-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path217.py
79 lines (70 loc) · 2.45 KB
/
217.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from pylab import *
from mpl_toolkits.mplot3d import Axes3D
def g(w):
# return (2.0*exp(dot(w.T, w))*w)/(1.0+exp(dot(w.T, w)))
j= (2.0*exp(dot(w.T, w))*(2*dot(w, w.T)+exp(dot(w.T, w))+1.0))/((1+exp(dot(w.T, w)))**2)
return dot(pinv(j),(2.0*exp(dot(w.T, w))*w)/(1.0+exp(dot(w.T, w))))
# return ((2.0*exp(dot(w.T, w))*w)/(1.0+exp(dot(w.T, w)))/((4.0 * exp(-dot(w.T, w)) * dot(w, w.T)) / (1.0 + exp(-dot(w.T, w))) ** 2))
w0 = array([1,1])
w0.shape=(2,1)
print(g(w0))
w1 = array([1,1])
w1.shape=(2,1)
w=dot(w1,w1.T)
print(w+1)
def make_function():
global fig,ax1
# prepare the function for plotting
r = linspace(-1.15,1.15,300)
s,t = meshgrid(r,r)
s = reshape(s,(size(s),1))
t = reshape(t,(size(t),1))
h = concatenate((s,t),1)
h = dot(h*h,ones((2,1)))
b = log(1+exp(h))
s = reshape(s, (int(sqrt(size(s))), int(sqrt(size(s)))))
t = reshape(t, (int(sqrt(size(t))), int(sqrt(size(t)))))
b = reshape(b, (int(sqrt(size(b))), int(sqrt(size(b)))))
# plot the function
fig = plt.figure(facecolor = 'white')
ax1 = fig.add_subplot(111, projection='3d')
ax1.plot_surface(s,t,b,cmap = 'Greys',antialiased=False) # optinal surface-smoothing args rstride=1, cstride=1,linewidth=0
ax1.azim = 115
ax1.elev = 70
# pretty the figure up
ax1.xaxis.set_rotate_label(False)
ax1.yaxis.set_rotate_label(False)
ax1.zaxis.set_rotate_label(False)
ax1.get_xaxis().set_ticks([-1,1])
ax1.get_yaxis().set_ticks([-1,1])
ax1.set_xlabel('$w_0$ ',fontsize=20,rotation = 0,linespacing = 10)
ax1.set_ylabel('$w_1$',fontsize=20,rotation = 0,labelpad = 50)
ax1.set_zlabel('$g(\mathbf{w})$',fontsize=20,rotation = 0,labelpad = 20)
show()
def gradient_descent(w0):
w = w0
g_path = []
w_path = []
w_path.append(w)
g_path.append(log(1+exp(dot(w.T, w))))
# start gradient descent loop
grad = 1
iter = 1
max_its = 10
while iter < max_its:
# take gradient step
grad= dot(pinv((2.0*exp(dot(w.T, w))*(2*dot(w, w.T)+(exp(dot(w.T, w))+1.0)*identity(2)))/((1+exp(dot(w.T, w)))**2)),(2.0*exp(dot(w.T, w))*w)/(1.0+exp(dot(w.T, w))))
print(grad)
w = w - grad
# update path containers
w_path.append(w)
g_path.append(log(1+exp(dot(w.T, w))))
iter+= 1
return g_path
k=linspace(0,10,10)
cost=gradient_descent(w0)
costh=[item[0][0] for item in cost]
print(costh)
fig,ax =subplots(1,1,figsize=(6,6))
ax.plot(k, costh)
show()