forked from lukeshingles/extinction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
executable file
·183 lines (139 loc) · 6.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env py.test
import os
import numpy as np
from numpy.testing import assert_allclose
import extinction
def test_ccm89():
# NOTE: Test is only to precision of 0.016 because there is a discrepancy
# of 0.014 for the B band wavelength of unknown origin (and up to 0.002 in
# other bands).
#
# Note that a and b can be obtained with:
# b = ccm89(wave, 0.)
# a = ccm89(wave, 1.) - b
#
# These differ from the values tablulated in the original paper.
# Could be due to floating point errors in the original paper?
#
# U, B, V, R, I, J, H, K band effective wavelengths from CCM '89 table 3
x_inv_microns = np.array([2.78, 2.27, 1.82, 1.43, 1.11, 0.80, 0.63, 0.46])
wave = 1.e4 / x_inv_microns
# A(lambda)/A(V) for R_V = 3.1 from Table 3 of CCM '89
ref_values = np.array([1.569, 1.337, 1.000, 0.751, 0.479, 0.282, 0.190,
0.114])
assert_allclose(extinction.ccm89(wave, 1.0, 3.1), ref_values,
rtol=0.016, atol=0.)
def test_odonnell94():
# NOTE: The tabulated values go to 0.001, but the test is only for matching
# at the 0.005 level, because there is currently a discrepancy up to 0.0047
# of unknown origin.
#
# Tests od94() at Rv = 3.1 against the widely used values tabulated in
# Schlegel, Finkbeiner and Davis (1998)
# http://adsabs.harvard.edu/abs/1998ApJ...500..525S
#
# This is tested by evaluating the extinction curve at a (given)
# effective wavelength, since these effective wavelengths:
# "... represent(s) that wavelength on the extinction curve
# with the same extinction as the full passband."
#
# The test does not include UKIRT L' (which, at 3.8 microns) is
# beyond the range of wavelengths allowed by the function
# or the APM b_J filter which is defined in a non-standard way.
#
# The SFD98 tabulated values go to 1e-3, so we should be able to match at
# that level.
wave = np.array([3372., 4404., 5428., 6509., 8090.,
3683., 4393., 5519., 6602., 8046.,
12660., 16732., 22152.,
5244., 6707., 7985., 9055.,
6993.,
3502., 4676., 4127.,
4861., 5479.,
3546., 4925., 6335., 7799., 9294.,
3047., 4711., 5498.,
6042., 7068., 8066.,
4814., 6571., 8183.])
ref_values = np.array([1.664, 1.321, 1.015, 0.819, 0.594,
1.521, 1.324, 0.992, 0.807, 0.601,
0.276, 0.176, 0.112,
1.065, 0.793, 0.610, 0.472,
0.755,
1.602, 1.240, 1.394,
1.182, 1.004,
1.579, 1.161, 0.843, 0.639, 0.453,
1.791, 1.229, 0.996,
0.885, 0.746, 0.597,
1.197, 0.811, 0.580])
assert_allclose(extinction.odonnell94(wave, 1.0, 3.1), ref_values,
rtol=0.0051, atol=0.)
def test_fitzpatrick99_knots():
"""Test that knots match values in Fitzpatrick (1999) Table 3 for
fitzpatrick99 function (with R_V = 3.1)"""
wave = np.array([np.inf, 26500., 12200., 6000., 5470., 4670., 4110.,
2700., 2600.])
x = np.array([0.0, 0.377, 0.820, 1.667, 1.828, 2.141, 2.433, 3.704,
3.846])
# A(lambda) values for E(B-V) = 1 or A_V = 3.1
ref_values = np.array([0.0, 0.265, 0.829, 2.688, 3.055, 3.806, 4.315,
6.265, 6.591])
assert_allclose(extinction.fitzpatrick99(wave, 3.1, unit='aa'), ref_values,
rtol=0., atol=0.001)
# atol = 0.002 because the input values are less precise (e.g., 0.377
# rather than 1.e4 / 26500.)
assert_allclose(extinction.fitzpatrick99(x, 3.1, unit='invum'), ref_values,
rtol=0., atol=0.002)
def test_fitzpatrick99_rv_knots():
"""Test that Fitzpatrick function has the right R_V dependence at
the knots."""
wave = np.array([26500., 12200., 6000., 5470., 4670., 4110.])
# "the IR points at 1/lambda < 1 invum are simply scaled by R/3.1"
# "the optical points are vertically offset by an amount R - 3.1 , with
# slight corrections made to preserve the normalization"
for r in [1., 2., 3., 4., 5., 6.]:
# `expected` gives expected A(lambda) for E(B-V) = 1 (A_V = R)
expected = [r / 3.1 * 0.265, # Table 3 scaled by R/3.1
r / 3.1 * 0.829, # Table 3 scaled by R/3.1
-0.426 + 1.0044 * r, # Table 4
-0.050 + 1.0016 * r, # Table 4
0.701 + 1.0016 * r, # Table 4
1.208 + 1.0032 * r - 0.00033 * r**2] # Table 4
result = extinction.Fitzpatrick99(r)(wave, r)
# Note that we don't expect an exact match because, as noted in the
# code, "the optical spline points are not taken from F99 table 4,
# but rather updated versions from E. Fitzpatrick (matching the IDL
# astrolib routine FM_UNRED).
assert_allclose(result, expected, rtol=0.003)
def test_fitzpatrick99_idl():
"""Test that result matches implementation in IDL procedure FM_UNRED"""
for r_v in (2.3, 3.1, 4.0, 5.3):
fname = os.path.join('testdata', 'fm_unred_{:3.1f}.dat'.format(r_v))
wave, a_lambda_ref = np.loadtxt(fname, unpack=True)
a_lambda = extinction.Fitzpatrick99(r_v)(wave, 1.0)
assert_allclose(a_lambda, a_lambda_ref, rtol=0.00005)
def test_fitzpatrick99_r_v():
"""Test that we can access the `r_v` attribute."""
f = extinction.Fitzpatrick99()
assert f.r_v == 3.1
f = extinction.Fitzpatrick99(2.1)
assert f.r_v == 2.1
def test_fitzpatrick99_func():
"""Check passing R_V."""
wave = np.array([2000., 30000.])
for r_v in (3.1, 4.0):
assert np.all(extinction.Fitzpatrick99(r_v)(wave, 1.0) ==
extinction.fitzpatrick99(wave, 1.0, r_v))
def test_fm07():
wave = np.arange(3000., 9000., 1000)
# from running the code; we're just checking that results don't change!
ref_values = [1.84192286, 1.42645161, 1.13842341, 0.88843179, 0.69226384,
0.54709373]
assert_allclose(extinction.fm07(wave, 1.), ref_values)
def test_calzetti00():
"""Test calzetti against another translation of the same base code"""
wave = np.array([2000., 4000., 8000.])
flux = np.ones(3)
new_flux = extinction.apply(extinction.calzetti00(wave, -1., 3.1), flux)
# derived using Julia version of IDL calz_unred
ref_values = np.array([10.5288, 3.88153, 1.61769])
assert_allclose(new_flux, ref_values, atol=0.0001)