forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaincode.py
88 lines (71 loc) · 2.71 KB
/
maincode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Set the title of the application
st.title("Movie Data analysis")
st.write(
"This project analyses the movie data such as ,reviews,meta score etc and displays them in the form of a graph"
)
# Load your dataset
data = pd.read_excel(
r"C:\Users\Ananya\OneDrive\Documents\GitHub\PyVerse\DataVizLearnig\Movie Data Visualization\MovieRatings.xlsx"
)
# Create a dropdown menu for selecting options
options = ["Barchart", "PieChart", "Histogram"]
selected_option = st.selectbox("Choose an option", options)
# Function to create and display a bar chart
def show_barchart():
ratings = data["IMDB_Ratings"].value_counts()
plt.figure(figsize=(10, 6))
cmap = plt.get_cmap("Blues")
colors = [cmap(i / len(ratings)) for i in range(5, len(ratings))]
plt.bar(ratings.index.astype(str), ratings.values, width=0.5, color=colors)
plt.xlabel("IMDB Ratings")
plt.ylabel("Frequency")
plt.title("Bar Chart for Ratings vs Range")
st.pyplot(plt)
# Function to create and display a pie chart
def show_piechart():
data["Genre"] = data["Genre"].str.split(", ") # Split genres if multiple
exploded_df = data.explode("Genre")
genre_counts = exploded_df["Genre"].value_counts()
# Create a gradient color from dark pink to light pink
colors = [
(1, 0.08, 0.58, 1 - i / len(genre_counts)) for i in range(len(genre_counts))
]
plt.figure(figsize=(8, 6))
plt.pie(
genre_counts,
colors=colors,
autopct="%1.1f%%",
labels=genre_counts.index, # Add genre names as labels
shadow=True,
wedgeprops={"edgecolor": "black"}, # Black border between slices
)
plt.title("Genre Distribution of Top 1000 Movies")
st.pyplot(plt)
# Function to create and display a histogram
def show_histogram():
# Ensure 'Meta_score' is in the correct format
values = pd.to_numeric(data["Meta_score"], errors="coerce")
# Check for NaN values and handle them (e.g., drop or fill)
values = values.dropna() # Drop NaN values
# Create a histogram for Metascore with KDE
plt.figure(figsize=(10, 6))
sns.histplot(values, bins=30, kde=True, color="orange", stat="density", alpha=0.5)
plt.title("Histogram of Metascore with KDE")
plt.xlabel("Metascore")
plt.ylabel("Density")
plt.grid(axis="y")
st.pyplot(plt)
# Run the appropriate function based on user selection
if st.button("Submit"):
if selected_option == "Barchart":
show_barchart()
elif selected_option == "PieChart":
show_piechart()
elif selected_option == "Histogram":
show_histogram()
else:
st.error("No valid option selected.")