diff --git a/src/transformers/models/mixtral/modeling_mixtral.py b/src/transformers/models/mixtral/modeling_mixtral.py index 71eb89744150ee..99392890db9538 100644 --- a/src/transformers/models/mixtral/modeling_mixtral.py +++ b/src/transformers/models/mixtral/modeling_mixtral.py @@ -103,11 +103,7 @@ def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tenso _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) - # treat `top_k` as tokens (shape is `top_k X [batch_size X sequence_length]`) - selected_experts = selected_experts.reshape(-1) - expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) - expert_mask = torch.max(expert_mask, dim=-2).values # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) @@ -115,7 +111,7 @@ def load_balancing_loss_func(gate_logits: torch.Tensor, num_experts: torch.Tenso # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) - overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(-1)) + overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts diff --git a/tests/models/mixtral/test_modeling_mixtral.py b/tests/models/mixtral/test_modeling_mixtral.py index 78c3d68d470bc3..9efe4cb18267a8 100644 --- a/tests/models/mixtral/test_modeling_mixtral.py +++ b/tests/models/mixtral/test_modeling_mixtral.py @@ -474,7 +474,7 @@ def test_load_balancing_loss(self): model.eval() result = model(input_ids, attention_mask=attention_mask) self.assertEqual(result.router_logits[0].shape, (91, config.num_local_experts)) - torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(8, dtype=torch.float32)) + torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2) @require_torch