-
Notifications
You must be signed in to change notification settings - Fork 22
/
train.py
435 lines (404 loc) · 20.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
from common.metric import ImgLevelResult
import numpy as np
import sklearn.metrics as metrics
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import torch.backends.cudnn as cudnn
import pdb
from tqdm import tqdm
import argparse
import os
import json
import time
from common.utils import mkdirs, save_checkpoint, load_checkpoint, init_optim, output_to_gexf
from torch.optim import lr_scheduler
from model import network
from torch_geometric.nn import DataParallel
from dataflow.data import prepare_train_val_loader
from setting import CrossValidSetting as DataSetting
def evaluate(dataset, model, args, name='Validation', max_num_examples=None):
model.eval()
device = 'cuda:1' if torch.cuda.device_count()>1 else 'cuda:0'
torch.cuda.empty_cache()
finaleval = ImgLevelResult(args)
with torch.no_grad():
test_time = args.test_epoch if (args.dynamic_graph and name !='Train')else 1
if args.visualization:
test_time = 1
pred_n_times = []
labels_n_time = []
for _ in range(test_time):
# test 5 times, each time the graph is constructed by the same method from that in train
preds = []
labels = []
dataset.dataset.set_val_epoch(_)
for batch_idx, data in enumerate(dataset):
if args.visualization:
patch_idx = data['patch_idx']
patch_name = dataset.dataset.idxlist[patch_idx.item()]
adj = data['adj'].to(device)
h0 = data['feats'].to(device)
label = data['label']
# coor = data['coor']
label = label[:, 0].numpy()
labels.append(label)
batch_num_nodes = data['num_nodes'].cuda()
ypred = model((h0, adj, batch_num_nodes))
finaleval.patch_result(patch_name, torch.max(ypred, 1)[1].cpu().numpy())
else:
patch_name = [dataset.dataset.idxlist[d.patch_idx.item()] for d in data]
ypred = model(data)
label = torch.cat([d.y for d in data]).numpy()
labels.append(label)
finaleval.batch_patch_result(patch_name, torch.max(ypred, 1)[1].cpu().numpy())
_, indices = torch.max(ypred, 1)
preds.append(ypred.detach().cpu().numpy())
if max_num_examples is not None:
if (batch_idx+1)*args.batch_size > max_num_examples:
break
if args.visualization and (batch_idx+1)*args.batch_size<50:
# visualization only support in "not args.load_data_list == True and args.full_test_graph"
adj = adj.detach().cpu().numpy()
h0 = h0.detach().cpu().numpy()
h0 = h0[:, :,-2:]
batch_size = h0.shape[0]
name = dataset.dataset.idxlist[int(batch_idx * batch_size) : int((batch_idx+1) * batch_size)]
assign_matrix_list = [f.detach().cpu().numpy() for f in model.assign_matrix]
for i in range(adj.shape[0]):
save_name = os.path.join(args.resultdir,gen_prefix(args),'visual', name[i].split('/')[-1] + '.gexf')
assign_matrix_list_single_image = [f[i] for f in assign_matrix_list]
output_to_gexf( h0[i], adj[i], assign_matrix_list_single_image, save_name)
labels = np.concatenate(labels,0)
preds = np.concatenate(preds,0)
pred_n_times.append(preds[...,np.newaxis])
labels_n_time.append(labels[...,np.newaxis])
pred_n_times = np.concatenate(pred_n_times, -1)
labels_n_time = np.hstack(labels_n_time)
pred_n_times = np.mean(pred_n_times,-1)
labels_n_time = np.mean(labels_n_time,-1)
pred_n_times = np.argmax(pred_n_times,1)
multi_class_acc,binary_acc = finaleval.final_result()
result = { 'patch_acc': metrics.accuracy_score(labels_n_time,pred_n_times), 'img_acc':multi_class_acc, 'binary_acc': binary_acc }
return result
def gen_prefix(args):
name = args.dataset
name += '_' + args.method
if args.method == 'soft-assign':
name += '_l' + str(args.num_gc_layers) + 'x' + str(args.num_pool)
name += '_ar' + str(int(args.assign_ratio*100))
name += '_h' + str(args.hidden_dim) + '_o' + str(args.output_dim)
if not args.bias:
name += '_nobias'
if len(args.name_suffix) > 0:
name += '_' + args.name_suffix
name += '_f' +args.feature_type
name += '_%' + str(args.sample_ratio)
# name += '_' + args.sample_method
name +=args.name
if args.load_data_sparse:
name += '_sp'
if args.load_data_list:
name +='_list'
