-
Notifications
You must be signed in to change notification settings - Fork 0
/
gemm.h
771 lines (644 loc) · 24.6 KB
/
gemm.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/***************************************************************************************************
* Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/
/*! \file
\brief Template for a pipelined GEMM kernel. Does not compute batching or support split-K.
*/
#pragma once
#include "cutlass/cutlass.h"
#include "cutlass/numeric_types.h"
#include "cutlass/arch/arch.h"
#include "cutlass/device_kernel.h"
#include "cutlass/gemm/threadblock/threadblock_swizzle.h"
#include "cutlass/gemm/kernel/gemm.h"
#include "cutlass/gemm/kernel/default_gemm.h"
#include "cutlass/gemm/device/default_gemm_configuration.h"
#include "cutlass/layout/permute.h"
////////////////////////////////////////////////////////////////////////////////
namespace cutlass {
namespace gemm {
namespace device {
/////////////////////////////////////////////////////////////////////////////////////////////////
/*! Gemm device-level operator. This is an interface to efficient CUTLASS GEMM kernels that may
be invoked from host code.
The contributions of this class are:
1. At compile time, it maps data types and high-level structural parameters onto
specific CUTLASS components.
2. At runtime, it maps logical arguments to GEMM problems to kernel parameters.
3. At runtime, it launches kernels on the device.
The intent is to provide a convenient mechanism for interacting with most plausible GEMM
configurations for each supported architecture. Consequently, not all parameters are exposed
to the top-level interface. Rather, sensible defaults at each level of the CUTLASS hierarchy
are selected to tradeoff simplicity of the interface with flexibility. We expect
most configurations to be specified at this level. Applications with more exotic requirements
may construct their kernels of interest using CUTLASS components at the threadblock, warp,
and thread levels of abstraction.
CUTLASS exposes computations using the functor design pattern in which objects compose some
internal state with an overloaded function call operator. This enables decoupling of
initialization from execution, possibly reducing overhead during steady state phases of
application execution.
CUTLASS device-level operators expose an Arguments structure encompassing each logical
input to the computation. This is distinct from the kernel-level Params structure pattern
which contains application-specific precomputed state needed by the device code.
Example of a CUTLASS GEMM operator implementing the functionality of cuBLAS's SGEMM NN
is as follows:
//
// Instantiate the CUTLASS GEMM operator.
//
cutlass::gemm::device::Gemm<
float,
cutlass::layout::ColumnMajor,
float,
cutlass::layout::ColumnMajor,
float,
cutlass::layout::ColumnMajor
> gemm_op;
//
// Launch the GEMM operation on the device
//
cutlass::Status status = gemm_op({
{m, n, k}, // GemmCoord problem_size,
{A, lda}, // TensorRef<float, layout::ColumnMajor> ref_A,
{B, ldb}, // TensorRef<float, layout::ColumnMajor> ref_B,
{C, ldc}, // TensorRef<float, layout::ColumnMajor> ref_C,
{D, ldd}, // TensorRef<float, layout::ColumnMajor> ref_D,
{alpha, beta} // EpilogueOutputOp::Params epilogue_op_params
});
A simplified view of the template is listed below.
template <
/// Element type for A matrix operand
typename ElementA,
/// Layout type for A matrix operand
typename LayoutA,
/// Element type for B matrix operand
typename ElementB,
/// Layout type for B matrix operand
typename LayoutB,
/// Element type for C and D matrix operands
typename ElementC,
/// Layout type for C and D matrix operands
typename LayoutC,
/// Element type for internal accumulation
typename ElementAccumulator,
/// Operator class tag
typename OperatorClass,
/// Tag indicating architecture to tune for. This is the minimum SM that
/// supports the intended feature. The device kernel can be built
/// targeting any SM larger than this number.
