forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathall_close_f.cpp
843 lines (775 loc) · 49.9 KB
/
all_close_f.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
// Copyright (C) 2018-2024 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//
#include "common_test_utils/all_close_f.hpp"
#include <gtest/gtest.h>
#include <algorithm>
#include <bitset>
#include <cmath>
#include <limits>
#include <sstream>
#include "common_test_utils/float_util.hpp"
using namespace std;
class all_close_f_param_test : public testing::TestWithParam<::std::tuple<float, int>> {
protected:
all_close_f_param_test()
: upper_bound(FLT_MAX),
lower_bound(-FLT_MAX),
past_upper_bound(FLT_MAX),
past_lower_bound(-FLT_MAX) {
std::tie(expected, tolerance_bits) = GetParam();
}
void SetUp() override {
constexpr int mantissa_bits = 24;
uint32_t expected_as_int = ov::test::utils::FloatUnion(expected).i;
// Turn on targeted bit
// e.g. for float with 24 bit mantissa, 2 bit accuracy, and hard-coded 8 bit exponent_bits
// tolerance_bit_shift = 32 - (1 + 8 + (24 - 1 ) - 2 )
// float_length sign exp mantissa implicit 1 tolerance_bits
uint32_t tolerance_bit_shift = 32 - (1 + 8 + (mantissa_bits - 1) - tolerance_bits);
uint32_t targeted_bit = (1u << tolerance_bit_shift);
if (expected > 0.f) {
uint32_t upper_bound_as_int = expected_as_int + targeted_bit;
upper_bound = ov::test::utils::FloatUnion(upper_bound_as_int).f;
past_upper_bound = ov::test::utils::FloatUnion(upper_bound_as_int + 1).f;
min_signal_too_low = expected;
min_signal_enables_passing = ov::test::utils::FloatUnion(upper_bound_as_int + 2).f;
uint32_t lower_bound_as_int = expected_as_int - targeted_bit;
lower_bound = ov::test::utils::FloatUnion(lower_bound_as_int).f;
past_lower_bound = ov::test::utils::FloatUnion(lower_bound_as_int - 1).f;
} else if (expected < 0.f) {
// Same logic/math as above, but reversed variable name order
uint32_t lower_bound_as_int = expected_as_int + targeted_bit;
lower_bound = ov::test::utils::FloatUnion(lower_bound_as_int).f;
past_lower_bound = ov::test::utils::FloatUnion(lower_bound_as_int + 1).f;
min_signal_too_low = expected;
min_signal_enables_passing = ov::test::utils::FloatUnion(lower_bound_as_int + 2).f;
uint32_t upper_bound_as_int = expected_as_int - targeted_bit;
upper_bound = ov::test::utils::FloatUnion(upper_bound_as_int).f;
past_upper_bound = ov::test::utils::FloatUnion(upper_bound_as_int - 1).f;
} else // (expected == 0.f) || (expected == -0.f)
{
// Special handling of 0 / -0 which get same bounds
uint32_t upper_bound_as_int = targeted_bit;
upper_bound = ov::test::utils::FloatUnion(upper_bound_as_int).f;
uint32_t past_upper_bound_as_int = upper_bound_as_int + 1;
past_upper_bound = ov::test::utils::FloatUnion(past_upper_bound_as_int).f;
min_signal_too_low = expected;
min_signal_enables_passing = ov::test::utils::FloatUnion(upper_bound_as_int + 2).f;
lower_bound = ov::test::utils::FloatUnion(upper_bound_as_int | 0x80000000).f;
past_lower_bound = ov::test::utils::FloatUnion(past_upper_bound_as_int | 0x80000000).f;
}
}
float expected{0};
int tolerance_bits{0};
float upper_bound;
float lower_bound;
float past_upper_bound;
float past_lower_bound;
float min_signal_too_low{0};
float min_signal_enables_passing{0};
};
TEST_P(all_close_f_param_test, test_boundaries) {
// Format verbose info to only print out in case of test failure
stringstream ss;
ss << "Testing target of: " << expected << " (" << ov::test::utils::float_to_bits(expected) << ")\n";
ss << "Matching to targets with: " << tolerance_bits << " tolerance_bits\n";
ss << "upper_bound: " << upper_bound << " (" << ov::test::utils::float_to_bits(upper_bound) << ")\n";
ss << "lower_bound: " << lower_bound << " (" << ov::test::utils::float_to_bits(lower_bound) << ")\n";
ss << "past_upper_bound: " << past_upper_bound << " (" << ov::test::utils::float_to_bits(past_upper_bound) << ")\n";
ss << "past_lower_bound: " << past_lower_bound << " (" << ov::test::utils::float_to_bits(past_lower_bound) << ")\n";