if args.norm_adj:
name+='_adj0.4'
if args.activation !='relu':
name+=args.activation
if args.readout =='mix':
name+=args.readout
if args.task != 'colon':
name+=('_'+args.task)
if args.mask !='cia':
name +='hvnet'
if args.neighbour !=8:
name +='_n'+str(args.neighbour)
name += '_sr' + str(args.sample_ratio)
if args.drop_out >0:
name +='_d' + str(args.drop_out)
if args.jump_knowledge:
name +='_jk'
name += args.graph_sampler
if args.cross_val!=1:
name +='_cv'+str(args.cross_val)
return name
def train(dataset, model, args, val_dataset=None, test_dataset=None, writer=None, checkpoint = None):
print("==> Start training")
device = 'cuda:1' if torch.cuda.device_count()>1 else 'cuda:0'
start_epoch = 0
optimizer = init_optim(args.optim, model.parameters(), args.lr, args.weight_decay)
if checkpoint is not None:
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch']
if args.step_size > 0:
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
cudnn.benchmark = True
iter = 0
best_val_result = {
'epoch': 0,
'loss': 0,
'img_acc': 0,
'patch_acc': 0 }
test_result = {
'epoch': 0,
'loss': 0,
'img_acc': 0,
'patch_acc':0}
best_val_accs = []
best_val_epochs = []
test_accs = []
test_epochs = []
val_accs = []
save_path = os.path.join(args.resultdir, gen_prefix(args))
train_iter = 0
for epoch in range(start_epoch, args.num_epochs):
torch.cuda.empty_cache()
total_time = 0
avg_loss = 0.0
model.train()
print('Epoch: ', epoch)
dataset.dataset.set_epoch(epoch)
with tqdm(bar_format='{desc}{postfix}') as tq:
for batch_idx, data in enumerate(tqdm(dataset)):
train_iter += 40
begin_time = time.time()
_, cls_loss = model(data)
cls_loss = torch.mean(cls_loss)
loss = cls_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
iter += 1
if train_iter%3500 == 0:
val_result = evaluate(val_dataset, model, args, name='Validation')
val_accs.append(val_result['patch_acc'])
if val_result['img_acc'] > best_val_result['img_acc'] - 1e-7:
best_val_result['patch_acc'] = val_result['patch_acc']
best_val_result['img_acc'] = val_result['img_acc']
best_val_result['epoch'] = epoch
is_best = True
print('Time:%f, Train loss:%f, Val patch acc:%f img acc:%f | Best Val acc:%f in epoch%d'
% (total_time,
loss.detach().cpu().item(),
val_result['img_acc'],
best_val_result['patch_acc'],
best_val_result['img_acc'],
best_val_result['epoch']
))
save_checkpoint({'epoch': epoch + 1,
'loss': avg_loss,
'state_dict': model.state_dict() if torch.cuda.device_count() < 2 else model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'val_acc': val_result['img_acc']},
is_best, os.path.join(save_path, 'weight.pth.tar'))
model.train()
avg_loss += loss.detach()
elapsed = time.time() - begin_time
total_time += elapsed
if iter % 2 == 0:
tq.set_description('Processing iter=%d'%iter)
if args.method in ['soft-assign','deep-soft-assign', 'soft-assign-jk']:
tq.set_postfix({'overall': loss.item(),
'cls': cls_loss.item(),}
)
else:
tq.set_postfix({'overall': loss.item(),
})
# decay lr
if args.step_size > 0: scheduler.step()
avg_loss /= batch_idx + 1
if writer is not None:
writer.add_scalar('loss/avg_loss', avg_loss, epoch)
if test_dataset is not None:
test_result = evaluate(test_dataset, model, args, name='Test')
test_result['epoch'] = epoch
if writer is not None:
# writer.add_scalar('acc/train_acc', train_result['img_acc'], epoch)
writer.add_scalar('acc/val_acc', val_result['img_acc'], epoch)
writer.add_scalar('loss/best_val_loss', best_val_result['loss'], epoch)
if test_dataset is not None:
writer.add_scalar('acc/test_acc', test_result['img_acc'], epoch)
best_val_epochs.append(best_val_result['epoch'])
best_val_accs.append(best_val_result['img_acc'])
if test_dataset is not None:
print('Test result: ', test_result)
test_epochs.append(test_result['epoch'])
test_accs.append(test_result['img_acc'])
return model, val_accs
def cell_graph(args, writer = None):
# val==test loader since we do cross-val
train_loader, val_loader, test_loader = prepare_train_val_loader(args)
setting = DataSetting()
input_dim = args.input_feature_dim
if args.task == 'colon':