typename ArchTag,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape,
/// Warp-level tile size (concept: GemmShape)
typename InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle,
/// Number of stages used in the pipelined mainloop
int Stages
>
class Gemm;
*/
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B matrix operand
typename LayoutB_,
/// Element type for C and D matrix operands
typename ElementC_,
/// Layout type for C and D matrix operands
typename LayoutC_,
/// Element type for internal accumulation
typename ElementAccumulator_ = ElementC_,
/// Operator class tag
typename OperatorClass_ = arch::OpClassSimt,
/// Tag indicating architecture to tune for
typename ArchTag_ = arch::Sm70,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::ThreadblockShape,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::WarpShape,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::InstructionShape,
/// Epilogue output operator
typename EpilogueOutputOp_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::EpilogueOutputOp,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle_ =
typename threadblock::GemmIdentityThreadblockSwizzle<>,
/// Number of stages used in the pipelined mainloop
int Stages =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kStages,
/// Access granularity of A matrix in units of elements
int AlignmentA =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kAlignmentA,
/// Access granularity of B matrix in units of elements
int AlignmentB =
DefaultGemmConfiguration<OperatorClass_, ArchTag_, ElementA_, ElementB_,
ElementC_, ElementAccumulator_>::kAlignmentB,
/// If true, kernel supports split-K with serial reduction
bool SplitKSerial = false,
/// Operation performed by GEMM
typename Operator_ = typename DefaultGemmConfiguration<
OperatorClass_, ArchTag_, ElementA_, ElementB_, ElementC_,
ElementAccumulator_>::Operator,
/// Gather operand A by using an index array
bool GatherA = false,
/// Gather operand B by using an index array
bool GatherB = false,
/// Scatter result D by using an index array
bool ScatterD = false,
/// Permute result D
typename PermuteDLayout = layout::NoPermute>
class Gemm {
public:
using ElementA = ElementA_;
using LayoutA = LayoutA_;
using TensorRefA = TensorRef<ElementA const, LayoutA>;
using ElementB = ElementB_;
using LayoutB = LayoutB_;
using TensorRefB = TensorRef<ElementB const, LayoutB>;
using ElementC = ElementC_;
using LayoutC = LayoutC_;
using TensorRefC = TensorRef<ElementC const, LayoutC>;
using TensorRefD = TensorRef<ElementC, LayoutC>;
using ElementAccumulator = ElementAccumulator_;
using OperatorClass = OperatorClass_;
using ArchTag = ArchTag_;
using ThreadblockShape = ThreadblockShape_;
using WarpShape = WarpShape_;
using InstructionShape = InstructionShape_;
using EpilogueOutputOp = EpilogueOutputOp_;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using Operator = Operator_;
static int const kStages = Stages;
static int const kAlignmentA = AlignmentA;
static int const kAlignmentB = AlignmentB;
static int const kAlignmentC = EpilogueOutputOp::kCount;
static bool const kSplitKSerial = SplitKSerial;
static ComplexTransform const kTransformA = ComplexTransform::kNone;
static ComplexTransform const kTransformB = ComplexTransform::kNone;
/// Define the kernel
using GemmKernel = typename kernel::DefaultGemm<
ElementA,
LayoutA,
kAlignmentA,
ElementB,
LayoutB,
kAlignmentB,
ElementC,
LayoutC,
ElementAccumulator,
OperatorClass,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
kStages,
kSplitKSerial,
Operator,
SharedMemoryClearOption::kNone,
GatherA,
GatherB,
ScatterD,
PermuteDLayout
>::GemmKernel;
/// Argument structure
struct Arguments {
//
// Data members
//
GemmCoord problem_size;
TensorRef<ElementA const, LayoutA> ref_A;
TensorRef<ElementB const, LayoutB> ref_B;
TensorRef<ElementC const, LayoutC> ref_C;
TensorRef<ElementC, LayoutC> ref_D;
typename EpilogueOutputOp::Params epilogue;
int split_k_slices;
// For gather+scatter operations
int const *gather_A_indices;
int const *gather_B_indices;
int const *scatter_D_indices;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments(): problem_size(0, 0, 0), split_k_slices(1) {
}
/// Constructs an Arguments structure
CUTLASS_HOST_DEVICE
Arguments(
GemmCoord problem_size_,
TensorRef<ElementA const, LayoutA> ref_A_,
TensorRef<ElementB const, LayoutB> ref_B_,
TensorRef<ElementC const, LayoutC> ref_C_,
TensorRef<ElementC, LayoutC> ref_D_,
typename EpilogueOutputOp::Params epilogue_ =
typename EpilogueOutputOp::Params(),
int split_k_slices = 1,
int const *gather_A_indices_ = nullptr,
int const *gather_B_indices_ = nullptr,
int const *scatter_D_indices_ = nullptr
):
problem_size(problem_size_),
ref_A(ref_A_),
ref_B(ref_B_),
ref_C(ref_C_),
ref_D(ref_D_),
epilogue(epilogue_),
split_k_slices(split_k_slices),
gather_A_indices(gather_A_indices_),
gather_B_indices(gather_B_indices_),
scatter_D_indices(scatter_D_indices_) {
}
};
private:
/// Kernel parameters object
typename GemmKernel::Params params_;
public:
/// Constructs the GEMM.
