【计算机视觉论文速递】2018-12-10
本文分享共计12篇论文,涉及图像分类、目标检测、图像分割、GAN和三维重建等方向。
[TOC]
《Variational Saccading: Efficient Inference for Large Resolution Images》
NIPS 2018 Bayesian Deep Learning Workshop
arXiv:https://arxiv.org/abs/1812.03170
Image classification with deep neural networks is typically restricted to images of small dimensionality such as 224x244 in Resnet models. This limitation excludes the 4000x3000 dimensional images that are taken by modern smartphone cameras and smart devices. In this work, we aim to mitigate the prohibitive inferential and memory costs of operating in such large dimensional spaces. To sample from the high-resolution original input distribution, we propose using a smaller proxy distribution to learn the co-ordinates that correspond to regions of interest in the high-dimensional space. We introduce a new principled variational lower bound that captures the relationship of the proxy distribution's posterior and the original image's co-ordinate space in a way that maximizes the conditional classification likelihood. We empirically demonstrate on one synthetic benchmark and one real world large resolution DSLR camera image dataset that our method produces comparable results with 10x faster inference and lower memory consumption than a model that utilizes the entire original input distribution.
《LNEMLC: Label Network Embeddings for Multi-Label Classifiation》
arXiv:https://arxiv.org/abs/1812.02956
Multi-label classification aims to classify instances with discrete non-exclusive labels. Most approaches on multi-label classification focus on effective adaptation or transformation of existing binary and multi-class learning approaches but fail in modelling the joint probability of labels or do not preserve generalization abilities for unseen label combinations. To address these issues we propose a new multi-label classification scheme, LNEMLC - Label Network Embedding for Multi-Label Classification, that embeds the label network and uses it to extend input space in learning and inference of any base multi-label classifier. The approach allows capturing of labels' joint probability at low computational complexity providing results comparable to the best methods reported in the literature. We demonstrate how the method reveals statistically significant improvements over the simple kNN baseline classifier. We also provide hints for selecting the robust configuration that works satisfactorily across data domains.
《ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape》
arXiv:https://arxiv.org/abs/1812.02781
We present a deep learning method for end-to-end monocular 3D object detection and metric shape retrieval. We propose a novel loss formulation by lifting 2D detection, orientation, and scale estimation into 3D space. Instead of optimizing these quantities separately, the 3D instantiation allows to properly measure the metric misalignment of boxes. We experimentally show that our 10D lifting of sparse 2D Regions of Interests (RoIs) achieves great results both for 6D pose and recovery of the textured metric geometry of instances. This further enables 3D synthetic data augmentation via inpainting recovered meshes directly onto the 2D scenes. We evaluate on KITTI3D against other strong monocular methods and demonstrate that our approach doubles the AP on the 3D pose metrics on the official test set, defining the new state of the art.
《Scale-aware multi-level guidance for interactive instance segmentation》
arXiv:https://arxiv.org/abs/1812.02967
In interactive instance segmentation, users give feedback to iteratively refine segmentation masks. The user-provided clicks are transformed into guidance maps which provide the network with necessary cues on the whereabouts of the object of interest. Guidance maps used in current systems are purely distance-based and are either too localized or non-informative. We propose a novel transformation of user clicks to generate scale-aware guidance maps that leverage the hierarchical structural information present in an image. Using our guidance maps, even the most basic FCNs are able to outperform existing approaches that require state-of-the-art segmentation networks pre-trained on large scale segmentation datasets. We demonstrate the effectiveness of our proposed transformation strategy through comprehensive experimentation in which we significantly raise state-of-the-art on four standard interactive segmentation benchmarks.
《A High-Order Scheme for Image Segmentation via a modified Level-Set method》
arXiv:https://arxiv.org/abs/1812.03026
The method is based on an adaptive "filtered" scheme recently introduced by the authors. The main feature of the scheme is the possibility to stabilize an a priori unstable high-order scheme via a filter function which allows to combine a high-order scheme in the regularity regions and a monotone scheme elsewhere, in presence of singularities. The filtered scheme considered in this paper uses the local Lax-Friedrichs scheme as monotone scheme and the Lax-Wendroff scheme as high-order scheme but other couplings are possible. Moreover, we introduce also a modified velocity function for the level-set model used in segmentation, this velocity allows to obtain more accurate results with respect to other velocities proposed in the literature. Some numerical tests on synthetic and real images confirm the accuracy of the proposed method and the advantages given by the new velocity.
《Color Constancy by GANs: An Experimental Survey》
arXiv:https://arxiv.org/abs/1812.03085
In this paper, we formulate the color constancy task as an image-to-image translation problem using GANs. By conducting a large set of experiments on different datasets, an experimental survey is provided on the use of different types of GANs to solve for color constancy i.e. CC-GANs (Color Constancy GANs). Based on the experimental review, recommendations are given for the design of CC-GAN architectures based on different criteria, circumstances and datasets.
