From c8256a7adb823c10ed6507b5138d168b6addbd9d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabian=20Fr=C3=B6hlich?= Date: Tue, 14 Jan 2020 18:17:32 -0500 Subject: [PATCH 01/23] Fixes pysb (#902) * dont assume strippedsyms to be reals as this will break derivatives * fix nested total derivatives, fixes #901 * adress review comments * add comment --- python/amici/ode_export.py | 26 ++++++++++++++++---------- 1 file changed, 16 insertions(+), 10 deletions(-) diff --git a/python/amici/ode_export.py b/python/amici/ode_export.py index 8e611962ad..e9ea048586 100644 --- a/python/amici/ode_export.py +++ b/python/amici/ode_export.py @@ -708,8 +708,8 @@ class ODEModel: computed for an equation, key defines the name and values should be arguments for ODEModel.multiplication() @type dict - _lock_total_derivative: set this to true when computing a total - derivative from a partial derivative call to enforce a partial + _lock_total_derivative: add chainvariables to this set when computing + tota derivative from a partial derivative call to enforce a partial derivative in the next recursion. prevents infinite recursion _simplify: If not None, this function will be used to simplify symbolic @@ -812,7 +812,7 @@ def __init__(self, simplify: Optional[Callable] = sp.powsimp): }, } - self._lock_total_derivative = False + self._lock_total_derivative = list() self._simplify = simplify def import_from_sbml_importer(self, si): @@ -1170,8 +1170,12 @@ def _generateSymbol(self, name): comp.get_id() for comp in getattr(self, component) ]) + # this gives us access to the "stripped" symbols that were + # generated by pysb (if compiling a pysb model). To ensure + # correctness of derivatives, the same assumptions as in pysb + # have to be used (currently no assumptions) self._strippedsyms[name] = sp.Matrix([ - sp.Symbol(comp.get_name(), real=True) + sp.Symbol(comp.get_name()) for comp in getattr(self, component) ]) if name == 'y': @@ -1328,9 +1332,10 @@ def _compute_equation(self, name): elif name in self._total_derivative_prototypes: args = self._total_derivative_prototypes[name] args['name'] = name - self._lock_total_derivative = True + self._lock_total_derivative += args['chainvars'] self._total_derivative(**args) - self._lock_total_derivative = False + for cv in args['chainvars']: + self._lock_total_derivative.remove(cv) elif name in self._multiplication_prototypes: args = self._multiplication_prototypes[name] @@ -1452,7 +1457,7 @@ def _compute_equation(self, name): if name in ['Jy', 'dydx']: # do not transpose if we compute the partial derivative as part of # a total derivative - if not self._lock_total_derivative: + if not len(self._lock_total_derivative): self._eqs[name] = self._eqs[name].transpose() if self._simplify: @@ -1500,7 +1505,7 @@ def _derivative(self, eq, var, name=None): } for cv in ['w', 'tcl']: if var_in_function_signature(eq, cv) \ - and not self._lock_total_derivative \ + and cv not in self._lock_total_derivative \ and var is not cv \ and min(self.sym(cv).shape) \ and ( @@ -1510,9 +1515,10 @@ def _derivative(self, eq, var, name=None): chainvars.append(cv) if len(chainvars): - self._lock_total_derivative = True + self._lock_total_derivative += chainvars self._total_derivative(name, eq, chainvars, var) - self._lock_total_derivative = False + for cv in chainvars: + self._lock_total_derivative.remove(cv) return # this is the basic requirement check From b859bd7f1801fdaac269c93e70be758c4bf4825c Mon Sep 17 00:00:00 2001 From: FFroehlich Date: Wed, 15 Jan 2020 15:38:17 -0500 Subject: [PATCH 02/23] update notebook --- .../ExampleSteadystate.ipynb | 1224 +++++++++-------- 1 file changed, 638 insertions(+), 586 deletions(-) diff --git a/python/examples/example_steadystate/ExampleSteadystate.ipynb b/python/examples/example_steadystate/ExampleSteadystate.ipynb index 82cd95a3b9..158a8b4a26 100644 --- a/python/examples/example_steadystate/ExampleSteadystate.ipynb +++ b/python/examples/example_steadystate/ExampleSteadystate.ipynb @@ -13,17 +13,7 @@ "cell_type": "code", "execution_count": 1, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# SBML model we want to import\n", "sbml_file = 'model_steadystate_scaled.xml'\n", @@ -201,53 +191,40 @@ "name": "stderr", "output_type": "stream", "text": [ - "2020-01-14 12:02:36.343 - amici.sbml_import - INFO - Finished processing SBML parameters (1.24E-03s)\n", - "2020-01-14 12:02:36.422 - amici.sbml_import - INFO - Finished processing SBML species (7.57E-02s)\n", - "2020-01-14 12:02:36.525 - amici.sbml_import - INFO - Finished processing SBML reactions (8.92E-02s)\n", - "2020-01-14 12:02:36.528 - amici.sbml_import - INFO - Finished processing SBML compartments (5.43E-04s)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "2020-01-14 12:02:37.140 - amici.sbml_import - INFO - Finished processing SBML rules (6.08E-01s)\n", - "2020-01-14 12:02:37.776 - amici.sbml_import - INFO - Finished processing SBML observables (4.67E-01s)\n", - "2020-01-14 12:02:38.077 - amici.ode_export - INFO - Finished writing J.cpp (2.54E-01s)\n", - "2020-01-14 12:02:38.157 - amici.ode_export - INFO - Finished writing JB.cpp (7.84E-02s)\n", - "2020-01-14 12:02:38.170 - amici.ode_export - INFO - Finished writing JDiag.cpp (1.11E-02s)\n", - "2020-01-14 12:02:38.285 - amici.ode_export - INFO - Finished writing JSparse.cpp (1.05E-01s)\n", - "2020-01-14 12:02:38.506 - amici.ode_export - INFO - Finished writing JSparseB.cpp (3.61E-02s)\n", - "2020-01-14 12:02:38.616 - amici.ode_export - INFO - Finished writing Jy.cpp (9.61E-02s)\n", - "2020-01-14 12:02:40.056 - amici.ode_export - INFO - Finished writing dJydsigmay.cpp (1.44E+00s)\n", - "2020-01-14 12:02:40.397 - amici.ode_export - INFO - Finished writing dJydy.cpp (3.35E-01s)\n", - "2020-01-14 12:02:40.439 - amici.ode_export - INFO - Finished writing dwdp.cpp (2.37E-02s)\n", - "2020-01-14 12:02:40.448 - amici.ode_export - INFO - Finished writing dwdx.cpp (4.64E-03s)\n", - "2020-01-14 12:02:40.515 - amici.ode_export - INFO - Finished writing dxdotdw.cpp (6.32E-02s)\n", - "2020-01-14 12:02:40.596 - amici.ode_export - INFO - Finished writing dxdotdp_explicit.cpp (7.23E-02s)\n", - "2020-01-14 12:02:40.732 - amici.ode_export - INFO - Finished writing dydx.cpp (1.10E-01s)\n", - "2020-01-14 12:02:40.804 - amici.ode_export - INFO - Finished writing dydp.cpp (6.94E-02s)\n", - "2020-01-14 12:02:40.823 - amici.ode_export - INFO - Finished writing dsigmaydp.cpp (1.57E-02s)\n", - "2020-01-14 12:02:40.845 - amici.ode_export - INFO - Finished writing sigmay.cpp (2.00E-02s)\n", - "2020-01-14 12:02:40.856 - amici.ode_export - INFO - Finished writing w.cpp (6.74E-03s)\n", - "2020-01-14 12:02:41.030 - amici.ode_export - INFO - Finished writing x0.cpp (5.22E-02s)\n", - "2020-01-14 12:02:41.077 - amici.ode_export - INFO - Finished writing x0_fixedParameters.cpp (2.48E-03s)\n", - "2020-01-14 12:02:41.085 - amici.ode_export - INFO - Finished writing sx0.cpp (6.79E-03s)\n", - "2020-01-14 12:02:41.097 - amici.ode_export - INFO - Finished writing sx0_fixedParameters.cpp (1.01E-02s)\n", - "2020-01-14 12:02:41.162 - amici.ode_export - INFO - Finished writing xdot.cpp (6.18E-02s)\n", - "2020-01-14 12:02:41.172 - amici.ode_export - INFO - Finished writing y.cpp (8.70E-03s)\n", - "2020-01-14 12:02:41.183 - amici.ode_export - INFO - Finished writing x_rdata.cpp (5.12E-03s)\n", - "2020-01-14 12:02:41.189 - amici.ode_export - INFO - Finished writing total_cl.cpp (4.86E-03s)\n", - "2020-01-14 12:02:41.194 - amici.ode_export - INFO - Finished writing x_solver.cpp (3.44E-03s)\n", - "2020-01-14 12:02:41.344 - amici.ode_export - INFO - Finished generating cpp code (3.53E+00s)\n", - "2020-01-14 12:03:41.052 - amici.ode_export - INFO - Finished compiling cpp code (5.97E+01s)\n" + "2020-01-15 15:30:05.015 - amici.sbml_import - INFO - Finished processing SBML parameters (7.95E-04s)\n", + "2020-01-15 15:30:05.018 - amici.sbml_import - INFO - Finished processing SBML species (2.23E-03s)\n", + "2020-01-15 15:30:05.033 - amici.sbml_import - INFO - Finished processing SBML reactions (1.43E-02s)\n", + "2020-01-15 15:30:05.034 - amici.sbml_import - INFO - Finished processing SBML compartments (2.22E-04s)\n", + "2020-01-15 15:30:05.116 - amici.sbml_import - INFO - Finished processing SBML rules (8.09E-02s)\n", + "2020-01-15 15:30:05.192 - amici.sbml_import - INFO - Finished processing SBML observables (6.24E-02s)\n", + "2020-01-15 15:30:05.249 - amici.ode_export - INFO - Finished writing J.cpp (3.75E-02s)\n", + "2020-01-15 15:30:05.261 - amici.ode_export - INFO - Finished writing JB.cpp (1.06E-02s)\n", + "2020-01-15 15:30:05.267 - amici.ode_export - INFO - Finished writing JDiag.cpp (5.27E-03s)\n", + "2020-01-15 15:30:05.276 - amici.ode_export - INFO - Finished writing JSparse.cpp (8.72E-03s)\n", + "2020-01-15 15:30:05.285 - amici.ode_export - INFO - Finished writing JSparseB.cpp (7.53E-03s)\n", + "2020-01-15 15:30:05.302 - amici.ode_export - INFO - Finished writing Jy.cpp (1.52E-02s)\n", + "2020-01-15 15:30:05.397 - amici.ode_export - INFO - Finished writing dJydsigmay.cpp (9.41E-02s)\n", + "2020-01-15 15:30:05.434 - amici.ode_export - INFO - Finished writing dJydy.cpp (3.66E-02s)\n", + "2020-01-15 15:30:05.443 - amici.ode_export - INFO - Finished writing dwdp.cpp (7.90E-03s)\n", + "2020-01-15 15:30:05.447 - amici.ode_export - INFO - Finished writing dwdx.cpp (2.91E-03s)\n", + "2020-01-15 15:30:05.454 - amici.ode_export - INFO - Finished writing dxdotdw.cpp (5.28E-03s)\n", + "2020-01-15 15:30:05.467 - amici.ode_export - INFO - Finished writing dxdotdp_explicit.cpp (1.17E-02s)\n", + "2020-01-15 15:30:05.484 - amici.ode_export - INFO - Finished writing dydx.cpp (1.27E-02s)\n", + "2020-01-15 15:30:05.498 - amici.ode_export - INFO - Finished writing dydp.cpp (1.28E-02s)\n", + "2020-01-15 15:30:05.504 - amici.ode_export - INFO - Finished writing dsigmaydp.cpp (5.58E-03s)\n", + "2020-01-15 15:30:05.508 - amici.ode_export - INFO - Finished writing sigmay.cpp (3.23E-03s)\n", + "2020-01-15 15:30:05.513 - amici.ode_export - INFO - Finished writing w.cpp (4.27E-03s)\n", + "2020-01-15 15:30:05.516 - amici.ode_export - INFO - Finished writing x0.cpp (1.98E-03s)\n", + "2020-01-15 15:30:05.517 - amici.ode_export - INFO - Finished writing x0_fixedParameters.cpp (7.01E-04s)\n", + "2020-01-15 15:30:05.520 - amici.ode_export - INFO - Finished writing sx0.cpp (2.19E-03s)\n", + "2020-01-15 15:30:05.524 - amici.ode_export - INFO - Finished writing sx0_fixedParameters.cpp (3.26E-03s)\n", + "2020-01-15 15:30:05.532 - amici.ode_export - INFO - Finished writing xdot.cpp (7.64E-03s)\n", + "2020-01-15 15:30:05.536 - amici.ode_export - INFO - Finished writing y.cpp (2.85E-03s)\n", + "2020-01-15 15:30:05.538 - amici.ode_export - INFO - Finished writing x_rdata.cpp (1.54E-03s)\n", + "2020-01-15 15:30:05.540 - amici.ode_export - INFO - Finished writing total_cl.cpp (1.33E-03s)\n", + "2020-01-15 15:30:05.544 - amici.ode_export - INFO - Finished writing x_solver.cpp (2.67E-03s)\n", + "2020-01-15 15:30:05.564 - amici.ode_export - INFO - Finished generating cpp code (3.66E-01s)\n", + "2020-01-15 15:30:17.005 - amici.ode_export - INFO - Finished compiling cpp code (1.14E+01s)\n" ] } ], @@ -673,20 +650,14 @@ " numrhsevals: [ 0 114 160 193 212 227 237 247 256 261 265 268 272 276 281 287 298 304\n", " 309 315 319 322 326 329 332 335 338 341 345 348 351 354 358 361 365 368\n", " 372 375 378 381 384 387 389 392 396 399 403 407 410 413 416 420 423 427\n", - " 431 435 438 442 445 448]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " 431 435 438 442 445 448]\n", "numerrtestfails: [0 1 1 3 3 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5\n", " 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5]\n", "numnonlinsolvconvfails: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " order: [0 5 5 5 5 5 4 4 5 5 5 5 5 5 5 4 5 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 5 5 5 5\n", " 5 5 5 4 4 4 5 5 5 5 5 4 4 5 5 5 4 4 3 3 3 3 4]\n", - " cpu_time: 1.7509999999999977\n", + " cpu_time: 1.2739999999999994\n", " numstepsB: None\n", "numrhsevalsB: None\n", "numerrtestfailsB: None\n", @@ -748,7 +719,9 @@ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" }, { @@ -758,7 +731,9 @@ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], @@ -786,7 +761,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Log-likelihood -93.244712\n" + "Log-likelihood -102.648113\n" ] } ], @@ -829,7 +804,9 @@ { "cell_type": "code", "execution_count": 17, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "name": "stdout", @@ -1145,13 +1122,7 @@ " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", " 1.00000000e+00 0.00000000e+00]\n", " [ 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n", - " 0.00000000e+00 0.00000000e+00]]]\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " 0.00000000e+00 0.00000000e+00]]]\n", " ssigmay: [[[0. 0. 0. 0. 0. 0.]\n", " [0. 0. 0. 0. 0. 0.]\n", " [0. 0. 0. 0. 0. 0.]\n", @@ -1256,13 +1227,7 @@ " ssigmaz: None\n", " sllh: [nan nan nan nan nan nan nan nan]\n", " s2llh: None\n", - " status: 0.0\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + " status: 0.0\n", " sres: [[0. 0. 0. 0. 0. 0. 0. 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0.]\n", " [0. 0. 0. 0. 0. 0. 0. 0.]\n", @@ -1370,9 +1335,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Log-likelihood: -965.036808\n", - "Gradient: [-1.56345665e+02 -1.47156924e+02 3.44690906e+02 3.33801311e+01\n", - " 5.62586648e+02 -3.89449157e+00 4.26602370e+00 1.67034469e+04]\n" + "Log-likelihood: -1540.615428\n", + "Gradient: [ 2.00932843e+02 1.83428692e+02 -4.64936420e+02 -5.31266369e+01\n", + " -7.09252643e+02 -7.16051763e-02 -5.63883590e-01 2.82926928e+04]\n" ] } ], @@ -1387,7 +1352,6 @@ "\n", "solver = model.getSolver()\n", "solver.setMaxSteps(10**4) # Set maximum number of steps for the solver\n", - "solver.setRelativeTolerance(1e-12) # Lower relative tolerances to ensure accurate results\n", "\n", "# simulate time-course to get artificial data\n", "rdata = amici.runAmiciSimulation(model, solver)\n", @@ -1427,31 +1391,31 @@ "name": "stdout", "output_type": "stream", "text": [ - "sllh: |error|_2: 0.027890\n", + "sllh: |error|_2: 42.592180\n", "\n", - "sllh: p[0]: |error|_2: 0.009140\n", - "sllh: p[1]: |error|_2: 0.013789\n", - "sllh: p[2]: |error|_2: 0.003467\n", - "sllh: p[3]: |error|_2: 0.018971\n", - "sllh: p[4]: |error|_2: 0.010865\n", - "sllh: p[5]: |error|_2: 0.000002\n", - "sllh: p[6]: |error|_2: 0.000010\n", - "sllh: p[7]: |error|_2: 0.003771\n", + "sllh: p[0]: |error|_2: 0.031244\n", + "sllh: p[1]: |error|_2: 0.016243\n", + "sllh: p[2]: |error|_2: 0.018955\n", + "sllh: p[3]: |error|_2: 0.010088\n", + "sllh: p[4]: |error|_2: 0.016982\n", + "sllh: p[5]: |error|_2: 0.000280\n", + "sllh: p[6]: |error|_2: 0.001050\n", + "sllh: p[7]: |error|_2: 42.592175\n", "\n", - "sy: p[0]: |error|_2: 0.000398\n", - "sy: p[1]: |error|_2: 0.001700\n", - "sy: p[2]: |error|_2: 0.000158\n", - "sy: p[3]: |error|_2: 0.006592\n", - "sy: p[4]: |error|_2: 0.001237\n", - "sy: p[5]: |error|_2: 0.000001\n", + "sy: p[0]: |error|_2: 0.002974\n", + "sy: p[1]: |error|_2: 0.002717\n", + "sy: p[2]: |error|_2: 0.001308\n", + "sy: p[3]: |error|_2: 0.000939\n", + "sy: p[4]: |error|_2: 0.006106\n", + "sy: p[5]: |error|_2: 0.000000\n", "sy: p[6]: |error|_2: 0.000000\n", "sy: p[7]: |error|_2: 0.000000\n", "\n", - "sx: p[0]: |error|_2: 0.000021\n", - "sx: p[1]: |error|_2: 0.000725\n", - "sx: p[2]: |error|_2: 0.000105\n", - "sx: p[3]: |error|_2: 0.002510\n", - "sx: p[4]: |error|_2: 0.000579\n", + "sx: p[0]: |error|_2: 0.001033\n", + "sx: p[1]: |error|_2: 0.001076\n", + "sx: p[2]: |error|_2: 0.000121\n", + "sx: p[3]: |error|_2: 0.000439\n", + "sx: p[4]: |error|_2: 0.001569\n", "sx: p[5]: |error|_2: 0.000000\n", "sx: p[6]: |error|_2: 0.000000\n", "sx: p[7]: |error|_2: 0.000000\n", @@ -1513,7 +1477,8 @@ " verbose and print(res)\n", " return res\n", "\n", - "err_norm = check_grad(func, grad, p_orig, 'llh')\n", + "epsilon = 1e-4\n", + "err_norm = check_grad(func, grad, p_orig, 'llh', epsilon=epsilon)\n", "print('sllh: |error|_2: %f' % err_norm)\n", "# assert err_norm < 1e-6\n", "print()\n", @@ -1521,31 +1486,119 @@ "for ip in range(model.np()):\n", " plist = [ip]\n", " p = p_orig.copy()\n", - " err_norm = check_grad(func, grad, p[plist], 'llh', p, [ip])\n", + " err_norm = check_grad(func, grad, p[plist], 'llh', p, [ip], epsilon=epsilon)\n", " print('sllh: p[%d]: |error|_2: %f' % (ip, err_norm))\n", "\n", "print()\n", "for ip in range(model.np()):\n", " plist = [ip]\n", " p = p_orig.copy()\n", - " err_norm = check_grad(func, grad, p[plist], 'y', p, [ip])\n", + " err_norm = check_grad(func, grad, p[plist], 'y', p, [ip], epsilon=epsilon)\n", " print('sy: p[%d]: |error|_2: %f' % (ip, err_norm))\n", "\n", "print()\n", "for ip in range(model.np()):\n", " plist = [ip]\n", " p = p_orig.copy()\n", - " err_norm = check_grad(func, grad, p[plist], 'x', p, [ip])\n", + " err_norm = check_grad(func, grad, p[plist], 'x', p, [ip], epsilon=epsilon)\n", " print('sx: p[%d]: |error|_2: %f' % (ip, err_norm))\n", "\n", "print()\n", "for ip in range(model.np()):\n", " plist = [ip]\n", " p = p_orig.copy()\n", - " err_norm = check_grad(func, grad, p[plist], 'sigmay', p, [ip])\n", + " err_norm = check_grad(func, grad, p[plist], 'sigmay', p, [ip], epsilon=epsilon)\n", " print('ssigmay: p[%d]: |error|_2: %f' % (ip, err_norm))\n" ] }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAALICAYAAACJhQBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd1hUxxoG8Pdsp4sIIiCgFLtir7EmGo16NfYeSzQaSxITY9cba6xJbLG3GBKDiS3FRI29Y4nBXlFEQUSQuuye9/4B7hUBXZBlUef3PPMAp8yZQ9E535n5RiIJQRAEQRAEQRAEQRCEwkxh7QYIgiAIgiAIgiAIgiA8jwhgCIIgCIIgCIIgCIJQ6IkAhiAIgiAIgiAIgiAIhZ4IYAiCIAiCIAiCIAiCUOiJAIYgCIIgCIIgCIIgCIWeytoNKEjFihWjr6+vtZshCIIgCK+c0NDQ+yRdrd2OgiT6FYIgCIJgGTn1K16rAIavry9OnDhh7WYIgiAIwitHkqSb1m5DQZEkqQ2ANv7+/qJfIQiCIAgWkFO/QkwhEQRBEARByAWS20gOdHJysnZTBEEQBOG1IgIYgiAIgiAIgiAIgiAUeiKAIQiCIAiCIAiCIAhCofda5cAQBEEQ8gdl2VRkgwGywQClQgGVUgnZYEBSYmLmY4xG2Op00Go0SNPrERsbm2k/ZRlFHB1hq9UiJTkZ96KjQRIgTR+Lu7jA1sYGiYmJiIyKAknTuQBQ0t0dtjY2iIuPx51799L3ZxwDAH5eXrDRahHz8CEioqKeuiEi0McHOq0W0Q8e4E50dPq1nzikQunSUKtUiIyOxt2YmCzfk8oBAVAqlYiIikJ0bCwgSZn2VylTBpIk4fa9e3gQF5e+MeMYhSShYkAAIEkIj4xE3KNH6bsV6e8ZVCoVypYuDUgSbkVGIiE5+f/7JQlajQalSpYEANy+dw/JKSmAJEHKKFqNBl4eHunXVCoBH5+8/eAFwcKio6Ph4uIChUK8YxMEQRCyEgEMQRBeG0a9HkoSSEtDUnw8kh49QlpyMgypqTCkpkLW6+Hn4QEYDLh24waio6Nh0Oth0OuRlpoKJYkmFSoAaWnYf/YsbkVFpe9PS4PRaIS9SoVu1aoBRiN+PHECN2NiYDQaYTQYYDAa4W5riw+qVAGMRsw7dgw3Hz6EUZZhMBphNBoR4OCAUeXKAUYjPj5xArcTE2EkIcsyjCRqOjpiop8fYDSi85kziNbrYZRlyCSMJN50dMQUDw/AaES9ixfxyGhMPx+AkURnOztMK1IENBpR8s4dMGOfDEAmMVinwxc6HRKMRnjEx4OP92WU8QoFJkgS7hiN8Mzm+zsbwKcALgMom83+bwEMAvAPgBrZ7N8AoDuAIwCaZLN/K4A2AHYDaJvN/r8BNAbwW0Y9TzsBoDqATRnteNoFAGUArMu4j6dFAPAAsAzA5Gz2xwNwADAfwNxs9j8OhkzJqONJdgASMj4fDSD4qf3uACIzPh8CYPtT+wMAXMr4vCeAvU/trwYg9PEXRYsC2QRgBPM9mcRTyD/nzp1DUFAQ3nzzTaxfvx4uLi7WbpIgCIJQyIgAhiAIL4SyDH1CAlLj45H66BEctVpoAcTdv4/r169Dn5SE1MREpCYlQZ+cjHp+fiiiVuPijRvYFxYGfUoKUlNToU9NRWpqKj6sUgXFVCrsvnoVGy9eRJrBAL3BkP7RaMTyihXhIklYGx6OFRERSDMaoZdlpMky0kic8PCAvcGAybGxWJCUBD2JNAB6pD9AGpE+d+5jZH2ItAWQmPH5eGR9iCwO4G7G57MBbHtqvx+AbqtXA0h/WN/z1P5qAD7YuRNQKrFFr8cZWYZKkqAEoJQk1NVqgfv3AaUSFyIjcdNggFKSoJAkKCUJfiTw4AGgUCDNYIAsy1AqFNBkHGNrZwe4uQEKBXyjopBKpp+rUEChUKB0iRJAQAAkpRItDh6EQpKgyNgnSRKqlCwJ+PtDLcvof/hw+r4njqnr6wv4+cEhLQ2Tjh6FlLHv8ccGfn6Ary9ck5Mx6/hx09t/hVIJSZJQLzAQ8PREyYQELDx9GlLGuY9LzXLlAHd3lImLw8p//03fnvEWVpIkBJUvDxQrhqoPHmD9hQum7Y+PK1ehAlCkCOpFR+OHK1cyjUCQJAmlK1UCHBzwVlQUNl2/nuV32SMoCLCxQds7d1A6PBwZF4CUMUrCOSgI0GrRJSICQRERWc7XVa8OqFR47+ZNNIiMzLSPsgzUqQMAGHT1KlpkjPB4TKlQADVrAgA+unwZHWJiTCNHAECrUgHVqwMARp07h56xsf8foQLAXqsFqlUDSIw7exbvx8WBQPoxAIra2gJBQenX1GiytF3IHZLbAGyrUaPG+9Zuy6tkyZIlAIBdu3ahWrVq2LhxI2rXrm3lVgmCIAiFiUTy+Ue9ImrUqEGx3JnwqpINBqTExkKRmgqdLCP14UOcCwtD0sOHSI6PR1J8PJITElDVwwOBRYogKjoaqw8eREpKClJSUpCckoKU1FT09vVFPUdHhEVFYeQ//yDFYEgvRiNSZBnfFCmC5pKEPx89QtukJKQ+1Y6/ALwJYCOALtm08zCAOgBWAeifzf6zSiUqarVYSmJiSgo0CgXUkgS1JEGjUODPgACUsLPDugcPsCY6GmqlEhqlEmqVCmqlEivr1YO9nR1+uX0bu+/ehUathlqlgkajgVqtxthmzaDUaLD7+nWci46GSq2GWq2GSq2GRqtFt4YNAZUKJ8PDcTc+HmqNBiqNBiqtFja2tqhRqRKgVuNWdDSS0tKg1umgzNiv0engWrw4oFIhKTUVVCigytiv1GhMD+OC8CqSJCmUZHaDa15Zol+RfxITE+Hh4YE2bdrgo48+QqdOnRAREYE5c+Zg2LBhpkCiIAiC8HrIqV8hRmAIQgExpKYiMSoKSEyEk1IJJCTg4OHDePTgARJiY5EYF4eE+HiUdXJCM3d3GBISMOzPP5Gcmoqk1FQk6/VISktDpyJF8IGDAx4mJKDSzZtIkmUkkUjJuM40AGORPlKgWjbt+BpAIIBopA9VBwANAB0AnSShUVQU6rm4gAAepqRAp1KhiE4HnVoNnVoNp0qVgJIl4ZucjI8uXoRWq/1/0ekQWL06UKIE6iUk4OfwcGhsbKC1tYXWxgYaW1tUKFcOKFIEnQ0GNE9NhcbWFloHB2gcHKCxs4My4+3wIGQ/zP+x3hklJ+0zSk6aZpScZPe9e1LJ5+y3fc5+QRAE4f9++OEHxMfH4+bNmzhz5gxCQ0Px3nvvYcSIEThw4ABWrFgBR0dHazdTEARBsDIRwBCEnJBIuHsXD2/fRnxkJOKjohAXFQWbtDQ09PIC4uLw9Z9/4mZ0NBKTkpCQnIyE1FRU0enwRfHiQEICal6+jBtpaUh4IsDQDcD3GZ+/jf/Pe39sAIBmkgSljQ1+Tk6GjUIBG6UStkolbNVqUKsFSpWCjUaD5kolbHU62Oh0sLW1ha2tLd4oWxaoUAHFVSpsvnABNo6OsHVygo2jI2wcHeHh4wO4uaGcRoNkhQIaBwcoVFn/KaiI9FwEOQkEMPMZ+70ySk7sM4ogCIIgLF26FO7u7jhw4AAOHDiAH374AUuXLkWDBg0wduxYnD59GiEhIahcubK1myoIgiBYkQhgCK8uWcbDGzdw9+JF3L9+Hfdv3ULc/ftAcjL6lC0LxMdj/v79OHrnDuKTkxGXkoJ4vR6ekoQ/tFrg0SO8Kcs4+lS1dZA+DQIAVgO4CsBeoYCdUgl7pRK+zs5AkSKApycakagpSbC3tYW9vT3s7OxQoVQpoHZtwM4O269ehdbJCXbOzrB3dYVdsWJwdHcHnJ0hSRLuPeP2tABWPmO/DsB/nrFfkXGMIAiCIFhTaGgojh8/Djc3N9SpUwe9e/fGqFGjULlyZcycORM7d+5E9+7dUbt2bSxatAj9+vWzdpMFQRAEKxEBDOGlQFlGwt27uH/lCu5fv44axYpBionBHwcOYN+//+J+bCzux8XhfmIikvV6HLe3Bx48wGBZxg9P1eUGoA8A2NjgHxInjUY4qtVw0mrhZm8P/6JFgWbNAEdHjLxxA7EkHF1c4OTiAkc3N7iVLAlUrgw4OuKUvT0kpTLHds95zn01erFviyAIgpBPJEnyBvANgAcALpF81iAzIR8tXboUWq0WUVFRmDdvHnr06IFWrVph4MCBGDZsGN544w2EhIRgwoQJ6N+/Pw4cOICFCxfC1lZM1hMEQXjdiCSegtXJBgMiQkNx5eBBXD55ElcuXcJkb2/YxsbimwsX8OXdu7gvy9A/cU4C0pcdHIn03mYxhQLF1GoUs7GBq709fmjdGgpXV+yJjcUdWUYxLy8U8/ZGEU9POHl6wsXHR2TiFwRByEfWTOIpSdIqAK0BRJGs+MT2t5Ge+kcJYMWzghKSJL0DwJnkd5Ik/UgyuzzEmYh+xYuLi4uDp6cnXFxckJKSgvDwcGi1WgDpq+isWbMGn3zyCVJSUjB58mQ8evQI06ZNQ6VKlRASEoLAwEAr34EgCIJgCSKJp2BVssGAiBMncPngQVw5dQrtHB3hducO1p04gUEREab8EEB6QskBUVEI9PSEj6cn3razQ7GiReFarBiKubujmIcHVG++CXh4YIaTE+a4uOS4ukPjgrg5QRAEwdrWAFgIYN3jDZIkKQEsAvAWgNsAjkuStBXpwYwZT53fD+lpf0IkSeoHYH0BtFkAsGHDBiQmJiIpKQnjxo0zBS+A9GWS+/btixYtWmDIkCEYPXo0atasiSVLlmD8+PGoUaMGVq5ciU6dOlnxDgRBEISCJEZgCPlGNhhw+/hxXD5wAGWNRnjev4/Dx45hwLFjuJqammm5zd9UKrQMDMSJYsUQnJiIgMBA+AcFIaB+fXjVrGlaiUIQBEF4OVh7GVVJknwBbH88AkOSpLoAJpNskfH1GAAg+XTw4vH5nwI4RnKfJEkhJDvmcNxAAAMBwNvbu/rNmzfz+1ZeGyRRpUoVREVF4f79+7hx4wa8vLJP/0wSGzduxNChQxEXF4dhw4bhwIEDOHbsGIYNG4Y5c+ZAI/oOgiAIrwwxAkPIXyRw8iRur1mDD0NCcCU2NlOQYhmA97VaFC1ZEgHOzmjp5ZUepKha1RSkgEqFGgCs1tsVBEEQXmWeAG498fVtALWfcfwfACZLktQdwI2cDiK5TJKkSABtNBpN9fxo6Ovq8OHDOHv2LOzt7dGuXbscgxdA+miMLl26oGnTphg+fDjmzZuHSpUqoVu3bliwYAGOHj2KjRs3wsfHpwDvQBAEQShoIoAh5Mq5rVsRPHs2Sl26hH5RUbBTKnFVpUKAszNaeXkhoEwZ+FetiipvvQVUrIgyCgU2W7vRgiAIgvAcJP8FkO2oi2yO3QZgW40aNd63bKtebd9++y10Oh0SEhIwdOhQs85xdXVFcHAwunbtisGDB2Pjxo1o3749du7ciWrVquG7775Dy5YtLdxyQRAEwVpEAEN4rqu7d+PHmTPxw/79OJuSAgWAD7y80G/FCji3b49/ixa1dhMFQRAE4WkRAEo+8bVXxrYXJklSGwBt/P3986O611JMTAx+/PFHODk5wc/PD40a5W5drv/85z9o2LAhPv30U6xatQqlS5eGQqFAq1atMHbsWPz3v/+FSiW6uYIgCK+a7DMfCq+9+//8A8ybB9SqhWHNmmHcX3/BUa3Ggk6dEPHPP1h06xbQvz8ggheCIAhC4XQcQIAkSaUkSdIA6Apgq5XbJGRYu3Yt9Ho9oqOj8eGHH0KSpFzX4ezsjJUrV2LHjh0wGAy4evUqKlSogOnTp+Ott97C3bt3LdByQRAEwZpEAEMwiQoLw+KuXdHQyQnuVaogYuRIQJYxa+RI3Dx0CAfi4zF040a4V6pk7aYKgiAIgokkScEADgMoI0nSbUmS+pM0ABgKYAeA8wA2kgzLj+uR3EZyoJOTU35U99ohiW+//Raurq5wcHBAz549TfuuXLkCvV7/jLOzat68Of79918MGTIEYWFhcHV1xaFDh1C1alXs3bs3v5svCIIgWJEYW/e6e/gQYQsW4OOvvsKuBw8gAyiv1WJys2bQTJsG1K6NitZuoyAIgiA8A8luOWz/DcBv+X09MYXkxfz999+4fPkyVCoVBg8eDAcHBwDA6dOnUa1aNQQEBGD27Nlo06aN2SMzHBwcsHDhQnTu3Bn9+/dHdHQ0kpOT0aRJE0ybNg2ff/45FDksuS4IwosxGo2m5ZATExPN+vxZ+2VZxoQJE/Duu+9a+9aEQkgso/oaSrh7F1unToX7yZNoeuIE7qSlobFajc61aqHryJGo2L69tZsoCIIgvGSsvYyqNYh+Rd507twZ27dvR3JyMs6fP4+yZcsCAD744AOsW7cOPj4+uHDhApo2bYq5c+ciKCgoV/UnJSVh0qRJmDdvHrRaLZKTk/HOO+9g7dq1cHFxscQtCcJrafTo0fjqq6+Qmpr6/IOfIEkS7OzsYGtrm+nj489v3LiBc+fOYfbs2fjkk0/yNMVMePnl1K8QAYzXhD4hAb9OmYIfgoOx7dYtJAPobmODDYMHA127gtWrQxJvJgRBEIQ8EgEMwRx3796Fl5cXbGxsUKdOHfz1118AgEePHsHDwwMdO3bEsmXLsGzZMkyaNAkPHjxA3759MXXqVJQoUSJX1zp27Bj69euHsLAwKBQKuLu748cff0SDBg0scWuC8Fr59ddf0bp1a7Rt2xY1atTIEoTILjDx+KNOp3tmUCI5ORm9e/dGSEgIBg8ejG+++UYk5X0N5divIPnalOrVq/O1dPcuWzo5EQBdJYlDKlbk/oULaUxLs3bLBEEQhFcEgBMsBP/XF0QB0AbAMn9///z69r02pk2bRgAEwM2bN5u2L126lAB4+PBh07YHDx5w5MiRVKvVtLOz45QpU5iUlJSr66WkpHD8+PFUKBRUqVRUKBScNm0ajUZjvt2TILxuoqOjWbx4cVaqVIkpKSkWuYbRaOSoUaMIgK1atWJ8fLxFriMUXjn1K8QIjFfduXPAO+9g9507uNOvH7rOnw+VTmftVgmCIAivGDECQ3geo9EIPz8/xMfHw8HBAdeuXYNSqXz8kglGoxGnT5/O8mb26tWrGDVqFH7++WeULFkSM2bMQLdu3XKV0+LQoUPo3r07wsPDQRLNmjXDhg0bULx48fy+TUF4pZFE586dsWXLFhw/fhxVqlSx6PWWLl2KDz/8EJUqVcL27dvh6elp0esJhUdO/QoxZ+AVtmvWLHxdvTqQnIymBw6g55IlInghCIIgCIJV7NixAzdv3kRsbCwGDx4MpVIJADhx4gROnTqFQYMGZTus3M/PD5s2bcLevXvh6uqKnj17om7dujh48KDZ165Xrx7++ecf9OrVCwCwe/duVKhQAbt27cqfmxOE10RwcDBCQkLwxRdfWDx4AQCDBg3C9u3bceXKFdSuXRtnzpyx+DWFwq1QjsCQJOltAF8DUAJYQXLmU/sbAvgKQGUAXUmGmFPv6/SmZFXfvhi0Zg3KabU4/s8/0AYGWrtJgiAIwivsdRqB8cQqJO9fvnzZ2s15abRt2xY7d+6ELMu4desWXF1dAQADBgxAcHAw7ty5g+ctTSvLMr777juMGTMGd+7cQefOnTFz5kyUKlXK7Hb8+OOPeP/995GYmAhZljF+/HhMmjRJzLF/RcXExGDAgAH4888/4ejoCEdHRzg5OZk+Pvn58/bZ29u/1gklb9++jUqVKqF8+fLYt2+fKQhZEM6cOYN33nkHcXFx2LhxI1q2bFlg1xas46VJ4ilJkhLAJQBvAbgN4DiAbiTPPXGMLwBHAJ8C2CoCGP8nGwwY37AhZhw+jOYuLth48iScvL2t3SxBEAThFfc6BTAeex36FfklPDwcvr6+UKvV6Nq1K9auXQsAiIuLg4eHB7p164YVK1aYXV9iYiLmzJmDWbNmwWAw4KOPPsLYsWOfGwB5sj3du3c3jeKoW7cufvrpJzE8/RVz6NAhdOnSBVFRUXjvvfcgyzLi4+MRFxeX5eOjR4+eW59CoYCDg4MpoOHi4oI+ffqgd+/eBfowbw2yLKNFixY4fPgwzpw5Az8/vwJvQ0REBFq3bo2zZ89i0aJFGDRoUIG3QSg4OfUrCmOouRaAKySvAYAkST8A+A8AUwCD5I2MfbI1GlhYMSkJPcuWRfCtWxhUrhwWnDgBta2ttZslCIIgCMJrbsWKFSAJvV6PoUOHmrZv2LABSUlJuX4QsbOzw6RJkzBgwACMGzcOs2bNwurVq/HFF19gwIABzx1N4e3tjb1792L27NkYP348jhw5gvLlyyM4OBitWrXK0z2+Lh48eIDz58/j/PnzcHV1Rdu2bQvdqARZljF37lyMGTMG3t7e2LNnD7y9veHu7p5joEGWZTx69CjHAEd2265cuYJ+/fph3rx5mDlzJlq1alXovhf5ZcmSJdi5cye+/fZbqwQvAMDT0xP79u1D165d8cEHH+DatWuYMWNGrvLhCC+/wjgCoyOAt0kOyPi6F4DaJIdmc+waANvFCAwAUVFA27ZYdPQoklu3xsgtW8SyqIIgCEKBeZ1GYIgpJLmTlpYGb29vPHr0CBUqVMDRo0cBpCcDDAoKglKpRGho6As9+IWGhuKTTz7Bvn37UKFCBcydOxctWrQw69wTJ06gY8eOuHnzJgDgk08+wcyZM6FWq/PcnpcdSURERJgCFU+WqKioTMe+/fbbWLp0KbwLyYjfmJgYvPfee9i+fTs6dOiAHj16YOTIkbh+/TpUKhVKliwJX19f+Pj4wNfXN9PnXl5euZpKRBIhISEYO3Ysrly5gkaNGmHWrFmoVauWBe+w4F26dAlBQUFo1KgRfvvtN6sHaQwGA4YPH44lS5agY8eOWLduHWxsbKzaJiH/vUxTSPI1gCFJ0kAAAwHA29u7+uP/nF4l57dtw63330fz+HhgwwagfXtrN0kQBEF4zZgTwJAkqeiz9pN8kL+tsqxX+sVIPvrll1/w7rvvAgDWrl2L3r17AwCOHDmCunXr4ttvv82XoeAksXnzZnz22We4evUqWrZsiTlz5qB8+fLPPTcxMRHDhg3D6tWrAQBVqlTB5s2b4evr+8LtKswMBgOuXbuWJUhx4cKFTFMq7O3t4ebmBnt7eyiVSiQnJyM2NhYqlQoxMTFQqVSYOXMmBg8ebNW34UeOHEHnzp1x9+5d/Pe//8X58+exfv16BAYGYsiQIbh37x5u3LiBmzdv4saNG7hz506m8xUKBby8vHIMcJQsWRIajSbLddPS0rB8+XJMnjwZ0dHR6NSpE6ZPnw5/f/+CunWLMRgMaNCgAS5fvoyzZ8/Cw8PD2k0CkP73Pm/ePHz22WeoXbs2tm7dasqrI2SVlpaG2NhYuLm5WbspZnuZAhh1AUwm2SLj6zEAQHJGNseuwWs+AmPX7NnoMGoUXJVKnNu/H+q6da3dJEEQBOE1ZGYA4zoAApAAeAOIzfi8CIBwkuZnYiwEXsV+hSW0aNEC+/fvh52dHW7dugVdxopoffv2RUhICO7cuQMHB4d8u15qaioWLlyIKVOmICEhAYMGDcLkyZPNerjZvHkzevfujUePHsHGxgYbNmxA+1fgxVBycjIuXryYJVBx+fJl6PV603H29vawtbWFJElISkrKkhfi8QgGHx8f+Pj44NChQ7h8+TJcXFwQExODBg0aYOXKlQgs4OTxjx9mR48eDS8vL7z33ntYsGAB4uLiMHr0aIwbN870e/ek1NRU3Lp1K1NQ48nPIyIiIMv/n7EuSRI8PDxMQY3SpUujT58+pkDFo0ePMHfuXMyZMwepqakYNGgQJkyY8FIv1zt16lRMmDABP/74Izp37mzt5mSxadMm9OzZEx4eHvjtt99QpkwZazfJKkgiJiYG165dy7bcunULsixj4MCBWLRo0UuRtDjHfgXJQlWQnpfjGoBSADQAzgCokMOxawB0NLfu6tWr81Wyok8fqgBW1Gp548ABazdHEARBeI0BOEHz/69fDqDVE1+3BLDU3PMLS3nV+hWWcOXKFQKgJEkcM2aMaXtsbCxtbGw4cOBAi107OjqaQ4cOpVKppKurK/fv32/WeREREaxfvz6RHmzj+++/z5SUFIu109KOHz9OOzs70/0AoFarpVqtzrQNADUaDf39/fnmm29ywIABnDJlCtevX899+/YxPDycBoMhU92pqamcP38+nZycKEkSNRoNtVotZ86cybS0tAK5v5iYGLZp04YA2Lx5czZp0oQAWLduXZ49e/aF6tbr9bx27Rp3797N1atXc9KkSezTpw8bN25MX19fKpVKqlQqDhkyhHfv3jWdFxkZycGDB1OpVNLe3p6TJ0/mo0ePXvRWC1xoaChVKhW7detWYNeMiYnh999/z4cPH5p9zpEjR+jq6kpnZ2fu2bPHgq2zrpSUFF68eJG///47Fy1axJEjR7J9+/asUqUKHRwcsvw9Fy9enHXr1mWPHj04YcIEDh48mADYpk0bJiYmWvt2niunfoXV//PPtlFAK6SvRHIVwLiMbV8AaJvxeU2kr1CSCCAGQJg59b4qHQ3ZYOCYunXT/6F2ceHDmzet3SRBEAThNZfLAMZZc7YV9vKq9CssadSoUZQkiQqFgjef6K988803BMDQ0FCLt+Hs2bMMDAykWq3msmXLzDrHaDRy1qxZVCqVBEB/f39evnzZwi3Nf/fu3cv0YKPVahkYGMi3336bgwYN4owZM/j999/z0KFDjIiIoNFozNN17t+/z+HDh5se6AGwatWqPH36dD7fUWZHjhyhj48PVSoV27ZtSxsbGzo4OHDhwoV5vpfceDJQYWdnx0mTJjE+Pt60/+LFi+zQoYPpYXLx4sXU6/UWb1d+SE5OZvny5enh4cGYmBiLXkuWZe7bt489e/akVqslAFauXJkRERFm13H16lWWLVuWarWa69evt2BrLS8qKoobNmzglClT2LdvXzZq1IglS5akJEmZAhQ6nY7lypVjy5YtOWjQIE6dOpWrV6/m77//ztDQUJ45c4bHjh3j/v37uXPnTu7YsYNffPEFJUlinTp1GB0dbe1bfaaXKoBhqfJKdDSSkih37MgBAAeWK0f9SxA9EwRBEF59udf2ZcAAACAASURBVAxg7AAwHoBvRhkHYIe55xeW8kr0KywoJSWFLi4u1Gg0bNeunWm7LMusUKECa9SoUWBtefDgAVu0aEEAHDp0qNkPkadPn6a3tzcBUK1Wc+3atRZuaf6Ji4ujq6srAbBXr168d+8eZVl+4XrT0tL422+/sUePHuzSpQvPnTtn2nfhwgXTaAiFQkGlUslx48bl+wgWWZY5f/58qtVqlihRgmXKlCEAtm3blrdu3crXa5nj4sWL7NSpEwHQ1dWVCxYsYGpqqmn/4cOH+cYbbxAAAwMDGRISki8/C0saOXIkAfCPP/6w2DXu37/PefPmsWzZsgRAR0dHDhkyhKtWraK9vT29vb0z/X49z4MHD9i4cWMC4BdffFHov8c5qVGjhilIoVaraWtrS0dHRxYpUoTOzs50cnKinZ0dNRpNllEX5hQnJycqFAq6uLhw9erVvH//vrVvOVs59SsKXQ4MS3rZ56pGhYXhYY8eCPznHxi//BKKkSPFSiOCIAhCoZCbVUgyknlOAtAQ6R2qfQC+4EuSxFOsQmKe4OBgdO/eHQDw119/4c033wQAHDx4EA0aNMDy5csxYMCAAmuPwWDA559/jnnz5qFp06bYuHEjXFxcnntecnIyhgwZgjVr1gDAS7HqwZ07d1CjRg1ERkaiW7du+P7771+oPpI4deoU1q9fj+DgYNy7dw/Ozs4wGo1ISkrChx9+iEmTJsHZ2RkAsGvXLgwfPhznzp0DAPj6+uL7779H3XzI1RYbG4u+fftiy5Yt8PPzw/Xr1+Hm5oaFCxfi3XffteoKGceOHcOoUaOwd+9e+Pn5Ydq0aejUqRMUCgVI4tdff8Xo0aMRFhaGOnXqYNasWXjjjTes1t6c7N27F02aNMEHH3yAxYsX52vdJLFv3z4sW7YMISEh0Ov1qFOnDgYOHIjOnTvDzs4OAHDy5Em0atUKer0e27ZtQ/369c2qX6/XY8CAAVi/fj369OmDZcuWZZt4tbD66aef0LlzZzg4OCAoKAi2trbQarXQaDTQarWm8qyvc9oHAP/++y+OHTuGPXv2IDw83HTd0qVLo1atWqhZsyZq1aqFqlWrmn4W1vLS5MCwZHmZ35SEbdlCX5WKFSSJhp9+snZzBEEQBCETmDECA8D6jI8jnnfsy1Be5n5FQWjYsCG1Wi3LlCmT6U1or1696ODgYLWcAGvWrKFGo2Hp0qX577//mn3eli1baGtrSwAsUaIEw8LCLNjKvDt79qxp5EWTJk1e6C10eHg4Z8yYwfLly5veBrdv354///wzU1JSeO/ePQ4cOJCSJNHFxYWLFi0y5b4wGAxcvnw5ixQpYnrz269fPyYkJOS5PUePHqWvry8VCgWLFi1KABw4cCBjY2PzXGd+k2WZv/32GytVqkQArF69Onfu3GnabzAYuHLlSnp6epryERSm36W4uDj6+PjQ39//hX5WT4uOjuacOXNMo2WcnJw4dOhQnjlzJsdzrl69yoCAAOp0Ov7yyy9mX0uWZU6ePNn0N1CYfj+e5ejRo6ZRFRs3brT49Y4cOUI3NzdqNBrWr1+fJUuWNP2tKhQKVq5cmQMGDODSpUt56tSpAp/+lFO/wur/+RdkeVk7GjtnzaITwOIKBY+tWWPt5giCIAhCFmYGMM4B8EB6gm5nAEWfLM87v7CVl7VfURDCwsJMHeEFCxaYtsfExFCr1XLw4MFWbF36kH53d3fa29tz69atZp9379491qpVy9TBnz17doHkWjDXzp07aW9vT0mS8vwAGhcXx1WrVrFJkyamOff16tXjkiVLcsyFcPr0adPQ/YoVK2Z6YI+Pj+fIkSOpUCgIgEWKFMnV95xMfyD96quvqFKpTEGkMmXKcO/evc89NyUlhRs2bODEiRO5fPly7tixg+fPn7d4EkODwcB169aZpiC1aNGCp06dMu1PTEzkjBkz6OjoSIVCwX79+lll+svT+vXrR4VCwUOHDr1wXbIsc/fu3ezatavpwbxevXpcs2aN2d//6Oho1q5dmwqFgkuWLMnV9deuXUu1Ws1y5crx+vXrebiDgnP16lW6urrS0dGRGo2mwAK8t2/fZuXKlalSqbh+/XpGRkZy69atHD9+PFu0aEFnZ+dMOTfq1avHESNGcMOGDbx06ZJFp+mIAMZL2tFY+d57VAGsIFYaEQRBEAoxMwMYwwGcB5CK9BXHrj9Rrj3v/MJWXsZ+RUEZPnw4FQoF7ezsGBcXZ9o+f/58ArB4ckdz3Lp1i9WrV6ckSZw+fbrZHXFZljl9+nTTw32jRo149epVC7f2+dasWUOlUkkbGxva29vz4sWLZp+r1+u5fft2dunShTqdjgDo5+fHyZMn88qVK2bVIcsyQ0JC6OvrSwBs165dpnNv3LjBpk2bmh6G3njjDbOSQ8bGxrJdu3amESBqtZoTJ058bl6N27dvc8KECXRzc8sxF0CxYsVYrVo1tmvXjiNGjODcuXP5008/8dixY7x7926+PJwlJydz7ty5phEjPXr04LVr10z779+/z48//pgajYY6nY6jR4+22oiBLVu2EADHjh37QvVERUVx1qxZDAgIMAWthg8fnudVYRISEvjOO+8QAMePH5+rn8vff//NIkWK0M3NjUePHs3T9S0tJiaGZcqUobOzMwMCAtisWbMCvf7Dhw9Nq/d8+eWXmb6/sizzypUr/P777/nxxx+zfv36tLGxMf0NOTs7s3379hZpV74HMAD0f+prJYBJea2vIMpL1dEwGmkYNYoNxEojgiAIwkvAnADG4wJgibnHFubyUvUrClBiYiIdHByoUCg4ZMgQ03ZZllm2bFnWrl3biq3LLCkpid26dSMAdu3aNVdv5VevXp0pyd4333xjldEYsixz0qRJBEAvLy8C4KZNm8w67/jx4xw+fLhpyknRokU5ZMgQHj58OM8P78nJyZw+fbopyeCoUaMyBbH+/vtvenh4EABVKhWnTJmSY13Hjx+nl5dXppEgz5pu8Xg1i86dO1OlUlGSJLZp04Y7duxgamoqb968yX379vG7777j9OnTOWjQILZs2ZIVKlSgvb19lgCHVqulv78/mzVrxr59+3LSpElctWoVd+7cyUuXLjE5Odns70tsbCzHjBlDGxsbqtVqjhgxItMqENevX2ePHj1MiUDXr19foEkoo6Ki6ObmxipVqmRKQPosy5YtY48ePXjo0CEajUbu2rWLXbp0MS3R26BBA65bt45JSUkv3L60tDT279/fNBUpN9MZzp07x1KlStHW1pZ//fXXC7clP6WkpLBhw4bUaDT86aefCIBz5syxSju6du1KABw2bFiWJZOflJaWxtOnT3P58uUcOHAgBwwYYJE2WSKA8T2A3wCUAFABwHEAc/JaX0GUl6WjkRQTw9j//IcEGPvee2KlEUEQBKHQy00AozAWAOUBbASwBEBHc855WfoVBW3VqlWmB8AnHzb37t1LAFy1apUVW5eVLMucOXMmJUlitWrVGB4ebva5I0aMIABTvoOGDRsW6HKrqamp7N27t2lEAwB++umnzzznxo0bnDZtmmnlB41Gww4dOnDz5s1mP7iaIyIign369CEylhBduXKlKcAjyzKnTZtmetD19PTk4cOHTec+XmVEoVBQkiTa2tpy8eLFOQaIEhMTuWzZMlauXNn0VvjTTz/N1cgYWZb54MEDnj59mlu2bOGCBQv42WefsXPnzqxTpw49PDyyLGOpVqv5/fff5+r7cvv2bQ4YMIAKhYIODg6cOnVqpqk+oaGhrF27NgGwWbNmuRpJk1eyLLN9+/bUaDRmj5LYt28fFQqFaWrQ4+VPixQpwo8++sgieT1kWebEiRMJgK1atcrVFKnIyEhWqlSJGo2Gmzdvzve25YXRaDQFUIODg7l06dIs/24WdHs++eQTAmDHjh1zFaCzBItMIQHQBcB9ADcB1H+RugqivAwdjXv//ss69vZsClCePZt8SZf/EQRBEF4v1gxgAFgFIArAv09tfxvARQBXAIx+Th0jAbyR8flWc677MvQrrKFmzZpUq9Vs0qRJpu3du3enk5OTxXMP5NW2bdvo4ODA4sWL8+DBg2ado9fr2aRJE2q1Wk6cOJFOTk60sbHh/Pnzn/kGMz/ExsaapmR8+OGHtLW1ZcOGDU1JNJ/08OFDrlixgo0aNTI9fDdo0IBLly7lgwcPLNrOo0ePsm7dugTAatWqcf/+/Zna9eabb5ra9Pbbb/PatWum4eyPH1Rv376dbd1Xr17lyJEjTYlCK1euzOXLl1vsdyw1NZVXr17l33//zbVr17JOnTq0tbXN1VKfj507d840Ncbd3Z3ffvut6WdnNBq5ZMkSOjk5UaPRcPLkyfm+FO2T1q5dSwCcPXu2WcdHRUWxePHidHR0pEqlMuVHAMCSJUtyzpw5fPjwocXa++2331KhULBmzZqMiooy+7yYmBjWrl2bSqWS69evt1j7zDVmzBgC4IwZM0iS7dq1o7e3t9WXf507d64pKGrpfx+exRIjMAIAHAKwFOnLn30LwDav9RVEKewdjccrjdgA3PTZZ9ZujiAIgiCYzcoBjIYAqj0ZwMiY2noVQGkAGqQnDi0PoBKA7U8Vt4yyCMBsAAfNuW5h71dYQ2hoqOnB88lpDNHR0dRoNBw6dKgVW/d8YWFh9PPzo0ajMXukSFRUFH18fOjl5cVTp06xdevWpukOFy5csEg7b9y4wfLly1OtVnPZsmUMDAyku7s779y5k+XYvXv30sHBgQAYEBDAL774IlMOhoIgyzI3bNhgmuLSpUsX3nxievSePXuy5KpwdHTMdiqM0Wjkjh072Lp1a0qSRKVSyc6dO3Pfvn0F/uAXERFBV1dXVqhQIc9Bk4MHD7J+/foEwMDAQG7atMl0H5GRkaZh/YGBgdy9e3d+Np8kefPmTTo6OvKNN94wK+j28OFDli5d2jQFaNiwYTx//jwNBgO3bNliCpLZ29tzxIgRFvtd27x5M3U6Hf39/XM10iY+Pt4UIFu0aJFF2maOZcuWERmr6MiyzNTUVNrb23PQoEFWa9OTgoODqdFoWL58+VyNSstPlghgXADQLONzKePNRVhe6yuIUpg7Gn/OmEFHgO5ipRFBEAThJZTbAAaA4gBaZxS33JybQ32+TwUw6gLY8cTXYwCMMaMeJYAt5lyzMPcrrGXgwIFUKBT08PDINBJgzpw5BJDnJH4FKSYmhs2aNSMAfvzxx9mOaHjaqVOnaGNjwwYNGjAlJYXr16+ns7MzdTodZ8+ena+jMU6cOEF3d3c6OTlx165d7NChA5VKZbYrchw6dIj29vYsW7Ysjxw5YvU3uwkJCZw4cSJ1Oh11Oh0nTpxomgZgMBj46aefUqPRsF27dlne4D98+JBff/01AwMDCYBubm6cMGFCjqMzCsqOHTsoSRL79euX5zpkWeaWLVtMy9XWqFGDISEhpt+bP/74wxQ06N27d65GHTyL0Whk06ZNaW9v/9wgQFpaGpcsWUI7OzsCYM2aNXNc2SM0NJQ9e/akSqWiQqFghw4dePDgwXz//Tt48CCLFi1KNzc3njhxwuzzkpOT2aZNm0yjHwrS77//TqVSybffftv078vu3bsJoNBMbyHT2+To6EhPT0/+888/BX59SwQwHLPZFpjX+gqiFNaORuqiRSwNsJJOx5v5sGSRIAiCIBS03AQwAHTOmH66FsA6pK9CYlbeiWfU+XQAoyOAFU983QvAwuecvwzABgANnnHcQAAnAJzw9va22PfzZRQXF2fKTj916lTTdlmWGRgYyHr16lmxdbmTlpbG4cOHEwDfeusts4ZRBwcHE4Bpidg7d+6YpgjUrl07T9MMnrZt2zba2trSx8eHYWFhpqHe2SX9O3HiBJ2cnOjv78+IiIgXvnZ+unHjBrt06WLKf/Hdd9+ZHm6ffsgNCwvjkCFDTEk269Spw++++86iUypya/z48QTAtWvXvlA9aWlpXLlyJf38/EyjLpYtW8bk5GQmJSVx3LhxVKvVLFq0KFesWPHCSWO//vprAuDy5ctzPEaWZW7bto3lypUzjY5p3ry5WcGI27dvc/To0aalOGvVqsUffvjBrKCguc6fP08fHx/a2dnxjz/+MPs8vV5vyj8xevToAgvunTp1ivb29gwKCmJ8fLxp+2effUa1Wp1pW2Fw5swZenh40MnJiX///XeBXjvfAxgvYylsAQxDairTPv6YBHixYUPGFYK1nwVBEAQhL3IZwDjz5KgLAK4Azph7fg51vlAAI5fXagNgmb+/f/5/I19iixcvNiU2vHfvnmn74zeLL/pwZw0rVqygWq2mv7+/WQGIUaNGEQCXLVtGMv3hLzg4mC4uLtRqtZwxY0aeH94WLVpEhULB6tWrMzIykvv27aNSqeS7776b5eHrzJkzLFq0KH18fDJN1Shs9u/fz2rVqhEA69aty2PHjpFMH43xyy+/mEbCaLVa9unTh8ePH7dyi7OXlpbGRo0a5TkfxtMMBgM3btzI6tWrm3JkzJgxg7GxsQwLCzMlbG3QoEGeEz6eO3eOOp2OrVu3zvHhPTQ01DTdolSpUixatCgDAgJy/ZCdkJDARYsWmZZV9fb25uzZs/NtudiIiAhWqVKFKpWK69atM/s8g8HAgQMHEgCHDBli8VWEwsPD6eHhQS8vryxBxYoVK2bJG1RY3Lx5k+XKlaNGo+GPP/5YYNcVAYxCFsBIuHeP7UqU4GCA8ocfkvkYiRQEQRCEgpbLAMbZp75WPL0ttyW/ppCYeS0RwHiKLMssX748FQoFe/TokWlfly5d6OzsnC9LKVrDgQMH6ObmRkdHR/7666/PPNZgMLB58+ZUq9WZEoHevXuXHTt2NE0PyM1UGqPRyE8//ZQA2KZNGyYkJDAyMpLu7u4MCAjItEQpmf5g6urqSk9Pz1zlBrAWo9HIlStXsnjx4gRgSmSIjISQ06dPz7cpE5aUH/kwnibLMnft2sUWLVoQAB0cHPjpp58yPDycK1euZNGiRalWqzl27Nhc/X3p9XrWqFGDLi4ujIyMzLI/PDycvXr1IgAWK1aMX3/9Nd966y1qtVqePn06z/djNBq5detWNm7cOFOejPz4PX348KEpqe3MmTPNHlEhyzI/++wzAmCvXr3ydXTI0+2rVKkSHRwcskzHCA8PJwDOmjXLItfODzExMaxfvz4lSeJXX31VINcUAYxCFMCICA1lNVtbKgB+3aGD1ecjCoIgCMKLymUAYzaAHQDeyyi/A5hl7vk51Pl0AEMF4BqAUvh/Es8KL3KNp0th6VcUBocOHTINL39yOcx79+5RrVZzxIgRVmzdi7t58yaDgoIoSRK//PLLZ/bdYmJi6OfnR3d39yz5GTZu3EhXV1eq1WpOnTqVer3+mddNSkoyBT6GDh1Kg8HAtLQ0NmzYkLa2tlkCIZcvX2aJEiVYvHjxAll+Mz/FxcXx888/p62tLZs0acJNmzZZ7GHSUvIjH0ZOTp06xW7dulGhUFCtVrNv3748cOCAaRnd0qVLmz2FYvLkyQTAkJCQTNvj4uI4ZswY6nQ6arVajh49mg8fPuS0adMIgEuXLs23+zl58iR79eplypPx7rvv8sCBAy/0XJSSkmKaFvL478Ucsixz6tSppgBafk9P0uv1fOutt6hSqfjnn39m2f84oWdhzxGUlJTEd999l8hYrtnSI1byPYAB4GcA7wBQ5LWOgi6FoaNx6ocf6KlU0g7gtokTrd0cQRAEQcgXuQlgpB+OdwHMyyjtc3NuNnUFA4gEkAbgNoD+GdtbAbiE9NVIxr3INZ66nhiB8ZRevXpRoVAwKCgo0wPIl19+SQD5Mqze2hISEtipUycCYI8ePZ75xvvs2bO0s7NjrVq1mJycnGlfVFSUKf9D1apVeebMmWzriIqKYt26dSlJEufOnWv6vj5+W/zdd99lOv769essWbIkixUrxn///fcF71bIq/zKh5GTa9eucejQoaZ8M23btuU333xjSm7atWvXbEdVPHb8+HEqlUr27NnTtE2v13PRokV0dXUlAPbs2ZM3btwgmb6KjUKhYLdu3Szy0jUiIoJjx4415cmoWbMmg4OD8/xwbDQaOXLkSAJgx44ds/z9Pcs333xDAHzzzTdNyWVflCzL7NevHwHkuLJR+/bt6eXl9VK81DYYDBwyZAgBsHv37kxNTbXYtSwRwHgT6YmurgKYCaBMXusqqGLtAEZiSAjdAHoqlTz1ww9WbYsgCIIg5KdcjsD40pxthb1Yu19RWMTExFCtVmfpoBuNRvr5+fGNN96wYuvy15NvamvWrPnMN6abNm0iAPbt2zfbB5NNmzbRzc2NKpWKkydPzvQgcOnSJfr7+1On02V6S/64ziFDhmSq69atWyxdujSLFCnCU6dO5cOdCnmV3/kwchIdHc1JkyaxaNGiphwi3bp1o1qtppOTExcvXpwlCJCUlMSyZcvS09OTsbGxptVPypQpQwBs1KhRpjwj9+7do4eHBwMDAy2eXDIhIYGLFy82BWJGjRr1QvU9TnDbsGFDs5LwPrZmzRoqFArWq1cvX3J0TJkyhQA4YcKEbPfr9Xo6ODjw/ffff+FrFRRZljl9+nQCYLNmzbJMY8svFptCAsAJwAcAbgE4BKAvAPWL1muJYtWOxtdfkwoF/woIYERoqPXaIQiCIAgWkMsAxslstv1j7vnWLmIERmbz588nADo5OWUalfDXX39lO1LgVfDLL7/QwcGBAPif//yHR48ezfa4CRMmEAAXLFiQ7f779++zR48eBMDKlSvz5MmTPHDgAF1cXFisWDEeemJ1uosXL9LBwYG1atXKNMQ9MjKSgYGBdHBwMCXBFKzLEvkwcpKQkMBvvvmGPj4+BEB/f3/TiiG1a9fOlLNixIgRBMC//vqLx48fZ6NGjQiAZcqU4datWzMF2oxGI5s3b06dTpfjKCFLMBqNpsSaL7qkaHBwMNVqNStUqMBbuVgsISQkhGq1mkFBQZkSEufW+vXrTbk1chpdsWfPHgLgzz//nOfrWMuaNWuoUqkYFBRkkVWBLBLAAOACYATSlxPbCqALgAUA9rxIvZYq1ghgpCUnc2ilSlwKkO3akfk0HEkQBEEQChNzAhgABgM4CyARwD9PlOsAvnve+YWtiBEY6W/iSpcuTQD87LPPMu3r2LEjXVxccjWE+2Vy//59Tpw4kUWKFDENO9+9e3eWh8DWrVtTqVQ+cwnCLVu2sESJElQqldRqtQwICOCVK1dM+xMSElixYkW6uLhkWlUkOjqaFSpUoJ2dHQ8cOGCR+xTy5s8//6QkSezbt2+BXE+v13PDhg2sXLkyAdDZ2Zl2dnZUKBQcOXIkt2zZQgDs06cPu3fvTgB0dXXl4sWLs83F8nik0eMVdQpScnIyq1evTicnp0x/B3mxa9cuOjg40MvLK1c5Jv744w/a2NiwTJkyDA8Pz/V1d+/eTbVazcaNGz9zmsXnn39OlUplsVEMlvbHH39w3rx5FqnbElNIfgFwDulZvUs8tS9X82ALqhR0RyPu1i22zJhL9nmtWqSFE50IgiAIgrWYGcBwQnqyzWAAPk+Uos87tzAWEcAg//77bwKgJEm8du2aaXtkZCRVKhU/+eQTK7auYMTHx3PWrFmmVTTq1KmT6W32w4cPWaZMGRYrVuyZS5o+ePCA/fv35zvvvMP79++btsuyzJ49e1KSJO7YsSPT8UFBQdTpdNy9e7flblDIs8cjcNasWVNg15Rlmb///rtp+VONRmNKsOvs7EytVkudTsexY8fm+NC8Z88eKhQKdu/e3Wp5Ga5fv05nZ2cGBQW98ApGp0+fZokSJViqVKlc5dbYv38/HR0d6e3tzUuXLpl9XlhYGJ2cnFiuXLnnTl+pXLkyGzdubHbdrxNLBDBaZbNNm9f6CqIUZEfj5qFDrKTTUQlw6VPLiQmCIAjCq6awvrywRBFTSP6vY8eOlCSJrVq1yrT98fzoCxcuWKllBS85OZmLFy82DeWvXLkyg4ODaTAYeOHCBTo6OrJq1aq5nlKwZMkSAuB///tf07a4uDjWqlWLGo2Gv//+e37fipBPDAYDGzduTFtbW4aFhRX49Y8dO2b6G30caOzdu/czRxTcu3ePJUqUKJC8F8+zfft2AmD//v1fuK7g4GAC4M6dO3N1XmhoKIsVK8bixYtnWf40O5GRkfTx8WHx4sV5/fr1Zx57+/ZtAuCXX36Zqza9LiwRwMhu/mqWbYWpFFQA4+Hu3SyhUNAR4J8zZhTINQVBEATBml6nAMbj8rqPwLh79y6VSiUBZFq+0Wg0slSpUmzSpIkVW2c9er2ea9euZdmyZU05CVasWMFffvmFkiTl6q320aNHqdFo2LJlS9Ob40ePHrF+/fpUqVTcsmWLJW9FyAd37tyhm5sby5cvn28rW+TWpUuXOH36dIY+Jw+f0WjkW2+9VeB5L55l3Lhxz1zBw1xJSUl0cnLKtPqKuc6dO0dPT086OzvnmO+GTJ/qVb16ddra2mZKhpqTFStWEIBZgZEXJcvyS7HKyZPyLYABwB1AdQDnAVQFUC2jNAZwIbf1FWQpkI7Gpk2kjQ0XFi3KMPGfiiAIgvCaeJ0CGGIERroZM2YQAH18fDINy/7jjz8IgD+85iuuGY1Gbtq0idWqVSMAenl5sVWrVgTAOXPmPPf86Ohoent708fHxzSlJCkpiU2aNKFCoeDGjRstfQtCPinofBh5Zc28FzkxGAxs2rQpdTrdC6+wM2jQINrY2OQp38S1a9dYunRp2tvbZztly2AwsE2bNlQoFNy6datZdXbo0IGenp6ZAgsGg4EDBgygvb09bW1taWtrSxsbG+p0Oup0Omq1Wmo0Gmo0GqrVaqpUKqpUKiqVSioUCioUCtOIm6eLSqXir7/+mut7t5ac+hVS+j7zSZLUB8B7AGogPXnnY48ArCH5c64qLEA1atTgiRMnnn9gHlCWg/vpYQAAIABJREFUMbdNG9T67Tc0rFMH2LIFcHOzyLUEQRAEobCRJCmUZI1cHO8DIIDkTkmSbACoSD6yXAvznyX7FYWdLMvw8vJCZGQk5s+fj48++si0r3379jh48CBu374NjUZjxVYWDiTx559/Yvr06di3bx80Gg3S0tKwadMmtG/fPttzjEYjWrVqhT179uDgwYOoUaMGUlNT0a5dO+zYsQPr1q1Dz549C/hOhBcxceJETJkyBWvWrEGfPn2s3Zws9u7di6ZNm6Jbt25Yv349JEmydpNMoqKiULVqVdjY2CA0NBROTk55qufIkSOoW7cuVq5ciX79+uX6/Dt37qB58+a4cuUKQkJC0Lp1awDpf+PDhg3DokWLsHDhQnz44YfPrSstLQ3FihVDp06dsGLFCgDpf/d9+/bF+vXr0bNnT7i7uwMAJEky/Tyy+2jutrVr16JIkSI4efJkofr55iTHfkV2UQ1zCoAOeT3XzPrfBnARwBUAo7PZrwXwY8b+owB8n1enpUZg6BMTOSBj/eRBfn7kCyaaEQRBEISXDXK3jOr7AI4DuJrxdQCAXeaeX1jK6zyF5PfffycAav/H3n2HR1WlDxz/nqmZTHpCiUDooBQFDSqCrAgKFqQoKioSF5CyiLog2BZFFhTLsv6QVcFlAQvrSglFAuIiCCiCgiyI0qUHQnoyyWTK+/tjBgyRmjaZcD7Pc565c8+9576ZtDtnznmP1SqZmZmn9x85ckSMRqOMGTMmgNFVXWvXrpXbbrvt9CeiQ4cOPesyjS+99JIA8v7774uIb1rKPffcI4DMmDGjssPWykGg82GcT2pqqsTHx0vz5s0lNzc30OGc1bp168RkMkmvXr1KPRXC6/VK8+bN5eabby51HCdPnpTExEQxmUwyd+5cERF56623BJBRo0ZddDtr1qwRQObNmycivhFbSUlJAsjEiRNLHd/5zJo1S4CgmXp2rvuK0nQsPOJ/HAX8uWS51PbOcQ0jsBdoBFiArUCLEscMB97zbz8IfHqhdiviRiNz/37pEh0tgLzQoYN4XK5yv4amaZqmVXWX2IHxo///+5Zi+7Zd7PlVpVyOHRher1c++ugjiYmJEUAGDRp0Rv0rr7wigOzevTtAEQaHRYsWidlsFkBCQkJk5MiRpxMrLlu2TJRSMmDAAPF6veJyuaRv374CyDvvvBPgyLWyqAr5MEpyu93StWvXKpX34lz+9re/CSBvvPFGqds4NfWtLH+jsrOzpVOnTqKUkkGDBolSSu69995LWuHk2WefFZPJJFlZWeLxeGTgwIG/S9Zb3lwulzRu3FiuvfbaoMiHUZ4dGEP8jy+drVxqe+e4RntgRbHnzwHPlThmBdDev20CToJvSsy5SnnfaJyYOFHqKCVGkCeuuUZWTJok6/7xD/ll4UKRnTtFDh+WnAMHxJmbKxIEPySapmlaEPN6xet2i9vpFFdBgRTl54szN1ecOTkiBQUiDoc4MzPFU0Gfrl1iB8Z3/sct8tv/8f9d7PmBLlymOTD27dsn3bp1E0ASEhJ+l3zO7XZLvXr1pGvXrgGMMnisWLFCDAaD1K9fX4xGo5jNZhkwYIDExMTI1VdfLfn5+eJ2u+WRRx656LwZWtW3cuXKKpUPY8KECUEzssfr9cq9994rRqNR1qxZU6o2Dh8+LAaDQf7yl7+UKRaHw3E6p0379u0veanXNm3aSKdOncTj8cjjjz8ugIwbN65MMV2MmTNnCiBLliyp8GuV1bnuKy45B8YpSqkaIpJWqpMv3PZ9QHcRGeR/3h+4QURGFDtmu/+Yw/7ne/3HnCzR1uPA4wAJCQnXHThwoNzi/DkyktY5OXhK7L8F+Mq/3QzYje/OLBSwGwzcZbczo0EDsNt5YN8+CpTCbrUSarVit9loX78+/Tp1gtq1WZuWRkzDhtRu0YKYxo1RRmO5xa9pWtmJ14vH5cLrcmExmcDrpdDhwOlw4PV48LrdeF0uxOulZkwMeL2knThBXl6er87txuN2Y1SKpvXqgcfD3gMHyMrJ+e18jwerycS1TZuC18vmX34h81S9v0TYbHS48krwelm1dSuZubm/1Xu91AwLo0uLFuD1Mn/jRrIdDrxeL16PBxEhISqKO666CkSYsX49+YWFvnp/aVGjBnc3bw4ivLZ6NUVu92/1IrSrXZueTZrg9XoZ+9VXp//JeP2PnevUoWeDBhS4XPx53boz6rxeLz3r1eOeevXIKChg5MaNvvPxzbMXoH9CAnfXrs3h/Hye2Lr1jPMFeCIhgW5xcezMy+OJHTt85xaLYVxCArdGRfFDTg4j9+37rX3/45S6dekQFsbqnByePnz4d/Wzr7iC60JCWJKTwzNpab+rX1yrFi3NZj7KzeX5rCzf2HB/nQDrY2JoaDQyLT+f8fn5vnP5LbPWzrAwairFXwsLmVxUdEY9wEmzGTsw2u3m7WLtCqDg9P+hQcA/S/yMRgDZ/u0HgBcjImidnU15u5QcGEqp14Es4FHgCXyjKneIyAvlHlgFulxyYLjdbt5++23GjRuHwWDg1Vdf5V//+hdms5kNGzacPu7zzz/n7rvv5rPPPuO+++4LYMTB48033+SZZ55h9OjRFBYW8sEHH2CxWPjhhx9o1KgRQ4YM4YMPPmDChAm8+OKLgQ5XKycvvfQSr7zySsDzYaxevZouXbpUybwX55KTk0NiYiK5ubls2bLldJ6IS9G9e3d+/vln9u/fj8FgKHUsRUVFfPzxx/Ts2ZOYmJiLPu/YsWNcccUVTJo0iUOHDvHuu+/y/PPP89e//rXCvwcul4vmzZsTGxvLxo0bq/T3/Fz3FaYytLleKfUrvjwUC0QkswxtVRgRmQ5MB9+NRnm2Hb9mDbFt2xJtNjNn+nSKHA4c2dmEKwX16kF+PmNXrSI1PR2Hw0G+w0F+QQGtw8Kgbl1wOMgpKiLV6cThdpPv8eAQwbl9O/2WLMELdOa3G1MzUMtoZHitWjzXti2emjV5adcuasfHUzshgdqNG1O7eXOuaN2aUJ1AVDsP8XhwFRTgcTpx+4vH6STEbCbMasVdWMiBgwd9+10u3EVFuJ1OroiJoXZUFI68PDZu3477VF1RER63m2sSEmgQG0t6ZibLt2zB7X9z7nG7cbvddG3alKaxsRxMS+PTU/Uej+8Yj4eHW7SgeVQU21NT+eB//8Pjf/Pt8ZdnWrakWVgY648dY9rOnaf3e7xePCJMufJKGoeEsCQ1lSkHDuAVwSNyuv6zRo1IMBqZdfIkb6Wl+epE8OB7I/pd7drUAN7IyeGtvDw8Injh9OOx0FDsXi+ji4r4u9d7RuelwveGE3zvxj4o8ZqHAznF6j8tUX8FcMS/PRJYVqK+OfCLf/spYG2J+kR8CQXAN7/vxxL1nYEu/u2x+OboFdcDuMO//RfgeIn6h4C7/dsTAId/W/nLEIOBniYTSimmOZ0owOCvMwDhv/xCz9BQ3MD8zEwMSp2uMyhFq7Q02LuXIo+Hb1NTfe0qdbr+pNsNmZm43G72Zmb62j7VhlI4MjNBKTyFheQWFf3Wvj+RlSgFJhMGiwWbP85TxyilMMfEQHQ0tpAQ6uXknL72qURYtiZNIDKS6PR0rjEYfne+vU0biIigTmoqXfbtOx3bqfNDExPBbqfZkSPc679hKn5MSPv2EBLCdQcOMPjgwdNxnyqmm28Gs5nOe/diOXLkjLaVUtC5MyhFz127SEhNPaPOajJBp06gFA/t2EGt5s2pAp4FBgLbgCH4fuRL/tpoVcDmzZsZPHgwmzdvpkePHkybNg0RX8K6119//Yxj33//fWrVqkXPnj0DFG3wGTVqFFu2bOGtt95i8eLFjBs3jsLCQurWrcvIkSP54IMPeOGFF3TnRTUzbtw4vv76a4YPH067du1o0aJFpcdw/Phx+vXrR9OmTXnvvfeq9BvZ4iIiIpg/fz433HAD/fr1Y+XKlZhMl/aWNikpiX79+rF69WpuvfXWUsdisVh47LHHLvm85cuXA7Bt2zbmzp3LmDFjKqXzAsBsNvP8888zePBgUlJSuPPOOyv8muWt1CMwAJRS1+PLP9EL2AH8W0Q+KnNQSrUHXhaRbv7nzwGIyKvFjlnhP+ZbpZQJSAVqyHm+oIr4pGTh2LH0ef11XrvjDsYuK/mWo5REICcHz5EjrFu5ktR9+zh+6BCpqamkpqXRNTSUhwwGThw5Qnxa2uk3TadMBJ632zkWF0ffjAxqR0RQOyaGuJgYwsLC6N62La2aNiVbKb47dAh7dDRhMTHY4+Kwx8YSW68elqgouAxHe4jXi/J4wOUiPyuLgtxcXIWFuAoKcBcWojweGtauDS4Xv+zeTUZGBu6iIt8xRUXYTSZubtYM3G5SNm3iRGYmrqIi3C4XLpeLeLud+1q0ALebqevWcTwnB7fbjcv/Bv+qyEiGNm8OLhcjvvmG9MJCXB4Pbo8Ht9fLzZGRjE1IALeb2378kRy3G7fXi1sEtwj32e2Mj4xEXC7qHD3q2w+4RXABI5Visgi5+D6VLekl4GXgKFDnLPVv4ntzvBO48iz17+F7J/I90O4s9R/jeyP8FXC2fxdLDAbutlhYJkI/pxOj/02kUSmMwLzYWG4KDWVxYSGjMjJ8+4uVjxs2pEVYGIuys3nz2DHf+UphNBgwGgx80Lo1dcPCWHTiBHMOHcJgMPjO9de/fcMNRNtsLD58mGWHD/vqDYbTj5M6dSLEYmHZr7/yzZEjGIxGjEaj7xpGI8/deivKaGTlnj1sP34cg9GIwX++1WJhUKdOYDCwetcuDmRm/lZvNGK32bjn+uvBYGDDnj2cyM7GaDb/Vh8aSserrwaDgR/37iW3sNB3vr+E2e20bNoUDAZ2HTqE0+XCYDKdrg+126lXpw4oxeETJ/CKYDCZUAYDBpOJEJuN6OhoMBjIzMnx7TcafccYjZgsFqwhIWAw4PZ6T58bLDc8WsW7xBEYdqBQRDz+50bAKiKO859ZtVTnERj5+fm89NJLTJkyhZo1azJ16lTuvfdelFJMnTqVkSNHsmvXLpo2bQrAoUOHaNCgAWPHjmXSpEkBjj64OBwOOnbsyN69e9m4cSPNmjXjmWee4a233mLUqFG88cYb+m9tNXTs2DHatGlDXFwcGzduxG63V9q1PR4P3bt3Z926dXz33XdcffXVlXbt8jJnzhwGDBjAs88+y6uvvnrhE4opKCggPj6ee+65hzlz5lRQhOfWt29fUlJSyM/PD8jveFFREc2aNaNWrVps2LChyv59Odd9RZk6MIo1Hgf8DXhYRMr8rtffIbEL3weGR/B9sPiQiPxU7Jg/Aa1FZKhS6kGgj4jcf752K+pGo0+dOqQcPcr/Vq6kadeu5d7++XiKikjftYvUX34hdfduUvfvp43dztVKsX/PHgauXUuqw0Gqy0Wm/3s9E3gM+Ba46SxtfgrcD6y2WLjf5cJuNGI3GgkzmbBbLExu1YrEunX5sbCQWfv3Y/J3dJz64X/i2mtJiIxk07FjzNu163S7p+qfvv56atntrD98mM/37j1VyalfnWfatyfKauXLPXtYvnev7827x4Pb7cbt8fB/7doRCny0Zw/Jhw/j8XpPv8F3e72saN0ag8fD6wcPMi89/bc3+F4vZmBrfDy43QzLyODTwsLTb+5dQBy+njCAe4AlJV6bxviWvQHfJ9qrS9S3Abb4t9tx5jrDADcDX/u3r8L3Q27GNxTKrBTdzWbmxsaCyUSHEyc46fViMhgwKYXZYKBbVBQTGzYEk4meP/2EUwSz0YjJaMRkMNA1Pp4hV14JZjOPf/utb7/RiMlkwmQ00ql+fe6+6ipcSvH6N99gMpkwmky+epOJ6xs35vomTSjweJi3ZYuvzmw+XVo2bEjjevVwuN1s3L0bk8XiO8ZqxWgykVCnDnE1alDodnPoxAmMZjNGi8V3nMVCVHQ0IWFhuEVwut0YLRaMVitGiwXDZdhhpmnVySV2YGwAuopInv95GPCFiJzt31KVVV07MFasWMHQoUP59ddfGTx4MJMnT/Z1cPp16dKF1NRUfvrp9G0ZL7/8Mq+88gp79+6lYcOGgQg7qB04cIDExERiY2Pp0aMHb775Jn/605+YOnVqlX1zoZXdl19+ye23386AAQP417/+VWnXnTBhAuPGjWPGjBkMGjSo0q5b3oYMGcL06dNZtGgR99xzzyWf+9FHH5Gamkp4eHgFRfh7LpeL8PBwnE4nTz75JFOmTAnI7/j06dMZMmQIy5cvp1u3bpV+/YtR7h0YSqkIoDe+ERiNgYXAf0Tkh7IEWqz9O4G/41uRZKaITFRKvYIvmcdipVQI8CHQFsgAHhSRfedrs6JuNI5u3sxV113Hw3Xq8I9Dh6CK/qPxFBXhOHkSs9NJiMdD7vHjbNu2jbzMTPKzssjLziYvO5tuDRrQyGrlpwMHmLZpE3kFBeQXFpLndJJfVMTf4+NJ9HpZcPIkSVlZZ8zTBlhttdLOYGCWy8UwtxtK1G8xm7lKKf7P7Wa01/u7+n0GA/WUYjIwwePBBJiU8hVge506RJnNvJWTw8zc3N/q/J+Sf33NNZjMZt45epRlGRm+DgB/nc1sZk6nTmAyMWvfPn5IT8dkMmE2mzGbTESGhjLmllvAbGbxzp0cyM7GbLFg9r8JjwoPp+eNN4LZzHf79pFVWIjZasVstWKyWomIiKDllVeCycTBtDTcgNlmw2yzYbJaCQkLIywqCsxmvP5PvjVN06qDS+zA+FFE2lxoX1WllOoB9GjSpMng3bt3BzqccpOWlsbTTz/Nxx9/TPPmzZk+fTqdOnU645iMjAxq1qzJ2LFjmThxIuDLkdGgQQNatWp1emi0dulWr15N165d8Xg8DBw4kOnTp5dpfr4WHE7lw/jXv/5FUlJShV/vq6++omvXrjz00EPMmTMnqDvICgsL6dChA/v27TudN+Ziffvtt9x0003MnDmzVNNASkNE6N+/Px9//DHdu3dn2bJlAXv9i4qKaNq0KXXq1GH9+vVV8ufgnPcVZ8vseTEF2A9Mwb8SSDCUilzu7McXXxQXiMycWWHX0DRN07SqiktbhWQ9cG2x59cB317s+VWlVJdlVL1er8yaNUtiYmLEbDbLuHHjpKCg4KzHzpkzRwDZuHHj6X2LFi0SQBYsWFBZIVdbc+fOlRdeeEHcbnegQ9EqidvtlltuuUVsNpts3769Qq+VmpoqtWvXlubNm0tuBa1IVdn27dsnUVFRcu21157z79bZeL1eadasmXTq1KkCozvzei+88IIAopSSjIyMSrnu+bz77rsCyBdffBHoUM7qXPcVZRmBoaS0JwdIhQ719Hqhc2cyt27Fs349cS1bVsx1NE3TNK0KusQRGO2Af+NLuaOA2sADUk6jOCtLdZhCsnfvXoYMGcJ///tfbrrpJqZPn07L89zD9OnTh40bN3Lw4MHTowPuuusutmzZwoEDBzCbzZUVuqZVG5WRD6N43ouNGzfSunXrcr9GoCxdupQePXowePBgpk+fftHnvfrqqzz//PPs2bOHxo0bV2CEvml248ePJzY2lquuuoq1a0umY698TqeTJk2aUL9+fdauXVvlRmGc677ikselKaX+7t9crJT6XSlzpMHKYMD5zju0zc7mT3fcceHjNU3TNO0yJSKb8OUCHgYMBa4Kts6LYOdyuZg8eTKtWrVi06ZN/OMf/2Dt2rXn7bxwOBwsX76cXr16ne68OHDgACkpKQwcOFB3XmhaKcXHx/PJJ5/w888/M2LEiHJr1+VykZOTw/Hjxxk/fjxffvkl77zzTrXqvAC4++67ee6555gxYwazZ8++6PP69++PUqrCE3lOmDCB8ePH069fP9LT06vMyh9Wq5Vnn32W9evXs2rVqkCHc9EueQSGUuo6EflBKfWHs9WLyJpyiawCVMYnJRNvu40Xv/ySRS+8wD1//WuFXkvTNE3TqopLGYHhP/4moAHFlnQXkcpPB18GwToCY9OmTQwePJitW7fSu3dvpk6dSp06Z1t76kyLFy+mZ8+erFy5kq7+pOV/+ctfmDhxIvv376d+/foVHbqmVWunPqV/7rnnSEhIwOFwUFBQcEa5lH0ej+eM9h955JGgz3txLm63m9tvv50NGzawYcOGi15ZpVu3buzcuZN9+/ZVSM6ZSZMm8cILLzBgwAA6derEwIED2bx5M23bti33a5VGYWEhjRs3pkmTJqxZU7XexldEEs8nReTtC+2rSirjRqMoL4/r4uLIdLvZ8euvRNStW6HX0zRN07Sq4BKnkHyILwH4j8CpO2wRkZEVFV9FCLYOjLy8PF588UWmTp1K7dq1eeedd+jdu/dFn//HP/6RBQsWkJaWhtlsxuVyUb9+fdq2bcvnn39egZFr2uXB4/Fwxx13sHLlyjP2GwwGbDYbNpuN0NDQ09vFy4X2R0dH07t3b0JCQgL01VW848eP07ZtW8LCwti0aRORkZEXPGfu3Lk89NBDrFq1is6dO5drPK+//jpjx47l4YcfZvbs2Tz88MOsWbOGo0ePVqlOpFNLY3/11VfccsstgQ7ntIpI4rn5LPu2lLa9yiiVlWxrwwcfiAL5U+vWlXI9TdM0TQs0Li2J58/4P0QJRAEaAf8E5hXbZwdmAzPwLQtfZe4rysPnn38uCQkJAsiwYcMkKyvrks53uVwSGxsrDz/88Ol9CxYsEEAWLVpU3uFq2mXL4/HIvn375NixY5KVlSVOp1O8Xm+gwwoaX3/9tRiNRunTp89FvW4Oh0MiIiLk0UcfLdc43nrrLQHkwQcfFJfLJS6XS6KjoyUpKalcr1MeCgoKJD4+Xm655ZZAh3KGc91XlCYHRj+l1BKgYYn8F1/hW870snfDwIGMbNOGQ9u24akCCVo0TdM0rYrZji9x5yVTSs1USp1QSm0vsb+7UmqnUmqPUurZ87UhIvtEZGCJ3X3wdWgMBu4pTWxVkYiQlJTEXXfdRVhYGOvWreMf//jHRX0yWdw333xDeno6vXr1Or3v/fffp06dOlVmPremVQcGg4GGDRtSu3ZtIiMjsVgsVerT+qru5ptvZvLkySxYsIApU6Zc8HibzcYDDzzA/PnzycvLK5cY3n77bUaNGkXfvn358MMPMZlMbNy4kczMTO6ogrkSQ0JCGDt2LKtXr+brr78OdDgXVJqJPt8AbwG/+B9PlVFAt/ILLbi9sWoVyfXqYRwyBJzOQIejaZqmaVVJHLBDKbWiFInAZwHdi+9QShmBacAdQAugn1KqhVKqtVJqaYlS8xzt1gUO+bc95zgm6Bw4cIDZs2czaNAgNm/eTIcOHUrVTnJyMlarle7dfS/9/v37+eKLLxg0aBAmk+kCZ2uaplWeP//5z/Tp04cxY8awbt26Cx6flJREfn4+8+bNK/O1p02bxlNPPUWfPn34+OOPT/99TElJwWAwcNttt5X5GhXh8ccfp1atWowfPz7QoVzQJXdgiMgBEVktIu1FZE2xsllE3BURZDAyR0ej3n+ffT//zCcPPRTocDRN0zStKnkZ6AVM4swPQy5IRL7m9yM+rwf2+EdWFOFborWniGwTkbtLlBPnaPowvk4MOM/9kVLqcaXU90qp79PS0i4m5IDyer2A71NJq9VaqjZEhIULF3LbbbcRFhbGjh07GD58OEopBg0aVJ7hapqmlZlSipkzZ9KwYUMeeOABTpw41599n/bt29O0aVNmzZpVpuu+9957jBgxgp49ezJ37twzVmZKSUmhffv2REdHl+kaFcVmszFmzBhWrVp1UZ0+gVSaKSTr/I+5SqmcYiVXKZVT/iEGsTvuYEKjRiQtWMCOxZfvCrOapmmaVpz4Viz7FTD7tzcBm8vQZB1+Gz0Bvs6Icy6roZSKVUq9B7RVSj3n370AuFcp9S6w5DyxTxeRRBFJrFGjRhlCDh7/+9//+PXXX2nVqhU9e/akZcuWrFmzhkmTJlFXJyvXNK0KioyMZN68eWRkZNCvX7/frchSnFKKpKQk1qxZw759+0p1vRkzZjBs2DB69OjBf/7zHywWy+m648eP88MPP1TJ6SPFDR06lJo1a/LKK68EOpTzKs0IjI7+x3ARiShWwkUkovxDDG6TlywhXCkGP/IIXrceoKJpmqZpSqnBwDzgff+uOkByZV1fRNJFZKiINBaRV/378kXkMREZJiIfn+98pVQPpdT07Ozsygk4gESE119/HYDXXnuNdevW8dJLL3Hw4EHGjh0b4Og0TdPO7ZprruHdd99l1apVjBs37rzH9u/fH6UUc+Zc+mreM2fO5PHHH+fOO+/ks88+O6PzAmDFihUAVb4DIzQ0lGeeeYaVK1fy7bffBjqccyr1pEWlVGPgsIg4lVK3AFcDc0Qkq7yCqw5qtmjBlEGDGDBjBu898gjD//3vQIekaZqmaYH2J3zTPr4DEJHd58lNcTGOAPWKPa/r36eVksvl4tNPP2Xy5Mls374di8XCG2+8wcCBA7Hb7YEOT9M07aIkJSWxfv16Jk2aREJCAs2bN0cphVIKg8Fwxna7du2YPn06d955J0aj8azHlNxevXo1w4YNo1u3bsyfP/+sU/VSUlKoVasWbdq0CcArcGmGDRvG66+/zvjx41m+fHmgwzmrsmRdmg8kKqWaANOBRcAngE5FXUL/997jo/nzefbTT7ln1CjqtmsX6JA0TdM0LZCcIlJ0KrO+UsoESBna2wQ0VUo1xNdx8SBQYQmoRGQJsCQxMXFwRV2jvPhWort4+fn5zJw5kzfffJODBw/StGlTACZMmMDIkSMrIkRN07QKNXXqVDZv3szQoUMv6vgbbrjhktrv2rUrCxcuJCQk5Hd1Ho+HL774gh49emAwlGb9jMplt9sZPXo0Y8eO5bvvvrvk16IylKUDwysibqVUb2CqiExVSm0pr8CqE2Uw8P6CBfy9Sxcixo2DZctAL4ekaZqmXb7WKKWeB2xKqduA4Zwn70RxSqm5wC3HHfWTAAAgAElEQVRAnFLqMPCSiPxTKTUCWAEYgZki8lPFhO6bQgL0aNKkSUVdotxdaBnG9PR03nnnHaZOnUp6ejodO3Zk2rRp7Nmzh6effpo+ffpUUqSapmnlKyQkhLVr1/L999/j9XoRkdOPxbcdDgePPPII7du358knn/xd/dnOsVgs3HXXXdhstrNee+PGjWRkZFT56SPFDR8+/PQojGXLlgU6nN8pSweGSynVDxgA9PDvM5/n+Mtawz/8gbcnT4bRo2HePOjbN9AhaZqmaVqgPAsMBLYBQ4BlwAcXc6KI9DvH/mX+dipcMI3AuJCDBw/yt7/9jRkzZuBwOOjRowdjx449vdzqLbfcQqtWrQimzhpN07SSQkND6dSp0wWPe/jhh5k7dy633norYWFhZb7u8uXLq/TyqWcTFhbGqFGjeP7559m0aRPtqtjsgbKMY3kMaA9MFJH9/mGbH5ZPWNXUk0+y+aqr6PrII2Tu3x/oaDRN0zSt0imljMCHIjJDRPqKyH3+7bJMIalU1SGJ5/bt23n00Udp3Lgx06ZN47777mP79u0sXrz4dOfFyZMnWbt2Lb179w5wtJqmaZUjKSmJ/Px85s+fXy7tpaSkcMMNNxATE1Mu7VWWESNGEBMTUyVXJCl1B4aI7BCRkSIy1/98v4hMLr/QqiGTCcNLL7G6qIhnuncPdDSapmmaVulExAPUV0pZLnhwFSUiS0Tk8cjIyECHcsnWrVtHjx49aN26NQsWLGDEiBHs3buX2bNn07JlyzOOXbp0KV6vl169egUoWk3TtMp100030aRJE2bNmlXmttLS0vj++++DavrIKeHh4fz5z39m6dKl/PDDD4EO5wyl7sBQSnVQSq1USu1SSu1TSu1XSpVu4dzLSJsHHmD0DTfwz127WPXWW4EOR9M0TdMCYR+wXin1F6XUn0+VQAd1sYJpBMapgS1btmyhY8eO3HzzzXz77beMHz+eAwcOMGXKFBISEs56bnJyMvXq1aNt27aVGbKmaVrAKKVISkpi9erV7C/jiPkVK1YgIkHZgQHwxBNPEB0dXeVGYZRlCsk/gb8BHYF2QKL/UbuAl5Yto7HJxOPPPktBRkagw9E0TdO0yrYXWIrvPiS8WAkKwTQCo6CgAIApU6Zw+PBhpk6dysGDBxk3bhyxsbHnPM/hcPDFF1/Qq1evCyYA1TRNq0769++PUoo5c+aUqZ2UlBRq1qzJtddeW06RVa6IiAiefvppFi9ezJYtVWetjrJ0YGSLSIqInBCR9FOl3CKrxmwxMcx47TX2ut28p5N5apqmaZcZERkvIuOBN05t+59r5SwtLQ2AO++8k927dzNixAhCQ0MveN4XX3xBQUGBnj6iadplJyEhgS5dujB79my8Xm+p2vB4PKxYsYJu3boFxfKp5/LEE08QGRlZpUZhlOXV/Eop9YZSqr1S6tpTpdwiq+Y6jxrFsttu44nVq+HHHwMdjqZpmqZVGv+9ww7gF//za5RS/whwWBctmKaQnFKvXj3M5otfLG7hwoVER0dz8803V2BUmqZpVVNSUhL79+9n7dq1pTr/+++/Jz09PWinj5wSFRXFU089RXJyMlu3bg10OEDZOjBuwDdtZBLwlr+8WR5BXS7u+Pe/MdWoQWZSEu7CwkCHo2mapmmV5e9ANyAdQES2Ahde366KCKYpJKXhdrtZsmQJPXr0uKROD03TtOqid+/ehIeHlzqZZ0pKCgaDgdtvv718AwuAJ598koiICCZMmBDoUICyrULS+Szl1vIMrtqLieHIyy9z1datvK2nkmiapmmXERE5VGKXJyCBVHOlWZ127dq1ZGZm6ukjmqZdtkJDQ7n//vv57LPPyMvLu+TzU1JSuP7668+bayhYREdH8+STTzJ//ny2bdsW6HDKtApJLaXUP5VSKf7nLZRSA8sakFIqxr+6yW7/Y/Q5jluulMpSSi0t6zUD6YrHH+f6WrX4y9Kl7Fu9OtDhaJqmaVplOKSUugkQpZRZKTUa+DnQQWk+ycnJhISEVItPDjVN00orKSmJ/Px8FixYcEnnpaWlsWnTpqCfPlLcU089RXh4eJUYhVGWKSSzgBXAFf7nu4CnyhoQ8CzwXxFpCvzX//xs3gD6l8P1AkoZDExbtAgjMPTee5FSJorRNE3TtCAyFPgTUAc4ArTxPw8KwZgD42KJCMnJydx+++3Y7fZAh6NpmhYwHTp0oHHjxpc8jWTlypVBvXzq2cTExDBy5EjmzZvHTz/9FNBYytKBESci/wG8ACLipnyGf/YEZvu3ZwNnHb8oIv8FcsvhegFX74YbeK1vX1ZmZPDh0KGBDkfTNE3TKoRSarJ/s7OIPCwitUSkpog8EkwrmVXnHBg//vgjBw8e1NNHNE277CmlSEpK4quvvuLXX3+96PNSUlKIi4vjuuuuq7jgAuDpp5/GbrcHfBRGWTow8pVSsYAAKKVuBMrjo4haInLMv50K1CpLY0qpx5VS3yulvj+1lFhVNOyTT2gfFsaq2bPhxIlAh6NpmqZpFeFOpZQCngt0IJcb38t+YcnJyRgMBu6+++4KjkjTNK3qe/TRR1FKMWfOnIs63uv1VovlU88mNjaWESNG8J///Ieffw7crM+yvKp/BhYDjZVS64E5wBMXc6JS6kul1PazlJ7FjxNf5qlLzz51ZhvTRSRRRBJr1KhRlqYqlMFkYvl//8u/vF54+ulAh6NpmqZpFWE5kAlcrZTKUUrlFn8MdHCab/nUjh07UpXvmTRN0ypLQkICt956K7NmzcJ7EVP9f/jhB9LS0qrV9JHiRo0aRWhoKH/9618DFkNZViHZDPwBuAkYArQUkf9d5LldRaTVWcoi4LhSKh7A/3jZDEeIuP561AsvsPeTT1j72muBDkfTNE3TytuLIhIFfC4iESISXvwx0MFVR5eyCsnevXvZtm0bvXv3rsCINE3TgktSUhL79+9n3bp1Fzw2JSUFpRTdunWrhMgqX1xcHH/605/497//zc6dOwMSQ1lWIekL2ETkJ3x5Kj5VSl1bDjEtBgb4twcAi8qhzaAhzz5L/9BQej7/PL9exC+JpmmapgWRb/2PQT3aorom8Vy0yHfL1bNnzwscqWmadvno3bs3YWFhF5XMMyUlhXbt2hEXF1fxgQXI6NGjCQkJCdgojLJMIfmLiOQqpToCXYB/Au+WQ0yvAbcppXYDXf3PUUolKqU+OHWQUmot8BnQRSl1WClVLbq5VEgIcxYvxiNC327dcOYE9T2epmmaphVnUUo9BNyklOpTsgQ6uIsVTEk8L2UERnJyMtdccw0NGzaswIg0TdOCi91u5/777+ezzz4jPz//nMelp6fz3XffVdvpI6fUqFGD4cOH88knn7Br165Kv35ZOjBOrThyFzBDRD4HLGUNSETSRaSLiDT1TzXJ8O//XkQGFTvuZhGpISI2EakrIivKeu2qokmXLswaM4bvHQ6eat8+0OFomqZpWnkZCtwMRAE9ShSdNbICXSiJ54kTJ1i/fr1efUTTNO0skpKSyMvLY8GCBec85osvvqh2y6eey+jRo7FarUyaNKnSr12WDowjSqn3gQeAZUopaxnb04rpPXkyoxMTeW/HDpJ1Uk9N0zStGhCRdSIyDBgjIo+VKH8MdHyXs6VLl+L1enUHhqZp2ll07NiRRo0anXcaSUpKCrGxsSQmJlZeYAFSq1Ythg4dykcffcTevXsr9dpl6XC4H1gBdBORLCAGeKZcotIAeHXtWiY3aEC399+Hn34KdDiapmmaViZKqVv9m5nBPIUkmFzsFJKFCxdSv359rrnmmgqOSNM0LfgopUhKSmLVqlUcOHDgd/Ver5fly5fTrVs3jEZjACKsfGPGjMFsNjNx4sRKvW5ZViFxiMgCEdntf35MRL4ov9A0U0gIY775BltEBDm9epF79GigQ9I0TdO0sviD/7Hk9BE9haSCnW8KSV5eHitXrqR3794XnGqiaZp2uXr00UcBmDNnzu/qtmzZUq2XTz2b2rVrM2TIEHbt2oXb7a6065oq7Upa6cTHU/Thh7S//XZa3nADnx44gDLomTqapmla8BGRl/yPjwU6FqVUI+AFIFJE7jvXvmB3MSMwVqxYgdPp1NNHNE3TzqN+/frceuutzJo1ixdffPGMDt/qvnzquUyePBmLxVKpnd/6nXAQsNx2G492785nhw/zf/dVi/spTdM07TKklPrz+coltDNTKXVCKbW9xP7uSqmdSqk9Sqlnz9eGiOwTkYEX2nc5SE5OJjY2lg4dOgQ6FE3TtCotKSmJffv2sW7dujP2p6SkkJiYSI0aNQIUWWBYrdZKH7mnOzCCxJjPP+ee2rUZvXAh37z/fqDD0TRN07TSCPeXRGAYUMdfhgLXXkI7s4DuxXcopYzANOAOoAXQTynVQinVWim1tESpWfYvpXpwuVwsXbqUHj16YDLpgbmapmnn06dPH8LCws5I5pmRkcGGDRsuq+kjgaQ7MIKEMhiYvWEDCSYT9w8fzgmd1FPTNE0LMiIyXkTGA3WBa0VklIiMAq4DEi6hna+BjBK7rwf2+EdRFAH/BnqKyDYRubtEOVHar0Ep9bhS6nul1PdpaWmlbabSXGgKyddff01WVpaePqJpmnYR7HY7ffv25bPPPiM/Px+AlStX4vV66d69+wXO1sqD7sAIIlH16zP/ww9pKoJryBDweAIdkqZpmqaVRi2gqNjzIv++sqgDHCr2/LB/31kppWKVUu8BbZVSz51rX0kiMh0YD2y2WCxlDLnynGuI78KFC7HZbNx2222VHJGmaVpwSkpKIjc3l4ULFwK+6SMxMTFcf/31AY7s8qA7MIJMmwcfZNX06dRZvx556aVAh6NpmqZppTEH2KiUelkp9TLwHb5pIZVGRNJFZKiINBaRV8+17xznLhGRxyMjIysv4AogIiQnJ9OtWzdCQ0MDHY6maVpQ6NixI40aNWLWrFmnl0+9/fbbL5vlUwNNd2AEITVoEFkPPUSPiRP5/OWXAx2Opmmapl0SEZkIPAZk+stj5+swuEhHgHrFntf17yt3SqkeSqnp2dnZFdF8uTrfFJIffviBI0eO0Lt370qMSNM0LbgZDAYGDBjAqlWrWLx4McePH9f5LyqR7sAIUtapUzkSEkL/V17h1xJZcDVN0zStqhORzSLytr9sKYcmNwFNlVINlVIW4EFgcTm0+zvBOALjbFNIkpOTMRqN3HXXXQGISNM0LXg9+uijiAjDhw8HuOyWTw0k3YERpGwxMcxbuhSvCPd164YzJyfQIWmapmlapVBKzQW+BZorpQ4rpQaKiBsYAawAfgb+IyIVkvE6mEZgnE9ycjKdOnUiNjY20KFomqYFlQYNGtC5c2eOHTvGddddR61aZU3jpF0s3YERxBp36cLsZ5/lB4eDp9q3D3Q4mqZpmlYpRKSfiMSLiFlE6orIP/37l4lIM38Oi4kVeP2gG4FR0u7du/npp5/06iOapmmllJSUBKCnj1Qy3YER5Hq++ipjrr+exTt2cPLddwMdjqZpmqZVe9VhBMaiRYsA6NmzZ4Aj0TRNC059+/Zl6NChDBo0KNChXFZ0B0Y1MHHNGn688UbiRo2C7dsDHY6maZqmVWvVYQTGwoULadu2LfXr1w90KJqmaUHJZrPx7rvv6r+jlUx3YFQDppAQaixYgDs8nNc7dybn8OFAh6RpmqZp1VYwjcA42yokqampfPvtt3r6iKZpmhZ0TIEOQCsn8fFsnTCB54cMYdONN/KfgwdRBt0/pWmaVp2J241yu/EUFJB18iQuh4Mih8P3WFBA7chIom02cjIz2bJjB67CQm5s0YKwHj0CHXpQE5ElwJLExMTBgY7lYhVfhWTJkiWIiF4+VdM0TQs6ugOjGrnu8cd5ddEixixbxtv33stTCxcGOiRN07SgI16vrwMgLw+cTsIsFnA62bN7NwU5ORQVFODMz6eooIA4m41WV1wBTieffv01hQUFFDmdFBUWUlRUROu4OLrWr4+nsJDnv/ySIpeLIpcLl8tFkdtN95o1eTA+nlyHg/s2baLI4/mteL0Mj4piiN3O4YIC2qWmUiSCSwQXUARMAUbiW3Kj9Vm+lpnAY8AO4Bb/vv9FRNA6CEYOaOXjbCMwkpOTadSoEa1atQpARJqmaZpWeroDo5oZvWQJ39SpwzPJybR79106DBsW6JA0TdPOz+0Gp5OctDRy09Nx5uZSmJODMz8fiopo26ABOJ1s2LqVQ6mpOB0OnAUFOAsLCTMYePTqq8HpZPqGDexMS8NZVOQrLhf1rFYmNmsGTieDt25lR14eRR4PTq8Xp8dDosXCx5GR4HRyTWYmv3i9FBUL7R5gkX+7A3CiROgPAR/7t/8IOErUDwG6Agp4G7ACFqV8xWDgyuxsyM3FYDSS43RiMRiwmUxEhoRgNhqJbtAAGjXCLkKPLVuwmM2YTSbfo9lM4pVXQuPGXOF2839bt2K2WLBYrZj95frmzSEhgauKivjv/v2YQ0JodPXV5fe9u0wppXoAPZo0aRLoUC7aqREYubm5fPnll4wYMeKMURmapmmaFgx0B0Y1owwG/rVhA4lNmvDoE0+ws2dPTFdcEeiwNE2rosTrBbcb5XSSn55O+rFjFObkUJibS0F2NoV5edzYqBFWr5dtO3fyw65dFDocFDgcFBYUUFhYyPOJiVjdbj7bsYOl+/fjLCqi0OXC6XZT6Haz6sorUU4nLx06xEdZWRR6vRSK4BTBBGT5YxkKzC0RXy0g1b89CVhSor4x8Ohc31nzgG8Aq1KnyzU2G5jNYLWivF5C/J0DVpMJq8nEVTEx0K4dWCz027qVLLcbi8WC1WrFYrXSLD4eEhPBYuG9//0Pj8GANTQUS0gIVrud+Fq1oFkzMJv58dgxTDYbltBQLHY7FrudkIgICA/HYDRSeJ7vgx349jz10cD089THAE+cpz4SuPU89dqlCcYpJKcsX76coqIinf9C0zRNC0q6A6MaiqpfnwUff4yrf39Mjz4KK1aA0RjosDRNuwjuwkIKMjJwZGRQkJVFQVYWV4SHE2kykXbsGBu2bqUgL89X8vMpcDjo3bQpDUJC+PHAAWZs2UKB0+krRUUUuFz8vWFDrlKKBampjElNpdDjoVCEAhEKgf8BLYEPgKfOEtOvQH1gMfDiWeqf2LABq83GHo+HNQUFhBgMWI1GQoxGrEYjbrsdc1wcDYxGbkpPJ8Rsxmq1EmKxEBoSAt26gdXKHw8c4JbsbKw2GyGhoVhDQwkLD4cbbwSrlSlpaUz0eLCGhflKeDi2yEioUQOsVr64wN+583UAADx7gfoLZQtoqkc2aFVQySkkCxcuJC4ujptuuilAEWmapmla6VW5DgylVAzwKdAA333z/SKSWeKYNsC7QATgASaKyKeVG2nVdvX990NeHgwcyLbhw2n9/vuBDknTgpvXizcvj7SDB3FkZJCfno4jK4v8zEwSIiJoHBlJXmYmH61eTUF+Po78fBwFBTgKCrinTh06R0dz8ORJhn3/PY6iIhxuNwVuNw6Ph4l2Ow8A3+XlcaPH87tLfwrcD2zFN6WhpGZAA6U4YrHw76IibAaDrxiN2IxGnCJQowY1bDZuMBiwWa2E+DsQbDYbMR06QI0adM3M5J9HjhASGkqI3Y4tLIyQsDBqXnstREYyrLCQh9xubJGRhPiLNSLidMLg5/zlXB7zl3PpeoFvQeML1Guadn5FRUV8/vnn3HfffRj1BxuapmlaEKpyHRj4PgT7r4i8ppR61v98bIljHMCjIrJbKXUF8INSaoWIZJVs7LL2xz8yd84cHpo+naXx8dz18suBjkjTKo4IFBWRcegQuSdOkH/yJPmZmeSlpxNtMtGmZk3Iz+e9FSvIyskhPz+ffIcDR0EBN0RF8Vh8PJKXxx82bCDf5cLh8eDweMj3ehlsMPCqx0M+UPssl/4L8AqQBxTPOmPANzWg0Z49dI6LQ5lMnMjPJ9RsJsZmI9RiwWaxULNlS2jcmASvl1d27CA0NBSb3Y4tNBRbWBg3Xn01JCRwvdfLphMnsEVG+kpUFLboaMLi4iA0lLuUIv08L9HN/nIuLf3lXGL8RdMud8GUA6P4CIzVq1eTk5OjVx/RNE3TglZV7MDoyW/J0mcDqynRgSEiu4ptH1VKnQBq8NtUas2v14IFtKlbl/6vvMLmrl1p0LFjoEPSNNyFheQdP07u8ePknTiBNy+PljVrQl4eK775hl8PHSLP38mQl5dHLbOZUU2aQH4+Q777jh05OeS7XOS53eR7PNxoMDBfBDwe2gIHS1yvN7DAv/0ikI4vqaIdCFWK0PBwyMlBhYZiMxqJCAkh1GLBHhKCPSSEdo0bQ5s22G02pm3eTGh4OPaICEIjIrBHRdGwQQNo0oQaVitH8/MJjYnBFhuLOTT0jCR59YBN53ld4vF1hpxLBJB4Sa+0pmkVIRhzYCilSE5Oxm6306VLl0CHo2mapmmlUhU7MGqJyDH/diq+HG7npJS6HrAAeys6sGBki4lh/uefc+2tt9K1c2cGdenCkPHjib7hhkCHpgURd0EBpoICyM3l0K5dHNq3j9yTJ8lJTycnI4Oi/HyGXXMN5OUxc+NGvj54kNyCAvKcTnKdTkJF+LJGDcjLo1dGBou83jPabwbs9G+/hq/X8pQQ4EazmVFHjoDdjrOwELPBQN2ICOxWK2EhIbSOj4cOHSAsjL/u2IHLZMIeEUFYVBT26Gji69aFFi3Abme3y4UtNhZrZOTpqQ/FrTjP62AAhp+n3oivE0LTNK2qEREWLVpE9+7dsdlsgQ5H0zRN00olIB0YSqkvOftI7BeKPxERUUr9fgHz39qJBz4EBoiI9xzHPA48DpCQkFDqmINZo86dWfDmm4wdN45xK1YwdMUKaN6cr6+7DtMf/sCNf/wjBlNV7MvSysLrdpN3/Dg5R4+SffQoTaOjsRQU8NNPP/Hdtm3kZGWRm5NDTk4Oufn5vNmyJWGFhbz7yy/MOHKEXLebHLebHH+ixyLADEwGppW4lgkYOm8eymJhq1KsdrsJM5kIN5sJs1ioHRoKN98MYWH0PXiQ6woKCAsPJzwykrDISOJq1YKOHSEsjI8cDpTdTljNmthr1sRosZxxrVkX+Lr7X6A++uJfQk3TtGrj+PHjHD16VK8+ommapgU1VTI7daAppXYCt4jIMX8HxWoRaX6W4yLwfVA7SUTmXUzbiYmJ8v3335drvMEmfds2YteuheRkblm5kjVALYOBe5o1o9eDD3Lrk08SEhUV6DAve0V5eeQcOUL2kSPkpKaSfeIEV8fFEeP18suuXSz47juyc3LIzs0lJz+f7IIC/l6vHk2Liphz9CgjMzLIAYr/du/EN9LhLWB0sf02IMJgYEtCAvHR0cxxOPgsM5MIm43w0FAiwsKICA/nmTvvxBodzfbMTI4UFhIeF0dEzZqE16xJeO3aRNeti7JaK/FV0jStKlFK/SAil9Usp2C4r1i8eDE9e/YkMTGRLVu2kJaWRnS07srVNE3TqrZz3VdUxY/dFwMD8I0kHwAsKnmAUsoCLATmXGznheYT27o1tG4Nw4eTfOAAKW++SfKiRcz95RdmvPwyd0yYwLLevaFXL/L/8AfsdesGOuSgVJSXR/ahQ2QdPkzW0aNkHTtG88hIEkwmDv36K++tXk1WTg5ZublkORxkFRbySnQ0XdxuvkhPp5vT+bs2U4DuwM/4hipZgUiliDCZiDSbcRiN0LQpTevVY8DRo0SEhxMZGUlkTAyRsbHU6tgR4uP5owh9DQbCa9cmPD4eU0jIGdd51F/OpZW/aJqmXa6CKYnnKXv37uWWW27RnReapmlaUKuKHRivAf9RSg0EDuBbPRClVCIwVEQG+fd1AmKVUkn+85JE5McAxBu0ourXp9/UqfSbOhVnTg5f/d//YfnuO1i3jvR586gLdIiOpleXLvQcPZp6l1HeDPF6yUtNJfPAATIPHSLz6FHiTSaah4aSm5rK6ykpZGZnk5mTQ5bDQWZhIUPCwxkA7M7IoFlh4e/anIYvf0IGvmkYUUoRZTQSZbEQZbWi6teHZs1ophSv7NtHZFSUr/MhLo7IGjW4pk0bSEjg7tBQCsPCsEZEnDX29v5yLtHoaRSapmllEYxJPDMzM/X0EU3TNC3oVbkpJBUpGIZ6VgleLydWrGDKK6+QvHkzvxQVAXCtzca0Rx7hxieegFatoNjqClWRMyeH7EOHyD56lOxjx7C73VwVGQmZmUxZtIi09HRfJ0RuLpkOB7fZbIy22XBlZBCano67RHujgTeAHHwdAFFKEX2qAyIkhEFNm/Jgq1bk2GxM/flnovwjH6Jq1CCqdm2atWxJzcaNkchIsNvPmkBS0zQtWOkpJFXTqSkkAAcPHqRevXoBjkjTNE3TLiyYppBogWYwUPOOO3j1jjt4FdiZksKiqVNJXruWGjNmwIwZLK1Vi1V16nBP//7UadkSg9GI0WymQb16YDCQkZ1NgdOJwWRCGY0YDAaMZjOxsbFgMOAoLMTt8fxWbzRiMJmw2mygFIV5eWQfPkz2kSNkp6aSffw4FqeTTnXqQHY201auZE9qKtl5eWT7c0C0Mpv5e2QkZGfT5MSJ3y1L0weY79+eiG/N3WiliDaZiLZYcMfEwHXXYY6O5vlt2wiPjCQ6Lo7oGjWIrl2bRldeCS1bEh4VhSss7JyJTyMokY22hKrd7aNpmqZVR7Vq1dKdF5qmaVrQ0x0Y2gU1v+MOxtxxB2MAUlNhyRK2v/UW/9i8mSmbN58+zgY4/NsjgY9LtFMTOO7f7ocv2UlxjfhtLdxuwNcl6tsAW/zbs/Hlgog0GIg0m4k0mzFERMC110JkJMN27aLQZPJNw4iNJTI2lvqNGkG7dhAdzQGLhdAaNc45CmL8eV4Phe6E0DRN04JDTk4OAI0aNQpwJJqmaZpWdroDQ7s0tWvD4P9n787jbCz7P4B/rruP4XcAACAASURBVLPPPmdmGIxlmGEsZakRsi/hQaEIpeJRiqxpkSfpSVoeFUpCi5QkFCVlVLbIvm8TMsKYwZh9Pdvn98cZ87Nvc86cM+P7fr3u15xzn/u+ru+5Mb7ne677up7C2KeewrOnTmHNxx8jIyUFDrsdWqWApk0BhwODDh5Eq+RkkITD4QAdDph0OqBJE8DhwL/37kWrM2f+/3USQUajs8DgcGDYgQPo43A454AoVw5B5cqhXJUqQMOGQFAQNvn7Q6PXXzXMMdd5G36uvSpCCCFKGaVUDTgHzAWR7FW4rweArnAOpvuM5EoPhugS2dnZAICAgAAPRyKEEEIUnxQwxC0LqFQJ90+ceMXX2hZuV9P9Om33vs7rMnuEEELcvpRSnwPoBuAMyTsu2N8ZwDQAWgCfknz7am2QPApgkFJq8QX7lgJYqpQyA3gXQKkvYJynkXmXhBBClAFSwBBCCCFEafMFgOkAvjy/QymlhXPBp/sAnASwVSn1I5zFjLcuOf/fJM9co/1XCtsSQgghhBeRAoYQQgghShWS65RSkZfsvgfAkcKRFVBKLQDQneRbcI7WuC6llIJzOfdfSO643vFCCCGEKFkynlAIIYQQZUEEgBMXPD9ZuO+KlFKhSqmZABoppV4u3D0cQAcAvZRSz1zlvMFKqW1KqW1nz551UehCCCGEuBEyAkMIIYQQtx2S5wA8c8m+DwB8cJ3zZiulkgDcbzAY7nZjiEIIIYS4xG1VwNi+fXuKUuofFzcbBiDFxW0Kua7uItfVPeS6uodcV/dw13Wt5oY2b0YigCoXPK9cuM/lSC4DsEwp1bO05BUrVqyA8w6Z25b8PnEPua7uIdfVPeS6ukeJ5hW3VQGDZDlXt6mU2kYy1tXt3u7kurqHXFf3kOvqHnJd3aMMX9etAGoqparDWbjoC+ARd3YoeUXpIdfVPeS6uodcV/eQ6+oeJX1dZQ4MIYQQQpQqSqlvAGwEEKOUOqmUGkTSBmAYgDgABwEsJLnfk3EKIYQQwrVuqxEYQgghhCj9SPa7yv6fAfxcwuEIIYQQooTICIzim+3pAMooua7uIdfVPeS6uodcV/eQ6+rd5M/HPeS6uodcV/eQ6+oecl3do0SvqyJZkv0JIYQQQgghhBBC3DQZgSGEEEIIIYQQQgivJwUMIYQQQgghhBBCeD0pYBSDUqqzUuovpdQRpdRYT8dTFiilqiilViulDiil9iulRno6prJEKaVVSu1USv3k6VjKCqVUsFJqsVIqXil1UCnVzNMxlQVKqdGFvwP2KaW+UUqZPB1TaaSU+lwpdUYpte+CfSFKqV+VUocLf5o9GaP4f5JXuJ7kFe4jOYV7SF7hHpJXuIY35BVSwLhFSiktgI8A/AtAXQD9lFJ1PRtVmWADMIZkXQBNATwr19WlRsK5vKBwnWkAVpCsDaAB5PoWm1IqAsAIALEk7wCgBdDXs1GVWl8A6HzJvrEAfidZE8Dvhc+Fh0le4TaSV7iP5BTuIXmFi0le4VJfwMN5hRQwbt09AI6QPErSAmABgO4ejqnUI5lEckfh4yw4f2lHeDaqskEpVRlAVwCfejqWskIpFQSgFYDPAICkhWS6Z6MqM3QAfJRSOgC+AE55OJ5SieQ6AKmX7O4OYG7h47kAepRoUOJqJK9wA8kr3ENyCveQvMKtJK9wAW/IK6SAcesiAJy44PlJyH+ILqWUigTQCMBmz0ZSZkwF8CIAh6cDKUOqAzgLYE7hMNpPlVJ+ng6qtCOZCOBdAMcBJAHIILnSs1GVKeEkkwofJwMI92QwoojkFW4meYVLSU7hHpJXuIHkFW5XonmFFDCEV1JK+QP4DsAokpmejqe0U0p1A3CG5HZPx1LG6ADcBeBjko0A5ECG4xdb4b2T3eFM5CoB8FNK9fdsVGUTnWupy3rqosyTvMJ1JKdwK8kr3EDyipJTEnmFFDBuXSKAKhc8r1y4TxSTUkoPZ5LxNcnvPR1PGdEcwANKqWNwDktup5Sa59mQyoSTAE6SPP9t3mI4Ew9RPB0AJJA8S9IK4HsA93o4prLktFKqIgAU/jzj4XiEk+QVbiJ5hctJTuE+kle4h+QV7lWieYUUMG7dVgA1lVLVlVIGOCeC+dHDMZV6SikF531/B0m+7+l4ygqSL5OsTDISzr+rq0hK5bmYSCYDOKGUiinc1R7AAQ+GVFYcB9BUKeVb+DuhPWQSM1f6EcAThY+fAPCDB2MR/0/yCjeQvML1JKdwH8kr3EbyCvcq0bxC587GyzKSNqXUMABxcM5k+znJ/R4OqyxoDuAxAHuVUrsK940j+bMHYxLiWoYD+LrwA8dRAAM9HE+pR3KzUmoxgB1wriCwE8Bsz0ZVOimlvgHQBkCYUuokgAkA3gawUCk1CMA/AB72XITiPMkr3EbyClHaSF7hYpJXuI435BXKeZuKEEIIIYQQQgghhPeSW0iEEEIIIYQQQgjh9aSAIYQQQgghhBBCCK8nBQwhhBBCCCGEEEJ4PSlgCCGEEEIIIYQQwutJAUMIIYQQQgghhBBeTwoYQogSo5QKVkoNLXxcqXBJKyGEEEKImyZ5hRC3H1lGVQhRYpRSkQB+InmHh0MRQgghRCkneYUQtx+dpwMQQtxW3gYQpZTaBeAwgDok71BKDQDQA4AfgJoA3gVgAPAYgAIAXUimKqWiAHwEoByAXABPkYwv+bchhBBCCC8geYUQtxm5hUQIUZLGAvibZEMAL1zy2h0AHgTQGMAkALkkGwHYCODxwmNmAxhO8m4AzwOYUSJRCyGEEMIbSV4hxG1GRmAIIbzFapJZALKUUhkAlhXu3wugvlLKH8C9ABYppc6fYyz5MIUQQghRCkheIUQZJAUMIYS3KLjgseOC5w44f1dpAKQXfssihBBCCHEtklcIUQbJLSRCiJKUBSDgVk4kmQkgQSnVGwCUUwNXBieEEEKIUkXyCiFuM1LAEEKUGJLnAGxQSu0DMPkWmngUwCCl1G4A+wF0d2V8QgghhCg9JK8Q4vYjy6gKIYQQQgghhBDC68kIDCGEEEIIIYQQQng9KWAIIYQQQgghhBDC60kBQwghhBBCCCGEEF5PChhCCCGEEEIIIYTwelLAEEIIIYQQQgghhNeTAoYQQgghhBBCCCG8nhQwhBBCCCGEEEII4fWkgCGEEEIIIYQQQgivJwUMIYQQQgghhBBCeD0pYAghhBBCCCGEEMLrSQFDCCGEEEIIIYQQXk/n6QBKUlhYGCMjIz0dhhBCCFHmbN++PYVkOU/HUZIkrxBCCCHc42p5xW1VwIiMjMS2bds8HYYQQghR5iil/vF0DCVN8gohhBDCPa6WV8gtJEIIIYQQQgghhPB6UsAQQgghhBBCCCGE15MChhBCCCGEEEIIIbzebTUHxu2IDgcOxcWh1sGDUPv348eEBCxMSIDNbofd4YDd4YDN4cDXDRogAMCnx4/j6+Rk2M6/RsLucGBTzZrQOxx4PTkZ8zIynPtJOAAEaLXY36gRVEgIPk9NxY7cXJiDgmAOCYE5NBRhFSvi/o4dAbMZaUpBX64c/MqXh9JI/UwIIYQQQpQ+f//9N/r27Yv27dvj+eefR1hYmKdDEuK2IAWMMig3JQWrp0/Hz999h1/i45Fgs2EXgAYVKiDRYsGmzExolYJWKeg0GmiVgu30acBkgt1igYOEXqOBj04HrUYDrUYDVq0KGAyoYjIh9swZaLVaaDUaaDQaOCwWqIAA4MwZ7Dx8GPOzspBOgoXxVACQ9OabAIAnACyD8y+eWSmYdTrc4e+P7+65BzCb8eHJk0h2OBASEoKwChUQFhGBytHRaNCsGRAaCgYGSuFDCCGEyymlqgL4AEAqgEMk3/ZwSEIIL5WTk4OePXviyJEj2L59Oz766COMGDECY8aMQUhIiKfDE6JMUySvf1QZERsby7I6W7gtPh66X3/Fxq+/RtvNm1EAwBdA+/BwdGnbFr1eeAFhd91VYvE4bDZkJiYi7Z9/kHfmDOqazUBaGn5auxYHjx5FWloa0jIykJaVhVAAH1WoAKSlof2xY1hjs8FxQVv3AthQ+LgRgCSNBmF6PcJMJoT5+6N5lSoY3a4dEBaGJceOwRgairAqVRAaGYmw6GgERkRI0UMIIdxMKbWdZKyH+v4cQDcAZ0jeccH+zgCmAdAC+PRaRQmlVFcAZpLzlFLfkuxzvX7Lcl4hhLgykujXrx8WLVqEX375BZUrV8brr7+OhQsXwt/fH6NGjcLo0aNhNps9HaoQpdrV8gopYJRS+enpWPvRR/h50SL8cuAAHrNaMR5AdnQ0xgcEoEvv3mg5ZAhMwcGeDvWm0eFA5smTOHf0KFISEqDJzESs2QykpOCdn37C0aQkpGRmIiUnB+fy89Fco8EsiwWw2xEK51dnF3pMKXxZoQIQGopOiYnw8/FBiL8/Qs1mhIaEoNmdd6Jls2ag2YwD6ekIqVYNIVFRMAYEeOLtCyFEqeThAkYrANkAvjxfwFBKaQEcAnAfgJMAtgLoB2cx461Lmvg3ADuAxQAI4CuSc67Xb1nKK4QQN+bdd9/FCy+8gLfffhsvvfRS0f59+/bhv//9LxYvXoygoCCMHj0ao0aNQlBQkAejFcK9jhw5AoPBgKpVq7q8bSlgoAwkGgkJ4M8/4+E33sDy5GTkATABaFuuHJ584AE8+PLLQFSUp6P0DBLIyMCR7duRcuwYzp04gZTERKQkJyPGZEI3sxm2M2fQfs0anMvPR6rVinMOBywAXgTwDoAMABeWe/wAhGi1GFuxIobGxCAtIADjDh1CqNmMkNBQhJYvj5AKFdDorrtQOSYG9sBAWHx94SNDB4UQtyFPFjAK+48E8NMFBYxmAF4j2anw+csAQPLS4sX5858HsIXkOqXUYpK9rnLcYACDAaBq1ap3//PPFZepF0KUQb/99hs6deqEBx98EAsXLoRS6rJj9uzZg9deew1LlixBcHAwxowZgxEjRiAwMNADEQvhPiTRsWNHHDx4EAkJCdDr9S5t/2p5hcyB4cUKMjOxftYs/Pzttzh16BC+ycqCAhASEIBB9eujy0MPoc2wYfKBGQCUAoKDEd2+PaKvcogOwNoLntPhQG5KChwpKYDFAmNSEr5duRKpp0/j3NmzSE1Lw7n0dFQ2m4G8PKQePYrFx44htXDy0vM+BvAMgD0A7gJgBBCs0cCs0yHYYMDEunXRIToaRzUafJ6QALPZDHNYGMzlyyM4PBwNY2NhrlYN9oAAaIKCoLRat1wiIYS4zUQAOHHB85MAmlzj+BUAXlNKPQLg2NUOIjkbwGzA+cVI8cMUQpQGx44dQ58+fVCnTh3MmTPnisULAKhfvz6+//577Ny5E6+99hrGjx+PKVOmYMyYMRg+fDgCZISvKCPi4uLw22+/YcqUKS4vXlyLjMDwNvn5+OHFFzFn0SL8lpyMHAAGAG1DQ7Fs3Djou3UDatZ0fmAXHnF+fo/UhASc++cfVDEYUEGjQWJCAr5as8Y5v0dmJtKyspCWl4fxYWFobbNh5dmz6JyVhUv/xcUB6AjgOwAPAwhWCsFaLYL0egQZjfioUSPUrVIFW/Pz8WNiIoKCgxEYHIyg0FAElSuHFk2bwr9iReQaDLD7+cG/QgWZ80MIUeK8cARGLwCdST5Z+PwxAE1IDnNBX/cDuD86Ovqpw4cPF7c5IYSXy83NRfPmzZGQkICtW7eiZs2aN3zutm3b8Nprr2H58uUIDQ3FCy+8gGeffRb+/v5ujFgI97Lb7WjYsCFyc3Nx8OBBGAwGl/chIzC8XH56OtTnn8P4/vtISUzELq0Wj9erhy4PPoi2w4bBr3x5T4coCml0OgRXq4bgatVQ44L9EQDGjh171fM6ArDZbMg6dQppx48jPTERaYmJaBAWBthsqHXwIMZt2uSc3DQzE5l5ecjIz4fu1Cng6FHsPHMGb+blXTT6AwAOA4gG8BGct8MoAIEAggqLIKsaNEBYWBiWZGRgZWoqAvz8EBAQgMDAQAQEB+Ox++6DPiQE/+TkIBNAQPnyCAgPR0DFijDItwRCiNIrEUCVC55XLtxXbCSXAVgWGxv7lCvaE0J4L5IYPHgwdu/ejWXLlt1U8QIAYmNj8dNPP2HLli2YMGECxo4di/feew8vvvgihg4dCl9fXzdFLoT7zJ07F/v27cO3337rluLFtcgIDA/LS03F7CefxDs//ICxDgdGtGwJx/jxUO3by7fo4jJ0OJCdnIzMU6eQceoUMpKTcVeFCjDm5WHr7t1Ys2cPMtLTkZmVhYzsbGTk5uLrmjXhl5ODN48dw5S0NGSRKLigTSuclcwhAGZe0l8ggIzQUCAgAONzcrA6Px8BRiMCTCYE+PigQnAwJnXqBPj7Y8Xx4zhtscA/OBj+wcHwM5thDg9HvQYNAD8/5Gm1MIaEQKOTuqkQZZEXjsDQwTmJZ3s4CxdbATxCcr+r+vTGvEII4VrTpk3DqFGjMHHiRLzyyivFbm/jxo2YMGECfv31V4SHh+Oll17CM888Ax8fHxdEK4T75eTkoFatWqhSpQo2btx41dupiksm8YR3JRq5KSmY9eST+N+yZUh2ONA6KAhvTJyIFsOHezo0cRuw5uYiKykJ2adPo2pgIJCZiT27d+PQkSPISktDVkYGsjIzYcvLw4T69YGsLLy9fTtWJiUhy2JBls2GLJsNwQD2kwCJznDeDnOh2gAOFj5uBeAPOJf39VMK/lot7vHzw4I6dQB/fzx/7BiSbTb4+/jA39cXfn5+qB0RgX733gv4+uLnQ4dg1+vhFxwM36Ag+JnNCKtUCRUjIwE/P9iNRmiNxhK7hkKIi3l4FZJvALQBEAbgNIAJJD9TSnUBMBXOlUc+JznJRf3JLSRC3AbWrFmDDh06oFu3bvj++++hceGXi+vXr8eECROwatUqVKxYEWPHjsXgwYNhMplc1oc7FRQUYMOGDUhMTERYWBjCwsJQrlw5hIWFwc/Pz20faoXnvfHGGxg/fjz++OMPtGjRwm39SAEDXlLAyM0FZs5E93Hj8GNBAdoGB2PCa6+h9ciRno1LiFvlcDgnOT15EulJSchOSUF2aipyUlOhs1jQtnp1ICcHX61di7+TkpCdk4Oc3Fxk5+Whml6PN6pVA7Kz0X3fPuzNy0OO3Y5sErkAOgP4pbCbKnDOwHehXgAWFT4OAZADwFcp+CkFX60WfUNC8HpUFODri17798NgMMDHYICvyQQfkwltoqPRpUED2AwGzNm5Ez5+fvANCICPvz98g4JQo0YNVImMhN1gwOmcHPiYzfAxm2EMDJQRUkJcwtMjMDzBK/IKIYRbnDhxAnfffTdCQkKwZcsWt60ism7dOrz66qtYu3YtIiIi8PLLL+PJJ5+E0cu+lCGJv/76CytXrkRcXBzWrFmD3NzcKx5rMpkuKmhc6eeFj0NCQqCVSexLhdOnTyM6OhodOnTAkiVL3NqXFDDg2UQj58wZzBw0CP03bUJ4Sgo2x8bC8sQTaDms2HOJCVEmOWw2WDMzYbTbgZwc/LV/P7LOnUNOWhpyMzKQk5GBCj4+aFG5MpCTg7dWrEBGVhZy8/KQm5+PnPx8tA4OxjPlysGRk4O7du1Cjt2OXLsdeSTySAwDMBmXL6F73msAJsA59rzyBfsVAB8A7/j6YlhoKBJ0OvRISoJJq4VJp4NJp4OPXo9nY2JwX/XqOG61YsqBAzAVFk5MJhNMPj74V6NGqFmtGs5aLNj8zz8w+fsXbT5BQagWGQn/kBBYNBrkkzAFB0Pv6yvFE+GVbqcChozAEKJsy8/PR8uWLfHXX39hy5YtqF27ttv7XL16NV599VWsX78eGo3GuWqd2YyQkJCi7dLnl+4zm80unY8gJSUFK1asQFxcHFavXo3EROc0QpUrV8Zdd92FO+64A61atUJQUBBSUlJw9uzZop8XPj7/MzMz84r9KKUQEhJSVNAIDQ2FyWSCTqeDXq+HTqdzyWONRgOHw3HRZrfbL9t3MxtJBAYGXvbnEhISgqCgIJeO2vEGQ4cOxezZs7F//37ExMS4tS8pYMAzBYzs5GTM+Pe/8e6KFThLYmadOnj6k0+A5s1LNA4hxOVot0MVFMCRk4NTx44hLz0duWlpyMvMRF5mJqoFBaFGUBCyUlMxf9065OXkIC83F3l5ecjLy8P9lSujldmM4ykpGLltG/KsVuRbrci32ZBvt2NCSAh66nTYkpWFDmlpyIdzzpHzFsE5imQlgE5XiO8XOEehfA/goQv2GwGYAKwwm9E0IAA/WK14JTUVJq0WxsIiilGnw/RGjVA9NBSrUlOx8MQJmAwGGA0GGI1GGAwGDGvVCsHBwdh1+jR2JCXBaDLB4OMDo48PDD4+aHfPPTD4+eFUZibO5ebC6OcHg58fjP7+MAYEwBweDmU0AjqdrIwkbqsCxnkyAkOIsock/v3vf+OLL77A0qVL0b179xLte9WqVVi9ejXS0tKQmppatJ1/np6ejmt9fvP3979i4SM4OBg2mw25hXlMbm7uRY/z8vKQk5ODjIwMZGdnw2KxXLOf80wmE1auXImWLVte91iLxYKUlJTLChuX/jx37hwKCgpgs9lgs9lgtVov+nnhY2+m0WgQHBx80Z9FaGjoFYsdF27BwcHQeeGccfHx8bjjjjvw9NNP46OPPnJ7f1LAQMkmGszMxOQ+fTA5Lg4pJDqFhmLCm2+i2eDBJdK/EMI72S0W5GdkID89HX4aDUwAMs+exeHDh5GXlYX8rCzkZWcjLzsbrWrUQAUfHxw6fhzLdu5EQUEB8vPznT8tFoyuWxeRBgNWHz+O6fHxyLdaUWCzId9mQ4Hdjm8rV0YNEp+eO4f/pKWhoHAC1wIABHAczltzJgJ49QqxpgIwA3gJwP+u8LoFgB7AcACfwLnks0EpGJSCv0aDQ5GRgMGAV8+dQ1x2NgxabdEWZjTiq6ZNAYMB0//+G3syM2HQ62HQ66HX6RAeGIjnWrUC9HosPnAASbm50BsMMBiN0BuNKBccjM6NGwN6PTb9/TdybDYYTCbofXygN5kQbDYjKioK0OuRlJoKGAww+Po6X/f1hd7XFzqjUQovLiQFDCFEWTBjxgw8++yzGD9+PF5//XVPh3MZu92OjIyMqxY4rrYvPT3deSutjw98fX2Lfmo0GmRnZyM9PR1nz56F1er8qqVixYqoVasW6tWrh5iYGAQEBFx2rlarxYABA5CUlIR169ahQYMGJXotSMLhcFyxsHGlfXa7HVqtFhqNpmi79PnNbgCQmZl52bW/0nbu3LmL/jyupUOHDli+fHmJr/BxLT169MCqVatw5MgRlC+BFTKlgIGSSTQKzp6F8ZNPgPfew8OpqcguVw6vvvkmmj75pFv7FUKIG0WHA7aCAujsdiirFZkpKUg7cwYFOTmw5OSgIDcXlpwc3BMVBa3djn2HDiH+2DEU5OXBkpeHgoICFOTlYUTTplBWK37Yswcbjx+HxWKBxWqFxWqFcjgwKzYWsFjw7oED+P3MGVjs9qItSKPByqpVAYsF/z51Cr/k5cFKwkLCAiASQHxhvG0ArL3kPTQCsKPwcSyA7Ze83uqCc2LgXIriQl0ALAcAnQ417XacIaFTCvrCraevLz6oUAHQ69Hi2DHkA9BrNNBpNNBrNLg/PByjo6MBnQ59tm+HVquFrnDTa7W4r1o19IqJQQGACZs3Fw1hPb+1jIpC81q1kOtwYN727dDp9f+/GQxoGBWFWtWqIcdqxZ9//QWdwQCtwQCdwQCdXo/qVauiXLlyyLfb8c/p0879hRPZ6oxGBJvNMPn7w64ULA4HdEYjdCYTlBvvMb6dChhyC4kQ7kEScXFxaNq0KYKDr3Rzp3utX78ebdu2RceOHbFs2bIyN/wfcK4gsXbtWsTFxSEuLg5//fUXACAiIgKdOnVCp06d0KFDB4SEhNxQe8ePH0fz5s1htVqxYcMG55cH4rrsdjvS09OvWOg4evQopk6diueffx6TJ0/2dKgAgD/++AOtWrXCG2+8gf/85z8l0mepK2AopToDmAbnzOGfknz7kteNAL4EcDeAcwD6kDx2rTbdWcDIOH4cH/7735i6ahXWkajbtSssL78Mg9wqIoQQN48E7HbAakV2Whrys7JgzcuDNS8PltxcaB0OVA8PB6xW7DlwAOnp6bDm5zu3ggIEG41oWbMmYLFg0caNOJeRAUtBAawWC2w2G6oHBuLh2rUBqxWvr12LtLw8WAu/pbHa7bgnJATPVK8O2Gzo8+efyLZaYXM4YLXbYXU4cH9QEF4sXx4OiwV3/PUXrCTsJKwkbCSeNhrxmtGITKsV5XNyYANgv+Dt/RfOUS+Xzq9y3nsAnoOziFPnCq/PAjAYwDYAja/w+nwA/QCsBtDugv0aADtDQlD/3Lmb/AO5vtupgHGejMAQwnXsdjueeeYZfPrppwgLC8OkSZMwaNCgEpvcMTExEXfffTcCAgKwdetWjxRQ3CU5ORnz5s3DL7/8gvXr18NiscDHxwetW7dGx44d0alTJ9SpU+eWVw45ePAgWrZsicDAQGzYsAEVK1Z08Tu4/QwZMgQzZ85EXFwcOnbs6NFYSKJp06ZITEzEoUOH4OvrWyL9lqoChlJKC+cXZvfBufDAVgD9SB644JihAOqTfEYp1RdAT5J9rtWuyxMNhwMZJ05g2sCBmLJmDdJJdAsPx+Tp01G7Vy/X9SOEEKLUo8MBu8UCW14eNA4HDBoN7AUFOH3qFGwFBbAVFMCanw+bxYLwwECE+fsjNycHOw8cgM1qhc1igb3w5x1VqqCq2YxzaWlYuXOn8/XCzW6zoX10NGqGhuKfM2fwzY4dsBcOo7XZbBjWvDnC3377+gHfJClgiNtNWloazGazp8MoE2w2G5544gnMnz8fQ4cOxZ49e7B+/Xo0atQI06ZNu6H5FYqjoKAAbdq0wd69e7F582bUq1fPrf2VBJJYvXo1Zs6ciSVLlsBmFz7sBwAAIABJREFUs+HOO+9Ep06d0LFjR7Rs2dKlS7Zu2bIF7dq1Q40aNbB27Vr5t1FMubm5aNy4Mc6dO4c9e/aUyC0bV/Ptt9+ib9+++PzzzzFw4MAS6/eqeQVJr9sANAMQd8HzlwG8fMkxcQCaFT7WAUhBYUHmatvdd99NVypo3Jh+zlvJ+UCFCtw2b55L2xdCCCFKCwDb6AU5RElsAO4HMDs6OtpVl0+UMitWrKBGo+H06dM9HUqpl5+fz549exIAJ02aRJJ0OBxcsGABq1SpQgDs27cvjx8/7rYYBg8eTABctGiR2/ooKampqZwyZQpjYmIIgGazmc899xz/+usvt/f966+/Uq/Xs3nz5szJyXF7f2Xd7t27aTQa2bVrVzocDo/EkJ+fz+rVq7N+/fq02Wwl2vfV8gpvvbErAsCJC56fLNx3xWNI2uBcCTH00oaUUoOVUtuUUtvOnj3r0iCz7HbkFD7+Jz3dOeRZCCGEEGUayWUkBwcFBXk6FOEBSUlJ6NOnDxwOB8aMGYPs7GxPh1Rq5ebmonv37liyZAmmTZuGcePGAXAuq9mnTx/Ex8fj1VdfxdKlSxETE4PXX38deXl5Lo3hk08+wezZszF27Fj0KqUjqEli8+bNGDhwICpVqoTRo0fDbDZj7ty5SExMxHvvvYdatWq5PY4OHTpg/vz5+PPPP9G7d++iCUHFralfvz4mT56M5cuX48MPP/RIDDNmzEBCQgImT55cYrdzXdeVqhqe3uBcWfDTC54/BmD6JcfsA1D5gud/Awi7VruuHoFBkju/+YaRWi1ROBLjvpAQ/rVkicv7EUIIIbwZbqMRGOc3d+QVwrvZ7Xa2adOGSikajUYCYJs2bTwdVqmUmZnJVq1aUSnFTz/99JrHJiQksHfv3gTAatWqcdGiRS75Rnrjxo00GAzs2LFjiX+77ApZWVmcPXs2GzVqRAD08/Pj008/zZ07d3o0rlmzZhEAH330Udrtdo/GUto5HA5269aNBoOBu3btKtG+U1NTaTab2bFjxxLt97yr5RXeOgIjEc7V/c6rXLjviscopXQAguCczLNENezbF3/n5+Pdbt1gAPBbaipSe/YEevSATe6LFUIIIYQoM9555x2sWbMGJPHLL7+gatWqWLNmDaZOnerp0EqVtLQ0dOjQARs2bMDXX3+NQYMGXfP4yMhILFy4EKtXr0ZQUBB69+6Ndu3aYc+ePbccQ3JyMh566CFERETgm2++8Z5vl2/Avn37MGzYMERERGDw4MGw2WyYMWMGTp06hZkzZ6Jhw4YejW/w4MGYNGkSvv76a4waNer8l83iFiil8PnnnyMkJAT9+vVDbm5uifX95ptvIj093WtWQilypaqGpzc457Q4CqA6AAOA3QDqXXLMswBmFj7uC2Dh9dp19zclCX/8wVk1a5IAqdWyO8CeFSty17ffurVfIYQQwtNwG43AgMyBcVvasGEDNRoNNRoNH3vsMZLktm3bCIBKKS5fvtzDEZYOp0+fZoMGDWgwGLh06dKbPt9qtXLGjBkMCQmhRqPhkCFDmJKSclNtFBQUsEWLFvTx8Snxb7VvVX5+PufNm8cWLVoQAI1GI/v3788NGzZ4bH6Ea3E4HBw9ejQB8PXXX/d0OKXeypUrCYBPP/10ifSXkJBAg8HAAQMGlEh/V3K1vMLjScDVNgBd4FyJ5G8A/ync9zqABwofmwAsAnAEwBYANa7XZokM9XQ4yNmz+ZvJRANAU+GtJQ9WqsTdCxe6v38hhBDCA26nAsb5TW4huX2kpqaySpUqNJlMDAoK4unTp4tee+ihh6jRaOjr68tt27Z5MErvd/LkSdauXZs+Pj6Mi4srVlvnzp3j8OHDqdVqaTab+cEHH9Bqtd7QucOGDSMAzp8/v1gxlIQjR47wxRdfZFhYGAEwKiqKkydP5tmzZz0d2nXZ7XY+/vjjBMAZM2Z4OpxS74UXXiAAfvfdd27vq1+/fvTx8eGJEyfc3tfVlLoChju2kkw0jm/axH8V/qKpqtUWrVYy9+67yd27SywOIYQQoiRIAUOUVQ6Hgw8++CA1Gg0BcObMmRe9/tdff1Gj0TAgIIAVKlRgQkKCZwL1ckePHmX16tUZEBDAdevWuazdvXv3sn379gTAevXq8bfffrvm8XPmzCEAjhkzplj92u12zpkz56JilqtYrVYuWbKEnTp1IgBqtVr27NmTK1euLHVzSlgsFt5///1USnHBggWeDqdUKygoYGxsLM1ms1tX5dm6dSsBcNy4cW7r40ZIAcMDiYbDbuecQYMYBNAHYJewMJ728yMBbmvXjrsXLy7ReIQQQgh3kQKGKKtmzJhBAPT392eTJk2u+AFy0KBB1Ov1DAwMZJ06dZiamuqBSL1XfHw8IyIiaDabuWXLFpe373A4uGTJElavXp0A2LNnT/7999+XHbd161YajUa2a9fuhkdrXM0vv/xCALzrrruYlZVVrLZI54iSpUuXcvTo0axcuTIBMCIigq+99hpPnjxZ7PY9KTc3ly1btqRer+eKFSs8HU6pdujQIfr5+bF169ZumXjW4XCwdevWLFeuHDMyMlze/s2QAoYHE43E7dt5f3g4pwNk48bk0KHsULhySa+ICO6RQoYQQohSTgoYoizavXs3jUYjq1SpQo1Gc9XVHf755x8aDAZ27dqVBoOBrVq1Yn5+fglH6512797N8uXLs3z58tzt5lHIeXl5nDRpEv38/Gg0Gjlu3Lii4sLp06dZpUoVVqtWzSW3XwwcOJAmk4kajYb333//TX+YPHPmDBcvXszhw4ezfv36VEoVzW3RuXNnLlmypNhFFm+Snp7OBg0a0NfXlxs3bvR0OKXaF198QQB84403XN72jz/+SACcPn26y9u+WVLA8HCi4bDb6fjqKzIkhF/rdHy1VSv+p3lzBhTeWtK7cmXuk+VXhRBClFI3UsAAEHKt7Xrne8smk3jeHrKzs1m7dm2GhIRQKcVRo0Zd8/iRI0dSq9Xy/fffJwD27du31A33d7XNmzfTbDYzIiKC8fHxJdbvyZMn2b9/fwJgpUqV+NVXX7FNmzY0mUzcvn17sdsvKChgcHAwH3vsMU6fPp0AOHz48Guek5SUxAULFnDIkCGsW7cuUfgZwMfHh+3bt+frr7/OtWvXMi8vr9jxeaukpCRGRUUxJCSE+/bt83Q4pZbD4WDfvn2p1Wr5559/uqxdq9XK2rVrs1atWrRYLC5r91ZJAcPDBYwiSUkcVK0aAbCxnx/Xz5jBV1q0YADADwDy4YdJ+QcthBCilLnBAkZC4SpjCQDsAFLgXALdDiDheud72+YVeYVwm0GDBhVNmhgREcHMzMxrHp+cnExfX1/269ePb7/9NgHwxRdfLKFovc/atWsZEBDAGjVq8OjRox6J4c8//2RsbGxRseDLL790Sbs//fQTAXDZsmUkWbTaxtSpU4uOOXHiBOfNm8ennnqKtWrVKorB39+fnTt35ltvvcUNGzawoKDAJTGVFkePHmXFihVZqVIlmS+mGNLT0xkZGcnIyEimp6e7pM2ZM2cSAL///nuXtFdcUsDwokTDYbfz21GjGKYU9QAntm/P5D17mPfSS6S/Pz8D2MzfnxPbt+e2efNoL0PDx4QQQpRNN3MLCYBPAHS54Pm/AMy60fO9ZfOWvEK43vz58wmAHTp0IAAuWrTohs4bN24cAXDXrl0cMmQIAfCjjz5yc7TeJy4ujj4+Pqxdu7bH52+w2+2cO3fuZZOvFsfjjz/OoKCgouKDzWZjp06dqJRiu3btWKNGjaKCRVBQELt168bJkydzy5YtZeq2kFu1Z88eBgcHs2bNmm6ZBPV28eeff1Kr1bJfv37FXko3MzOT4eHhbN68udcsyysFDC9MNM4cOMA+VaoQAFdGRZG7dpEpKZzdvTsb+/kV/eIL12g4qGZNOr79lkxL83TYQgghxGVusoCx90b2efvmbXmFcI0jR44wICCAd999NwMCAti5c+cbTuhTU1MZFBTEBx54gFarld26daNGo+EPP/zg5qi9x5IlS2gwGNigQYMy+eE0Pz+fAQEB7NKlC2fPns3HHnuMVatWLcrbAbBNmzacMmUKd+zY4ZaJFsuCDRs20MfHh40aNfL4ZJGl2cSJE50rXc6de83jMjIy+NFHH111tMarr75KAF41P4kUMLw40dj8zjtkeDip03HtE0+woHCyoeS9ezl38GD2rVqV9+v1zj8urZajIyL4ZqdO3LVwIR23+b2VQgghvMNNFjDiALwCILJw+w+AuBs931s2b80rxK07v0xhcHAwu3btSpPJxCNHjtxUG5MmTSr6IJCdnc3GjRvTx8eHmzdvdlPU3mP+/PnUarVs0qRJqV+JpaCggPv37+f333/Pt956iwMGDGCzZs3o7+9/UbGiXLly7NWrFz/88EOuXr2a1apVY4UKFXjs2DFPvwWvt3z5cup0OrZu3bpMz/3hTjabja1ataK/vz8PHz58xWPWrVvHyMhIAuArr7xy2euJiYn09fVl79693R3uTZEChrcnGikpPPnggzQAvNNk4u5LhypareSGDbSPG8emvr5FvzQraTQcVKsW177+OinVSyGEEB5ykwWMEADTAOwEsAPA1NI0ief5zavzCnFLxowZU5TkA+DEiRNvuo2srCyWL1+e7dq1I+mcG6N69eosV67cFZf2LCs+/fRTKqXYunXr684X4i0cDgeTkpK4Zs0azpo1i8899xy7du3KqKgoajSaiwoVFStWZJs2bRgdHU0fHx/+8MMP/Pvvvy8bnbN//34GBQWxXr16LpuboCz7+uuvCYA9evSQ22tu0fHjx2k2mxkbG3vRnCoFBQUcO3YslVKsUaMG77rrLkZERFw2KujJJ5+kXq+/6WKtu0kBo5QkGsvGj2cFjYa+AL+5xmzGp3bu5OcDB7J35coMAvgOQOp0TG/Zkv/r2pX7li6V0RlCCCFKzA1O4vlV4c+R1zu2NGylIa8QN2758uUEwMGDB7NGjRqMiYm55aVQp06dSgD87bffSJLx8fEMCQlhrVq1mJKS4sqwvcK0adMIgJ07d2ZOTo6nw7mM1Wrlnj17uHDhQk6cOJH9+/dn48aNGRgYeFGRwmQysX79+uzduzdfeeUVfvXVV9yyZUvRLQ65ubn09/fnoEGDrtnfb7/9Rp1Oxw4dOnjFag7e7oMPPiAADhw40GvmXyhtvvvuOwLgSy+9RJLct28fGzZsSAAcNGgQMzMzi45Zvnx50Xn79u2jRqO57ipL1+KuiWilgFGKEo1TO3eyeUAAAXDM3XfTcZ1ffJacHGavWEG+9BJ/KRweBIBVtFo+Xbcufxg3jjll8B5EIYQQ3uMGCxgHAFQCsBuAubQuo3p+Ky15hbi+xMREhoWFsX79+nz55ZcJgL///vstt5eXl8cqVaqwSZMmRR/I/vjjDxqNRt57773Mzc11Veged/6WmZ49e95ywcddHA4Hly1bdtEqIABYuXJltm/fnkOHDuW0adO4YsUKHjt27LrL3n7//ffOuetWrrxu33PmzCn68Cgfyq/v/BwML7zwgqdDKbUGDx5MABwyZAiNRiPDwsK4ZMmSotcLCgpYvnx59uzZs2hfly5dGBQUdEuFVZvNxpEjR7JTp05uKdS5vIABYNAlz7UAJtxqeyWxlaZEoyAri8PuvJPjAbJtW/LMmRs+98SWLfzkscfYs2JF+hf+oj6g15MtWnB5+/ac0Lo15wwaxDVTp/LYhg203WbLNwkhhHC9GyxgjABwEEDBBcupnt+OXu98b9kA3A9gdnR0tKsvo/AAm83Gtm3b0tfXl8uXL6der2f//v2L3e6nn35KABdN4Llw4UIqpdirV6/rflj2dg6Ho6jY079/f68b/r9//3527NiRABgTE8M5c+Zwx44dzCqca+5W9O3bl6GhoTf8Xs/fivTmm2/ecp+3C4fDwaFDhxIA33nnHU+HUyodOnSIvoVTDdx3331MTk6+7Jjnn3+eOp2OycnJ/P333wmA//vf/266r9zcXD744IMEwJEjR7plstqr5RXK+drNU0rNBxAMYFDhNydfAFhL8vlbarAExMbGctu2bZ4O46bwiy+gnnkG64OCYJo8GbGPP35T51uys7Hp00/R8sQJqC1bMHb3bvwvKwsX/qkbAWRXrw5djRr4xm7HUZ0OkTVronqDBoi85x5UuPNOaHQ6l74vIYQQZYtSajvJ2Bs89mOSQ9wdk7uVxrxCXO6NN97A+PHj8dlnn+Hrr7/Gjh07EB8fj/Dw8GK1a7PZULduXZhMJuzatQsajQYA8P7772PMmDEYPXo03n//fVe8hRKXnJyMMWPGYP78+Rg8eDA+/vjjovfnaampqZgwYQI+/vhjBAQE4LXXXsPQoUOh1+uL1W5ubi7Kly+PRx99FLNmzbqhc0iif//+mD9/PhYsWIA+ffoUK4ayzuFw4NFHH8WCBQsQGxuL1q1bo1WrVmjZsiXMZrOnw7tIWloaNm/ejJ07d0IpBX9/f/j7+8PPz++Kj88/12q1bolnwYIFGDJkCPLz82G1WvGvf/0LP/74I5RSFx0XHx+POnXq4J133sGCBQuQmpqK+Ph4mEymG+7r7Nmz6N69OzZt2oT3338fo0aNcvXbAXCNvOJKVY0b3QD0AZAC4B8AzYvTVklspWkExoUcW7fyHoOBRoBzrnPP3Y3Iz8jg4V9/5cq33uLs/v35ZuvWZN++ZNOmfNRkumiIHQBWB8iYGLJTJ37csiXf7tyZ344axc2ff84zBw7IXBtCCCFuahLPsrKV1rxC/L8//viDWq2W/fr141dffUUA/Pjjj6973q+//soaNWqwbdu2/OCDD3j8+PErHvfNN98QAOfPn1+0z+FwcMSIEQTAqVOnuuy9XI3FYuFnn3122XwOt6KgoIDvvvsuAwICqNfrOWHCBK+5PcJisfCDDz6g2WymRqPhkCFDePbsWZe1v2jRolu6tSg/P58tWrSg0Wjk+vXrXRZPWVVQUMBJkyaxVatWNBqNBEClFBs0aMDhw4dz8eLFJb48r81m4969ezl79mwOHDiQtWvXvuzz0o1uJpOJYWFhrFatGuvVq8cmTZqwXbt2fOCBB/jII4/wqaee4ujRo/nVV1/d0L+t1NRUPvLIIwTAJk2a8PDhw0Vz8EyfPv2K57Ro0YIVKlQgAM6bN++mrsXhw4cZHR1Nk8nExYsX39S5N+tqeUVxRmDUBDAXwF4AdeC8r/U5krm31GAJKM3flKTEx6Pvvffi97Q0DL3jDkzZuBEGf3+39JWbkoJ/Nm3CsR07kHDgABxnz2JYSAiQkIDWu3djnc120fGtlMLaqCigcmW8kpICR0AAKletispRUahcty6qxcYitFYt4JIKoBBCiLLjZkZglBWlOa8Qzm/qGzZsCL1ej1WrVuGee+5BZGQkNm7ceM3RBPPnz8eAAQNQvXp1aLVaHDx4EAAQGxuLnj17omfPnqhTpw4A5zfKjRo1Qm5uLg4cOFA0CsBut6N3795YunQpFi9ejAcffNAt79FqteKRRx7B4sWLL9pfsWJF1K5dGzExMRf9rFq16lXf+8qVKzFy5EjEx8ejS5cumDp1KmrWrOmWuG9WXFwcRo8ejYMHD6J9+/aYMmUK7rzzTpf28fDDD2Pt2rVITEyE7iZHJp87dw7NmjVDamoqNm3ahOjoaJfGVlbl5+djy5YtWLt2LdatW4c///wTubnOj5p16tRBq1atikZpREREuKzftLQ0bNq0CRs3bsTGjRuxZcsWZGZmAgBCQ0PRtGlTNGvWDM2aNUPjxo2h0+mQnZ2N7Oxs5OTkFPtxVlYWcnJy8MADD+Czzz5DWFjYFeNctWoVnnjiCSQlJWHChAl4+eWXodPpQBLdunXD77//jq1bt172b+GTTz7B4MGDUatWLRw8ePCGR09t3LgRDzzwAEjixx9/xL333lu8C30dLh+BASAeQPvCxwrAGAD7b7W9kthK+zcl1rw8vtC4MQHw3oAApsfHeySOjBMnuGfxYv4wbhyn9uzJuf/6l3MER/PmvMtgoP6SSmNvgDQYyBo12C0khI9GRvKlJk34Ya9eXDJ2LI8sXUomJ5MykkMIIUotyAgMUYo4HA726NGDer2eW7du5ZAhQ6jRaLhjx45rnvfee+8RAFu3bs20tDSSzhVG3nrrLd5zzz1FuU9MTAzHjh3LzZs3c+nSpQTATz755KK2cnJy2LRpU5pMJv75558uf48Wi4W9evUiAL733ns8ePAglyxZwrfffpsDBgxgs2bNaDabr7oKx/jx4zlv3jwuXbqUXbt2JQBGRUVx2bJlLo/1VsXHx18U29KlS90yIiQrK4s+Pj4cMmTILbdx+PBhhoaGsmbNmmVyJZqSUFBQwI0bN/Ltt99mly5dLlpFJioqigMHDuQXX3zBo0eP3vDfA5vNxj179nDWrFkcMGDARaMrNBoNGzRowGeeeYZz587loUOHSmTEkd1u55QpU2gwGFipUqXLRv3k5eVx9OjRBMBatWpxy5Ytl7Vx+vRphoeHs169epdNGjxx4kQCYKdOnW44pu+//54mk4lRUVE8dOjQrb2xm3S1vKI4BYzAK+yrdavtlcRWVhKNb0eOZH+tlvYKFcgNGzwdzmXsViuTdu/m1i++4Pcvvsh1I0eSL75Ia58+bBUYyOo6HQ0X/Gf5HEACzNXpGKnTsUVgIPtVq8YXGjfmtJ49ufvdd8lNm2g/flwmHBVCCC91swUMAOEAuhVu5W/mXG/ZykpecTuaPn160Qf7zZs3UynFkSNHXvV4u93O5557jgDYq1cv5uXlXfG4kydPcvr06Wzfvj21Wi0BsFKlSgwPD2e5cuWYmZl50fFnzpxhdHQ0Q0NDXfqh4MLixZQpU656nMPh4OnTp7lu3TrOnj2bY8aMYdeuXRkdHU2NRnNRcSMwMJBt2rThkCFDilbuOHXqlMtivhlpaWkcPXo0dTodAwMDOXnyZLeugLJgwQIC4Jo1a4rVzvr162k0GtmyZUuvW7GlNLLZbNy2bRvff/99du/enSEhIf+/GmOVKnz00Uc5e/ZsxsfHFxUezp07x+XLl3P8+PHs0KEDAwpXfgTA0NBQduvWjZMmTeLvv/9+2b/XkrZz507GxMRQKcWXXnqJFouFu3btYr169QiAQ4cOveayxXFxcUWrkpx39uxZBgYGsmrVqvTx8WF6evp145g2bRqVUmzSpAnP3MTCEsXl8gJGadzKVKKxZw8ZFcVjOh1nPfJIqZuHwm618vTevdw+bx6PfPwx+eGHPDdiBB+NjGTroCDW0OloLPxl8n5hgeMQQC3Aylotm/r786GICI5s2JDbRo4kv/mGOb/+yqPr1jHfw79shBDidnQzBQwAD8M5f9ZcAF/CuQpJrxs931u2MpVX3EZ27txJg8HALl26sKCggI0aNWKlSpWuOjdEQUEB+/XrRwAcNmzYDc+2f+7cOc6dO5c9evSgwWAgAPr4+PDxxx/nkiVLij54HD58mGFhYYyKinLJvf03Wry4GofDwYULF7Jy5coEwBYtWvCll17iE088wSZNmjAoKOiiwkatWrU4ePBgfvPNN0xKSip2/Ndis9n48ccfMywsjEopPvXUU1dcacHVevbsyQoVKrhkpYXzxZBHHnnEa+YPKSvsdjv37NnD6dOns3fv3ixfvnzR39Pw8PCLltPVaDRs2LBhiY+uuFnZ2dl86qmnipb/1ev1rFChAn/++ecbOn/MmDEEwKVLl5IkR4wYQY1GU/T3cObMmVc91263F4306NGjxzWLJe4gBYyymGikpnJM9eoEwIE1azKvcChjWeGw23k2Pp7p69aRy5Yx8a23+Erz5hwQHc0OISGsbTDQD+CiwgLH7xf8Z1peKd7l48MHKlTgjt69yTff5KkPPuDvkyfz4PLlzDx50tNvTwghypSbLGDsvnDUBYByAHbf6PnespW5vOI2kJWVxZiYGFasWJFnzpzhtGnTCIALFy684vEZGRns0KEDAfCtt9665Q84OTk5rF+/Pk0mE4ODg4uKGT179uSXX37JuLg4mkwmNmnSpFgfEiwWCx966KFbLl7s3buXbdu2JQA2aNCA69atu+wYh8PB5ORkrlmzhu+++y67du160bfYtWvX5jPPPMNvv/3WpcWF33//nXfeeWfRLTw7d+50WdvXkpmZSaPRyOHDh7uszTfffJMA+Morr7isTXE5h8PB+Ph4zpo1i4888ggfeOABTpo0iatWrSrWcrolLSEhgXXq1CEAarVafvTRRzd8bkFBAe+66y6GhIRwzZo11Ol0fOqpp+hwOFi/fn3GxsZe8bzc3Nyi3yUjRoxwyzKp1yMFjDKaaNitVo5v2ZIAGOvry3/ccA+lN3PY7bSnppL79jHx66/52YAB/G/btnyqdm3+q1w53mkycVtAAAnwi0vm5vAHGKPX88A995CPPsqtjz3GqT17ctFzz3HDzJlM+OMP5hdjpm4hhLid3GQBY+8lzzWX7isNW1nMK8q6AQMGUCnFVatWMTExkQEBAezUqdMVCxNJSUls1KgRtVot58yZU+y+N23aRAD873//y99++43PPvssIyIiCIA6nY7169enUoodOnSgxWK56faLU7xITU3liBEjqNVqGRISwhkzZtBqtd7w+VarlVu2bOH//vc/dunS5aKCRt26dTl06FAuXLjwloafHzlyhD169CAA/h979x1f8/U/cPx1sqfEJmaIvWqXWvWlpWrWpkbt2l97lVKlSlG+qjWCGG2KtkaMtqpG7ZEiJPZMkMiQPe7790ciP1si9+YS5/l4fB6593PP55z3JyQ5933PKFq0qKxfvz5TPylfs2aNALJ3716j1WkwGKRXr14CyPLly41W7+vOYDDIjh07pGPHjvLpp5/K//73P9m9e7dRd5N5nRgMBlm5cqU4OzuLs7OzzJkzR+qmvO/r0qVLmncicdl6AAAgAElEQVQU8vf3F0dHR7GyshJHR8fUqV/ffvutAHLy5MlHyt+9e1dq164tSin55ptvjH5faWWKNTA2As0Ai5etI7OPrNzR+HXcOHEGyaWUnPjhB3OH8+qJipK7Bw7IX3PnyuoBA2TWBx/I0LfeknYFC0pQ9eoiRYvK9JS5qo8ft3LkEKlYUdZVqiS9S5aUz+rVk8WdO8vmSZPk2OrVknTzpogZspKapmmvknQmML4GdgA9Uo5twKy0Xm+KAygLeAPfpXU6S1buV2RFD7ZJnTRpkoiItG/fXmxtbeXChQtPlPX39xd3d3dxcHBI81DttGjRooW4uLjIvXv3RCR5iPahQ4dk7NixUqpUqdS+h729vbRr104WLFggx48ff2Ey4WWTF4mJibJkyRLJlStX6tajxlhgMiEhQQ4dOiQzZ86UJk2aiKOjY+q9lStXTgYNGiTr169/4o1pQkKCzJo1S27fvi3h4eEyevRosbGxEUdHR5k+ffoz1x4xpRYtWkiBAgUkycjTtePj46Vx48ZiZWWV7q1Zs5qkpCTZuHGjVKtWTQDJnTv3Iwt0ApInTx559913ZdCgQfLdd9/Jnj17JCQkxNyhm0xwcHDqz3SdOnXk0qVLIpL8Mzt16lSxtLQUd3d3OXDgQJrqW758uQAyefLk1HMhISFPjC66cOGClChRQmxtbeXnn3826j2llykSGI2ANcBFYCZQ6mXryqwjq3c0zvn4SFtnZ7lvYSEyZ47IKziP61X2YMqK788/y7Zp02RZjx4ytWFDSejTR6R5c5nu5ib5LCxEPfTL1BIkCUQsLGS0o6O8ZW8vTXPnlp4lSsi4WrXku/btRby9RfbulTsHD8p9E88N1TRNM5f0JDCSi9MG+CblaJ2ea59S13LgDnD6sfNNAH/gAjD2BXWMAOqmPN6Ulnazer8iKwkICBAnJyepU6eOJCQkyPbt2wWQqVOnPlH20KFDkitXLsmVK5ccOnTIqHH4+vqKUkrGjRv31Nf9/PykdevWqUmM1FGjTk7SqFEjmTx5suzcufORxQVfNnlx4MABqVq1auobpBftwJIR8fHxcuDAAfnyyy/lvffeEwcHh9R7q1ChggwZMkQ2btwoK1euFEDq1asnefPmFUC6d+8uN2/eNFlszxMWFiY2NjYybNgwk9Vfvnx5cXFxkTNnzpikjVdZQkKCeHl5SdmyZQUQDw8PWbp0qcTFxYnBYJDr16/L9u3bZc6cOfLJJ59IzZo1HxndA0i+fPmkYcOGMnjwYFm8eLHs3bs3NUH4OjAYDBIWFiZ+fn7y+++/y8qVK+WLL76Q/Pnzi7W1tcycOfOp0zf2798vRYoUEUtLS/niiy9eOMXDYDDIyZMnn0jEderUSVxdXSU6OloOHjwouXLlkpw5c8q+ffuMep8v41n9CpX82stTSrkAnYAJwHVgCbBaRBIyVLEJvBH7td+/Dz16ELVxI9PLlmXCX3/hmCePuaPKUhJjYwk6dYpbp08TcukSTfPlg9u3WfjHH+y4eJHAyEiCYmO5bTDgRvIqdQAfkPwRoxOQz9qa/Pb2vJUnD982bQr587MjOBiDiwv5S5UiX5ky5CpZEis7O7Pdp6ZpWno8c7/2p5f9SkTGvOhcOtquB0QCq0SkfMo5SyAAaAzcAI6Q3F+xBGY8VsUnKV8nA9FAbRF550XtvhH9iiwgLi6O2rVrc/nyZXx9fcmVKxcVKlTA0tKSf//9F1tb29Sy27Zto23btuTNm5cdO3ZQokQJo8fTuXNnfvvtNy5evEi+fPmeWmbWrFmMGTOG1q1b06ZNGw4cOMD+/fv5999/EREsLCyoWLEib7/9NsePH+fw4cPMnTuXYcOGvbD9oKAgxo4dy8qVK3Fzc+Prr7+mU6dOKKWMfavPFB8fz9GjR9m9ezd//fUX+/fvJyYm5pEyVapU4fvvv6datTT9WjEJLy8vunXrxj///EOtWrVM0sa1a9eoWbMmdnZ2HDx4kLx585qknVdJbGwsK1eu5KuvvuLy5ctUqFCB8ePH07ZtW6ysrJ57rYhw/fp1zpw588jh5+dHVFRUarn8+fNTrly5R46iRYvi4OCAg4MD1tbWJv8/Hx8fT2BgIDdv3uTWrVuPfH348cNxP1CpUiU8PT2pXLnyM+sPCwtjwIAB/PjjjzRo0AAvLy8KFiyYrhh37drFf/7zH4YPH87ixYvJnz8/27Zto2TJkum+X2N7Vr8iQwkMpVROoCvwMXCL5BEZdYAKItLgpSs2kTemoyHCpu7daeXlRQU7OzZu3Urxhg3NHdUbx5CYSMSVK7jGxEBgIFu3b+fMuXMEBgURFBJCUHg4+Q0G1ioFERFUBE49dL0Cmllbs7lECciblxE3b5Job0+e3LnJkz8/eQsVwqNcOcq+/TbkyQOOjpCJnQ9N07SHpTOBcVxEqjx27l8RqZiB9osCWx5KYNQCpojI+ynPxwGIyOPJi8frsQQ2ikjLZ7zeF+gLULhw4apXr159WjHNzESEU6dO4ePjw8aNGzly5Ai//vorLVu25LPPPmPatGn8+eefNHyof7RixQp69+5NxYoV8fHxeWZyIaPOnz9PmTJlGDhwIPPnz39muenTpzNx4kR69OjBsmXLsLCwIDw8nIMHD7J//3727t3L3r17SUpKAqBQoUK88847qUfFihWxtLRMrS8+Pp5vv/2WqVOnEhsby4gRIxg/fjzOzs4muc/0iI+PZ9u2bbRp0wY3NzcCAwPp06cP3333nVnj+vDDDzl16hRXrlwx6ZvdY8eOUa9ePcqVK8fu3btxcHAwWVvmFBkZyffff8+cOXMIDAykZs2aTJgwgWbNmmFhYZGhug0GA9euXUtNZjyc2IiOjn6ivKWlJQ4ODtjb26cmNdLy/PFzNjY2BAcHP5GUuHnzJnfv3n2iXRsbG9zc3ChQoEDq18cf58+fH0dHxzTdt4iwcuVKBg0ahK2tLcuWLaNVq1bp+r7lyZOHkJAQatSowebNm8nzinz4bfQEhlLqF6AU4AWsEJHAh147mtZOTGZ6YxIYKXZMn06nSZMQYN3UqTSZONHcIWnPEh3N1ePHuXnmDEEXLxJ45Qp3bt+mANA3Z064c4eaR4/iHxdH+EOXdSY5awiQD7C3siKPrS15HB3J4+JC0/LlaVuvHpI7N7tu3SK3uzu5PTzI6eGBjZNTpt+mpmlZV1oSGEqpAcCnQDGSp6A+4AzsF5GuGWi/KI8mMNoCTUSkd8rzj4GaIjLoOdePBxyB70Rk34vafNP6FaYWHx/PzJkzKVeuHB9++OEjIyPSIjw8nD/++INt27axfft2bt68CcBbb71Fv3796N+/P/7+/lSsWJF27dqxevVqIPkNwMyZMxk/fjyNGjVi48aNJn9T37dvX1auXMn58+cpXLjwM8t9/vnnTJkyhd69e/P999+nvslLSEigU6dObNiwgf/+978UKVKE/fv3s2/fPm7dugWAk5MTb7/9Nu+88w7u7u7MmDEDf39/PvjgA+bNm2eS0SUZMWfOHEaOHImfnx/z58/H09OTS5cuUaBAAbPEExoaSt68eRkyZAizZ882eXubNm2iVatWtGrVip9//vmR5NPrLjQ0lAULFjB//nzu3btHw4YNmTBhAu+++67JR0EYDAauXr3KmTNnuHHjBjExMcTExBAdHZ16vOj5g3Px8fHPbStPnjzPTEw8+JozZ06T3HNAQACdO3fm2LFj9OvXj2+++eaFiTCDwcCoUaP45ptvADh16hTly5c3emwv65n9iqfNK0nLAXzwlHO2L1vfQ3XkAH4Hzqd8zf6UMm8BB4AzwL9Ah7TU/SbOVb34119S0c5OFMi6jz4SiY01d0haBsWGhcn1Q4fkqJeX+H33nYinpyTNmCEjqlaVru7u8l7OnPKWvb24WVjIOKVEQCKesjhpNpCvc+YUqVlTQt97T7oXLy4jqlWTmU2ayNLu3eXX8ePl6oYNIv7+knT3riSlYzVyTdPePKRhDQzABSgKrAOKPHTkeNG1aai7KA+tgQG0BZY+9PxjYGFG20mpqznwg4eHh0m+l2+qRYsWpf6Nyp49u/Tv318OHDjwzB0nDAaD+Pr6ysyZM6V+/fpiZWUlgLi4uEjbtm1l2bJlj6ydYDAYpGHDhuLi4pK6vWdiYqIMHDhQAOncubPExcVlyr1eu3ZNbGxspFevXs8tZzAYZMKECQJI//79xWAwSHx8vLRp0+apa14YDAa5fPmyrF69WgYMGJC6swkp6wts2bLFlLf10gwGg5QrV05q1qwpIsnbRlpZWcmQIUPMFtODRQ+NvQ7K8zzY1vfjjz+W06dPZ1q7phIUFCSjR48WJycnAaR58+ZpXnTyVZSQkCARERESFBQkly9fljNnzsixY8fk6tWrmfa743ni4uJk1KhRqbv/+Pr6PrNsTEyMtG3bVgDp0aOHWFhYyPjx4zMx2hd7Vr8iI3+8j6fl3EvUO4uUhbaAscBXTylTEiiR8tgNCARcX1T3m5jAEBGJvH1behQrJhdAxN1dwjw9xWDklZS1V1RSkkhIiMT5+sruefPEe/hw+a5TJ5nasKEMqVRJfBo0EGncWC6XLSuFLS3F/rEkx/9ABMQ3ZcHSPEpJWVtbqefiIm3c3GRfy5YiEybIrSlTZEWfPrJ50iTZv3ixnPPxkTt+fpKoE2aa9sZISwLDlMdTEhi1gB0PPR8HjDNmm29qv8IUoqOjJX/+/FKqVCmZOnWqfPjhh2JnZyeAlChRQqZNmyaXL1+W8PBw2bBhg/Tu3Tt1C1JAKlWqJGPHjpW///77mVuQPtgOc9GiRSKS3IF/sPjliBEjjL7LxIsMGzZMLC0t5dy5c88tZzAYZMyYMQLIp59+mrrI57x589LUTlhYmBw4cEBiX+G/yYcPHxZAFi9enHquV69eYmdnl7rlY2Zr0qSJFC1aNFO3bBURGTt2rFim7IxXqVIlmTVrlly/fj1TY8ioK1euyMCBA8XOzk4sLCykY8eOz30zrRnXzp07JV++fGJrayvz589/4v9wcHCwvPPOOwLI7NmzxWAwSLNmzcTNzS1d2yebmtESGCSPVK8KnAUqA1VSjgbAufTW95T6/YH8KY/zA/5puMb3QULjeccb39HYuVOkQgX5AKSWk5P88/335o5IewVF3bkjV/fvl2OrV0vg2rUiXl5y7bPPZMI770i/MmXkIzc3qefiImVtbWW7i4uIhYX4PGWEByDbQMTFRX7Pl0+qOTjIezlzSqciRWRghQoyqW5duT5lioiXl9xctUoOLFkiATt3SnBAgCS+AllsTdPS5xVMYFgBlwB3wCalr1DOSG3pERhGNnv27Cf+hlhaWkqePHme2E4REGdnZ/noo49k6dKlcuPGjRfWHxoaKnny5JHq1atLYmKihIaGSr169QSQOXPmZMIdPun27dvi6OgoHTp0eGFZg8Egw4YNS73/9Ow28joYMGCA2NnZSVhYWOq5CxcuiKWlpfz3v//N9HiCg4PFyspKRo8eneltiySPXJg/f77UqFFDAFFKybvvvitLly6V0NBQs8SUFufOnZMePXqIlZWVWFtbS69evSQgIMDcYb2R7ty5I82aNRNAmjVrJnfu3BGRR7dJ9fb2Ti3/yy+/CCCbN282V8hPMGYCozvwF3A/5euDYxPQJr31PaX+sIceq4efP6N8jZRkisUzXu8LHAWOFi5c2ATf2teLISFBlnbvLvksLASQ9oUKyaW//zZ3WNrrLClJYm7dkgt//imHPT1l27RpsubTT+Xbjz6S68OHiwweLLsbNZKmuXNLDUdH8bC2luxKiUoZ2SEpIz0e7pgqEFel5FLBgiJVqsjP5cvLRwUKSO9SpWRk9eoyvXFjWdSxo0SvXCmyfbvc3LxZ/Ldvlzt+fhIfFWXu74imvZHMmcAgeUpKIJBA8o4jvVLOf0DyTiQXgQnGbveN/2DESCIiIiRHjhxibW0tNWvWlN9//10GDx4sb7311iNbiT5+ODk5SbVq1WTgwIEyf/588fHxkYCAgKeOwPj000/FwsJCjh07Jjdu3JDy5cuLtbW1rF271gx3/P8eTA85efLkc8vFx8enjrwAZNSoUZk+MsBUYmJixNXVVTp37vzEa926dRN7e3u5fft2psa0ZMkSAeTYsWOZ2u7TBAQEyJQpU6REiRICiK2trbRp00Y2bNjwyoyqOXHihLRr106UUmJvby9Dhw6Va9eumTusN57BYJBvv/1WbG1tJV++fLJw4ULJnTu35MiRQ/bu3ftI2fj4eMmbN6+0bNnSTNE+6Vn9iows4vmRiGx4yWv/IHkkx+MmACtFxPWhsqEikv0Z9eQHdgPdReTgi9rVi239v8igIL7u0IGv9+whCdjYujXNli8HV9cXXqtpxpAUH48KD8ciLIwb587x7/Hj3AsKIuT2be6FhHAvNJQvSpfGJTqaH86eZd6NG4QmJhJmMBCbUsd9krelHQF881DdjkAOS0suly6NZY4c/BAezj9RUbg6O+Pq4oKLqys5c+WiW9Om4OrKlagoEuztcXFzw6VQIWyzZcvsb4emvfbSswtJSvkiJI+e/EMpZQ9Yich900VofLpfYRzTpk3js88+w8LCglq1anH48GESEhJwdnamcePGNG3alPfffx9bW1sCAgLYsWMHPj4+nDp1ioSEBJRSPNyftbS0xN3dHQ8PD0qUKEHu3LmZPHkygwcPpl+/fjRp0oTQ0FB++eUXGjVqZMY7T94G0d3dnTp16rB58+anlklISKBjx45s3LiRuXPncv78eRYtWsS4ceOYPn16pm5/ago//vgjnTp14vfff3/i38Pf35+yZcsycuRIvvrqq0yL6b333uPSpUucP3/+lfn+ighHjx5lzZo1rFu3jjt37uDi4kK7du3o0qUL9erVy/BOHmkVExODv78/Z8+eZfXq1fj4+JAtWzYGDRrE0KFDX5ldLLRk//77Lx07duTs2bO4u7uzbds2SpUq9US5MWPGMGfOHG7cuGGyXZjSw2i7kCiluorIaqXUCJKzwI8QkW+ecll66vcHGohI4IMEhYg88R1WSmUjOXnxpYisT0vduqPxpJtHjzLj44/54tw5XHPk4MqgQRQYMwbrLLp9k5Y1xIaFEXb1KnmtrFDh4fgeO8ZpPz9Cg4MJvXeP0LAwoiMjWVymDISFMdbPj7X37hGalERkSh25gAebW7UBfnmofjugrJUVx4oVAxcXxt+9S0BCAi6Ojrg6O+OSLRvuBQrwcaNG4OLCiTt3MDg44JwnD9ny5SObmxv2OXKgMqkjoWmvgnRuo9qH5BGSOUSkuFKqBLBYRP5j0iCNRCnVHGju4eHR5/z58+YO57V27949ChUqRHR0NLlz5yYyMpJBgwbxwQcfULt2bWxsbJ55bVxcHFu3bmXFihX4+PiQlJREoUKFKFWqFA4ODly/fp3z588TGRlJgQIFWL58OR07dsTGxoZt27ZRuXLlTLzTZ5sxYwbjx4/nn3/+oVatWo+8lpCQQIcOHfjll1+YN28eQ4cOxWAw0L9/f5YsWcJnn33G559/bqbIjeP999/n3LlzXL58+alvwLt06cJvv/3GlStXyJUrl8njuXv3Lvnz52f06NF8+eWXJm/vZSQmJvLnn3+yZs0afvnlFyIjIylYsCCdOnWiS5cuVKxY0SiJl/DwcM6ePZt6+Pn5cfbsWS5fvpyaNMyVKxfDhg1j4MCBuOoPQl9Z0dHRrF69mlatWj0zwRQQEECpUqWYOXMmY8aMyeQIn2TMBEY/EfleKTX5aa+LSIZ+iyqlvgZCRGSmUmosyZ2b0Y+VsQG2AZtFZF5a69YJjOc4eZKkESN4a9cu4qytmTViBC2nT9dvwLQsJyk+noibN4kKCqKggwOEhXHg0CEuXrpEWEgI4WFhhIeH45iUxGQPDwgPp8+JE+wPCyMsMZFwg4FooDpwOKXOysDJx9p5F9jl6grZstE8NJR7gLONDdns7cnm4EDNwoXpU7s2ZMvGmrNnsXRwIFvOnGTLnZtsefKQt3Bh8hYrBk5OYGsLr8gnQJr2LOlMYJwkeQroIRGpnHLulIhUMGWMxqb7FRk3evRovv76a6ytrRERtmzZwvvvv5/ueu7evcuPP/7IqlWrOHr0KJaWljRp0oSPP/6Yt99+m3379tG7d28KFSrEjh07cHd3N8HdvJyoqCiKFStG2bJl2bVrV+obz6clLx4wGAz07t0bT09Ppk6dyqRJk8wVfoZcv36dIkWKMHHiRKZOnfrUMn5+fpQvX57x48fzxRdfmDym77//nv79+3Py5EkqVapk8vYyKjo6mk2bNrFmzRq2b99OYmIi5cqVo0uXLnTu3JkiRYo893oR4e7du48kKB48frAlL4CtrS2lSpWiTJkylClThrJly1KmTBlKliz53ESj9nqpX78+gYGB+Pv7m330kdESGA9VmFtE7r64ZLrrzQl4A4WBq0B7EbmnlKoG9BeR3kqproAnyduoPtBDRB5/D/EI3dF4PjEY8Jk6lVEzZnA2Pp76Li7M/vZbqnXrZu7QNO2VkhAdTeydOzgbDBAezqEDB7gTGEhESAgRoaHcDw8nv7U1HxcpAhER9N69m6v37xMRF0dEQgIRiYm8Z2GBZ2IikLyvZMRjbfQElpM8zM0RsFUKZwsLnCwtcba2poubG0PKliXBwYEhvr44OTjg7OyMk7MzTtmyUaNsWd4qX54Ee3t8b93COXdunHLnxjlvXhzz5MHS1jZTv2da1pfOBMYhEamplDohIpWVUlYk72RW0cRhGpXuV2RMUFAQhQoVIjHld+FPP/1E+/btM1yvn58fXl5eeHl5cfPmTbJly0ZkZCRVq1Zl69at5M6dO8NtGNuCBQsYMmRI6jSK5yUvHkhKSqJnz554eXkxY8YMxo4da4bIM2b69OlMnDiRixcvUqxYsWeW69ChA9u2bePq1atkz/7UmeVG85///IcbN25w7tw5s7+BS6/g4GC8vb1Zs2YN//zzDwB169alS5cutG3blqioqKcmKu7du5dah5OT0yMJigeP3d3dsbS0NNetaZnEy8uLbt268ffff1OvXj2zxmKKBEYAcAX4CdgoIqEZijAT6I5G2iTGxrK0Z08+++kn7orw+3/+QyNPTyhUyNyhaVrWYjBAZCQ3/P2JCAwk4u5d7t+9S0RICAVtbamZNy+G8HAm+vhwPzKSyJgY7sfEEBkbSysXF/o7OREeHk6Ja9eIFCHmoaqnApNIXs3waT+5cy0tGebiwkVbW5qHhOBoZYWTtTWONjY42tkxoFw5Gnh4cNNgwNPfH0cnJ5ycnXHMlg0nV1eqV6xI/sKFiVKK27GxOOTIgWOuXDjkzKmTI2+odCYwZgFhQDdgMPAp4CciE0wYotHoKSTG0a1bN7y8vAD44Ycf6NOnj1HrT0pK4q+//mLVqlUopVi0aBGOjo5GbcNY4uLiKFmyJHnz5mXfvn107NjxucmLB5KSkujWrRtr167l66+/ZuTIkZkYdcaICCVLlqRAgQLs3r37uWVPnTpFxYoVmTx5MlOmTDFZTLdv38bNzY0JEyY8c0TI6+Ly5cusXbuWNWvWcPbs2Sdez5kzZ2qS4uFkRcGCBV+7xI1mPNHR0eTPn5+WLVuyatUqs8Zi9ARGSqU1gI5AK8AP+FFEVr90hSamExjpE3HjBt9368bw/fuxsrDgUIcOlJk+nWwFCpg7NE3TniIxNpaoO3e4f/s2jgYD2S0siA4O5o99+4gMC+N+WBiRERFERUXxXoECvJ0tG1dv32bkwYNExccTFRdHZEICUUlJfOnsTJukJPbev0+9pKQn2toItAa2A00fe80G8HF05D8uLuwERt+7h4OVFQ4pCRIHW1um1aiBR758HIuIYMu1azg6OuLg5JR8ODvTpFYtsuXKRVB0NLejorB3ccHe1RX77Nmxz54dh5w5UfqToFdKOhMYFkAv4D2SdxzbASyVjHRKzED3K17elStXUqdxjB8/nunTp5s5IvNbvnw5vXr1olKlSvj6+r4wefFAYmIiXbp0wdvbm7lz5zJs2LBMiDbj9u3bR926dVmxYgXdu3d/Yfk2bdqwa9curl69iouLi0liWrRoEQMHDuTUqVOUL1/eJG1kNhHh5MmTbN26lVy5cqUmK17FkUjaq+HTTz/F09OTwMBAs65rYpIExkOV5yJ5E4AuIvLK9ih1R+MlXbtG3JgxFPnxR0QpPu/Uid7LlmFlZ2fuyDRNywTxUVFE3b2bfAQHE3XvHu7Zs5NdKW5cu8afR48SHRlJVGQk0VFRREdH06dUKYpbW7P3yhVmnzlDdHw80QkJRCcmEpWYyC85clAuPp7v79+nf8rw8YcFACWAr4HRT7wKNwE3GxtmWVgwLz4eewsL7C0tkw8rK7ZXr46DkxNr7txhV3Aw9nZ22NvaYm9vj729PWPffx9lb8+Bmze5GhGBvaMjdk5O2Dk54ejiQrXKlcHennuxsSRZWWHn6oqdqytWdnZ6baBnSGcCwxGIFZGklOeWgK2IRJsyRmPT/YqXV6RIEa5du0adOnXYu3evucN5JTxYuyAgICDNyYsHHt6pZOHChQwcONCEkRpHr169+OmnnwgKCsLJyemF5U+cOEGVKlWYNm0aEydONElMDRo04M6dO5w5c0aPQtDeWMePH6dq1aosWrSIAQMGmC0OU0whyUbyB3AdgeIkL+LvLSLHMhKoKemORsYcWbmSEUOGsDcigrK2tnw9fjxNJ07UnXlN0zIkKT6emHv3iA4JIfrePaJDQ/HIlQubhAQuXLzIKX9/YiIjiUlJkMRERzOocmUckpLYdPo0Wy5cIDoujpj4eGISEohJSGCnhwfWcXFMuXGDpeHhxIgkH4A1EJ/Sdk9gxWPxZAcezAZuBzy8zZUF4KEU/jlygJ0dvSIiOBQfj52lJXaWlthaWVHCyYnF1aqBnR0z/P25GhuLnY0NthjCKEAAACAASURBVDY22NnZ4Z47Nz1q1wZbW37x8yPKYMDWwQE7BwdsHRzImzcvlcqVAzs7LgQFoWxssHVywtbJCRsnJ+xdXbFxcnrlFnZNZwLjINBIRCJTnjsBO0WktiljNBY9hSRjhgwZwoIFC7Czs+P+/ftYWVmZO6RXhp+fH5cvX6ZZs2bpvjY+Pp527dqxadMmFi9eTL9+/UwQoXFERUWRL18+2rVrx/Lly9N8XYsWLdi/fz9XrlzB2dnZqDHdunWLggULMnnyZCZPfupeBZr2xqhcuTIWFhYcO2a+t/amSGBcBn4lOWlxIIPxZQqdwMg4MRj4ddw4Rs+dy4WEBA5Ur87b33wD77zzynWmNU3THicGA3EREdgBxMZy+/p17t2+Tez9+8Tcv0/s/fsYYmNpVKYMxMby+9GjBNy4QWxMTPIRG4ujUoytVAliYph+9CjHg4OJSUggLjGRuMREilhbs8bNDeLiaH79Oofj4ogVIQ6IA+oADz5vLgOceyzGJiRvswXJ65fceOz1tsDPANbWFEpMJBqwUQpbpbC1sKC9qyvTihQBGxsanT2LVUpixdbKChsrK76sX5/CK1YY/Xub3l1IROStF5171el+RfotWbKEvn37AuDj40PTpo9PQtMyIi4ujjZt2uDj48PSpUvp1auXuUN6qpUrV9KjRw/27NlD3bp103zdkSNHqFGjhkm2eXywkOqZM2coW7asUevWtNfN//73PwYNGsTx48fNtuW0KRIYSs9VfXPFR0ayafBg2m7aBPfuMTNfPnI0akSXOXNwfMbewpqmaW86MRhIjI7G2mCAuDhuXblCVHg4cffvExsZSVxUFM6WllQsWBBiY/l1/34iIiKIi40lLiaG+Ph4PFxcaFGsGMTHM+6PP7gfG0t8QgJx8fHEJSTQIEcO+hcogMTGUv/oUeKSkpIPg4F4g4FtxYtT8tzjaZOMS2cCYz8wWESOpzyvCiwUkVpGD8yEdL8ifby9venQoQMAVapUMesne1lZbGwsrVq1YufOnXh6eqZpfYnM1qBBA27evElAQEC6p2o0bdqUo0ePcuXKFaMuylq3bl3CwsI4deqU0erUtNdVaGgobm5u9OrVi4ULF5olBqMlMJRS80RkmFJqM8k7/D1CRFq8fJimpTsaJhAVhaxZQ53hw/knOhoXoGflynw6axYlGjUyd3SapmlaJklnAqM68CNwi+RFPPMBHV7laahPo/sVabd9+3aaN2+OiGAwGLh8+TJFihQxd1hZVkxMDC1atODPP/9k1apVdO3a1dwhpbp06RLFixfniy++YMKE9G88dODAAWrXrs3s2bMZMWKEUWK6ceMGhQoVMun6Gpr2uunatStbtmwhMDAQe3v7TG//Wf2Kl1m8wCvl62xgzlMO7U3i6Ijq25d99++z93//o2nhwiw8cYKSjRuzsGxZ2LoVnrKDgaZpmvbmEpEjQGlgANAfKPM6JS+UUs2VUj+Eh4ebO5TXwv79+2nTpg2urq4kJSXRvn17nbwwMXt7e3777Tfq169P9+7d+fHHH80dUqoVK1aglKJbt24vdX2tWrVo1KgRX3/9NdHRxln3d/365NWO2rdvb5T6NC0r6N27N+Hh4WzYsMHcoTwiI1NIhorI/Bede5XoT0oyR+DJkywZPpx2p09TJjiYw25u7KlcmU/mzydH8eLmDk/TNE0zgfSMwEgpXxsoCqSu4Cgi5t10Pp10v+LFfH19qV+/PtmzZ+fatWtYWlpy9+5dk22DqT0qKiqKpk2b8s8//7Bz504aNmxo1ngMBgPu7u6ULl2aHTt2vHQ9e/fupV69eunereVZatWqRWxsLCdOnMhwXZqWVYgIJUuWpGDBgvz111+Z3r4xR2A88LQJdT0yUJ+WReR/6y0+++svyty6Bd7ebLO2ZtTWrRTw8KBXyZIcX7vW3CFqmqZpZqSU8iJ5JGcdoHrKkebkh/Z6OH/+PO+//z6Ojo7kzJkTg8HAqFGjdPIiEzk6OrJ161aKFi3KgAEDiI+Pf/FFJrRr1y6uXbtGz549M1RP3bp1adCgAV999RWxsbEZquvq1ascPHhQj77QtMcopfjkk0/YvXs3r9KOW+lOYCilOqWsf+GulNr00PEX/7/znKaBtTW0a8fkK1f4d/16upcpw4/nz1O1Sxda5sgBa9eCmf+QapqmaWZRDXhHRD4VkcEpxxBzB6UZz40bN2jcuDFJSUmMGTOGY8eO4ezsrNcXMANnZ2e+/fZbAgICmDt3rllj8fT0xNXVlVatWmW4rkmTJhEYGJiubVifRk8f0bRn6969O5aWlhn+OTOml1nEswjgDswAxj700n3gXxFJNF54xqWHeppf2NWrrBw2DIv9+xl89y5JefIwp3x5Os+cScHq1c0dnqZpmvaS0rmI58/AEBEJNHFYJqX7FU8XHBxMvXr1uHHjBlu2bKFNmzaEhITw7bffMnjwYHOH98Zq0aIFu3bt4ty5cxQsWDDT2w8PDydfvnz07NmTRYsWZbg+EaFu3bpcvXqVCxcuYGtr+1L11KhRA4PBgP5Z1rSna9myJYcPH+b69etYWVm9+AIjMdoUEhG5KiK7RaSWiPz90HH8VU5eaK8G1yJFGPrLLwwOCoLt2zlWsiRjd+2iaI0atC1YkN3z5iEGg7nD1DRN00wrF+CnlNrx8GhOcweVVnoRz2eLiIigadOmXLp0iU2bNrFx40ZCQkLIly8f/fr1M3d4b7R58+aRmJjIqFGjzNL+Tz/9RGxsbIanjzyglOKzzz7jxo0brFy58qXquHz5MkeOHNGjLzTtOXr16kVQUBA+Pj7mDgV4uREY+0SkjlLqPo9uo6oAEZFsxgzQmPQnJa+my3v28N2oUSw7coR7IpSztWXr+PEUGTAAcuc2d3iapmlaGqRzBEb9p50Xkb+NG5Vp6X7Fo2JjY2natCl79+7ll19+oUCBAlSvXh2DwYCnpyc9evQwd4hvvMmTJzN16lR27drFu+++m6lt16pVi4iICE6fPo1Syih1igi1atUiKCiI8+fPY21tna7rv/rqK8aOHcvly5cpWrSoUWLStKwmMTGRwoULU61aNTZtyrzPGow5AqNOyldnEcn20OH8KicvtFeXe716zDp0iBvBwSz/5BOK2dlRcPJkyJ+fZRUqsLJvXyJu3DB3mJqmaZqRpCQqrgDWKY+PAMfNGpSWIQkJCXTo0IHdu3ezYsUKPvjgA/r164eFhQUeHh507drV3CFqwNixYylatCiDBw8mISEh09o9e/YsBw8epGfPnkZLXsD/j8K4evUqXl5e6b7e29ubGjVq6OSFpj2HlZUVPXr0wMfHh1u3bpk7nJffhUQpVVwpZZvyuIFSaohSytV4oWlvGvscOei5bBmbwsKw/PdfGD2aFefP02PJEvIUKkTbggXZMGoUsWFh5g5V0zRNywClVB9gPfB9yqkCwK/mi0jLCIPBQK9evdi0aRMLFiyga9euLFq0iKNHj5KYmMj06dMzdd609mz29vbMnTuXM2fOsHDhwkxrd8WKFVhaWpokkdW0aVOqVq3K9OnTSUxM+2z2CxcucPz4cT19RNPS4JNPPiEpKemlp2sZU0a2Ud0AJCmlPIAfgEKA3h9TM44KFeDLL9kTHc0/339P34oV2XvrFm1nz2ZQnjzQowfs2EFiBrfO0jRN08xiIPAOEAEgIueBPGaNSHspIsKwYcPw8vJi6tSpDBo0iJs3bzJhwgTs7e2pWLEibdu2NXeY2kNatmxJkyZNmDx5MkFBQSZvLzExkVWrVvHBBx+QL18+o9evlGLSpElcunSJdevWpfk6b29vANq1a2f0mDQtq/Hw8KBBgwYsW7YMg5nXK8xIAsOQsmhna2CBiIwC8hsnLE1LpiwsqNW3L9/6+nIzOpqdM2Yw+IMP4NdfOdWkCW4ODgysUIH9332HIR1Zd03TNM2s4kQkdR9tpZQVj66rpb