Gemm() { }
/// Determines whether the GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
if (!kSplitKSerial && args.split_k_slices > 1) {
return Status::kErrorInvalidProblem;
}
Status status = GemmKernel::can_implement(
args.problem_size,
args.ref_A.non_const_ref(),
args.ref_B.non_const_ref(),
args.ref_C.non_const_ref(),
args.ref_D
);
if (status != Status::kSuccess) {
return status;
}
return Status::kSuccess;
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
size_t bytes = 0;
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord tiled_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.split_k_slices);
if (kSplitKSerial && args.split_k_slices > 1) {
bytes += sizeof(int) * size_t(tiled_shape.m()) * size_t(tiled_shape.n());
}
return bytes;
}
/// Initializes GEMM state from arguments.
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
// Determine grid shape
ThreadblockSwizzle threadblock_swizzle;
cutlass::gemm::GemmCoord grid_shape = threadblock_swizzle.get_tiled_shape(
args.problem_size,
{ThreadblockShape::kM, ThreadblockShape::kN, ThreadblockShape::kK},
args.split_k_slices);
if (kSplitKSerial) {
if (args.split_k_slices > 1) {
if (!workspace) {
return Status::kErrorWorkspaceNull;
}
size_t bytes = get_workspace_size(args);
cudaError_t result = cudaMemsetAsync(workspace, 0, bytes, stream);
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
}
}
else {
if (args.split_k_slices > 1) {
return Status::kErrorInvalidProblem;
}
}
// Initialize the Params structure
params_ = typename GemmKernel::Params{
args.problem_size,
grid_shape,
args.ref_A.non_const_ref(),
args.ref_B.non_const_ref(),
args.ref_C.non_const_ref(),
args.ref_D,
args.epilogue,
static_cast<int *>(workspace),
args.gather_A_indices,
args.gather_B_indices,
args.scatter_D_indices
};
return Status::kSuccess;
}
/// Lightweight update given a subset of arguments
Status update(Arguments const &args, void *workspace = nullptr) {
if (kSplitKSerial && args.split_k_slices > 1) {
if (!workspace) {
return Status::kErrorWorkspaceNull;
}
}
params_.ref_A.reset(args.ref_A.non_const_ref().data());
params_.ref_B.reset(args.ref_B.non_const_ref().data());
params_.ref_C.reset(args.ref_C.non_const_ref().data());
params_.ref_D.reset(args.ref_D.data());
params_.output_op = args.epilogue;
params_.semaphore = static_cast<int *>(workspace);
return Status::kSuccess;
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
ThreadblockSwizzle threadblock_swizzle;
dim3 grid = threadblock_swizzle.get_grid_shape(params_.grid_tiled_shape);
dim3 block(GemmKernel::kThreadCount, 1, 1);
cudaError_t result;
int smem_size = int(sizeof(typename GemmKernel::SharedStorage));
if (smem_size >= (48 << 10)) {
result = cudaFuncSetAttribute(Kernel<GemmKernel>,
cudaFuncAttributeMaxDynamicSharedMemorySize,
smem_size);
if (result != cudaSuccess) {
return Status::kErrorInternal;
}
}
cutlass::Kernel<GemmKernel><<<grid, block, smem_size, stream>>>(params_);
result = cudaGetLastError();
return result == cudaSuccess ? Status::kSuccess : Status::kErrorInternal;
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
////////////////////////////////////////////////////////////////////////////////
/// Parital specialization for column-major output exchanges problem size and operand.
