-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbessel.c
640 lines (494 loc) · 16 KB
/
bessel.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
/* bessel.c
Copyright (c) 1998
Kapteyn Institute Groningen
All Rights Reserved.
*/
/*
#> bessel.dc2
Function: BESSEL
Purpose: Evaluate Bessel function J, Y, I, K of integer order.
Category: MATH
File: bessel.c
Author: M.G.R. Vogelaar
Use: See bessj.dc2, bessy.dc2, bessi.dc2 or bessk.dc2
Description: The differential equation
2
2 d w dw 2 2
x . --- + x . --- + (x - v ).w = 0
2 dx
dx
has two solutions called Bessel functions of the first kind
Jv(x) and Bessel functions of the second kind Yv(x).
The routines bessj and bessy return the J and Y for
integer v and therefore are called Bessel functions
of integer order.
The differential equation
2
2 d w dw 2 2
x . --- + x . --- - (x + v ).w = 0
2 dx
dx
has two solutions called modified Bessel functions
Iv(x) and Kv(x).
The routines bessi and bessk return the I and K for
integer v and therefore are called Modified Bessel
functions of integer order.
(Abramowitz & Stegun, Handbook of mathematical
functions, ch. 9, pages 358,- and 374,- )
The implementation is based on the ideas from
Numerical Recipes, Press et. al.
This routine is NOT callable in FORTRAN.
Updates: Jun 29, 1998: VOG, Document created.
#<
*/
/*
#> bessel.h
#if !defined(_bessel_h_)
#define _bessel_h_
extern double bessj( int, double );
extern double bessy( int, double );
extern double bessi( int, double );
extern double bessk( int, double );
#endif
#<
*/
#include "math.h"
#include "setdblank.h"
#define ACC 40.0
#define BIGNO 1.0e10
#define BIGNI 1.0e-10
static double bessj0( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate Bessel function of first kind and order */
/* 0 at input x */
/*------------------------------------------------------------*/
{
double ax,z;
double xx,y,ans,ans1,ans2;
if ((ax=fabs(x)) < 8.0) {
y=x*x;
ans1=57568490574.0+y*(-13362590354.0+y*(651619640.7
+y*(-11214424.18+y*(77392.33017+y*(-184.9052456)))));
ans2=57568490411.0+y*(1029532985.0+y*(9494680.718
+y*(59272.64853+y*(267.8532712+y*1.0))));
ans=ans1/ans2;
} else {
z=8.0/ax;
y=z*z;
xx=ax-0.785398164;
ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4
+y*(-0.2073370639e-5+y*0.2093887211e-6)));
ans2 = -0.1562499995e-1+y*(0.1430488765e-3
+y*(-0.6911147651e-5+y*(0.7621095161e-6
-y*0.934935152e-7)));
ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2);
}
return ans;
}
static double bessj1( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate Bessel function of first kind and order */
/* 1 at input x */
/*------------------------------------------------------------*/
{
double ax,z;
double xx,y,ans,ans1,ans2;
if ((ax=fabs(x)) < 8.0) {
y=x*x;
ans1=x*(72362614232.0+y*(-7895059235.0+y*(242396853.1
+y*(-2972611.439+y*(15704.48260+y*(-30.16036606))))));
ans2=144725228442.0+y*(2300535178.0+y*(18583304.74
+y*(99447.43394+y*(376.9991397+y*1.0))));
ans=ans1/ans2;
} else {
z=8.0/ax;
y=z*z;
xx=ax-2.356194491;
ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4
+y*(0.2457520174e-5+y*(-0.240337019e-6))));
ans2=0.04687499995+y*(-0.2002690873e-3
+y*(0.8449199096e-5+y*(-0.88228987e-6
+y*0.105787412e-6)));
ans=sqrt(0.636619772/ax)*(cos(xx)*ans1-z*sin(xx)*ans2);
if (x < 0.0) ans = -ans;
}
return ans;
}
/*
#> bessj.dc2
Function: bessj
Purpose: Evaluate Bessel function of first kind of integer order.
