Skip to content

Latest commit

 

History

History
110 lines (83 loc) · 3.99 KB

README.md

File metadata and controls

110 lines (83 loc) · 3.99 KB

A key focus of this work was to recognize implicit emotions in blog posts.

Different from past approaches using surface features, we utilize syntax and semantic knowledges and learn meaningful patterns to detect a user's intended emotion.

flowchart

Workflow

  1. Extract Patterns from LJ40K

  2. Construct Lexicon

  3. Pattern Scoring

  4. Document Scoring

    1. naive approache

    2. machine learning

      • program: (comming soon)
      • include
        1. feature extraction

          [options]
          -b: percentage of beginning section
          -m: percentage of middle section
          -e: percentage of ending section
          -c: counting unit for document segmentation
                           0: number of words
                           1: number of sentences (not implemented yet)
          -f: feature value computation
                           0: pattern scores (patscore_p2_s0)  
                           1: accumulated threshold by 0.68 (1 std) using pattern scores  
                           2: accumulated threshold by 0.68 (1 std) using pattern count  
                           3: [type 2] & min_count=4  
                           4: [type 2] & remove the pattern occurrence counted from oneself (for ldocID 0-799)  
                           5: [type 3] & remove the pattern occurrence counted from oneself (for ldocID 0-799)  
          -v, --verbose: show debug message
          [options]
          -l, --limit: minimum occurrence of a pattern
                        	  0: (default) collect all patterns
                            n: at least occurs < n > times for each pattern
          -v, --verbose: show debug message
          [options]
          -k: keyword set in WordNetAffect
                           0: basic
                           1: extend
          --lemma: use word lemma when looking for keywords
          -v, --verbose: show debug message
        2. training

        3. testing

  5. Evaluation

    1. naive document scoring

    2. machine learning

useful git commands

git clone [email protected]:AcademiaSinicaNLPLab/emotion-detection-modules.git
// check (un)tracked, (un)staged files
git st

// add files for this commit
git add <files>
git ci -m "add a new line blah..."

// push commit to remote
git push -u origin master	// first time using push
git push

// if cannot push to remote (fast forward), pull first
git pull -u origin master	// first time using pull
git pull

System Flow

flowchart