template <
/// Element type for A matrix operand
typename ElementA_,
/// Layout type for A matrix operand
typename LayoutA_,
/// Element type for B matrix operand
typename ElementB_,
/// Layout type for B matrix operand
typename LayoutB_,
/// Element type for C and D matrix operands
typename ElementC_,
/// Element type for internal accumulation
typename ElementAccumulator_,
/// Operator class tag
typename OperatorClass_,
/// Tag indicating architecture to tune for
typename ArchTag_,
/// Threadblock-level tile size (concept: GemmShape)
typename ThreadblockShape_,
/// Warp-level tile size (concept: GemmShape)
typename WarpShape_,
/// Instruction-level tile size (concept: GemmShape)
typename InstructionShape_,
/// Epilogue output operator
typename EpilogueOutputOp_,
/// Threadblock-level swizzling operator
typename ThreadblockSwizzle_,
/// Number of stages used in the pipelined mainloop
int Stages,
/// Access granularity of A matrix in units of elements
int AlignmentA,
/// Access granularity of B matrix in units of elements
int AlignmentB,
/// If true, kernel supports split-K as a serial reduction
bool SplitKSerial,
/// Operation performed by GEMM
typename Operator_,
/// Gather operand A by using an index array
bool GatherA,
/// Gather operand B by using an index array
bool GatherB,
/// Scatter result D by using an index array
bool ScatterD,
/// Permute result D
typename PermuteDLayout
>
class Gemm<ElementA_, LayoutA_, ElementB_, LayoutB_, ElementC_,
layout::ColumnMajor, // partially specialized on LayoutC
ElementAccumulator_, OperatorClass_, ArchTag_, ThreadblockShape_,
WarpShape_, InstructionShape_, EpilogueOutputOp_,
ThreadblockSwizzle_, Stages, AlignmentA, AlignmentB, SplitKSerial,
Operator_, GatherA, GatherB, ScatterD, PermuteDLayout> {
public:
using ElementA = ElementA_;
using LayoutA = LayoutA_;
using TensorRefA = TensorRef<ElementA const, LayoutA>;
using ElementB = ElementB_;
using LayoutB = LayoutB_;
using TensorRefB = TensorRef<ElementB const, LayoutB>;
using ElementC = ElementC_;
using LayoutC = layout::ColumnMajor;
using TensorRefC = TensorRef<ElementC const, LayoutC>;
using TensorRefD = TensorRef<ElementC, LayoutC>;
using ElementAccumulator = ElementAccumulator_;
using OperatorClass = OperatorClass_;
using ArchTag = ArchTag_;
using ThreadblockShape = ThreadblockShape_;
using WarpShape = WarpShape_;
using InstructionShape = InstructionShape_;
using EpilogueOutputOp = EpilogueOutputOp_;
using ThreadblockSwizzle = ThreadblockSwizzle_;
using Operator = Operator_;
static int const kStages = Stages;
static int const kAlignmentA = AlignmentA;
static int const kAlignmentB = AlignmentB;
static ComplexTransform const kTransformA = ComplexTransform::kNone;
static ComplexTransform const kTransformB = ComplexTransform::kNone;
static bool const kSplitKSerial = SplitKSerial;
using UnderlyingOperator = Gemm<
ElementB,
typename layout::LayoutTranspose<LayoutB>::type,
ElementA,
typename layout::LayoutTranspose<LayoutA>::type,
ElementC,
layout::RowMajor,
ElementAccumulator,
OperatorClass,
ArchTag,
ThreadblockShape,
WarpShape,
InstructionShape,
EpilogueOutputOp,
ThreadblockSwizzle,
Stages,
kAlignmentB,
kAlignmentA,
SplitKSerial,
Operator,
GatherB,
GatherA,
ScatterD,
PermuteDLayout
>;
using UnderlyingArguments = typename UnderlyingOperator::Arguments;
using GemmKernel = typename UnderlyingOperator::GemmKernel;
static int const kAlignmentC = UnderlyingOperator::kAlignmentC;
