-
Notifications
You must be signed in to change notification settings - Fork 0
/
BAM_NN.py
141 lines (108 loc) · 5.34 KB
/
BAM_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import matplotlib.pyplot as plt # pip install matplotlib
import multiprocessing # pip install multiprocessing
import numpy as np # pip install numpy
import tensorflow as tf # pip install tensorflow-gpu==1.15
from keras.datasets import mnist # pip install pip install keras
###############################
np.random.seed(1000)
tf.set_random_seed(1000)
###############################
width = 28
height = 28
batch_size = 10
cicle_num = 300
graph = tf.Graph()
###############################
(X_train, Y_train), (X_test, Y_test) = mnist.load_data('C:/mnist/t10k-images.idx3-ubyte')
###############################
X_source = X_train[0:50]
Y_source = Y_train[0:50]
X_source = X_source[:, :, :, np.newaxis]
Y_source = Y_source[:, np.newaxis]
X_dest = X_source.copy()
np.random.shuffle(X_dest)
###############################
def encoder(encoder_input):
conv1 = tf.layers.conv2d(inputs=encoder_input, filters=32, kernel_size=(3, 3),
kernel_initializer=tf.contrib.layers.xavier_initializer(),
activation=tf.nn.tanh)
conv_output = tf.contrib.layers.flatten(conv1)
d_layer_1 = tf.layers.dense(inputs=conv_output, units=1024, activation=tf.nn.tanh)
code_layer = tf.layers.dense(inputs=d_layer_1, units=1024, activation=tf.nn.tanh)
return code_layer
###############################
def decoder(code_sequence, bs):
d_layer_1 = tf.layers.dense(inputs=code_sequence, units=1024, activation=tf.nn.tanh)
code_output = tf.layers.dense(inputs=d_layer_1, units=(height - 2) * (width - 2) * 3, activation=tf.nn.tanh)
deconv_input = tf.reshape(code_output, (bs, height - 2, width - 2, 3))
deconv1 = tf.layers.conv2d_transpose(inputs=deconv_input, filters=3, kernel_size=(3, 3),
kernel_initializer=tf.contrib.layers.xavier_initializer(),
activation=tf.sigmoid)
output_batch = tf.cast(tf.reshape(deconv1, (bs, height, width, 3)) * 255.0, tf.uint8)
return deconv1, output_batch
###############################
def create_batch(l):
X = np.zeros((batch_size, height, width, 3), dtype=np.float32)
Y = np.zeros((batch_size, height, width, 3), dtype=np.float32)
if l < X_source.shape[0] - batch_size:
tmax = l + batch_size
else:
tmax = X_source.shape[0]
for k, image in enumerate(X_source[l:tmax]):
X[k, :, :, :] = image / 255.0
for k, image in enumerate(X_dest[l:tmax]):
Y[k, :, :, :] = image / 255.0
return X, Y
###############################
with graph.as_default():
with tf.device('/cpu:0'):
global_step = tf.Variable(0, trainable=False)
with tf.device('/gpu:0' if True else '/cpu:0'):
input_images = tf.placeholder(tf.float32, shape=(None, height, width, 3))
output_images = tf.placeholder(tf.float32, shape=(None, height, width, 3))
t_batch_size = tf.placeholder(tf.int32, shape=())
code_layer = encoder(encoder_input=input_images)
deconv_output, output_batch = decoder(code_sequence=code_layer,
bs=t_batch_size)
loss = tf.nn.l2_loss(output_images - deconv_output)
learning_rate = tf.train.exponential_decay(learning_rate=0.00025, global_step=global_step,
decay_steps=int(X_source.shape[0] / (2 * batch_size)),
decay_rate=0.9, staircase=True)
trainer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_step = trainer.minimize(loss)
###############################
def prediction(X, bs=1):
feed_dict = {
input_images: X.reshape((1, height, width, 3)) / 255.0,
output_images: np.zeros((bs, height, width, 3), dtype=np.float32),
t_batch_size: bs
}
return session.run([output_batch], feed_dict=feed_dict)[0]
###############################
if __name__ == '__main__':
config = tf.ConfigProto(intra_op_parallelism_threads=multiprocessing.cpu_count(),
inter_op_parallelism_threads=multiprocessing.cpu_count(),
allow_soft_placement=True,
device_count={'CPU': 1,
'GPU': 1 if True else 0})
session = tf.InteractiveSession(graph=graph, config=config)
tf.global_variables_initializer().run()
for i in range(cicle_num):
total_loss = 0.0
for t in range(0, X_source.shape[0], batch_size):
X, Y = create_batch(t)
feed_dict = {
input_images: X,
output_images: Y,
t_batch_size: batch_size
}
_, t_loss = session.run([training_step, loss], feed_dict=feed_dict)
total_loss += t_loss
print('Цикл обучения {} из {} - Неточности: {}'. format(i + 1, cicle_num, total_loss / float(X_train.shape[0])))
for i in range(20):
restored_images = np.zeros(shape=(2, height, width, 3), dtype=np.uint8)
restored_images[0, :, :, :] = X_source[i]
predicted = prediction(restored_images[0])[0]
fig, ax = plt.subplots()
ax.imshow(predicted)
plt.show()