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits)) << ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits))
<< ss.str();
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits)) << ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits))
<< ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_upper_bound, tolerance_bits)) << ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_upper_bound, tolerance_bits, min_signal_too_low)) << ss.str();
EXPECT_TRUE(ov::test::utils::close_f(expected, past_upper_bound, tolerance_bits, min_signal_enables_passing))
<< ss.str();
EXPECT_FALSE(
ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({past_upper_bound}), tolerance_bits))
<< ss.str();
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({past_upper_bound}),
tolerance_bits,
min_signal_too_low))
<< ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({past_upper_bound}),
tolerance_bits,
min_signal_enables_passing))
<< ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_lower_bound, tolerance_bits)) << ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_lower_bound, tolerance_bits, min_signal_too_low)) << ss.str();
EXPECT_TRUE(ov::test::utils::close_f(expected, past_lower_bound, tolerance_bits, min_signal_enables_passing))
<< ss.str();
EXPECT_FALSE(
ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({past_lower_bound}), tolerance_bits))
<< ss.str();
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({past_lower_bound}),
tolerance_bits,
min_signal_too_low))
<< ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({past_lower_bound}),
tolerance_bits,
min_signal_enables_passing))
<< ss.str();
}
INSTANTIATE_TEST_SUITE_P(
test_simple_floats_with_range_of_precisions,
all_close_f_param_test,
testing::Combine(
testing::Values(0.f, -0.f, 1.f, -1.f, 10.f, -10.f, 0.75f, -0.75f, 0.5f, -0.5f, 0.25f, -0.25f, 0.125f, -0.125f),
testing::Range(0, 5)));
class all_close_f_double_param_test : public testing::TestWithParam<::std::tuple<double, int>> {
protected:
all_close_f_double_param_test()
: upper_bound(DBL_MAX),
lower_bound(-DBL_MAX),
past_upper_bound(DBL_MAX),
past_lower_bound(-DBL_MAX) {
std::tie(expected, tolerance_bits) = GetParam();
}
void SetUp() override {
constexpr int mantissa_bits = 53;
uint64_t expected_as_int = ov::test::utils::DoubleUnion(expected).i;
// Turn on targeted bit
// e.g. for double with 52 bit mantissa, 2 bit accuracy, and hard-coded 11 bit exponent_bits
// tolerance_bit_shift = 64 - (1 + 11 + (52 - 1 ) - 2 )
// double_length sign exp mantissa implicit 1 tolerance_bits
uint64_t tolerance_bit_shift = 64 - (1 + 11 + (mantissa_bits - 1) - tolerance_bits);
uint64_t targeted_bit = (1ull << tolerance_bit_shift);
if (expected > 0.) {
uint64_t upper_bound_as_int = expected_as_int + targeted_bit;
upper_bound = ov::test::utils::DoubleUnion(upper_bound_as_int).d;
past_upper_bound = ov::test::utils::DoubleUnion(upper_bound_as_int + 1).d;
min_signal_too_low = expected;
min_signal_enables_passing = ov::test::utils::DoubleUnion(upper_bound_as_int + 2).d;
uint64_t lower_bound_as_int = expected_as_int - targeted_bit;
lower_bound = ov::test::utils::DoubleUnion(lower_bound_as_int).d;
past_lower_bound = ov::test::utils::DoubleUnion(lower_bound_as_int - 1).d;
} else if (expected < 0.) {
// Same logic/math as above, but reversed variable name order
uint64_t lower_bound_as_int = expected_as_int + targeted_bit;
lower_bound = ov::test::utils::DoubleUnion(lower_bound_as_int).d;
past_lower_bound = ov::test::utils::DoubleUnion(lower_bound_as_int + 1).d;
min_signal_too_low = expected;
min_signal_enables_passing = ov::test::utils::DoubleUnion(lower_bound_as_int + 2).d;
uint64_t upper_bound_as_int = expected_as_int - targeted_bit;
upper_bound = ov::test::utils::DoubleUnion(upper_bound_as_int).d;
past_upper_bound = ov::test::utils::DoubleUnion(upper_bound_as_int - 1).d;
} else // (expected == 0.) || (expected == -0.)
