We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
当我重启GPU节点后,又发布了几个服务,发现某些卡的gpu显存超分了,效果如下:
[root@jenkins app-deploy-platform]# kubectl-inspect-gpushare NAME IPADDRESS GPU0(Allocated/Total) GPU1(Allocated/Total) GPU2(Allocated/Total) GPU3(Allocated/Total) GPU4(Allocated/Total) GPU5(Allocated/Total) GPU6(Allocated/Total) GPU7(Allocated/Total) GPU Memory(GiB) 192.168.3.4 192.168.3.4 18/11 8/11 9/11 11/11 17/11 8/11 8/11 4/11 83/88 192.168.68.4 192.168.68.4 14/10 10/10 6/10 14/10 10/10 10/10 9/10 0/10 73/80 192.168.68.68 192.168.68.68 9/10 8/10 4/10 0/10 0/10 0/10 0/10 0/10 21/80 --------------------------------------------------------------------------------------------- Allocated/Total GPU Memory In Cluster: 177/248 (71%)
我想这是插件本身有些bug
The text was updated successfully, but these errors were encountered:
No branches or pull requests
当我重启GPU节点后,又发布了几个服务,发现某些卡的gpu显存超分了,效果如下:
[root@jenkins app-deploy-platform]# kubectl-inspect-gpushare NAME IPADDRESS GPU0(Allocated/Total) GPU1(Allocated/Total) GPU2(Allocated/Total) GPU3(Allocated/Total) GPU4(Allocated/Total) GPU5(Allocated/Total) GPU6(Allocated/Total) GPU7(Allocated/Total) GPU Memory(GiB) 192.168.3.4 192.168.3.4 18/11 8/11 9/11 11/11 17/11 8/11 8/11 4/11 83/88 192.168.68.4 192.168.68.4 14/10 10/10 6/10 14/10 10/10 10/10 9/10 0/10 73/80 192.168.68.68 192.168.68.68 9/10 8/10 4/10 0/10 0/10 0/10 0/10 0/10 21/80 --------------------------------------------------------------------------------------------- Allocated/Total GPU Memory In Cluster: 177/248 (71%)
我想这是插件本身有些bug
The text was updated successfully, but these errors were encountered: