forked from facebookresearch/dino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
visualize_attention.py
212 lines (189 loc) · 9.17 KB
/
visualize_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright (c) Facebook, Inc. and its affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import argparse
import cv2
import random
import colorsys
import requests
from io import BytesIO
import skimage.io
from skimage.measure import find_contours
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
import torch
import torch.nn as nn
import torchvision
from torchvision import transforms as pth_transforms
import numpy as np
from PIL import Image
from models import vision_transformer as vits
def apply_mask(image, mask, color, alpha=0.5):
for c in range(3):
image[:, :, c] = image[:, :, c] * (1 - alpha * mask) + alpha * mask * color[c] * 255
return image
def random_colors(N, bright=True):
"""
Generate random colors.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
def display_instances(image, mask, fname="test", figsize=(5, 5), blur=False, contour=True, alpha=0.5):
fig = plt.figure(figsize=figsize, frameon=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
ax = plt.gca()
N = 1
mask = mask[None, :, :]
# Generate random colors
colors = random_colors(N)
# Show area outside image boundaries.
height, width = image.shape[:2]
margin = 0
ax.set_ylim(height + margin, -margin)
ax.set_xlim(-margin, width + margin)
ax.axis('off')
masked_image = image.astype(np.uint32).copy()
for i in range(N):
color = colors[i]
_mask = mask[i]
if blur:
_mask = cv2.blur(_mask,(10,10))
# Mask
masked_image = apply_mask(masked_image, _mask, color, alpha)
# Mask Polygon
# Pad to ensure proper polygons for masks that touch image edges.
if contour:
padded_mask = np.zeros((_mask.shape[0] + 2, _mask.shape[1] + 2))
padded_mask[1:-1, 1:-1] = _mask
contours = find_contours(padded_mask, 0.5)
for verts in contours:
# Subtract the padding and flip (y, x) to (x, y)
verts = np.fliplr(verts) - 1
p = Polygon(verts, facecolor="none", edgecolor=color)
ax.add_patch(p)
ax.imshow(masked_image.astype(np.uint8), aspect='auto')
fig.savefig(fname)
print(f"{fname} saved.")
return
if __name__ == '__main__':
parser = argparse.ArgumentParser('Visualize Self-Attention maps')
parser.add_argument('--arch', default='vit_small', type=str,
choices=['vit_tiny', 'vit_small', 'vit_base'], help='Architecture (support only ViT atm).')
parser.add_argument('--patch_size', default=8, type=int, help='Patch resolution of the model.')
parser.add_argument('--pretrained_weights', default='', type=str,
help="Path to pretrained weights to load.")
parser.add_argument("--checkpoint_key", default="teacher", type=str,
help='Key to use in the checkpoint (example: "teacher")')
parser.add_argument("--image_path", default=None, type=str, help="Path of the image to load.")
parser.add_argument("--image_size", default=(480, 480), type=int, nargs="+", help="Resize image.")
parser.add_argument('--output_dir', default='.', help='Path where to save visualizations.')
parser.add_argument("--threshold", type=float, default=None, help="""We visualize masks
obtained by thresholding the self-attention maps to keep xx% of the mass.""")
args = parser.parse_args()
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# build model
model = vits.__dict__[args.arch](patch_size=args.patch_size, num_classes=0)
for p in model.parameters():
p.requires_grad = False
model.eval()
model.to(device)
if os.path.isfile(args.pretrained_weights):
state_dict = torch.load(args.pretrained_weights, map_location="cpu")
if args.checkpoint_key is not None and args.checkpoint_key in state_dict:
print(f"Take key {args.checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[args.checkpoint_key]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
msg = model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(args.pretrained_weights, msg))
else:
print("Please use the `--pretrained_weights` argument to indicate the path of the checkpoint to evaluate.")
url = None
if args.arch == "vit_small" and args.patch_size == 16:
url = "dino_deitsmall16_pretrain/dino_deitsmall16_pretrain.pth"
elif args.arch == "vit_small" and args.patch_size == 8:
url = "dino_deitsmall8_300ep_pretrain/dino_deitsmall8_300ep_pretrain.pth" # model used for visualizations in our paper
elif args.arch == "vit_base" and args.patch_size == 16:
url = "dino_vitbase16_pretrain/dino_vitbase16_pretrain.pth"
elif args.arch == "vit_base" and args.patch_size == 8:
url = "dino_vitbase8_pretrain/dino_vitbase8_pretrain.pth"
if url is not None:
print("Since no pretrained weights have been provided, we load the reference pretrained DINO weights.")
state_dict = torch.hub.load_state_dict_from_url(url="https://dl.fbaipublicfiles.com/dino/" + url)
model.load_state_dict(state_dict, strict=True)
else:
print("There is no reference weights available for this model => We use random weights.")
# open image
if args.image_path is None:
# user has not specified any image - we use our own image
print("Please use the `--image_path` argument to indicate the path of the image you wish to visualize.")
print("Since no image path have been provided, we take the first image in our paper.")
response = requests.get("https://dl.fbaipublicfiles.com/dino/img.png")
img = Image.open(BytesIO(response.content))
img = img.convert('RGB')
elif os.path.isfile(args.image_path):
with open(args.image_path, 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
else:
print(f"Provided image path {args.image_path} is non valid.")
sys.exit(1)
transform = pth_transforms.Compose([
pth_transforms.Resize(args.image_size),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
img = transform(img)
# make the image divisible by the patch size
w, h = img.shape[1] - img.shape[1] % args.patch_size, img.shape[2] - img.shape[2] % args.patch_size
img = img[:, :w, :h].unsqueeze(0)
w_featmap = img.shape[-2] // args.patch_size
h_featmap = img.shape[-1] // args.patch_size
attentions = model.get_last_selfattention(img.to(device))
nh = attentions.shape[1] # number of head
# we keep only the output patch attention
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
if args.threshold is not None:
# we keep only a certain percentage of the mass
val, idx = torch.sort(attentions)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
th_attn = cumval > (1 - args.threshold)
idx2 = torch.argsort(idx)
for head in range(nh):
th_attn[head] = th_attn[head][idx2[head]]
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
# interpolate
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=args.patch_size, mode="nearest")[0].cpu().numpy()
attentions = attentions.reshape(nh, w_featmap, h_featmap)
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=args.patch_size, mode="nearest")[0].cpu().numpy()
# save attentions heatmaps
os.makedirs(args.output_dir, exist_ok=True)
torchvision.utils.save_image(torchvision.utils.make_grid(img, normalize=True, scale_each=True), os.path.join(args.output_dir, "img.png"))
for j in range(nh):
fname = os.path.join(args.output_dir, "attn-head" + str(j) + ".png")
plt.imsave(fname=fname, arr=attentions[j], format='png')
print(f"{fname} saved.")
if args.threshold is not None:
image = skimage.io.imread(os.path.join(args.output_dir, "img.png"))
for j in range(nh):
display_instances(image, th_attn[j], fname=os.path.join(args.output_dir, "mask_th" + str(args.threshold) + "_head" + str(j) +".png"), blur=False)