forked from open-mmlab/mmpretrain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
59 lines (58 loc) · 2.25 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
Collections:
- Name: MILAN
Metadata:
Training Data: ImageNet-1k
Training Techniques:
- AdamW
Training Resources: 16x A100-80G GPUs
Architecture:
- ViT
Paper:
Title: 'MILAN: Masked Image Pretraining on Language Assisted Representation'
URL: https://arxiv.org/pdf/2208.06049
README: configs/milan/README.md
Models:
- Name: milan_vit-base-p16_16xb256-amp-coslr-400e_in1k
Metadata:
Epochs: 400
Batch Size: 4096
FLOPs: 17581972224
Parameters: 111907584
Training Data: ImageNet-1k
In Collection: MILAN
Results: null
Weights: https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k_20221129-180922e8.pth
Config: configs/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k.py
Downstream:
- vit-base-p16_milan-pre_8xb128-coslr-100e_in1k
- vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k
- Name: vit-base-p16_milan-pre_8xb128-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 1024
FLOPs: 17581215744
Parameters: 86566120
Training Data: ImageNet-1k
In Collection: MILAN
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 85.3
Weights: https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k/vit-base-p16_ft-8xb128-coslr-100e_in1k-milan_20221129-74ac94fa.pth
Config: configs/milan/benchmarks/vit-base-p16_8xb128-coslr-100e_in1k.py
- Name: vit-base-p16_milan-pre_8xb2048-linear-coslr-100e_in1k
Metadata:
Epochs: 100
Batch Size: 16384
FLOPs: 17581972992
Parameters: 86567656
Training Data: ImageNet-1k
In Collection: MILAN
Results:
- Task: Image Classification
Dataset: ImageNet-1k
Metrics:
Top 1 Accuracy: 78.9
Weights: https://download.openmmlab.com/mmselfsup/1.x/milan/milan_vit-base-p16_16xb256-amp-coslr-400e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k/vit-base-p16_linear-8xb2048-coslr-100e_in1k_20221129-03f26f85.pth
Config: configs/milan/benchmarks/vit-base-p16_8xb2048-linear-coslr-100e_in1k.py