forked from influxdata/kapacitor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
influxql.go
308 lines (284 loc) · 7.4 KB
/
influxql.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
package kapacitor
import (
"fmt"
"log"
"reflect"
"sync"
"time"
"github.com/influxdata/kapacitor/expvar"
"github.com/influxdata/kapacitor/models"
"github.com/influxdata/kapacitor/pipeline"
"github.com/pkg/errors"
)
// tmpl -- go get github.com/benbjohnson/tmpl
//go:generate tmpl [email protected] influxql.gen.go.tmpl
type createReduceContextFunc func(c baseReduceContext) reduceContext
var ErrEmptyEmit = errors.New("error call to emit produced no results")
type InfluxQLNode struct {
node
n *pipeline.InfluxQLNode
createFn createReduceContextFunc
isStreamTransformation bool
}
func newInfluxQLNode(et *ExecutingTask, n *pipeline.InfluxQLNode, l *log.Logger) (*InfluxQLNode, error) {
m := &InfluxQLNode{
node: node{Node: n, et: et, logger: l},
n: n,
isStreamTransformation: n.ReduceCreater.IsStreamTransformation,
}
m.node.runF = m.runInfluxQLs
return m, nil
}
func (n *InfluxQLNode) runInfluxQLs([]byte) error {
switch n.n.Wants() {
case pipeline.StreamEdge:
return n.runStreamInfluxQL()
case pipeline.BatchEdge:
return n.runBatchInfluxQL()
default:
return fmt.Errorf("cannot map %v edge", n.n.Wants())
}
}
type reduceContext interface {
AggregatePoint(p *models.Point) error
AggregateBatch(b *models.Batch) error
EmitPoint() (models.Point, error)
EmitBatch() models.Batch
Time() time.Time
}
type baseReduceContext struct {
as string
field string
name string
group models.GroupID
dimensions models.Dimensions
tags models.Tags
time time.Time
pointTimes bool
topBottomInfo *pipeline.TopBottomCallInfo
}
func (c *baseReduceContext) Time() time.Time {
return c.time
}
func (n *InfluxQLNode) runStreamInfluxQL() error {
var mu sync.RWMutex
contexts := make(map[models.GroupID]reduceContext)
valueF := func() int64 {
mu.RLock()
l := len(contexts)
mu.RUnlock()
return int64(l)
}
n.statMap.Set(statCardinalityGauge, expvar.NewIntFuncGauge(valueF))
var kind reflect.Kind
for p, ok := n.ins[0].NextPoint(); ok; {
n.timer.Start()
mu.RLock()
context := contexts[p.Group]
mu.RUnlock()
// First point in window
if context == nil {
// Create new context
c := baseReduceContext{
as: n.n.As,
field: n.n.Field,
name: p.Name,
group: p.Group,
dimensions: p.Dimensions,
tags: p.PointTags(),
time: p.Time,
pointTimes: n.n.PointTimes || n.isStreamTransformation,
}
f, exists := p.Fields[c.field]
if !exists {
n.incrementErrorCount()
n.logger.Printf("E! field %s missing from point, skipping point", c.field)
p, ok = n.ins[0].NextPoint()
n.timer.Stop()
continue
}
k := reflect.TypeOf(f).Kind()
kindChanged := k != kind
kind = k
createFn, err := n.getCreateFn(kindChanged, kind)
if err != nil {
return err
}
context = createFn(c)
mu.Lock()
contexts[p.Group] = context
mu.Unlock()
}
if n.isStreamTransformation {
err := context.AggregatePoint(&p)
if err != nil {
n.incrementErrorCount()
n.logger.Println("E! failed to aggregate point:", err)
}
p, ok = n.ins[0].NextPoint()
err = n.emit(context)
if err != nil && err != ErrEmptyEmit {
n.incrementErrorCount()
n.logger.Println("E! failed to emit stream:", err)
}
} else {
if p.Time.Equal(context.Time()) {
err := context.AggregatePoint(&p)
if err != nil {
n.incrementErrorCount()
n.logger.Println("E! failed to aggregate point:", err)
}
// advance to next point
p, ok = n.ins[0].NextPoint()
} else {
err := n.emit(context)
if err != nil {
n.incrementErrorCount()
n.logger.Println("E! failed to emit stream:", err)
}
// Nil out reduced point
mu.Lock()
contexts[p.Group] = nil
mu.Unlock()
// do not advance,
// go through loop again to initialize new iterator.