{
// Special handling of 0 / -0 which get same bounds
uint64_t upper_bound_as_int = targeted_bit;
upper_bound = ov::test::utils::DoubleUnion(upper_bound_as_int).d;
uint64_t past_upper_bound_as_int = upper_bound_as_int + 1;
past_upper_bound = ov::test::utils::DoubleUnion(past_upper_bound_as_int).d;
min_signal_too_low = expected;
min_signal_enables_passing = ov::test::utils::DoubleUnion(upper_bound_as_int + 2).d;
lower_bound = ov::test::utils::DoubleUnion(upper_bound_as_int | 0x8000000000000000).d;
past_lower_bound = ov::test::utils::DoubleUnion(past_upper_bound_as_int | 0x8000000000000000).d;
}
}
double expected{0};
int tolerance_bits{0};
double upper_bound;
double lower_bound;
double past_upper_bound;
double past_lower_bound;
double min_signal_too_low{0};
double min_signal_enables_passing{0};
};
TEST_P(all_close_f_double_param_test, test_boundaries) {
// Format verbose info to only print out in case of test failure
stringstream ss;
ss << "Testing target of: " << expected << " (" << ov::test::utils::double_to_bits(expected) << ")\n";
ss << "Matching to targets with: " << tolerance_bits << " tolerance_bits\n";
ss << "upper_bound: " << upper_bound << " (" << ov::test::utils::double_to_bits(upper_bound) << ")\n";
ss << "lower_bound: " << lower_bound << " (" << ov::test::utils::double_to_bits(lower_bound) << ")\n";
ss << "past_upper_bound: " << past_upper_bound << " (" << ov::test::utils::double_to_bits(past_upper_bound)
<< ")\n";
ss << "past_lower_bound: " << past_lower_bound << " (" << ov::test::utils::double_to_bits(past_lower_bound)
<< ")\n";
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits)) << ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({expected}), vector<double>({upper_bound}), tolerance_bits))
<< ss.str();
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits)) << ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({expected}), vector<double>({lower_bound}), tolerance_bits))
<< ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_upper_bound, tolerance_bits)) << ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_upper_bound, tolerance_bits, min_signal_too_low)) << ss.str();
EXPECT_TRUE(ov::test::utils::close_f(expected, past_upper_bound, tolerance_bits, min_signal_enables_passing))
<< ss.str();
EXPECT_FALSE(
ov::test::utils::all_close_f(vector<double>({expected}), vector<double>({past_upper_bound}), tolerance_bits))
<< ss.str();
EXPECT_FALSE(ov::test::utils::all_close_f(vector<double>({expected}),
vector<double>({past_upper_bound}),
tolerance_bits,
min_signal_too_low))
<< ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({expected}),
vector<double>({past_upper_bound}),
tolerance_bits,
min_signal_enables_passing))
<< ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_lower_bound, tolerance_bits)) << ss.str();
EXPECT_FALSE(ov::test::utils::close_f(expected, past_lower_bound, tolerance_bits, min_signal_too_low)) << ss.str();
EXPECT_TRUE(ov::test::utils::close_f(expected, past_lower_bound, tolerance_bits, min_signal_enables_passing))
<< ss.str();
EXPECT_FALSE(
ov::test::utils::all_close_f(vector<double>({expected}), vector<double>({past_lower_bound}), tolerance_bits))
<< ss.str();
EXPECT_FALSE(ov::test::utils::all_close_f(vector<double>({expected}),
vector<double>({past_lower_bound}),
tolerance_bits,
min_signal_too_low))
<< ss.str();
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({expected}),
vector<double>({past_lower_bound}),
tolerance_bits,
min_signal_enables_passing))
<< ss.str();
}
INSTANTIATE_TEST_SUITE_P(
test_simple_doubles_with_range_of_precisions,
all_close_f_double_param_test,
testing::Combine(testing::Values(0., -0., 1., -1., 10., -10., 0.75, -0.75, 0.5, -0.5, 0.25, -0.25, 0.125, -0.125),
testing::Range(0, 17)));
// Test the exact bounds near +0.f
//
// With tolerance_bits = 18
// (equivalent to testing bfloat precision with 2 bits tolerance)
//
// Targeted bit
// |
// v
// 2 3 4 5 6 (error allowed in 6th bit or later, w/ implicit leading bit)
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 | (8 w/ implicit leading bit)
// ^
// | 2 |<=
//
// [Upper bound]
// Add 1 at this bit
// |
// v
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Minus 1 at this bit