《StoryGAN: A Sequential Conditional GAN for Story Visualization》
arXiv:https://arxiv.org/abs/1812.02784
In this work we propose a new task called Story Visualization. Given a multi-sentence paragraph, the story is visualized by generating a sequence of images, one for each sentence. In contrast to video generation, story visualization focuses less on the continuity in generated images (frames), but more on the global consistency across dynamic scenes and characters -- a challenge that has not been addressed by any single-image or video generation methods. Therefore, we propose a new story-to-image-sequence generation model, StoryGAN, based on the sequential conditional GAN framework. Our model is unique in that it consists of a deep Context Encoder that dynamically tracks the story flow, and two discriminators at the story and image levels, respectively, to enhance the image quality and the consistency of the generated sequences. To evaluate the model, we modified existing datasets to create the CLEVR-SV and Pororo-SV datasets. Empirically, StoryGAN outperformed state-of-the-art models in image quality, contextual consistency metrics, and human evaluation.
《Real-time Indoor Scene Reconstruction with RGBD and Inertia Input》
arXiv:https://arxiv.org/abs/1812.03015
Camera motion estimation is a key technique for 3D scene reconstruction and Simultaneous localization and mapping (SLAM). To make it be feasibly achieved, previous works usually assume slow camera motions, which limits its usage in many real cases. We propose an end-to-end 3D reconstruction system which combines color, depth and inertial measurements to achieve robust reconstruction with fast sensor motions. Our framework extends Kalman filter to fuse the three kinds of information and involve an iterative method to jointly optimize feature correspondences, camera poses and scene geometry. We also propose a novel geometry-aware patch deformation technique to adapt the feature appearance in image domain, leading to a more accurate feature matching under fast camera motions. Experiments show that our patch deformation method improves the accuracy of feature tracking, and our 3D reconstruction outperforms the state-of-the-art solutions under fast camera motions.
《SeFM: A Sequential Feature Point Matching Algorithm for Object 3D Reconstruction》
arXiv:https://arxiv.org/abs/1812.02925
3D reconstruction is a fundamental issue in many applications and the feature point matching problem is a key step while reconstructing target objects. Conventional algorithms can only find a small number of feature points from two images which is quite insufficient for reconstruction. To overcome this problem, we propose SeFM a sequential feature point matching algorithm. We first utilize the epipolar geometry to find the epipole of each image. Rotating along the epipole, we generate a set of the epipolar lines and reserve those intersecting with the input image. Next, a rough matching phase, followed by a dense matching phase, is applied to find the matching dot-pairs using dynamic programming. Furthermore, we also remove wrong matching dot-pairs by calculating the validity. Experimental results illustrate that SeFM can achieve around 1,000 to 10,000 times matching dot-pairs, depending on individual image, compared to conventional algorithms and the object reconstruction with only two images is semantically visible. Moreover, it outperforms conventional algorithms, such as SIFT and SURF, regarding precision and recall.
《Optimizing Speed/Accuracy Trade-Off for Person Re-identification via Knowledge Distillation》
arXiv:https://arxiv.org/abs/1812.02937
Finding a person across a camera network plays an important role in video surveillance. For a real-world person re-identification application, in order to guarantee an optimal time response, it is crucial to find the balance between accuracy and speed. We analyse this trade-off, comparing a classical method, that comprises hand-crafted feature description and metric learning, in particular, LOMO and XQDA, with state-of-the-art deep learning techniques, using image classification networks, ResNet and MobileNets. Additionally, we propose and analyse network distillation as a learning strategy to reduce the computational cost of the deep learning approach at test time. We evaluate both methods on the Market-1501 and DukeMTMC-reID large-scale datasets.
《Graph Cut Segmentation Methods Revisited with a Quantum Algorithm》
arXiv:https://arxiv.org/abs/1812.03050
The design and performance of computer vision algorithms are greatly influenced by the hardware on which they are implemented. CPUs, multi-core CPUs, FPGAs and GPUs have inspired new algorithms and enabled existing ideas to be realized. This is notably the case with GPUs, which has significantly changed the landscape of computer vision research through deep learning. As the end of Moores law approaches, researchers and hardware manufacturers are exploring alternative hardware computing paradigms. Quantum computers are a very promising alternative and offer polynomial or even exponential speed-ups over conventional computing for some problems. This paper presents a novel approach to image segmentation that uses new quantum computing hardware. Segmentation is formulated as a graph cut problem that can be mapped to the quantum approximation optimization algorithm (QAOA). This algorithm can be implemented on current and near-term quantum computers. Encouraging results are presented on artificial and medical imaging data. This represents an important, practical step towards leveraging quantum computers for computer vision.
《Neural Image Decompression: Learning to Render Better Image Previews》
arXiv:https://arxiv.org/abs/1812.02831
A rapidly increasing portion of Internet traffic is dominated by requests from mobile devices with limited- and metered-bandwidth constraints. To satisfy these requests, it has become standard practice for websites to transmit small and extremely compressed image previews as part of the initial page-load process. Recent work, based on an adaptive triangulation of the target image, has shown the ability to generate thumbnails of full images at extreme compression rates: 200 bytes or less with impressive gains (in terms of PSNR and SSIM) over both JPEG and WebP standards. However, qualitative assessments and preservation of semantic content can be less favorable. We present a novel method to significantly improve the reconstruction quality of the original image with no changes to the encoded information. Our neural-based decoding not only achieves higher PSNR and SSIM scores than the original methods, but also yields a substantial increase in semantic-level content preservation. In addition, by keeping the same encoding stream, our solution is completely inter-operable with the original decoder. The end result is suitable for a range of small-device deployments, as it involves only a single forward-pass through a small, scalable network.