaffolding for the class:
# append this to the end of custom_transform_example.py
class AddCustomOwnership(BaseTransformer, SingleAspectTransformer):
"""Transformer that adds owners to datasets according to a callback function."""
# context param to generate run metadata such as a run ID
ctx: PipelineContext
# as defined in the previous block
config: AddCustomOwnershipConfig
def __init__(self, config: AddCustomOwnershipConfig, ctx: PipelineContext):
super().__init__()
self.ctx = ctx
self.config = config
with open(self.config.owners_json, "r") as f:
raw_owner_urns = json.load(f)
self.owners = [
OwnerClass(owner=owner, type=OwnershipTypeClass.DATAOWNER)
for owner in raw_owner_urns
]
A transformer must have two functions: a create()
function for initialization and a transform()
function for executing the transformation. Transformers that extend BaseTransformer
and SingleAspectTransformer
can avoid having to implement the more complex transform
function and just implement the transform_aspect
function.
Let's begin by adding a create()
method for parsing our configuration dictionary:
# add this as a function of AddCustomOwnership
@classmethod
def create(cls, config_dict: dict, ctx: PipelineContext) -> "AddCustomOwnership":
config = AddCustomOwnershipConfig.parse_obj(config_dict)
return cls(config, ctx)
Next we need to tell the helper classes which entity types and aspect we are interested in transforming. In this case, we want to only process dataset
entities and transform the ownership
aspect.
def entity_types(self) -> List[str]:
return ["dataset"]
def aspect_name(self) -> str:
return "ownership"
Finally we need to implement the transform_aspect()
method that does the work of adding our custom ownership classes. This method will be called be the framework with an optional aspect value filled out if the upstream source produced a value for this aspect. The framework takes care of pre-processing both MCE-s and MCP-s so that the transform_aspect()
function is only called one per entity. Our job is merely to inspect the incoming aspect (or absence) and produce a transformed value for this aspect. Returning None
from this method will effectively suppress this aspect from being emitted.
# add this as a function of AddCustomOwnership
def transform_aspect( # type: ignore
self, entity_urn: str, aspect_name: str, aspect: Optional[OwnershipClass]
) -> Optional[OwnershipClass]:
owners_to_add = self.owners
assert aspect is None or isinstance(aspect, OwnershipClass)
if owners_to_add:
ownership = (
aspect
if aspect
else OwnershipClass(
owners=[],
)
)
ownership.owners.extend(owners_to_add)
return ownership
In some advanced cases, you might want to check with DataHub before performing a transformation. A good example for this might be retrieving the current set of owners of a dataset before providing the new set of owners during an ingestion process. To allow transformers to always be able to query the graph, the framework provides them access to the graph through the context object ctx
. Connectivity to the graph is automatically instantiated anytime the pipeline uses a REST sink. In case you are using the Kafka sink, you can additionally provide access to the graph by configuring it in your pipeline.
Here is an example of a recipe that uses Kafka as the sink, but provides access to the graph by explicitly configuring the datahub_api
.
source:
type: mysql
config:
# ..source configs
sink:
type: datahub-kafka
config:
connection:
bootstrap: localhost:9092
schema_registry_url: "http://localhost:8081"
datahub_api:
server: http://localhost:8080
# standard configs accepted by datahub rest client ...
With the above capability, we can now build more powerful transformers that can check with the server-side state before issuing changes in metadata. e.g. Here is how the AddDatasetOwnership transformer can now support PATCH semantics by ensuring that it never deletes any owners that are stored on the server.
def transform_one(self, mce: MetadataChangeEventClass) -> MetadataChangeEventClass:
if not isinstance(mce.proposedSnapshot, DatasetSnapshotClass):
return mce
owners_to_add = self.config.get_owners_to_add(mce.proposedSnapshot)
if owners_to_add:
ownership = builder.get_or_add_aspect(
mce,
OwnershipClass(
owners=[],
),
)
ownership.owners.extend(owners_to_add)
if self.config.semantics == Semantics.PATCH:
assert self.ctx.graph
patch_ownership = AddDatasetOwnership.get_ownership_to_set(
self.ctx.graph, mce.proposedSnapshot.urn, ownership
)
builder.set_aspect(
mce, aspect=patch_ownership, aspect_type=OwnershipClass
)
return mce
Now that we've defined the transformer, we need to make it visible to DataHub. The easiest way to do this is to just place it in the same directory as your recipe, in which case the module name is the same as the file – in this case, custom_transform_example
.
Advanced: Installing as a package and enable discoverability
Alternatively, create a `setup.py` in the same directory as our transform script to make it visible globally. After installing this package (e.g. with `python setup.py` or `pip install -e .`), our module will be installed and importable as `custom_transform_example`.from setuptools import find_packages, setup
setup(
name="custom_transform_example",
version="1.0",
packages=find_packages(),
# if you don't already have DataHub installed, add it under install_requires
# install_requires=["acryl-datahub"],
entry_points={
"datahub.ingestion.transformer.plugins": [
"custom_transform_example_alias = custom_transform_example:AddCustomOwnership",
],
},
)
Additionally, declare the transformer under the entry_points
variable of the setup script. This enables the transformer to be
listed when running datahub check plugins
, and sets up the transformer's shortened alias for use in recipes.
transformers:
- type: "custom_transform_example_alias"
config:
owners_json: "<path_to_owners_json>" # the JSON file mentioned at the start
After running datahub ingest -c <path_to_recipe>
, our MCEs will now have the following owners appended:
"owners": [
{
"owner": "urn:li:corpuser:athos",
"type": "DATAOWNER",
"source": null
},
{
"owner": "urn:li:corpuser:porthos",
"type": "DATAOWNER",
"source": null
},
{
"owner": "urn:li:corpuser:aramis",
"type": "DATAOWNER",
"source": null
},
{
"owner": "urn:li:corpGroup:the_three_musketeers",
"type": "DATAOWNER",
"source": null
},
// ...and any additional owners
],
All the files for this tutorial may be found here.