// |
// v
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Convert to 2's compliment
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Mask the sign bit
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_0) {
constexpr int tolerance_bits = (FLOAT_MANTISSA_BITS - BFLOAT_MANTISSA_BITS + 2);
// 0.f, the ground-truth value
float expected = ov::test::utils::bits_to_float("0 00000000 000 0000 0000 0000 0000 0000");
float computed;
float min_signal_too_low = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0001");
float min_signal_enables_passing = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0010");
// ~3.67342E-40, the exact upper bound
computed = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// ~3.67343E-40, the next representable number bigger than upper bound
computed = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0001");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_too_low));
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_enables_passing));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_too_low));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_enables_passing));
// ~-3.67342E-40, the exact lower bound
computed = ov::test::utils::bits_to_float("1 00000000 000 0100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// ~-3.67343E-40, the next representable number smaller than lower bound
computed = ov::test::utils::bits_to_float("1 00000000 000 0100 0000 0000 0000 0001");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_too_low));
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_enables_passing));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_too_low));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_enables_passing));
}
// Test the exact bounds near -0.f
//
// With tolerance_bits = 18
// (equivalent to testing bfloat precision with 2 bits tolerance)
//
// Targeted bit
// |
// v
// 2 3 4 5 6 (error allowed in 6th bit or later, w/ implicit leading bit)
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 | (8 w/ implicit leading bit)
// ^
// | 2 |<=
//
// [Upper bound]
// Minus 1 at this bit
// |
// v
// 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Convert to 2's compliment
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Mask off sign bit
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Add 1 at this bit
// |
// v
// 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_n0) {
constexpr int tolerance_bits = (FLOAT_MANTISSA_BITS - BFLOAT_MANTISSA_BITS + 2);
// 0.f, the ground-truth value
float expected = ov::test::utils::bits_to_float("1 00000000 000 0000 0000 0000 0000 0000");
float computed;
float min_signal_too_low = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0001");
float min_signal_enables_passing = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0010");
// ~3.67342E-40, the exact upper bound
computed = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// ~3.67343E-40, the next representable number bigger than upper bound
computed = ov::test::utils::bits_to_float("0 00000000 000 0100 0000 0000 0000 0001");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_too_low));
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_enables_passing));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_too_low));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_enables_passing));
// ~-3.67342E-40, the exact lower bound
computed = ov::test::utils::bits_to_float("1 00000000 000 0100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// ~-3.67343E-40, the next representable number smaller than lower bound
computed = ov::test::utils::bits_to_float("1 00000000 000 0100 0000 0000 0000 0001");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_too_low));
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits, min_signal_enables_passing));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_too_low));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({computed}),
tolerance_bits,
min_signal_enables_passing));
}
// Test the exact bounds near 1.f
//
// With tolerance_bits = 18
// (equivalent to testing bfloat precision with 2 bits tolerance)
//
// Targeted bit
// |
// v
