-
Notifications
You must be signed in to change notification settings - Fork 0
/
pagerank.py
168 lines (128 loc) · 4.79 KB
/
pagerank.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import random
import re
import sys
DAMPING = 0.85
SAMPLES = 10000
def main():
if len(sys.argv) != 2:
sys.exit("Usage: python pagerank.py corpus")
corpus = crawl(sys.argv[1])
ranks = sample_pagerank(corpus, DAMPING, SAMPLES)
print(f"PageRank Results from Sampling (n = {SAMPLES})")
for page in sorted(ranks):
print(f" {page}: {ranks[page]:.4f}")
ranks = iterate_pagerank(corpus, DAMPING)
print(f"PageRank Results from Iteration")
for page in sorted(ranks):
print(f" {page}: {ranks[page]:.4f}")
def crawl(directory):
"""
Parse a directory of HTML pages and check for links to other pages.
Return a dictionary where each key is a page, and values are
a list of all other pages in the corpus that are linked to by the page.
"""
pages = dict()
# Extract all links from HTML files
for filename in os.listdir(directory):
if not filename.endswith(".html"):
continue
with open(os.path.join(directory, filename)) as f:
contents = f.read()
links = re.findall(r"<a\s+(?:[^>]*?)href=\"([^\"]*)\"", contents)
pages[filename] = set(links) - {filename}
# Only include links to other pages in the corpus
for filename in pages:
pages[filename] = set(
link for link in pages[filename]
if link in pages
)
return pages
def transition_model(corpus, page, damping_factor):
"""
Return a probability distribution over which page to visit next,
given a current page.
With probability `damping_factor`, choose a link at random
linked to by `page`. With probability `1 - damping_factor`, choose
a link at random chosen from all pages in the corpus.
"""
probability_distribution = {}
corpus_length = len(corpus.keys())
pages_length = len(corpus[page])
random_factor = (1 - damping_factor) / corpus_length
even_factor = damping_factor / pages_length
for key in corpus.keys():
if pages_length == 0:
probability_distribution[key] = 1 / corpus_length
else:
if key not in corpus[page]:
probability_distribution[key] = random_factor
else:
probability_distribution[key] = even_factor + random_factor
return probability_distribution
def sample_pagerank(corpus, damping_factor, n):
"""
Return PageRank values for each page by sampling `n` pages
according to transition model, starting with a page at random.
Return a dictionary where keys are page names, and values are
their estimated PageRank value (a value between 0 and 1). All
PageRank values should sum to 1.
"""
# Initialize a dictionary with all pages as keys and values as 0 so all have 0 probability
samples = {key: 0 for key in corpus.keys()}
# Randomly select a page to start with
key = random.choice(list(corpus.keys()))
# Iterate over the n samples
for _ in range(n):
probabilty_distribution = transition_model(corpus, key, damping_factor)
prob_dist_list = list(probabilty_distribution.keys())
weights = [probabilty_distribution[i] for i in probabilty_distribution]
key = random.choices(prob_dist_list, weights, k=1)[0]
samples[key] += 1
# Return the normalized samples
return normalize(samples, n)
def normalize(dict, n):
"""
Return a dictionary where the values are normalized to sum to 1.
"""
for item in dict:
dict[item] /= n
return dict
def iterate_pagerank(corpus, damping_factor):
"""
Return PageRank values for each page by iteratively updating
PageRank values until convergence.
Return a dictionary where keys are page names, and values are
their estimated PageRank value (a value between 0 and 1). All
PageRank values should sum to 1.
"""
# Constants
THRESHOLD = 0.001
N = len(corpus)
ranks = {}
# Initialize the ranks with 1/N for each page
for key in corpus:
ranks[key] = 1 / N
# Iterate until convergence
while True:
count = 0
# Calculate the new ranks
for key in corpus:
add = 0
new_probability = (1 - damping_factor) / N
for page in corpus:
if key in corpus[page]:
links = len(corpus[page])
add += ranks[page] / links
new_probability += damping_factor * add
# Within 0.001 ( < )
if abs(ranks[key] - new_probability) < THRESHOLD:
count += 1
ranks[key] = new_probability
# If the new ranks are the same as the old ranks, then we have converged
if count == N:
break
# Return the normalized ranks
return ranks
if __name__ == "__main__":
main()