Category: MATH
File: bessel.c
Author: M.G.R. Vogelaar
Use: #include "bessel.h"
double result;
result = bessj( int n,
double x )
bessj Return the Bessel function of integer order
for input value x.
n Integer order of Bessel function.
x Double at which the function is evaluated.
Description: bessj evaluates at x the Bessel function of the first kind
and of integer order n.
This routine is NOT callable in FORTRAN.
Updates: Jun 29, 1998: VOG, Document created.
#<
*/
double bessj( int n, double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate Bessel function of first kind and order */
/* n at input x */
/* The function can also be called for n = 0 and n = 1. */
/*------------------------------------------------------------*/
{
int j, jsum, m;
double ax, bj, bjm, bjp, sum, tox, ans;
if (n < 0)
{
double dblank;
setdblank_c( &dblank );
return( dblank );
}
ax=fabs(x);
if (n == 0)
return( bessj0(ax) );
if (n == 1)
return( bessj1(ax) );
if (ax == 0.0)
return 0.0;
else if (ax > (double) n) {
tox=2.0/ax;
bjm=bessj0(ax);
bj=bessj1(ax);
for (j=1;j<n;j++) {
bjp=j*tox*bj-bjm;
bjm=bj;
bj=bjp;
}
ans=bj;
} else {
tox=2.0/ax;
m=2*((n+(int) sqrt(ACC*n))/2);
jsum=0;
bjp=ans=sum=0.0;
bj=1.0;
for (j=m;j>0;j--) {
bjm=j*tox*bj-bjp;
bjp=bj;
bj=bjm;
if (fabs(bj) > BIGNO) {
bj *= BIGNI;
bjp *= BIGNI;
ans *= BIGNI;
sum *= BIGNI;
}
if (jsum) sum += bj;
jsum=!jsum;
if (j == n) ans=bjp;
}
sum=2.0*sum-bj;
ans /= sum;
}
return x < 0.0 && n%2 == 1 ? -ans : ans;
}
static double bessy0( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate Bessel function of second kind and order */
/* 0 at input x. */
/*------------------------------------------------------------*/
{
double z;
double xx,y,ans,ans1,ans2;
if (x < 8.0) {
y=x*x;
ans1 = -2957821389.0+y*(7062834065.0+y*(-512359803.6
+y*(10879881.29+y*(-86327.92757+y*228.4622733))));
ans2=40076544269.0+y*(745249964.8+y*(7189466.438
+y*(47447.26470+y*(226.1030244+y*1.0))));
ans=(ans1/ans2)+0.636619772*bessj0(x)*log(x);
} else {
z=8.0/x;
y=z*z;
xx=x-0.785398164;
ans1=1.0+y*(-0.1098628627e-2+y*(0.2734510407e-4
+y*(-0.2073370639e-5+y*0.2093887211e-6)));
ans2 = -0.1562499995e-1+y*(0.1430488765e-3
+y*(-0.6911147651e-5+y*(0.7621095161e-6
+y*(-0.934945152e-7))));
ans=sqrt(0.636619772/x)*(sin(xx)*ans1+z*cos(xx)*ans2);
}
return ans;
}
static double bessy1( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate Bessel function of second kind and order */
/* 1 at input x. */
/*------------------------------------------------------------*/
{
double z;
double xx,y,ans,ans1,ans2;
if (x < 8.0) {
y=x*x;
ans1=x*(-0.4900604943e13+y*(0.1275274390e13
+y*(-0.5153438139e11+y*(0.7349264551e9
+y*(-0.4237922726e7+y*0.8511937935e4)))));
ans2=0.2499580570e14+y*(0.4244419664e12
+y*(0.3733650367e10+y*(0.2245904002e8
+y*(0.1020426050e6+y*(0.3549632885e3+y)))));
ans=(ans1/ans2)+0.636619772*(bessj1(x)*log(x)-1.0/x);
} else {
z=8.0/x;
y=z*z;
xx=x-2.356194491;
ans1=1.0+y*(0.183105e-2+y*(-0.3516396496e-4
+y*(0.2457520174e-5+y*(-0.240337019e-6))));
ans2=0.04687499995+y*(-0.2002690873e-3
+y*(0.8449199096e-5+y*(-0.88228987e-6
+y*0.105787412e-6)));
ans=sqrt(0.636619772/x)*(sin(xx)*ans1+z*cos(xx)*ans2);
}
return ans;
}
/*
#> bessy.dc2
Function: bessy
Purpose: Evaluate Bessel function second kind and of integer order.