// 2 3 4 5 6 (error allowed in 6th bit or later, w/ implicit leading bit)
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 | (8 w/ implicit leading bit)
// ^
// | 2 |<=
//
// [Upper bound]
// Add 1 at this bit to get upper bound
// |
// v
// 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Minus 1 at this bit to get lower bound
// |
// v
// 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_1) {
constexpr int tolerance_bits = (FLOAT_MANTISSA_BITS - BFLOAT_MANTISSA_BITS + 2);
// 1.f, the ground-truth value
float expected = ov::test::utils::bits_to_float("0 01111111 000 0000 0000 0000 0000 0000");
float computed;
// 1.03125f, the exact upper bound
computed = ov::test::utils::bits_to_float("0 01111111 000 0100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// 1.031250119f, the next representable number bigger than upper bound
computed = ov::test::utils::bits_to_float("0 01111111 000 0100 0000 0000 0000 0001");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// 0.984375f, the exact lower bound
computed = ov::test::utils::bits_to_float("0 01111110 111 1100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// 0.9843749404f, the next representable number smaller than lower bound
computed = ov::test::utils::bits_to_float("0 01111110 111 1011 1111 1111 1111 1111");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
}
// Test the exact bounds near -1.f
//
// With tolerance_bits = 18
// (equivalent to testing bfloat precision with 2 bits tolerance)
//
// Targeted bit
// |
// v
// 2 3 4 5 6 (error allowed in 6th bit or later, w/ implicit leading bit)
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 | (8 w/ implicit leading bit)
// ^
// | 2 |<=
//
// [Upper bound]
// Minus 1 at this bit
// |
// v
// 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Add 1 at this bit
// |
// v
// 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_n1) {
constexpr int tolerance_bits = (FLOAT_MANTISSA_BITS - BFLOAT_MANTISSA_BITS + 2);
// -1.f, the ground-truth value
float expected = ov::test::utils::bits_to_float("1 01111111 000 0000 0000 0000 0000 0000");
float computed;
// -0.984375f, the exact upper bound
computed = ov::test::utils::bits_to_float("1 01111110 111 1100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// -0.984374940395355224609375f, the next representable number bigger than upper bound
computed = ov::test::utils::bits_to_float("1 01111110 111 1011 1111 1111 1111 1111");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// -1.03125f, the exact lower bound
computed = ov::test::utils::bits_to_float("1 01111111 000 0100 0000 0000 0000 0000");
EXPECT_TRUE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
// -1.03125011920928955078125f, the next representable number smaller than lower bound
computed = ov::test::utils::bits_to_float("1 01111111 000 0100 0000 0000 0000 0001");
EXPECT_FALSE(ov::test::utils::close_f(expected, computed, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({computed}), tolerance_bits));
}
// For intuitive understanding of tightness of bounds in decimal
// Test bounds near 0, 1, 10, 100, 1000 with tolerance_bits = 18
//
// Targeted bit
// |
// v
// 2 3 4 5 6 (error allowed in 6th bit or later, w/ implicit leading bit)
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 | (8 w/ implicit leading bit)
// ^
// | 2 |<=
TEST(all_close_f, mantissa_8_near_0_1_10_100_1000) {
constexpr int tolerance_bits = (FLOAT_MANTISSA_BITS - BFLOAT_MANTISSA_BITS + 2);
float expected;
float upper_bound;
float bigger_than_upper_bound;
float lower_bound;
float smaller_than_lower_bound;
// Bounds around 0: 0 +- 3.67e-40
expected = 0.f; // 0 00000000 000 0000 0000 0000 0000 0000
upper_bound = 3.67342e-40f; // 0 00000000 000 0100 0000 0000 0000 0000, approximated
bigger_than_upper_bound = 3.67343e-40f; // 0 00000000 000 0100 0000 0000 0000 0001, approximated
lower_bound = -3.67342e-40f; // 1 00000000 000 0100 0000 0000 0000 0000, approximated
smaller_than_lower_bound = 3.67343e-40f; // 1 00000000 000 0100 0000 0000 0000 0001, approximated
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 1: 1 +- 0.03
expected = 1.f; // 0 01111111 000 0000 0000 0000 0000 0000