args.num_classes = 3
model = network.SoftPoolingGcnEncoder(setting.max_num_nodes,
input_dim, args.hidden_dim, args.output_dim, True, True, args.hidden_dim, args.num_classes,
args.assign_ratio,[50], concat= True,
gcn_name= args.gcn_name,collect_assign=args.visualization,
load_data_sparse=(args.load_data_list and not args.visualization),
norm_adj=args.norm_adj, activation=args.activation, drop_out=args.drop_out,
jk=args.jump_knowledge,
)
if(args.resume):
if args.resume == 'best':
resume_file = 'model_best.pth.tar'
resume_path = os.path.join(args.resultdir, gen_prefix(args), resume_file)
elif args.resume == 'weight':
resume_file = 'weight.pth.tar'
resume_path = os.path.join(args.resultdir, gen_prefix(args), resume_file)
else:#'/media/amanda/HDD2T_1/warwick-research/experiment/gcnn/result'
resume_path = os.path.join(args.resultdir,args.resume,'model_best.pth.tar')
# resume_path = os.path.join('/media/amanda/HDD2T_1/warwick-research/experiment/gcnn/result', args.resume, 'model_best.pth.tar')
checkpoint = load_checkpoint(resume_path)
model.load_state_dict(checkpoint['state_dict'])
if torch.cuda.device_count() > 1 :
print('use %d GPUs for training!'% torch.cuda.device_count())
if args.load_data_list:
model = DataParallel(model).cuda()
else:
model = nn.DataParallel(model).cuda()
else:
if args.load_data_list and not args.visualization:
model = DataParallel(model).cuda()
else:
model = model.cuda()
if not args.skip_train:
if args.resume:
_, val_accs = train(train_loader, model, args, val_dataset=val_loader, test_dataset=None,
writer=writer, checkpoint = checkpoint)
else:
_, val_accs = train(train_loader, model, args, val_dataset=val_loader, test_dataset=None,
writer=writer, )
print('finally: max_val_acc:%f'%max(val_accs))
_ = evaluate(test_loader, model, args, name='Validation', max_num_examples=None)
print(_)
def arg_parse():
data_setting = DataSetting()
parser = argparse.ArgumentParser(description='GraphPool arguments.')
io_parser = parser.add_mutually_exclusive_group(required=False)
io_parser.add_argument('--dataset', dest='dataset',
help='Input dataset.')
benchmark_parser = io_parser.add_argument_group()
softpool_parser = parser.add_argument_group()
softpool_parser.add_argument('--assign-ratio', dest='assign_ratio', type=float,
help='ratio of number of nodes in consecutive layers')
softpool_parser.add_argument('--num-pool', dest='num_pool', type=int,
help='number of pooling layers')
parser.add_argument('--datadir', dest='datadir',
help='Directory where benchmark is located')
parser.add_argument('--logdir', dest='logdir',
help='Tensorboard log directory')
parser.add_argument('--cuda', dest='cuda',
help='CUDA.')
parser.add_argument('--max-nodes', dest='max_nodes', type=int,
help='Maximum number of nodes (ignore graghs with nodes exceeding the number.')
parser.add_argument('--lr', dest='lr', type=float,
help='Learning rate.')
parser.add_argument('--batch-size', dest='batch_size', type=int,
help='Batch size.')
parser.add_argument('--epochs', dest='num_epochs', type=int,
help='Number of epochs to train.')
parser.add_argument('--num_workers', dest='num_workers', type=int,
help='Number of workers to load data.')
parser.add_argument('--feature', dest='feature_type', default='ca',
help = '[c, ca, cal, cl] c: coor, a:appearance, l:soft-label')
parser.add_argument('--input-dim', dest='input_dim', type=int,
help='Input feature dimension')
parser.add_argument('--hidden-dim', dest='hidden_dim', type=int,
help='Hidden dimension')
parser.add_argument('--output-dim', dest='output_dim', type=int,
help='Output dimension')
parser.add_argument('--num-classes', dest='num_classes', type=int,help='Number of label classes')
parser.add_argument('--num-gc-layers', dest='num_gc_layers', type=int, help='Number of graph convolution layers before each pooling')
parser.add_argument('--nobn', dest='bn', action='store_const',const=False, default=True, help='Whether batch normalization is used')
parser.add_argument('--dropout', dest='dropout', type=float,help='Dropout rate.')
