diff --git a/README.md b/README.md index 59655003b..a850ba660 100644 --- a/README.md +++ b/README.md @@ -34,7 +34,7 @@ If you prefer you can also read about the [concepts](Concepts.md) first. | Order | Topic | Description | Notebook 📓 | | ----- | ------------------ | ----------------------------------------- | --------------------------------------------------------------- | -| 1 | Summarization | Summarize a document | [summarize.ipynb](./src/examples/summarize.ipynb) | +| 1 | Summarization | Summarize a document | [summarization.ipynb](./src/examples/summarize.ipynb) | | 2 | Question Answering | Various approaches for QA | [qa.ipynb](./src/examples/qa.ipynb) | | 3 | Classification | Learn about two methods of classification | [classification.ipynb](./src/examples/classification.ipynb) | | 4 | Evaluation | Evaluate LLM-based methodologies | [evaluation.ipynb](./src/examples/evaluation.ipynb) | @@ -156,8 +156,8 @@ To give you a starting point for using the Intelligence Layer, we provide some p | QA | [RetrieverBasedQa](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.RetrieverBasedQa) | Answer a question based on a document base using a [BaseRetriever](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.connectors.html#intelligence_layer.connectors.BaseRetriever) implementation. | | QA | [SingleChunkQa](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.SingleChunkQa) | Answer a question based on a short text. | | Search | [Search](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.Search) | Search for texts in a document base using a [BaseRetriever](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.connectors.html#intelligence_layer.connectors.BaseRetriever) implementation. | -| Summarize | [SteerableLongContextSummarize](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.SteerableLongContextSummarize) | Condense a long text into a summary with a natural language instruction. | | -| Summarize | [SteerableSingleChunkSummarize](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.SteerableSingleChunkSummarize) | Condense a short text into a summary with a natural language instruction. | +| Summarize | [SteerableLongContextSummarize](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.SteerableLongContextSummarize) | Condense a long text into a summary with a natural language instruction. | +| Summarize | [SteerableSingleChunkSummarize](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.SteerableSingleChunkSummarize) | Condense a short text into a summary with a natural language instruction. | | Summarize | [RecursiveSummarize](https://aleph-alpha-intelligence-layer.readthedocs-hosted.com/en/latest/intelligence_layer.use_cases.html#intelligence_layer.use_cases.RecursiveSummarize) | Recursively condense a text into a summary. | diff --git a/src/examples/summarization.ipynb b/src/examples/summarization.ipynb index 545e55aaf..185f9e104 100644 --- a/src/examples/summarization.ipynb +++ b/src/examples/summarization.ipynb @@ -114,7 +114,7 @@ "metadata": {}, "outputs": [], "source": [ - "from intelligence_layer.core import Chunk, Language\n", + "from intelligence_layer.core import TextChunk, Language\n", "from intelligence_layer.use_cases import (\n", " SteerableSingleChunkSummarize,\n", " SingleChunkSummarizeInput,\n", @@ -126,9 +126,9 @@ "\n", "# this task needs a matching input;\n", "single_chunk_summarize_input = SingleChunkSummarizeInput(\n", - " chunk=Chunk(\n", + " chunk=TextChunk(\n", " document\n", - " ), # a `Chunk` is any text that fits into the model's context window\n", + " ), # a `TextChunk` is any text that fits into the model's context window\n", ")\n", "single_chunk_summarize_output = single_chunk_summarize.run(\n", " single_chunk_summarize_input, NoOpTracer()\n",