-
Notifications
You must be signed in to change notification settings - Fork 19
/
extract.py
executable file
·90 lines (78 loc) · 2.59 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/env python3
'''
Converts the YAML FrontMatter (meta-data) from the `_profile/*.md` files
into a single CSV table, and writes it to `profiles.csv`.
'''
# SPDX-FileCopyrightText: 2022 Robin Vobruba <[email protected]>
#
# SPDX-License-Identifier: AGPL-3.0-or-later
from os import listdir
from os.path import isfile, join
import csv
import yaml
def parse_profiles():
'''
Parses the YAML FrontMatter (meta-data) from the `_profile/*.md` files.
'''
prof_path = "./_profiles"
prof_files = [f for f in listdir(prof_path) if isfile(join(prof_path, f))]
#prof_files = ["Timm-Wille.md"]
parsed_profiles = []
for path_f in prof_files:
#print('')
#print(path_f)
yaml_content = ["file: %s\n" % path_f]
with open(join(prof_path, path_f)) as f_prof:
in_yaml = False
for line in f_prof:
if line.strip() == "---":
if in_yaml:
break
in_yaml = True
elif in_yaml:
yaml_content.append(line)
parsed_yaml = yaml.safe_load(''.join(yaml_content))
if 'skills' in parsed_yaml:
for skl in parsed_yaml['skills']:
parsed_yaml['skill_' + str(skl['number'])] = skl['name']
del parsed_yaml['skills']
parsed_profiles.append(parsed_yaml)
return parsed_profiles
def write_csv(parsed_profiles, prop_names):
'''
Writes the supplied columns of the supplied data to `profiles.csv`.
'''
profs_csv = 'profiles.csv'
with open(profs_csv, 'w') as f_profs_csv:
profs_writer = csv.writer(f_profs_csv)
# header
profs_writer.writerow(prop_names)
for prfl in parsed_profiles:
row = []
for prop_name in prop_names:
val = ''
if prop_name in prfl:
val = prfl[prop_name]
row.append(val)
profs_writer.writerow(row)
def main():
'''
Does everything (see module doc-string).
'''
parsed_profiles = parse_profiles()
# gather all property names
# ... manual
prop_names = set(["title","country","region","hub","skill_1","skill_2","skill_3","skill_4"])
# ... all/automatic
#prop_names = set()
# for prfl in parsed_profiles:
# for key in prfl.keys():
# prop_names.add(key)
prop_names = list(prop_names)
prop_names.sort()
prop_names.insert(0, prop_names[7])
prop_names.pop(8)
prop_names.insert(2, prop_names[3])
prop_names.pop(4)
write_csv(parsed_profiles, prop_names)
main()