forked from UTSAVS26/PyVerse
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblockchain.py
223 lines (186 loc) · 7.44 KB
/
blockchain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import binascii
import hashlib
import json
from collections import OrderedDict
from time import time
from urllib.parse import urlparse
from uuid import uuid4
import Crypto
import Crypto.Random # noqa: F401
import requests
from Crypto.Hash import SHA
from Crypto.PublicKey import RSA
from Crypto.Signature import PKCS1_v1_5
MINING_SENDER = "THE BLOCKCHAIN"
MINING_REWARD = 1
MINING_DIFFICULTY = 2
class Blockchain:
def __init__(self):
self.chain = []
self.transactions = []
self.nodes = set()
self.node_id = str(uuid4()).replace("-", "")
self.new_block(0, "00")
def new_block(self, nonce: int, previous_hash: str) -> dict:
"""
Create a new Block in the Blockchain
:param proof: <int> The proof given by the Proof of Work algorithm
:param previous_hash: (Optional) <str> Hash of previous Block
:return: <dict> New Block
"""
block = {
"index": len(self.chain) + 1,
"timestamp": time(),
"transactions": self.transactions,
"nonce": nonce,
"previous_hash": previous_hash or self.hash(self.chain[-1]),
}
# Reset the current list of transactions
self.transactions = []
self.chain.append(block)
return block
def new_transaction(self, sender: str, recipient: str, amount: int) -> int:
"""
Creates a new transaction to go into the next mined Block
:param sender: <str> Address of the Sender
:param recipient: <str> Address of the Recipient
:param amount: <int> Amount
:return: <int> The index of the Block that will hold this transaction
"""
self.transactions.append(
{"sender": sender, "recipient": recipient, "amount": amount}
)
return self.last_block["index"] + 1
@staticmethod
def hash(block: dict) -> str:
"""
Creates a SHA-256 hash of a Block
:param block: <dict> Block
:return: <str>
"""
# We must make sure that the Dictionary is Ordered, or we'll have inconsistent hashes
block_string = json.dumps(block, sort_keys=True).encode()
return hashlib.sha256(block_string).hexdigest()
@property
def last_block(self):
"""
Returns the last Block in the chain.
"""
return self.chain[-1]
def proof_of_work(self) -> int:
"""
Simple Proof of Work Algorithm:
- Find a number p' such that hash(pp') contains leading 4 zeroes, where p is the previous p'
- p is the previous proof, and p' is the new proof
:param last_proof: <int>
:return: <int>
"""
last_block = self.chain[-1]
last_hash = self.hash(last_block)
nonce = 0
while self.valid_proof(self.transactions, last_hash, nonce) is False:
nonce += 1
return nonce
@staticmethod
def valid_proof(transactions, last_hash, nonce, difficulty=MINING_DIFFICULTY):
"""
Check if a hash value satisfies the mining conditions. This function is used within the proof_of_work function.
"""
guess = (str(transactions) + str(last_hash) + str(nonce)).encode()
guess_hash = hashlib.sha256(guess).hexdigest()
return guess_hash[:difficulty] == "0" * difficulty
def register_node(self, address: str) -> None:
"""
Add a new node to the list of nodes
:param address: <str> Address of node. Eg. 'http://192.168.0.5:5000'
:return: None
"""
parsed_url = urlparse(address)
if parsed_url.netloc:
self.nodes.add(parsed_url.netloc)
elif parsed_url.path:
# Accepts an URL without scheme like '192.168.0.5:5000'.
self.nodes.add(parsed_url.path)
else:
raise ValueError("Invalid URL")
@staticmethod
def verify_transaction_signature(sender_address, signature, transaction):
"""
Check that the provided signature corresponds to transaction
signed by the public key (sender_address)
"""
public_key = RSA.importKey(binascii.unhexlify(sender_address))
verifier = PKCS1_v1_5.new(public_key)
hash = SHA.new(str(transaction).encode("utf8"))
return verifier.verify(hash, binascii.unhexlify(signature))
def submit_transaction(self, sender_address, recipient_address, value, signature):
"""Add a transaction to transactions array if the signature verified"""
transaction = OrderedDict(
{
"sender_address": sender_address,
"recipient_address": recipient_address,
"value": value,
}
)
if sender_address == MINING_SENDER:
self.transactions.append(transaction)
return len(self.chain) + 1
else:
transaction_verification = self.verify_transaction_signature(
sender_address, signature, transaction
)
if transaction_verification:
self.transactions.append(transaction)
return len(self.chain) + 1
else:
return False
def valid_chain(self, chain: list) -> bool:
"""
Determine if a given blockchain is valid
:param chain: <list> A blockchain
:return: <bool> True if valid, False if not
"""
last_block = chain[0]
current_index = 1
while current_index < len(chain):
block = chain[current_index]
if block["previous_hash"] != self.hash(last_block):
return False
transactions = block["transactions"][:-1]
transaction_elements = ["sender_address", "recipient_address", "value"]
transactions = [
OrderedDict((k, transaction[k]) for k in transaction_elements)
for transaction in transactions
]
if not self.valid_proof(
transactions, block["previous_hash"], block["nonce"], MINING_DIFFICULTY
):
return False
last_block = block
current_index += 1
return True
def resolve_conflicts(self) -> bool:
"""
This is our Consensus Algorithm, it resolves conflicts
by replacing our chain with the longest one in the network.
:return: <bool> True if our chain was replaced, False if not
"""
neighbours = self.nodes
new_chain = None
# We're only looking for chains longer than ours
max_length = len(self.chain)
# Grab and verify the chains from all the nodes in our network
for node in neighbours:
response = requests.get(f"http://{node}/chain")
if response.status_code == 200:
length = response.json()["length"]
chain = response.json()["chain"]
# Check if the length is longer and the chain is valid
if length > max_length and self.valid_chain(chain):
max_length = length
new_chain = chain
# Replace our chain if we discovered a new, valid chain longer than ours
if new_chain:
self.chain = new_chain
return True
return False