-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrq23.py
100 lines (81 loc) · 3.12 KB
/
rq23.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import json
from pathlib import Path
import sys
from time import time
from datasets import ClassLabel
from evaluate import load
from setfit import SetFitModel, Trainer, TrainingArguments
from thesis_datasets import germeval, omp, schmidt
size = int(sys.argv[1])
run = int(sys.argv[2])
# Start
start = time()
# Model
model_name = "intfloat/multilingual-e5-large-instruct"
# Results path
rq23_results_path = "results_rq23/"
def add_prompt(datapoint):
prompt = "Instruct: Classify the sentiment of a given text as either positive, negative, or neutral.\n Query:"
datapoint["text"] = f"{prompt} {datapoint['text']}"
return datapoint
dataset_name, _, train_dataset = germeval("train")
_, _, eval_dataset = germeval("dev[:100]")
_, _, test_dataset = germeval("test_syn")
# dataset_name, _, train_dataset = omp("full[50%:]")
# _, _, eval_dataset = omp("full[:100]")
# _, _, test_dataset = omp("full[:50%]")
# dataset_name, _, train_dataset = schmidt2022("train")
# _, _, eval_dataset = schmidt2022("test[:100]")
# _, _, test_dataset = schmidt2022("test")
# Dataset preprocessing
train_dataset = train_dataset.map(add_prompt)
test_dataset = test_dataset.map(add_prompt)
test_dataset = test_dataset.cast_column("sentiment", ClassLabel(names=["negative", "positive", "neutral"]))
# Split the dataset and keep the distribution
train_dataset = train_dataset.cast_column("sentiment", ClassLabel(names=["negative", "positive", "neutral"]))
train_dataset = train_dataset.train_test_split(test_size=3, train_size=size, stratify_by_column="sentiment")["train"]
model = SetFitModel.from_pretrained(
model_name,
labels=["0","1","2"],
)
args = TrainingArguments(
batch_size=32,
num_epochs=1,
evaluation_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
logging_steps=10
)
def metrics(y_pred, y_test):
precision_metric = load("precision")
recall_metric = load("recall")
f1_metric= load("f1")
accuracy_metric = load("accuracy")
metrics = {}
metrics["accuracy"] = accuracy_metric.compute(predictions=y_pred, references=y_test)["accuracy"]
metrics["precision"] = precision_metric.compute(predictions=y_pred, references=y_test, average = "weighted")["precision"]
metrics["recall"] = recall_metric.compute(predictions=y_pred, references=y_test, average = "weighted")["recall"]
metrics["f1"] = f1_metric.compute(predictions=y_pred, references=y_test, average = "weighted")["f1"]
return metrics
args.eval_strategy = args.evaluation_strategy
trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
metric=metrics,
column_mapping={"text": "text", "sentiment": "label"} # Map dataset columns to text/label as expected by trainer
)
# Train
trainer.train()
# Evaluate
metrics = trainer.evaluate(test_dataset)
# End
end = time()
training_time = end-start
metrics["duration"] = training_time
# Save metrics
Path(rq23_results_path).mkdir(parents=True, exist_ok=True)
filename = rq23_results_path + f"{model_name}_{dataset_name}_{size}_{run}".replace("/", "_")
with open(filename, "w") as f:
json.dump(metrics, f, ensure_ascii=False)