upper_bound = 1.03125f; // 0 01111111 000 0100 0000 0000 0000 0000
bigger_than_upper_bound = 1.031250119f; // 0 01111111 000 0100 0000 0000 0000 0001
lower_bound = 0.984375f; // 0 01111110 111 1100 0000 0000 0000 0000
smaller_than_lower_bound = 0.9843749404f; // 0 01111110 111 1011 1111 1111 1111 1111
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 10: 10 +- 0.25
expected = 10.f; // 0 10000010 010 0000 0000 0000 0000 0000
upper_bound = 10.25f; // 0 10000010 010 0100 0000 0000 0000 0000
bigger_than_upper_bound = 10.25000095367431640625f; // 0 10000010 010 0100 0000 0000 0000 0001
lower_bound = 9.75f; // 0 10000010 001 1100 0000 0000 0000 0000
smaller_than_lower_bound = 9.74999904632568359375f; // 0 10000010 001 1011 1111 1111 1111 1111
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 100: 100 +- 2
expected = 100.f; // 0 10000101 100 1000 0000 0000 0000 0000
upper_bound = 102.f; // 0 10000101 100 1100 0000 0000 0000 0000
bigger_than_upper_bound = 102.00000762939453125f; // 0 10000101 100 1100 0000 0000 0000 0001
lower_bound = 98.0f; // 0 10000101 100 0100 0000 0000 0000 0000
smaller_than_lower_bound = 97.99999237060546875f; // 0 10000101 100 0011 1111 1111 1111 1111
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 1000: 1000 +- 16
expected = 1000.f; // 0 10001000 111 1010 0000 0000 0000 0000
upper_bound = 1016.f; // 0 10001000 111 1110 0000 0000 0000 0000
bigger_than_upper_bound = 1016.00006103515625f; // 0 10001000 111 1110 0000 0000 0000 0001
lower_bound = 984.0f; // 0 10001000 111 0110 0000 0000 0000 0000
smaller_than_lower_bound = 983.99993896484375f; // 0 10001000 111 0101 1111 1111 1111 1111
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
}
// For intuitive understanding of tightness of bounds in decimal
// Test bounds near 0, 1, 10, 100, 1000 with tolerance_bits = 2
//
// Targeted bit
// |
// (22 bits must match, w/ implicit leading bit) v
// 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 24 (w/ implicit leading bit) |
// ^
// | 2 |<=
TEST(all_close_f, mantissa_24_near_0_1_10_100_1000) {
constexpr int tolerance_bits = 2;
float expected;
float upper_bound;
float bigger_than_upper_bound;
float lower_bound;
float smaller_than_lower_bound;
// Bounds around 0: 0 +- 5.6e-45
expected = 0.f;
upper_bound = ov::test::utils::bits_to_float("0 00000000 000 0000 0000 0000 0000 0100");
bigger_than_upper_bound = ov::test::utils::bits_to_float("0 00000000 000 0000 0000 0000 0000 0101");
lower_bound = ov::test::utils::bits_to_float("1 00000000 000 0000 0000 0000 0000 0100");
smaller_than_lower_bound = ov::test::utils::bits_to_float("1 00000000 000 0000 0000 0000 0000 0101");
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 1: 1 +- 4.77e-7
expected = 1.f;
upper_bound = ov::test::utils::bits_to_float("0 01111111 000 0000 0000 0000 0000 0100");
bigger_than_upper_bound = ov::test::utils::bits_to_float("0 01111111 000 0000 0000 0000 0000 0101");
lower_bound = ov::test::utils::bits_to_float("0 01111110 111 1111 1111 1111 1111 1100");
smaller_than_lower_bound = ov::test::utils::bits_to_float("0 01111110 111 1111 1111 1111 1111 1011");
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 10: 10 +- 3.81e-6
expected = 10.f;
upper_bound = ov::test::utils::bits_to_float("0 10000010 010 0000 0000 0000 0000 0100");
bigger_than_upper_bound = ov::test::utils::bits_to_float("0 10000010 010 0000 0000 0000 0000 0101");
lower_bound = ov::test::utils::bits_to_float("0 10000010 001 1111 1111 1111 1111 1100");
smaller_than_lower_bound = ov::test::utils::bits_to_float("0 10000010 001 1111 1111 1111 1111 1011");
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 100: 100 +- 3.05e-5
expected = 100.f;
upper_bound = ov::test::utils::bits_to_float("0 10000101 100 1000 0000 0000 0000 0100");
bigger_than_upper_bound = ov::test::utils::bits_to_float("0 10000101 100 1000 0000 0000 0000 0101");
lower_bound = ov::test::utils::bits_to_float("0 10000101 100 0111 1111 1111 1111 1100");
smaller_than_lower_bound = ov::test::utils::bits_to_float("0 10000101 100 0111 1111 1111 1111 1011");
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
// Bounds around 1000: 1000 +- 2.44e-4
expected = 1000.f;
upper_bound = ov::test::utils::bits_to_float("0 10001000 111 1010 0000 0000 0000 0100");
bigger_than_upper_bound = ov::test::utils::bits_to_float("0 10001000 111 1010 0000 0000 0000 0101");
lower_bound = ov::test::utils::bits_to_float("0 10001000 111 1001 1111 1111 1111 1100");
smaller_than_lower_bound = ov::test::utils::bits_to_float("0 10001000 111 1001 1111 1111 1111 1011");
EXPECT_TRUE(ov::test::utils::close_f(expected, upper_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({upper_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, bigger_than_upper_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({bigger_than_upper_bound}),
tolerance_bits));
EXPECT_TRUE(ov::test::utils::close_f(expected, lower_bound, tolerance_bits));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({expected}), vector<float>({lower_bound}), tolerance_bits));
EXPECT_FALSE(ov::test::utils::close_f(expected, smaller_than_lower_bound, tolerance_bits));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({expected}),
vector<float>({smaller_than_lower_bound}),
tolerance_bits));
}
TEST(all_close_f, inf_nan) {
float zero = 0.f;
float infinity = numeric_limits<float>::infinity();
float neg_infinity = -numeric_limits<float>::infinity();
float quiet_nan = numeric_limits<float>::quiet_NaN();
float signaling_nan = numeric_limits<float>::signaling_NaN();
EXPECT_FALSE(ov::test::utils::close_f(zero, infinity));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({zero}), vector<float>({infinity})));
EXPECT_FALSE(ov::test::utils::close_f(zero, neg_infinity));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({zero}), vector<float>({neg_infinity})));
EXPECT_FALSE(ov::test::utils::close_f(zero, quiet_nan));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({zero}), vector<float>({quiet_nan})));
EXPECT_FALSE(ov::test::utils::close_f(zero, signaling_nan));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<float>({zero}), vector<float>({signaling_nan})));
EXPECT_TRUE(ov::test::utils::close_f(infinity, infinity));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({infinity}), vector<float>({infinity})));
EXPECT_TRUE(ov::test::utils::close_f(neg_infinity, neg_infinity));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({neg_infinity}), vector<float>({neg_infinity})));
EXPECT_TRUE(ov::test::utils::close_f(quiet_nan, quiet_nan));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({quiet_nan}), vector<float>({quiet_nan})));
EXPECT_TRUE(ov::test::utils::close_f(signaling_nan, signaling_nan));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<float>({signaling_nan}), vector<float>({signaling_nan})));
}
TEST(all_close_f, double_inf_nan) {
double zero = 0;
double infinity = numeric_limits<double>::infinity();
double neg_infinity = -numeric_limits<double>::infinity();
double quiet_nan = numeric_limits<double>::quiet_NaN();
double signaling_nan = numeric_limits<double>::signaling_NaN();
EXPECT_FALSE(ov::test::utils::close_f(zero, infinity));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<double>({zero}), vector<double>({infinity})));
EXPECT_FALSE(ov::test::utils::close_f(zero, neg_infinity));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<double>({zero}), vector<double>({neg_infinity})));
EXPECT_FALSE(ov::test::utils::close_f(zero, quiet_nan));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<double>({zero}), vector<double>({quiet_nan})));
EXPECT_FALSE(ov::test::utils::close_f(zero, signaling_nan));
EXPECT_FALSE(ov::test::utils::all_close_f(vector<double>({zero}), vector<double>({signaling_nan})));
EXPECT_TRUE(ov::test::utils::close_f(infinity, infinity));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({infinity}), vector<double>({infinity})));
EXPECT_TRUE(ov::test::utils::close_f(neg_infinity, neg_infinity));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({neg_infinity}), vector<double>({neg_infinity})));
EXPECT_TRUE(ov::test::utils::close_f(quiet_nan, quiet_nan));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({quiet_nan}), vector<double>({quiet_nan})));
EXPECT_TRUE(ov::test::utils::close_f(signaling_nan, signaling_nan));
EXPECT_TRUE(ov::test::utils::all_close_f(vector<double>({signaling_nan}), vector<double>({signaling_nan})));
}