/// Argument structure
struct Arguments {
//
// Data members
//
GemmCoord problem_size;
TensorRef<ElementA const, LayoutA> ref_A;
TensorRef<ElementB const, LayoutB> ref_B;
TensorRef<ElementC const, LayoutC> ref_C;
TensorRef<ElementC, LayoutC> ref_D;
typename EpilogueOutputOp::Params epilogue;
int split_k_slices;
// For gather+scatter operations
int *gather_A_indices;
int *gather_B_indices;
int *scatter_D_indices;
//
// Methods
//
/// Default ctor
CUTLASS_HOST_DEVICE
Arguments() { }
/// Constructs an Arguments structure
CUTLASS_HOST_DEVICE
Arguments(
GemmCoord problem_size_,
TensorRef<ElementA const, LayoutA> ref_A_,
TensorRef<ElementB const, LayoutB> ref_B_,
TensorRef<ElementC const, LayoutC> ref_C_,
TensorRef<ElementC, LayoutC> ref_D_,
typename EpilogueOutputOp::Params epilogue_ =
typename EpilogueOutputOp::Params(),
int split_k_slices = 1,
int *gather_A_indices_ = nullptr,
int *gather_B_indices_ = nullptr,
int *scatter_D_indices_ = nullptr
):
problem_size(problem_size_),
ref_A(ref_A_),
ref_B(ref_B_),
ref_C(ref_C_),
ref_D(ref_D_),
epilogue(epilogue_),
split_k_slices(split_k_slices),
gather_A_indices(gather_A_indices_),
gather_B_indices(gather_B_indices_),
scatter_D_indices(scatter_D_indices_) { }
};
private:
UnderlyingOperator underlying_operator_;
public:
/// Constructs the GEMM.
Gemm() { }
/// Helper to construct a transposed equivalent for the underying GEMM operator
static UnderlyingArguments to_underlying_arguments(Arguments const &args) {
return UnderlyingArguments(
{args.problem_size.n(), args.problem_size.m(), args.problem_size.k()},
{args.ref_B.data(), args.ref_B.stride(0)},
{args.ref_A.data(), args.ref_A.stride(0)},
{args.ref_C.data(), args.ref_C.stride(0)},
{args.ref_D.data(), args.ref_D.stride(0)},
args.epilogue,
args.split_k_slices,
args.gather_B_indices,
args.gather_A_indices,
args.scatter_D_indices
);
}
/// Determines whether the GEMM can execute the given problem.
static Status can_implement(Arguments const &args) {
return UnderlyingOperator::can_implement(to_underlying_arguments(args));
}
/// Gets the workspace size
static size_t get_workspace_size(Arguments const &args) {
return UnderlyingOperator::get_workspace_size(to_underlying_arguments(args));
}
/// Initializes GEMM state from arguments.
Status initialize(Arguments const &args, void *workspace = nullptr, cudaStream_t stream = nullptr) {
return underlying_operator_.initialize(to_underlying_arguments(args), workspace);
}
/// Lightweight update given a subset of arguments
Status update(Arguments const &args, void *workspace = nullptr) {
return underlying_operator_.update(to_underlying_arguments(args), workspace);
}
/// Runs the kernel using initialized state.
Status run(cudaStream_t stream = nullptr) {
return underlying_operator_.run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(cudaStream_t stream = nullptr) {
return run(stream);
}
/// Runs the kernel using initialized state.
Status operator()(
Arguments const &args,
void *workspace = nullptr,
cudaStream_t stream = nullptr) {
Status status = initialize(args, workspace, stream);
if (status == Status::kSuccess) {
status = run(stream);
}
return status;
}
};
////////////////////////////////////////////////////////////////////////////////
} // namespace device
} // namespace gemm
} // namespace cutlass
////////////////////////////////////////////////////////////////////////////////