Category: MATH
File: bessel.c
Author: M.G.R. Vogelaar
Use: #include "bessel.h"
double result;
result = bessy( int n,
double x )
bessy Return the Bessel function of second kind and
of integer order, for input value x.
n Integer order of Bessel function.
x Double at which the function is evaluated.
Description: bessy evaluates at x the Bessel function of the second kind
and of integer order n.
This routine is NOT callable in FORTRAN.
Updates: Jun 29, 1998: VOG, Document created.
#<
*/
double bessy( int n, double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate Bessel function of second kind and order */
/* n for input x. (n >= 0) */
/* Note that for x == 0 the functions bessy and bessk are not */
/* defined and a blank is returned. */
/*------------------------------------------------------------*/
{
int j;
double by,bym,byp,tox;
if (n < 0 || x == 0.0)
{
double dblank;
setdblank_c( &dblank );
return( dblank );
}
if (n == 0)
return( bessy0(x) );
if (n == 1)
return( bessy1(x) );
tox=2.0/x;
by=bessy1(x);
bym=bessy0(x);
for (j=1;j<n;j++) {
byp=j*tox*by-bym;
bym=by;
by=byp;
}
return by;
}
static double bessi0( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate modified Bessel function In(x) and n=0. */
/*------------------------------------------------------------*/
{
double ax,ans;
double y;
if ((ax=fabs(x)) < 3.75) {
y=x/3.75,y=y*y;
ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492
+y*(0.2659732+y*(0.360768e-1+y*0.45813e-2)))));
} else {
y=3.75/ax;
ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1
+y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2
+y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1
+y*0.392377e-2))))))));
}
return ans;
}
static double bessi1( double x)
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate modified Bessel function In(x) and n=1. */
/*------------------------------------------------------------*/
{
double ax,ans;
double y;
if ((ax=fabs(x)) < 3.75) {
y=x/3.75,y=y*y;
ans=ax*(0.5+y*(0.87890594+y*(0.51498869+y*(0.15084934
+y*(0.2658733e-1+y*(0.301532e-2+y*0.32411e-3))))));
} else {
y=3.75/ax;
ans=0.2282967e-1+y*(-0.2895312e-1+y*(0.1787654e-1
-y*0.420059e-2));
ans=0.39894228+y*(-0.3988024e-1+y*(-0.362018e-2
+y*(0.163801e-2+y*(-0.1031555e-1+y*ans))));
ans *= (exp(ax)/sqrt(ax));
}
return x < 0.0 ? -ans : ans;
}
/*
#> bessi.dc2
Function: bessi
Purpose: Evaluate Modified Bessel function of integer order.
Category: MATH
File: bessel.c
Author: M.G.R. Vogelaar
Use: #include "bessel.h"
double result;
result = bessi( int n,
double x )
bessi Return the Modified Bessel function Iv(x) of
integer order for input value x.
n Integer order of Bessel function.
x Double at which the function is evaluated.
Description: bessy evaluates at x the Modified Bessel function of
integer order n.
This routine is NOT callable in FORTRAN.
Updates: Jun 29, 1998: VOG, Document created.