parser.add_argument('--nobias', dest='bias', action='store_const',const=False, default=True,help='Whether to add bias. Default to True.')
parser.add_argument('--sample-ratio',dest='sample_ratio', default= 1, )
parser.add_argument('--sample-time', dest='sample_time',default= 1)
parser.add_argument('--visualization', action='store_const',const=True, default=False, help='use assignment matrix for visualization')
parser.add_argument('--method', dest='method',help='Method. Possible values: base, base-set2set, soft-assign')
parser.add_argument('--name-suffix', dest='name_suffix', help='suffix added to the output filename')
parser.add_argument('--input_feature_dim',dest='input_feature_dim', type=int, help='the feature number for each node', default = 8)
parser.add_argument('--resume', default= False, )
parser.add_argument('--optim', dest='optimizer', help = 'name for the optimizer, [adam, sgd, rmsprop] ')
parser.add_argument('--weight_decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--gamma', default=0.1, type=float, help="learning rate decay")
parser.add_argument('--step_size', default=10, type=int, metavar='N', help='stepsize to decay learning rate (>0 means this is enabled)')
parser.add_argument('--skip_train', action='store_const',
const=True, default=False, help='only do evaluation')
parser.add_argument('--normalize', default= False, help ='normalize the adj matrix or not')
parser.add_argument('--load_data_list', action='store_true', default= False)
parser.add_argument('--load_data_sparse', action='store_true', default= False)
parser.add_argument('--name', default='')
parser.add_argument('--gcn_name', default='SAGE')
parser.add_argument('--active', dest='activation',default='relu')
parser.add_argument('--dynamic_graph' ,dest='dynamic_graph', action='store_const', const=True, default=False,)
parser.add_argument('--sampling_method', default='random',)
parser.add_argument('--test_epoch', default=5,type= int)
parser.add_argument('--sita', default=1.,type= float)
parser.add_argument('--norm_adj',action='store_const', const=True, default=False,)
parser.add_argument('--readout', default='max', type=str)
parser.add_argument('--task', default= 'colon', type = str)
parser.add_argument('--mask',default='cia', type=str)
parser.add_argument('--n',dest='neighbour', default=8, type=int)
parser.add_argument('--sample_ratio',default=0.5, type=float)
parser.add_argument('--drop',dest= 'drop_out' ,default=0.,type=float)
parser.add_argument('--noise',dest='add_noise', action='store_const', const=True, default=False,)
parser.add_argument('--valid_full', action='store_const',const=True, default=False,)
parser.add_argument('--dist_g',dest = 'distance_prob_graph', action='store_const',const=True, default=False,)
parser.add_argument('--jk', dest='jump_knowledge', action='store_const', const=True, default=False)
parser.add_argument('--g', dest='graph_sampler', default='knn', type=str)
parser.add_argument('--cv', dest='cross_val', default=1, type=int)
parser.set_defaults(datadir= data_setting.root,
logdir=data_setting.log_path,
resultdir =data_setting.result_path,
sample_time = data_setting.sample_time,
dataset='nuclei',
max_nodes=16000, # no use
cuda='0',
feature='cl',
lr=0.001,
clip=2.0,
batch_size=3,
num_epochs=1000,
num_workers=4,
input_dim=10,
hidden_dim=20,
output_dim=20,
num_classes=3,
num_gc_layers=3,
dropout=0.0,
method='soft-assign',
name_suffix='',
assign_ratio=0.1,
num_pool=1,
input_feature_dim = 8,
optim = 'adam',
weight_decay = 1e-4,
step_size = 20,
gamma = 0.1,
dynamic_graph= False,
test_epoch = 5,
)
return parser.parse_args()
def main():
prog_args = arg_parse()
torch.backends.cudnn.benchmark = True
log_path = os.path.join(prog_args.logdir, gen_prefix(prog_args))
result_path = os.path.join(prog_args.resultdir , gen_prefix(prog_args))
cell_graph(prog_args)
mkdirs(log_path)
mkdirs(result_path)
if prog_args.visualization:
visual_path = os.path.join(prog_args.resultdir, gen_prefix(prog_args), 'visual')
mkdirs(visual_path)
if not prog_args.skip_train:
with open(os.path.join(result_path,'args.txt'), 'w') as f:
json.dump(prog_args.__dict__, f, indent=2)
writer = SummaryWriter(log_path)
cell_graph(prog_args, writer=writer, )
writer.close()
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system')
main()