-
Notifications
You must be signed in to change notification settings - Fork 55
/
train.py
193 lines (163 loc) · 6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import os
import deepspeed
import wandb
from torch.utils.data import random_split, ConcatDataset
from torch.optim import AdamW
from tqdm import tqdm
from functools import partial
from magma.datasets import (
collate_fn,
ImgCptDataset,
)
from magma.magma import (
Magma,
)
from magma.utils import (
is_main,
cycle,
parse_args,
wandb_log,
wandb_init,
save_model,
load_model,
print_main,
configure_param_groups,
)
from magma.train_loop import (
eval_step,
inference_step,
train_step,
)
def _load_img_cpt_datasets(dataset_dir, tokenizer, transforms):
if isinstance(dataset_dir, (list, tuple)):
return ConcatDataset(
[_load_img_cpt_datasets(d, tokenizer, transforms) for d in dataset_dir]
)
elif isinstance(dataset_dir, str):
return ImgCptDataset(dataset_dir, tokenizer=tokenizer, transforms=transforms)
else:
raise TypeError("dataset dir wrong type")
def get_pretraining_datasets(config, tokenizer, transforms):
# if config.train_dataset_dir is a list, load all datasets + join together
train_dataset = _load_img_cpt_datasets(
config.train_dataset_dir, tokenizer, transforms
)
# if no dedicated eval sets are given, use a percentage of the train dataset
if config.eval_dataset_dir is None:
eval_len = int(len(train_dataset) * config.eval_dataset_pct)
train_len = len(train_dataset) - eval_len
print(
f"Randomly splitting train_dataset into two datasets of length {train_len} and {eval_len}"
)
train_dataset, eval_dataset = random_split(train_dataset, [train_len, eval_len])
else:
eval_dataset = _load_img_cpt_datasets(
config.eval_dataset_dir, tokenizer, transforms
)
print_main(f"Loaded train dataset with {len(train_dataset)} samples")
print_main(f"Loaded eval dataset with {len(eval_dataset)} samples")
return train_dataset, eval_dataset
# tell tokenizers not to do parallelism
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if __name__ == "__main__":
# parse command line arguments:
args = parse_args()
deepspeed.init_distributed()
# load model + tokenizer:
model = Magma(
args.config,
device=torch.device("cuda", args.local_rank)
) # for finetuning one might want to load the model via Magma.from_checkpoint(...) here
tokenizer, config, transforms = model.tokenizer, model.config, model.transforms
# filter frozen from trainable parameters:
trainable_parameters = configure_param_groups(model, config)
# load data:
train_dataset, eval_dataset = get_pretraining_datasets(
config, tokenizer, transforms
)
print_main(f"Loaded train dataset with {len(train_dataset)} samples")
print_main(f"Loaded eval dataset with {len(eval_dataset)} samples")
opt = AdamW(
trainable_parameters,
config.lr,
betas=(0.9, 0.95),
weight_decay=config.weight_decay,
)
model_engine, opt, train_loader, lr_scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=opt,
model_parameters=trainable_parameters,
training_data=train_dataset,
collate_fn=partial(collate_fn, seq_len=model.seq_len),
config_params=config.deepspeed_config_params,
)
eval_loader = cycle(model_engine.deepspeed_io(eval_dataset))
train_loader = cycle(train_loader)
# initialize training
global_step = 0
if config.load:
# loads a deepspeed checkpoint if provided. For finetuning, set load_optimizer to false
previous_global_step = load_model(
model_engine,
config.load,
load_optimizer_states=config.load_optimizer,
load_lr_scheduler_states=config.load_optimizer,
)
if config.load_optimizer:
global_step = previous_global_step
pbar = tqdm(
range(0, config.train_steps),
desc="training...",
initial=global_step,
total=config.train_steps,
disable=not is_main(),
)
wandb_init(
project=config.wandb_project,
name=config.name or wandb.util.generate_id(),
config=config,
)
# training loop
for i in pbar:
if global_step >= config.train_steps:
break
##### train step
loss = train_step(config, train_loader, model_engine)
global_step += 1
if global_step % config.log_every == 0:
pbar.set_description(f"training... Step: {global_step} Loss: {loss}")
current_lr = (
[lr for lr in lr_scheduler.get_lr()]
if lr_scheduler is not None
else config.lr
)
to_log = {"train/loss": loss, "train/lr": current_lr}
wandb_log(to_log, step=global_step)
##### Evaluation phase
if global_step % config.eval_every == 0:
model_engine.eval()
with torch.no_grad():
##### eval step:
eval_loss = eval_step(config, eval_loader, model_engine)
wandb_log({"eval/loss": eval_loss}, step=global_step)
pbar.set_description(
f"evaluating... Step: {global_step} Eval Loss: {eval_loss}"
)
##### inference:
image_grid, caption = inference_step(config, eval_loader, model_engine)
wandb_log(
{"inference/image": wandb.Image(image_grid, caption=caption)},
step=global_step,
)
model_engine.train()
##### Save model
if global_step % config.save_every == 0:
if config.save is not None:
save_model(model_engine, config.save, global_step)
print_main(f"saving model at step {global_step}")
##### Save model after training is finished
if config.save is not None:
save_model(model_engine, config.save, global_step)
print_main(f"saving model at end of training (step {global_step})")