#<
*/
double bessi( int n, double x)
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate modified Bessel function In(x) for n >= 0*/
/*------------------------------------------------------------*/
{
int j;
double bi,bim,bip,tox,ans;
if (n < 0)
{
double dblank;
setdblank_c( &dblank );
return( dblank );
}
if (n == 0)
return( bessi0(x) );
if (n == 1)
return( bessi1(x) );
if (x == 0.0)
return 0.0;
else {
tox=2.0/fabs(x);
bip=ans=0.0;
bi=1.0;
for (j=2*(n+(int) sqrt(ACC*n));j>0;j--) {
bim=bip+j*tox*bi;
bip=bi;
bi=bim;
if (fabs(bi) > BIGNO) {
ans *= BIGNI;
bi *= BIGNI;
bip *= BIGNI;
}
if (j == n) ans=bip;
}
ans *= bessi0(x)/bi;
return x < 0.0 && n%2 == 1 ? -ans : ans;
}
}
static double bessk0( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate modified Bessel function Kn(x) and n=0. */
/*------------------------------------------------------------*/
{
double y,ans;
if (x <= 2.0) {
y=x*x/4.0;
ans=(-log(x/2.0)*bessi0(x))+(-0.57721566+y*(0.42278420
+y*(0.23069756+y*(0.3488590e-1+y*(0.262698e-2
+y*(0.10750e-3+y*0.74e-5))))));
} else {
y=2.0/x;
ans=(exp(-x)/sqrt(x))*(1.25331414+y*(-0.7832358e-1
+y*(0.2189568e-1+y*(-0.1062446e-1+y*(0.587872e-2
+y*(-0.251540e-2+y*0.53208e-3))))));
}
return ans;
}
static double bessk1( double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate modified Bessel function Kn(x) and n=1. */
/*------------------------------------------------------------*/
{
double y,ans;
if (x <= 2.0) {
y=x*x/4.0;
ans=(log(x/2.0)*bessi1(x))+(1.0/x)*(1.0+y*(0.15443144
+y*(-0.67278579+y*(-0.18156897+y*(-0.1919402e-1
+y*(-0.110404e-2+y*(-0.4686e-4)))))));
} else {
y=2.0/x;
ans=(exp(-x)/sqrt(x))*(1.25331414+y*(0.23498619
+y*(-0.3655620e-1+y*(0.1504268e-1+y*(-0.780353e-2
+y*(0.325614e-2+y*(-0.68245e-3)))))));
}
return ans;
}
/*
#> bessk.dc2
Function: bessk
Purpose: Evaluate Modified Bessel function Kv(x) of integer order.
Category: MATH
File: bessel.c
Author: M.G.R. Vogelaar
Use: #include "bessel.h"
double result;
result = bessk( int n,
double x )
bessk Return the Modified Bessel function Kv(x) of
integer order for input value x.
n Integer order of Bessel function.
x Double at which the function is evaluated.
Description: bessk evaluates at x the Modified Bessel function Kv(x) of
integer order n.
This routine is NOT callable in FORTRAN.
Updates: Jun 29, 1998: VOG, Document created.
#<
*/
double bessk( int n, double x )
/*------------------------------------------------------------*/
/* PURPOSE: Evaluate modified Bessel function Kn(x) and n >= 0*/
/* Note that for x == 0 the functions bessy and bessk are not */
/* defined and a blank is returned. */
/*------------------------------------------------------------*/
{
int j;
double bk,bkm,bkp,tox;
if (n < 0 || x == 0.0)
{
double dblank;
setdblank_c( &dblank );
return( dblank );
}
if (n == 0)
return( bessk0(x) );
if (n == 1)
return( bessk1(x) );
tox=2.0/x;
bkm=bessk0(x);
bk=bessk1(x);
for (j=1;j<n;j++) {
bkp=bkm+j*tox*bk;
bkm=bk;
bk=bkp;
}
return bk;
}
#undef ACC
#undef BIGNO
#undef BIGNI