}
}
n.timer.Stop()
}
return nil
}
func (n *InfluxQLNode) runBatchInfluxQL() error {
var kind reflect.Kind
kindChanged := true
for b, ok := n.ins[0].NextBatch(); ok; b, ok = n.ins[0].NextBatch() {
n.timer.Start()
// Create new base context
c := baseReduceContext{
as: n.n.As,
field: n.n.Field,
name: b.Name,
group: b.Group,
dimensions: b.PointDimensions(),
tags: b.Tags,
time: b.TMax,
pointTimes: n.n.PointTimes || n.isStreamTransformation,
}
if len(b.Points) == 0 {
if !n.n.ReduceCreater.IsEmptyOK {
// If the reduce does not handle empty batches continue
n.timer.Stop()
continue
}
if kind == reflect.Invalid {
// If we have no points and have never seen a point assume float64
kind = reflect.Float64
}
} else {
f, ok := b.Points[0].Fields[c.field]
if !ok {
n.incrementErrorCount()
n.logger.Printf("E! field %s missing from point, skipping batch", c.field)
n.timer.Stop()
continue
}
k := reflect.TypeOf(f).Kind()
kindChanged = k != kind
kind = k
}
createFn, err := n.getCreateFn(kindChanged, kind)
if err != nil {
return err
}
context := createFn(c)
if n.isStreamTransformation {
// We have a stream transformation, so treat the batch as if it were a stream
// Create a new batch for emitting
eb := b
eb.Points = make([]models.BatchPoint, 0, len(b.Points))
for _, bp := range b.Points {
p := models.Point{
Name: b.Name,
Time: bp.Time,
Fields: bp.Fields,
Tags: bp.Tags,
}
if err := context.AggregatePoint(&p); err != nil {
n.incrementErrorCount()
n.logger.Println("E! failed to aggregate batch point:", err)
}
if ep, err := context.EmitPoint(); err != nil && err != ErrEmptyEmit {
n.incrementErrorCount()
n.logger.Println("E! failed to emit batch point:", err)
} else if err != ErrEmptyEmit {
eb.Points = append(eb.Points, models.BatchPoint{
Time: ep.Time,
Fields: ep.Fields,
Tags: ep.Tags,
})
}
}
// Emit the complete batch
n.timer.Pause()
for _, out := range n.outs {
if err := out.CollectBatch(eb); err != nil {
n.incrementErrorCount()
n.logger.Println("E! failed to emit batch points:", err)
}
}
n.timer.Resume()
} else {
err := context.AggregateBatch(&b)
if err == nil {
if err := n.emit(context); err != nil {
n.incrementErrorCount()
n.logger.Println("E! failed to emit batch:", err)
}
} else {
n.incrementErrorCount()
n.logger.Println("E! failed to aggregate batch:", err)
}
}
n.timer.Stop()
}
return nil
}
func (n *InfluxQLNode) getCreateFn(changed bool, kind reflect.Kind) (createReduceContextFunc, error) {
if !changed && n.createFn != nil {
return n.createFn, nil
}
createFn, err := determineReduceContextCreateFn(n.n.Method, kind, n.n.ReduceCreater)
if err != nil {
return nil, errors.Wrapf(err, "invalid influxql func %s with field %s", n.n.Method, n.n.Field)
}
n.createFn = createFn
return n.createFn, nil
}
func (n *InfluxQLNode) emit(context reduceContext) error {
switch n.Provides() {
case pipeline.StreamEdge:
p, err := context.EmitPoint()
if err != nil {
return err
}
n.timer.Pause()
for _, out := range n.outs {
err := out.CollectPoint(p)
if err != nil {
return err
}
}
n.timer.Resume()
case pipeline.BatchEdge:
b := context.EmitBatch()
n.timer.Pause()
for _, out := range n.outs {
err := out.CollectBatch(b)
if err != nil {
return err
}
}
n.timer.Resume()
}
return nil
}