0mPv/8cxYsWMDw4cNTt0gdNmwYsbGxxMTEMH36dCwsMtLd1IxNKcX8+fOJjY1l9OjRJm9vx44dBAUFGW3xzqdp0aIFlSpV4osvviApKSlN13h7e1OrVi0KFy5ssrg0LSvp3bs3Fy9eZM+ePWaNIyN/URKUUp2A7sCWlHPpWzlH09LBys6OxmPHUunXXyEoCDVvHg0KFGD56dPU+fRT3O3sGPP224T8/Tekc3FaTdM0LVP9rZQaD9grpRoDPwObzRyTlk7z58/n888/p0ePHsyePRulFFu3bmX9+vXY29vz9ttv06xZM3OHqT1FyZIlGTlyJF5eXuzbt8+kbXl6epIrVy6T/l94MAojICAgdWTF8/j7++Pr60uHDh1MFpOmZTVt2rTBxcWFpUuXmjWOjCQwegK1gOkiclkp5Q6kf/UcTXsZdnaUHzoU7+vXuXPzJqv69aNcjhwsPnQI2wYNoFw5DvTpw4U//zR3pJqmadqTxgJ3gVNAP8AHmGjWiLR0WbduHcOGDaN169YsWbIECwsLoqKiGDhwIHnz5iUiIoLp06cbdcFGzbgmTJhAwYIFGTRoUJpHLaRXcHAwmzZtomvXrtjY2JikjQdat25NuXLlmDZt2guHuD9IcujpTZqWdvb29nTt2pX169cTGhpqtjheOoEhIn4iMkRE1qU8vywiXxkvNE1LG2c3Nz5evBifO3cIvHoVp+++g9y5GbR0KSUaNaKGkxNzW7Xi1nG9wL2maZq5KaUsAS8RWSIi7USkbcrj12bonFKquVLqh/DwcHOHYhZ37tzh008/pXbt2qxduzZ1gc6pU6dy9epVYmNjadiwIQ0bNjRzpNrzODo6MmfOHHx9fVm8eLFJ2li3bh0JCQkmnT7ygIWFBRMnTuTs2bNs2LDhuWW9vb2pU6cOBQoUMHlcmpaV9O7dm7i4ONauNd/Sl+pl+wtKqXeAKUARwApQgIhIMaNFZ2R6v/Y3y/VDh/hp2jTW7drF8ZgYFDDCzY2vBw+G5s2hbFnQnwxpmqYZxbP2a39G2X1Aw4fXwXgdvan9iu7du7Nu3Tp8fX0pU6YMAKdOnaJKlSpUqlSJY8eOceDAAd5++20zR6q9iIjQqFEjjh8/TkBAALlz5zZq/VWqVEEpxbFjx4xa77MkJSVRrlw5bG1tOXHixFPXX/Hz86NcuXIsWLCAQYMGZUpcmpaVVK1alaSkJE6cOGHSUXbP6ldkZArJMuAboA5QHaiW8lXTXgmFatZk5JYtHIuO5pyPD1PefZd37O1h3DgCy5fHw8aGYZUr8+fXX5MQHW3ucDVN094kl4D9SqlJSqn/PjjMHZT2Yn///TerVq1i5MiRqckLg8FAv379cHFx4fz583z44Yc6efGaUEqxYMECIiMjGTdunFHr9vX15cSJE5ky+uIBS0tLJk6cyL///sumTZueWsbb2xulFB999FGmxaVpWUnv3r3x9fXluJlGt2ckgREuIttE5I6IhDw4jBaZphlRqaZN+WzXLlpduAA3bhA2eTKlc+Rg8cmTNBo9mtyOjnQsXJjzc+bAvXvmDlfTNC2ru0jyAuAWgPNDh/YKi4+PZ8CAARQtWjR1xxGAJUuWcODAAWrXrk1ERATTpk0zY5RaepUtW5ahQ4eybNkyDh8+bLR6PT09sbGxoXPnzkarMy06duyIh4cHU6dO5fGR5iKCt7c39erVI39+vXmipr2MTp06YW9vz7Jly8zSfkamkMwELIGNQNyD8yLyyi408KYO9dSeLerOHf6YN4/NGzaw9cIFjhoMFLC0xKdMGc4WLUqLwYMp8d575g5T0zTtlZeeKSQPXeMgIq/tELg3rV8xc+ZMxo0bx+bNm/nwww8BuH37NqVLl6ZcuXKcOHGCDz/8kJ9++snMkWrpFRERQalSpShYsCAHDx7E0tIyQ/XFx8dToEAB3n333TTtCmJsnp6efPLJJ4/8X4XkqU4VK1Zk0aJFDBgwINPj0rSsolu3bvz2228EBgbi4OBgkjZMMYWkJsnTRr4E5qQcszNQHwBKqRxKqd+VUudTvmZ/TtlsSqkbSqmFGW1XezM55slDyy+/ZKm/P7fi4ylw8CCMHcu2wEBGbtlCyfffp7StLaOqV2fvggWQmGjukDVN0157SqlaSik/4FzK80pKqUVmDkt7jitXrjB16lRatWr1yBvC//73v0RHR+Ph4UFsbCyff/65GaPUXla2bNmYPXs2R48eZfny5Rmub8uWLQQHB9OjR4+MB/cSunbtStGiRZ8YheHt7Y2FhQVt2rQxS1yallX07t2biIgI1q9fn+ltv/QIDFNRSs0C7onITKXUWCC7iIx5Rtn5QO6U8i9chedN+6REy5gr+/axZf58Nu3axe5796gAHMuRAz74gL0eHlTs2ROXwoXNHaamadorIZ2LeB4C2gKbRKRyyrnTIlLelDEa25vUr2jRogV//vknZ8+epXDK377ff/+d9957j+HDh7No0SI6deqEp6enmSPVXpaIUL9+ffz8/AgICCBHjhwvXVfz5s05duwY165dS92lJrMtWbKEvn37sm3bNpo0aYKIULp0aQoVKsQff/xhlpg0LasQEUqVKkX+/Pn5+++/TdKG0UdgKKXyKqWWKaW2pTwvq5TqlZEgU7QEVqY8Xgm0ekb7VYG8wE4jtKlpTyhapw6Dfv6ZnSEhBF+/zuq5c6FZM2J8fHh/yhRyFylC45w5mde6NWd++w15wZ7jmqZp2v8TkeuPnUoySyDaC/32229s3ryZKVOmpCYvYmJiGDBgACVLliQiIgKDwcDkyZPNHKmWEUopFi5cSGho6CNrnKRXUFAQ27Zto1u3bmZLXkDybjmFChVKHYXh6+tLQEAA7du3N1tMmpZVKKXo1asXe/bsISAgIFPbzsgUkhXADsAt5XkAMCyjAQF5RSQw5XEQyUmKRyilLEiesjLyRZUppfoqpY4qpY7evXvXCOFpb6JsBQtSZtgwWLUKm1u32LFgAcOqV+dGZCTDf/2V8q1a8bWrK3TrRuySJdx8Qz6R0zRNe0nXlVK1AVFKWSulRgJnzR2U9qSoqCiGDBlC+fLlGTbs/7t5M2fO5OLFi3z22WesXLmSPn36ULRoUfMFqhlFxYoVGThwIIsXL37pHQa8vLxISkrK1N1HnsbGxoZx48Zx4MABdu3ahbe3N5aWlnr6iKYZSffu3bG0tMz0xTwzsojnERGprpQ68dDwz5Mi8lYarv0DyPeUlyYAK0XE9aGyoSLyyDoYSqlBgIOIzFJK9QCq6Skkmrlc2bePP5cu5Z27dyl9+DBbg4P5EChjY8N/SpWi0Ycf0qB/fz3dRNO0LC2dU0hyAfOBRoAieTTl0MzazUwpVYzkPoeLiLRNOecILALigd0isuZF9bwJ/YoxY8Ywa9Ys9u7dS506dQC4fPkyZcqU4aOPPsLS0pKff/6Zixcv4ubm9oLatNdBWFgYJUuWxMPDg3379mFhkfbPO0WEcuXK4erqyj///GPCKNMmNjaW4sWLU7x4cW7dukXx4sXZsWOHucPStCyjdevWHD58mOvXr6frd0VamGIRzyilVE5AUhp4GwhPy4Ui0khEyj/l+A24rZTKn1JnfuDOU6qoBQxSSl0heeHQbim7omhapitapw69Vqyg9NatcPs2FbZtY/aHH1IkWzaWnTpFqxkzyFGkCAFvvQWTJhGyaRNxERHmDlvTNC3TKaW+Snn4roh0EZG8IpJHRLqmNXmhlFqulLqjlDr92PkmSil/pdSFlDW0nklELonI49Ne2wDrRaQP0CKt95SVnT59mm+++YaePXumJi8ARowYgZWVFb1792b16tUMGjRIJy+yEFdXV7766isOHDiAl5dXuq49cuQIZ8+eNfvoiwfs7OwYM2YMe/fu5eLFi3r6iKYZ2cyZMzl06JDRkxfPk5ERGFWABUB54DTJi2m2FZF/MxSQUl8DIQ8t4plDREY/p3wP9AgM7RUVFxHBQU9P9vzyCxNiY7E4coS+BgNrgHq5ctHo7bdp9PHHVGjTBgszzhPVNE3LqLSMwFBKnQIqAsdEpMpLtlMPiARWPVj0UyllSfJU1sbADeAI0Ink7d5nPFbFJyJyJ+W69Q+NwBgHbBORk0qptSLS+UWxZOV+xYMFHc+cOYO/vz+5cuUC4I8//qBx48Z8+eWXHDt2jJ07d3Lp0qXU17WswWAw8M4773Dp0iX8/f1xdXV98UXAgAEDWLlyJUFBQWTLls3EUaZNTEwM7u7uhISEcPv27QwtTqppWuYx+ggMETkO1AdqA/2AchlNXqSYCTRWSp0neWjpTAClVDWl1FIj1K9pmcY2WzbqDx3KpN27sTh4EEJC6PD553xSoQJXIiIYuWULb3XoQE17e+jUCZYtI/RfY/wYaZqmvZK2A6FARaVUhFLq/sNf01KBiOwB7j12ugZwIWVkRTzwI9BSRE6JyIePHU8b2QnJiY+CKY+f2T96U9bWWrlyJXv37uWrr75KTU4kJCQwdOhQihcvToMGDdiwYQPDhw/XyYssyMLCgoULF3L37l2mTJmSpmtiYmJYt24dH3300SuTvACwt7dn2bJlzJ07VycvNC0LyMgIjHbAdhG5r5SaCFQBvkhJbLySsvInJdrr6caRI/z5ww8knDpF76tXkaAg8gPO1tbUd3enTt261O3UiWLvvovKxKFZmqZp6ZXGERi2IhKnlPpNRFpmoK2iwJaHRmC0BZqISO+U5x8DNZ81OjNlCux0kkdsLBWRGSlrYCwEYoF9b/IaGCEhIZQuXZoSJUo8sgbCt99+y9ChQ/n111+ZN28evr6+XL58GRcXFzNHrJlK//79Wbp0KSdOnKBChQrPLbtu3To6d+7Mn3/+ScOGDTMpQk3TsipTrIExKSV5UQf4D7AM+C4D9WnaG6dg9ep0X7KE3gcPwq1bJJw4wbjWrSmdPTsbz5+n57JleDRqxMRs2aBtWxLmzOHoqlUkxsaaO3RN07SXcSDlq1kXAhKREBHpLyLFRWRGyrkoEekpIgNelLxQSjVXSv0QHp6mpb9eO+PGjSM0NJTFixenJi/u3r3LZ599xvvvv09YWBi7d+9mxowZOnmRxU2fPh0XFxcGDRrEiz709PT0pGjRojRo0CBzgtM07Y2UkQTGg/3amwFLRGQrYJPxkDTtDaUUNm+9xdCNG9l8+zbB8fGc/vVXFnfuTMu6deHYMU6MHEn17t1xtbenUY4cTGnQgD9mzSL6zrNGRGuapr1SbJRSnYHaSqk2jx8ZqPcmUOih5wVTzpmEiGwWkb5Z8c37wYMHWbJkCUOHDqVixYqp5ydMmEBUVBRTpkxh5MiR1KpViz59+pgxUi0z5MyZky+//JI9e/bw448/PrPctWvX+OOPP+jevXumLuanadqbJyNTSLaQ3DloTPL0kRjgsIhUMl54xpVVh3pqb47Q06fZuWQJ+/76i30XLuAbE4MAuywseLdyZfzKlMEvTx7qdO9Ovoc6npqmaaaWxikkdYAuQHtg02Mvi4h8ksa2ivLoFBIrkhfx/A/JfZMjQGcROZOee0grpVRzoLmHh0ef8+fPm6IJs0hMTKRatWoEBwdz9uxZnJ2dATh+/DjVqlVj+PDhhIWFsWrVKo4fP/7CKQVa1pCUlETNmjUJDAzk3Llzqf8vHvbFF18wadIkLl26hLu7uxmi1DQtq3lWvyIjCQwHoAlwSkTOp2x5WkFEdmYsVNPRCQwtqwm/do2DXl7UvX8fh0OHmLRvH18kJgLgYW1NnSJFqPPOO3QdMQLb8uVBKTNHrGlaVpWWBMZDZXuJyLKXbGcd0ADIBdwGJovIMqXUB8A8knceWS4i01+m/vTIav2KefPmMXz4cNavX89HH30EJO9GUrduXc6fP4+npyfNmjVjzJgxzJypd69/kxw8eJBatWoxatQoZs2a9chrIkKJEiUoVKgQf/31l5ki1DQtqzF6AuN1lNU6Gpr2uPjISE789BP7fv2VfceOsS8oiHgR7gGWuXLxXf78hOTJQ/V336Va+/bkLFHC3CFrmpZFpHEERkMR2fWs6SIistE00ZlGVupX3Lx5k9KlS1O3bl22bt2KSkl4r127li5durB48WLmzZtHbGwsZ86cwcHBwcwRa5mtV69erFq1in///ZcyZcqknt+zZw/169dn5cqVdOvWzYwRapqWlegEBlmro6FpaSEGA7f27aPA+fOwbx9t1q/nl8jI1NeLWVnRqlgx5vTtC9Wrk1ChAtbZs5sxYk3TXldpTGB8LiKTlVKeT3k5zVNIzC0rTiFp3749mzdv5syZMxQrVgyAyMhISpUqhZubG82bN2fy5Mn4+PjQtGlTM0ermcOdO3coVaoU1apVY+fOnalJrp49e7JhwwYCAwNxdHQ0c5SapmUVOoGBTmBoGiRPOzn2888c+eMPjpw6RcGICObdvw9AYSCbrS3VCxWietWqVG/alIqtW2P7Cu3nrmnaqyk9U0iyiqzSr9ixYwdNmjRh2rRpTJw4MfX8hAkT+PLLL/H29ubjjz+mRYsWeHt7mzFSzdwWLlzI4MGD+fnnn2nbti2RkZHky5ePjh07snTpUnOHp2laFqITGGSdjoamGd3t2yQeOsQX33zDET8/jgQHczfld8MQCwvmV6lCQpUqrE5IoHrz5pRp1gxLG73pkKZp/y+NIzD++7zXReQb40ZlWlmhXxETE0OFChWwsrLC19cXW1tbAC5evEjZsmXp0KEDgYGBHD58mLNnz+Lm5mbmiDVzSkxMpGrVqoSGhnL27P+xd+dxUdX7H8dfXxgYYBj2RRRQy11JUyQ1l8qt8try89a9de9ts0zbb9ttd0nLlvvLW5ZWlm22/2yxxbVMMzfUzAWXUAERZWcGZmFgvr8/QC4mmhrDDPB5Ph7nwZnDmTOfcwT8znu+3+/J4JNPPuHGG2/kxx9/5Pzzz/d2eUKIFuRE7QqDN4oRQviY+HgMl13GlMsuA2qGnmSvXcvGhQs5q7AQsrPZRk0ENgAAIABJREFU/t573GSzwfz5mIC+YWGkde7MjX/5Cz0vuww6dQJ/f++ehxDC1x29fUFXoD//vRPJWGCDVyo6A/WGkHi7lD9s5syZZGZmsmLFirrwAuC+++4jMDCQ8847jzvuuIPZs2dLeCEwGAy8/PLLDBkyhKeffprVq1fTpUsXBg0a5O3ShBCthPTAEEKcEndVFXuWLGHjl1+ycd06NmRm8nNFBV8Co4DlRiOPGgz0Tkqid0oK5wwdyjmXXUZ4crK3SxdCNIHTvAvJKmCM1tpa+9gMfK21HurJGhtbc29X7Nmzh5SUFP785z+zYMGCuu1Lly5l9OjRTJ48mTlz5tChQwd++ukn/CWkFrX+8Y9/8NFHH+FyuXjqqad4+OGHvV2SEKKFkSEkNP+GhhC+prK8HLVzJwE7drD8q6946rvv2FpWRnG9vys727ale//+bIqNJSsignMuvpizhg3DzyAdwIRoSU4zwNgNnKO1dtY+NgK/aK27erLGxtac2xVaa0aNGsXGjRvZtWsXbdq0AcDlcnHOOedQVVXFsGHDeOutt0hPT6dPnz5erlj4kry8PLp27UpFRQXZ2dm0a9fO2yUJIVoYGUIihGh0gaGhkJYGaWmMuPFGRlAz/CR30ya2fv01W9eupVN4OGzbxltffMFsgOefJxRICQ2ld3IyL02ahKFvX9w9e+IXHu7dExJCNJV3gA1Kqc9qH18BvOW9ck5PSxhC8tFHH7F8+XJmz55dF15AzSSNu3bt4plnnuFf//oX9913n4QX4jgJCQm88cYbZGZmSnghhGhS0gNDCNEkbIWF7Pz6a7Z+/z1bt2xha1YWRVYr291uAK4CthgM9I6L45wuXTgnLY1eF15I5+HDISDAu8ULIX7X6d6FRCnVFxhS+3CV1nqLZyrznObarigrK6Nbt24kJiaybt26uqEh+fn5dO7cmUGDBpGTk4PFYmHnzp2EhoZ6uWIhhBCtjfTAEEJ4VUhMDKnXX0/q9df/d6PWkJ0Nv/zC8Ndfh82b2Zqfz2eHDqFXriTt2WdZHxAAnTvzUFUVgXFxdO/Th+6DB9N15EiCo6K8d0JCiD9Ea70Z2OztOlqjxx9/nCNHjrBo0aJj5rV45JFHsNls9OjRg8WLF/Pll19KeCGEEMKnSA8MIYTPqcjPZ+e331K5dy/nV1VBRgapS5awxenEXbuPAiaYzcwdOhS6d+d9i4Wz+ven+6hRMnGoEF5wuj0wWoLm2K7YvHkz/fv3Z9KkScyePbtue3p6OmlpaYwfP54FCxZw8cUXs3DhQi9WKoQQojWTSTxpng0NIcR/OcvK2LN8ORk//kjGzz/TzenkL+XllO3eTURlZd1+CX5+9AgPZ9J55zHussuo7tKFwvh44nr0QPn5efEMhGi5WlOAUW8OjFv27t3r7XJOWXV1NQMHDiQ7O5tdu3YREREBgNvtZvDgwezbt4+UlBTWrVtHRkYGiYmJXq5YCCFEayVDSIQQzZ4xPJyUceNIGTfumO1ml4u9q1ax87vvyNi8mYy9e8k4fJjy77+HxYvZDfQEopSii8lEp9hYOnfowNWXXkq3oUPRnTqhZDiKEOIUaa0XAYtSU1Nv8XYtp+O1115j48aNLFiwoC68AFiwYAFr165l0qRJzJkzh1mzZkl4IYQQwidJDwwhRMulNeTmcuSnn/jwww/J2LWLvYcP86vFQk51NV8CfwKWANcqRaeQEDrHxtKpfXs6de/OJVdeSXRqKki4IcTvak09MI5qTu2KI0eO0LVrV1JTU1m2bBlKKQCsVitdu3albdu2HDx4kMTERNavX3/M3BhCCCFEU5MeGEKI1kcpSEwk/uqrufvqq4/5lqO0FHXgAGRnE//DD1y9eDG/Hj7Mjzk5vH/gAPqHH9gydy7RwPsmEy9oXRNuJCfTuUcPOvXrR78xYwhMSKh5HSGE8GH3338/drudl19+uS68AJgxYwZ5eXkMGjSILVu28PXXX0t4IYQQwmdJgCGEaJWCIiKgTx/o04c+l13GnH//u+57TouFfatXc7bTCVlZhCxdSsSGDazNzeXDrCz06tUAFALRERG8GhbGsupqOrRpQ4eOHenQvTsdzj2XniNGoMxmL52hEELU+P7773nvvfd47LHH6Nq1a932vXv38sILLzBmzBgWLlzIXXfdRb9+/bxYqRBCCHFyMoRECCFOg9NiYf+aNWSuW8elERGozEyeW7aMNw8c4EBlJY7a/YKBCkDFxDAtMJBflKJDQkJdwHFWv370uOgikFsUihaiNQ0haU6TeFZVVZGSkkJlZSXbt28nODi47ntjx47lhx9+IDExEYvFQkZGBmYJXYUQQvgAGUIihBCNwBgWRrdLLqHbJZfUbXugdtFuN/k7d3Jg/XoK9+ypmRj0wAEqlixhR24uX+fm4qgNUbsAuwFiYrhdKfIDA/8bcPToQZe0NDoPHgxhYV44SyHEyTSnSTxzcnLYtWsXr7zyyjHhxbfffstXX33FmDFj+Prrr1m4cKGEF0IIIXyeBBhCCNFIlJ8f8b16Ed+r1zHbn6ldtNvNkR07OLBhA/asLDCZ4MABHIsWsa2ggEW5uThrA44RwDIAs5lL3G6qjUYSo6NJSkggsX17evftS9rw4ZCYCBERMg+HEKJBR3vamkymum2VlZXcc889nHXWWXz33XeMHTuWK664wlslCiGEEKdMAgwhhGgiys+PNikptElJOWb7G3PmAOCurq7pwbFhA355eRAUBAcPErVwIb8WF7MjM5O8vXvRwI3vvksaoIFYIDoggKTQUBKjokhs04YRaWlccNFF6MREik0mos4+G+Xn19SnLITwQS+99BJ79uwhLS2NI0eOMHv27GMm9hRCCCF8lc8FGEqpKOAjoANwALhaa13SwH7JwDwgiZo2/KVa6wNNVqgQQjQyP3//BgOOBbNm1a27bDYOb9sGeXngclG5fz/XffQRB/PzOVhayncHDnAoMxP/NWu44IUXKKIm4AgCEgMCaBcSQkJ4ODf07cvogQOpiIrip8JCErp2pU3PnkR36iRBhxAt2OHDh5k6dSr9+vVjw4YNPP/88yQnJ3u7LCGEEOKU+FyAATwErNBaz1RKPVT7+F8N7PcOMENrvUwpFQq4m7JIIYTwhoCQEJLOO6/usRH43wcfPGaf6spKKrOzoaiIgN27mfX55xzMySHnyBFyy8pIz8tj9DffwOefswcYVf/4QBt/f1466ywu796dA6GhvJWbS0K7diR06EBCly4kdO9Om5QUDPXG0wshmodHHnkEh8NBTk4OvXv35u677/Z2SUIIIcQp88UA43Lggtr1t4GV/CbAUEr1AAxa62UAWuvyJqxPCCF8mn9gIMGdOkGnToSfdx53X3ddwztarXTOzOSH1as5nJlJXnY2eYcOkVdQQEJkJOzfz66sLKZaLMc9dTEwOiaG70NDedpiIT4sjNioKOJiY4lt04bLR44k5uyzsZnNuKOjMcXFSc8OIbxsw4YNzJ8/n379+rF582YWLVqEweCLTUEhhBCiYb74v1a81jqvdv0wEN/APl2AUqXUQqAjsBx4SGtd/dsdlVITgAmAdJEUQoj6zGZC+/RhaJ8+J9zlYqCyooIjO3dyeOdO8vbuJe/AAXq3aQPl5Ti2bqWsoIC9Bw9ScOAAFbXPG/D228QAbwB3UXNb2Vh/f+KMRmJNJuZfeCHxycmkO53ssNmITUoirmNHYs8+m7ju3QmOivL46QvRmrjdbu68806io6PZtGkTt99+O2lpad4uSwghhDgtXgkwlFLLgTYNfOvR+g+01loppRvYzwAMAc4FsqmZM+MGatrKx9Bavwa8BpCamtrQsYQQQpxEgMlEYv/+JPbvf9z3LqldjqrIz6dgzx7a+vlBSQmD09N5dsMG8vPzyS8upsBiIb+iAuOaNfDFF3zqdPJMA69ZERJCSFwcL1RVsdhuJ9pkIjo8nOjISGLj4rj9iisgOppsl4uq0FCizzqLsKQk6eUhmoRSaiwwtlOnTt4u5ZT99NNPbNiwgfbt2xMYGMiMGTO8XZIQQghx2rwSYGitR5zoe0qpI0qpBK11nlIqAchvYLeDwM9a6321z/kcGEADAYYQQoimY4qLwxQXV/f43DFjOPdEO2vNE/n5TNi5k/zMTAoOHCD/4EGKjhwhpHt3KCjAnZ5OaUkJmWVlFOXkUKo1EcDtn34KwAPAx7WH8weilKJbUBCr+vaF6GheOnKErKoqoqOjiY6NJTohgbbJyQw8/3yIjKQiIIDg+Hj8AgI8d1FEi6O1XgQsSk1NvcXbtZyqjz/+mPbt25OVlcXHH39MeHi4t0sSQgghTpsvDiH5ErgemFn79YsG9tkIRCilYrXWBcBFQHrTlSiEEOIPU4qQ+HjOio/nrAsvbHCX+2qXo6qcTizZ2eB2Q1ER96xZwyW7d1OUn09xURFFJSUEu1wQGAhZWazcs4dv7Xbs9Y5xLrC5dv0CYBMQBkT6+xMRGMjgqChe6t8fIiN5du9enAEBRERFERkTQ0RcHB06daJX374QGYndaCQoKkp6fgifpXVN59OysjIqKyu55JJL+POf/+zlqoQQQogz44sBxkzgY6XUeCALuBpAKZUKTNRa36y1rlZK3Q+sUDU3Lt8EvO61ioUQQjQJg9FIVOfOdY8HDhrEwJPs/3+1X+3FxRRlZlK0fz/aYoHYWCgp4Y6lS9mXm0tpWRklViulFRUEKwW//gqlpczLzWWvPnb04Tjg09r1RMAKhCtFuL8/YQEB/Dk+nkdSUiAsjLt/+YUQk4mwsDDCIyIIi4wkpVs3evfpgzab2VdaSlhCAmHt2mGUT8SFB5SWlgIQHR2NzWbj5ZdfpqbpJIQQQjQ/PhdgaK2LgOENbE8Hbq73eBlwThOWJoQQopkKjooiMSrquHk8rr/hhpM+bw/gstkoy8mhJDub0kOHCHE6ISICSkt5+IsvKCoupqSsDKvNhsVuJ8TPD7KzqSor4/2sLMq0xlXvmA8AvQELUH8GhUAgTCkejYrinqQkCoODuTEzk9CgIEKDgwkNCcFsMvGn3r1J69EDi78/yzMzMUdGEhodXbPExhLfoQMhcXFgNIK8UW31LLV3ESoqKmLmzJl07NjRyxUJIYQQZ87nAgwhhBDClwSEhBDTtSsxXbse9737J0w44fMMQAGg3W6cFguW3FwseXmEVldDYCCBBQW88913WIqLKSstxWKxYCkvp0tsLJjNOPLzOWS1Ul5SQnl1NeVuN1Yg4ccfSQP2UdMb5Lfeomb85To/Py52uwn198fs70+owYA5MJDXBg6k0zffNMKVEc1BZWUlAJGRkdx7771erkYIIYT4YyTAEEIIITxI+fkRFBFBUEQEcT171m0PBv5x9dUnfF4iNeMj69NuN+6KCrDb6VpQwM87dmAtLKwJOYqLKS8r4/x27SA4mOjsbK7/6SfKbTbKHQ6sDgflTieG2k/kRetQWFgIQK9evQiQyWqFEEI0cxJgCCGEEM2E8vPD32wGs5nguDh61wtEfqsz8J+mK034OH9/f2+XIIQQQvxhMm26EEIIIYQQQgghfJ4EGEIIIYQQQgghhPB5EmAIIYQQQgghhBDC50mAIYQQQgghhBBCCJ+ntNberqHJKKUKgKxGPmwMUNjIxxRyXT1FrqtnyHX1DLmunuGp69peax3rgeP6LGlXNCtyXT1DrqtnyHX1DLmuntGk7YpWFWB4glIqXWud6u06Whq5rp4h19Uz5Lp6hlxXz5Dr6tvk38cz5Lp6hlxXz5Dr6hlyXT2jqa+rDCERQgghhBBCCCGEz5MAQwghhBBCCCGEED5PAow/7jVvF9BCyXX1DLmuniHX1TPkunqGXFffJv8+niHX1TPkunqGXFfPkOvqGU16XWUODCGEEEIIIYQQQvg86YEhhBBCCCGEEEIInycBhhBCCCGEEEIIIXyeBBh/gFLqYqXUbqXUr0qph7xdT0uglEpSSn2vlNqplNqhlLrb2zW1JEopf6XUFqXUV96upaVQSkUopT5VSu1SSmUopQZ6u6aWQCn1z9q/AduVUh8opYK8XVNzpJR6UymVr5TaXm9blFJqmVJqb+3XSG/WKP5L2hWNT9oVniNtCs+QdoVnSLuicfhCu0ICjDOklPIHXgYuAXoA1yileni3qhahCrhPa90DGADcLte1Ud0NZHi7iBbmP8BirXU3oDdyff8wpVQ74C4gVWvdC/AH/urdqpqtt4CLf7PtIWCF1rozsKL2sfAyaVd4jLQrPEfaFJ4h7YpGJu2KRvUWXm5XSIBx5tKAX7XW+7TWlcCHwOVerqnZ01rnaa03165bqfmj3c67VbUMSqlEYAwwz9u1tBRKqXBgKPAGgNa6Umtd6t2qWgwDEKyUMgAhwCEv19Msaa1XAcW/2Xw58Hbt+tvAFU1alDgRaVd4gLQrPEPaFJ4h7QqPknZFI/CFdoUEGGeuHZBT7/FB5D/ERqWU6gCcC6z3biUtxizgQcDt7UJakI5AATC/thvtPKWUydtFNXda61zgeSAbyAPKtNZLvVtVixKvtc6rXT8MxHuzGFFH2hUeJu2KRiVtCs+QdoUHSLvC45q0XSEBhvBJSqlQ4P+Ae7TWFm/X09wppf4E5GutN3m7lhbGAPQF5mitzwUqkO74f1jt2MnLqWnItQVMSqm/e7eqlknX3Etd7qcuWjxpVzQeaVN4lLQrPEDaFU2nKdoVEmCcuVwgqd7jxNpt4g9SSgVQ08hYoLVe6O16WojzgcuUUgeo6ZZ8kVLqPe+W1CIcBA5qrY9+mvcpNQ0P8ceMAPZrrQu01i5gITDIyzW1JEeUUgkAtV/zvVyPqCHtCg+RdkWjkzaF50i7wjOkXeFZTdqukADjzG0EOiulOiqlAqmZCOZLL9fU7CmlFDXj/jK01v/r7XpaCq31w1rrRK11B2p+Vr/TWkvy/AdprQ8DOUqprrWbhgM7vVhSS5ENDFBKhdT+TRiOTGLWmL4Erq9dvx74wou1iP+SdoUHSLui8UmbwnOkXeEx0q7wrCZtVxg8efCWTGtdpZS6A1hCzUy2b2qtd3i5rJbgfOAfwDal1M+12x7RWn/jxZqEOJk7gQW1bzj2ATd6uZ5mT2u9Xin1KbCZmjsIbAFe825VzZNS6gPgAiBGKXUQmAzMBD5WSo0HsoCrvVehOEraFR4j7QrR3Ei7opFJu6Lx+EK7QtUMUxFCCCGEEEIIIYTwXTKERAghhBBCCCGEED5PAgwhhBBCCCGEEEL4PAkwhBBCCCGEEEII4fMkwBBCCCGEEEIIIYTPkwBDCCGEEEIIIYQQPk8CDCFEk1FKRSilbqtdb1t7SyshhBBCiNMm7QohWh+5jaoQoskopToAX2mte3m5FCGEEEI0c9KuEKL1MXi7ACFEqzITOFsp9TOwF+iute6llLoBuAIwAZ2B54FA4B+AE7hUa12slDobeBmIBWzALVrrXU1/GkIIIYTwAdKuEKKVkSEkQoim9BCQqbXuAzzwm+/1Av4H6A/MAGxa63OBtcB1tfu8Btypte4H3A+80iRVCyGEEMIXSbtCiFZGemAIIXzF91prK2BVSpUBi2q3bwPOUUqFAoOAT5RSR59jbPoyhRBCCNEMSLtCiBZIAgwhhK9w1lt313vspuZvlR9QWvspixBCCCHEyUi7QogWSIaQCCGakhUwn8kTtdYWYL9S6ioAVaN3YxYnhBBCiGZF2hVCtDISYAghmozWughYo5TaDjx3Bof4GzBeKbUV2AFc3pj1CSGEEKL5kHaFEK2P3EZVCCGEEEIIIYQQPk96YAghhBBCCCGEEMLnSYAhhBBCCCGEEEIInycBhhBCCCGEEEIIIXyeBBhCCCGEEEIIIYTweRJgCCGEEEIIIYQQwudJgCGEEEIIIYQQQgifJwGGEEIIIYQQQgghfJ4EGEIIIYQQQgghhPB5EmAIIYQQQgghhBDC50mAIYQQQgghhBBCCJ8nAYYQQgghhBBCCCF8nsHbBTSlmJgY3aFDB2+XIYQQQrQ4mzZtKtRax3q7jqYk7QohhBDCM07UrmhVAUaHDh1IT0/3dhlCCCFEi6OUyvJ2DU1N2hVCCCGEZ5yoXSFDSIQQQgghhBBCCOHzJMAQQgghhBBCCCGEz5MAQwghhBBCCCGEED6vVc2BITxIa6ocDhylpTjKynBYrTgsFkL9/WkTGkpVeTkrN2zAUVGB02bDUVGBw2bjnLg4+sfHYy0r47mVK3E4HDicTqrdbkKCgvhTjx4M694dq58fH27fTkhoKMFmMyFmM8FhYXTt3Jk2yclUGgwUO52EREURHBVFQEiIt6+IEEIIIYQQooVKT0/nyy+/ZMSIEQwdOtTb5bQaEmCI05K/Ywfpn3zCxh9+YOPOnZxnt/N4dTU4HAS53VT/Zv+7gP8ALmBkA8d7BOgPOIDpQBAQpBR+gF1rEtLTGQbkARMaeP4cYCKwHehXb7sBCAHmhYdzVVQUm4Fbjxwh3GgkPDiYCJOJiLAwxg8cSI8uXcgD0vPziYiPJyIhgYjERCKSkght0wblJx2VhBBCCCGEaO0qKir48MMPmTNnDps2bQLgySefZMiQITz22GOMHDkSpZSXq2zZJMAQJ1SalUXu8uX0LCiA9HTSFi1iY2UlAArobjRyfvfuMHw4BAUxfcMGDIGBBAUHExQSQlBwMN07doQePQgyGlm1Zw9BZjNBoaEEhYURFBZGRFwcREcTYzRSHRBwfFigNTidnGWxkJOVha2kBHtpKbayMuwWC12io8FkIvHwYV756SfsNhu2igrsdjs2u52zO3YEkwm/Q4eILS/H4nBwuKiI0sOHKXW7Gb1pEz2An4A/N3ANVinFkIgIvggIYJrVSsTRACQ0lAizmQcuuoiEpCR+raxkd3k5kQkJRCUlEZWcTGTHjgSYTB7+VxJCCNEYlFLJwItAMbBHaz3TyyUJIYTwETt27GDu3Lm88847WCwWevbsyezZsxk3bhyffPIJzz77LKNHj6Z///489thjjB07VoIMD1Faa2/X0GRSU1O13O7sBCoq2PLxx6z84gvSf/6ZjYcOsdfloguwG+Dss3nWZMI/OZn+I0fS96qrCE1I8HLRjcDlgrIyynJy2LttW02wceQIpYWFlBYV8fdOnWhTVcWyXbt4cds2Sh0OSp1OSquqKK2uZgvQCXgOeLCBwx8MDqZdTAyvu928X1FBVEgIkaGhRIWHExkZyb1/+hPG+Hgy7XZK/Pxqwo+OHQlr1w4/g+SLQojmQym1SWud6qXXfhP4E5Cvte5Vb/vF1HQE9AfmnSyUUEqNASK11u8ppT7SWv/l915X2hWitSovL+eee+7hu+++o23btrRr167BpW3btgQFBXm7XCHOiNPpZOHChcydO5dVq1YRGBjIVVddxcSJEzn//POPCSicTifvvPMOTz/9NPv37+ecc87h0UcfZdy4cfj7+3vxLJqvE7UrJMBohSrLy/ll4UI2fvstv/z8M68YDKidOxnvdvMm0M7Pj/7x8fTv1Yv+F17IyFtvhagob5ftm2oDkILMTPbv2EHxoUOUHD5McX4+JUVF3N+zJ0EWC2/8/DNv799PsdNJictFsduNg5qhNQbgNmqGwxzlB8QqRV6HDqjoaP5dVsYGh4PI0FAiw8OJjIoioU0b/nHppRAZSZbDgQ4LI6pDB8xt28qwFyFEk/NygDEUKAfeORpgKKX8gT3UjGA8CGwErqEmzHj6N4e4CagGPgU08K7Wev7vva60K0RrtH37dsaNG8fevXsJCAjAaDSitcbpdOJyuY7bPyYm5oQBx9ElKipKPq0WPmPfvn289tprvPnmmxQUFHDWWWcxceJEbrjhBmJjY0/63KqqKj788ENmzJjBrl276Nq1K4888gjXXHMNAQEBTXQGDXO73Wit637XlFI+/XsnAQatvKGxZQtfPvIIT65axS82G5W1m2OU4pcLLiBh8GCy2rcnsF8/Evr08WqprYW9uJhghwNKSsjYvJk9u3ZRcuQIJYWFFBcV4bLZmNmtG5SU8ODPP/NFYSElVVWUaE0VkAxk1R7rYmBJ7bo/EKEUqcHBLO7VCyIjmZaby2Gta8KPyEgioqPp2KEDw4cOhYgIch0OguPjCU9Kwt9o9MblEEI0c94MMGpfvwPwVb0AYyAwRWs9uvbxwwBa69+GF0effz+wQWu9Sin1qda6oZGFKKUmUDstU3Jycr+srKyGdhOixdFaM3/+fG6//XZcLhdaa/7yl79QVFTEgQMH2L9//3EBRmhoKCaTCX9/f6qrq7HZbFit1uOOHRQUVBdmJCcnM2HCBIYMGdJUpyYEVVVVfP3118ydO5clS5bg5+fH2LFjmTRpEiNGjMDvND8crK6u5rPPPmP69Ols3bqVDh068NBDD3HDDTdgbKK2ttvtZsuWLSxdupRly5axZs0aKisrG9z3t6FG/aWh7fW3de7cmc2bNzd6/RJg0DoDDO1243juOYIff5xv/P15PiiI/l260H/wYFKvvJL2gwbJp/XNjHa7qcjPpzw3lzYGA5SUsHL1ajL37aOksJCS4mJKysqI1ponk5KgpISx27ez1m6nRGvctce5APi+dr0LsLd23QxE+PszNjycl3v2hMhI/rl3L9poJCIsjIioKCKio+nRpQtpaWkQGUl2eTnmtm0Ja9cO/8DAJr4iQghf4IMBxp+Bi7XWN9c+/gdwntb6jhM8vxcwBSgEyrXW9//ea7bGdoVoncrLy7ntttt499138ff3JyIigk8//ZQLLrigbh+3283hw4fZv38/+/fvrws1jn7Nzs6muvq/070rpYiKiiI8PJygoCCUUrhcLo4cOUJZWRl/+ctfePbZZ0lOTvbCGYvW4tChQ8ybN4/XX3+dgwcP0rZtW2655RZuvvlmEhMT//DxtdZ8/fXXTJ8+nfXr19OuXTseeOABbrnlFkI8cNfE7Oxsli1bxtKEO3akAAAgAElEQVSlS1mxYgVFRUUA9O7dm4suuoiIiIi6uuovp7qtoe2xsbE8/PDDjX4uEmDQ+hoaRXv3csPgwRjz8/nksstQ8+fLUJBWTrvdlB8+TGlODu7SUtoHB0NpKZ8sXUpeXh4lxcWUlpVRarWSYjRyb0wMlJbSa+dOclwuLPWOdSPwJjV9rQOg7g40oUC4nx8TY2J4rFMnXGYz12VkEG4yEW42Ex4RQXhEBANTUujbpw8uk4ldxcWEt21LeLt2mNu2lfk/hGiGmnuAcZqvNRYY26lTp1v27t37u/sL76murubmm29m3bp1PPzww1x77bUY5P+Y07J9+3auuuoqdu3aBUC/fv347LPPSEpKOq3jVFVVkZube1ywcfTrwYMH694cpaSkcPR368EHH+TBBx/EJBOjtwputxur1UpwcDCBHvpQzO12s2LFCubOncsXX3xBdXU1o0aNYuLEiYwdO9YjfyO01qxYsYLp06fzww8/EBsby3333cekSZMICws74+NaLBZWrlxZF1rs2bMHgLZt2zJy5EhGjhzJiBEjiI+Pb6xTaTISYNC6AozVs2dz7T33kF9dzXPjxnHnxx9LTwvxh1VXVmLJzaU0J4dAm412gYG4i4p4+9tvKSsupqy0lDKLhdLyckZERHCt2UxZcTGpO3ZQVlVFmdZ1w5eeBB4DcqgZDnOUoqYXyHORkUxo25Yso5Fbs7IICw4m3GQiLDSUMLOZK1NTOadbN0r8/Nhw6BBhsbGExccT1qYNYQkJmBMS8PPyWEMhWhMfDDBOawjJmWhN7YrmSGvNhAkTmDdvHh07dmT//v107dqVyZMnc/XVV8vEer/j6JCRO+64A7fbjdPp5MYbb+SVV17xyMSclZWV5OTk8M477zBt2jSuuOIKjEYjH330EYmJiTz77LP89a9/9ekx+76orKyMrKwscnNz8ff3JyQkpG4JDg4+Zv10h0n8HofDQVFR0WktJSUluN01/YWDgoIIDw8nLCyM8PDwU1p+u+/R3j0ARUVFzJ8/n1dffZVff/2V6OhobrrpJiZMmECnTp0a9dxP5scff2TGjBksXryYyMhI7r77bu68806iTuGD5qqqKjZu3MiyZctYtmwZ69ato6qqipCQEIYNG8aoUaMYOXIkPXr0aPa/KxJg0DoaGtWVlTx96aVMXrGCswIC+Gj+fPr+7W/eLkuIOo7SUkpzcghyOomo7RGy+IcfKCsqoqykpC4EubJNG4aFhLA7L4/rfvkFi8uFpaoKi9tNObAAuBb4gZrhML/1GXBFaCjfG43cZrUSFhBAmNGI2WjEHBzMQ+edR/f27dnlcLAsJwdzRATmyEjMUVGYo6M5p08fTPHxVBqNqLAwAjzQzU+IlsQHAwwDNZN4DgdyqZnE81qt9Y7Ges3W0K5orrTW3Hfffbzwwgs8+uijPPnkk3z++edMnjyZbdu20aNHD6ZMmcK4ceMa/U1bS1B/yEhwcDAul4sXX3yRiRMnNsmbohkzZvDYY4/x97//nfHjx3PfffexefNmBg0axH/+8x9SU732p8anaK0pKioiKyuLrKwsDhw4cNx6aWnpKR8vKCjomIDjtyFHQ0t1dfUJwwibzXbC1woJCSE6OrrBJSIiAofDQVlZ2UmX8vLy3z2ngICAujDj4MGDOJ1OBg8ezMSJExk3bpxX75KTnp7OjBkz+PzzzzGbzdx2223ce++9xMXFHbNfZmZm3TwW3333HWVlZSil6NevX10vi0GDBjXZ3BpNRQIMWkFDIy+PI1dfTa8ff2RU+/bMWbOGsHbtvF2VEI2uurISbbVisNmwHDrE9q1bsRQUYCksxFJcjKW0lCs6dOAsg4GNmZk8v3kzFrudMocDq8uFtaqKT0wm+tvtvOVycWMDr/Ez0Bt4BbgdMAJmpTD7+2M2GPi6Vy8SY2JYZLXyeX4+oSEhhJpMhIaGEmo2c/PIkQRHRfGrxUKe3U5odDShMTGExsYSGhdHaHw8Sj79Ey2Il+9C8gE1WWYMcASYrLV+Qyl1KTCLmvmN39Raz2ik15MhJD5uypQpTJ06lbvuuotZs2bVvel2u9383//9H5MnTyYjI4OUlBSmTp3KFVdc0ew/rWwsR4eM7N69G4PBQFRUFAsXLmTQoEFNWsf06dN5/PHH+cc//sG8efN47733ePjhh8nPz+eGG27gqaeeIiEhoUlramput5sjR46cMJzIysqioqLimOeYzWbat29P+/bt6dChQ916UlISWmtsNttxi91ub3D77+1jt9tRShEZGUl0dDQxMTEnDCV+uzRGcFBdXY3Vav3doOPoEhcXx/jx40lJSfnDr92Ytm3bxlNPPcVHH31EUFAQEyZMYNCgQaxYsYJly5axf/9+AJKTk+t6WAwfPpzo6GgvV+5ZEmDQsgOM9S++SOr06fiXl3Nw2jTa3XuvDBkR4hS4ysspPXgQ65EjWPPzsRYUYC0qYnD79pirqkjfsYPFW7ditVqxVlRgtdmw2u280akT0Q4HL2Zn80xhIRW1PUOOzgVSBoQB9wP/buh1AYPJxENa80llJaEGA6EBAZgDA4kMDuaD4cPBZOKjnBwyLBZMoaE1S1gYUdHRjB02DEwm9peWUmkwYIqJITQuDlNsrPQWEV7h7R4Y3tCS2xXN2b///W/uv/9+brzxRubNm9dgD4vq6mo++ugjpk6dyp49ezj33HOZNm0aY8aMabVBRv0hI35+flRUVDBo0CA+/fRTrwUFR0OM6667jjfffJOKigqmT5/OrFmzMBqNPPbYY9xzzz1e++TZ4XBQXl6O0+nE6XTicDhO6evv7VNcXExWVhbZ2dk4nc5jXjMqKuq4cKL+emRkZJP9DB8d6iG9mBrH7t27mTlzJu+++y7V1dWYzWYuvPBCRo4cyahRo+jcuXOr+vvU7AIMpdTFwH+o+dRkntZ65gn2G0fNfdv7a61P2opoiQ0Nl83GE8OHM3PdOl5OSOC25cuhRw9vlyVEq6TdbiqtVsqPHCEqIABVUcG+3bvZl5lJeUkJ5aWllJeVYbNaubdfPygvZ356Oiuysih3OCh3OimvrMTf7WZNXBxUVPDX4mI+cruPeZ0kILt2vf4tdI/qBWyLiACTib9bLOysqsIUEFCzGI30iolh6sCBEBLCKzt3UqY1ISYTIaGhmMxmktu1Y3BqKoSEsCMvD3+TCVN0NCFRUYRERxMUESEBqThOawowpAeG73rttde49dZbueqqq/jggw9+d56Lqqoq3n//faZOncq+ffvo378/06ZNY/To0a3qjUL9ISNRUVEUFxczadIkZs2a5bGJFE/Vk08+yRNPPMH111/PG2+8gb+/P3v37uX+++/nyy+/5Oyzz+b555/n8ssv9/i/mcvlYv369XUTJm7YsKHuTfyZUEoRFBSE0Wg85mtERESD4UT79u0xm82NeEbCF2VnZ3Po0CH69etHQCuez61ZBRhKKX9qxq2OBA5SM271Gq31zt/sZwa+BgKBO1pbgJG1Zg3XXHwxa8vLuaVbN2atXk1ITIy3yxJCNLLqykpshYVU1C5V5eV0jY2FigpWb9hA9sGDVFgsVJSXU1FeToSfH3d06wYVFTy8di3bi4oor6ykwuWioqqKFIOBD00msNnoUV5Oxm9e7xLgm9r1JGr+CNf3Z+ATkwlCQuhTWkqlUoQYDIQYDAQHBDAmIYG7UlIgOJi709MxGo3/HUdrMtGvUycGnXMO1YGBLN+9m5CwMILDwwkODyckMpLohATC4uPRQUFgMEhY0ky0pgDjqJbWrmju3n//ff7+979zySWX8Nlnn53WG2+Xy8U777zDk08+SVZWFgMHDmTatGkMHz68xQcZ9YeMhIWFYbfbmTNnDjfddJO3S6szbdo0Jk+efEyIAbBs2TLuuecedu7cyfDhw5k1axa9evVqtNfVWrNnz566CRO///57rFYrfn5+pKamMnz4cNq0aVMXPvw2iPi9rwaDocX/fAlxpppbgHFKM4crpWYBy4AHgPtbU4Dx7eOPc+2MGVRrzWt33cVf//Mfb5ckhGiGtNuN02rFVliIrbgYW3ExAVVVdIyIAJuNb1evprSkBJvVSoXViq2igs5mM+Pat4eKCm5evpxSux17ZSV2lwuby8XY0FAeNZupttmIzcvDrjWOeq95P/AcNcNsIhqoaQowmZpZF5OBYCBYKYL9/Aj28+OR+Hiub9eOHKW49ddfCQoIIDgwkGCjkSCjkb+lpDDw7LM5XFXFBzt3EhwSQrDJRHBoKEEhIfRPSSGhXTus1dVkFRcTFBb23yUigpCoKPy8/IljcyQBhvCmL774gnHjxjFkyBC++eYbgoODz+g4lZWVzJ8/n+nTp3Pw4EGGDh3KtGnTGDZsWCNX7H1aa9566y1uv/12AgMDsdlsxMfHs3DhQvr37+/t8o4zdepUpkyZwg033MC8efPqQoyqqirmzp3LE088QVlZGRMnTmTatGlnPD9AYWFh3dwDy5YtIzu7ps9jx44d6+YfuOiii4iMjGy0cxNCHK+5BRi/e+92pVRf4FGt9Til1EpOEGAopSYAEwCSk5P7ZWVlNcUpeI7TCQ88wE8vvcR9JhPvfvEFnYYP93ZVQghxUu6qKhylpdiKigioqiLcYMBlsZC+ZQu2sjLsViu22qV3XBznRkdTUlzM8ytX4nA6sTsc2J1O7E4n17Vrx6VhYfxaXMw1O3fiqK7GXl2N3e3GoTUvGgz8zeViDTC4gVo+BcYBS4HRDXx/MTDa358vDQZuqqwkSCmC/PwI8vcnyN+fN7t04ZzoaL6rqOCVnByCAwMxBgQQZDRiDAzk/vPPJyE6mi1FRazKycEYHExQcDDG4GCMISGMPu88TBER5FosHC4vx2gyERQWhjE0lCCzmei2bfELDobAQGhGn8xJgCG8Zfny5YwZM4Y+ffqwfPnyRuli73Q6mTdvHjNmzCAvL4+LLrqIadOmcf755zdCxd5Xf8hIUlISOTk5DBs2jI8//vi4OyD4kqMhRkPzmxQVFTFlyhTmzJlDWFgYU6ZMYdKkSb/bBd/pdLJmzZq6wGLz5s1orYmIiOCiiy6qu8vD2Wef7enTE0LU06ICDKWUH/AdcIPW+sDJAoz6mntDY8/SpSy+6Sbuys2Ff/4T/fTTqBZ2uxwhhGgUWlNts2EtKMBeWlqzlJVhLyvjrNhYogIDOXzoED/+/DMOm+2/i93OVd260T4oiM1ZWby5dSt2pxOH04nD5cLhcvG/Z51FV39/Fubl8fihQzUBituNU2ucWpPu50c3t5v/Be5roLQcIBF4Eniige8XA5HAQ9TcPsMIBCqFUSmMfn7s7tQJQ1AQzxUV8ZXFgtHfH6PBgNFgwGw0Mn/YMDAaWbB/P1tLSjAGBhJY27U5wmxmwujR4IGu4a0pwJA5MHzHTz/9VPfmcuXKlURFRTXq8e12O6+++ipPP/00+fn5jBo1iqlTpzJgwIBGfZ2mVH/ISHJyMllZWdxzzz08++yzzWK8/dE7zJxoktYdO3Zwzz33sHz5crp3784LL7zA6NH/jau11uzYsaPutpSrVq3CZrNhMBgYOHBgXWCRmpqKwWBo6tMTQtRqbgHGSYeQKKXCgUzg6M1/21DT5rvsZCFGcw4wFtx2GxPnzCFIKXa9+y7Rf/ubt0sSQghxIlVVNRO6FhfjtFpxWCw4y8txWq30SEwkoKqKvfv2sSszE4fNhtNux1kboExITSWgqopvtm3jh337cFZW1iwuF5UuF+/264eqrOSFPXv44vBhKqurcVZX43S7CdCaLfHx4HRyY0kJH7pcOIGj/9MnAIeio6GwsNFPuTUFGEc153ZFS7BlyxYuvPBC4uLiWL16NfHx8R57rYqKCubMmcMzzzxDYWEhl156KVOmTCE1NbXZzGFQf8hIcHBw3Z1G5s2bx7XXXuvt8k7L0RDjpptu4vXXXz8uxNBas2jRIu69914yMzP505/+xJVXXsnKlStZvnw5eXl5AHTr1q0usLjgggtkgkzhNWVlZaxYsYIlS5awdOlSSktLSUtLY8CAAQwYMIDzzjuv0QNaX9fcAgwDNZN4DqdmGPRG4Fqt9Y4T7L+SFtoDoyI/nzsHD2b+3r0MCQvj/WXLSExL83ZZQgghmgntdlPlcFBZXo6rooKIkBDwwBs9CTBEU8rIyGDo0KGEhISwevVqkpOTm+R1y8vLmT17Ns899xzFxcUEBQWRkJDwu0tMTIxXbzVZUVHBbbfdxjvvvEO3bt3IzMwkMTGRhQsX0qdPH6/V9UdMnjyZadOmnTDEgJrhIS+++CJPPvkkVquVmJgYRowYURdaJCUleaFy4QlOp5OSkhKKi4vrvv52PTg4mP79+5OWlkb79u29Gj5WV1eTnp7O0qVLWbJkCevWrau7derw4cOJi4tj/fr1bNu2re5ON127dq0LNAYMGECvXr1adC+hZhVgACilLqWm96w/8KbWeoZSahqQrrX+8jf7rqQFBhjVW7dy3oABbHY4eHTwYCYvW4YhKMjbZQkhhBDHaU0Bhgwh8a79+/czePBgqqurWb16NZ07d27yGiwWC++99x779u0jLy/vmKWsrOy4/Q0GA/Hx8bRp0+akQUebNm3OaBiH1hqr1cqhQ4c4dOgQubm5deuHDh0iPT2drKws+vbty6ZNmxg1ahQffPBBs/5EV2vN5MmTefLJJxk/fjyvvfbaCUOiwsJC8vLy6NmzZ6MFSTk5OSxcuJDg4GCSkpLqlvDw8EY5/h9hs9nIzs4mOzubrKwssrKyyM/PZ+zYsYwZM8arYdqpOHz4MHl5eXXBw8lCiaOPKyoqTng8pRSRkZFUVFTgdDoBiI2NJS0tjbS0NM477zz69+/v8d+HgwcP1gUWy5cvp7i4GKUUqampjB49mlGjRjFgwIBj/gaUl5eTnp7OunXrWLt2LevWrSM/Px+AkJAQ+vfvz8CBA+tCDU/2RGtqzS7A8ITmEmBotxs1bx7cfTcLAgNp89hjDH/gAW+XJYQQQpxQawowjmou7YqWJDc3lyFDhlBWVsbKlStJSUn53ee8+uqrrF27lnnz5jXJp5V2u/2YQOPom7HfLgUFBTTUDo+IiMBsNmM2mwkNDSUkJASDwYCfnx9aa1wuF5WVldjtdioqKrBYLJSWluJwOI47VlhYGG3btiUuLo6CggIyMjJ46KGHmD59et1dPJqz+iHGzTffzKuvvurRN+dut5tly5YxZ84cFi1aVPfJeH1ms/mYQKP+kpiYSFJSEiaT6Yxr0FpTXFxcF0zUDymOPi4oKDjmOX5+fphMJqxWKz179uTBBx/kmmuu8ak5T7TWLF++nBdeeIFvv/22wX2MRiNRUVHHLJGRkSd8fHQ9PDwcPz8/XC4X27ZtY8OGDaxfv54NGzaQkZFR93vYqVOnukAjLS2NPn36EPQHPjy22+2sWrWqbljIjh01gwnatm3LqFGjGD16NCNGjCAmJua0rtOBAwdYt25d3bJlyxZcLhcAHTp0YMCAAXWhRp8+fU7rltK+RAIMmkdDw11VxXWdO3PxgQP8fdQoeOcdj3T1FUIIIRqTBBjC0woKChg2bBg5OTl89913p3SrT4vFQlJSEhaLhSlTpjB58uQmqPTUuFwu8vPz6wKN7Oxsli1bxq5du7BYLJSXl2O326mqqjrj11BKYTKZqKqqwt/fn7fffptx48Y14ll4n9aaJ554gunTp3PLLbcwd+7cRg8xCgsLmT9/Pq+++iqZmZnExsYyfvx4xo8fT2BgIAcPHiQnJ6fB5ciRI8cdLzIy8oQhR1JSEgEBAceFE0fXs7Ozj+ttEBwcTPv27euW5OTkY9bbtWuH1pqPP/6YmTNnsn37dpKTk7nvvvsYP378HwpU/iiHw8EHH3zACy+8wLZt24iLi2PSpEn06dPnuEDiTG+PfDIWi4VNmzYdE2rk5uYCNT2nevfuXRdopKWl0bVr1xP+fNWfIHbJkiWsWrUKh8OB0Whk6NChjB49mtGjR9OzZ89GHb7icDjYsmVLXQ+NdevWkZOTA9SEPn379mXAgAGkpaURFxdHSEhIg0tAQIBPzekjAQbNo6Hx9ZQp/GnqVKYNHcrj338PPt7FSwghhAAJMIRnlZWVceGFF5KRkcHixYsZNmzYKT3v+eef54EHHmDIkCGsWbOGlStXMmTIEA9Xe3oKCwuZO3cus2fP5siRIyQkJNS96Wzbtu1xS7t27QgJCcFms2G1WikvL8dqtR6z/tttLpeLiRMn0rNnT2+frkdorXn88ceZMWMGEyZMYM6cOX84xNBas3btWubMmcMnn3yC0+lkyJAhTJo0if/5n//BeIp3AnQ6neTm5tYFGg2FHUVFRSc9RkxMzHHBRP3H0dHRp/zGU2vNN998w8yZM/nxxx+Jjo7mzjvv5I477iA6OvqUjtEYCgoKmDNnDi+//DL5+fmkpKRw7733cs0115zytfWU3NxcNm7cWBdqbNy4EavVCtT0akpNTa0LNXr27MnmzZvrelkcDT969OhR18vi6Hw9TX0O69evrxt6kp6e3mAvrfr8/f3rwgyTyXTCoKP+YjKZiI+P58Ybb2z0c5AAg+bR0LgwMpJfrVb2WSwENPEPuhBCCHGmJMAQnlJRUcHo0aPZsGEDX375JRdffPEpPa+yspKOHTvSrVs3Pv/8c/r27YvT6eTnn3/2ibkfdu/ezaxZs3j77bex2+1ccskl3HvvvQwfPtynPgVtLrTWPPbYYzz11FN/KMQoLy9nwYIFzJkzh61bt2I2m7nuuuuYOHEivXr18kDlNXNW1A82XC5XXTjxR4ecnMyaNWt45plnWLRoESEhIdxyyy3ce++9Hp0Ud8eOHcyaNYt3330Xp9PJpZdeyj//+U+f/rl3u93s3r37mF4aW7duPaZ3VGRkJCNGjKiby8LXJoh1uVxkZGRQWlqKzWY7bqmoqGhw++99X2tNt27dyMjIaPSaT9iu0Fq3mqVfv37al6W/954G9HNjxni7FCGEEOK0UDPJttf/r2+KBRgLvNapU6fGunziBOx2ux45cqT28/PTn3zyyWk9d/78+RrQixcv1lprvXHjRm0wGPSVV16p3W63J8r9XW63W69cuVKPHTtWA9poNOqbb75Zb9++3Sv1tDRut1s/8sgjGtC33nqrrq6uPuXnbtu2Td92223abDZrQPfp00e/+uqr2mq1erBi37B9+3Z93XXXaYPBoA0Gg77++uv1jh07Gu34brdbL1myRI8ePVoDOigoSN966606IyOj0V6jqdntdr127Vr9+uuv67Vr1+qqqipvl9Tk3G63ttvturS01CPHP1G7wuuNgKZcfD3AuKZ9e20GXZqV5e1ShBBCiNPSmgKMo4uvtyuau8rKSn355ZdrQL/11lun9dzq6mrdo0cPfc455xwTVjz33HMa0HPmzGnsck+qsrJSL1iwQPft21cDOiYmRk+ePFkfPny4SetoDdxut3744Yc1oCdOnHjSEMPhcOgFCxbowYMH1wVK1113nV67dq3XQi5vysrK0nfffbcOCQnRgL7sssv0mjVrzvh4drtdz5s3T/fs2VMDuk2bNnr69Om6oKCgEasWLZUEGL7e0MjK0j/6+em3Ro/2diVCCCHEaTuVAAOIOtnye8/3tcWn2xXNXHV1tf7b3/6mAf3SSy+d9vMXLVqkAf3ee+8dd9zRo0froKAgvW3btsYq94RKSkr0s88+qxMTEzWgu3Xrpl977TVts9k8/tqtmdvt1g899JAG9KRJk44LI/bt26f/9a9/6djYWA3os88+Wz/33HO6sLDQSxX7loKCAj158mQdFRWlAT1kyBD91VdfnXKoc/jwYT158uS669u7d2/99ttva4fD4eHKRUsiAYavNzT+n737jq/5+h84/jp3JGJFYsYeIWhrz1JKUSpmaxatttbXz6hdWm3x1ZqltFoxqoPUbEmL2krVnqUIsWciQSLjjvfvjyS+qkHGvblJnOfjcR7J/Xw+57zfIeRz3znnfIYOFTEaRfTsC03TNC0TSmYBIwQ4m/DRBoQCYQmfhzypf0ZrGfq+IhOz2+3Sp08fAWTixImpGuOFF16Q4sWLS1xc3L/OXbt2TQoUKCDPPPOM0woJZ8+elUGDBknOnDkFkMaNG0tQUFCKljRoafNwEcNisciaNWvklVdeEaWUGAwGadu2raxfv17/vTxCZGSkzJgxQ4oVKyaAPPfcc/L999+LxWJJ8vqjR4/KW2+9Je7u7gKIv7+/bN68+amczaKlnS5gZOAbjYjz52WA2SznWrd2dSqapmmaliopWUICBACvPPC6BfB1cvtnlJZR7ysyM7vdLsOGDRNARo0alaoxdu3aJYDMmDHjkdesX7/+/hIDR9q1a5e89tprYjAYxGQySffu3eXAgQMOjaEln91ul5EjRwogXl5eAoiPj4+MHTtWLl686Or0Mo24uDhZtGiRVKxYUQApUaKEzJo1S6KiosRut8vatWuladOmAoiHh4f069dP/v77b1enrWVyuoCRgW80pvr7CyD7vvvO1alomqZpWqqksIBxNDnHMnrLqPcVmZXdbpePP/5YAOnfv3+qf2vbvn178fLyeuLmi8OHDxdAVqxYkao4iaxWqyxfvlzq1q0rgOTJk0dGjRolly5dStO4mmMkfl+1aNFCli9fnuSsHC15bDabrF69+v73er58+aR8+fICSOHChWXixIl6GY7mMI+6r9CPUXUxy717lMmdm9I5c7I1IsLV6WiapmlaqqTkMapKqfXA78D3CYdeBxqIyMvOys+RlFKtgFa+vr69Tp8+7ep0Mj0RYf369YwdO5a9e/fSo0cPFi5cmKpHYJ46dYry5cszevRoJkyY8Nhr4+LiqFevHsHBwRw+fDjFj46MjIxkwYIFzJgxg5CQEEqXLs3gwYPp2bMnOXPmTHHumU1kZCQREREULVrU1alo6UxE2LFjB1OmTFkOFu0AACAASURBVCEsLIx+/frRsWNH3NzcXJ2aloU86r4i5T8ZNIdaNmIEF202hg4c6OpUNE3TNC29dAHyA6uAlQmfd3FpRikgImtEpLenp6erU8nURIRNmzZRv359WrRowY0bN5g/fz4LFixIVfECYNq0abi5uTFgwIAnXuvm5saSJUuwWq28/vrrWK3WZMe5evUqvr6+DBo0iMKFC7NixQpOnTrFgAEDnoriBcBbb71FsWLFaNCgAfPnz+fOnTuuTklLJ0opXnjhBVavXs3OnTvp1q2bLl5o6UYXMFxI7HamLViAn5sbLceOdXU6mqZpmuZUSqnvEj7tLiKDRKSqiFQTkcEicsulyWnp6vfff6dRo0Y0adKE8+fPM2fOHE6dOsVbb72F0WhM1ZjXrl1j0aJFvPnmmxQsWDBZfXx9ffnqq6/YsWPHE2dsPGjWrFncuHGDLVu2sGPHDtq3b5/qvDOjq1evsnLlSho2bMjNmzd55513KFSoEN26dWPDhg3YbDZXp6hpWhalCxguFLNhAzWioxnVpQsGk8nV6Wiapmmas1VXShUG3lJKeSmlvB9srk5Oc77du3fTrFkzGjRowMmTJ/n8888JDg7mrbfeYsmSJTRr1oyDBw+mauxZs2YRFxfH0KFDU9Tv9ddfp0ePHowfP57t27c/8fqoqCi++uor2rVrx4svvpiqXDO7hQsXYrPZCAgI4Pjx4/z555+8+eab/PLLLzRr1oySJUsyevRoTp486epUNU3LYvQeGK7UqhXs3g3nz4OHh6uz0TRN07RUS84eGEqpgUA/oDRwGVAPnBYRKe3EFB0uw91XZGAHDhxg7Nix/PLLL+TLl49Ro0bRr18/7HY7AQEBTJ8+nUuXLgHQokULfv311xSNf/fuXYoXL85LL73E8uXLU5zf3bt3qVatGjExMRw+fBhv70fX07788kv69+/Pjh07qFevXopjZXZ2ux1fX19KlCjBli1b/nEuJiaGNWvW8M0337B+/XpsNht16tThjTfeoFOnTnh5ebkoa03TMhuH74GhlHr7oddGpdSHqR3vaROycSO7goKgf39dvNA0TdOeCiLyuYhUABaISGkRKfVAy1TFCy15jhw5Qrt27ahevTp//PEHn3zyCSEhIfTo0YNPP/2U4sWLM2TIEMqUKcOvv/7K+PHjWbt2LYcPH05RnHnz5hEREcHw4cNTlWeuXLkIDAzk+vXrvP322zzqF3x2u53PPvuMWrVq8fzzz6cqVma3efNmQkJC6N2797/OZcuWjQ4dOvDLL79w6dIlpk6dSmRkJP369cPHx4dOnTqxdu3aFO03omma9qC0LCF5SSn1q1LKRyn1DPAnkMtBeWV5nwwYQGMgvGtXV6eiaZqmaelKRPq5OgfNuU6cOEGnTp2oXLkymzdv5uOPP+bcuXN07tyZ9957jxIlSjB+/HgaNmzIrl272Lp1Ky1atKB///7kzJmTyZMnJzuWxWJh+vTpNGzYkNq1a6c65+rVq/Ppp5/y008/8dVXXyV5TVBQEMHBwQwdOhSlVJLXZHVz587F29ubdu3aPfa6QoUKMXToUI4cOcL+/fvp3bs3mzZt4pVXXqFYsWIMHz6cY8eOpVPWmqZlGUk9WzW5DegEhALngXppGSs9WkZ5Xvv1Y8fEHaRPhQquTkXTNE3THIJHPK89K7eMcl+RkZw6dUq6desmBoNBcubMKWPGjJFbt27J4cOH5fXXXxej0Shms1l69uwpx48fT3KMoUOHisFgkLNnzyYr5rfffiuA/PLLL2nO32azSfPmzcXd3V2OHDnyr/MNGjSQ4sWLi8ViSXOszOjGjRtiNptl8ODBqeofGxsrq1atkjZt2ojJZBJAqlevLrNmzZLQ0FAHZ6tpWmb2qPuKtCwhKQsMAlYkFDC6K6Wyp7Ge8lT44j//IRZ4d9o0V6eiaZqmaZqWZiEhIbz11ltUqFCBFStWMHToUM6ePUuzZs3o1q0blStX5qeffmLQoEGcPXuWBQsWUKFChSTHevfddzEajUxLxn2SiDB58mSeffZZWrRokeavw2Aw8M0335AnTx66dOnCvXv37p/bt28f27dvZ9CgQZie0s3XFy1ahMVioVevXqnq7+bmRtu2bfnpp5+4cuUKM2fOxG63M2DAAHx8fGjfvj1r1qx55BIeTdO0tCwhWQN8ICJ9gIbAaWCvI5JSSjVXSp1USgUrpUYlcX6IUuq4UuqIUmqTUqqEI+Kmh+hbt/jy999pVbAgfg74QatpmqZpmZFSqqBSyj+hFXB1PimhlGqllJp7+/ZtV6fichcvXqRv376UK1eOxYsXM2DAAIKDg6lXrx6tW7emYcOG7Nmzh/Hjx3PhwgWmTZtG0aJFHztmkSJF6N69O/Pnz+fGjRuPvXbdunUcO3aM4cOHO2xJR8GCBfnuu+/466+/GDJkyP3jn332Gbly5eLtt99+TO+sS0QICAigXr16VKxYMc3j5c+fn4EDB3LgwAEOHz7MgAED2LlzJ61bt2bJkiUOyFjTtKwoLQWMWiKyCeK3DReRacDjF8Mlg1LKCHwBtAAqAl2UUg//L3kQqCEilYDlQPIXSrrYsSlTsIswdPRoV6eiaZqmaS6hlOoI7AE6AB2B3Uqp11ybVfKJyBoR6e3p6enqVFwmNDSUgQMH4uvry4IFC+jduzcnTpygcuXKNGnShLZt23Lt2jVmz57N+fPnef/99x/7ZI+HDR8+nNjYWGbNmvXY6yZPnkzRokXp3LlzWr+kf2jatCkjRozg66+/ZsWKFVy8eJGlS5fyzjvv8LT+vW/fvp1Tp06levbF41SqVIlp06Zx6dIlihYtmqonyWia9nRIdQFDRO4kcexU2tIBoBYQLCJnRSQOCATaPBRni4gkzun7E3h8KT+jsNupuXIlF6tWpcH//Z+rs9E0TdM0VxkD1BSRN0SkB/E/+z9wcU5aCnTq1Ikvv/ySHj16cOjQIXx9fWnQoAE9e/bEbDbzww8/cPr0afr370/27ClfYVy+fHnatm3L7NmzuXv3bpLX7N27l61btzJ48GDc3NzS+iX9y/jx46lZsybvvPMOEydOxG63M2jQIIfHySwCAgLw9PSkQ4cOTothNpvx9/fnt99+IzY21mlxNE3LvNIyA8NZigAXH3h9KeHYo7wNrHVqRg5y4/vvsZ86RfYRI1CGjPhHr2mapmnpwiAiD64NCCNj3pNoSdi0aRObN29m3Lhx+Pj4UL9+/X88CvXQoUN07do1zftEjBw5koiICAICApI8P2XKFDw9PZ0yIwDi92tYsmQJNpuNgIAA2rdvT4kSmWbVskPdunWL5cuX061bt1QVpFKiVatWREVFsXXrVqfG0TQtc8rUNwtKqW5ADWDKY67prZTap5Tad/PmzfRLLgmvDRhAi2zZ4LVMM0tW0zRN05xhnVJqvVLqTaXUm8AvZJJfRjztRITRo0fj7e3NhAkTknwUqqP2oqhduzYvvvgi06dPJy4u7h/ngoODWbFiBf369SN37twOiZeUMmXK0LZtW2w221O7dATgu+++IzY21mnFogc1atQIDw8PgoKCnB5L07TMJy1PIVmplGqplHJ0EeQyUOyB10UTjj0cvwnxU1Bbi8gj55iJyFwRqSEiNfLnz+/gVJNv76JF/H7nDs1ffhme0p2rNU3TNA1ARIYDXwOVEtpcERnh2qy05FizZg179uwhLi6OSpUqcfz4cVatWkWdOnWcEm/kyJFcvnyZH3744R/Hp0+fjslkYuDAgU6Jm8hms7Fjxw7y58/PwoUL2bZtm1PjZUSJm3fWrFmTypUrOz2eh4cHTZo0ISgoSD+NRNO0f0lL8eFLoCtwWin1qVLKz0E57QXKKqVKKaXcgM7A6gcvUEpVJf7Gp/VDU1AzrGkffEBu4O3Zs12diqZpmqa5lFJqkoisFJEhCW2VUmqSq/PSHs9ut/P++++TP39+IiMjmTJlyiMfheooL7/8MpUrV2bSpEnY7XYAbty4wcKFC+nRowc+Pj5Ojf/zzz8TEhLC9OnTKVOmDN26dSMsLMypMTOaP//8k7/++itdZl8k8vf359y5cxw/fjzdYmqaljmkZRPPjSLyOlANOAdsVEr9oZTqqZQyp2FcK/B/wHrgBLBURP5SSo1TSrVOuGwKkBNYppQ6pJRa/YjhMoTzO3ey/OJF+tSsSe4nPDpM0zRN054CTZM4pp8tnsH9+OOPHD16FIC6detSv359p8dUSjFy5EhOnjzJ6tXxt3uzZ88mNjaWYcOGOT3+9OnTKVWqFF26dCEwMJDr16/z9ttvP1UzAwICAsiZM6fDn/TyOC1btgTiZ/xomqY9KE3LP5RSeYE3gXeIf7TpTOILGhvSMq6I/Coi5USkjIj8N+HYWBFZnfB5ExEpKCJVElrrx4/oWguHDUMBA7/4wtWpaJqmaZrLKKX6KaWOAn5KqSMPtBDgiKvz0x7NYrEwduxYihUrxs2bNxk5cqTD9rp4kg4dOlCqVCk+/fRT7t69y+zZs2nTpg1+fo6a/Ju03bt3s3PnTgYPHozRaKRatWpMmjSJn3/+mTlz5jg1dkZx+/ZtAgMD6dKlC7ly5Uq3uEWKFKFatWp6HwxN0/4lLXtgrAJ+B7IDrUSktYj8KCIDiJ8doQFERPD+0aP8/vLLFK1Z09XZaJqmaZorLQZaEb80tNUDrbqIdHNlYtrjLVq0iODgYEwmE+XLl6dVq1bpFttkMjFs2DB2797NmDFjCA8PZ8QI52+ZMn36dDw9PenZs+f9Y4MGDaJFixYMGTLk/myUrGzx4sVER0en6/KRRP7+/uzatYvQ0NB0j61pWsaVlhkYASJSUUQ+EZGrAEopdwARqeGQ7LIAmTsXU1QUdT75xNWpaJqmaZpLichtETknIl1E5PwD7Zarc9MeLTY2lnHjxuHn50dISAjDhw/HkM6Pg+/Zsyf58uUjICCA+vXrU7duXafGO3fuHMuXL6d3797/mHlgMBj45ptv8PLyolOnTty7d8+pebhaQEAAVapUoUaN9L+19/f3x263s27dunSPrWlaxpWWnz4Tkji2Kw3jZTlxkZHUfP99llSsCFWrujodTdM0TdMeQSlVUSm1VCk1Rymln3f+gK+//pqLFy+SPXt2ChcuzOuvv57uOXh4eNCoUSNiYmLo0KGD0+PNmjULg8HAgAED/nWuQIECfPfdd5w4cYIZM2Y4PRdX2b9/PwcPHqRXr17ptlzoQdWrV6dQoUJ6GYmmaf+Q4gKGUqqQUqo64KGUqqqUqpbQXiR+OYmWYOnw4ey3WPDs2NHVqWiapmlalqWUWqCUuqGUOvbQ8eZKqZNKqWCl1KgnDNMCmCUi/YAeTks2k4mKiuK///0vNWrU4ODBg7z77ru4u7unex4iwokTJ1BK8eeffzo11p07dwgICKBjx44UK1YsyWuaNGlC8+bNmTlzJtHR0U7Nx1Xmzp2Lh4eHSwpWED/bpWXLlqxbtw6LxeKSHDRNy3hSMwPjZWAqUBSYDkxLaEOA0Y5LLXMTu51pixZRwc2N5mPGuDodTdM0TctQlFIllFJNEj73UEqlZYfAb4DmD41vBL4gvjBREeiSMMviOaVU0EOtAPAd0FkpNQXIm4ZcspTPP/+cGzdukCtXLjw9Pendu7dL8tiwYQPHjh2jWbNm/Pjjj4SEhDgt1rx587h79y7vvvvuY68bOXIkN27cYNGiRU7LxVUiIyNZvHgxHTt2xNPT02V5+Pv7c/v2bXbs2OGyHDRNy1hSXMAQkUUi0gh4U0QaPdBai8hKJ+SYKW2ePp1D0dEM7dIFg8nk6nQ0TdM0LcNQSvUClgNfJxwqCvyU2vFEZDvw8D4atYBgETkrInFAINBGRI6KiP9D7UZC6w+MAh65a6BSqrdSap9Sat/NmzdTm3KmEBERweTJk2nUqBFbt26lX79+5M6d2yW5TJkyBR8fH7788kuMRiPTpk1zShyr1crMmTNp0KDBE/d9aNiwIbVq1WLq1KnYbDan5OMqP/74I5GRkS4rWCVq0qQJbm5uehmJpmn3pWYJSeIu4SWVUkMebg7OL9OaNnkyBZTi9Sy8NlLTNE3TUqk/UA+4AyAip4ECDo5RBLj4wOtLCceSpJQqqZSaC3wLTHnUdSIyV0RqiEiN/PnzOyzZjGjq1KlERESQN29e3NzcGDRokEvyOHDgABs3bmTw4MGULl2aHj16MH/+fG7cuOHwWCtXruTChQsMGfLkW1qlFCNHjuTMmTOsWLHC4bm40ty5c6lYsaLTN0t9kpw5c9KoUSNdwNA07b7ULCHJkfAxJ5AriaYdP86ImzeZ1aED2fLkcXU2mqZpmpbRxCbMigBAKWUCxIX5kPB0lN4i8rqIPPXz1W/cuMGMGTNo3bo1a9as4Y033qBQoUIuyWXKlCnkypWLPn36ADB8+HBiY2OZNWuWQ+OICNOmTcPX1xd/f/9k9WnTpg3lypVj0qRJiLj0W9hhjhw5wp49e1y2eefD/P39OXXqFKdOnXJ1KpqmZQCpWUKSON3zSxH5+OHm4Pwyp+nTedHDg45ffunqTDRN0zQtI9qmlBpN/IbgTYFlwBoHx7gMPLgDY9GEY2mmlGqllJp7+/ZtRwyXIX3yySfExMTg4+NDXFwcQ4cOdUkeISEhLF26lL59+97fi8HPz4927doxe/Zs7t6967BYu3btYs+ePQwePBij0ZisPkajkeHDh3PgwAE2bdrksFxcKSAgAHd3d7p37+7qVADuF5P0LAxN0yBtj1HdqZT6TSn1tlLKy2EZZXLXjhxh8MKFXOnQAfLqPcA0TdM0LQmjgJvAUaAP8CvwvoNj7AXKKqVKKaXcgM7AakcMLCJrRKS3Kzc3dKZLly4xZ84cunbtSmBgIO3bt6dcuXIuyWX69OkYjcZ/LV8ZOXIkERERBAQEOCzWtGnT8PLy4s0330xRv+7du+Pj48OkSZMclour3Lt3j++//55XX32VvBnkPrZkyZI8++yzuoChaRqQhgKGiJQj/mbjGWB/wi7e3Z7QLcv7on9/PrfbuZdBqtaapmmalgF5AAtEpIOIvAYsSDiWKkqpJcAuwE8pdUkp9baIWIH/A9YDJ4ClIvKXA3LP8jMwxo8fj91up3jx4ty+fZuRI0e6JI/Q0FDmz59Pt27dKFLkn9uX1KpVi0aNGjF9+nTi4uIeMULynTlzhlWrVtG3b19y5Mjx5A4PcHd3Z/DgwWzcuJH9+/enORdXWr58OREREfTq1cvVqfyDv78/v//+OxEREa5ORdPuCw8PZ9OmTYSFhbk6ladKWmZgICJ7RGQI8Tt93wKy3nOkUiDq5k2+3LmTNj4++DZp4up0NE3TNC2j2sQ/CxYewMbUDiYiXUTER0TMIlJUROYnHP9VRMqJSBkR+W8ac34wXpadgREcHMz8+fPp1asX33zzDY0aNaJmzZouyeWLL74gOjqaYcOGJXl+5MiRXL58mR9++CHNsT7//HNMJhP/93//l6r+ffr0IXfu3EyePDnNubhSQEAAZcuWpWHDhq5O5R/8/f2xWq389ttvrk5Fe4rFxsayZcsWxowZQ+3atcmXLx9NmjShUKFCvPLKK3z77bfcuXPH1WlmeakuYCilciul3lBKrQX+AK4SX8h4ai0aMIBbIgx939GzYDVN0zQtS8kmIpGJLxI+z+7CfLQEH330EW5ubpQtW5bLly8zYsQIl+Rx7949Zs2aRatWrahYsWKS1zRr1owqVaowadIk7HZ7qmNFREQwf/58OnfuTOHChVM1hqenJ/369WP58uWcOXMm1bm40okTJ9ixY0eG2bzzQXXq1CFv3rysWePorXI07dHsdjuHDh1i6tSpNG/eHC8vLxo3bsykSZMwmUy8//77rFmzhiFDhvDXX3/xxhtvUKBAAdq3b8/SpUu5d++eq7+ErElEUtWAEOAzoG5qx0jvVr16dXEWa2ys+JrNUitHDrHbbE6Lo2mapmkZEbBPkn8PsROo9sDr6sCu5PZ3dQNaAXN9fX0d+UfockePHhWllIwYMUIqVKgglStXFrvd7pJcZs+eLYD8/vvvj71uyZIlAsiqVatSHWvy5MkCyMGDB1M9hojIlStXxM3NTfr165emcVzl3XffFbPZLNevX3d1Kknq3r27eHt7i9VqdXUqWhZ27tw5mTdvnnTu3Fny588vxD8hSypUqCADBgyQn3/+WW7fvv2vfna7Xf744w8ZOHCgFCpUSADJkSOHdO3aVVavXi0xMTEu+Goyt0fdVyhJ5SOflFJKUtvZRWrUqCH79u1zyti3f/iBwd260WroUNpPneqUGJqmaZqWUSml9otIjWReWxMIBK4ACigEdBKRTLWBgDPvK1yhXbt2bN68mS+//JJu3brxww8/0LVr13TPw2q1Uq5cOQoVKsTOnTsfOxvAarXi5+dH/vz52bVrV4pnDlgsFkqXLk25cuUc8hSRXr168f3333P+/HkKFCiQ5vHSS2xsLEWKFKFRo0YsW7bM1ekkaenSpXTq1IkdO3ZQr149V6ejZRHh4eFs2bKFjRs3snHjRk6fPg1AoUKFaNKkyf328D48j2Oz2di+fTuBgYEsX76cW7dukSdPHtq3b0/nzp1p1KgRJpPJWV9SlvGo+4oUFzCUUjNEZLBSag1JPLNdRFqnPk3ncuqNRv36cPkynD4N+htS0zRNe8qkpICRcL0Z8Et4eVJELM7JzHmyUgFj79691KpVi3HjxrFu3TouX75McHCwS26yf/zxRzp37syqVato27btE6+fM2cO//nPf9i6dWuK925YvHgxr7/+OkFBQbRs2TK1Kd936tQpypcvz+jRo5kwYUKax0svgYGBdOnShd9++42mTZu6Op0kRUREkD9/foYNG8Ynn3zi6nS0TCo2NpY//vjjfsFi37592O12cuTIwYsvvkjTpk1p0qQJFStWdMhSKovFwsaNGwkMDGTVqlXcvXuX/Pnz06FDBzp37ky9evUwGNK0LWWW5cgCRnUR2a+USvInhIhsS2WOTuesG40TgYFEdelCjZkzYeBAh4+vaZqmaRldKgoYzwMlgfvvkEXkWyek5nBKqVZAK19f316Jv63L7Jo1a8bBgwf54YcfePnll/n8888ZMGBAuuchItSoUYPIyEhOnDiRrBv76OhoSpYsSbVq1Vi7dm2KY0VFRXH8+HGHvYl49dVX2bx5MxcuXCBXrlwOGdPZXnrpJUJCQggODs7Qb6YaN27MzZs3OXr0qKtT0TKR06dPExQUxLp16/j999+Jjo7GaDRSp06d+zMsatWqhZubm1PziImJYe3atSxZsoSgoCCio6MpWrQonTp1onPnzlSvXj3D7T/jSg4rYDww4CARmfmkYxmJswoYHYoVY8OlS1y5fp3sGW26oAj3QkMJPX2aiCtXiI2MpGTevOT38CDs5k22HTxITFQUsdHRxMbEEBsTQ0tfX3xz5uTvy5eZt38/sXFxxFosxMbFEWOx8IGvL8+6u7Pp6lXGnj2buB74/j+4uWXK8EyOHATdusWky5fvp5L4z3GRnx+lPDxYfvMms69c+d/5hP4/PvMMBdzdCbx5k++uXcNoMGAyGDAZjRgNBgLq1iVntmysvHSJ365ciT9uNGIymTAaDHzSuDFGs5m1ISHsv3YNk8kU38xm3N3c6NeoEZjN7AwJ4Xx4OGZ3d0xmM2Z3d7LnyEHjGjXAbObklSvciY3F5O6O2d0dc7ZsZMuZkxIlSoDZzO179xCTCbOHB6Zs2TB5eGA0m9Pn71XTNC2DSeESku+AMsAhwJZwWEQkU/0WIKvMwNi6dSuNGjVi2rRpbN26lT/++IPz588/9nGiBw4c4Oeff8bT05M8efIk2XLnzp3iGRybN2/mpZdeYu7cuSl6lOfEiRMZM2YMhw4donLlysnqs337dho2bMhXX31Fnz59UpTn4+zZs4fatWszbdo0hgwZ4rBxnSU4OJiyZcsyYcIExowZ4+p0Huuzzz5jyJAhhISEULJkSVeno2VQFouFP/74gzVr1hAUFMTJkycBqFChwv0ZFg0bNiR37twuy/Hu3busWbOGwMBA1q1bh8VioUyZMnTu3JnOnTvz7LPPuiy3jMIZBYwDIlLtoWMHRaRqKnN0OmfcaIRs345vw4YMr12bT//806FjJyUmIgL7zZtkj4oi6uJFgjZuJPTqVUJv3iQ0LIzQ27fp5u1NS+DY1avUun6d6IfG+AZ4g/gd1OonEWM58CqwQSnaiuCu1P+awcCC4sWp5+3NtpgYxl+6hEGpf6wl+rxcOSrkyMGvN28y7eJFAB78Plvg50dJDw+W37jB7IQCh8RfBMCyChUoYDIx/+pVvrp2DasINhGsdjtWEfYXKUIuu53x4eF8ERWFVST+GsAKRJpMGK1W+gFfPfS1eQCJ+wF3Ax5+8FoB4HrC522A1Q+dLw0k7i3eGNjy0PkqwEE3NzCbaRITw2G7HbNSmJTCrBS1PDxYUrw4mEx0vHCBixYLZoMBs9GIyWCgjrc3Hz/zDJhMDDh8mNs2GyajEZPRiNlkokahQvSsVAlMJsb/+Sc2pe4XaMxmM5WKFaNpQv+Ff/6J0WzGZDZjcnPDZDZTrnhxni1dGptSbDt+PP54wjmTuzs+BQvi4+ODFTh//TpGNzdM7u73W05PT7LlyIEYjVgBo7s7BqMxie8iTdOeNiksYJwAKma2vbQelhUKGCJC/fr1OXfuHKtXr6ZGjRp89NFHfPjhh4/tV7t2bfbs2fPE8XPlyvXYIsfD7b///S/Hjx/n3LlzZMuWLdlfR0REBMWLF8ff35/Fixcnq0/btm3ZsWMHFy5cIHt2xz4Ep1GjRpw+fZqzZ886/be6aTVq1CimTp3KhQsXUv0UlvRy+vRpypUrx6xZs1L9yFsta7p16xbr1q1jzZo1rFu3joiICMxmM40aNcLf3x9/f39KlSrl6jSTFB4ezqpVqwgMDGTTpk3YRLeRGgAAIABJREFU7XYaNmzIypUr8fb2dnV6LuPIJSRdgK7Ev/f9/YFTuQC7iLyUlkQfiNMcmAkYgXki8ulD592Bb4nfuTyM+M2/zj1uTGfcaAyqUoUvDx/m3N69FKmR7Jmz8W/W793j4tGjhIaEEHbxImGXLxN2/Tp+2bLxkqcn0deu0W7TJkKjowmNjSXUZiMKGAt8DFwDfB4Y0ksp8plMjC5WjDcrViQ0Z04mBQeTL18+8hUsiGfevGTLkYMq5ctTtFgxoux2gq9fxz1nTrLlzo17zpy458pFrrx5MefMmen38rBbrdji4rDFxmKNjcUSHY0tNpZ8np5gsXD92jUiwsLiz8XGYo2JQdntVC9TBiwW9p84wbWbN7HExWFJuCa7yUTbSpXAamXl3r2cDw3FEheH1WrFarWSP1s2+iWcn7p7NyHh4VhsNqxWKxabjbI5cjC2XDmwWul14ADn793DYrfHX2O3Uyd7dmb4+IDFQv2QEK5YrfcLNBYR2pjNzHNzA4uFPLGx3H7oa+4FzCW+IJTUBNAhwDTgLpBUzTnxe+sqkNQtzBRgGHCK/y1cV8TP/zYCs93deTtbNo4ATe/cwaQUxsQGfFawIK08PdkfF0evy5cxKoXJYIg/bzDwia8vz3t7sycykvFnzmA0GP7RPqhUiYre3uy+dYt5p0/HH0+YmWM0GhlSowbFvLzYe/06q8+ciT+XeN5koledOnjnysWBK1f44/x5DInnTSaMRiOd6tQhe/bsHL10ieNXr2I0meKvMZkwmkw0r1kTk5sbp69e5WJY2P/Om80YjEZqV6qEMhq5eOMG4VFRGIzG+JZQSPItVQqMRkIjIoixWDCYTPf7mtzd8fL2BoOBGIsFUQqDyfSPpjLwtF5NS2EBYxkwUESuOjktp8oKBYxff/2Vli1b8tVXX7Fr1y6WLVvGhQsXyJs37yP7/P3331SoUIEpU6bQu3dvIiIiUtVu376d5ONPJ06cyHvvvZfir2X48OFMnz6d06dPU7p06cdee/r0afz8/Hj//fcZN25cimM9ybp162jRogULFy7kzTffdPj4jhIXF0exYsWoW7cuP/30k6vTSRY/Pz9KlSrFunXrXJ1KpmCz2e5vUjlw4MAMX6RKLhHh5MmT92dZ7Ny5E5vNRv78+WnZsiWtWrWiadOmmWYZV6Lr16+zePFiRo0aRbly5Vi/fn2W+TtLKUcWMEoApYBPgFEPnLoLHBERa1oSTYhhJP49UlPgErAX6CIixx+45j9AJRHpq5TqDLQTkU6PG9fRNxrhISEUK12adqVKMWP9esLOniXs/Hnc7t2jupcXhIUxcfVqLty4QdidO4RGRREWE0Njo5EZVivExpId/jVD4h0gIHduJG9enr9xA6/s2cmXKxf58uQhX758NKhcmfp16mDz8uLk3bvkK1MG7zJlMKXgNxVa1iB2O7a4OCz37mGNicEoQnY3NyQujosXLmBNKN5YY2OxxMSQN0cOiubLhzU2lp2HDmGNi8NmsWCNi8MaF0fZQoWoUKgQ96KiWPHnn/HnbTasFgtWi4Xnixenmo8PoXfu8PWuXfGFGYsFm82GzWbjVV9faufPz/nwcD7Ztw+b3Y7VZsNmt2Oz2ehfpgzPe3lx9NYtxhw/jtVuj78m4eMnxYtTN0cOtoWH8+6FC9gSZt8ktu/y56e22cyqyEj6h4fHHyd+/rlNhO3ZslFFhLkWC33t9n/tMnwKKEt8IWZEEn+eV4gvCo4Fxidx/i6Qk/hC0GdJ/X0kfOwFzHvoXC7gTsLnnYEfHzpfGEhccOUP/PLQ+XLASQCDgZdE2CGCAe63akYj23LnBoOBJnfucNRmw0B8YcmgFM+7uxNYsCAYDDS9coULVisGpVAJ5xvlzMmsokXBYKD5mTPcSuhvUAqlFM28vPiwRAkwGGh59CixIvfPGZTilQIFGFCqFKIU7fbtu3888WOrwoXpXro00TYbvfbuxWAwxMc2GDAoRZsSJWhdsiQRFgvv7d0b3++Ba9qWKUOj4sW5ERPD5MT+SqES+rcrX56aRYpw+e5dAg4d+l//hBzaPvMMz/j4cCEigh+PHLnf9/75SpUolS8fIbdu8cvx4//sbzDQunJlfLy8OHPzJttOnYqP+8D5VypXJm/u3ATfuMG+kJB/jf9y1arkyp6d01ev8telS/ePJ17TpGpVsmXLRvDVq5y5evV/fRM+vlilCkaTieArV7gcGvqv8/UqVwalOHvlCjcjIuKPJ5wzmUxUKV8elOLc1asULFAAj5QU3JMphQWMLcRPWtsDxCYez8gbgT8oq+yBYbfbqVGjBrdv32bDhg34+fnRr18/Pv/888f2Gz16NJMnT+bSpUsUKlQoTfEjIyPvFzMiIiK4d+8ejRs3xpyKJZlXrlyhVKlSvPPOO3zxxRePvbZ///7MmzeP8+fPp+lreBQRoWrVqsTFxXHs2LEMu6/EihUreO211xy2iWl6GDp0KLNnzyYsLIycOXO6LI979+4xePBgfH19adOmDX5+fk/ulE5EhL1797J48WJ+/PFHrl27BkCnTp0IDAx0cXapFxcXx++//36/aHHmTPy86MqVK+Pv70+rVq2oWbNmhv33lhKbN2+mTZs25M+fnw0bNlCmTBlXp5TuHL6ExJmUUnWBj0Tk5YTX7wGIyCcPXLM+4ZpdSikT8RMS8j9uOqqjCxhbfHxocu0aiQ8ITtQYSHwQV3ngllLkNZvJly0bebNn58USJRjcoAHkzcvi4GA8vL3JW7QoeYsXJ2+pUniXLo2bC/9D1rSsIrHAY0so1GQzmzGIEB0ZSVRkJDaLJf6c1YrdYqFogQIYleLmzZvcvHkTu80Wf43Vit1qpaqvL0alOHvxIhevXo0/b7Vis1gQu53m1aqB3c6BU6c4d/06dpvtfjMAHWvWBLudzX/9xdnr17HZbNjtduw2Gx4mE2/VqgU2GysOH+b0jRuISPx5ux3vbNnoX6MG2O3M3b+fkPDw++fsdjtFcuRgSJUqYLfzyb59XLh7F1vieRH8cuVi5DPPgM3GkP37uRodjT1hfBGhep48vOfrCyJ027+fWxZLfF/ALkLjPHkYXbw4iND08GGibbb4/iLYgXZ58vBewYLY7Xaq/v13/P+LCedEhJ6engz38uKu1UqVCxeQhHEFsANDcubk3ezZuWK1UiU09P7xxP9fJ7i7099s5qTNRrV79/51fo5SvA3sEaF2Et8LS4gvHG0GkpomGAS0BH4GknrmwTagAfA90D2J8/uBasAc4D9JnE8snk0GRiZx/irxzxF9VPEsEsgBvAvMeOicIv7PAuIL4PMfOp8b7s/W6gS8nzs3z91+eP5W2qWwgJHpNgJPSmafgbFs2TI6duzIt99+y6FDh5g5cybBwcGP3VvAZrNRsmRJKlWqxC+/PFxqdb133nmHH3744bGPMb116xZFixalc+fOLFiwwGm5JD7h5Oeff6Z164xZm2vevDl//fUX586dw5hJloRu2bKFxo0bJ/spNc4yZcoURoz4369D/Pz8aNOmDW3atKFOnToueRP9999/s3jxYhYvXsyZM2dwc3OjZcuWdO3alT179jBlyhT27t1LDScUsZ0lNDSUX3/9laCgINavX8+dO3dwd3encePGtGrVipYtW1K8eHFXp+kUe/fupUWLFpjNZn777Teee+45V6eUrhw5A2OHiNRXSt3ln+/bFfEbcKV5NxSl1GtAcxF5J+F1d6C2iPzfA9ccS7jmUsLrMwnXhD40Vm+gN0Dx4sWrnz9/Pq3p3fd3ixZUXLeOcmYzfV95hXw+PuT18aFY2bI8W6sW5M2L5M6tp31rmqalI7Hb7ze71YrY7feXKdksFqLv3fvfNTYbIkIODw/MJhOxMTHcuX07/pwIdpsNsdvJ6+mJu5sbUVFRhIaFISJIQnFKRChWqBDuZjPhERFcu3Hjfv/EOOVKlMDdbOZ6aChXHj4vQpWyZTEbjVy8epWL16//63y9Z57BaDBw+uJFLj7UHxGaVqsGIhw9e5aLN2/+o6/JYKBFwvm9p05RrkQJPDs9dsJiqqTiKSQlgLIislEplR0wishdhyfmRJm5gGG1WnnuuecwGAxs27aNUqVK0aZNG77//vvH9tu4cSNNmzYlMDCQTk74PkqrkydPUqFChcc+xvSTTz5h9OjRHDlyxKlvCKxWK2XLlqVw4cLs3LnTaXFS69y5c5QuXZqxY8fy0UcfuTqdZLNYLOTPn59XX32V+fMfLtmmj8jISEqVKkX16tUJCAhg9erV/Pzzz2zZsgWr1UrBggVp1aoVbdq04aWXXsLDw8NpuVy6dInAwEAWL17MwYMHUUrRuHFjunbtSvv27cmTJw8Ad+7coUyZMlSqVImNGzdm6KddnDx5kpUrVxIUFMSuXbsQEQoVKnR/lsVLL7302E2Gs5Ljx4/TrFkzoqKi+PXXX6lbt66rU0o3j7yvEJEM14DXiN/3IvF1d2D2Q9ccA4o+8PoMkO9x41avXl0cbXqbNgLI+JdecvjYmqZpmpZZAPsk+T/nexG/PPRMwuuywKbk9s8ozRn3Fell4cKFAsiKFStkwoQJAsjhw4ef2K979+7i6ekp0dHR6ZBl6rRv317y5Mkjd+7c+de52NhY8fHxkaZNm6ZLLrNmzRJAduzYkS7xUuKDDz4QpZScP3/e1amkWKdOnaRgwYJis9lcEv/TTz8VQHbt2vWP4+Hh4bJ48WLp1KmT5M6dWwDJnj27tGvXTr755hsJDQ11SPzQ0FD5+uuvpWHDhqKUEkBq1aolM2bMkCtXrjyy38yZMwWQtWvXOiQPZ9i5c6cYjUYBpFq1avLhhx/K3r17XfZ3nRGEhISIr6+vZM+eXdavX+/qdNLNo+4r0lJkKAO4J3z+IjAQyJPa8R4auy6w/oHX7wHvPXTNeqBuwucmIJSEGSWPas640bDbbNKtVClRIKvff9/h42uapmlaZpDCAsYhwA04+MCxo8ntn1FaZi1gxMbGSsmSJaV69eoSFRUl+fPnl+bNmz+x3507dyR79uzSu3fvdMgy9Xbv3i2ATJ069V/nFi1aJICsW7cuXXKJioqSfPnySatWrdIlXnJZLBYpXLiwtGjRwtWppMp3330ngOzZsyfdY9+5c0fy5s37xH8zsbGxsn79evnPf/4jRYoUEUAMBoM0aNBApk+fLmfOnElR3MjISFm8eLH4+/uL2WwWQPz8/GTcuHFy+vTpZI0RGxsrpUuXlkqVKonVak1R/PRgtVqlatWqUqRIEblw4YKr08lQrl27JpUrVxaz2SzLli1zdTrpwhkFjEMJhQNf4pf3TgF+Te14D41tAs4Sv1moG3AYeOaha/oDXyV83hlY+qRxnXWjcS8sTKp5eIgnSNhDlVhN0zRNexqksICxO+HjQfnfz/0jye3v6ga0Aub6+vo68o8w3XzxxRf338TPmTNHANmyZcsT+yXO2siIswke1qhRIylcuLDExMTcP2a326Vy5cpSsWJFsdvt6ZbLxx9/LIAcO3Ys3WI+yerVqwWQlStXujqVVAkNDRWDwSBjx45N99gTJ04UQHbv3p3sPna7Xfbu3Svvv/++PPfcc4nbN8mzzz4rY8aMkT179iQ5wyAuLk6CgoKka9eukj17dgGkSJEiMmzYMDlw4ECqvo+XLFkigCxatCjFfZ0t8f+jwMBAV6eSIYWHh0u9evXEYDBIQECAq9NxOmcUMA4kfBwODJAHbkQc0YBXEgojZ4AxCcfGAa0TPs8GLAOCid/FvPSTxnTmb0rO//GHrMydW8TPTyQiwmlxNE3TNC0jSmEBYzIwGvib+CeOrQL+m9z+GaVlxhkYUVFRUqhQIXnhhRfEYrFImTJlpFatWsl6I9SoUSPx9fVN1zf/qbV+/XoBZP78+fePbdq0SQCZN29euuYSGhoq2bNnlzfeeCNd4z5Oq1atpFChQhIXF+fqVFKtfv36UrVq1XSNefv2bfH29pZXXnklTeOcOXNGPvvsM2nYsKEYDAYBpHDhwtK3b19Zu3atbNu2Tfr27St58+YVQLy9vaVPnz6ybdu2NC+lsNlsUr16dSlevHiGWgoWGhoq3t7e8uKLL2aK/2NcJSoqSpo3by6ATJ482dXpOJUzChi7gS7E70VRKuHYsdSOlx7N6Tca27aJmExypEEDsVkszo2laZqmaRlICgsYBuL3wVgGLE/4/LHLQDNiy4wFjMmTJwsg27dvlx9//PH+PhhPcu7cOQFk3Lhx6ZBl2tntdqlatar4+fndf8PXsmVLyZ8/v0vetA0cOFBMJlOGmBZ/6dIlMRgM8t5777k6lTRJ3Ifi0qVL6Rbzv//9r8OXroSGhsqiRYukffv2kiNHjvuzM7Jnzy5dunSRNWvWSGxsrMPiifyvmDdlyhSHjpsWffr0EaPRKEePHnV1KhlebGysdOrUSQAZNWpUli34OKOAURH4HOiS8LoUMDK146VHS48bjWNjxogJZOwLLzg9lqZpmqZlFMktYABG4IfkXJvRW2YrYERERIi3t7c0b95c7Ha7VKtWTcqWLZustfDjx48XQEJCQpyfqIMEBgbeXyZx4sQJAeSjjz5ySS7nzp0To9Eo7777rkviP2jcuHECSHBwsKtTSZNjx44JIF9//XW6xLt9+7Z4eXmJv7+/02JER0dLUFCQLF26VO7eveu0OCIiL7/8snh5ecmtW7ecGic59u3bJ0opGTx4sKtTyTSsVqv06dNHAOndu3eG3NMkrRxewMiMLT1uNOw2m/QsWzb+NxrDhzs9nqZpmqZlBCmcgbEDcEvu9Rm1ZbYCxocffiiA7Nu3TzZu3CiAzJ0794n97Ha7lC1bVho2bOj8JB3IYrFI6dKlpVatWtK7d29xd3eX69evuyyfbt26SY4cOSQsLMxlOdhsNilRooQ0adLEZTk4it1ul5IlS6bbBqmJRbx9+/alSzxnO3TokCilZMSIES7Nw2azSe3ataVgwYISoZfhp4jdbpf33ntPAOnYsaPDZ+q42qPuKwykklKqnlJqg1LqlFLqrFIqRCl1NrXjZRXKYODLPXuolSMHPaZM4diqVa5OSdM0TdMymrPATqXUB0qpIYnN1UllZaGhoUyfPp1XX32V6tWrM2nSJAoVKkT37t2f2PfPP//k9OnTvPHGG+mQqeOYTCaGDx/Onj17mDdvHj169KBAgQIuy2fEiBFERUXx5ZdfuiyHDRs2cP78eXr16uWyHBxFKYW/vz8bN24kOjraqbFu377NtGnTaN26NdWrV3dqrPRSuXJlunXrxsyZM7l48aLL8li0aBG7d+9m8uTJeHp6uiyPzEgpxcSJE5k8eTJLly6lTZs2REVFuTotp0t1AQOYD0wH6gM1gRoJH5962fLkYeXWreQ0GGjbsSO3z593dUqapmmalpGcAYKIvw/J9UDLFJRSrZRSc2/fvu3qVJJt0qRJREZGMm7cOA4cOMCGDRsYPHgw2bJle2LfRYsW4eHhwWuvvZYOmTrWG2+8QYECBbDb7QwePNiluTz33HO88sorfP75505/w/0oc+fOJV++fLRp08Yl8R2tVatWREdHs3nzZqfGmTlzJhEREXz44YdOjZPexo8fj4gwduxYl8SPiIhg5MiRPP/883Tr1s0lOWQFw4cPJyAggN9++41mzZoRHh7u6pScK6lpGclpJDwCLTO19J7quWPOHPnIYBBbs2YiWXBdkqZpmqYlIgVLSBIbkD2lfTJSyyxLSC5fvizZsmWTHj16iIhIp06dJFeuXBIeHv7EvtHR0ZInTx55/fXXnZ2m0yxdulQ+/vhjV6chIiLbtm0TQL744ot0j33t2jUxmUwydOjQdI/tLDExMZIjRw7p27ev02KEh4eLp6entGnTxmkxXGno0KGilJIjR46ke+yBAweKUkoOHDiQ7rGzomXLlonZbJZKlSrJ1atXXZ1Omj3qviItMzC2KKWmKKXqKqWqJba0l1Syjnp9+/LhnDkYfvuNO8OGuTodTdM0TcsQEu4djhP/GFWUUpWVUq6bV5/FTZgwAavVyocffsjZs2dZtmwZffv2JU+ePE/su2bNGiIiIjLd8pEHdejQwWW/YX7YCy+8QJ06dZg6dSpWqzVdY3/zzTdYrdYssXwkkbu7O82aNSMoKCixKOpwM2bM4Pbt23z00UdOGd/VRo8ejaenJ6NGjUrXuEeOHGH27Nn07duXqlWrpmvsrOq1117jl19+ITg4mPr16xMSEuLqlJwiLQWM2sQvG5kITEtoUx2RVJbSuzfHO3bEd8YMlr77rquz0TRN07SMYAbwMhAGICKHgQYuzSiLunXrFvPmzeOdd96hdOnSTJs2DZPJlOzlFIsWLaJIkSI0btzYyZk+HZRSjBw5kpCQEFasWJFuce12O/PmzaNBgwb4+fmlW9z04O/vz6VLlzhy5IjDxw4PD+ezzz6jXbt2VKlSxeHjZwTe3t689957/Prrr2zdujVdYooIAwYMwMvLiwkTJqRLzKdF06ZN2bhxI2FhYdSvX5+//vrLabHsdjsXLlzg0KFDTouRlFQXMESkURJN/3RLgu/8+ZTLlYueM2ZweOlSV6ejaZqmaS4nIg/vGmdzSSJZXEREBBaLhbp163Ljxg0WLFhA9+7dKVy48BP7Xr9+nXXr1tGtWzeMRmM6ZPt0aN26NeXLl2fSpElOmzXwsK1btxIcHJylZl8katmyJQBBQUEOH3vGjBncuXMny86+SDRgwACKFi3KiBEj0uV7MjAwkO3btzNx4kS8vb2dHu9pU7duXbZv347dbqdBgwbs2bMnTePduXOHvXv38v333/PBBx/QqVMnqlSpQs6cOSlRogQdO3Z0UObJk5ankBRUSs1XSq1NeF1RKfW241LLOtxy5mT5jh3kMRho+/rrhJ0+7eqUNE3TNM2VLiqlngdEKWVWSg0DTrg6qaxu1qxZxMbGMiyZy1oXL16MzWbL1MtHMiKDwcDw4cM5ePAgGzduTJeYAQEBeHl58eqrr6ZLvPRUsGBBatWqxZo1axw6bnh4ODNmzODVV1+lUqVKDh07o/Hw8GDcuHHs3buX5cuXOzXW3bt3GTZsGNWrV+ftt/VbR2d57rnn2LlzJ56enjRu3JhNmzY99nqr1crp06cJCgpi+vTp9OnThxdffBEfHx88PT2pVasW3bt3Z+LEiezfv58iRYrQt29f5syZw7x589Lpq4qnUltlSyhcLATGiEhlpZQJOCgizzkyQUeqUaOG7Nu3z2Xx9yxcyAtvvcULXl6su3IFUzJ2/tY0TdO0zEAptV9EaiTz2nzATKAJoIDfgEEiEubEFB3O1fcVyXH27FnKlCnD119/zahRo2jYsCGrkvmI9ypVquDm5pbm395p/xYbG0vp0qWpUKGCU4sYsbGxLFiwgMGDB9O3b19mzpzptFiuNH78eD788EOuXr1KwYIFHTLmBx98wIQJEzhy5AjPPZdh3944jM1mo0qVKsTExHD8+HHMZrNT4owcOZLJkyeza9cu6tSp45QY2v9cuXKFl19+mVOnThEYGMgLL7zAyZMn/9XOnDmDxWK538/b2xs/P79/tTJlyuDu7p4uuT/yviKpnT2T04C9CR8PPnDsUGrHS4+WEXYLX9Czp7QDiRowwNWpaJqmaZrDkIynkACTEj52eNK1maFlhPuKJzlz5owA0rVrVwFk165dyep36NAhAWT27NlOzvDpNWXKFAFk3759Dh87NjZWvvrqKylWrJgAUq9ePbl06ZLD42QUBw4cEEAWLlzokPHCwsIkV65c0qFDB4eMl1kEBQU59d/9iRMnxGw2S8+ePZ0yvpa0sLAwqV27tgD/aGazWSpUqCBt27aVkSNHyoIFC2Tnzp0SGhrq6pRF5NH3FWmZgbEVeBXYICLVlFJ1Em5MGqZqwHSQUX5TIgMGoGbPRr79FtW9u6vT0TRN07Q0S84MDKXUUaASsF9EMu2Ty5RSrYBWvr6+vU5n8GWhiTMwvL29efbZZ9m2bVuy+g0ZMoTZs/+fvfuOj6pKGzj+O1PSeyEBEgglhKaAFEHUpYiNsFIURBAEEeuivKgouOtrR7GBgsqLSlAWRVAElwUUVxSkKQIrRUJJCCGQ3tuU8/4xQ0QMiCSTmSTP9/O5n5m559x7n7mE5Mwzp7xJRkYG4eHhLo6ycSosLKRFixZce+21LKulOdIsFguLFi3iueeeIzU1lT59+vDUU09xzTXXoJSqlWt4Iq01sbGx9O7du1aGQMycOZMXXniBPXv20Llz51qIsH7QWtO/f3/27dvH4cOHCQwMrNVzX3fddWzfvp1ffvml1nrKiAtTXFzM3Llz8fX1JSEhgXbt2hEXF4fJZHJ3aOd0rnZFTVYh+R9gFdBGKbUZWAz8rQbnazTUq69y7PLL6Tt+PDuXLHF3OEIIIURdWQvkAZcqpQqVUkVnPro7uAultV6ttZ4cHBzs7lAuWG5uLo8++ugF1bVarSxZsoTExERJXrhQUFAQ9957LytWrODQoUM1OpfFYuHdd9+lXbt2TJ48mejoaNauXcvmzZsZNGhQg05egGN1l8TERNatW0dFRUWNzpWdnc3cuXO55ZZbGlXyAhz38aWXXiIrK4uXX67dxSVXrlzJl19+ydNPPy3JCzcICAhgxowZTJ06lRtvvJG2bdt6dPLifGqyCslO4C/AFcDdQCetde2vX9QQmc34vv8+6QYDQ8ePJ9OFy9sIIYQQHuQJrXUI8C+tdZDWOvDMR3cH1xCd7mkbExPDjTfeeEHHrFu3jszMTJm8sw48+OCDmM3mi/6waLVaef/992nfvj2TJk0iMjKSNWvWsGXLFq677roGn7g4U2JiIsXFxXz77bc1Os8rr7xCSUkJTz75ZC1FVr/06tWLW265hVdeeYWTJ0/WyjlLS0uZOnUqnTt35r777quVc4rGqyarkNwC+Gqt9wJDgY+VUvW2O2hdi+zQgc+SksgIkRkNAAAgAElEQVSy2RjZty+W0lJ3hySEEEK42hbnY73pbVHfnThxAoB+/fpd8IfZpKQkwsPDueGGG1wZmgCio6MZP348ixYt+lMfFq1WK0lJSbRv356JEycSGhrKF198wbZt27jhhhsaVeLitAEDBuDj41Oj5VSzsrJ44403GDVqFB07dqzF6OqX559/noqKCp5++ulaOd+LL75Iamoqb775Zr391l94jpoMIfm71rpIKXUlMBB4F3irdsJqHC4bM4aF997LxoICpvXp4+5whBBCCFfzUkrdBlyhlBp+9ubu4Boim80GOJZJvBB5eXmsWrWK2267DS8vL1eGJpwefvhhKisrmTt37h/WtdlsfPDBB3Ts2JE77riDoKAgVq1axY4dOxg8eHCjTFyc5ufnx8CBA1m9ejUXO8ffK6+8QmlpKf/4xz9qObr6pW3bttx9990sWLCAgwcP1uhcR44c4cUXX2T06NH85S8eO1WiqEdqksCwOR8HA/+ntf4XIH/p/qQx8+czrXt3vtmzh+L5890djhBCCOFK9wBXASHAkLO2RDfG1WD92Q9yy5Yto6KiQoaP1KH4+HhGjBjB/PnzKSoqqraOzWZjyZIldOzYkXHjxuHn58dnn33Gjz/+yJAhQxp14uJMQ4YM4ejRoxw4cOBPH5uVlcWbb77J6NGj6dChgwuiq1/+/ve/4+vry4wZM2p0nqlTp2IymZg9e3YtRSYau5okMNKVUu8Ao4A1SinvGp6v0Zq1aRNb+vUjYOpU2LbN3eEIIYQQLqG13qS1vhd4VGs94axtorvja8j+zPCRjh07ctllMiq4Lk2fPp2CggIWLFjwm/02m42lS5fSuXNnxo4di7e3NytWrGDnzp0MHTpUEhdnGTx4MACrV6/+08fOnj2bsrKyRt/74rSoqCgefvhhVqxYwdatWy/qHGvWrGHVqlX84x//oHnz5rUcoWisapJwGAmsA67TWucDYcAjNQ1IKRWmlPpSKZXsfAytpk5XpdQWpdRepdQepdSoml7XnUw+PvgvX05xdDT3DRhAxq5d7g5JCCGEqHVKqQHOp3kyhMTzJCcns2XLFsaPHy8fjOtYjx49GDBgAK+99hqVlZXY7XaWLVvGpZdeym233YbRaOSTTz5h165dDB8+HINBvjOsTkxMDF27dv3T82BkZmYyb948brvtNhISElwUXf0zbdo0oqKiePTRR/90b66KigoefPBB2rVrx0MPPeSiCEVjVJNVSEq11p9qrZOdrzO01utrIabHgA1a63hgg/P12UqBcVrrTsD1wOtKqZBauLb7hIeT8uqrJJWWMuKqq6golPnNhBBCNDinB0CfPXxEhpB4gMWLF2MwGBg7dqy7Q2mUpk+fTnp6OlOmTKFLly6MGuX4fu7jjz9mz5493HzzzZK4uACJiYls3ryZ3NzcCz7mpZdeory8nL///e8ujKz+CQgI4Mknn+S7777700mhV199lUOHDvHGG2/IfDqiVnnib8GbgCTn8yQcK5z8htb64BmJkxNAJhBZZxG6SOcRI3j/oYfYUlxMr6go/vPqq+4OSQghhKg1WusnnY9nDx+RISRuZrfbWbx4MYMGDaJZs2buDqdRGjRoEN26deOdd97BarWydOlS9uzZw8iRIyVx8SckJiZit9tZu3btBdU/efIk8+fPZ8yYMbRr187F0dU/kyZNol27djz22GNVkwL/kbS0NJ599lmGDx/Otdde6+IIRWPjib8No7TWGc7nJ4Go81VWSvXCMXno4XOUT1ZK/aCU+iErK6t2I3WBka+9xopHHqHAYmHAtGnM7twZjhxxd1hCCCFEjSml/ud8m7vja8w2btzIsWPHGDdunLtDabSUUixdupTPPvuMn3/+mVtvvRWj0ejusOqdnj170qRJkwvuMfDSSy9RWVkpvS/OwWw28/zzz7Nv3z6SkpL++AAcK+vY7XZelS9jhQu4JYGhlPpKKfVzNdtNZ9bTjsFW5xxwpZRqCnwATNBa26uro7VeoLXuobXuERlZPzppDH/pJfZnZvLsNdcw7MgR6NCBjAceoMi5lrsQQghRTwU6tx7AvUBz53YPILNGutHixYsJDAxk6NDfdXwVdSghIYGhQ4dK4qIGDAYDgwcP5t///jcWi+W8dTMyMnjrrbcYO3Ys8fHxdRRh/TN8+HB69+7NP/7xD0pLS89b9+uvv2bZsmXMmDGDli1b1lGEojFxSwJDa32N1rpzNdvnwClnYuJ0giKzunMopYKAfwEztdYXNzWuB/MNC2Pml1/S9tAhuPVW7p43j3axsbw/cSJ2q9Xd4QkhhBB/mtb6Ka31U0AMcJnWeprWehrQHWhRV3EopVorpd5VSi0/Y5+/UipJKfV/SqkxdRWLJygpKWH58uWMHDkSPz8/d4cjRI0lJiaSn5/P999/f956L730EhaLRXpf/AGlFC+++CLp6enMnTv3nPUsFgt/+9vfaN26NY88UuO1HYSolicOIVkFnF58fDzw+dkVlFJewGfAYq318rPLG5RmzSApiSfee49Wfn5MfP99egYFsWnePHdHJoQQQlysKKDyjNeV/MGQ0dOUUu8ppTKVUj+ftf96pdQvSqlDSqnqJgCvorU+orW+86zdw4HlWuu7gL9eSCz1wYWsHPDpp59SXFwsw0dEgzFo0CDMZvN5h5FkZGTw9ttvM27cONq0aVOH0dVPV199NYmJicyaNYucnJxq67z55pvs27eP119/HR8fnzqOUDQWnpjAmAUMUkolA9c4X6OU6qGUWuisMxK4GrhDKbXLuXV1T7h1o9eECWwuKGDJffeRWVnJVQ88wOLLL4fUVHeHJoQQQvxZi4HtSqn/VUr9L7ANWHSBxy7CsQJZFaWUEZgH3AB0BEYrpToqpS5RSn1x1tbkHOeNAdKczy9sprp65HzLoi5evJhWrVpx5ZVX1mFEQrhOYGAg/fr1O28CY9asWVitVp544ok6jKx+mzVrFkVFRTz33HO/K8vIyODJJ5/kxhtvJDFRFpUSruNxCQytdY7WeqDWOt451CTXuf8HrfUk5/MPtdZmrXXXM7Zd7o3c9ZTBwG3z5nHgxAmeGzCAv+7ZA+3bk3z//ZRkVjvSRgghhPA4WuvngAlAnnOboLV+4QKP/RY4e33EXsAhZ8+KSuAj4Cat9X+11olnbef6g3kcRxIDztM+qm+Tg/9RD4y0tDQ2bNjAuHHjZKUL0aAMGTKEAwcOcOjQod+Vpaen88477zB+/Hhat27thujqp06dOnHHHXcwb948UlJSflM2ffp0KioqeP3118+bMBWipuQvVT3k36QJMzZsIOTgQfTQodwyfz7tmjblw3vukfkxhBBC1Ata651a6znO7acanq45v/aeAEcyovm5KiulwpVSbwPdlFKPO3d/CoxQSr0FrD5P3PVucvDz+fDDD9Fay/AR0eAMHjwYoNpeGLNmzcJmszFz5sy6Dqvee+qppzAYDL+ZN2TTpk188MEHPPzwwzIZqnA5SWDUZ7GxqKVLmf/22zTz8eH2d97hipAQtr37rrsjE0IIITyWs7fnPVrrNqd7fmitS7TWE7TW92qtl5zveKXUEKXUgoKCgroJ2EW01ixevJgrr7xSvoUWDU7r1q3p2LHj7xIYx48fZ8GCBdxxxx20atXKTdHVXzExMTz00EMsWbKEXbt2YbPZeOCBB4iJiWHGjBnuDk80ApLAaACuuPtuthUUsGjSJI6VldF70iTWDRgAx4+7OzQhhBCiLqQDsWe8jnHucwmt9Wqt9eTg4GBXXaJO7NixgwMHDjB+/Pg/rixEPZSYmMjGjRspLCys2vfCCy9gt9ul90UNTJ8+ndDQUKZPn84777zD7t27efXVV/H393d3aKIRkARGA2EwmRj/f//HwfR0Zg8YwIDNmyEhgZ/uvZfS7Gx3hyeEEEK40g4gXinVyrlS2a04VjUT55GUlISPjw+33HKLu0MRwiWGDBmC1Wpl/fr1gGPOl4ULFzJx4kTi4uLcG1w9FhISwhNPPMH69euZNm0aAwYM4Oabb3Z3WKKRkARGAxMQHc3DGzZgPnCA8uuv58a336Z9dDQfTZmCttvdHZ4QQghRI0qppcAWIEEpdVwpdafW2go8AKwD9gPLtNZ7XRhDvR9CUlFRwdKlSxk6dCj1vSeJEOfSu3dvwsLCWL3aMa3NCy+8gNZael/Ugvvuu4+4uDisVitvvPGGTNwp6owkMBqqVq3wWbGCj+bMIdzLi9FvvEH3gAD+t18/UlasAJnsUwghRD2ktR6ttW7qXI0sRmv9rnP/Gq11O+e8Fr9f4692Y6j3Q0j+9a9/kZeXJ8NHRINmMpm44YYbWLNmDSkpKSxcuJA777yTFi1auDu0es/b25vVq1ezevVqOnbs6O5wRCMiCYwG7i9TpvBDfj4Lx4/HbDDwzMaNnLj5ZggP54d+/Xhr9GgOf/21u8MUQgghRB1KSkqiadOmXHPNNe4ORQiXSkxMJDs7m5EjR6KUkokma1Hnzp25/vrr3R2GaGQkgdEIGL28uHPRIrYVF5N16BC9PvoIRo1i1a5d3PfRR7QdOJDWZjP3dOzIp48+ilXmzBBCCCHOqb4PIcnKymLNmjWMGTMGk8nk7nCEcKnrrrsOo9HIjh07mDRpErGxsX98kBDCY0kCo5EJa9MG06hRsGABT+XmcnD9et685RYuiYhgyf793DN7NoYmTaBPH1bdeiub5s/HUlrq7rCFEEIIj1GfhpBorQF+Mz596dKlWK1WGT4iGoXQ0FCuuuoqvLy8ePzxx90djhCihiTt3ogpg4H4QYOIHzSI+wFLaSlHVq7EcOAArF/PtI8/5tDHHxN4//0MiI7m2quv5vrJk2k9YADIRD1CCCFEvZSUlMRll11G586d3R2KEHVi7ty5pKenExMT4+5QhBA1JD0wRBWznx8Jt90GTz8NW7ey/cgRlj/8MKPbt2d3djb3L1vGc9dcA61boydPZuWjj5J39Ki7wxZCCCHqVH0eQvLzzz+zc+dO6X0hGpVLLrlE5moQooGQHhjinEJbtWLE7NmMmD0bbbdz+D//QX/3Hezaxd4lSxhWWoqaPZtWJhPtQkJo17w5d9xwA90GDsTWpg0qNhaDjK0VQgjRwGitVwOre/TocZe7Y/mzFi9ejMlkYvTo0e4ORQghhPjT5NOluCDKYKDtwIEwcCAACaWlbEpKYsMnn7Dv8GEOZmXx3e7dDNy9m26zZrEBGArE+/jQLjycdi1b0q5DB24cPpzIyy+H8HC3vh8hhBCisbFarXz44YfceOONREZGujscIYQQ4k+TBIa4KGY/P/reey997723ap+227Gnp8PhwzT7z3+471//4pe0NPZkZrIyPR3r99+z8913iQQ+8vdnjlK0a9KEdq1bk3DppbTr3ZuO112HKSjIfW9MCCGEaKC++uorMjIyZPiIEEKIeksSGKLWKIMBY2wsxMbSuV8/Xn7qqaoyS2kpKZs307KkBI4exXvtWvy2b+fr1FQWHzkCX30FQCYQGRvLQl9fviwrIyo0lCaRkUQ1a0ZUbCyJiYkYmjbFFhGBMSDATe9UCCFEY6aUGgIMadu2rbtD+VOSkpIIDQ1l8ODB7g5FCCGEuCiSwBB1wuznR/ygQVWvh02dyjDn85JTpzj0zTckb9tGRGgoJCeT/e23/HTyJKfS0ih01vMFSp5/HoAJwEogymymiY8PUQEBtG7ShJeHDoUmTdheWEhlUBBR8fFEdehAYLNmKIPMWSuEEKLm6uMcGBUVFaxcuZKJEyfi7e3t7nCEEEKIiyIJDOF2/lFRdBk1ii6jRlXte8y5AZTn55O5fz95R46ggoPh1CkGf/UVYQcOkJmby6nCQg7m5pKRlQW7d1cd/58zruEDXO3jw7qEBAgO5tH0dDLsdoIDAggODCQ4OJj4Fi0Y1q8fBAezOzMTU0gIwc2aERITg39UlCRAhBBC1FtHjhyhvLxcho8IIYSo1ySBITyeT0gILfr0oUWfPlX7Rt15J6Oqq2y1QlYW87duJXXfPjLT0jh1/DinTp0ixGqF2FgoKOBIdjY7S0rIt9ko0Bo7MAgY9s47gGMC0pQzTmsERpnNLGnWDIKDGZaejs1kIsjXlyB/f/x9fenTujXDu3cHf38+2L0bn4AA/IOC8A8JwS80lOYtW9IsLg7t50e50YhPaKgkRYQQQriU1hqAX375hfbt29OzZ083RySEEEJcPI9LYCilwoCPgTgcnyFHaq3zzlE3CNgHrNRaP1BXMQoPZjJB06a0HzaM9sOGnbPa8jOea7udksxMLDk5oBQUFPDuxo1kZWRQkJNDQV4eBQUFJPj6QtOmUFBAWVoapwoLKcjJodBmo1RrCn/4geHLlmEHxlVzzYeA14BSIABQgB/grxR+RiNTIyKYEhtLnpcXtycn42s24+PlVbWN6NCBfu3akWu3s+i//8XHzw8fX1/Ho78/3Tt2pGWLFpRozcFTp/AJDMQnKAif4GB8goMJCA/HHBAAkjQRQogaqU9zYJxOYJw8eZIpU6aglHJzREIIIcTF87gEBo7e/xu01rOUUqdHEkw/R91ngG/rLDLRICmDgYDoaIiOrto34IzeHtVZW80+bbNBWRmquJgjBw9SkpNDSW4upQUFlOTn0zIwEMLDMeTnM+vLLykpKaGktJSSsjJKy8uJiYyEkBDK8/M5UVREhd1Omc1Gud1OudZ0OHCAflYrGVozrZrrvwtMBH4GeldT/jEwEvjaYGCI3Y6XUngBXgYD3krxbrNm/CU0lI3l5cw8cQIvoxFvkwkvkwkvo5FnunalfWQk2/LzWXLkCF5mM15eXnh5eWE2m5nUuzdRoaH8NyuLTSkpmL28MHt5YXI+3tizJwFBQRzNyeFoVhYmb2/Mzs3k40Pn9u0x+fiQV1pKcWUlJm9vTN7eGL28MHp5ERQaijKZsBsMKJNJeq8IIdymPs6BAXD77be7OwQhhBCiRjwxgXET0M/5PAn4hmoSGEqp7kAUjs+SPeooNiHOSRmNEBCACgig1RnJkLP5AtP/53/OWd4U2HmuQq3pUFFBQXY25QUFlBcWUl5YSFlhIc2Dg8Hbm/isLFbu3El5SQnlpaWOrayMbm3aQEAAMRkZ3Pfjj1RYLFSesYXGx4OfH+rkSbwzM6m02SgpK6PSbqfSbqd8zx4ADhcU8GFREZVaUwlYnKHd9NVXROGYe+TBakJPwdHzZCkws5rybCAceAmYVU15BeAFTAHmAQYcv8CMOHqyZIeEgNHIg6WlLK+owKgUJqUwKkWE0ciWNm3AaOSRkyf5prgYg7PMoBTNvL1Z1rkzGAw8fuQIPxUVYTQYMCiFwWCglb8/r3ftCkYj/9i7l8PFxRiNRsc5DAbiQ0J4rGtXMBh4ZudOMkpLMTiPV0rRITyce7p0AYOB57dto6CyEuU8t1KKzk2aMPqSS0ApXvr+e8pttqoyBXRp2pTBHTqAUsz+9lvsWjvKnN+kdo+NZUB8PFa7nTc2bQJn2enyni1bckXr1pRZLLy3devv7m2f1q25LDaWwrIyPtyx49cC5/FXtWnDJc2bk1NczLKdv//pHJCQQEJUFBn5+Xy6a5fzR1VXld/QoQNtIiJIzc3l8z170I4KVY/DLrmElqGhHMzK4ot9+9B2e9U5tNaM6daNZoGB7Dlxgn8dOFC1H+fj3T16EOnvz7a0NP6dnFxVfnp7+PLLCfH25uujR1l/9GjVfrvdjgae6dMHP6ORVYcP89WxY9jPLNeaeX37YlSKDw8e5D8nTjjKnHXMSrGwd2/Qmnm//MK3mZm/KQ80GlnUrRvY7Tx78CDf5+VVXdeuNVFmMx927Ah2O1OTk9lRXPyb49t4e7OkVSuw2xl79Ch7ysuxO8vtQDcvL5ZGRYHdzqCMDH6xWKrKNNDfbOafAQFgt9O5oIA0u53vo6PplJFRzf8y0RDZnf+fYmJiiImJcXM0QgghRM14YgIjSmt9umV1EkeS4jeUUgbgFWAscM35TqaUmgxMBmjRokXtRipEXVMKg48PQTExBJ2jIRoG3HTzzec8RTtg9nkucTWw4Tzltzm30+xWK9bycscvE5uNSQUFjMzLw1JejqWsDGt5OZaKCpo1awbA7enpXJmW5iivrMRSUYG1ooLALl0AGHHwIG2OHsVqsWCzWrFardhsNkx9+oDWDN63j4i0NGw2W1WZ0hquuAKsVrrs3UtJRgY2ux2rzYbNbsffYICEBLDZCK6ooInW2Oz2qg+CJoMB7HawWCgpLyfvjA+JNq0xl5bC/v1gt7P/+HF+Ki/HDticHxRzTCZISwOtWZ+TwwGbzfEBFceH1IEmE/ds3w5ak1RayrEzPmDagRHA6JUrAXgByD/rnk8ATi96+DhgO6t8CjAAsALVpcZmAFcAxUB1Y+1eAC4DcoD7qyl/E7gESAfuq6Z8EZAAHDnH+T8F2gD7qT651enzz2kJ7IZqexddtWYNzYAfnO/lbMO+/ppIYCvw1Bn7lXO7a8sWQgwGttvtvGa3o3AkwE6Xz/zlF/wMBnZWVPBhZeXvyt/IycFoNLK/qIh1ZWW/KfMxGEBrUIpjubnsLilxlCuFAQg1meDYMVCKgoICsktLHed3Js8qlHLM3WMwYDIa8XYmxpTzHMH+/o7eYQYDzYqKKC0pqUqOGZSiXXAwOJNjvXbtIra8vCpxZjAY6BweXlV+8/btFFRWEnr11dXcRdFQZWVlAdC6dWs3RyKEEELUnDrzW7I6u6hSXwHVfUU9E0jSWoecUTdPax161vEPAH5a65eUUncAPS5kDowePXroH374oWbBCyGEq2iN3WZD2+3YrVZHTwG7HYNSmE2OfHNZaSnabv+1l4LdjsloxMfbG601hQUFVcedLvfx8sLP1xe73U5OTs7vLuvn64u/vz82m42c3NyqWE4L8PfHz88Pi8VCbt7vpyQKCgjA11meX+hc+PiMHiCBgYF4e3tTabFQXFLya5nz0d/fH7PZjMVqpayszHG4c4iQMhjw9fPDaDJhtdmw2mwog6FqQylMZjPKYHD0ylBKhhe5iVLqR611o+oRWR/aFUlJSdxxxx0MGDCADRvOl54WQgghPMe52hVu6YGhtT5nrwml1CmlVFOtdYZSqimQWU21PsBVSqn7cPRK91JKFWutH6umrhBC1A9KYXAmKoxeXtVW8fXxOffhQHBw8DnLDUBkkybnLDcCTc4z/MkMRDVvft7yyPOUe+HoIXS+483nKTdx/j9aMjWhEEIIIUTD5olDSFYB43EMgx8PfH52Ba31mNPPz+iBIckLIYQQQgghhBCigfLEfrazgEFKqWQc81vMAlBK9VBKLXRrZEIIIYRo9JRSQ5RSCwoKCtwdihBCCNGoeFwCQ2udo7UeqLWO11pfo7XOde7/QWs9qZr6iy5k/gshhBBCiNqgtV6ttZ58viFbQgghhKh9HpfAEEIIIYQQQgghhDibW1YhcRelVBaQWsunjQCya/mcQu6rq8h9dQ25r64h99U1XHVfW2qtI11wXo8l7Yp6Re6ra8h9dQ25r64h99U16rRd0agSGK6glPqhsS0bVxfkvrqG3FfXkPvqGnJfXUPuq2eTfx/XkPvqGnJfXUPuq2vIfXWNur6vMoRECCGEEEIIIYQQHk8SGEIIIYQQQgghhPB4ksCouQXuDqCBkvvqGnJfXUPuq2vIfXUNua+eTf59XEPuq2vIfXUNua+uIffVNer0vsocGEIIIYQQQgghhPB40gNDCCGEEEIIIYQQHk8SGDWglLpeKfWLUuqQUuoxd8fTECilYpVS/1FK7VNK7VVKPejumBoSpZRRKfWTUuoLd8fSUCilQpRSy5VSB5RS+5VSfdwdU0OglJrq/B3ws1JqqVLKx90x1UdKqfeUUplKqZ/P2BemlPpSKZXsfAx1Z4ziV9KuqH3SrnAdaVO4hrQrXEPaFbXDE9oVksC4SEopIzAPuAHoCIxWSnV0b1QNghWYprXuCPQG7pf7WqseBPa7O4gGZg6wVmvdHuiC3N8aU0o1B6YAPbTWnQEjcKt7o6q3FgHXn7XvMWCD1joe2OB8LdxM2hUuI+0K15E2hWtIu6KWSbuiVi3Cze0KSWBcvF7AIa31Ea11JfARcJObY6r3tNYZWuudzudFOH5pN3dvVA2DUioGGAwsdHcsDYVSKhi4GngXQGtdqbXOd29UDYYJ8FVKmQA/4ISb46mXtNbfArln7b4JSHI+TwKG1mlQ4lykXeEC0q5wDWlTuIa0K1xK2hW1wBPaFZLAuHjNgbQzXh9H/iDWKqVUHNAN2ObeSBqM14FHAbu7A2lAWgFZwPvObrQLlVL+7g6qvtNapwMvA8eADKBAa73evVE1KFFa6wzn85NAlDuDEVWkXeFi0q6oVdKmcA1pV7iAtCtcrk7bFZLAEB5JKRUArAAe0loXujue+k4plQhkaq1/dHcsDYwJuAx4S2vdDShBuuPXmHPs5E04GnLNAH+l1Fj3RtUwacdSZLIcmWjwpF1Re6RN4VLSrnABaVfUnbpoV0gC4+KlA7FnvI5x7hM1pJQy42hkLNFaf+rueBqIvsBflVIpOLolD1BKfejekBqE48BxrfXpb/OW42h4iJq5Bjiqtc7SWluAT4Er3BxTQ3JKKdUUwPmY6eZ4hIO0K1xE2hW1TtoUriPtCteQdoVr1Wm7QhIYF28HEK+UaqWU8sIxEcwqN8dU7ymlFI5xf/u11q+6O56GQmv9uNY6Rmsdh+Nn9WuttWSea0hrfRJIU0olOHcNBPa5MaSG4hjQWynl5/ydMBCZxKw2rQLGO5+PBz53YyziV9KucAFpV9Q+aVO4jrQrXEbaFa5Vp+0KkytP3pBpra1KqQeAdThmsn1Pa73XzWE1BH2B24H/KqV2OffN0FqvcWNMQpzP34Alzg8cR4AJbo6n3tNab1NKLQd24lhB4CdggXujqp+UUkuBfkCEUuo48K6ORBQAACAASURBVCQwC1imlLoTSAVGui9CcZq0K1xG2hWivpF2RS2TdkXt8YR2hXIMUxFCCCGEEEIIIYTwXDKERAghhBBCCCGEEB5PEhhCCCGEEEIIIYTweJLAEEIIIYQQQgghhMeTBIYQQgghhBBCCCE8niQwhBBCCCGEEEII4fEkgSGEqDNKqRCl1H3O582cS1oJIYQQQvxp0q4QovGRZVSFEHVGKRUHfKG17uzmUIQQQghRz0m7QojGx+TuAIQQjcosoI1SaheQDHTQWndWSt0BDAX8gXjgZcALuB2oAG7UWucqpdoA84BIoBS4S2t9oO7fhhBCCCE8gLQrhGhkZAiJEKIuPQYc1lp3BR45q6wzMBzoCTwHlGqtuwFbgHHOOguAv2mtuwMPA/PrJGohhBBCeCJpVwjRyEgPDCGEp/iP1roIKFJKFQCrnfv/C1yqlAoArgA+UUqdPsa77sMUQgghRD0g7QohGiBJYAghPEXFGc/tZ7y24/hdZQDynd+yCCGEEEKcj7QrhGiAZAiJEKIuFQGBF3Og1roQOKqUugVAOXSpzeCEEEIIUa9Iu0KIRkYSGEKIOqO1zgE2K6V+BmZfxCnGAHcqpXYDe4GbajM+IYQQQtQf0q4QovGRZVSFEEIIIYQQQgjh8aQHhhBCCCGEEEIIITyeJDCEEEIIIYQQQgjh8SSBIYQQQgghhBBCCI8nCQwhhBBCCCGEEEJ4PElgCCGEEEIIIYQQwuNJAkMIIYQQQgghhBAeTxIYQgghhBBCCCGE8HiSwBBCCCGEEEIIIYTHkwSGEEIIIYQQQgghPJ4kMIQQQgghhBBCCOHxJIEhhBBCCCGEEEIIj2dydwB1KSIiQsfFxbk7DCGEEKLB+fHHH7O11pHujqMuSbtCCCGEcI1ztSsaVQIjLi6OH374wd1hCCGEEA2OUirV3THUNWlXCCGEEK5xrnaFDCERQgghhBBCCCGEx5MEhhBCCCGEEEIIITyeJDCEEEIIIf4EpdQQpdSCgoICd4cihBBCNCqNag4MIYQQv6ftduxWK9pmw2QwgM1GcWEhtspK7DYbNosFu8WCt9lMcEAA2GykHjuG3WrFZrVit1qx22yEBgYSFRaG3WZjb3IyWmu0zYbdbkfb7USFhtI8MhKLxcKP+/ah7XZHHbsdu81GXHQ0sZGRlJWVsWXvXrTd7gxQA9AuJobYyEiKSkvZun8/2rn/dL3OcXE0Dw8nr6iIrQcOgNboM46/rE0bosPCyCooYMfBg45zK4Vy3oeeCQlEBAdzMjeX3UePVt0fZXDk+nslJBASEMCJ3Fz2paZWHX9a744dCfD3Jz07m0MnTqAMBpRSVY/d27fHx8eH9KwsjmdlOfafUadLQgIms5mM7Gyy8vMd+41GDAYDymgkoXVrDCYTWbm5FJWVYTCZUEphMJkwGAw0b94clKKguJgKiwWD0eg43mjEaDIRFBwMBoNj8/Or/R+kRkRrvRpY3aNHj7vcHYsQQggHrTWVlZWUlJRQWlpatZ1+HRcXR3x8vLvDFDUkCQwhhDgHbbdTWVxMZXExFUVFVJaU0DQkBGWxkJ6WRsaJE1SWlVVtdouF67t0AYuFLXv3kpyejqWysmozA/f07AkWC0t/+on/ZmRgsViw2mxYrFZCTCae7doVLBae272bn3JzsdntWG02bFrTwsuLtxMSwGrl7l9+YU9JCVa7HavW2LTmUm9vPoyKApuNa9PT2WexYNPaUQ70Mxr51NsbbDbalpeTAtjB8SEfGAEsdz5vAeSddT/uAN53Pm8LWM8qfwB4A6gELq3mfj4OPA8UAH2qKX/eWeckMLCa8jec10gBrq2mfBEwHtgP3FhN+XIc73EnMLia8nXO824Cbqmm/Htn3OuAidWU/xfoDKwAHqymPAVo6YzziWrKs4FwYA7wYjXlFYAX8BQw76wyL2c5wBRg8Vnl4c7zAxAWBjk51VxBCCGEcC+73c7SpUtJS0v7TfKhuoREda/tp7/8qIbRaGTGjBk88cQTeHl51eG7ErVJEhhCCI9kq6igLDeXsvx8ygsLKS8ooKywkNYREQQYDBw/dowf9+2jvKSEspISyktLKS8rY0ynTkQajWw6dIhP9u6lrKKC8spKx2ax8H/t2xMFJB0/zhsZGVTYbFTa7VTY7VRqzX+Dggi3WnmitJTnqvkjWA544/iA+cZZZSbA4ny+AMcH1TOFAvesWAHAp8BKwOw8zqwUcUYjz2ZlgdlMSk4O+ysqMCmFUSlMBgMhdjtUVIDJhI/ZTJC3N0aDAZNzaxEUBF27gslErz17iC0vx2Q0YjQaMRmNdAgPh27dwGhk8o4dFFZWYnB+w280GOgQFQWXXgoGA89s3Uql3f5rudFI+6ZNoWNHMBhYuHUrKFVVbjAaadesGbRpg1lrPtm+HWUwOHoPOB/jmzeHFi0IstlYs3t3Ve8Dg9GIMhho27w5NGtGU4uFb/bvryoHQCnaNG8OERG0Li9nU3KyY7ezd4Q6XR4WxiWlpWxNSam670opUIq2MTEQHEzv4mK2paY6emhoXVUvoUULCAykf34+3x87BvCb8k6tW4OfHzfm5vJdWtpv/m213U6r+Hjw8WH4qVN0Tkv7TQ8TrTVNOnUCLy9GpafT7fjx35Rpu51A57/N2NRUeqWnO3qunO6hYrdj6tULlOL25GR6nTiB3dlzRWuN0hr69gW7nXH799MrIwOtdVXvF2+TCXr3dvRG8fY+x/86IYQQwr1mzpzJrFmzAMffbz8/P/z9/fHz8/vNFhER8ZvX1dU5c5+vry8LFy7kmWeeYfXq1SQlJXHppdV93SI8nTqzcdbQ9ejRQ8tyZ0LUAq2xlZSQm5ZG0alTlOblUZqXR0l+PvHh4cT4+pJ58iTLv/+e0uLiXzPjZWWMa9mSnv7+7Dpxgmk//0ypxUKp1UqpzUaJzcZiHx+uqazkc6uVodVceiNwNbAEGFtN+Y/AZcC7JhMP22z4KIWPweDYjEY+T0igRVAQn+TlsejkSbxNJrzM5qrHl6+6iuCgIL46cYJNGRl4eXnh7e2Nl7c33j4+TOjXD7OfH3syMkjNz8fbzw+ztzdePj6YfXzo1bUrmM2czM+nxGLB7Ov7my04IgLMZrTzQ7sQDYVS6ketdQ93x1GXpF0hhBC154MPPmDcuHFMnjyZOXPm4O3t/esXGbXk888/Z/LkyeTl5fHkk08yffp0TCb5Tv9i7dixA601vXr1qvVzn6tdIQkMIRoBbbdTmp1N4YkTeFVUEG42Y83LY+3GjRTn51Ocn09RYSHFhYX0Dg9nUEQE+Tk5jP/uO4orKiiqrKTYYqHIZmO6lxcPVFaSbLPRrpprzQPuA3YB3c7Y7wP4KcXboaHcEhHBbqV4ICMDP7MZPy8v/L298fP25v7u3enSsiWHy8r4LDkZH19ffPz88PX3x8ffn6u7dSMyOpqcigpSc3PxDQ7GJyjIsQUHE9SkCUZfX8c4fyFEnZEEhhBCiIu1ZcsW+vXrxxVXXMH69esxm80uu1Z2djb3338/y5Yto2fPniQlJdGhQweXXa+h0lpz1VVXkZaWxuHDh2s9EXSudoWkm4TwcNpupyw3l4Ljxyk4cQJTSQltg4KgoIAP1q7lVGYmBQUFFBQWUlBcTA9/f/4WFgYFBbTfu5csq5UC5xwIAPcC853Ph1RzvelGI4PCwjD6+ZGSn0+g2UyYjw8tQ0II8PWldYcOcMklRJvNvLF3LwHBwfgHBeEfHIxfcDAJ7dpBy5Z0Mps5WVmJf0QEvmFhGM8aa9gF+O4877sN8PB5ysOdmxBCCCGEqL9SU1MZOnQosbGxLF++3KXJC4CIiAg+/vhjRowYwX333Ue3bt149tlnmTp1Kkaj0aXXbki+/fZbNm/ezJtvvlmnvVgkgeGBDm3YQGluLpdefjmEhEBg4G9muhf1j7bbKT55ktyjR6nIzqZdYCDk5fHZhg0kp6SQl5dHbn4+ecXFtDAYeDkiAvLz6XPsGD9Yrb+ZLPF64N/O5zOBNEABQUCw0UhYaKjj5yYmhn7FxRh9fAgODCQ4OJigkBAujY+H7t0xBQSwPS2NgIgIAiIjCYyOJiAqCpOPDwCBwO7zvKdAHBMqnosZiLrI+yWEEEIIIRq+4uJi/vrXv1JRUcHGjRsJD6+7r6dGjhzJX/7yF+6++24eeeQRVq5cyfvvvy8rlVygZ599lujoaCZOrG5qc9eRBIaHydy7l07XXIMvkO/cN0Yp1gGhJhOhXl6E+PjQOjiYtwcNgtBQPk1PJ1trQps0ITQqitBmzYiMi6NFp05wetk8USus5eUUpKY6vvnPyWHH1q3s27+fvOxscnNyyMvPx1BRwZw2bSA3l0n797OqqIg8rauSEO2AX5zP5+CY08EMhBoMhJlM+AYHQ9Om0KEDQ5s0oZ9ShAQHExwaSnB4OHFxcY7J+IKD2V5RgV9UFAHR0RiqyXy+/Qfvp2et3BUhhBBCCCH+HLvdztixY/n555/597//Tfv27es8hqioKD777DOWLFnC3/72N7p06cKLL77I/fffj0E+Q53Ttm3b+Oqrr3j55Zfx9fWt02tLAsPDrHntNSqB+bfdBgMGQF4egzZuJCQlhbyiIvJKSsgrK+NYWRl8+ink5fG61fq7rvhdgZ8AlOIag4HDShHp7U2LkBBaRkfTs3Nnbh0+HFq2pCQiAv/mzev8vbqV1lBURHZyMqn79pFz/Dg5J06Qc/IkudnZzOzcGWNeHm/u3MniY8fIraggx2YjX2vMOJYrVMBb/LqspAJClKKF2QxBQRAayqVt2mCuqCA0JISw0FBCIyNp2rw5XHMNhIWxAvCOisI/MrLaCR2n/8HbiK7FWyKEEEIIIURdmTlzJp9//jlz587l2murWyC9biilGDt2LP379+euu+5iypQpfPbZZ7z33nuOLw7F7zz33HOEhYVx99131/m1ZRJPD3NzTAxbMzJIs1gubIUCrSnJyiI3JYX8tDTyTpwg7+RJvMvLuT42FvLyeHb9eg5mZnKqoIDUoiJSKysZBKxyniIGKAJa+vjQMiiIllFRDOjaleGJidCyJVn+/kR07Oh5KybYbJSdPElGcjL56enknzzp2LKzGdq6NWGVlXz988+8v3s3+c7ET25FBblWKz8qRXObjWeAf1Rz6qzAQCIiInjbZmNlSQnhAQGEBQURHhZGeEQE9w0dijEigjSrlUo/P8JatSI4NrbaXhBCCNEY1PdJPJVSLYC5QC5wUGs964+OqQ/tCiGE8ESLFy9m/Pjx3H333bz11lu1vtrIxdJa89577zF16lS01rzyyivcddddHhOfJ9i1axfdunXjmWee4YknnnDZdWQVEjy/oVFZXExEYCCj27fnnf37XXYdbbdTmpqKf3Y2pKby2gcfcDQlhdTMTFLz80kpL2cMjtUkLDhWjzADLcxmWgYG0jIighGXX84NgwZRER3NTykp2KxW7FYrNpsNu9VKfNOmxEZEUFhUxLd79jjKbTbsNhs2m42ecXG0ioggMy+PNbt2Ve0//XhjfDxxBgN7Dh3ila1byS8tJb+sjPyKCvItFpZ6e3NFaSn/BMZU8x63Az2VYomvL3+vrCTEbCbE25swf3/CAwN5atAgolu0YH9FBQdLSwlv3pzwFi0Ib9WK0FatMPv5uez+CyFEQ+TOBIZS6j0gEcjUWnc+Y//1OEbrGYGF50tKKKUGA6Fa6w+VUh9rrUf90XU9vV0hhBCe6Pvvv6d///5ceeWVrF271uWTdl6M1NRU7rzzTjZs2MB1113HwoULiYmJcXdYHmHkyJGsW7eO1NRUQkJCXHYdWYWkHshbu5YbgOG33urS6yiDAf9WraBVK+jZk6k33/y7OtacHEhPx5aczJyPPiI1JYXUkydJzctj9aFDxB88yA0ffMBJoE8115gDTAGOUf1KF+8BrYDDwIRqyj8G4oBCf382lpdXJSBahYQQ4u9PUJ8+0LYtfWw2FmVkEBIZSUh0NCFNmxLSvDnNEhIgNJQxBkO1CY7TOjg3IYQQ9doi4E1g8ekdSikjjlz8IOA4sEMptQpHMuOFs46fCGwFliulJgIf1EHMQgjR6JxecaRFixZ88sknHpm8AGjZsiXr16/n7bff5pFHHqFz587MmTOHcePGNereGPv372f58uU8/vjjLk1enI/0wPAkU6fC229DTg54eA8AXVqKSkuj7NAhNv70EwajEaPJhMFkwmgy0SY2luZRUZRVVrI3NdVRbjZjMBoxmM00j44mJDSUcouFjJycX481mzGYTARHROATGQmylJEQQtQL7h5CopSKA7443QNDKdUH+F+t9XXO148DaK3PTl6cPv5hYLvW+lul1HKt9e+z+456k4HJAC1atOiemppa229FCCEapKKiIvr27cuxY8fYunWrWybtvBiHDx9mwoQJfPfddwwZMoQFCxYQHd04Z6IbP348y5cvJyUlhcjISJdeS3pg1AMpK1cS17+/xycvAJSfHyQk4JuQwPWDB5+zni9wvtasD46eGEIIIUQta45jpenTjgOXn6f+WuB/lVK3ASnnqqS1XgAsAMcXIzUPUwghflVWVkZ5eTmhoaHuDqVWnV5xZN++faxZs6beJC8A2rRpwzfffMOcOXOYMWMGnTp1Yt68eYwaNapR9cY4cuQIS5Ys4cEHH3R58uJ8PGxWxsbr4Lp1tEpJYbEbfxiEEEKIxkpr/bPW+mat9T1a64fPV1cpNUQptaCgoKCuwhNCNAI7duygU6dOxMfHc+DAAXeHU6tmzJjBqlWreP3119264sjFMhgMTJ06lZ9++on4+HhGjx7NyJEjycrKcndodebFF1/EaDQybdo0t8bh1gSGUup6pdQvSqlDSqnHqim/Wim1UyllVUrdfFbZeKVUsnMbX3dRu8YX8+cDcPVdd7k5EiGEEKJBSAdiz3gd49xXY1rr1VrrycHBwbVxOiFEI6e1Zs6cOfTt2xer1YrRaOTaa6/l+PHj7g6tViQlJfHiiy9yzz33cP/997s7nBpp3749mzZt4oUXXmDVqlV06tSJ5ORkd4flcsePH2fRokXceeedNGvWzK2xuC2BccbkWjcAHYHRSqmOZ1U7BtwB/POsY8OAJ3F0Be0FPKmUqtf9rP713Xd09vYm7sor3R2KEEII0RDsAOKVUq2UUl7Arfy6grgQQniEvLw8hg8fzkMPPcT111/Prl27WLt2Lfn5+Vx77bXk5OS4O8Qa2bx5M5MnT2bAgAHMnTu3QQy5MJlMPPbYY2zfvp2srCxWrFjh7pBc7uWXX8Zut/Poo4+6OxS39sDoBRzSWh/RWlcCHwE3nVlBa52itd4D2M869jrgS611rtY6D/gSuL4ugnaFgmPH+DYvj8Ru3dwdihBCCFHvKKWWAluABKXUcaXUnVprK/AAsA7YDyzTWu+tpevJEBIhRI1t27aNbt268cUXX/Dqq6/y+eefExYWRrdu3Vi1ahVHjhwhMTGRkpISd4d6UVJSUhg2bJjbVxyxWq188803fPPNN9TmAhZdunShdevW/Pjjj7V2Tk+UmZnJggULuP3224mLi3N3OG5NYFQ3uVbz2j5WKTVZKfWDUuoHTx2jtP7117ECg2+/3d2hCCGEEPWO1nq01rqp1tqstY7RWr/r3L9Ga91Oa91Ga/1cLV5PhpAIIS6a1ppXX32VK509rzdt2sTUqVN/0zuhX79+LF26lO3btzNixAgqKyvdFe5FKSoq4q9//SuVlZV88cUXhIWF1en1S0tLWblyJePHjycqKor+/fvTv39/rr76ar7//vtau0737t0bfALjtddeo6Kigsce+92MD27R4Cfx1Fov0Fr30Fr3cOdsqeczMCODD/396T1xortDEUIIIcQfkB4YQoiLlZuby0033cS0adNITEzkp59+4vLLq18gadiwYbzzzjusW7eOCRMmYLef3SndM9lsNsaMGcO+ffv45JNPSEhIqJPr5uTksGjRIoYOHUpERATDhg1j9erVJCYm8umnnzJ//nySk5Pp27cvQ4cOZd++fTW+5mWXXcbRo0fJy8urhXfgeXJzc3nzzTcZOXIk7dq1c3c4gHsTGDWZXMtlE3PVOZuNsA0bGDN0KCYfH3dHI4QQQog/ID0whBAXY8uWLXTt2pW1a9cyZ84cPv300z9cLnXSpEk8//zz/POf/2Tq1Km1OgTCVWbMmMHq1auZM2cOgwYNcum1UlJSmDNnDv3796dJkyZMmDCBnTt3MmnSJDZs2MCpU6dISkpi2LBh3HvvvRw+fJhnn32Wr7/+mksuuYQ777yzRpOldu/eHYCdO3fW1lvyKG+88QbFxcXMmDHD3aFUcWcCoyaTa60DrlVKhTon77zWua/e2fvxx8zJyqKgf393hyKEEEIIIYSoZXa7ndmzZ3P11VdjMpnYvHkzU6ZMueAJLR977DGmTp3K3Llzef75510cbc0sWrSIl156iXvvvdclK45ordmzZw9PP/00l112Ga1ateKhhx4iOzubGTNm8OOPP5KamsrcuXMZMGDA7+bd8Pf3Z+bMmRw5coQHH3yQDz/8kPj4eB599FFyc3P/dDyXXXYZQIMcRlJUVMScOXO46aabuOSSS9wdzq+01m7bgBuBg8BhYKZz39PAX53Pe+KY36IEyAH2nnHsROCQc5twIdfr3r279jRPXHmlNoLOOXTI3aEIIYQQFw34QbuxTVGXGzAEWNC2bdvaun1CiAYqKytLDx48WAN6xIgROi8v76LOY7PZ9NixYzWg33nnnVqOsnZ899132mw264EDB+rKyspaO6/VatXffvutnjp1qm7VqpUGtFJK9+3bV7/88ss6OTn5os+dkpKix40bp5VSOiQkRM+aNUuXlpb+qXO0bNlSjxo16v/ZO+/wqKqnAb93S3oDEhJ6CyBdCBCkRmrooQiCgHQVUGwooKDyQ7EjIEWKCCJI771JAiIdpPfeQktCenbvfH9s2I+etpsNeN/nmWez59xzZu7uZvfcuXNmMm1DTuWbb74RQHbu3OkQ/U9aVyjyDIQh2YqqVavK7t27HW3GA1R2c8PLyYktUVGONkVDQ0NDQyPTKIqyR0SqOtqO7CQnris0NDRyDlu3bqVTp05ERkby448/0q9fvyyVEU1JSSEsLIw1a9Ywb9482rVrZ0Nrs8a5c+eoVq0auXLlYseOHWlujUmLhIQENmzYwJIlS1i2bBk3b97EycmJRo0aERYWRsuWLfH397eR9fDvv/8ydOhQVq5cSYECBfj888/p3r07BoMhzbHt2rXj33//5eTJkzazx9HEx8dTrFgxKleuzJo1axxiw5PWFc99Es+czKVdu9ifkEDzmjUdbYqGhoaGhoaGhsZzhslkYsOGDQwdOpSLFy+mPUDDJqiqytdff01ISAjOzs5s376d/v37Z8l5AWA0Gpk/fz41atSgc+fObNq0yUYWZ427d+/SsmVLTCYTy5cvz5Lz4uzZs7z66qv4+fnRqlUrFixYQOPGjZk3bx43b95kxYoV9O7d26bOC4CKFSuyYsUKtmzZQqFChejTpw8VKlRg8eLFaeYdCQoK4tSpUzxPiZ2nTp1KZGQkn3zyiaNNeQTNgeFAVo4ZA0CLN990sCUaGhoaGhoaGhrPAykpKaxdu5Y+ffoQEBBAo0aNGDVqFB06dCAlJcXR5j333Lhxg+bNmzNkyBDatWvH3r17rXkSbIGbmxvLly+nZMmStG7d2uG5F8xmM507d+bo0aNZqjiiqirjx4+nQoUKrFq1im7durF27Vpu3LjBH3/8wSuvvIKnp6eNrX+Ue2VWFy1aBEDbtm2pWbMm4eHhTxxz7/3dt2+f3e3LDpKSkqw5W+rUqeNocx5Bc2A4kLM7dhBoMFCmRQtHm6KhoaGhoWF3FEXJ/TRxtH3pRSujqpHTSE5OZtWqVfTs2RN/f39CQ0OZO3cuTZo0YdGiRcycOZN//vmHTz/91NGmPteEh4fz4osvsnnzZiZOnMiff/6Jl5eXzfXkzp2btWvXkidPHpo2berQrQtDhgxhxYoVjB07loYNG2ZqjjNnztCgQQMGDBhA7dq1OXz4MBMmTKBx48Y4OTnZ2OK0URSFNm3acPDgQaZMmcKFCxeoV68eLVq04ODBg48cf68SiaOdSbZi5syZXLp0Kcd+X2g5MBxFQgLkyUNS9+44T5jgaGs0NDQ0NDSyRHpyYCiKchYQQAEKA3dS//YBLohIMbsbakNy1LpC4z9HYmIi69evZ8GCBSxdupTo6Gi8vLxo3bo17du3p3Hjxri4uFiPf/PNN/nll19YvXo1oaGhDrT8+UNVVUaNGsXw4cMpUaIE8+bN48UXX7S73hMnTlCrVi08PDzYtm0b+fPnt7kOESE2NpZr165x/fr1Bx7PnDnD7Nmz6devH+PHj8/w3KqqMmHCBD7++GMMBgOjR4+mR48eWd5qY2vi4+MZN24cX3/9NdHR0XTt2pURI0ZQpEgR6zGFCxemdu3azJ4924GWZh2TyUTp0qXJkycPO3bscOh78aR1hebAcBCyahVK8+awZg00aeJoczQ0NDQ0NLJERpJ4KooyBVgsIqtSnzcFwkTkDXvaaGty0rpC479BQkICa9euZcGCBSxbtoy7d+/i4+NDWFgY7du3p2HDhjg7Oz9xbHBwMNeuXePAgQPky5cvm61/PomMjKRLly6sX7+eTp068csvv2TLVod77N69m5dffpmiRYsSHh6e7vwTcXFxjzgknvSYkJDwyHhFUfDz86Nx48b8+uuvj5QrTYvTp0/Tq1cvtmzZQmhoKFOmTKFgwYIZmiO7uX37Nl9//TVjx45FROjfvz9Dhw7F19eXsLAwjh07xrFjxxxtZpaYNWsWXbt2ZenSpbRq1cqhtmgODHLWQuO9SpU4c/gwS+7eRXF1dbQ5GhoaGhoaWSKDDoyDIlIhrbacTk5aV2g8v8THx7N69Wrmz5/PNUYbSwAAIABJREFUihUriIuLI3fu3LRp04b27dtTv379dIfZHz16lKpVq1KjRg3WrVuHXq+3s/XPN5s3b+a1117jzp07jB07lt69ezvkjvXGjRtp1qwZ1apVY926dbi5uT3QHxUVxQcffMDx48etjonY2NhH5lEUhTx58hAQEIC/v/9TH319fTP1+bmX62Lw4MEYDAZ++uknunfvnuOiLp7GxYsX+fzzz/ntt9/w8PBg+fLlbNmyhc8++4zo6OhsdWDZElVVKVeuHE5OTuzbtw+dLu1sE6dOncLDw4OAgACb2/OkdUXadWE0bI6oKosOH6ayn99jnReiqijp+MBoaGhoaGg8o1xRFOVTYFbq89eAKw60J0MoitISaBkYGOhoUzSeU2JjY1m1ahXz589n1apVxMfH4+vry2uvvUb79u0JCQlJ9x1vVVVZvnw59erVo0yZMowbN45evXoxatSoHLvHPaciIuzZs4clS5awdOlSDh06ROnSpVmzZg0VK1Z0mF0NGjTgjz/+oEOHDnTo0IHFixdbPx8pKSm0b9+e8PBwateuTfXq1Z/olPDz80tX2dDMcurUKXr16kV4eDhNmzZl8uTJOT7q4nEUKlSIadOm8cEHHxAWFkbnzp354YcfEBH27dtH3bp1HW1ipli0aBHHjh3jzz//TJfzAmDo0KFs3bqVy5cvZ58TSkT+MxIUFCQ5gX8XLhRApnTr9kjfrVOnJMjJSa716yeiqg6wTkNDQ0NDI+MAuyWdv8dAbmAMsA/YC/wE5E7v+JwiOWVdofH8EBERIW3atBEXFxcBxN/fX9566y3ZtGmTpKSkZHg+VVXl3XffFUACAwPl8OHDoqqqdO7cWXQ6nYSHh9vhLJ4vkpKSZO3atdKvXz8pUKCAAKLT6aRevXoyevRouXv3rqNNtDJx4kQBpGvXrmI2m0VVVendu7cA8ttvvznMLrPZLGPGjBFXV1fx9vaWX3/9VdTn5Dpn9+7dYjAYpGXLlgLI6NGjHW1SplBVVSpVqiSlSpUSk8mUrjGJiYni4eEhffv2tYtNT1pXOPzHPzslpyw0RjVpIoBc3rPnkb6vGjcWD5BjIGqvXmJOTnaAhRoaGhoaGhkjPQ4M4PfUx4FpHfssSE5ZV2g8+5jNZhk5cqTodDrx9/eXAQMGyJYtW9J9IfEkRo0aJYC8+uqr4u/vL56enrJ06VKJiYmRwMBAKViwoNy8edNGZ/H8EB0dLX/++ae8+uqr4uXlJYC4ublJmzZtZMaMGTn6NRsxYoQA8v7778s333wjgHzyyScOs+fkyZNSp04dAaRZs2Zy8eJFh9liL+79n/n4+EiXLl0cbU6mWLFiRYYdXatWrRJAVq5caRebNAdGDlpo1PL0lCquro+0J929K/l1OmmYO7fIp5/KSJBORYpIclycA6zU0NDQ0NBIP+l0YBwB8gMHgFypkRhWSWt8TpOcsq7QeLa5ceOGNEm9udWpU6dM39FXVVUiIyNl7969smzZMnnttdcEkGLFiknTpk1l3bp1UrVqVQFkxIgRsmvXLjEajdKqVavn5m54Vrh06ZJMmDBBmjRpIkajUQDx8/OTXr16ybJlyyQ+Pt7RJqYLVVXl7bffFkAURZGOHTuK2WzOdjvMZrP89NNP1qiL33777bn9nJlMJqlXr57o9XopUaKEo83JMKqqSnBwsBQtWlSSM3Dz/I033hB3d3dJSEiwi11PWldoOTCyGbl5kzaxseRp2fKRvnmDBnFFVZk6cCAMH45hzx7mrF5NXIkSzD16FBcfHwdYrKGhoaGhYTMmARuB4sAeLCVU7yGp7Roa/xm2bdtGx44duXHjBpMmTaJv376P3UduNpuJjIzk0qVLT5Xk5OQHximKgtlsZuvWrVy/fp2//vqLfv36MXz4cA4cOMDIkSP5+OOPGTt2LAMHDsyu084RiAhHjhxh6dKlLFmyhF27dgEQGBjIwIEDCQsLo0aNGs9colNFUXjttdeYMGECZrOZkJCQdOczsBUnT56kZ8+ebN26lWbNmjF58mQKFCiQrTZkJ3q9nt9//52SJUty+vRpoqOj8fb2drRZ6WbTpk3s2LGDiRMnZii3zrJlywgNDX2gXHN2kGYVEkVReonItPue64FPReQLextna3JEtvA//oAuXWDHDqhe3dosqkpVDw/izWYOx8WhS02gM+HVV+k/dy4NcuViyZEjeNghw6uGhoaGhkZWyWAVkoki8pa9bbI3OWJdofFMIiL88MMPDB48mCJFijB//nyqVKnCoUOHWL9+/SOOiStXrmAymR6Yw8nJiYIFCz4iUVFR/O9//6NixYps2rQJLy8v5s+fT4cOHfjhhx947733GD16NIMGDaJs2bIEBASwZcsWtm/fTlBQkINekezBbDazfft2axLOU6dOAVC9enXCwsJo3bo1ZcqUeaYqYjzM+fPnCQ4OxtXV1VpadeHChYSFhdldt6qqjB07lqFDh+Lk5MSYMWPo1q2bzV5PESEpKYmkpCQSExMfeHxc28OP1atXp2bNmjax5XF89NFHfPfdd/To0YNff/3VbnpsTf369Tl+/DinT59OtzNix44d1KhRg99//50uXbrYxa4nriseF5ZxvwCzgVVAPqAcsAv4Pq1xOVFyQqjn3w0bSpSvr8hDoVyxa9ZIJ5CpXbs+MmZGnz6iA6nj5SWmHLznTkNDQ0PjvwsZSOL5rAvQEpgcGBhoq5dP4z/E7du3pVWrVgJI27ZtJSoqSk6ePCmdOnUSRVEEEFdXVylVqpTUr19funXrJkOHDpUJEybIsmXLZO/evRIZGfnYcPy9e/eKp6enlC1bVm7dumVtV1VVmjdvLm5ubnLu3DkREVm3bp3kypVLfHx8xM/PTwIDAyUmJibbXofsJDw8XHr27Cl+fn4CiNFolNDQUJk4caJcvnzZ0eY9wI4dO2T58uWZGhsVFSXly5cXb29vOXLkiMTGxkpwcLA4OzvLli1bbGzpg5w4cUJq164tgDRv3lwuXbqUqXnOnDkj9erVk8DAQClUqJD4+fmJl5eXODk5CZZIvUyLk5OTHDlyxMZn/v9cvnzZunVn27ZtdtNjS7Zu3Zqp5KNDhgwRvV7/wPeMrXnSuiLNCIxU70dHYDwQB3QWkW0ZdKDkCBx9p8SUmIifmxttAgP59cSJBzvDwmDrVrh4ER5TWnXhoEHEjB5Nj4oVYe1a8PPLJqs1NDQ0NDTSJiMRGM8Ljl5XaDx77Nq1iw4dOnDp0iW+//572rVrx8iRI5k2bRpGo5GBAwcycOBA/P39M3zX+tSpU9SqVQsXFxe2bdv2SHnK8+fPU65cOUJCQli+fDmKonD69Glat27NkSNHAOjUqROzZs16piMQ7iEibN68mREjRrBlyxa8vb1p1qwZYWFhhIaG4uXl5WgTH0BEGDNmDB9++CFms5nZs2fTqVOndI83mUy0aNGCjRs3smbNGho0aADArVu3qFOnDpcvX6ZZs2b4+PikS5ydndOl12w2W6MuXFxcGDNmDF27ds3UZ+j69evUrl2bW7duWbcmODs7p/mYnmPi4+OpVq0apUuXJiIiwi5bg0SEgIAAa9njAwcO5LjP2cM0a9aMXbt2ce7cOdzd3dM9rly5cvj7+7Np0ya72ZaVCIySwN/AL0A4lv2rbmmNy4ni6AiMLWPHCiALP/zwgfaL4eFyEETSyhC8erWIi4tsKFxYLu3aZUdLNTQ0NDQ0Mgb/oQiMe+LodYXGs4OqqvLzzz+Lk5OTFC5cWNasWSMffvihuLi4iNFolP79+8uVK1cyPf+VK1ekWLFi4uvrK8eOHXvicT/++KMAMnfuXGtbTEyMtGnTxnqXetKkSZm2IyegqqqsW7fOGg2QP39+GTNmTI5OwhkbGyudO3cWQFq3bi1169YVo9EoGzZsSNd4VVXlzTffFECmTp36SP+FCxekcePGUrJkSfHz87MmKX2auLi4SEBAgLzwwgtSo0YNCQ0NlVdffVXefPNNGTx4sHz99dcyceJEqVWrlgDSokWLLEWzREdHS+XKlcXNzU3+/vvvTM/zNH7//XcBZMyYMXaZX0SkWbNmUrx4cdHpdNKtWze76bEFu3fvFkC++uqrDI07ceKE9XWcMmWKDB06NMsVkx7Hk9YV6XFgHAMapP6tAB8Ah9MalxPF0QuNQdWqiREk5qGQqrcrVhQnkFuHD6c5R+yaNZJXUaSYwSBn7BwKpqGhoaGhkV4y6sAA/IEWqZI3I2Nzijh6XfG8kZSUJB9++KFs2rTJ0abYlOjoaOnQoYMA0qRJE/n444/F09NTFEWRbt26yZkzZ7I0/507d6RixYri4eEhu9K4wZWSkiJBQUHi7+8vt2/ftrabzWb57LPPBBCdTiebN2/Okk2OQFVVWbVqldSoUUMAKViwoIwfP95uFRJsxalTp6RixYqiKIp8+eWXYjab5c6dO1K+fHnx9PSUffv2pTnHPcfUxx9/nC6dqqpKXFycXL58WQ4fPizbtm2TlStXyh9//CHjx4+XL7/8UgYNGiR9+vSRV155RRo1aiTVqlWzOkAMBoPV0eHj4yMzZ87MUoWRhIQECQkJEYPBIKtWrcr0PGmhqqo0bdpU3Nzc5OzZs3bR8emnn4pOp5OhQ4cKIHPmzLGLHlvQtm1b8fHxkejo6AyN++677wSQ06dPS9GiRaVOnTp2sS8rDgyvx7SVSmtcThRHLzTKOjtbSqTex51z58QdpFvx4umeZ+dvv0kuRZH8Op0cWbHC1mZqaGhoaGhkmIw4MIAOwHlgBjATOAu0T+/4nCKOXlc8byxbtsx6UdS3b1+JiopytElZZv/+/VKyZEnR6XTSokUL8fX1FUDatGkjhw4dyvL88fHxUrt2bTEajbJ+/fp0jdmzZ4/odDrp27fvI33Tpk0TRVHEYDA8M44kVVVl2bJl1hKxhQsXlkmTJkliYqLddF6+fFnGjBkj7dq1k4ULF2Z6npUrV4qPj4/kypVL1qxZ80DfpUuXpFChQhIQEPBUJ9eSJUtEURRp165dtpVLvd8Bktmyv/cwmUzWCKBZs2bZyMInc+HCBfHw8JBGjRrZpazr4sWLBZCIiAipUaOGeHt7y/nz522uJ6scOnRIABk2bFiGx9auXVsqVaokixYtsuwuyML/wNPItAPjeRJHLjTOhYdbEqSEhT3Q/m2zZgLIvj//zNB8/y5YIP46nfgqSobHamhoaGho2JoMOjAO3B91AfgBB9I7PqeI5sCwLT179hQvLy95//33RafTSYECBWTFM3qjRlVVmTJlijg7O4u3t7fkzZtXAGnQoIHs2LHDJjpSUlKkZcuWoijKA1tC0sMHH3xgvch6mEmTJlkjMaZMmWITW+2B2WyWxYsXS+XKlQWQYsWKydSpUyUpKcku+q5evSo///yz1K1b15psNVeuXAJIx44dJTIyMkO2jxgxQhRFkRdffPGJDorDhw9Lrly5pGTJknLjxo1H+nfv3i1ubm5SvXp1iYuLy/S5OQpVVaV3795239bxMBMmTBBAfv31V5vPfeHCBQHk559/llOnTomHh4fUq1fPLlssskLnzp3F3d1dbmawQMT169dFp9PJ8OHDpW7dulK0aFG7nZvmwHDwQkMdM0aOgET+84+1LTkuTgrp9fKyj0+m5jy+dq0U0uvlA2dnETvtFdPQ0NDQ0EgPGXRgHHzoue7htmdBNAeG7TCZTOLn5yevvvqqiFgqMZQrV04Aee211zK8yHYksbGx0qVLFwHEzc1NAKlevXq68xmkB1VVpXv37gLIhAkTMmVjkSJFpEyZMo+NVHj77bet0TD9+vWT5ORkW5htE8xms8yfP18qVqwogAQGBsr06dPtYuP169dl4sSJ8vLLL4tOpxNAypYtK1988YUcOXJEkpOTZeTIkWI0GsXPz0/mzZuX5px37tyRli1bCiBdu3ZN0/GwdetWcXFxkeDgYImNjbW2X7hwQfLlyyeFCxeWq1evZvlcHcG9bRafpJUH0MaYzWapW7eu+Pj4ZCn3zONQVVV8fX2lZ8+eIiLy22+/CSCjRo2yqZ6scPLkSdHpdDJo0KAMj502bZoAMnv2bAHk+++/t4OFFjQHhqMXGk2aiJQq9UDTnq++EneQZZ9+mulpr+3eLeYSJUTc3SV57dqsWqmhoaGhoZEpMujA+A5YC3RPldXAt+kd72hBK6Nqc+6V8ps8ebI1DD4xMVGGDx8uBoNB8ubNK/PmzbNLyLctOXTokBQqVMh68V+uXDlZvHixze0eNGiQAPLFF19keo6VK1cKICNGjHikLzk5WYKDg62lK+vWrSvXr1/PislZxmQyyZ9//ml1bJUuXVp+//13SUlJsameGzduyOTJk6VBgwZWp0Xp0qVl+PDhT9z2c/DgQesWlnbt2sm1a9eeeFzJkiXFYDDIuHHj0v25WLx4seh0OmnevLmkpKRITEyMVKxYUby8vOTgwYOZPldHMnr0aOt2MUf8Xx8/flxcXFykTZs2NtffpEkTqVSpkohYHBqvvPKKGAyGNHPUZBe9evUSZ2fnTDm+WrVqJYULF5bXX39d3N3d5c6dO3aw0EJWcmAsApoDurSOzeniKAfG3atXpZtOJ3u7dPn/RlUVqV5d7hQvLuasfvFevSrnS5WSUooiyzOxj0lDQ0NDQyOrZCKJZ1vgx1Rpk5GxOUW0CAzb8eGHH4rBYBAnJycpVqyY/O9//5OLFy+KiCWPRFBQkDV3hK3vmNqKYcOGWS94AwICZObMmXYJrf72228FkP79+2f5wqtjx47i7Owsx48ff6Tv7Nmz4u3tLSVKlBBnZ2cpXLiw7N27N0v6MoPJZJI//vhDypQpI4CUKVNGZs+ebdPX9tatWzJt2jRp3Lix6PV6a2THJ598IgcOHEjX65ySkiJff/21ODs7S548eWT27NkPjJs7d664u7tLQEDAY7fupMW9rT3du3eXpk2bil6vl7XP6M3Le9VA2rVr59CtFd98840AMn/+fJvOO3ToUDEYDNYEsrdu3ZKCBQtKqVKlHoiicQTnz58Xg8EgAwYMyPDYuLg4cXV1lR49eoiTk1Om5sgIWXFgNAT+AE4DXwOl0xqTU8VRC43FgwcLIJt++MHadnf9elFBZPx4m+i4deqUVHN3FwPIn++8Y5M5NTQ0NDQ00ksGIzC+SU9bThfNgWEbVFWVkiVLWi9Q75VlvHfHedGiRRIfH2+9OPTx8ZHp06fnmGiM7du3W6MunJyc5Msvv7RbHobp06dbcy7YImHj1atXxcfHR0JCQh77ei5YsMC61aFgwYLi6uqabVUVUlJSZMaMGVKqVCkBpHz58jJv3jybJaq8c+eOTJ8+XZo2bWqtqlG8eHEZPHiw7N27N9OfryNHjkhwcLC1JOqFCxfkww8/FEBq1qyZpVKjw4YNe+bL3a5cuVIMBoPUr1/frolW08O9qjx58+aVW7du2Wzee/83O3futLZt2rRJFEV5bPLc7GTAgAFiNBozlVh0yZIl1u8D4LGOT1uS5S0kgDfwJnAR+BvoARjTO/4Jc4YCx4FTwODH9DsDc1P7dwBFU9uLAgnA/lSZlB59jlpo9CpVSrxAku/b49a+QAFpYDCImsXMvfcTffGi1PX2FgVkSg6vO6yhoaGh8XyRQQfG3se0/Zve8TlFNAeGbThy5IgAUqlSJSlatKioqiqnT5+WTz75RPLnzy+A+Pv7y0cffSSrV6+2OjiaNGni0Oz+J06ckObNm1svKENCQuxaOWXp0qWi1+ulcePGNnWQTJ48+akJDd966y0B5I8//pDatWtby3Xa6855cnKy/Prrr1KiRAnr52LhwoU2cVxERUXJzJkzpUWLFmI0GgWQIkWKyKBBg2T37t02c4qZTCb57rvvxNnZ2eoc6devX5bftzFjxlg/bxMnTrSJrdnJtm3bxNXVVapUqZLh0p32Yv/+/WIwGKSbDa+dzp49+9j36KOPPhJAlixZYjNdGeHq1avi7OwsvXr1ytT47t27i5eXl+TNm1eaN29uY+se5UnrCsXS93QURckDdAG6AldSIzJqAxVEJCTNCR4/px44ATQCLgG7gE4icuS+Y/oBFUXkTUVRXsUSYtpRUZSiwAoRKZ8RnVWrVpXdu3dnxtxMo5pMFHR2pnb+/My7eBGAs+HhBNarx6AaNfh6+3ab6ou/eZN2Zcqw5uZN/uzWjY4zZth0fg0NDQ0NByGCajYjqvqA6BQFg14PIsTHxT3S72Q04uLsjKgqd27fxsvLC0PevDY3T1GUPSJSNY1j3gL6AcWxRHbewxPYJiJdbG6YHXHEuuJ5ZNSoUQwdOhRPT086d+7MpEmTrH0mk4k1a9Ywbdo0li9fjtlspk6dOhQpUoRFixah0+n45ptvePPNN9HpdHa18+rVq2zZssUqR48eBcDFxYUZM2bQoUMHu+mOiIigcePGVKxYkY0bN+Lh4WGzuVVVpV69ehw5coSjR4+S96Hvh8TERIKDg7ly5Qq7du3im2++YdKkSTRt2pTffvsNo9FIfHz8UyUuLi7NY+Lj44mNjeXixYtERUVRokQJOnbsSNWqVVFVFbPZnCU5ePAgq1evJjk5mYIFC9KhQwc6duxItWrVUBTFZq/nPXbt2kXr1q25fv06qqrSvHlzfvnlFwoUKJCp+VauXEmrVq1o0aIFZrOZ1atXs2DBAtq0aWNjy+3DoUOHqFOnDnnz5iUiIuKRz5kjGTZsGCNHjmT16tWEhoZmeT4RwdfXl7Zt2zJlyhRre3JyMi+99BLnz5/n4MGD5MuXL8u6MsKgQYP48ccfOX78OIGBgRkaazabCQgIIDAwkH/++Yf169fTsGFDO1lq4UnrijQdGIqiLAZKA78Dv4nI1fv6dqe1WHnKvC8Bn4tIk9TnQwBEZNR9x6xNPWa7oigG4BqWUmtFeEYcGHtmzaJq167M6NOHbpMnA/B+UBDj9u7l7M6dFKxWzeY6k2Ji+KJ6dT4+fhzv//0PPvkE7PDFrKGhkXMQsxnFbEZNSSH+7l1MSUmYk5MxJyVhSk7G290ddycnEuLiuHDxIuaUFFSzGXNKCuaUFIoFBJDL3Z07d+5w6PRpzCaTpS/1sVqJEvh6enLp+nX+OXbM0m4yYTabUc1mmpUvj5+7O8cuX2bzsWOoZrN1wamazXSrUgVfV1d2nT/P2hMnLLpV1XKcCIOqVcPHaGT92bOsOn3a0ieCqqqoqsoPwcG46/UsOHOGFRcu/H9fqjd+VvXq6EWYcvo0K69ds/SnigFYVrkyqCpfnznD2tu3reNUEbz0ela98AKoKoMuXGBTTIy1T4D8BgOrixQBVaXHlStsi49HwDI/8ILBwOq8eUFVaXXzJnuSk1FJvUUmQlWjkZWeniBCzehojpjNlvGpxzTQ61nq5AQilExM5Px9fQK0A+anvs+5gTsPvffdgempfxsB00P9bwNjgUTAFfjXy4sK0dG2+uhZSacDwxvIBYwCBt/XdVdEbtvcKDujOTBsQ40aNYiKiuL48eMsXLiQtm3bPva4a9euMWPGDKZOncqpU6fw9PTE29ubS5cuUbduXaZOnUrJkiVtZtelS5fYsmULf/31F1u2bOHkyZMAeHh44Ofnx9mzZ6lSpQqLFy+mcOHCNtP7MAcOHKBevXrky5ePiIgIfH19ba7j6NGjVKpUiQ4dOjBr1qxH+o8dO0ZQUBDBwcGsX7+eqVOnMmDAAEymh79x0sbFxQU3Nzer6HQ6EhMTiYmJISoqClVVbXFKj1CgQAHat29Px44dCQ4OtqvDa9q0afTr1498+fIxf/58tm3bxtChQ3FycmL06NF07949Q06T/fv3U7t2bV544QW2bNmCoig0aNCAffv2sWHDBmrXrm23c7EF586do1atWgBs27aNokWLOtagh0hKSqJy5crExcVx6NAhPD09szxno0aNuH37Nnv27Hmg/dixY1SpUoU6deqwevVquzte7xEVFUXBggUJCwt77P94WkRERFC3bl2KFi2Ku7s7Bw8etIvj736etK4wpGPsFBFZ9dBkziKSlFnnRSoFsGxHucclIPhJx4iISVGUaCBPal8xRVH2ATHApyIS8TgliqL0BfoCdv1xeRI3162jJND0vfcAiLl0ial799KhSBG7OC8AnL28+OrQIejVi4Rhw5gZEUHf1atRsukfREPDoagqyXFxJMfFkZKQQEp8PCnx8ehFCPDxAZOJYydOEBsTgyk5mZTERMsFvrMzVYoVg5QUVu/cSUxsrKU/ORlTSgqFvb1pXLIkpKQw5q+/iE1IIMVkIiUlBZPJRBU/PzqWKAFmM/03bybJZMJkNlulSd689ChUiJTkZFrt3IlJVa1iVlW65snDW7lzcycpiVqnTmESwSSCOVU+cnfnHWdnzicnUyEmBjNgxnKxasZygfo2cAio9JiXZTqWC929WMLnHmYBlgvlnVj29j3MWqAx8A/wymP6/8biXd6O5fb6wzRevhzf1PHD7mvXpUqf3bvx0es5YDbza3IyOkVBB+gBRVH46vZt3A0GTsfG8ldsLEpq/73jzIcOodfruXnzJueioy3tqX1OOh3ExIBOh2oyoYqgAHqdDp2i4GowgJcXKAo+d+6QLzWqQUmdw9/ZGV54ARSFQL2exJgY6/yKTkchd3eoUgV0Omr8+y/+d++i6HQogE6no7iXl6VfUWi5dy/V4uOt8ys6HaVz54ZKlUCno/eOHUQnJ1v6UqWcnx9UqACKwuBt20g0mx/orxgQAGXLgqIwKiLCcn739VcuWBBKlcIgwpht28iXuoh0BCISDUQDnRxmhEaO4urVq+zYsYOQkBBOnTpF/fr1n3hsQEAAH3/8MR999BERERFMnTqV+fMt7r2tW7dStmxZhg0bxtChQzEY0rPEfZBz5849EGFx5swZALy9valTpw59+/YlKCiIb7/9ljVr1vDGG28wduxYnJycMnfy6eDMmTOEhobi6elDZ5SDAAAgAElEQVTJ2rVr7eK8AChTpgxDhgxhxIgRvP766zRq1OiB/hdeeIHx48fTo0cPvvzyS4YPH05QUBDr1q17wBnh5uaGu7v7I233xNXVlevXr7N+/XqrXL9+HYCyZcvSrVs36tevj6+vL3q9/omi0+me2v/wcdl1kZiUlMQ777zD5MmTadSoEXPmzCFPnjxUq1aNFi1a0KtXL3r27MncuXOZMmUKhQoVSnPOy5cv06JFC3LlysWyZctwd3cHYPny5dSqVYuWLVuydetWypUrZ+/TyxSRkZE0btyYhIQEwsPDc5zzAsDZ2Zlp06ZRq1YthgwZws8//5zlOYOCgvjxxx9JSkrC2dnZ2v7CCy/w448/8tZbbzFu3DgGDhyYZV3pYc2aNcTFxdG/f/9MjV+yZAkGg4Fz584xefJkuzsvnkZ6IjD2ikiVtNoyrFhR2gOhItI79XlXIFhEBtx3zKHUYy6lPj+NxclxF/AQkVuKogQBS4ByIhLzNJ0OuVNSvTro9ZC6VWRc27a8s3gxu2bMoGq3bvbVrapMevll3goP561y5fh5/350mfhB1/hvI6pKSlwcSXfv4m4woEtJ4da1a0RevUpSXBzJ8fEkJySQnJBASJky6Ewm9h0/ztFz50hOSiI5MZHkpCTMKSkMrFEDUlJYeOAAOy9eJDklxSpOwPjKlSE5mVFHjrDlxg2SzWZSVJVksxlfvZ6VhQtDSgrdL19mU0ICySKkpEpJRWGPTgdmMzWxXEjfTzCWi2eAClgu9O+nIbA+9e9iwLmH+sOAxal/+wE3U//WY/EEdzEYmOruDgYDRe7cwQwYFAW9omBQFLr4+DAsXz5Mej21TpzAoNNZRa8ovJo/Pz2LFSMW6LlvH3qdDoNeb31sU7w4zYsV447JxIjduy3tBoN1kdasdGlqFC3KzcREpu/bZ+0zGI3o9XpCypaldIEC3IiLY/2RI+gNBnR6PXqDAb3BQLXSpcmfNy+34uLYd+aMpd1otD6+ULw4Pj4+RMfFcSEy0tJnNKJ3ckKn15M/Xz5c3N2JT0oiJj7eMr/BgC51DncvL/RGI2YRVEVBbzSi6PUO/QHUsC3picB43tAiMLLO5MmTeeONN6hQoQKenp5s27YtQ+OjoqKYM2cOEydO5ODBgwDkyZOH77777ql3uUWEM2fOPOCwOH/+PAC5cuWibt26hISEUK9ePSpWrIher+fkyZO0atWKU6dOMXbsWN56662snXwaXL9+nVq1anHnzh0iIiIoW7asXfUlJiZSqVIlTCYTBw8exM3N7YF+EaFbt27Mnj2bzZs3U7du3XTNGx8fT0REBOvWrWPdunUcOmT5Bfbz86NRo0ZWyezWipzCpUuXaNeuHTt37mTIkCH873//Q6/XP3CMqqpMmDCBwYMHo9Pp+OGHH+jdu/cTP6exsbHUrVuXkydPsm3bNipWrPhA/7lz53jppZcwGAxs376dggUL2u38MkNMTAwvv/wyR48eZcOGDdSsWdPRJj2Vd999lzFjxhAeHk6dOnWyNNf8+fPp0KEDu3fvJigo6IE+EaF169asXbuWXbt2PfK+2oPu3buzfPlyIiMjH/lcpoWIULJkSWJjYzGZTFy8eBFXV1c7Wfr/ZHgLiaIoAVgiIGYBnYF7/1leWJJmvpBFgzK9hUQeMlpRlL+AD0XkqauI7F5oJJ0/j6FoUfQjR1q2cZhMJJYowToPD1odPpwtNoiqMrhmTb7dsYNmfn60btyYl9u1o2SzZnCfN1Aj5yGpkQRJ0dEkRkeTGBNDHldX3HU6bl+/zqFjx0iMjSUxNpaEuDgS4+NpUrIkAc7OHDx7lsUHDpCYmEhiUpJFkpP5rEwZihgMrLxwgZ/OnCHJZCLJbLaIqrLG358iqsq4qCg+iYsjGUi6z6ZrgD+WO+gjH2NzHOAGvAf89FCfgiVSQAHeUBRmiuAEOCkKTopCLr2eQ8WKgZMTQ2/cYFNsLE56PUa9HqNOh7+rKzOqVQMnJ74/eZLDMTE4GQwYjUaMBgP5vbwYVLs2GI3MOnyYq3FxGJ2crJIvTx5aVqsGRiObjh4lzmTC6OSEwdkZo5MTuXPnpkLp0mA0cuziRVSdDqOLCwYXF4wuLrh7eZHLzw8MBhJMJgwuLuidndFl8EdAQ+N5RXNgaGSGZs2aceTIES5evMjw4cP57LPPMj3X3r17GTJkCOvXr0dEyJ07N++//z49e/YkICCAkydPPrAl5PLlywD4+vpSr149q5QvX/6RO/br1q2jY8eO6PV6FixYQEhISFZOO02io6MJCQnhxIkTbNy4kRo1athV3z22bNlCSEgIH3/8MV9//fUj/Xfv3iUoKIj4+Hj279//2IgQVVU5cOAA69atY/369URERJCcnIyzszO1a9emcePGNGrUiEqVKmVbZIS9+euvv+jYsSPx8fHMmDHjidug7nH27Fl69erF5s2badiwIVOmTHkkMsFsNtO2bVtWrFjB8uXLadas2WPn2r9/P3Xr1qVIkSKEh4eTK1cuW51WlkhMTKR58+aEh4ezdOnSJ9qfk4iNjaVChQo4OTlx4MABXFxcMj3X6dOnCQwMZPLkyfTp0+eR/hs3blChQgX8/PzYtWtXlnSlhaqq5M+fn5dffpk5c+ZkePzhw4cpX748iqIwePBgvvrqKztY+SiZcWC8jiXiuCpw/6/zXSy5MBZl0SADliSeDYDLWJJ4dhaRw/cd0x9LotB7STzbikgHRVH8gNsiYlYUpTgQkXrcU/fPZvdCY3rPnnw4fTr7V6+mUGgoLFgAr7wCixZBNibcEVXl+5YtGbV6NXdEGAEMMxq5XaYMg5OTCQoKompoKOVbt8bZBnu+nntEUOPiuHn+PLE3bhB36xbxUVEk3L1LUW9vinp5EX3zJn9GRBAfG0tCamKqhMRE2hQqRG1vb05HRjJwzx4SUlKIT0khwWQi3mzmOy8vWosQHhtLveTkR1QvBVoBK4CWjzFtI1Af+BNLfLYRcAFcFAUXnY7l+fNTycuLJQkJfBsZibPBgLNej7PBgJPBwE/Vq1MgVy423bjBsosXcXZ2xtnJyfLo7Mwb9erh6e3Nv5GRHImMxNnVFSdXV5zd3HBydaVm5coY3Ny4FhNDTFISTu7uOLm54eTujtHNDS9fXxQnJ0tUkoaGxnNFRh0YiqIUAUqKyAZFUVwBg4jctZ+FtkdzYGSNu3fv4uvrS6NGjVi5ciV///03L730UpbnvXjxIh07dmR7avSrXq8nT548REZGAuDv72+NrqhXrx5lypR5aqTGmDFj+OCDDyhXrhxLly6lWLFiWbbxaSQmJhIaGsq2bdtYsWIFTZo0sau+h+nVqxczZsxg7969j70zvG/fPmrUqEHjxo1ZtmwZiqJw6dIl65aQDRs2cOPGDQAqVKhgdVjUqVPnkaiOZx0R4aeffmLQoEGULFmSRYsWUaZMmXSNVVWVyZMnM2jQIAC+/fZb3njjDatT5/3332f06NH8/PPPaYb9b9q0idDQUF566SXWrl1r14vh9GA2m+nYsSMLFy7k999/p0uXZyc/84YNG2jUqBGDBw9m1KhRaQ94AvecqB07dnwgMfH9rFmzhqZNmzJw4EB++unhW3+2Y+/evQQFBTFjxgy6ZWIHwFdffcUnn3yCwWDg7Nmz2Rbp88R1xeNKk9wvQLu0jsmsAM2wODFOA5+kto0AWqX+7YIld9kpLFuzi9+zCTiMpYTqXqBlevRld7mztvnzSwGdTtTUsk+dfX1lpp+fiJ3KTqWFajbLmS1b5Movv4h8/LHsrl5dfBTFWo7JCFLFzU3CW7YU+eUXSfj7b0myYZlXR6CazXL36lW5vGePHF25Us4tXSqyebPI8uUy9513ZGq3bvJTWJiMbNBABteoIQubNhXp3l2S2raVUF9fqe3lJS+6ukqg0SgBOp2McHISURSJ/P/8eg/IVyACcvahdh2IO8gvHh4ihQvLieLFpYqrq9Ty9JRGuXNLq4AAebVwYQlv2lSkf38516ePDKtTR75s1Eh+aNVKxnfsKNO6d5dzP/0ksnCh3Jg9WzZ9/738/csvsmfWLDm8dKmc3rxZEk6fFrl1S0wxMWKyUw16DQ0NjcdBxsqo9sFy4+J06vOSwMb0js8popVRzRrz588XQJo1ayY+Pj6SkpJi0/mXLVsmefPmFUDKly8vEydOlGPHjqW7VGZiYqJ0795dAGnTpo3czYY1UUpKioSFhQkgs2fPtru+x3Hr1i3x8/OT6tWrP7FU6tixYwWQli1bStmyZa3rHX9/f+nSpYvMnDlTrly5ks2WZx8JCQmyYcMGad++vfXzkdmyoOfOnZOGDRtaS/GePn1aJkyYIIAMHDgw3fPMmTNHAGnXrp3dStymB1VVpW/fvgLI6NGjHWZHVujZs6fo9XrZs2dPluapX7++VK1a9anHvPPOOwLI6tWrs6TraYwcOVIAuXbtWqbGV6lSRfR6vXTq1MnGlj2dJ60rnhaB0UVEZimK8kHql9LDjo8fn+wvyZlk552S5Lt3yePlxWtlyjDpyBF2TJtGjd69GdO2Le8sXJgtNqQHUVXOhoeze+lS9vz9N3tOnuRHk4mKd+/yO9AbqODmRlDhwgRVrUrV0FAqtmmDwd4edFUl9to1oi9fJvrqVWIiI4m5cQNXk4k6BQpAdDRj163j/I0bxMTGEhMfT0xCApWdnfnKxwdiYih5+TJnVJX7c1l3xlIDGMADy5aHezgBbzo7M8bfH3F3p8aFC7gbjXg4O+Ph4oKHqytNS5akzYsvkuziwtR//8XDyws3T0/cvLxw8/amRIkSFCpaFJOTE5FxcbjlyYNrrlw4eXhoSVQ1NDSeazISgaEoyn6gOrBDRCqnth0UkQr2tDENm8oCnwO3sDhTFqQ1RovAyBpdunRh9erVuLu7U716dRYsSPMlzzBRUVF88MEH/PrrrzRt2pQ5c+bg7e2d5rhr167Rtm1btm/fzmeffcbw4cPtvt0hLi6OHj16MH/+fMaOHcvbb79tV31PY/bs2bz22muMGzeOAQMGPNIvInTo0IEVK1ZQt25da5RFhQoVnsvcRqqqsn//fjZs2MCGDRuIiIggMTERo9HIF198weDBg7N03iLCtGnTeP/99zGbzSQlJdGsWTMWL16coXwFo0eP5v3336d///6MGzfOIe/FvZKkQ4cO5csvv8x2/bYgKiqKsmXL4u/vz86dOzEajZmaZ9CgQYwdO5bY2NgnzpGQkEC1atW4efMmBw8exM/PLyumP5Y6deoQHx//SEWU9HDlyhVrfpp//vmH4OCHa27Yj8xUIXFPfbRdoen/EOETJxILtGjfHoDRX3yBF9Bj3DiH2vUwik5H8ZAQioeEYK1eLgJnzlB+wQLeXbSI3SdPMvfYMSYfOwazZnHZaCR/xYqsDwjgjLc3bp6eJMbHkxgfj85spn9QECQlMWP3bnZfvkxSSgqJyckkpaTgrdMxuXRpSErinWPHiIiOJlFVSVRVklSVEjodEUYjJCbSQISdD9n7EpZqBwBTgTOAl06Hl8GAl9FIipsblCoF3t50PXqUFKMRLy8vvHx88PTxIbBECUs1AHd39t68iWvu3HjkzYu7nx9O99VUV4AdT3ndnHh8pYV7GID8GXgfNDQ0NP5jJIlI8r3Fdeq20qdnFX8KiqL8CrQAIuW+EuuKooQCY7Dk250qIo9u6v9/mgLjRCRCUZRlWIrzaNiJlJQUVq5cSUhICEuWLOHTTz+1ix4fHx+mTZtGcHAw/fv3Jzg4mGXLllGqVKknjtm9ezdhYWHcuXOH+fPn0z51LWdPTp06RZs2bTh8+DDfffedQ50XAJ06dWLGjBkMHTqUsLCwR0LGFUVh7ty5mM3mTF/c5XTOnj1rdVhs3LiRW7duAVC+fHnefPNNGjZsSL169fDwyPqlkqIo9O7dmyZNmtC/f3+io6OZPXt2hpMtvvfee1y5coXvv/+eAgUKMGTIkCzblhHGjh3LyJEj6dOnDyNHPi5b2rOBj48PEyZMoE2bNnz33XcMHTo0U/MEBQWRnJzM4cOHefHFFx97jKurK7Nnz6ZatWr07t2bJUuW2NTxFBUVxfbt2xk8eHDaBz+GJUuWAFCpUqVsdV48lceFZdwvWJJmOjxM0xaSnaGeA198UVxA4m7ckPN//y16kA/SCCHKyahms5zauFEWvv++yKBBIvXry+tG4yNbKDxTt1CIokg3vV5yKYoE6HRS1GCQF5ycpKGHh0hwsEjdujK8eHFpFRAgHQoWlK7Fi0ufF16QEcHBIh9+KDJsmMzr0kUmd+0qf77zjqz64gvZOmGCHF+2TOTcOZHbt8WsbZHQ0NDQyDGQsS0k3wJDgWNAIyxFfr5M7/jHzFcXqAIcuq9Nj2WLanEsfucDQFkshYhWPCR5U2U88B2wLT16tS0kmWfjxo0CSM+ePQWQs2fP2l3nli1bxNfXV3x8fGTt2rWPPWb27Nni4uIihQsXln379tndJhGRFStWiLe3t+TOnfuJdjmC06dPi6urq4SFhTnalGzh1q1bMn/+fHnjjTekRIkS1rVt/vz55fXXX5fff//9mdgWYzab5bXXXhNApk+fnm16Z82aJYC0bdvWoVtYbMkrr7wiTk5OcvTo0UyNP3HihAAyderUNI/98ccfBZBJkyZlSteTmDdvngCydevWTI2vXLmyADJnzhyb2pUenrSuSM+i4ASwDugF5Err+Jws2bbQUFX5u0ABmVSunIiIfFi1quhBzm3blj36swnVbJazERFycsMGubhzp9w4dkzuXrkikpwsks79pRoaGhoazwcZdGDosOTBmI8l0qEPqYnFMytA0YccGC8Ba+97PgQYko559MDSp/T3xZLcfHfhwoXt9Go+/7z99tvi4uIiTZo0kVKlSmWb3rNnz0rFihVFp9PJ6NGjrfkwTCaTDB48WACpU6eOXL9+3e62mM1m+fzzzwWQypUrZ4sTJ6N88803AsiiRYscbYrNSUhIkI0bN8rgwYOlatWqoqTmhfP09JRWrVrJ2LFj5ejRo+nOmZKTSEpKkoYNG4per5dVq1bZXd+qVavEYDDIyy+/LAkJCXbXl11cu3ZNcufOLTVr1syUU8ZsNounp6f069cvXcc2atRIXF1dM+0weRw9e/bMdI6h6OhoURRFPDw8JDk52WY2pZdMOzAsY6kO/IglYn8F0CU943KaZJsD49gxy0s7frzI3buy2s1NRpYvnz26NTQ0NDQ0HEAGHRjugP6+53rALb3jnzDnww6M9li2jdx73hX4OY3xk7GkSqqdHp1aBEbmUFVVChcuLM2aNRM3Nzd5++23s1X/3bt3pU2bNgJIjx49JDIyUlq0aCGA9O3bV5KyIcLz9u3b0rx5cwHk9ddfl/j4eLvrzAzJyclSsWJFKVCgQKaTVOYUzGaz7N27V7755htp1KiRuLi4CCAGg0Hq1KkjX3zxhWzbts3myWQdRUxMjFSuXFnc3Nxkx44ddtPz999/i6urq1SuXPmZ/4w8jpkzZwogY8eOzdT4evXqSXBwcLqOvXz5suTJk0eqVKlik+8hVVUlf/788sorr2Rq/HfffWf9XnQEWXJgyP//uPsCMwFzRsblFMmuhUZ4v34SAZatDmPHWl7mf/7JFt0aGhoaGhqOIIMOjH8Aj/ueewB/p3f8E+bMkgMjg7paApMDAwNt/0L+B9i3b58A8sEHHwggy5cvz3YbzGazfPbZZwKIq6ur6PV6GT9+fLbcbT9w4ICUKFFCDAZDtunMCjt27BBFUWTAgAGONiVD3Lx5U9asWSMjR46U1q1bS548eazbQsqXLy/vvvuurFixIluqyziKq1evSrFixcTX11dOnDiR4fHJyckSFRUlV65ckVOnTsmBAwdk+/btsnHjRlm+fLnMmDFDcuXKJYGBgZmucJHTUVVVQkNDxd3dPVNRUu+99564uLik2zG2ePFiAWTw4MEZ1vUw+/fvF0B+/fXXTI2/t5UqOyLSHseT1hVPS+IJgKIoXkAb4FWgBJZ9qtXTGvdf5rPZs7np7My+fPn44fPP6RoURL6ckvREQ0NDQ0PD8biISOy9JyISqyiKrctbXQYK3fe8YGpblhGR5cDyqlWr9rHFfP817iWpS0pKwmg0EhISku026HQ6ateujbu7O3Fxcfj6+lKjRg27V22YM2cOvXv3xtvbmy1btlCzZk276rMF1atXZ8CAAfz888906dIl5yTyu4+YmBj27t3L7t272bVrF7t37+bMmTPW/tKlS9OiRQsaNmxIgwYNyJcvnwOtzT4CAgJYu3YtNWvWpEmTJrRt25b4+HirxMXFPfD8YTGZTGnqKFCgAOvWrcPf3z8bzij7URSFX375hXLlytG3b1/Wrl2boe+JoKAgEhMTOXr0KBUqpF1oKywsjB49evD999/Tq1cvAgMDM237mjVrAAgNDc3w2KtXr3L69GlKly5N3rx5M22DPXhiGVXrAYpyFlgCzBOR7dlilZ3IjnJnUefP41e0KB/WqEFwSAhtvv6aee+9xys/PnNVZzU0NDQ0NNJNBsuobgPeFpG9qc+DsERHvJQF/UWBFZJahSS1sskJoAEWx8UuoLOIHM6sjvt0tQRaBgYG9jl58mRWp/vPUblyZdzd3YmPj8fb25vNmzdnq34RYdy4cbz//vuUKVOGr776iv79+3Pz5k1+++03OnTokPYkGSQlJYWPP/6Y0aNHU7t2bebPn09AQIDN9diLu3fvUrZsWXLlysWePXscWnkkISGB/fv3Wx0Vu3bt4vjx4/eioyhatCjVqlWjatWqVKtWjSpVqqSrdO7zzM6dOwkLCyMmJgY3NzeruLu7P/D8afKkY4sUKYK7u3vaRjzjTJgwgf79+zN9+nS6d++e7nHHjh2jTJkyGRp37do1AgMDad68OXPnzs2cwUBISAhRUVHs378/w2N79uzJ9OnTn1hKOTt44rricWEZ8mCYZJaSauUkyY4tJHPffdeS6XXCBKnr7S1F9HpJeY6S2WhoaGhoaDwOMraFpBqWCiERwFbgFBCU3vGPmW8OcBVIAS4BvVLbm2FxYpwGPsns/E8SLQdGxjl37pwAMmzYMAHkq6++svYlJSXJkCFD5PPPP5dZs2bJ9u3b5caNGzbdYpGYmGitfBIWFiYxMTEiYknWV6tWLQHk008/FbPZbDOd165dk7p16wr8X3v3HR5llTZw+HemZBKSUBKKIfQAQugJUqQrVaUIyIqw6+faQBARXAFXwHVhURQFWVYXsWNZRSTgEg0gTUBKACUBqcLSSwIJpE453x8zCQETkpBMZiY893W918yc85Zn3kBy5plT0OPGjfPIZHilYdmyZRrQr7zySpldMysrS8fHx+t33nlHP/roo7pVq1baaDTmDgUJCwvTAwYM0C+//LKOjY3V58+fL7PYxK3FbrfrLl266MqVK+vTp08X+TibzaYDAwOLPdfPtGnTNKC3bdtW3FC11s4JOE0m000NRcnKytKBgYHaYDDotLS0m7p+aSioXVHgEBKl1Fyt9XhguWtW3usTHwOKl0O5NXy7fDkhSmH292dDSgpzBgzA5O/v6bCEEEIIr6G13q6UagLc7irar7W2luB8wwsoXwmsvNnzitIXExMDkPuNeO/evXPrFi9ezKxZs353TMWKFWnYsCERERHXPDZs2JCwsDAMBkORrn3mzBmGDBnC5s2bmTp1Ki+99FLusTVq1GDNmjWMGTOGGTNmsGfPHj755BOCg4NL9H5/+uknhgwZwsWLF1m8eDEjRowo0fk8aeDAgQwePJiXXnqJoUOHEhERUarnT09PZ9++ffzyyy/s2LGDHTt28PPPP5OVlQVASEgId9xxB/3798/tXVGzZs1SjUGIghgMBhYtWkTLli0ZM2YMX3/9dZGOMxqNtGnThvj4+GJdb+LEibz99ttMmjSJNWvWFHt425o1a7DZbPTr169YxwF89dVXpKWl0b59eypUKO3RnSVX4BASpVS01jpeKdUtv3qt9Xq3RuYG7h5Com02GlksdKhTB4CYo0c5cewYlVyvhRBCiPKqOENIXPvfiXPizdwvU7TWH7shtFInQ0hu3t13383p06e54447WLlyJWfPnsVgMGC324mMjCQwMJDNmzdz9OhRDh06xOHDh695/O23364Zl+/v709ERES+yY06depgMjn/ee3cuZOBAweSnJzMhx9+yAMPPJBvfNo1vOTZZ58lMjKS5cuXU79+/WK/T601Cxcu5Omnn6ZWrVp88803tGrV6uZumhc5efIkTZs2pUOHDsWeCyCHzWbj4MGDJCQksGfPntzHw4cP5w4DCQ4OJjo6+pqhIPXq1XP7HCVCFObVV19l8uTJLFmyhCFDhhTpmPHjx/Puu++SmpqK0Wgs8rXmz5/PuHHjiI2NLfY8Fk888QT/+c9/uHDhQrGGfGmtadGiBYmJiSxatIhHH320WNctTQW1K4oyB8YzWut5hZX5ArfPgbFlC9l33smlWbN45oUXCG/ThteLmW0TQgghfFEx58D4BOfE4LsBu6tYa63HuSs+dyiLubXKk4sXL1KtWjWee+45PvroI3r06MFnn30GOL/xGzZsGF9++WWByQVwfvg9fvz4NUmNnOeHDx8mIyMjd1+TyUS9evVo0KABGzdupFq1asTExNC6detCY121ahXDhg3DaDSyZMmSYk00mpmZyZgxY3j//ffp27cvn376KSEhIUU+3tstWLCAsWPHFtqjRGvN8ePHf5eo2LdvH9nZ2YDzW+1GjRrRokULmjdvTvPmzWnRogUNGzYscs8aIcqSzWajffv2nDx5kr179xbp//bHH3/Mww8/TGJiIpGRkUW+VnZ2Nk2bNiUoKIhdu3YV+f+E1po6derQrl27IvcUybFlyxbuvPNOlFKcPXuWatWqFev40lRQu6LQVUiAh4HrkxX/l0+Z+O9/8TMaqX72LEEIXfoAACAASURBVJ8rhf7qK09HJIQQQnijtkCkLuxbFFGu/Pe//8Vut9O8eXPOnDmTO3xEa82sWbNo3LgxgwcPvuE5TCYT9evXp379+vTq1euaOq01p0+fviapkfPYq1cv3n333SLPpt+rVy+2bdvGgAED6NWrF/Pnz2fUqFGFHnfs2DGGDBlCfHw8U6dOZfr06cX6xtUXjBo1isWLFzN+/Hj69u1LaGgoSUlJv0tUJCQkkJqamntcrVq1aNGiBb17985NWDRt2hR/GWotfIjJZOL999+nbdu2TJgwgQ8//LDQY6KjowGIj48vMIGhtebixYucPXuWs2fPUq9ePerVq8fMmTMZPnw4n332GSNHjixSjHv37uXEiRNMnz69yO8rx9y5czEajbRr186jyYsbudEcGMOBh4D6SqnleaqCgWR3B+aLhv3zn3StU4ee779Pk0GDUA0aeDokIYQQwhslALfhnHjT5+QZQuLpUHxKTEwMYWFhnD7t/LHnJDDi4uLYtWsXixYtKtGHfaUUNWvWpGbNmnTt2rXE8TZq1IiffvqJhx56iNGjR/PLL78wb968Artjr169mgcffBCr1cry5cvp379/iWPwRkajkYULFxIVFUWHDh1IS0vL/ZkCVKlShRYtWjBy5MhrelZUrlzZg1ELUXpatWrFpEmTcpMLffr0yXc/h8NBUlISNpsNPz8/Pv30Uy5cuJCbpMi7nTt3Dqv16lRQAQEBLF++nGHDhvHaa6/x4osvMnTo0CIl/GJjY4HiL596/Phxvv76a+x2e5GHx3jCjebAqAvUB2YBk/NUXQZ+0VoXvjCwl3FnV88T27ZRu3177g8L45vTp0n4+GOa/fGPbrmWEEII4W2KOYRkLdAa2AZk5ZT72gThMoSk6DIzM6lWrRoPPfQQR44c4cyZM+zZswdwLvV36NAhjhw5gp+fn4cj/T273c4LL7zA7Nmz6d69O1999RVVq1bNrdda89prrzFlyhSaNm3KN998Q6NGjTwYcdmYM2cOX3zxBc2aNctNVLRo0YKwsDCZq0KUe5mZmbRp04b09HSefvrpfJMS58+fx263/+5Ys9lM9erVqVGjRr5bSEgIkyZNYv/+/SxbtgyTyUSvXr144403ePbZZwuN7e677+bcuXO5v2OLavLkycyePRutNQcPHsTTSfqbngOjPHFnQ+PfI0Yw6rPPqGs0Ut3fn62pqSgZuyeEEOIWUcwERrmYIFwSGEW3cuVK7r33XpYuXcrw4cMZM2YMc+bMyR1vXdSGuSctXryYxx57jLCwMJYvX06LFi24fPkyjzzyCF9//TXDhg3jvffeIygoyNOhCiHKwObNm+nWrRs2mw2LxVJgQqJGjRp88cUXxMXFcezYMUJDQwtN8iUlJdGrVy8SExNZsmQJ//znP9mxYwdHjhzJXcUpP5cvXyY0NJTx48cze/bsIr+XtLQ0ateujclkolq1aiQmJhb5WHcp9hwYSqkftdadlVKXca61nFuFc6Ktim6I02d9u3o1NQwGjtntvPLII5K8EEIIIQqgtV7v6unZSGu9WilVAfCZiQJkCEnxxcTEEBQUhMlkIisrK7fL9axZswgNDeXxxx/3cISFGzlyJI0aNeL++++nY8eOzJ49m3/+858cOHCA119/nQkTJkjPAyFuIXfeeSenTp3Cz8+PihUr3vD/f0ZGBsuWLePChQvX9OAqSGhoKGvWrKFv374MHjyYWbNmERcXx+zZs5k5c2aBx61duxar1Vrs5VMXL17MxYsXMRgMPPbYY8U6tqwV+Clba93Z9Rista6YZwuW5MW1MpKTWXPuHCalqGU0MuTVVz0dkhBCCOG1lFKPA0uAf7uKwoFlnouoeLTWK7TWT9zoWzBxlcPhYPny5fTt25e1a9disVjo0qULCQkJrFixgnHjxvlMr4X27duzfft2mjZtypgxY7hw4QKrVq1i4sSJkrwQ4hZUrVo1KlWqVOj//6ioKMC5pHNRValShbi4ONq1a8fkyZO58847efPNNzl58mSBx8TGxhIUFESnTp2KfB2Hw8HcuXOpV68eDoeDQYMGFflYTyi0m4BSKkIpZXE9766UGqeUkll48rj43//SEzhvtzOuTx/MFSp4OiQhhBDCm40BOgGpAFrrg0DRlocQPmfbtm2cOXOGQYMGERcXR9euXQkICOCVV14hKCiIsWPHejrEYgkPD2fDhg3Mnz+f+Ph4evTo4emQhBBeLjIyEn9/f+Lj44t1XKVKlfjuu+/o1KkTP/30E9nZ2fztb3/Ld1+tNbGxsdx9993Fmk9o1apV/Prrr1SrVo2wsDDati3SaFCPKco4h68Bu1KqIbAQqA185taofEzNLVtYbjJx0t+fUW+/7elwhBBCCG+XpbXOznmhlDJx7XBVUY7ExMRgNBpp1aoViYmJ9OnThyNHjvD555/z5JNPEhIS4ukQiy0gIICxY8dSu3ZtT4cihPABJpOJVq1aFTuBARAcHMzKlSvp0aMHdrudRYsW8euvv/5uv/3793Ps2LFiDx+ZN28et912G4mJiQwYMACDl0+FUJToHK4VR+4H5mut/wKEuTcs36EdDg4sWYK22aj62GME16nj6ZCEEEIIb7deKfUCEKCU6gV8BazwcEzCTWJiYujWrRvbt28HnMunvvbaa5hMJiZMmODh6IQQomxERUWxa9cuHA5HsY8NDAxkxYoV3HXXXWitefDBB3+3z80sn/rrr7/m9tpIT0/3+uEjULQEhlUpNRx4GPjWVZb/Ati3oD3ffMPt58/TGMgaNcrT4QghhBC+YDJwHtgDPAmsBF70aETFoJTqr5RamJKS4ulQvN6BAwfYt29f7vCRsLAwqlatygcffMDDDz9MzZo1PR2iEEKUiejoaFJTUzl8+PBNHR8QEMDKlSu5/fbb+fnnnxk/fvw19bGxsTRt2pS6desW+ZxvvfUWFosFpRTBwcE+MSSuKAmMR4COwEyt9W9KqfrAJ+4Ny3csW7AAgAYhIViaNfNwNEIIIYR3U0oZgU+01u9qrR/QWg91PfeZISQyiWfRxcTEAHDvvfeyatUqevfuzdy5c7FarTz//PMejk4IIcpOdHQ0wE0NI8lhsVjYsmULFouFefPm5S6VmpaWxvr164s1fOTixYt89NFHDB8+nNWrV9O3b18sFstNx1ZWCk1gaK33aq3Haa0/d73+TWtdKstsKKX6KqX2K6UOKaUm51NvUUr9x1W/VSlVL0/dFFf5fqVUn9KI52Z8vHEjAC9Mm+apEIQQQgifobW2A3WVUkWfYUz4rJiYGFq3bk1ycjJJSUl06tSJt99+mwceeABZhlYIcSuJjIzEz8+vWCuR5KdKlSq88cYbAEyaNImZM2eybt06srOzizV8ZNGiRaSnp3PXXXdx5swZBg4cWKK4yoqpsB2UUp2Al4C6rv0VoLXWDUpyYdc3MAuAXsAJYLtSarnWem+e3R4FLmqtGyqlHgReBf6glIoEHgSaATWB1Uqpxq5GUZk5t3cvh202blOKrk8/XZaXFkIIIXzZEWCTUmo5kJZTqLV+w3MhidJ27tw5Nm/ezPTp04mLiwPgyJEjXL58mSlTpng4OiGEKFt+fn60bNmyRD0wcjz++OPMnTuXc+fO8eKLL9K2bVsCAgLo2rVrkY632WzMnz+fHj16kJiYiMlk4p577ilxXGWh0AQG8B7wLBAPlGaCoB1wSGt9BEAp9QUwEMibwBiIM3kCzvXi/6mci+wOBL7QWmcBvymlDrnOt6UU4yvU60OHAjC6WzeUl8/WKoQQ5ZLWzs3hwG61YrNacdhsuZu22wkMCMCoFBnp6VxOTcVhtzvrHA4cdjthVatiMhq5dOkSScnJV+u1xmGz0bhOHUxGI6fPnuVsUpLz3HZ7bv0dTZpgUIrDx49z6vx5HA5H7rkV0KNVK9CaPYcPc/LChavHOhyYDQb6tmkDDgc/7d/PyaSkq/V2OxX8/BgQFQVas/qXXzh18aLz/FqjHQ4qBwQw2FW/bOdOzqSk5F5fa02N4GAeaN0aHA4+3raNC2lp/KlTJ6p6vuv+YddmAII9HItwkxUrVqC1ZuDAgTzzzDO0bt2aRYsWcc8999CqVStPhyeEEGUuKiqKL7/8Eq01zo+1N8dsNjNr1iyGDh1K586d+fHHH4mIiCjy8qnffPMNx48fZ/78+UyePJlu3bpRpUqVm46nLBUlgZGitY51w7XDgeN5Xp8A2he0j9bappRKAUJd5T9dd2x4fhdRSj0BPAFQp5RXCOly8iT/BgaNGVOq5xVCeD+HzYYtMxN7djbaaqWCxQJ2OxeTkshMS3N+mM7Oxp6djZ/RSO3q1cFm49dDh0hz1dutVuw2G5X8/WlRty7Y7azbtYsraWnYbbbcrWalSnRq2BAcDj7ftIn0zExnnd2O3W7n9qpV6dWoEdjtzFm3jmyrNbfObrfTLiyM+xo0wGa1MmndOhwOBw6HA7vrsXd4OIPq1OFyZiZPb9mSW253OHBozYPh4QwOC+NsejqP7d6N3fXhO+dxbHg494eEcDgtjT8eOIBDaxxaO+uBv1WvzoDgYHanpTH85ElnPTjrtebtKlXo5+fHuowMHkxJyT3OATi0Zqm/P3cbDHxjtTLcas2t067HTcCdOCdneiSfn9UvQAtgETAun/rfgHrAv4C/5lN/HqgKvAW8kk99JmAB3sTZrTAvM5CzVugc4KPr6kOAJNfz14Cl19XXBQa4ns8GVl1X3wwY7Hr+Ktf+YQToADyQ5/hEoNe6dR5PYGit/waglKqgtU73aDA3QSnVH+gvQyBuLCYmhrp169KgQQM2b95M9+7d2b17t/S+EELcsqKjo1m4cCG//fYbDRqUaEADgwcPpn379hw4cACAw4cPM3HiRObMmVNocmTevHk0aNCARo0a8euvv/LUU0+VKJayVJQExlqlVE67KiunUGtdssE7ZURrvRBYCNC2bdtSnSCs/ebNWJs3543Jk/nQ1RtDiFuRw2oFqxWDw0HWlSukJidjzcjAmpnp3DIyqH/bbfgbDJw5c4bDR49izc7GmpmJLTsba1YWd0dGEmg0sufIEbYfPIjNasVms+U+jm7XjgBgzYEDrDtyxFlns2Gz27HZbLzRvj1mrflk/36+P3HCWe5wYLPbnd9Ot2oFNhuvHDnCt0lJ2LV21mtNkFJsrFsXbDbGnDnDt+np2LTGDti0pqZS/FKhAths3JuVRazW5P1lEonzgyHAvfy+K1h7rn6wfABIuK6+J1c/mD4CHL2u/n6gk+v501z9wJvjTzjH4oHzA3jWdfVjleI+kwltMPBOVhZGwKgUBsAI1Dx6lEEJCdiBdWfPYlDqar1SnLfbISMDh93OqcuXr9YbDBiVwu5wgMmE0d+fID8/DAYDBqWc+xkMVAgPh9tuo0JaGi1tNmedax+jwUDVpk2hRg2qp6YyKDExt1wphdFoJLxVK6halYYXLjB+3z4MrjqDwYDBYKBWdDRUqULUuXP848CB3HLlerytXTsIDqbb6dP88/BhjCaT83ijEaUUoe3aQWAg/U+coPaJE1fPbzSiDAaC27UDi4WRx4/T/uzZq+d21Zuio8FkYuyJE9yflIQyGq+5Pq1bg8HAiydPMio19Zpzm81maNIElGLOqVO8lJFxzbn9/Pygbl0wGPjw3Dkys7NRBgPKFbufnx/cdhsYDKy4eBGb3Z5bZzAaMfv5QeXKoBRbrlzBoTVBFSviaUqpjjh7eAYBdZRSrYAntdY+0YLSWq8AVrRt2/ZxT8firdLS0li1ahVPPPEE69evx2az8fPPP9O5c2c6d+7s6fCEEMIj8k7kWdIEhlKKV199le7duwPw8MMP8+abb5Kdnc1bb73lbIPkY/v27WzatIm5c+fy7bfORUYHDBiQ777eqCgJjJxeEW3zlGngrhJe+yRQO8/rWq6y/PY5oZQyAZVwtt2LcqzbVW/WjFFt2vDWrl1M37CB+kUccyREYbTDgTU9newrV8i6fJnstDQqGI1UsljITktjT2Ii2enpZGdkkJ2eTlZGBk1vu42IKlW4ePEiS7ZsISszk+zs7NzH++rXJzo0lKMXLjB7+3asVivZNhtWm41su51n69WjU3Aw8Rcu8OyBA1gdDrLtdqxak+1w8O/QULoZjay8coU/pqSQrTVWnN8ua2Aj0Bn4D841l6+3C2gNfA2Mzaf+INAQ51qKv5vRFxi5fDkBwDrgHzh/eeVuSvHqmTOYzWZ+S0vjp7Q0TAYDJqUwKYWfwQApKWAyYVAKi8mEyWDAaDBgMhio6OcHzZuDyUTTQ4dIS07GZDRiMhoxGo2EVqgAnTuDycSwxESiU1MxGo2YTCZMJhPVgoOhY0cwGnkuIYFzaWm59UaTieqVK0N0NBiNzNu7lytZWRjNZoyu+qohIc4PsUYj3xw+jFVrZ53ZjNFsplKlSlCrFhiN7Dx9GoxGZ52fH0aTiYDAQKhUCYxGkjIzr9b5+WEwXf01bybPZAP5qMzvkyd5heEcS1iQekDcDeob4/z3UZBI4J0b1Lcg/x4QOVq6tputb+HaCtLMtRWkiWsrSEPXVpB6rVvfoBZqNmp0w/qq4fl2RMwV7F1dQ+cCfYDlAFrrn5VS8ke0HImLiyMzM5OBAweydOlSLBYL58+f58MPP/R0aEII4THNmzfHbDYTHx/PAw88UPgBhejWrRvVqlUjKSmJOXPmUK1aNV5//XWys7N555138k1izJs3j+DgYB555BH69etHmzZtirX0qqcVmsDQWrtrMdjtQCPXsqwncU7K+dB1+yzH+VloCzAU+EFrrV2Tfn2mlHoD5ySejYBtborzhp57910WtG3Lq6NG8c7evYUfIHyKdjjIvHSJ9KQkSE8n1GKBtDS2bN1KSnIyaSkpZFy5QmZ6OnWDg+lVrx5kZfFyXByX09PJzMoiy2olMzubrlWq8FjNmjgyM+m+dStZdjuZOZvDwaP+/kwzmUjJyKBydvbvYnkJmA5c4NpsYo7XgYnAOVxjpq4TtmED0RYLKUYjX6Wl4acUZteHe7PBQIrFAtnZGKxWjAYDAWYzZqMRs9GIn8lEcPPmcNtt1EpN5aEDBzCbzfiZzZhdW+22baFaNdpfvMj8Q4cw+/k56ywWzH5+1I2OhsqV6X/xIo1On8bs74/ZYsFksWD296fW7bdDYCBPZmTwYEaGszwgAJO/PyaLhaDKlcHPj5eNRv5uNBb4M5vm2gryvGsrSH7JlbzyS87kNbiQ+sIyv607dbphfZ2IiBvWBwbLdALCN2itj1/XxbVMJ+IW7hUTE0PlypXp0qULo0aNwmQy0aRJk2It8SeEEOWNxWKhefPmJV6JJEdGRgapqak4HA5eeeUVZs+ejcViYebMmWRnZ/Pee+9hzNNuPnXqFF9++SVPPfUUGRkZbNmyhenTp5dKLGWlKKuQ1MD5hWdNrXU/1wogHbXW75Xkwq45LcYC3+Psxfy+1jpRKfUysENrvRxn99JPXJN0JuNMcuDa70ucE37agDFlvQJJjprR0TwaGcl7e/cydft2wu+4wxNhiLysVpIOH+bcoUMkHz9O0okTJJ89izkjgxGNG0N6OrM3bmTf+fOkZ2WRlpVFWnY2t5vNvFO9OqSn0+nECX6xWknHOcYeoB/O3gEAw3BOvJLXUK52458HZAD+Sjk3g4HaKSngcGCwWPAzGAj088PfZMJiNuPv50fjevWgWTMqmM1M3bYNi8WCxWLBz2LB4u9P24YNoXFjQpQiJjERv4AALBUq4BcQgF+FCs45XsLCaGAwcDwlBUtQEH5BQViCg/ELCsr9Jr4VzjH9BWkDrL1BfUtg/g3qb3dtBanj2gpS2bUV5OanOxJCeJHjSqk7Aa2UMgPPAPs8HJMoJTabjW+//Zb77ruPEydOcPDgQQAmT55coknrhBCiPIiOjmbp0qUlnsgTYP369WRlZdGzZ0/mz5/P008/zYwZM7BYLEybNg2r1cpHH32EyfU54O2338Zms/H000/z7bff5k607EuKMoTkQ+ADrs5tdgBnL+ASJTAAtNYrufqZMKdsWp7nmVydf+z6Y2cCM0saQ2mY9O9/c3e3boQtXgySwCg19uxsLh07RtKRIyQfP87lM2foVbcuJCXx+YYN/HjwIEmpqSRfuUJSZiYV7HY2WiyQmsoInJmxvJoAIwD8/dlot/Ozw0Gg0UgFo5FAsxlzQAC4egHc8+uvdHA4CKxQgQoVKhAYFERErVrQoQMEBvLl0aOogAAqVKlChcqV8a9YkeDQUKheHSwWLrjGrxdk9Q3etxl4+Qb1/lyd1K+g42vdoF4IIbzAKJy53nCcvTDjAJkRu5zYtGkTSUlJDBw4kO+/d/41rl27NkNlvjAhhCAqKopFixbxv//9r8RDN2JjY/H392fBggW0bNmSadOm8eGHHzJ16lTMZjNTpkwhOzubzz77DLvdzjvvvEP//v2JiIhg/Pjx1K1b1+dWhSpKAqOq1vpLpdQUyO05Id0886jbuTN1//QnePddeOEFqFHD0yH5DO1wcGrnThK+/56927YxvkoVVEICExMSeDMr65qJEs04JydUwBrgG6UINZkItVi4LTCQ2pUrwz33QGgoE86e5f8MBkLCwgitXZuQOnUIrV8fatYEo5EVhcSV30oEeXUspF6+XxJCiN9TSr2qtZ4E9NBaj/B0PMI9YmJi8PPzo0+fPtxzzz0AvPjii7nfAAohxK0s70SeJU1gfPfdd/To0YPGjRvz9NNPM2fOHCZOnEiLFi2YPHkyFouFCRMmYLVa6dOnDxcuXGD8+PGkpaWxevVqnnjiCZ/rGae0vvHCHEqpdcAQYJXWOkop1QF4VWvdrQziK1Vt27bVO3bscMu59f79zGzaFEPnzrywYYNbruHrkg8fJujoUfz272f5ihW8vnkzCZcvczHPv8H/Va9O7Vat+NZsZvuVK4SGhhJSowahYWGEhIfTrmtXVGgoulIl1A3mQRBCCFG2lFLxWuv8pujJu88enCPR4rXWUWUTmfu4s13hq7TWNGzYkCZNmhATE0NAQAB+fn4kJydjsVg8HZ4QQnhcZmYmQUFBTJo0iZkzb35AwZEjR4iIiGDevHmMGzeO5ORkIiIi6NSpU+7qIgALFixg7NixKKVo0aIFu3fvZtmyZQwePJg1a9Zw110lXZvDPQpqVxQlFT4B52SaEUqpTUA1nMP9RR7q9tvZW6cOKzZu5MmDBwktZLb4ci09nTMbNhD71Vck/PwzCUePsufiRU47HGzG2XvBUaEC2mTiD02b0rxZM5p36kTzfv0IbdwYgPtcW0F8K08ohBDC5TvgIhCklErF+etc5zxqrT2/xmsRKKX6A/0bNrzRujK3poSEBI4cOcKkSZP44IMPsNlsDB8+XJIXQgjh4u/vT7NmzUo8kWdsbCxA7uTIISEhTJkyhUmTJrF+/Xq6dXP2NxgzZgxms5nRo0czadIklFLXTLTsawrtgQHgWsL0dpwNjP1aa6u7A3MHd39TkvDNN7QYPJhpXbvyt/Xr3XYdb3L4hx/YERNDws6dJBw+zGig95kzbNSarjjna4gMCKB5zZo0b9KEPwwbRp277oLwcPCx7kpCCCEKVsQeGBatdZZSKkZr7VuzhuVDemD83owZM5g6dSqnTp2iR48e7N+/n2PHjjknmhZCCAHAn//8Z7799lvOnj1700M4+vfvz759+zh06FBuWUZGBo0bN6ZmzZr89NNP15w7NTWVihUrYrPZqFGjBvfccw+ffPJJid+Lu9x0Dwyl1APAd66VP14EopRSM7TWpbP2SznS/P77uT8sjLc2bmTC//5HpXL8xzp59Wr+b+RIVpw9CziXkWns58elqCgYPZo7GjfmQEgIDbp1w+jn59lghRBCeIstQBSQ6ulAhHvExMTQoUMHkpOT2b9/P+Hh4ZK8EEKI60RHR/PBBx9w4sQJateuXezjMzMz+eGHH3jkkUeuKQ8ICODll1/mz3/+M0uXLmXIkCG5dRUrOjs5btq0ieTkZJ9bfSRHwcskXDVVa31ZKdUZuBvn6iNvuzcs3/XX2bO5pDX/evxxT4fiFqdjYqBvXyr36sXFpCT+1qMHP3/1FWkpKezNymLYli0wdSr+f/gDjXr1kuSFEEKIvPyUUg8BdyqlBl+/eTo4UTInTpxgx44dDBw4kJdfdq6nNXz4cA9HJYQQ3icqyjkN1M0OI9m4cSPp6em5w0fy+tOf/kSzZs2YMmUKVuvvB07knWjZFxUlgZGz4si9wLta6/8C8qm0ANEjR/K3hg25e+tWSEvzdDilQjscrH3zTe6qUoVmgwaRun07hlmz2HDhAtN++IGWQ4diqegTw5aFEEJ41iigC1AZ6H/ddqOpj4QPWL58OQBt27ZlyZIlAAwaNMiTIQkhhFdq1aoVBoOB+Pj4mzr+u+++w2Kx0L1799/VGY1GZs2axcGDB3nvvfeuqdNas2zZMnr27ElwcPBNXdvTipLAOKmU+jfwB2ClUspSxONuWdM++oh2KSmwcKGnQykR7XDw/cyZdKlShbsmTGBfaiovDhiAef9+mDwZVamSp0MUQgjhQ7TWP2qtRwPPa60fuW77s6fjEyUTExND48aN+eabb9BaExwcTPv27T0dlhBCeJ0KFSoQGRl50wmM2NhYunbtSmBgYL719913H507d+all17iypUrueUJCQn89ttvPjt8BIqWiBgGfA/00VpfAkKAv7g1Kl93550c69iRCVOnknnpkqejKT6tYcUKdrdsSd8XX+RYWhrzhw7lyPnzTIiJIaBqVU9HKIQQwgcppXLWarsoQ0jKl5SUFNauXUvPnj157733CAwMpGfPnphMRVnwTgghbj1RUVE3NYTk2LFj7Nu3L9/hIzmUUsyePZuzZ88yd+7c3PKYmBjAOQGoryo0gaG1TtdaL9VaH3S9Pq21jnN/aL7t8JAhvJmWxgejR3s6lCJzswhkoAAAF2RJREFU2Gws/ctfmB0eDgMG0CYtjZinnuJQcjJjv/qKgJAQT4cohBDCt3VzPV4/fESGkPi42NhYrFYrly9fJisriytXrtC7d29PhyWEEF4rOjqaM2fOcOrUqWId99133wHcMIEB0LFjR+6//35mz57N+fPnAWcCo3379oSFhd1c0F5AhoK4SY9nn6VjUBCvfPUV1vR0T4dzQ/bsbL4YN46WQUEMef11Pk5Kwvruu3DgAAMWLJD5LYQQQpQKrfV01+P1w0dkCImPi4mJoWrVqsTExNC6dWsAn50gTgghykJ0dDRAsYeRxMbGUq9ePW6//fZC9/3HP/5Beno6M2bMyJ1o2dfnJpIEhpsog4EXn3uO/9ntLB471tPh5M9mY/PUqTQLDmb4/Plo4NOnnuLny5cxP/YYmM2ejlAIIUQ5opSacKPN0/GJm5Odnc3KlSupV68eqampBAcH07BhQ+rXr+/p0IQQwmu1atUKpVSxhpFkZ2ezZs0a+vbti1Kq0P2bNGnCo48+yttvv507lMSX578ASWC4Vb+pU4kKCOAfixdjz872dDi5sq9c4cycOXD77dw2YwZBRiNfTZjAnitXeGjBAln6VAghhLsEu7a2wGgg3LWNAqLKKgilVAOl1HtKqSV5ygKVUh8ppd5VSo0oq1jKg3Xr1pGamsrBgwfp1asXO3fulOEjQghRiKCgIJo0aVKsHhg//vgjV65cKXT4SF7Tp0/HZDIxZ84cGjVqRJMmTW4mXK8hCQw3UgYD0595hrusVtI++cTT4ZB56RL/evBBGlWuzGPPPQchITSIiWFHWhpD58zBIBNtCSGEcCOt9d+01n8DagFRWuuJWuuJQDRQpyjnUEq9r5Q6p5RKuK68r1Jqv1LqkFJqciFxHNFaP3pd8WBgidb6cWBAkd+UICYmBrPZTEpKCvfccw9paWkyfEQIIYogKiqqWAmM7777DrPZzF133VX4zi41a9bk2WefBZy9L4rSc8ObSQLDzQbMnMm/IyOp+Oab4HB4LI5vp02jQWgoY/7zH2pVqMDYv/8dtm2DAQPAx/8RCyGE8Dk1gLxdE7NdZUXxIdA3b4FSyggsAPoBkcBwpVSkUqqFUurb67bqBZy3FnDc9dxexFhueVprli1bhtlspmPHjpw9exaTyUT37t09HZoQQni96OhoTp06xZkzZ4q0f2xsLF26dCEoKKhY13n++ef54x//yJNPPnkzYXoVSWC4m8EAf/0rWxIT2fTKKx4J4acFCxjy979Tw8+PNa+/zo+XLtH3xRclcSGEEMJTPga2KaVeUkq9BGzFmZgolNZ6A5B8XXE74JCrZ0U28AUwUGu9R2t933XbuQJOfQJnEgNu0D5SSj2hlNqhlNqRM6v7rSw+Pp5Tp06Rnp7OlClTiIuLo2PHjlSUCcCFEKJQORN5FmUejOPHj5OQkFCs4SM5KlWqxMcff0zDhg2Lfay3kQRGGXAMHcqfzGbGzZiBLuteGLt20XzyZB6rUoU1CQncNXEiyiA/diGEEJ6jtZ4JPAJcdG2PaK1nleCU4VztPQHOZER4QTsrpUKVUu8AbZRSU1zFS4EhSqm3gRU3iH2h1rqt1rpttWrVShBy+bBs2TIAIiMjadeuHTt37pThI0IIUUQ5qzYVZRjJ999/DxS+fGp5J59ky4DBz48pI0awMyOD72bMKLPrHlu/niu9exNUpQoLfvmFkIiIMru2EEIIcSNa651a63mubVcZXztJaz1Kax2RkzjRWqe5lnMdrbX+9EbHK6X6K6UWpqSklE3AXmzx4sUA/PWvf+WHH34AkAk8hRCiiCpWrEjjxo2L1AMjNjaWWrVqERkZWQaReS9JYJSRkfPnU8do5O+vvVYmvTDO/Pwzd/XsyR9SUiAuDmrVKvwgIYQQwjedBGrneV3LVeYWWusVWusnKlWq5K5L+ITDhw9z7NgxQkNDGTZsGN9//z2hoaFERZXZgjJCCOHzoqOjC+2BYbVaWb16Nf369fP5SThLShIYZcQvKIhJQ4ey5coV1r75pluvlfK//9G3QwfO2mxM//e/wceXyhFCCCEKsR1opJSqr5TyAx4Elns4pnJvzpw5AIwfPx6j0UhcXBw9e/bEaDR6ODIhhPAdUVFRHD9+nBvNq7RlyxZSU1Nv+eEjIAmMMvXnd96hucnEqfffd9s1Mi9dYmDLluzNzGTpP/5Bu0cecdu1hBBCiLKmlPoc2ALcrpQ6oZR6VGttA8YC3wP7gC+11olujEGGkACff/45JpOJ5557jsTERE6fPi3DR4QQopiKMpFnbGwsJpOJu+++u6zC8lqSwChD/pUr88urrzJy717YvLn0L2Cz8UybNqxPSeGjsWPpPWVK4ccIIYQQPkRrPVxrHaa1Nmuta2mt33OVr9RaN3bNazHTzTHc8kNIVq9ezaVLl+jatSv+/v65k8tJAkMIIYqnTZs2wI0n8oyNjaVTp06ywhMeSmAopUKUUquUUgddj1UK2O9h1z4HlVIP5ylfp5Tar5Ta7doKWtPd66gnn8QRGsrGCRNK98Raw+jRTDp6lA9HjGD4/Pmle34hhBBCALd2D4ykpCSmTJnCoEGDAJg2bRoAcXFxREZGUkvm3BJCiGKpXLkyERERBSYwTp06xc8//yzDR1xMHrruZGCN1voVpdRk1+tJeXdQSoUA04G2gAbilVLLtdYXXbuM0FrvKMugS0VgIO906sSY5cuJ//RTokaMKJXTfvfQQ/T+4gsavPACDWa69YsnIYQQ4pamtV4BrGjbtu3jno6ltDgcDs6fP8/Jkyc5efIkp06duub58ePHOXLkCBkZGbnHhIWF0bVrVzIyMtiwYQOjRo3y4DsQQgjfFR0dzbZt2/Ktk+VTr+WpBMZAoLvr+UfAOq5LYAB9gFVa62QApdQqoC/wedmE6D4jFyzgrytWMPP55/m6FBIYbw0ZwjNLl/Jh1648XIbLtAohhBDC+6Wnp3P8+PECkxMnT57k9OnT2Gy2a45TSlG9enXMZjPnzp0jOzubiIgI/vCHP9CtWzdatmyJUoqNGzeSmZlJnz59PPQOhRDCt0VHR/Pll1+SlJREaGjoNXWxsbHUrFmTFi1aeCg67+KpBEYNrfVp1/MzQI189gkHjud5fcJVluMDpZQd+BqYobXW+V1IKfUE8ARAnTp1Shp3qahYqxbjunTh5Q0bSFy2jGaubpg347MxY3hm6VLuDwtjZFwc3OLL6gghhBDuppTqD/Rv2LChp0Mp1KVLl6hduzZXrly5prxixYqEh4cTHh5Ojx49CA8Pp2bNmrllVapUYdmyZbz++uucOHGCXr16MX36dDp16vS7a8TFxeHn50fXrl3L6m0JIUS5krP89K5du+jZs2duuc1mY9WqVQwePPiWXz41h9sSGEqp1cBt+VT9Ne8LrbVWSuWbfLiBEVrrk0qpYJwJjD8CH+e3o9Z6IbAQoG3btsW9jtuMW7SIOY0bM3P8eD67yQTG9zNn8vC//kW3SpX4bO9ejBZLKUcphBBCiOv50hCS5ORkrly5wujRo3nggQdyExVBQUH57p+ens4777zDq6++yrlz5+jZsyfTp0+nc+fOBV4jLi6OLl26UKFCBXe9DSGEKNdyEhjx8fHXJDC2bt3KpUuXZPhIHm6bxFNr3VNr3TyfLQY4q5QKA3A9nsvnFCeB2nle13KVobXOebwMfAa0c9f7cJfQRo14ql074o8dI+OXX4p9fOoPPzD8xRdp5u9PzC+/4F+5shuiFEIIIUR50KFDB3r06EHjxo3zTV6kp6fz5ptv0qBBAyZOnEiLFi3YuHEjq1atumHy4tSpU+zZs0eGjwghRAmEhIRQv379303kGRsbi9FovCapcavz1DKqy4GcVUUeBmLy2ed7oLdSqoprlZLewPdKKZNSqiqAUsoM3AcklEHMpW7655+TaLEQMHdu8Q789VcqDhvG0rAwvtu6lUpeMjRGCCGEEL4lb+JiwoQJNG/enA0bNrB69eobJi5yrFq1CpDlU4UQoqSioqLYuXPnNWWxsbF07NiRyvJldS5PJTBeAXoppQ4CPV2vUUq1VUotAnBN3vl3YLtre9lVZsGZyPgF2I2zV8a7Zf8WSi6wQQNMTz5J+scfk7x7d5GOObF9O0s6dwajke4bN3Jby5ZujlIIIYQQeZWHZVQzMjKYO3cuERERTJgwgWbNmrF+/XpWr15Nly5dinyeuLg4atSoIZPLCSFECUVHR3P48GEuXboEwNmzZ9m5c6cMH7mORxIYWuskrfXdWutGrqEmya7yHVrrx/Ls977WuqFr+8BVlqa1jtZat9RaN9NaP6O1tnvifZSGrHHjaGK38+LIkYXum3z4MH26dOGxpCSSvvgCIiLKIEIhhBBC5KW1XqG1fqJSpUqeDqXYchIXDRo04Nlnn6Vp06asX7+eNWvWFHsSTofDQVxcHL1798Zg8NR3YkIIUT5ER0cD5PbCyFk+tW/fvh6LyRvJXxsPs0RE0K9JE95LTOTUdV2G8kq/cIH7WrfmUFYW38yZQ2iPHmUYpRBCCCF8WXZ2NvPmzbsmcbFu3Tp++OGHm149ZPfu3Vy4cEGGjwghRCnImcgzJ4ERGxtLjRo1aN26tSfD8jqSwPACk95+Gzvw+uP5T2ZuTU/ngchItl65wufPPUePCRPKNkAhhBBC+KScVeb/8pe/MH78eJo0acLatWv54Ycf6NatW4nOnfPtYK9evUocpxBC3OqqVq1KnTp1iI+Px263ExcXR9++faWH23XkbniBBt27M6JBA97ZuZPz+/ZdW+lwsLxfP1aeP8/bI0Yw+LXXPBOkEEIIIQDfmgPj9OnTgHOG+7Vr17J27Vq6d+9eKueOi4ujdevW1KhRo1TOJ4QQt7qoqCji4+PZvn07ycnJMnwkH5LA8BJT5s8nE/hy/PhrK55/niEbNrD1iSd4YvFij8QmhBBCiKt8aQ4Mq9UKQLVq1Th69CgrVqxg8+bN7N+/n/Pnz2Oz2W7qvFeuXGHTpk0yfEQIIUpRdHQ0Bw8e5D//+Q8Gg0F+x+bD5OkAhFOTe+7hlz59aLZpE1y8CFWqsOD+++mwbBnRY8fS7q23PB2iEEIIIXzMmTNnANi6dStbt27Nd5/KlSsTGhpKaGgoISEhuc9v9HrDhg1YrVZpXAshRCnKmchz4cKFtG/fnpCQEA9H5H0kgeFFms+eDa1akf3mm3x26hRjly3jz/Xr8968eaCUp8MTQgghhI9xOBwAdOrUiY8//pikpKTcLTk5+ZrXSUlJXLhwgf3795OUlERqauoNzx0QEEDnzp3L4m0IIcQtIWciz/T0dBk+UgBJYHiTli35oHVrJs+YQZLW9AwJ4V+7d4NM3CKEEEKIEjCbzTRo0IAGDRoU+Rir1UpycvLvEh05r1u0aIHFYnFj1EIIcWupUaMG4eHhnDx5kn79+nk6HK8kCQwv03z8eM793//RtkIFlu7Zg6ViRU+HJIQQQohbkNlspkaNGjJJpxBClKF27dqxadOm3OEk4lqSwPAydzz8MD+mp9P83nsJrlnT0+EIIYQQ4jpKqf5A/4YNG3o6FCGEEOXMvHnzuHjxoiyfWgC5K16o0+jRVKpTx9NhCCGEECIfvrQKiRBCCN9Su3ZtWrZs6ekwvJYkMIQQQgghhBBCCOH1JIEhhBBCCCGEEEIIrycJDCGEEEIIIYQQQng9SWAIIYQQQgghhBDC6ymttadjKDNKqfPAsVI+bVXgQimfU8h9dRe5r+4h99U95L66h7vua12tdTU3nNdrSbvCp8h9dQ+5r+4h99U95L66R5m2K26pBIY7KKV2aK3bejqO8kbuq3vIfXUPua/uIffVPeS+ejf5+biH3Ff3kPvqHnJf3UPuq3uU9X2VISRCCCGEEEIIIYTwepLAEEIIIYQQQgghhNeTBEbJLfR0AOWU3Ff3kPvqHnJf3UPuq3vIffVu8vNxD7mv7iH31T3kvrqH3Ff3KNP7KnNgCCGEEEIIIYQQwutJDwwhhBBCCCGEEEJ4PUlgCCGEEEIIIYQQwutJAqMElFJ9lVL7lVKHlFKTPR1PeaCUqq2UWquU2quUSlRKPePpmMoTpZRRKbVLKfWtp2MpL5RSlZVSS5RSvyql9imlOno6pvJAKfWs63dAglLqc6WUv6dj8kVKqfeVUueUUgl5ykKUUquUUgddj1U8GaO4StoVpU/aFe4jbQr3kHaFe0i7onR4Q7tCEhg3SSllBBYA/YBIYLhSKtKzUZULNmCi1joS6ACMkftaqp4B9nk6iHJmHvCd1roJ0Aq5vyWmlAoHxgFttdbNASPwoGej8lkfAn2vK5sMrNFaNwLWuF4LD5N2hdtIu8J9pE3hHtKuKGXSrihVH+LhdoUkMG5eO+CQ1vqI1job+AIY6OGYfJ7W+rTWeqfr+WWcv7TDPRtV+aCUqgXcCyzydCzlhVKqEtAVeA9Aa52ttb7k2ajKDRMQoJQyARWAUx6OxydprTcAydcVDwQ+cj3/CBhUpkGJgki7wg2kXeEe0qZwD2lXuJW0K0qBN7QrJIFx88KB43len0D+IJYqpVQ9oA2w1bORlBtzgecBh6cDKUfqA+eBD1zdaBcppQI9HZSv01qfBF4H/gecBlK01nGejapcqaG1Pu16fgao4clgRC5pV7iZtCtKlbQp3EPaFW4g7Qq3K9N2hSQwhFdSSgUBXwPjtdapno7H1yml7gPOaa3jPR1LOWMCooC3tdZtgDSkO36JucZODsTZkKsJBCqlRno2qvJJO9dSl/XURbkn7YrSI20Kt5J2hRtIu6LslEW7QhIYN+8kUDvP61quMlFCSikzzkbGp1rrpZ6Op5zoBAxQSh3F2S35LqXUYs+GVC6cAE5orXO+zVuCs+EhSqYn8JvW+rzW2gosBe70cEzlyVmlVBiA6/Gch+MRTtKucBNpV5Q6aVO4j7Qr3EPaFe5Vpu0KSWDcvO1AI6VUfaWUH86JYJZ7OCafp5RSOMf97dNav+HpeMoLrfUUrXUtrXU9nP9Wf9BaS+a5hLTWZ4DjSqnbXUV3A3s9GFJ58T+gg1Kqgut3wt3IJGalaTnwsOv5w0CMB2MRV0m7wg2kXVH6pE3hPtKucBtpV7hXmbYrTO48eXmmtbYppcYC3+OcyfZ9rXWih8MqDzoBfwT2KKV2u8pe0Fqv9GBMQtzI08Cnrg8cR4BHPByPz9Nab1VKLQF24lxBYBew0LNR+Sal1OdAd6CqUuoEMB14BfhSKfUocAwY5rkIRQ5pV7iNtCuEr5F2RSmTdkXp8YZ2hXIOUxFCCCGEEEIIIYTwXjKERAghhBBCCCGEEF5PEhhCCCGEEEIIIYTwepLAEEIIIYQQQgghhNeTBIYQQgghhBBCCCG8niQwhBBCCCGEEEII4fUkgSGEKDNKqcpKqadcz2u6lrQSQgghhCg2aVcIceuRZVSFEGVGKVUP+FZr3dzDoQghhBDCx0m7Qohbj8nTAQghbimvABFKqd3AQaCp1rq5Uur/gEFAINAIeB3wA/4IZAH3aK2TlVIRwAKgGpAOPK61/rXs34YQQgghvIC0K4S4xcgQEiFEWZoMHNZatwb+cl1dc2AwcAcwE0jXWrcBtgB/cu2zEHhaax0NPAf8q0yiFkIIIYQ3knaFELcY6YEhhPAWa7XWl4HLSqkUYIWrfA/QUikVBNwJfKWUyjnGUvZhCiGEEMIHSLtCiHJIEhhCCG+Rlee5I89rB87fVQbgkutbFiGEEEKIG5F2hRDlkAwhEUKUpctA8M0cqLVOBX5TSj0AoJxalWZwQgghhPAp0q4Q4hYjCQwhRJnRWicBm5RSCcBrN3GKEcCjSqmfgURgYGnGJ4QQQgjfIe0KIW49soyqEEIIIYQQQgghvJ70wBBCCCGEEEIIIYTXkwSGEEIIIYQQQgghvJ4kMIQQQgghhBBCCOH1JIEhhBBCCCGEEEIIrycJDCGEEEIIIYQQQng9SWAIIYQQQgghhBDC60kCQwghhBBCCCGEEF7v/wGbfeQeyX28uwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDcAAALICAYAAABrWRshAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxMV//A8c+dJZM9EREkRJHYaq2tilYf1KNVWkVtpX2qWmot7YOiVC0tfpbaqqpauiitavtQ1aq1tVNq3yIICSL7NjP3+/tjJiOJiFiSKOf9ep1XJvece+6ZyWTmnu899xxNRFAURVEURVEURVEURfmnMhR1AxRFURRFURRFURRFUW6HCm4oiqIoiqIoiqIoivKPpoIbiqIoiqIoiqIoiqL8o6nghqIoiqIoiqIoiqIo/2gquKEoiqIoiqIoiqIoyj+aCm4oiqIoiqIoiqIoivKPdlcGNzRN+7emaUc0TTuuadqwXPLf0DTtoKZp+zRN+03TtHJF0U5FURRFURRFURRFUYreXRfc0DTNCMwGWgPVgC6aplXLUWwPUE9EagLLgQ8Kt5WKoiiKoiiKoiiKotwtTEXdgFw0AI6LyEkATdO+BtoBBzMLiMjvWcpvBbrnp+LAwEB54IEH7lxLFUVRFEW5xq5duy6JSImibkdh0DTtaeBpHx+fVypVqlTUzVEURVGUe1pe5xh3Y3AjBDiT5fezQMM8yr8MrM5PxQ888AA7d+68jaYpiqIoinIjmqadLuo2FBYR+RH4sV69eq+ocwxFURRFKVh5nWPcjcGNfNM0rTtQD3gsjzK9gd4AoaGhhdQyRVEURVEURVEURVEKy1035wZwDiib5fcyzm3ZaJrWAngbaCsi6derTETmi0g9EalXosR9MUJWURRFUZRComna05qmzY+Pjy/qpiiKoijKfe1uDG7sAMI1TSuvaZob0Bn4IWsBTdPqAB/hCGzEFEEbFUVRFEVREJEfRaS3n59fUTdFURRFUe5rd91tKSJi0zStH7AGMAILReSApmnvAjtF5AdgMuANLNM0DSBSRNoWWaMVRSlStowMMhISyEhKQk9PJ8DDA6xWThw7RmJcHOnJyVjT0khPTcXXbKZ++fJgtfLD1q0kJCVht1qxZmRgtVoJ8fGhbbVqYLXyf+vXk5SWhm6zYbXZsNntPBgQQI/KlcFmo//69aRbrdh0HV3XsdntPBwQQL/wcDKsVjpv3Yqu69h1HV0EXYSWAQG8ERpKbGoq7f/+27U9Mz1XrBhvlizJiZQUnjt1Ch0QZ54AL/n58WZAADtTUuh64YIjz1lGgEG+vgz09mZNaiovx8YCOPKdr9UoT0/6enryRUoKA5OTIUueANM8POjp5sas9HRGpqZmywNYaLHQwWxmbFoak222a/JXmM20MhoZYLXysd2eLQ9gg8lEQ4OBHlYrS51tzuqQwUBFg4F2djurRK7Z/5Km4W8w0MxuZ3Nu7wWDI2ZfV9fZmyPPBKQ786voOsdy5FuAFMd3CuVEsk3+BOADxDvzS4pwMUd+gLN9AP4iJOTIDwbOOvO9RUjJkV8ROOZsn7uuY82R/yCwz5lv1nX0HPkNgT8MBtJ0HW+u1RxYYzQSqetUcL62a9zcaJ5+3cGPSj5kTigaFhZW1E2556xevZpRo0bxwQcf8K9//auom6MoiqLc5e664AaAiKwCVuXYNjrL4xaF3ihF+QfLSEoi4dw5ki9eJOnyZSoWL447cOzoUQ4eP05acrIjpaaSlprKy7Vr4w38sH8/G06eJMNqJT0jgwybjQyrlYV16uAuwgeHD/NLTAwZuo5N17GJoOs6O8PCwG6n19mzrE9JwS6CHdBFMAERxYuDrvN4fDx7bDbsODqwOuABXHZzAxHCrFYinHmZHVxPIMn52B/IORDcK0t+dSAtR34xINb5+DnAliO/FJAZKR0K13S+ywM9VjvmMJ6Vy2u9NyKCfrt3owMrcsmPvXSJN44eJR7YkEu+X3Iyb549SyywL0eeBvx18SJcvsxlXedklu2ZTsfHQ1IS8brORV1Hy5KvAfFpaaDrZFitpDk7uFnzrXY76Do48wzOzrirjMkEFgsedjsednu2fQEs3t5gsVA8KYliKVe775nt8ChWDCwWysTHU9KZn7WNllKlwGwmLDaWssnJaDmObypbFoxGHoyJISo1NdvrYwAoXx6AOhcukJwlXwMsBoMjX9Ood+4chrTs7w4/gwEqVACgwZkzeOfo9AeZTK76658+TYQ1e/gh1GyGcuUc+RERnLdlf3dVcnODso67LuucOkWsM/iTqZa7O4SEAFDj1CmS9avhCwHqubtDcDAAVU6exJYjOFTb0xNKlsRgt1MhMpKcHvTygsBA3G02Hjh7FoBiZcteU065OVknFC3qttxLRIS3336bPXv20Lx5c4YMGcL48eOxWCxF3TRFURTlLqWJ5Dx1v3fVq1dP1EzmSkGypaWRcPYsbunpeIuQcO4cf+7cSWJsLMnx8STGx5OSnMwTZcpQ28+PvadPM3PPHlIzMkjLyCDVaiXdZmNY6dK08vTkm5gYRkdHYxXBliXN8fTkOZOJ91JSmGi1okO29A2Ojnt34Itc2vkL0BJ4ihxRRKe/gJrAo8CmXPLP4wgC1AV255Jvx9Epri/CHhwdS4PzpxuQ4OkJmkaz1FT+EsHgzDcCvgYDR0uXBqORdjExHLLZHHmahlHTKGU280vlymAw0OPUKU5lZGAyGDBqGiaDgQc8PZlXpw6YTAzev5+YjAxMRiNmoxGTyURFf3/erF8fTCYm7thBkt2O2WTCYDRiNpupGBhIp7p1wWzm0x07sItgtlgwms2Y3dwIDQqiUfXqYDbz2759GN3cMFksmN3dMZrNBJUsSWiZMugGA6ejo135Jnd3TBYL7t7eePr6ohsMYDJhMN2VMWZFuS2apu0SkXpF3Y7CpM4x7qwNGzbQrFkzpk2bxpEjR5g3bx41a9bkiy++oHr16kXdPEVRFKWI5HWOoc6qlXteRlISF/bvJ/rIES6ePs2V6GjKeXjQpGRJUi5eZPjatSSnppKclkZSejqpGRm09vVlSPHinE5I4F8REWSIkOEcJm4ToZvRyFyjkfVWK//KZWh9F+BL4EccAYacTgFzcVy5/zSX/Efi42kFnASOcTU4kJmSbDYwmfA2mfC22Rwde03D7PxZIiQEihWjZVwcpy9fxs1gwM1kwmIy4WYyEfbQQ1C8OK9HR1Pp/HnczGYsFgsWiwV3d3ceePRRKFaMWRcvciw2Fg9vb9y9vfHw8cHD15fAGjXAx4dNBgMGb2/cvL1z7aTvuMHfZv0N8lfeIP/zG+RPu0H+8Bvkv3SD/OZPPnndPANQvmrVPPMVRVGU3E2fPp3ixYvz6quv4uHhwVNPPcXLL79MvXr1mDRpEgMGDMBgUJ+kiqIoylVq5IZyV0qJjMQzJgZiYvjmf//jTGQksbGxXImPJy4xkTCzmXeDgyEpidoHDhBrt5Om66SLYAVqA39oGroIxlzqr4FjyH8CkNsUcA8Df+IIQoTjGFFgxBENNGkaL7i7MyMwkGPAM9HRuBuNWIxGLM4AQs9y5egSHs4pm40phw/j5e6Op6cnnl5eePv48HitWlStVIk4TePQxYv4BAXhExSEX3Aw3sHBmNzdC+BVVRRFKRz308iNLHNuvHLsWM6ZXJRbceLECcLDwxkxYgTvvfeea3tMTAy9evXixx9/pEWLFixatIgQ561ciqIoyv0hr3MMFdxQCs2Fffs4uHYtx3bvJiM6mv4lSsD58zTfsYNDaWkk6TqpOOZAyDovghtcM7FeEBDtfOyJ4zYIE+CmaViAxu7ufFuuHHh50erkSdzMZvw8PfHz9sbPx4eGFSvSrmFDdG9vfjp2DP9SpfAvXRr/kBACKlbEMzBQXRFSFEW5RfdTcCOTOse4cwYOHMjcuXOJiIgg2DnPTCYR4eOPP2bw4MFYLBbmz59Phw4diqiliqIoSmFTt6UoBSctjZ2ffsqOjRs5deIEZ6KjiYqLw261stnfHxITqZiU5Jr4MJMb0N/5+BCOQIanphFiMFDczY2axYrB449DsWJMPXYM3cODwNKlCSpblhLly1OmRg2oXBlMpmtWHMhpTR55Bq5OHqkoiqIoStGKj49n4cKFPP/889cENgA0TaN37940a9aM7t2707FjR3r27MnMmTPx9fUtghYriqIodwsV3FBuyr7vvuPrKVP488ABfgMMCQl0AY7nKGcEx4oLnp7U9/TEX4QgLy9CAgJ4oGxZqtaoAS+8AFWqEOXpmecx++eZqyiKoijKveKTTz4hKSmJQYMG5VmuUqVKbNmyhXHjxjF+/Hg2bNjA4sWLadKkSSG1VFEURbnbqNtSlOtLSIBly/hw5kymHDhAlN2ebdnMXRYLD1WqxBf+/pxyc6Ni1apUfuQRqrRqhWdAQJE1W1EURSla99NtKWrOjTvHZrMRFhZGaGgoGzduZPPmzbzzzjssXLiQcs5llnPzxx9/0L17d06fPs2wYcN45513cHNzK8SWK4qiKIVF3Zai3JBus/HnggV8M28em44e5VhqKvOAbjhGZZwDShuNPBQYyJOPP07HceMICAsDZxlFURRFuR+JyI/Aj/Xq1XulqNvyT/f9999z+vRppk1zrHXVuXNnzp07R8WKFZk6dSoDBw7Mdb9HHnmEv/76i4EDBzJhwgTWrFnDkiVLqFKlSmE2X1EURSliauTGfSrmwAGSly6l/I4dfLt1K53i4tCz5PsCk8qWpc/zz2Nr3x5To0ZF1VRFURTlH+Z+GrmRSZ1j3L4mTZoQFRXFsWPH+PPPP2natCkhISHExMRgtVpp2LAhv/76K97e3tet49tvv6V3796kpqYydepUXnvtNTRNK8RnoSiKohSkvM4x1HIQ94mUS5foX7MmD1oseGoaJatX58Vx4+Dnn2mUmEg5o5Hny5RhSZ8+JF+8SLwIfSIjYfJkFdhQFEVRFKVA7dixgy1btjBgwACMRqNrzo1evXpx7NgxqlSpwrZt2wgKCuKHH364bj3PPfcc+/fvp2nTpvTt25enn36a6Ojo65ZXFEVR7h0quHGv03XSBg4koEQJZu3fz8GMDDw0jSa+vvR4+mk4fJhgm42TNhtfnzlDtzlz8AwMLOpWK4qiKIpyH5k2bRo+Pj785z//ISoqil27duHl5cXYsWNp2bIlM2bMYPjw4aSlpdGuXTs6dOiAruu51hUcHMzq1auZOXMmv/76KzVq1MgzIKIoiqLcG1Rw4x72ba9e4OeH+8yZtNY0RjZpQnpiIpd1nU3x8bz8ww+O5VQVRVEURXHRNC1U07TvNU1bqGnasKJuz73u7NmzLFu2jF69euHr60v//o510tLS0mjVqhUArVq14ujRo6xevZoSJUrw7bffEhQUxN69e3Ot02Aw0L9/f3bt2kVwcDDt2rXj1VdfJTk5udCel6IoilK41Jwb96CfRo/mlfHjuaDrTAGGvPgifPQRqJnDFUVRlEJQlHNuaJq2EGgDxIhI9Szb/w3MwLFa+QIRmZRHHU8BxURkiaZpS0Xk+Rsd9345xygIw4cP54MPPuD48eOEhITg5eWFpmnY7XaOHj1KmTJlmDJlCuPHj8dgMDBy5Eh2797NsmXL0DSNN998k/fff/+69aenpzN69GgmT55MWFgYS5YsoUGDBoX4DBXl/qbrOmlpaaSkpLhSampqtt/zs+3hhx+mf//+GAzq+vz9LK9zDBXcuIfs/fpruvTsyeGMDACeCAjgiz/+IFCNzlAURVEKUREHNx4FkoDPM4MbmqYZgaNAS+AssAPogiPQMTFHFf8B7MByQIDFIvLpjY57r59jFJTk5GTKli3L448/zrfffsuIESOYOHEibm5utG3blmXLlrnKRkREMGjQIFauXEnVqlV54YUXGDduHKmpqYSHh7N+/XqCg4Ove6z169fTo0cPoqKiGD16NMOHD8dsNhfG01SU+8bvv//OwIEDuXLliisokZaWdkt1ubu74+HhgaenJ0ajkcjISJ555hk+++wzfH1973DLlX8KFdxwumdPPKKiyOjUCc8tW7ADtdzd+WrZMqq2aVPULVMURVHuQ0W9WoqmaQ8AP2UJbjQCxohIK+fvwwFEJGdgI3P/ocB2EdmoadpyEelwo2Pes+cYBWzu3Ln07duXTZs20aRJE/z9/UlISEBE2Lp1Kw0bNrxmn//973/079+fU6dO0aFDByIiIti5cycmk4nZs2fTu3fv6x4vLi6O119/nS+//JJ69erx+eefU7Vq1YJ8iopy3zh37hy1a9fG19eXZs2auQITWVPObdf73cPDI9sIDRFhxowZDB06lPDwcL7//nsqqwu49yUV3HC61048Ui5dYmCDBnx46hTuwHu+vjwyejT/GjKkqJumKIqi3MfuwuBGB+DfItLL+fsLQEMR6Xed/asDY4BLQJKIDL1Oud5Ab4DQ0NC6p0+fvrNP5B6n6zrVqlXDx8eH7du38/XXX9O1a1fc3d2pX78+GzduvO6+qampvP/++0yaNAk3NzdatmzJypUrsdvtPProo6xevRpPT8/r7r9s2TL69OlDcnIyEydOZMCAAWqou6LcBpvNRvPmzdm5cyc7d+4ssKDh77//TqdOncjIyGDx4sW0bdu2QI6j3L3UUrD3GN1mY0jduviXKMGCU6d412KBRYsYGR+vAhuKoiiKcptE5G8R6SAir10vsOEsNx8YC+x2U/Na3bSff/6ZI0eOMGjQIDRNY+TIkYBjItE333wzz309PDwYM2YMBw4coEmTJnz33XeEhYURHBzMxo0bCQoKYu3atdfdv2PHjvz999+0aNGCwYMH07x5cyIiIu7k01OU+8rYsWPZuHEjc+fOLdDRUI8//ji7du0iPDycdu3aMXbs2OuunKTcf1Rw4x/mw44d8TWb+b/duzEA7zz2GO8lJUHPnkXdNEVRFEW5W50Dymb5vYxzm1KEpk2bRnBwMB07dmTv3r2cPHkSd3d3qlSpwlNPPZWvOipWrMj//vc/VqxYQWpqKlFRUVStWpWUlBSeeOIJevTocd2OT6lSpfjhhx/45JNP2LlzJzVr1mThwoXcT6Oa72eRkZHs2bOH48ePExMTQ2pqqvrb36Jff/2V8ePH89JLL9GjR48CP15oaCibNm2iR48ejBkzhmeeeYb4+PgCP65y91O3pfxT/PQTtpdfxjsmBivQIyyMj/bswc3bu6hbpiiKoijZ3IW3pZhwTCjaHEdQYwfQVUQO3Klj/qPPMYrA/v37qVmzJhMmTGD48OE0bdqUzZs3A/Dxxx/Tq1evm64zOTmZCRMmMHnyZCwWC7quk5KSQqlSpVi3bl2eV5MjIiJ48cUX2bBhA23atOHjjz+mVKlSt/z8lLuXzWZjwoQJjBs3DpvNli3PZDLh4+ODj48Pvr6+2X7md1tgYCDFihUromdX+M6fP0/t2rUJDAxk+/bteHl5FdqxRYTZs2czePBgKlSowIoVK6hWrVqhHV8pGmrODad/4onH7i+/5OX//Icf09MpA6yuU4f6X32lVkBRFEVR7lpFvFrKV0AzIBCIBt4RkU80TXsSmI5jhZSFIjL+Dh3vaeDpsLCwV44dO3Ynqrwv9OrViy+//JIzZ86gaRqBgYGYzWaKFStGREQE7u7ut1z3kSNH6NevH7/++it+fn7Ex8djMBgYPXo077zzznX303WdmTNnMnz4cLy8vJg3bx4dOtxwLlnlH+To0aP06NGDbdu20bVrVzp06EBiYiKJiYkkJCRc8zjnz8yUV/9J0zQ6d+7MqFGj7vnJau12Oy1btmTr1q3s2LGDBx98sEjasXHjRjp27EhKSgqff/45zz77bJG0QykcKrjh9E8KbpzdsYMuLVqwOSEBgHdKlmTMhg2gghqKoijKXa6oR24UhX/SOUZRi4mJITQ0lBdffJF58+bRs2dPPv/8cwDGjx/PiBEjAPjiiy8YOXIkw4cPz3MFlNyICMuXL2fw4MGcO3cOo9GI3W6nevXq/P777wQGBl5330OHDtGjRw927txJ165dmTVr1n11Jf5eJCLMmzePoUOHYrFYmDt3Ls8///wt1ZU5Iii3wEdCQgL79u1j7ty5pKSk3PNBjrFjxzJmzBgWLlzISy+9dMv16LpOXFwcV65cITY2ltjYWOLi4oiLiyMhIcGVWrVqxZNPPplrHWfPnuW5555j+/btjBw5kjFjxmA0Gm+5TcrdK89zDBG5b1LdunXlbmePj5cOISGigQASajTK79OmFXWzFEVRFCXfgJ1yF3zvF0YCngbmh4WF3amX7543duxYAeTQoUNit9vFYrGI0WgUT09PuXz5sqtc8eLFBef5UFBQkHz99dc3fazExER58803xWg0itFoFEDMZrMsXrw4z/0yMjJk7NixYjKZJDg4WH7++eebPvb9IDExUQ4ePChr1qyRBQsWyNSpU+XMmTNF3axsoqKipHXr1gLIE088IWfPni3wY8bExMh///tf8fLyEk3TpEuXLnLw4MECP25hWrdunWiaJi+88ILouu7avn//fmnatKnUqFFDwsPDJTQ0VEqVKiUBAQHi4+MjHh4e4ubmJkajUTRNc/2P5ze99NJL121Tamqq/Oc//xFAWrduLbGxsYXxUiiFLK9zDDVy426h6zBkCMyaRaDNhl3TmNGrFz3mzy/qlimKoijKTVEjN5TrSU9Pp1y5cjz00EOsWrWKiRMnMmLECDRNo3///syYMQOAH374gXbt2tGoUSN8fHxYu3YtIkLZsmX56KOPaN269U0d98CBA/Tr14/169e7tjVr1oz//e9/eS4Zu2vXLnr06MHBgwd57bXXmDx5Mt73yXxn6enpnD17ljNnzlw3Xbly5Zr9LBYLffv2ZdiwYQQFBRVBy69atmwZr732GqmpqUyePJm+ffuiaVqhHf/ixYtMnTqVWbNm3VMjOaKjo6lduzb+/v7s2LHD9T+ROcdNYmIimqZhMBgwGAwYjUZMJhNmsxk3Nzfc3NywWCy4u7vj7u6Op6cnHh4eeHl54e3tjbe3N76+vnh7e+Pn54e/vz9ms5k+ffpw5coVqlevzp9//pnr/6KI8NFHHzFgwABCQ0P5/vvvqV69emG/REoBUiM37vKRG9OeeUZ8QTaBiLu7nB86VOxWa1E3S1EURVFuCfkcuQEE5JXyU0dRJ9TIjZuyaNEiAWTNmjUiIlKiRAkBRNM0OXXqlKtc1apVBXBd7Y6IiJDGjRu7rt6GhYXJpk2bburYuq7LF1984TomIJ6envLjjz/muV9qaqoMGTJENE2TChUqyObNm2/uSd+FbDabREZGypYtW+Trr7+WyZMny4ABA+TZZ5+VevXqScmSJXO9ah4QECC1atWSNm3aSJ8+fWTChAmyePFi2bBhg5w8eVKOHTsmL730khgMBvHy8pK3335brly5UujP78qVK9K9e3cBpH79+nL48OFCb0NWOUdydO3aVQ4dOlSkbbpVdrtdWrZsKe7u7rJv375seQ0bNhRA+vfvXyDHTk1NlXr16gkgPj4+8tdff1237ObNm6VUqVLi5eUl33zzTYG0RykaeZ1jFPlJQWGmuy24sXzoUCnhHI5lBJn58MMi6elF3SxFURRFuS03Edw4BZx0/rQDl4DLzsen8lPH3ZLutnOMu5Gu61KrVi158MEHRdd1+fHHHx3nQEajPP/8865yR48eFUAqVap0TR1///231KlTx9XZrlGjhuzdu/em2nHlyhV5+eWXs3Xa27VrJ9YbXFjasGGDlC9fXjRNk7feekvS0tJu6rh3iz179kiFChWuCVz4+PhItWrVpFWrVtKrVy8ZO3asLFy4UNauXSuHDx+WpKSkfB/j0KFD0qlTJwHE399fJkyYcFP7347ffvtNypYtK0ajUcaMGSMZGRmFctz8uBeCHO+9954AMn/+/GzbM283q1KlSoG3oX///gKIwWCQjz/++Lrlzp07J40aNRJA/vvf/4rNZivwtv1T2Gw2SUlJkbi4OLl8+XK2W4vudiq4cZedeNg3b5bKZrPjSgXIkyVKyOUTJ4q6WYqiKIpyR+Q3uJGZgI+BJ7P83hr46GbqKOp0t5xj3M3WrVsngKszkjk6A5CdO3e6yrVq1UoAWb58+XXr2rZtm1SpUsW1f4MGDeTo0aM31Z5ffvlFSpcu7arD19f3hqNBEhISpHfv3gJI9erVZc+ePTd1zKL25ZdfioeHh4SEhMjs2bNl1apVsn//fomLiyuQ4+3Zs0fatGnjmjdlxowZBRYUSk1NlcGDB7sCY9u2bSuQ49wJMTEx8tZbb4mnp+c/KsixYcMGMRgM0qVLl2yd4R07doimaeLu7p5t3pyCtHTpUjGZTALICy+8cN1yaWlp8uqrr7rmXCms9hWEb775Rvr37y+9e/eWF198Ubp27SodOnSQtm3bSqtWreTxxx+Xxo0bS/369aVmzZpSpUoVqVChgpQpU0ZKlCghfn5+4uHh4Zp/KGsqXry4tGzZUt566y356quv5MiRI2K324v6Kecqr3MMNedGIYrZsYOg11+HHTuoA5g8Pfn6xx+p+K9/FVmbFEVRFOVOu9k5NzRN2y8iNW607W6kloLNv3bt2vHHH38QGRnJ2bNnqVSpEkajkUcffZR169YBjnv2fX198fX1JTY29oZ1/vbbb/Tq1YuIiAjAMY/G4sWLKVOmTL7alJSUxLBhw5g9e7ZrW8+ePVm4cCEGg+G6+61atYpevXpx8eJFxowZw3//+19MJlO+jlkUbDYbw4YNY+rUqTRp0oTly5dTsmTJQjv+n3/+yYgRI1i/fj1ly5Zl9OjRvPjii3fsNduzZw/du3fn4MGDvP7663zwwQd5zqWyZMkSXnvtNdLS0lxzQWTOAeHp6Ymnpyc+Pj74+Pjg7++Pv78/xYoVo0SJEgQGBlKyZElKlixJqVKlCAwMzPO9kpeLFy8yZcoUZs2aRVpaGl26dGHUqFFUvgtXR7x48SK1a9fGy8uLXbt24ePjA0BaWholS5YkISGBVatW3fR8OLfjxIkTNGzYkMuXL1OlShW2bduGr69vrmUXLFjA66+/TkhICCtWrKBWrVqF1s47Yf78+bz66hmXirIAACAASURBVKv4+Pjg6enpmrckcw6TG/2eV56IcPDgQfbs2cP+/fuxWq0AeHt7U7t2berUqUOdOnV46KGHqFatGmazuUhfCzXnRhFfVbly6pQ8VaKEaCDzQKRiRZE//iiStiiKoihKQePmR26sAUYCDzjT28Cam6mjqJMauZG3Y8eOiaZpMnLkSBEReeKJJ1xXDFetWuUqN2DAAAFk1KhRN1X/d9995xqFoWmatGnT5qau0G7cuFHKlCnjalNgYOANR2VcvnxZOnfuLIA0bNiwyOd1uJ5Lly5JixYtBJC+fftKehHdAq3ruqxdu1YaNGjgmjflyy+/vK2rwzabTSZMmCBms1lKly59w1VtUlNTpXnz5q5bGipUqCClS5eWgIAA8fLycq3iATe3ggfO26ssFov4+/vLgAEDbnibU1ZZR3IYDAbp1q3bXfV+stvt8u9//1ssFss1/xeZc+G89tprRdK29PR0efjhhwUQb29v2bVr13XLbt26VYKDg8XDw0O++uqrQmzl7fnyyy9F0zR58sknC/z/Nz09Xfbs2SOffPKJ9OvXTxo3bixeXl6u97mbm5s89NBD0qtXL5k9e7b8+eefkpycXKBtyimvc4wiPxkozFTYJx7piYnySuXKYsz8otQ0+XHYsEJtg6IoiqIUtlsIbgQAM4A9wG5gOv+QCUUzkwpu5K1fv35iNpslKipKEhMTxWAwiNFodM2/kcnb21vMZvNNdQyzWrRokWsJWYPBIM8//7wkJibma9+UlBQZOnRotg7roEGDbrjf119/LQEBAeLh4SGTJk0qsuBBbvbu3Svly5cXNzc3+eSTT+54/UlJSbJq1SoZOXKktG3bVho2bHjDAIOu67Jy5UqpUaOGa96UlStX3vQ9/8ePH5dHHnlEAOnUqdMNg1m//PKLeHt7CyDlypWTOXPmyPz582X79u25/s3sdrtER0fLnj175Oeff5bFixfL1KlTZcSIEfLaa69J586dpXXr1tK4cWOpVauWhIeHS0hIiJidt55bLBYZNGjQPRHkmDRpkgAyZ86cbNsnTpwogISHhxdRy67KvCXJYDBc086szp8/L02aNBFAhgwZcsufNYVl5cqVYjQa5bHHHpOUlJQiaYPNZpPDhw/LV199JW+++aa0aNFCAgICXJ+TBoNBqlatKt26dZMpU6bIunXrCnQZXhXcKOwTD7td7O+8I36ZM3GDTHn66cI5tqIoiqIUsfwGN4DFzp8D81P+bkyo1VJu6MqVK+Ll5SU9evQQEZE+ffq4Too//fRTV7kFCxYIIM8999xtH3PGjBni6+srgJhMJnnllVfyHXTYvn27hIaGutpYpkwZOX78eJ77REVFyTPPPCOAVKtWTdavX3/bz+F2ff311+Lp6SnBwcGydevWW67HarXK5s2bZeLEidKpUyepXbu2lChRwtWJzy098sgjEh0dnWe9drtdvvrqKwkPD3fNm7J27dobBjl0XZf58+eLl5eX+Pn5yRdffJHnPna7Xbp27eoa1dOxY0cpV65criMvfH19JTQ0VBo0aCAdOnSQ4cOHy5IlS+TQoUP5HmGSnp4uAwYMEIvFcseCHN27d5cjR47ke/87adOmTWI0GqVjx47ZXuddu3aJpmlisVjk4sWLRdK2nL777jvXPBydO3e+7t8sPT1dXn/9dQHkX//6l1y6dKmQW5o/v/76q1gsFqlfv74kJCQUdXOy0XVdTp8+Ld9//72MHj1ann766Wyj3wCpUKFCgQR7/5HBDeDfwBHgODAsl3wLsNSZvw144EZ1FkZwY9nrr4vV11cEpKemyYBatcSamlrgx1UURVGUu8VNBDcOAsHAX0Ax/oFLwWYmNXLj+iZPniyA7N69W+x2u2sSxdKlS2c78c3scJ47d+6OHNdut8u7774rHh4eruHUb7zxRr46mWlpaTJixAjRnKvaaZomY8eOveF+P/74ozzwwAOuSQ4vXLhwJ57KTbHZbPLWW2+5ggznz5+/4T52u1327dsns2bNkhdffFEaNmwopUuXdnXQcyZN08RoNIrRaBSDwXBNXmawYOjQoTcMClitVlmwYIGULVtWAGnWrJls2bIl17Lnz593TVDavHlziYyMzLPuPXv2uJb+LVasmOuWGECaNm0qo0ePls6dO8sjjzwi5cuXFz8/P1fnOLdkNpulWLFiUrFiRWnSpIl0795dxo0bJ99//72cOXMm27Ezgxxubm63HOSIjo6WN998Uzw9PcVkMsmgQYMK9Ip4TpcuXZIyZcpIxYoVs006m56eLv7+/gLIypUrC609+XHy5EnX3zw8PDzPpYg//fRTsVgsEh4eLseOHSvEVt7Yn3/+KV5eXlK9evUCCb5ERETI0qVLZcSIEdKrVy85e/bsHak3JiZG1qxZI5MmTZIBAwbckTpz+scFNwAjcAKoALg5T3qq5SjTF5jnfNwZWHqjegvyxOO3KVOkrPMevQEg0qGDSD6HQSqKoijKveQmghsDgENAOleXhM1MJ/NTx92SVHAjd1arVUJDQ+Wxxx4TEZHZs2e7OoqTJk1yldu+fbsA8tBDD93xNthsNhkyZIirk+nh4SHTpk3L17579+51BStwzhNxo2BBcnKyvP3222I2m8XPz09mz55daEtQXr582TWfyWuvvXbdq6YfffSRPPbYY1KuXDlX8Odmk8FgEC8vLwkJCZG6devKM888I23atLkm2FG8ePEb3qoi4ggozZgxQ4KCggSQp556Ktv8Dt99950EBgaKu7u7TJ8+/YZBk6FDh7oCLVWqVHHNpREcHCwbN27Mc1+r1Sr79u2TRYsWyVtvvSXPPvus1K1bV8qUKSPe3t7XPMesycPDQ3r27Omah+BOBDkuXLggvXv3FoPBIMWLF5fZs2cX+O0UdrtdnnrqKXFzc7tmHotHH31UAOnVq1eBtuFWpaenu2498fLyku3bt1+37ObNm6V48eISGBgof9wlcyLu3btX/P39JSwsTKKiom56f7vdLocPH5bPPvtMhg4dKm3atJGaNWtKqVKlxN3dPdf3rcVikXXr1hXAs7nzCiS4AXwHPAUYbrWOPOpuRJaJxIDhwPAcZdYAjZyPTcAlcKz+cr1UECcef3/1ldTM8iZp6usrZ/L4B1IURVGUe11+gxty9Tt97s2UvxuTCm7kbunSpQLI999/LyIiwcHBrg5H1iuqjRo1EkA2bNhQYG1JT0+X3r17u67MN2vWLF9Dpq1Wq4waNcrVUTYYDDJz5swb7nf48GHX5JX16tWTHTt23ImncV379u2TChUqiNlslvnz51+33HvvvXfDwIWmaeLh4SGlSpWSGjVqSOvWraVfv34ye/Zs2bx5c54TCF6+fFnatm3rer0yU35uVRFxzOMxYcIE18iAjh07Ss+ePV3BrwMHDuS5/+nTp6VChQquDpuPj49r5M77779/w+PnV0pKivzxxx8yZ84c6devn7Ru3Vpq1KjhChaZTCbp0aNHtiBH//79swU5Bg8efFNBir1790qzZs0EHEsRr1279o49n5wyR1x9+OGH2bZ/8MEHAkjFihUL7NhZxcfHy9ChQyUkJERq166d50iMnDJHMGmaluf/7NGjRyUsLEzc3d3zXIK6MBw5ckSCgoKkTJkyEhERkWsZq9Uqe/bskY8++kj69+8vrVq1kmrVqkmJEiVc76/rBTCCgoKkRo0a8tRTT8ngwYPl008/ldGjR4umaaJpmkyZMqWQn/HNy+sc45aXgtU0rQXwEvAwsAz4VESO3FJl19bdAfi3iPRy/v4C0FBE+mUp87ezzFnn7yecZS5dr947vRSsXrw4pthYBHAHqnp4UNzDg1IeHixu0AAsFqafOMHBxEQsZrNj2R03N4L9/en36KNgsfD9oUNcTEvD4uGBxd0dNw8PSgQG0qRBA/Dz40JGBpbAQHxDQjC6ud2xtiuKUkREEF1Ht9vRbTZE1xG7Hd1ux+LmhgHISE8nLSUFPUue6DoB/v4YgMTERJKSklz1iK4juk7Z0qXRRLh0+TLxCQmIiOsYAJUfeAB0nbPnz3MlPt7xRaDriAhGoEZYGIhwPDKS2Ph4V57oOm4mE3UrVQIR9h8/TqyzftF1dF3Hy2Lh4apVQdfZdugQVxITr+4vgr+nJ42rVgURft+3j/jk5Gz5Qb6+NK1SBUT4aedOktLSsrWvbEAAjzqXxlu6dStpGRnZ8sOCgng0PBxE+GTzZux2e7Yvu+qlS9O0YkXsdjtzN2265suwXtmyNClfntSMDOZu2XJNftMHHqBRaChxqanM3bo1a6ccEaFVWBj1g4OJTkxk3s6d1+Q/W7kydUqVIjIujvm7dzvOMrKU6VatGtUDAzl6+TIL9u27emzn2+aV6tWpEhDAXzExLDpwwLU9c/9BtWpR3teXrefPs+To0WzHBni7Th1CvLz4/dw5vj5+3LX/2Mceo/S8eXf8bX6zS8HeC4p6ufm71SOPPEJ0dDRHjx5ly5YtPPbYYwC88cYbTJ06FYBLly4RFBREqVKliIqKKvA2xcTE0KhRI06ePElAQAAbNmygevXqN9zv8OHDPPnkk5w6dQqAmjVrsmHDBvz9/a+7j4iwdOlSBg8eTHR0NH369GH8+PF57nMrli9fzosvvoivry/ffvstjRo1yrXczJkzGThwIAD+/v6ULl2akJAQypcvT5UqVahVqxZ169a9pfbFxcWxa9cuGjdujLu7O1FRUbzwwguuZX4BDAYDb7zxBu+///4Nl0+Ni4tj6tSpTJs2jdTUVEaMGMGoUaNwy+N8ePr06QwdOhS73Y63tzdJSUkAPPvssyxZsiTP5WHvFF3Xeffdd5kyZQrJycmYTCa6dOnCnDlz8Pb2JiMjg6FDh/LRRx+RkZGBxWKhb9++fPDBB/laGldE+P777xk6dCgnT57k6aefZurUqYSHh9+x57B161aaNm1K27ZtWb58OZqmAbBv3z7q1KmDyWTizJkzBAUF3bFjZqXrOp988gnTp0/n0KFDjk6rpiEieHl5sWXLlnwv5frDDz/QoUMHrFYrzz33HN98802u771Lly7Rtm1btm7dyuTJk3njjTdcz7uwnD59mqZNm5KWlsamTZuuWRK4bt267N27F915XpeTwWDAbDa7ljbOutyrpmnYbDZsNhtWqxWbzYbdbsdut6PrOr6+vkRFRaHrOu3atWPFihWF/vzzK69zjFsObmSp3A/ogmPZtjPAx8ASEbHeRp13LLihaVpvoDdAaGho3dOnT99qs66xo0YNGvz9NwANvLzwNJtJt9kIMBj4KTQU0tN54dw5fk1LI12EDBHSgcrA3846HgH+zFFvAxyTiADUAvY5H/sAfkYjLX18WPjgg+Dnx+ATJ0gzGvHz9cXPzw//YsWoFhbGY40agZ8fhy9fxqtkSfxCQvAJDka7xXW4lYKV2QnVrVbMBgPY7aQkJpKemordakW3WrFbrWgilCpeHOx2os6fJykxEbvVit1mQ7fZcDMYqBIaCrrO30ePEp+Q4PjgslrRbTZ83N1pEB4Ous76v/4iLjHR0cm227HbbJT09aVZlSpgt7N82zYSnB1su82GruuUDwjg35Urg64ze+NGUtLT0Z2dW13XqREURFtn/e/8/jtW5wdmZnqkdGnaV6yIzWZj4IYNju2ZHWQRWgcH81xoKInp6by2dSu6iCM587uGhPBccDAxqan8Z+9ex76ZZUToGxLCs8WLczI5mZ5HjmTPB0aVKsXTvr78lZxMj8hIRx44ygHTAwNp5enJpuRkel686NquO/9GS/z8aObmxk+pqbyUmOjY7txfB37x8OBhTWOJ1corVuvVfZ0/9wI1gA9xjMXP6SRQHpiA4wM1p4tAIDACmJhLfhqOyYj6A7Ny5JmBDOfjF4HPcuQHAJedj5/DMTQvq1Ag89PzCWBtjvwHyftz7eEs22pkKZupJfCL8/EDWY6VqT3wrfNxcSA2R35PYJHzsRuQ8wvodRyvSQaO1yinYThe08s4XuOcxuN43SNw/I1ymonjdd8P1Mwl/1PgRYOBrSI0cX7valnSVyYT7Y1GftN1nnauL581f4W7Oy3MZn6w2XghNdWVD6BpGj97e9PQZOKrjAz6p6RkzwfW+/tTzWzmk7Q0RjpP9jVgQ3g44YcP59Li23M/BTc0TXsaeDosLOyVY8eOFXVz7irbtm3j4YcfZsaMGQwYMIC6deuye/duDAYDp06dIjQ0FIAePXqwePFiZs6cSf/+/Qulbbqu85///IfPPvsMg8HA9OnT83Vsu93OhAkTeOeddxARTCYTixYtolu3bnnuFx8fz+jRo5k1axaBgYFMnTqVbt263XbnwW63M2rUKCZOnEijRo1Yvnw5wcHBuZYdPXo048aNAxyv+Wef5fwmuHlxcXGsXLmSZcuW8csvv2C1WilTpgxjxoyhZ8+emEwmTpw4Qbdu3di2bZtrPz8/P5YuXUqrVq1ueIxLly5x+fLlazp6OdvRokULdu3ahcFgcHX+KleuzLfffsuDDz5428/1Zum6zrhx45g8eTLJyckYjUa6dOnC3Llz70iQIz09nenTp/Pee++Rnp7OgAEDGDVqFH5+frfV7tjYWOrUqYPRaGT37t2uQFdGRgalSpXiypUrfPfddzz77LO3dZzcbN68mXfeeYdNmzZhdX4XlitXjldeeYUhQ4YwevRoJk+ejNFoZNGiRXTv3j1f9UZGRtKgQQOio6OpUKECO3bsICAg4Jpyqamp9OzZk2XLltG3b19mzJiRr7/FnXDhwgWaNm3KxYsXWb9+PbVr186Wv2DBAl555ZVbqlvTNFcyGAyuZDQaMRqNiAiJiYnkjAuEhoZSs2ZNmjVrRvv27SlfPrczoMJXYMENTdOKA92BF4Ao4AugCVBDRJrdRr2NgDEi0sr5+3AAEZmYpcwaZ5k/NU0zAReAEpLHEyqIqyp1PDzYm5aGEVg/cyZN8vHFqFutGGw2SE8nNjqalPh40hMTSU9OJiMlBTcRqgUFQXw8y9au5ez588THxRGfkEB8UhKV3dz4b8mSEB/Pw3//zYmMDOJFXCfzXYAvnY99gUTnYw3HCJNXLBZmFCuGuLlR9fx53IxG3I1GLM7UuUwZeoWHk2Yy0Wf3btydI04sbm64Wyw0r1yZR6tUIUXT+GLvXtwslmxfzvUrVKBqSAhxycn8tHcv5PjifjgsjLBSpbiUmMgv+/dnf3E0jcaVKlGuRAnOx8by6/79ro63ruvY7XZaV61KqL8/xy9c4Ednfmaeruu8UKsWZb292RsVxfIDB7Ll2XWdobVrE+zhwfrISL44etS1PTNNr1WLILOZbyMjWRQZmS3PLsL3Vavip2nMi4rik5gY7CKupIuwNzQUN11nzOXLLExKcuQBdhE0IMbHB+x2eqelschux46j4wuO2fQyO20duNqZy5S1g9mKq53BTNWAA87HuXUwGwJbnY9r4uiIZdWCq53W8jg6clk9y9VObyBXO8OZenC10+yFo4NpyJJ6m838n6cnVk0jOD4eDTBomiNf03jd25vhxYoRJ0L9qCg0wKhprjIDAgN5JTCQ83Y7T588eXV/ZxoUEkLHoCAi0tN5+ehRx4d4ZhmDgcHly9OyZEmOJCfz34MHHR/umR/2msbgypV5OCiI/XFxTD582LU98+egGjWoHhjI3suX+ThLvsFgQNM0+teuTYWAAHbGxPDNkSOu7Zl19GvQgFK+vmw/d441J09m+6LRNI3XGjXC39OTbWfOsOX06WvyezVujIfFwraICPacPevY7szTNI0XmzbFaDSy/dQpDp8/j8FodOUZjUaeb9wYNI0dJ05w+tKlq/saDFjMZp6sXx80jV0nTnAhLu7q8Y1GPNzdebRmTdA09p44QWxS0tW2GQx4eXhQt0oVMBjYf/IkSamp2er39vSkWsWKoGkcioggLSMjW76Plxfly5YFTeNYZCQ2uz37/l5eBJcqBZpGxNmz6CKOfGcZb29vigcEgKZx7sIFgKv5BgOenp74+voiwOUrV67Jd3d3x8PDA12EpORkcB438/huFgtmNzcExwmeK98ZMDaaTBiMRseICOdn3v0cTL6fghuZ1MiNa3Xu3JnVq1dz9uxZ4uPjKVu2LJqm0bVrV5YsWQI4OoCenp4YDAaSkpJueDX/Tlu2bBndunXDarXSqlUrfvrpp3x1Zk6ePEmLFi1cozgaNWrEunXrcHd3z3O/PXv20KdPH7Zt28Zjjz3GnDlzqFat2i21/cqVK3Tr1o3Vq1fzyiuv8OGHH2KxXBu+1XWd9u3bs3LlSgD69OnDnDlzbumY4AjUZAY01qxZg9VqJTQ0lE6dOlGvXj2mTZvGtm3bqFy5MuPHj6d9+/ZomsbevXt54YUX+Pvvq+HtWrVq8csvv9zWCIClS5fSs2dP0tPTXVf3vb29mTVrFj179rzleu8UXdcZP34877//vivI0blzZ+bNm+cKcgwZMoT58+ffUpDjwoULjBw5koULFxIYGMi4cePo1asXRqPxptsqIjzzzDOsXr2aLVu2UL9+fVde8+bNWbduHT179mTRokU3Xff1nDlzhtGjR7NixQri4+MBR/Crffv2vPvuu5QpUyZb+aVLl9KtWzfsdjsDBw5k+vTp+TqOzWajZcuWrF+/Hg8PD3777bdcRzjpus6wYcOYPHkybdq04auvvsLb2/v2n2geYmNjadasGSdPnmTt2rXXtGvt2rU88cQTADz55JO0b98eT09PvLy88PLyyvbYx8cHb29v3N3db+rzVNd1tm3bxooVK5g3bx6JiYnXlDGZTJQoUYJq1arRpEkT2rZtS+3atQv9c7tAghuapq3AMQhhMbBIRM5nydt5Oyc1zmDFUaA5cA7YAXQVkQNZyryOI4jymqZpnYH2ItIpr3oL4sRj5+efU9/5wWkE1k2fzqPO4X6FSXSdtLg44s+eRUtMpKTJBPHxLF+zhrhLl4iLjSUhPp7UtDQaFC9Ox9BQbKmpdF+/nnSbjXSbjTSrlXS7nS7+/vTz8yMuOZmakZGk6zppzlEn6cB7OK4qRwLlcmnLNGAQjinwc4uTLwBexjE65eFc8pcCnYBfcVzNzWkV0BpYgeNqbk6bcETYluC4mmvE0bHO/LnF25uabm4ssloZkZzs6Dzj6EQbNY1fy5alnLs7n8bH82FsrGu70WDAqGmsrFGDYu7ufHbhAktjYq7mOdPiRo2wuLnxRUQEv0ZHX80zGjEbjcx4/HEwGll2/Di7Y2JcUVOjwYCnxcLQxx4Do5GfjhzheGwsRqPREV01mfD19KRro0ZgNPLb4cNcSEjAaDI5ktGIr7c3LR56CAwGth07RkJaGobMfJMJXx8falWuDEYjByMiSLfZMJrNGIxGDEYj3j4+hJYpAwYDZ6KjEU3D4Oy0Gd3ccPfwwM/fH4xGEpOTHXlmMwaTCc1gwOjmhtFsviagpSjK/eVWghuappUEMs+kt4tIzJ1vWcFRwY3szpw5Q/ny5Rk4cCBTp06lffv2rFixAnB08DOvSr7//vsMGzaMXr168fHHHxdJW8+dO0ejRo04c+YMJUqUYPPmzVSqVOmG+4kIEyZMYNSoUYgIbm5ufPHFF3To0CHP/XRdZ8GCBQwbNozExESGDBnCqFGj8PLyynebDxw4QLt27YiMjOTDDz/k1VdfzbVcbGws9evX5+TJkwB06tSJpUuX5vs4mRISEvjhhx/45ptvWLNmDRkZGYSGhtKxY0c6depE/fr1XRe6RISVK1cyYsQIDh06RL169Zg0aRLNmzcHYMuWLXTt2pXIyEhX/b1792bu3Lk31UnKyMigbdu2rFmzxrXNYDDw8ssvM2fOnDwDAyLCjh07XCNNSpcuneftLneCrutMnDiRSZMmkZSU5Ljo8PzzzJs3Dx8fn1yDHK+//jrvv/9+voIcu3fvZtCgQWzatImaNWsyffp0Hn/88Ztq4/Tp0xk8eDDTpk1j0KBBru0zZsxg0KBBPPDAA5w4ceK2O7Pp6elMnjyZBQsWkDmq3mw28+ijjzJmzBiaNGmS5/4HDhzgkUceISEhgSZNmvD777/ne4TF22+/zYQJE9A0jSlTpvDGG2/kWm7OnDn079+f2rVr89NPP1G6dOmbe5L5lJiYSIsWLdi7dy+rVq1y/Z9k2rZtG40bN8ZutwOQkpKCh4dHgbQlq759+7r+Jzt37kxsbCwHDhzgwoULrlE14PifCwgIIDw8nEaNGvHUU0/RrFmzAg145HmOcb3JOG6UgMdvdd981v8kjgDHCeBt57Z3gbbOx+445vo4DmwHKtyozoKa7KtNyZLiBaKBNAaR338vkOPcDXS7XeypqSLx8WKNipIz27fLid9/v5rWrZMru3eLHD8u6QcPyrFff82e1q6VuF27RI4elZS//pIjP/98Na1eLUdWr5aEnTtFDh2S5L175divv8rJDRskYvNmObN9u5zbtUvSIiJEYmIkPSpKrkRESMLZs5IUHS0ply9LemKi2NPTRfK5FrmiKIpy53HzE4p2wjEw7TPgcxyrpXS4mTqKOqkJRbN76623xGAwyKlTpyQ9PV1MJpNomiYtWrTIVi4oKEg0TZP4+PgiaqmD3W6X559/XnAuYfrRRx/le9/IyMhsK6rUq/f/7J15WFTVG8e/584GDAz7JrhD7qaSuWuumaam4pJpaVSGZWqaGv5yKzXXTMvM1NLMxKWy1Fyzcl8wzQ13TEWUfYfZ3t8fA1fAAWaGWVDP53nOM8O995zzzjAD53zvuzxjUvnV+/fv04gRIwgAVatWjX755RfS6/Xl9tuyZQsplUoKCAiggwcPlnrd0aNHycXFpZhd5pCenk7r1q2j3r17i0kKq1atSu+//z4dPXq0XFu1Wi19++23YonXLl26FKtasWPHDvL09BTtk8lk9MMPP5hk2/79+8nV1bVYssTmzZs/VI61JAkJCTR37lx66qmnHkqg6u/vEjzbIQAAIABJREFUT2FhYdSnTx965513aM6cOfT999/T/v376cqVK5STk2OSbeWh0+lo1qxZov0SiYQGDx4sfgfy8/Pp3XffLZZ41NQSxnq9njZu3CiWVe7bty9du3bNJLuOHz9OMpmM+vTpU+x3e+7cORIEgWQyWYXLNG/atInCwsLEajOMMWrYsCGtXLmy3Oo3JcnIyKDQ0FCxAo45ZZd37Nghvr99+vQpde5t27aRUqmkatWq0blz58yyzxRycnKoY8eOJJFIxKTLRTl37hzJZDLxc1qjRg2r21AW3377rfi7mjx5snj81q1btHTpUurXr5+YiLXo9wkAubu7U9OmTSnTBtVDy1pjOHwxYM9mq4XHye+/JyVAnzVpQhqASCIhnQ2zF3M4HA6HU5mxQNw4A8CvyM++AM6YM4ajGxc3HpCZmUkeHh4UHh5ORA8qFgCgXbt2idft3LmTAIhlYisDa9euFaup9O7d2+QNl16vFyt6oKCiyoQJE0zqf+DAAWrYsCEBoBdffJGuX79u9DqdTkdTpkwhANSiRQu6fft2qWMuWbKkWLWSgIAAkyrDZGRk0A8//EB9+vQhhUJBACg4OJjGjRtHR44cMXsDSkSUm5tLn332Gfn4+BAA6t+/P128eFE8v2bNGnEuAOTl5UWXLl0q9T149dVXi22ivL29aceOHaXOr9Vqafv27dS3b1/xd9uuXTv67rvvaNeuXbRq1SqaMWMGvfnmm2LFk6KiS8m5nn76aerRowe99dZbNHPmTFq9ejXt3r2bLly4QBkZGSa/LzqdjmbPni1Wc5FIJDRo0KBiIseoUaPETbiTkxMtXLjQpLFzcnJo1qxZpFQqSS6X06RJk8oUEFNTU6lGjRpUrVo1Sk5OFo9rNBry9vYmABQdHW3S3BcvXqR33nmH/vjjD9Lr9XTmzBnq3bt3sQ1wYGAgTZw40az3yxg6nY5eeukl8f0pS+wrya1btygwMJAAUGhoaKkVgGJiYiggIIDc3d1p3759FbK3KGq1mnr27EmMMVq3bt1D569fvy6+Z4XC65gxY6w2v6nExMSQUqkkANS5c+dS/wakpqbS999/T8OGDaMGDRqQq6srSaVSm9jExQ07LDzSX3iByMODaNUq+gsgN4D2zZ9vs/k4HA6Hw6msWCBunC3xs1DymD0bDCmMNgL4ylQPEi5uPOCLL74gAHTo0CEiIlKpVGLpyqJ3hBs1akQA6MyZM44y1ShxcXHipicgIKBUsaEkOp2O+vfvL3ohACAfHx/au3dvuX3VajUtWLCAlEolOTs706xZsygvL088n5qaSj179iQAFBERUexcSRvCw8MJBaVICzd98fHxpc6dkZFB69evp5deekkUGYKCgmjs2LF0+PBhiwQNY6Snp9O0adPI1dWVBEGgiIgI+u+//8TzU6dOFe8SA6D69esX23CePXu2mOggkUjoo48+KtW+Gzdu0EcffURBQUEEgPz8/GjixIkUGxtrkr1ZWVl06dIl2rdvH61Zs4ZmzZpFkZGR1KtXL2rWrBn5+fkZFUCqVKlCMTExJr8vOp2OPv3002Iix8CBAyktLY2IDCJHZGQkSSQSURjYb6KX+J07d0TRzd/fn1auXElarbbYNXq9nvr160dSqZSOHDlS7Fy3bt0IAA0ZMsSk+ZKSkqhmzZrFfkeFz5VKJQ0YMMDk998cCssbM8boyy+/NLmfRqOhtm3biqLazZs3jV538+ZNatCgAUmlUvruu+8qbK9WqxUFi+XLlz90/u7du6Jnz5w5c+jZZ58lAKXaZ2tSUlJE77SqVavS/fv3Tepnrb8dJeHihj0WHqdOkR6g62PH0qZx44gBJAFo77x5tpuTw+FwOJxKiAXixnwAu2Ao5jMcwO8A5pkzRpGxVgO4D+BciePdAVyCIZx1cjljjAfQruD5r6bMy8UNAzqdjkJDQ6l58+ak1+vp+++/Fzc3a9euFa+Li4sjAFS7dm0HWls6Re8IS6VSWrNmjUn9cnJyqFWrVqRQKKhdu3bia3/uuecoNTW13P63bt0SxYk6derQ3r176fz58xQaGkpSqZSWLVtWajhIamoqhYSEiB4GEomEGGOiyFSUzMxM+vHHH6lv377i3eEqVarQmDFj6NChQzbblBAZwnHGjh1LcrmcFAoFjR8/npKSksTzhe97YXvxxRfp3XffLXasa9eu4ua/KHl5eRQdHU1du3YlxhgJgkA9evSgLVu2mOS5Yi55eXl0/fp1+vvvv2n9+vU0b948qlq1KgUHB5sVJkFk+MzNnTtXFDkEQaABAwaIn5vk5GTq3Lmz+B60aNGi3DCcQo4fP06tW7cmANS0aVP6+++/xXNLly4lADS/xE3ZwuNVq1Y16fOg0WioVatWxTyGCptcLqfXX3+9WFiStdmxY4coKg4fPtysvoXhYQqFgo4ePWr0mrS0NPH9nzZtmkkhZMbQ6/X0xhtvEACaZ2SfmJqaKop4EydOJL1eT3K5nLy8vCyaz1rodDp64YUXCAA5OzuX+j7ZA5uIGzAUTegJQLB0DHs3Wy88JoWEkAdjlBoXR5vef58YQAJAu+fMsem8HA6Hw+FUJswVNwxd0A/AooLW19z+RcZpD6BZUXEDhpzS1wDUgqFa8JkC74xGALaVaH4F7csC0eWQKfNyccPAb7/9RgBo/fr1RETiXdzAwEBSq9XidS+++GKx6yor33zzjXj3ecCAASZt8hITEykkJIS8vb1py5YtYs4JmUxGs2fPNmneHTt2UK1atcQNl5+fX7ENaUmOHz8uuo63adNG9JZZsWLFQ9deuHBB9GYIDAyk9957jw4ePGhTQcMYcXFxNHz4cBIEgVQqFc2cOVOMz8/OzqY6deo8tEn29fU1ukE+d+4cjR07VgyhqF69Os2cObOYZ4i9OHXqFDk7O1Pbtm0tElR0Oh3NmzdP/B0KgkDh4eGiyBETEyN+NgRBoNdee82kefR6Pf3444/i53HAgAH0888/k1wup549exb7/cfGxop5NkwRUOLi4qhKlSri76lq1aq0YMECUqvVFBMTQ2+++aaY/yUsLIxWrlxZahhIRbh+/Tp5eXmJIk5pHk7GmDt3rvielvZ3KT8/n4YPH04A6NVXXzX796vX6+n9998nAPS///3vofPZ2dkUEBBAAGjkyJFERLRr1y5CQThXZWDq1Kni+2TM68Qe2Erc6AJD6ddrAD4FUMfSsezVbL3wOLV+PQGg6c89R0REmydMEAWOfZ9+atO5ORwOh8OpLFjguTHXlGNmjFejhLjRCsCuIj9/COBDE8aRANhaxvm3AJwEcLJatWo2eCcfPTp16kRBQUHipqZws7NgwQLxmtzcXJJIJOTu7u5AS03n8uXL5OvrK27aTNnsXblyhXx8fKh27dp0//59mjNnjnhXuWrVqnTixIlyx8jJyaFp06ZR7969y5zzyy+/FO+WT5w4UUyWOWrUqIeu/eeff8jX15f8/f1p7969dhc0jHHu3DnRW8PPz4+WLFkibkpPnTpF7u7uJJVKi32GiAzeJytXrqSWLVuK4tGAAQNo9+7dDn9dGzZsIAD01ltvWXyHX6fT0YIFC4qJHO3ataOTJ08SEdHq1avF0AVnZ2daunSpSeNmZ2fTjBkzRLEhODi4mOeMRqMRP+/liY937twp5k2iVCqNJsYkMng+LF26lOrXr0+AIeHke++9RxcuXDDxHTGNnJwcatKkiejBFBcXZ3LfzZs3i2Lm9OnTjV6j1+tp5syZBIA6duxokkdWITNmzCAANHr06Ic+FxqNRkwEO2jQIPF4oRD8119/mTyPrdm6dasY9hYREWH3+W0ibtCDf+zuAN4GcAvAYQAjAMgqOq4tmj3uqrwUGEjuAKUWfJF++uAD8gMoDiDaudPm83M4HA6H42gsEDdOGTn2rzljlOhbUtwIB7CyyM/DAHxRTv8VBTdx2poyJ/fcIDpz5owYI05E1KZNGwJALi4uxZIZTpgwQdyIPypotVrRJVsmk9GGDRvK7XP48GFycnKili1bUk5ODqWnpxfbCPbp04dyc3MttqlohReZTEZbt26lXr16EQBq27btQ9cfPXqUPDw8qGrVqnT58mWL57UVR44coQ4dOhBgqAqxdu1ao/khjh49Sm+88Ya4sa9Xrx4tXLjQ5DwA9uLDDz8kALRs2bIKjaPX62nhwoXFcnxUq1aNvvrqK9JoNDRq1ChxQx4cHEwHDhwwadxbt27R+PHjH8oPUvg5L7rBLsm9e/fohRdeKBaC0rBhQ5Mruvz11180ePBgUfDr0KEDbdiwwaqhQ4WJZ2UyGe00Yw8WExNDzs7OBIBefvnlUq9bu3YtyWQyql+/vkkCymeffSaGzJQU33Q6HdWrV48A0PPPP1/snEqlIoVCYbFIZiuuXr0qhs+EhYWZ5SVTUWwmbgDwBjCm4K7FrwAGAVgK4M+KjGurZo+Fx+noaEMsVtHM3z/9RMQYJQP019y5NreBw+FwOBxHYqq4ASASwFkA2QD+LdJuAFhnyhiljFshccPMuXoBWBESEmKbN/MRYsSIEeTi4kLJycmUnJwsbnw++OCDYtepVCqSSqU2yYFga5YuXSomvRw2bFi5G44tW7YQY4z69u0rbtT3798v3hl3cnKyaPObnp4uemj4+flRXFwcffTRRwQYkoGW3GQWlk6tXbu2WXey7Y1er6edO3dS06ZNxQ3z1q1bKSkpiRYvXixWlXFxcaHXX3+dDh8+XOk2fYVotVrq2bMnSaVS+vPPP60y5t69e6lZs2aioODs7EwRERF09epVeu6558TjrVu3NqkccUmWL18ufoaMeb+kpKRQnz59xO+2l5cXubu7U61atYp5f5jKvXv3aM6cOWKySn9/f4qKirLaZ7Ro1SBTQ8KIDAk9C7+jzz77bKmizb59+8jd3Z0CAgLK9MZauXKlGFpSciydTkfNmzcnANSqVati5y5duiT+PisjOTk51LhxY4u8ZCqCTcQNAD8DuACDa2dgiXNmx9rao9nrrkq/KlWoniCQruiX/JdfqHpBiMqOGTPsYgeHw+FwOI7ADHHDvUCI+BFA9SLNy5T+ZYxbUtywKCzFxLm4uEFECQkJJJfLKTIykoiIXnnlFQIM1RKKliwtTDDau3dvR5laYc6fPy/G9desWbPcxJGFd2zHjh0rHtPpdDRx4kTxjntoaKjJVSROnDgh5tdo27YtaTQa2rx5s7jpL+nB8Pvvv5OTkxPVr1+/zKoplQmdTkfR0dEUGhoqhmQUbjRXrFhRZlnTykRaWhrVrVuXfHx86MaNG1Yb9+7duzR48GCxug1jjFq3bk2rVq0SQxsEQaA33njDJG8KIkP4lUQiIalU+lBVjoyMDBowYID4e/D09KQlS5ZQ8+bNydXVlc6dO1eh11NYrvfFF18kxhgxxqhnz560bdu2h7x3zOXAgQNi0ty+ffuaLIbl5uaKITTBwcGlhp+cP3+eqlevTi4uLvTrr78+dH7Dhg3EGKPu3bsb9W7o0qULAaBGjRo9JCiNHDmSANDKlStNstlRDB06VPSS+f33320+n63EjR5GjiksHc8ezV7ixt19+ygXIProo2LHf4mKEnNwbC8ljovD4XA4nEcdR9/kMCJuSAFcB1ATDxKKNrDmnE96WMq0adMIAMXGxpJOpyO5XE4oSLpXlMJEiI4qaWgt1Go1derUiQBDJYjS8gwUMmbMGAJAixcvLnb87t274l1bxhi9+uqrZW5Gly1bJm4wCz1izp49SxKJhARBEPMxFLJlyxaSyWTUtGlTSkxMtPDVOg61Wk3ffPMNTZ48udKVDDaVS5cukbu7Oz399NOUlZVl1bF1Oh3Nnz9fTEJZ6HUxcOBAMaeGUqksN/GjTqcjf39/AlCsMlBWVhYNHTpUFOFUKhV99tlnpNfradiwYQSAfv75Z6u+pri4OJoyZYpoT/Xq1Wn27NlmV58pSnx8vPge1alTR0xcWx46nY569OhBAMjNza1UAfLu3bsUFhZGgiDQF198IR7ftm0bSaVSateundEEqv369SMAVKtWLaPf+6CgIGKM2TXkw1KKesl88sknNp3LVuKGsfjYh45VpmbXhUf//qR2c6PsEgmgtkZFkVAocEydaj97OBwOh8OxE44UNwq8QO4C0AC4DSCi4HgPAJdhSIQ+xYrzPfGeG8ePHycfHx/q0aMHERF98skn4kbr33//Fa8rzMnRuHFjR5lqdebPny+KDW+++Wapd4W1Wi317duXGGP0008/PXT+p59+EhNHurq6UnR09EPXDBkyRLw7WiimpKWliaVDi5baJTJ4yUgkEmrVqpVZSQ851uf3338XS7vaKozm77//pubNm4sbTIVCQaGhoeLns3r16nT48GGjfXv37k0AqF+/fkRkKHEbEREhJo1UKpU0Z84c0bNg4cKFBIBm2NAbPT8/n6Kjo6ljx47i537SpEkWv39qtVrMA6RSqej8+fMm9x07dqxow969e41ek5WVJea8GT9+PO3bt4+cnJwoLCzMqKdRYfnZwMBAo7l3UlJSCAA99dRTpr9IB1PUS6ZPnz42S+xrVXEDQACAMAAXATSFodxaMwDPAYg1dzx7NnuKG5lHj1JNgP5nJKHTbx99RAJATgBptmyxm00cDofD4dgDR3tuOKI9iZ4bCQkJ4gI9ICBATExYWI6zS5cuxa5v3749AaDdu3c7wlyb8c8//5CHh4coTIwZM4ZycnIeui47O5tatGhBTk5OdOTIkYfO63Q6evPNN8XNadOmTenWrVuUnp5OdevWJcBQCvX69evi9YW5CsaPH19srK+//poYY9SxY0eT71JzbMu8efMIAM2aNcum8yQmJtKwYcPETWbh57Lwefv27enevXvi9YX5IAIDAykvL49GjRolJvp0dnamadOmFduk7tq1iwRBoP79+9utKs3FixfFULeS3k/m8u6774ohc5s3bza537Jly8SQmdI8YbRarTg+Y4zq169v1GOqsBysl5dXqSFWs2fPJgAUFRVlso2Vgbt371JgYCABoJCQEJuEkFlb3HgNwH4AmQWPhe1XAP3MHc+ezd4Lj/5BQeQGUPLVqw+d2z59Om0GiBgjKseVkcPhcDicRwlLxA0Ycm10KXjuDMDN3DEc0Z5Ezw21Wk0LFy4klUpFMpmMPvjgA3EBu3XrVnETtW/fPrFPamoqMcbIz8/PUWbblNzcXBo4cKC4KZRIJNSjR4+H8izcv3+fateuTT4+PnTVyPqQyFCFoDDWXxAEMbygVatWxZKwdu3alQBQ586di/VftGgRAaCePXsaFVk4jkGv19Mrr7xCjDGjuRmsjU6no8WLF1NQUJD4nSz04hAEgSIjI+nq1askkUhIIpHQ66+/LubwcHJyokmTJj2U7+Ly5cvk4eFBjRo1srtoptPp6KWXXiJBEGjHjh0VGmvNmjXiezF58mST++3evVv8jr///vtGr9Hr9fT555/Tc889R3fu3Hno/McffyyGuRQVmUpSmDzX2BiVHY1GQ+3btycnJyeLEtuWh63CUvpb2tdRzd7ixr9bthAAmtKmjfELtm8nHUDdAPrlww/tahuHw+FwOLbCXHEDwJsATgC4VvBzKIB95ozh6PakeG7s2rVL9CLo3r37QzHohefq1atXzH389ddfJwA0b948e5tsV9RqNUVFRYmeHChIFFjUW+XSpUvk7e1NoaGhZebBWL16tViScty4ccXOFZbTrVGjhnj3XK/X08yZMwkAhYeHP5LVaB53cnJyKCwsjNzc3MwKi6gohw8fplatWhUr3Vq0FYafyOVyGjt2rNH8D+np6VSvXj3y9vYWvYfsTWZmJj399NOkUqnowoULFRrr1KlTYmLeadOmmdwvNjZW9ITp2bOnWd4rS5YsET1iyqoskp+fT4IgkK+vr8ljV0ZsFQ5nbc+NoQWP4wG8X7KZO549myMWHgOCg8kVoKRS6olf+PprEgBiAP30CNV753A4HA6nNCwQN07DkOjznyLHzpozhqPak+K5ce3aNerTpw8BoNq1a9Nvv/32UOx7bGysuFlav369eFyn05GTkxMpFAq7ubFXBn788UeqXbu2+J74+/vTggULSKfT0aFDh0ihUFDr1q3L9K7QaDQP3bldt26dGGqQkpJCRAZhY+LEiYSCJK6mVsjg2J9bt26Rv78/hYSEiL8/e5GSkkIjRowoFrKCglwSb7/9dqmJK3U6HfXq1YskEgn98ccfdrW5JDdv3iQ/Pz+Ly88WJSUlhSQSCXl6eprVLzk5mYKDgwkANWjQwGjOjJKsWbNGFJDKE2Y2bNhAAOiVV14xy64nBWuLGyMLHqcZa+aOZ8/mCHHj7M8/EwNoUQmXwaLs/OSTBwJHiVrwHA6Hw+E8alggbhwrePyn4FEK4F9zxnB0e1w9N7KysmjKlCmkUCjEpIKlbYAKSxr6+PgU21wXlkItWTnlSeH06dPUrl078a65k5MTRURE0Jo1a4gxRuHh4SaLPjExMSQIAkkkEjp79iwRGTae77zzDgGgyMjIJ0pAelQ5dOgQyWQy6tatm0OEKJ1OR19++SU1aNCAhg8fXm740pQpUwgALV261E4Wls3hw4dJLpdThw4dKuyh1LlzZwJQaqLQ0tBoNGKlIz8/vzLDL3755RdijJFUKqXjx4+XO3ZhEtWjR4+aZVNZ6PV60uv1pNPpSKvVklarJY1GQxqNpsLldu2NrcJSfC3t66jmqIXHsS5dSKdUEpXherh7zhxR4NhcIikUh8PhcDiPEhaIG/MARAGIBdAVwM8AZpkzhqPa4+q5odfr6ccffxTvTg4dOpRu375d6vWZmZni5v2zzz4rdi4gIIAYY5ScnGxrsys1KSkp9Nprr4l5DQRBED07SiYENUZSUpKYf2Pjxo1EZNhgDR8+nADQhAkTbFaJg2N9ChN5mvK7dyTR0dEEgCIiIirV5+v7778nlFOlyBROnjxJAKhly5YW9R88eLAYalKYVLko+/btI0EQSBCEYnmISkOv15OTkxM5OzsXe12JiYnUvn17ksvlJJPJSCaTkVQqJalUKuZNEQRBTHpqLPyotKZUKmnPnj0WvX5HUNYagxnOmw9j7DKAOADRAH4iolSLBrIjzzzzDJ08edL+E1+4ADRsCM2ECZDNm1fqZXs+/RQvfPgh3gOwKDoaGDjQfjZyOBwOh2MlGGMxRPSMGdcLACIAdAPAAOwCsJIsXaQ4AIetMWzAmTNnMHr0aBw4cADNmjXDkiVL0KZNmzL7REZGYvny5XByckJiYiJcXV0BAPv370enTp3Qpk0bHDx40B7mV3p0Oh0WLFiAhQsXIjExUTweERGBlStXltqnRo0auH37NqKiojBr1iyo1WoMHToUmzZtwvTp0zF16lQwxuz1MjhWYPTo0fjiiy+wdu1aDBs2zNHmPMTp06fRpk0bNGnSBH/88QcUCoWjTSpGVFQU5syZg8WLF2PMmDEWjxMQEID79+8jIyND/NtlDjNmzMD06dMhkUiwadMm9O3bFwBw4sQJtG7dGjqdDj///DP69OlT7lhHjhxB69at0bFjR/zxxx8AgNu3b6Nbt264ceMGIiMjoVAoxO+6sUdzz61evRpKpRKnT5+GRCIx+/XbmzLXGKWpHqY0AM8CWATgOoBtKMjHUVmbI11GN7dpQ0GMUeLFi2Vel/zTT0QSCRFAx994w07WcTgcDodjPWC+54YSgKTIzxIALuaM4ej2OISlJCUlUWRkJAmCQD4+PrRixQqT3JVTU1PFGP5JkyYVO9e0aVMCYPSOJodo+/btYmUUFOTRmDZt2kPve2EZ3Z49exKRoTrLiy++SABowYIFjjCdYwXUajV17NiRFAoFHTt2zNHmFOP+/ftUvXp1CgoKsknFC2tgrQoqU6dOFb2fLGXdunViBZZ58+bRhQsXSC6XEwBas2aNyeMMGTKkWN6iK1euUPXq1cnNzY3++usvi+0ri0LvHHPsdCRlrTGs8g8dgA+AtQB01hjPVs2RC4/zv/5KDKDJprg8HT5MXxZkLX7Rz490PCkUh8PhcB4hLBA3jgJwLfKzK4DD5ozh6PYoixsajYa+/PJL8vT0JIlEQu+9955JiQ51Oh1FRUWJlRYEQaD4+Hjx/K1btwgAVa9e3YbWPx6cOXOGVCpVsQSPgwcPpvv379O7775LACg0NJR0Oh1lZmZSp06dCAB99dVXjjadU0ESExOpRo0aVKVKlWLfH0eiVqvFUp4nTpxwtDllYo0KKjk5OSSRSMjLy6tCthw+fFgMOyv8u7hkyRKzxvD29iZBECgnJ4fOnDlD/v7+5O3tTSdPnqyQbWWh0+koLCyMqlWrZlJyVEdjE3EDgArAawB+B3AZwFwAYZaOZ4/m6IXHy9WrkxKg+yZ88e6dO0dBBepfiFRK6bdu2cFCDofD4XAqjgXixmlTjlXGhkc858aff/5JjRs3JgDUqVMnMUlleWzfvp28vb3F7P9SqZRef/31Ytf07duXANDq1attYfpjx71796hGjRpivD0AMXZepVJRRkYGpaamUuvWrUkQhEfmLiunfM6cOUMuLi7UsmXLUhP22pPIyEgCQOvWrXO0KSZx8+ZN8vf3r1AFlULvqIpWg7l58yZ5eXkRAJoxY4ZZfa9du0YAqH79+nTkyBHy8PCgoKCgCpe9NYW9e/cSAFq0aJHN56oothI3bgD4DEArS8ewd3O0uHFh2zZiAE169lmTrtfk5lIHd3cCQG4And2yxcYWcjgcDodTcSwQNw4BaFbk5zAAR8wZw9HN0WsMc/nvv/9o0KBBBICqVatGmzdvNikp361btygsLEz0MOjbty999dVXBKCYW31+fj5JpVJyc3Oz5ct47IiNjSUvLy966qmnaP78+RQUFESurq4UGxtLiYmJ1KxZM5LJZLR582ZHm8qxMps3byYANGLECIcm7ly+fDkBoA8esQqOhV4TllZQOXAD80iBAAAgAElEQVTgAAGg1q1bV9iW/Px8iwSJSZMmEQAaPnw4KZVKCgkJoRs3blTYHlPp2rUreXl5UVpamt3mtARbiRvM0r6OapVh4TGkwHsj7coVk/uMa9aMANBLAFGRuvEcDofD4VRGLBA3mgO4BuAAgIMArlZ2b9CSrTKsMUwhNzeXPv74Y3J2diYnJyeaPn06ZWdnl9tPo9FQRESEGFNep04dOnfuHBERPf/881SzZs1iG7KoqCgCQOPGjbPZa3lcOXDgACkUCmrbtq3oIh4fH08NGjQghUJB27dvd7CFHFtRmPvh888/d8j8f//9N0mlUurevfsjVx6UyJD3AhWooOLj40OCIFB6eroNrCufWrVqiWFpjRo1snuuk5iYGAJAUVFRdp3XXKwqbgBYXPD4G4BfSzZzx7NnqwwLj2t79tBxxojMTFizd/Jk0jFGBNDViAgbWcfhcDgcTsUxV9wwdIEMQMOCJjO3v6NbZVhjmMJbb71FACg8PJzi4uJM6rN69WpSKpViwsui4RCJiYkkkUgeSiTq4eFBEonkkYjfroxs2LCBANDAgQPpxo0bFBISQkqlssIu85zKjU6noz59+pBEIqG9e/fade6bN2+Sr68vhYaGUmpqql3ntiYffvghAaDFixeb3bfQc6Lk3zN7kJycLHrEtWzZ0qS8R7Zg8ODB5OzsXGnyvxjD2uJGWMFjB2PN3PHs2SrNwmPoUCJnZ9InJJjX78wZOuDkRAygTh4ePNEoh8PhcColFoobrQEMAfBqYTN3DEe2SrPGKIdu3bpR8+bNTbr27NmzFBoaKiYLHTlyJGlKrD2+/vprAkCnTp0Sj23atIkA0AsvvGBV25805s2bRwDI2dmZ3N3d6fDhw442iWMHMjIyqEGDBuTl5UXXrl2zy5zZ2dnUtGlTUqlUdLGcyo6VnYpUUElNTSXGGHl5edk9NCg8PJwAUJUqVSgzM9Oucxfl6tWrJJVKaeTIkQ6zoTzKWmMIMBMiiil42oSI/iraADQxd7wnEfrf//BWbi6ievc2r2Pjxmh48SJqSqX4Iy0NNZyckHTpkm2M5HA4HA7HTjDGvgewAEBbGEJUmgMwXsO+ksEY68UYW5Genu5oU0xGIpGUeT4rKwt9+vRBo0aNcOXKFTz77LO4desWli9fDqlUWuza6OhohISEoEmTB0vAqKgoAMDSpUutb/wTxIQJEzB27Fh4enpi//79aNWqlaNN4tgBNzc3bN26FUSEPn36IDMz06bzEREiIiJw+vRprF+/HnXr1rXpfLZGEAR8//33aNSoEQYPHoyLFy+a3NfDwwMtWrRASkoK/vzzT9sZWQQiwsyZM7F582YAhr+prq6udpnbGLVr18bIkSOxcuVKXL582WF2WExpqkd5DcApI8f+sXQ8e7TKdFdlWK1a5AxQwr//mt1Xp9FQD19fAkAuAB3/9lvrG8jhcDgcjoXA/JwbF/EI5vIq2irTGqMsunXrRi3LKEs/e/ZsksvlBIB8fX1p586dpV6bkJBAgiDQlClTxGPnz58Xs/1zrINOp3O0CRwHsGfPHhIEgfr27WvTz8CcOXMIAM2ZM8dmczgCSyuo7Ny5kwBQmzZtbGidAZ1OR2PHjhUrIzk7O1eK73tCQgIplUoKDw93tClGKWuNYbbnBmPsZcbYbwBqMsZ+LdL2A0ixgt7yRPC/r75CPoB5I0aY3VeQSrH9/n181K4dcgCMGDECWLXK6jZyOBwOh2MnzgEIcLQRTzJ//vknAgMDERUVBSLCtGnTcP/+fTz//POl9tmyZQv0ej0GDRokHhs9ejQAYO7cuTa3+UlBEMxernMeA7p06YKFCxfi559/xscff2zVsYkIarUaW7duRVRUFAYPHoxJkyZZdQ5HU61aNfzyyy+4c+cO+vfvD7VabVK/bt26wd3dHYcPH0ZKiu22tlqtFhEREVi8eDF69eoFIkK7du0qxffd398f48ePx+bNm3H8+HFHm2MWzCB+mNGBseoAagKYA2BykVOZAP4lIq31zLMuzzzzDJ08edLRZoi8Vrs2Nl2/jutnziCgcWOLxtjx0Ud4dvZs+Oj1SHrtNfh89511jeRwOBwOx0wYYzFEZHJYScENkiYAjgPILzxORGbGbzqOyrbGKI1u3bohMzMTR44cAQAkJCSgf//+OHz4MACge/fuiI6OhkqlKnesDh06IDExEefPnwdjDFlZWXB3d4eXlxcSExNt+jo4nCcBIsKIESOwZs0azJo1C76+vsjLy0Nubm6FHwv3gE2bNsXBgwfh4uLi4FdrG3744QcMHToUb775Jr7++mswxsrtM3bsWHz++ef48MMPMXv2bKvblJ+fjyFDhuCnn37C9OnTcfz4cezYsQObNm1CeHi41eezhIyMDISEhKBhw4bYt2+fSe+bvShrjWG2uPEoU9kWHlf37UPdLl0wplkzLIyJKb9DaVy6hPjmzVErMxNNlUocSEqC1MnJeoZyOBwOh2MGFogbHYwdJ0M+L5vDGKsFYAoAdyIKLzimBLAMgBrAn0T0Q1ljVLY1Rml069YNWVlZOHjwIMaMGYNly5ZBr9ejZs2a2Lx5M5o1a2bSOPHx8QgODsa0adMwbdo0AEBkZCSWL1+OTz75BFOmTLHly+Bwnhjy8vLQqVMnUZAsikwmg7OzM5ycnCx6VCqVGDJkCHx9fR3wyuzHlClTMHv2bCxevBhjxowp9/qEhAQEBgbC09MTycnJVt3YZ2dno2/fvtizZw8WL16M0aNHw83NDXl5eUhPT3dovo2SLFmyBGPGjMHOnTvL9OKzN1YVNxhjB4moLWMsE4ZyNeIpAERE5Uv9DqIyLjzWtmuH506cQLUbN4DAQIvHyUpIQPPq1RGrVsOfMZw6eRJVTFygcDgcDucRR68HtFqoMzKQlpgIdVYWNLm5yMvIgCYvDzV8fKCSyRB/9y7OxMZCk58PdU4Ouj3zDFQvv2x1c8wVNwr6VAcQSkR7GWMuACREVG4mPcbYagAvArhPRA2LHO8O4HMAEgAriehTE8baXETcGAYgjYh+Y4xFE9GgsvpWxjWGMbp164a4uDjcu3cPGRkZcHZ2xsKFCxEZGWnWOJ9//jnGjh2Lixcvom7dutDr9XBzc4NWq0Vubm6lcK3mcB4XtFot4uLiiokTTk5O5SYH5hjQ6/UIDw/H1q1bsW3bNrzwwgvl9mnWrBn++ecf7NmzB126dLGKHampqejZsyeOHTuGVatWYfjw4Th27BhatmyJxo0b48yZM1aZx1rk5+ejXr16UKlUOHXqVKX5u17WGkNq7GBZEFHbgke3ihrGAV797jugTh1g7lxg8WKLx3ENCMD57GwMqlkTm2/fRq2wMOxevBjtTVAnORwO55FHrwfUaiAnBwn//YfctDTkpKcjPzMTuVlZcJdK0bBKFSA3F5sPHEB2VhbycnOhzs+HOj8fIR4e6BMSAqjVmLhnDzRaLdRqNTRaLTRaLVp5eeGtGjWQk5eHQceOQavXG5pOB61ej54eHpjs54fbubnoce0atETQE0FX0F5xccHHKhVO5+Whe0oK9AB0MNwh0BNhpEyGuXI5fler0U+jQWGxe33B4/sA5gkCVuj1eBvF7ywAwIcAZsMQLzrdyNszD8AHAOYCWFLk+HYAPWwgbpgLY+xNAG8B8AJQG0AQgOUAOpvQ/TsAXwBYW2Q8CYAvAXQFcBvACcbYrzAIHXNK9H+diO4bGTcYwNmC5zpTX0tl5+zZs0hISABjDK+++iq++eYbyOVys8eJjo5G48aNxcoKy5cvR05ODl5++eVKswDmcB4XpFIpQkJCHG3GI4sgCFi7di3atWuHwYMH4+jRo6hXr16ZfaZMmYLw8HBMnz7dKuJGQkICnn/+ecTGxmLTpk3o168fAGD16tUAgFdeeaXCc1gbhUKBjz/+GEOHDsWGDRswZMgQR5tULhaHpTDGagO4TUT5jLHnADQGsJaI0qxon1WprHdVLvbrhw+2bsU3J08isGnTCo83r0cPTP79d3gBSFq8GOACB4fDMYI6KwtZ9+8jJzkZuWlpqO3rCyE3F+cvXsSNmzeRl5WFvJwc5GVnQ5Ofj8hnnwVyc/FjTAz+uXMH+Wq1oWk0kBLhmyZNAI0GE8+exam0NGgKNv8aIqgYw96aNQGtFi/evImLajW0hZt/AL6M4V93d0CvR730dNwigh4PNvf+AP6TSAAiuOv1KOk66AOgMMJfiod3okEw7HABQMDD4kAIgCsFz405nzYGcAZAGgBPI+fbAjhQMEadIuMUtgGMYb1MhpMA2qvVEAqOCwAExvC2QoE5rq44qNViYEaGeFwCQMIYxnt6ItLbG3/m5WFMQgIkjD1ogoBJVauid0AA/kxPx7ybNyERBMgkEkgkEsgEAeMaNEDzgAAcSknB+mvXIJVKIZdKMaZ9ewQvXGjkFVUMC8JSTgN4FsAxImpacOwsETUysX8NANsKPTcYY60ATCei5wt+/hAAiKiksFFynJKeG6lEtI0xtoGIBpfVt7KuMUoil8uh1Wpx7do11KxZ06Ix/vvvP1SvXh2zZs0Sy74GBwcjPj4eCQkJ8PPzs6bJHA6HYxVu3bqF5s2bQ6lU4vjx4/D29i71Wq1WCw8PD+Tk5ODu3bvw9/e3eN6bN2+iS5cuiI+Pxy+//IKuXbuK5wICAnDv3j3ExcWhevXqFs9hK/R6PZo1a4aMjAzExsZaJIZbG5vk3ChYiDwDoAaAHQC2AmhARD0stLNwXC8A0QXjxgEYSESpJa5pAuArACoY1rCziCi6vLEr68Lj+v79eKpTJ7zz9NP4/PRpq4y559NPofroI7TQapEzaBBcNmywyrgcDqcM9HogLw95SUm4GxeH7KQkZCYlISc9HdlpaXgmOBhVnJxw8epVbDt9WkzslZefj7z8fLwTEoIGLi749cYNrLh2DWqdDvlaLTR6PdR6PVZUqYJmMhnm3b+P5Wlp0ALFBII/lEo0Zgyv5+TgR52umDhAAC7DcEu8HYCDRsxPh+GPamM8uF1dlML/FiEArpU4xwrmAgy3u++UOC8HkF8Qs1qTCLfxYHPPAPgwhltKJSAIaJKdjdt6vbixlzCGmlIp/g4OBiQSdLl9G/f1esgKNvYyxlBfqcQ3DRsCUileO3cOmXo95FIppBIJZFIpnvb1xdiwMEAux8zjx6EXBMjkcjg5OUGuUOCpKlXwfNOmgFyOLf/8A5lCAYWLCxRKJRSurqhSpQqq16wJvVyOhPR0OKlUcPLwgNzVlec4MoIF4sYxImrBGPuHiJoyxqQwlJw3Kdu2EXEjHEB3Inqj4OdhAFoQ0bul9PcGMAsGT4+VRDSnIOfGFwDyABw0lnODMfYWDB4nqFatWtjNmzdNfckOQyaTQa/XQ6ez3BllwYIF+OCDD3Dp0iVs2rQJn3/+ORITE9GiRQscPXrUitZyOByOdTl69Ciee+45tGzZErt37y5zsz5y5EisWLECkydPxpw5ZWrjpRIbG4uuXbsiKysLO3bsQKtWrcRzV69eRWhoKAIDAxEfH2/R+PZg165d6N69O5YsWSJWxHIkthI3ThFRM8bYBwDyiGhp4aKkgsbOA5BCRJ8yxiYD8CSiSSWueQqG/B5XGGNVAMQAqFee10hlFTcAIOKpp/DDlSu4duIEgp4xK0y5dG7ehLpZM1RLSYG/kxOO3b0LJw8P64zN4TgYvVaLnKQkZNy5g8x795CZmAhPQUBtlQp5KSlYu28fcrKzkZ2ZieycHOTm5aG9ry/6+vsjPjkZkTExyNNoDAKCTge1Toeh7u4Y6+6Ok5mZ6HfvHrREhgZAR4R3pVLMkkqxUaPBKwXiQaFwAABjAXwGYD6AiUZsng5gGgwhBMaC/5cAGA0gEgZ//JJEAxjIGCKJsBIodvdfAoO40Vwuxwd5eViXnw9pwZ1/GWOQCgJ21ayJakolPk1MxPb0dMgEAXKJBDKJBHKpFN+3bg0XpRJr4+JwMiUFCrkccoUCCoUCzs7O+KB7d0ChwMGbNxGfnQ0XlQrObm5wcnODUqVCk6ZNAaUSWXo9BBcXOHl4QKgECj/H/lggbsyDwTHmVRi+BqMAXCAik7JSVlTcqAiMsV4AeoWEhLx55cqVcq93NNYQN5o0aYL//vsP2dnZUKvVEAQB7du3x5YtW+Dl5WVFazkcDsf6mFpBpVB88PDwQHJystkhd6dOncLzzz8PiUSC3bt3o3GJ6pgff/wxpk6dilGjRuHLL7+0+PXYGiJC586dce7cOVy7dg1ubo7NTmErceMYgMUwZBfvRUQ3GGPniibzsnDcSwCeI6K7jLFAGDKU1ymnzxkA4URU5qqiMosb1//8E3U6dkRk48ZYYsVkMuqsLLT280NMbi68GMPkF15A+KRJqNm+vdXm4DyZ5KWlIeX6daTHxyMtPh4ZiYlQaLV4rlo1ICsLy/buxd2UFGTn5CAnNxc5eXmopVBgeq1aQF4eusfEIEmthlqvR36BZ0JTmQw/qVSARgPv1FTkweCaVeiB0BTAiYLnxlJohQE4CSAehjCEkrQH8BeA0wVjlaQ/gM2CgINE6EQECR4IBxLGMNrJCTPd3fG3VovhqamQCgLkBU0mCBgfHIyBwcE4lpODuXFxUMhkUMhkcJLLoVAo8FqTJmhWowYuZWVh940bcHZxgdLdHS5ubnBRqRD29NPwCgxEFmPIYgyufn5w8fGBIDU7PRKH41AsEDcEABEAusGg2e2CwYPCpEWKtcJSKkJlXmMUpSLixsGDBzFq1CicPWvw7XJxccGrr76KefPmOXyxy+FwOOZgagWVBg0a4MKFC9i+fTt69DA9QOHvv/9Gr1694OnpiT179iA0NPSha+rWrYtLly7h8OHDxTw6KiMnTpzAs88+i2nTpmH69OkOtcVW4kZ9AG8DOEJEPzLGasIQQjLXclMBxlgaEXkUPGcwxLuW6m7AGHsWwBoYQmL0Rs4/Mi6jb9Spg3WXL1vXe6OA1596Ct8WuaO0UhAQERiI3/39cdrHB+ETJiC0SPwX59FCnZVlEBpu30Ydd3cgPR1/Hz2K81euID0tDZmZmcjKygI0GnzeuDGQk4P3T5/GibQ05Gq1UOt0yNPr4QrglI8PoNEgLDUVl3Q66PBAYHADUBgj5gogu4QdbgAyCp47Acgvcd4bQFLBcxkALR7kJBAANGQM/zg7AxIJArOyoAMgZQxyxiBjDM8plfimRg1AoUDHS5cglUigkEjgLJfDWS5Hh+BgRDRtCrVCgXmnTsFFqYTS1RWu7u5w9fBA3aeeQp0GDaCVyxGfkwNVYCBcAwJ4WAGHY2XMETcKkn+uJSKLs6kZETekMERidYYhSuoEgCFEdN7SOcqY+7H23CAiLF26FHPnzi3mNv3JJ58gKirKqiUSORwOx14UraBSr149MMbAGIMgCMWeJycnIy4uDkqlEo0aNTJ6nbF+Bw4cQI0aNbBnzx4EBwc/NH9SUhJ8fX3h4uKCjIyMR6LyzYABA/D777/j2rVrFcpBUlFsIm5UBMbYXgABRk5NAbCmqJjBGEslImP521Do2QHgNSIqN8izst9ViTt4ED906ID3IiLgtmKF1ce/8fffiJ49G3+dPIlvZTIEJCWhjVaLwwXnJQD8BAENPDyw6e234TF0KFBOJmFO2eSlpSHpyhWk3LyJlNu3kXr3LjpXqwaVRoM9MTH4/cIFZGZlISsvD5l5echRq7GhVi346XSY+N9/2JiRATUR1ETQFIRH3JXJoCIq9rsrSuE3+ik8SJBo7HxVPEiwWCgwKAFkODkBEgla5ObiGhFkBcKCgjEEy+XYX7cu4OSEt27cQLxWC2e5HEonJzgrFKjl44MPOnYElEpEx8ZCI5fDzdMTbt7eUPn6wjc4GNXr1wc8PAAuKHA4jy0WeG4cBNCJiNQWzPUjgOdgyCt7D8A0IlrFGOsBg4epBMBqIppl7tgmzv9YihtpaWkYP348fvzxR+Tm5oIxhhYtWiA5ORne3t44cuSInSzmcDgc25CdnY3JkycjPj4eRAQigl6vF58TETQaDfbu3Qu9Xo/27dtDLpcXO1/y+sKfg4KCsGzZMvj6+hqde9WqVXjjjTfQs2dPbNu2zc6v3DIuX76M+vXrIzIyEkuXLnWYHbby3GgDQwh5dRiS0zMY8mDUstDOwnFNCkthjKlgEDZmE9FmU8au7OIGAOCtt4A1a4CrV4GqVW0+3c0DB7Bx7lzsP3YM51JTkaDTGZIUwnAnvRWAOEFAPZUK7Rs3Rr/Ro9E4PNzmdtmLrIQEJF+5gsQbN5B86xbSEhLwrK8vaspkOBUbi29OnkRmTg6y8vKQlZ+PbI0Gs3x90UkqxbLERMxMT4caEIUHHYAfYQhvGArgoexzMGTffQFALwDG/pQdB9CcMfQjwjYUhETAkDdBBuCcnx/8XFzwQVoa9ubmwkkqhbNUCmeZDC4KBaI7d4agUmHz7du4kp0Ndw8PqLy8oPLxgVdAANp26AB4eEDt4gKpSsVDHjgcjtWxQNxYC6AegF9RxCmMiBbZwDyb8EisMVC+uBETE4OxY8fi0KFDICIoFAoMHDgQixYtQkpKCurUqYNFixZh3Lhxdracw+FwHMOwYcOwbt06TJo0CZ9+aixrmvm0a9cOBw8exMaNGzFgwACrjGkP3n77baxatQqxsbGoXbu2Q2ywlbgRC2AcDMk8xf+QRJRs0YAPxp0PILlIQlEvIppY4ho5gN8B/EZEi00d+5FYeMTFYUvt2rj8zDP48Ngxh5iQdPo0fP78E9i/H2137sQJtRpFb6WpAKT7+QH16mGVmxuCW7aEQqmEIJFAEAT4enqiTs2agCDg1OXL0BNBkEohCAIEqRRenp4IDgiAHsC127chyGTieSaRQKVSwcPTE9r0dPxz7BhS7txBemIi0pKSkJ6WhjBPT3Ty9UV8QgImHDqEnALRIVejQa5Wi1fd3DDG1RUHMzLQPzkZauBBUkgYMtUthKHczigjr38CDAkhZwH4n5HzcwBMFgR8CmCmXg8pIHo2yBnDN4GB6OrtjR+ys7E6KQkucjlcnZzg6uwMlVKJMe3bo1r16jiflYWrOTnwDAyEV1AQvGrUgFetWjzpK4fDeeSxQNyYZuw4Ec2wnlW24XHw3CAirF69Gh9//DEKw3f9/f0xfvx4jBs3DtICEbww+d2tW7eMullzOBzO48ipU6cQFhYGd3d3JCUliX8TLSU3NxcqlQp6vR6pqalQqVRWstT23L17FyEhIejTpw/Wr1/vEBtsllCUiFpUyDLj43oD2AigGoCbMOTxSGGMPQPgbSJ6gzE2FMC3AIrGzg4nojLrqD4S4gaA0Y0bY9nZszi5fj2avvyyo80BAMSfOoWf5szBvoMHocjMxAatFsjPhwQPyj8WUh2GGr6AwZ2nJHUBXET5SSFvwlAPuCQdAfxRcE1zI+cHAdggkeBvxtBdq4UMD/I2yBnDOE9PjA0Kwim9HpNu34ZSoYCrkxNUSiXcXV0x4Jln0KxBAyQIAs6kpMA7KAi+tWrBt25duPj4lPk+cTgcDsd8caNIPxciyrGFTbbmUVljFBU3srKyEBUVhdWrVyM72+Aw06RJE8yfPx9dunR5qG/Dhg3h6emJAwcO2NtsDofDcSi1a9fG9evX8csvv6BPnz4VGuu3335D79690aRJE/zzzz9WstB+FCZjjYmJQbNmzew+v63EjU9h2Jv+hCJ5A4nolEUD2oFHZeGReuMG6tSujdpKJQ6lplbasAF9QgK+HjcOZ86cgU6nAwHQE+FpT0+MqVcPIMLrhw5BrdM9iEUD0NLLC2NCQ6HX6TDg6FFDKU293vBIhE7e3hhTsybyJBK8dfYsXF1c4OriApVKBTeVCi0bNECLZs2gVioRm5YGj6pV4VWzJq8qweFwOJUECzw3WgFYBcCViKoxxp4GMJKIjDnYVSoeVc+NTp064Y8//oBer4dUKkXv3r3x2WefoVq1akb7nT9/Hg0bNsTSpUvx7rtWr6jL4XA4lZolS5ZgzJgxaNWqFQ4fNpb1znQGDhyITZs2Yf78+ZgwYYKVLLQf6enpqFWrFsLCwrB79267z28rcWO/kcNERJ0sGtAOPCriBgCsefNNDF+5EquGD8fr337raHM4HA6HwzEZC8SNYwDCAfxKRE0LjlW4vLw9eVTWGIIgoHDt5+npidGjRyMqKgoKhaLMflOnTsWsWbNw584dBAQYywnP4XA4jy+pqanw9fWFTqfDtWvXUKuWZWkmdTodPDw8kJWVhatXrzosb0VFWbRoEcaPH489e/YY9fSzJWWtMQRLByWijkZapRU2HjVeXb4cbVUqTFqzBmnXrzvaHA6Hw+FwbAoR3SpxyLRapRyzKBQ2tmzZguTkZMyYMaNcYYOIEB0djQ4dOnBhg8PhPJF4enqid+/eAIBly5ZZPM6xY8eQlZWFKlWqPLLCBgCMGjUK1apVw+TJk6HXl0xS4DgsFjcYY/6MsVWMsd8Lfq7PGIuwnmlPNkwiwbLVq/EZAHcrZeXlcDgcDqeScosx1hoAMcZkjLEJMKRnqvQwxnoxxlakp6c72hSz6NevHxgzlhnrYc6cOYPLly9j0KBBNraKw+FwKi+jR48GAKxYsQJqtdmVywEAGzduBAD079/fanY5AicnJ8ycORMxMTHYvNmkwqV2wWJxA8B3AHYBqFLw82UAYytqEOcBjfr3x9AxY8BWrgQ5qHIKh8PhcDh24G0A7wAIAnAHQJOCnys9RPQbEb3l7u7uaFNsRnR0NCQSySO/GOdwOJyK0KFDBwQGBiIzMxM///yzRWNs2rQJABAeHm5N0xzC0KFD0bBhQ0yZMgUajcbR5gComLjhQ0QbUVAsg4gKK21yrMmMGVitUqFz167QWagQcjgcDodTGWGMzS142pGIXiEifyLyI6KhFS0tz7EOhSEpnTt3hg+vGMbhcJ5gBEHAO+8YdPdFixaZ3fiQZuEAACAASURBVP/SpUuIj4+Hs7MzWrdubW3z7I5EIsGcOXNw9epVrFy50tHmAKiYuJFdULaVAIAx1hLAo+WT+SigUsF52DDsz8zEitdec7Q1HA6Hw+FYkx7MEBvxoaMNsZRHNSzFVE6ePIkbN27wkBQOh8MBMHz4cDDGcPz4ccTGxprVt9Dbo1u3bpA+JhUee/bsiXbt2mHGjBnIyspytDkVEjfeB/ArgNqMsUMA1gIYbRWrOMUY/Pnn6OjhgajoaNw/f97R5nA4HA6HYy12AkgF0JgxlsEYyyz66GjjTOFxD0vZuHEjZDIZ+vbt62hTOBwOx+EEBQWhc+fOAICvvvrKrL4//PADADxWYjFjDHPnzsW9e/ewePFiR5tToWoppwB0ANAawEgADYjoX2sZxnkAEwR8+f33yCbCpJdecrQ5HA6Hw+FYi/8RkQeA7USkIiK3oo+ONu5Jh4iwceNGdOvWDZ6eno42h8PhcCoFhaEpq1atQm5urkl97t27h3PnzkEQBDz//PO2NM/utGrVCi+99BLmzZuHxMREh9pSkWopAwA4E9F5AC8BiGaMNbOaZZxi1HvxRbzfogXWXL2KKxs2ONocDofD4XCswZGCx0fCS+NJ4+jRo/jvv/8eq7uMHA6HU1F69uwJT09PZGdni9VPyuO3334DADRt2hReXl62NM8hzJ49G9nZ2Zg9e7ZD7ahIWMpHRJTJGGsLoDOAVQDM883hmMX/fvkFB3x9ETpnDqDVOtocDofD4XAqipwxNgRAa8ZYv5LN0cY96URHR0Mul6N3796ONoXD4XAqDTKZDBEREQCAJUuWmNRnQ8HN6cdVLK5Xrx5GjBiBZcuWIS4uzmF2VETcKKyM0hPAN0S0HYC84iZxSsM1IABtvvoK+PdfpM2f72hzOBwOh8OpKG8DaAfAA0CvEu1FB9plMo9rQlG9Xo9NmzbhhRdewOOaT4TD4XAs5Y033gAAnDp1CqdPny7z2uzsbPz1118AgF69etncNkcxffp0CIKAqVOnOsyGiogbdxhjXwMYBGAHY0xRwfE4ptCvH76pXx+1oqJwt5wvEofD4XA4lRkiOkhEkQAmEtGIEu11R9tnCo9rQtGDBw8iPj7+sb3LyOFwOBWhTp06aNmyJRhjWL58eZnX7t69G1qtFlWqVEGdOnXsZKH9CQ4OxnvvvYd169bh338dk4qzImLEQAC7ADxPRGnA/9m77/gqq/uB459z90hys0lImDJkioooDlygICC4raM4ClpHW6tVaW2pm1b8aWudFUWqIpUiQ9yA0AIKuFhlDwkkZN2su8f5/XEvFDGElZtLku/79TqvPPd5nvs83xxC8s035zmHTOA3jRKVODilOO/ZZ/EA98nkokIIIZoxpdQF8U23PJZyfJk+fTp2u71F/5VRCCGOxe23347WmqlTp1JbW3vQ82bMmAHAFVdcQWz185brwQcfxOVyMX58clZ4P5bVUrxa65la603x18Va608aLzRxMF2HDOGBc87h7R07+PyZZ5IdjhBCCHG0zo1/PPCRlGbzWEpLFA6HmTFjBsOHDyclJSXZ4QghxHHpyiuvxOFw4PP5ePvtt+s9JxwO75tMdNSoUU0ZXlJkZGQwfvx4Pvjgg32P4jQlpbVu8psmS//+/fXKlSuTHUaj8FVW0qtNG+wGA99WVmJ2OpMdkhBCCAGAUuorrXX/ZMfRlJpLjrH3r4YN5X/z589n8ODBvPvuu1x55ZVNFZoQQjQ748aNY/LkyfTs2ZNVq1b9aGTG4sWLOffcc7Hb7VRVVWGxtPwpKn0+H127dqWwsJBly5Y1+miVhnIMmSOjmbJnZvLX8ePZEgyy/P77kx2OEEIIccSUUr9uqDVhHJ2VUpOVUjMa2tdaTJ8+HafTySWXXJLsUIQQ4rg2duxYotEoa9asYfny5T86PmvWLAAuvvjiVlHYALDb7Tz88MNkZGTQ1JNtS3GjGRvxyCNsGzKEs954A4qKkh2OEEIIcaRS460/8HOgIN5uB045nAsopV5TSpUqpdYcsH+oUmqDUmqzUurBhq6htd6qtb71UPtag1AoxL/+9S8uvfRSHA5HssMRQojjWv/+/enVqxcGg+FHE4tqrXn33XcBuOyyy5IRXtLccsstfPjhh6SnpzfpfaW40czlv/wyRCIsHzMm2aEIIYQQR0Rr/bDW+mGgEDhFa32v1vpe4FSg/WFeZgowdP8dSikj8DwwDOgJ/EQp1VMp1Ucp9f4BLbfRPqEWYP78+VRWVsoqKUIIcRiUUvtGb7z99tu43e59x9atW0dRURFKKYYNG5bEKJtesiZOleJGc9epE9NGjuT0BQv45Mknkx2NEEIIcTTaAMH9Xgfj+w5Ja70YqDxg9wBgc3z0RRB4BxiltV6ttR5xQCttjE+gpfjnP/9JWloaQ4cOPfTJQgghuOGGGzCbzQSDQaZOnbpv/+zZswE45ZRTyMnJSVZ4rYoUN1qAy199la5mM3dNmECgpibZ4QghhBBHaiqwXCn1R6XUH4EviY3IOFoFwM79XhfF99VLKZWllHoJOFkpNf5g++p53zil1Eql1MqysrJjCPf4EAwGee+99xg9ejRWqzXZ4QghRLOQlZXF5Zdfjslk4oUXXtg3YfPeR1KuuOKKZIbXqkhxowWwpqXxt4cfZlMoxFOXX57scIQQQogjorV+HLgZcMfbzVrrJhuOqLWu0FrfrrU+Ye9969tXz/teAR4Gvm4JE8V98sknVFVVySMpQghxhG699VbC4TAbN25k8eLF7N69m2+//RaAESNkZfOmIsWNFuKi8eO5sqCAx+fPZ9u//53scIQQQogjorX+Wmv9l3j75hgvtwtot9/rwvg+0YDp06eTkZHB4MGDkx2KEEI0KxdeeCHt27fHZDLx0ksvMXfuXADy8/Pp3bt3kqNrPaS40YI8M3Mm+Uqx9YEHkh2KEEIIkUwrgK5KqU5KKQtwLTAnETfSWs/VWo9zuVyJuHyT8fv9zJ49m8suu6zVLFcohBCNxWAw7Bu9MWPGDF599VWUUowePTppk2u2RqZkByAaT+GAAWx64gmM48fD+++DDIESQogWRUejhLxeAjU1BGprCdTWkudyYQyH2b1zJzt37iTg9RLweGIffT5Gn3QSxlCI/6xdy1dbtxLw+wkEAgQCAX51zjlkN/PJqJVS04DzgGylVBEwQWs9WSl1F/AxYARe01qvTdD9RwIju3TpkojLN5kPP/yQ2tpaeSRFCCGO0k033cQf//hHwuEwK1euBODSSy9NclSti9o74Ulr0L9/f733C63FCgYJn3QSr5WVcePGjdgzM5MdkRBCtAg6GiVYW4u/qgpfdTX+mhr81dW0TUsjzWSirKSEFatW4fd4CPh8sY9+PyO7daPAbmfV9u288913+OOFBX8wiD8Y5LETT6STycScnTt5avt2AuEw/mgUfySCPxplUXo6nUIh/s/j4b5IhAN/ahcDecAfgEfribsWSAF+DTyz334DsDovj57FxY3eV0qpr7TW/Rv9wsex5pJj7P0L4oH537XXXsv8+fMpLi7GZJK/fQkhxNEYNmwYCxcuJBAIYLPZcLvd2Gy2ZIfVojSUY8hPr5bGYmH5nXdy2913UzR6NI8sXpzsiIQQotGFvF58lZX4qqqwRaO4zGaCNTWs/PZbfDU1+Gpr8dXV4auro1+bNvTNyqKyooJnFy3C5/PhCwTwxwsMPy0o4CKXi42Vldy8di2+cHhfYcEXjfJXm42rolH+7fdzbj2xzAJGEXsOYng9x7sQW6bjv8AkwArYlMJqMGBTilqTCVwujMEgFqORVKsVm8mEzWzGarFgPeMMyMxkQHk5D+3cidVqjTWbDavNRso554DLxfXl5ZxRUYHV4cDqdO5r9p49weHg4VCIhwwGrKmpWNPSMEmy1ShawsgNj8fD3LlzufHGG6WwIYQQx+DWW2/lo48+wmAwcNFFF0lho4nJT7AW6My77uK6SZP407//zY2ffkrXIUOSHZIQojWIRPCUl+OtqMBbWYk3PsLBCXTPyQGvlxkLF1JdVYXX48Hr8eDzeumVns5V7dqB18sNCxZQGwjgCwbxhkJ4w2GudDr5rcNBwOslu7wcHxDZ77YPAk8SG6FwVj1hPQb0jR9/FLABdqVizWDg4lAI8vIwAw6zmUy7HZvZjN1qxWaxUNi7N3TqROdQiCfWrcNmt2Oz27E7ndgcDk7t2xcKCxkYDrOspAR7WhrWlBRsaWlYU1PJysuDtDSutli4xmg8aPcNp/7iyF5nx9vBdI+3g0lt4Jg4elrrucDc/v37j012LEdr3rx5eL1eeSRFCCGO0aWXXkp2djbl5eXySEoSSHGjhZo0axbvn3wyd//kJ3xYWooyyNyxQrR6kQh1e/ZQU1KCJ16A8FRVofx+BnbsCB4Pc5ctY+uuXXg9HjweD16fj1yTiQe7dQOPhztWrGB1TU2s8BCJ4IlE6G8wMNNggECAk4AtB9x2JP+byfFuoOSA4zcajVzlcoHDwdqyMrRSOEymWKHB4SCroAD69MFis/Gz5cux2+3YbbbYR4eD/t26Qa9euCwWPlq/Hnta2v+ay0V227bQpg3tbTaiVutBvx92Aj5toPsKgfENHM8AzmjguEwn1jK1hJEb06dPJy8vj0GDBiU7FCGEaNYsFgtjxozh2Wef5ZJLLkl2OK2OzLnRgv3l8sv51XvvMeO++7jiqaeSHY4Q4jCFvF7q9uyhtqSEurIy6ioqOK1DB5TXy4rvvmPVpk3U1dTgqavD4/EQ9Pt56uSToa6OSatWMa+4GE8oRF0ohCcSwQmsM5kgEGAUP14yohOwNb49BPgsvq0AJ3Cq2cznhYXgdPKzPXvYGgrhsFhwWq04bTZ65uRw39lng8PB62vX4gUcKSk4UlOxp6RQUFDAqf36gd3O1ooKzKmpODIysGdmYktPxyDD4FscmXPj+HXgnBu1tbXk5ubys5/9jOeeey6ZoQkhRIvg8/nYsGED/fr1S3YoLZLMudFK3fn22yzLyyNv6lT44x/B6Ux2SEK0ONFIBE9pKfZwGJPPx54dO1i/bh21lZXUVVVR63ZTV1PDzT17kh6J8PG6dby1bh11Ph+1gQB1wSC1oRCLc3LI9Pn4Q1UVj0YiP7qPB3AAbwF/2W+/EUhTij8XF6NSUvDX1RGJRsmy22mfnk6KzUZWSgpcdBGkpHDb999zic+HIzUVZ1oaTpeL9OxsOO00cDqZ5vdjSEnBkZWFNS3tR6McXj1Ef9x8iOOdD9mjQoimNHfuXPx+vzySIoQQjcRut0thI0mOu+KGUioTmA50BLYDV2ut3Qc5Nw1YB8zSWt/VVDE2FyabjXfmzYOzz4ZHH4WJE5MdkhDHhWg4jKe0lJrdu6ktLaWmtJTOaWlkGwx8v20bc5Yto7amhtqaGmrq6qj1eLi/Uyd6KcXH33/PPdu3UxMOUxuNUgto4EtgADAXqO/B+4tmzybdamWn2cx//H5SjEZSzGZSLRbapqURPfNMyM7m/IoKLOXlpKSmkhovPqRmZGCOTxr5u2CQXxsMpOTk4MzNxZKS8oMCxEPxdjCHGiCZfWRdKUSr19wfS5k+fToFBQWceeaZyQ5FCCGEOCbHXXGD2Nxw87XWE5VSD8ZfP3CQcx8FZDmQhpx1FjXXXceEP/+ZcWefTY8RI5IdkRBHT2uiXi+lW7ZQU1xMdUkJNaWl1JSX0yM9nRMdDvbs3s1T8+dT4/FQ7fFQ7fNR4/dzf0YGo7Xmy8pKBnq9P1pO8x3gGmATsXkhIPYNMk0pUg0Gbo5GoW1b0jMy6O31kmq3k+p0kpaaSmpqKgXnnAPt2jEsGGR+ZSUpWVmkZmeTkpNDal4eaXl5YLXyM+BnDXyK58fbweQcbd8JIRKiOU8oWlVVxUcffcSdd96JQebmEkII0cwdj8WNUcB58e03gM+pp7ihlDoVaAN8BLSq53qPlP+3v2XKtGl8d+ONzK+okMlFRfKEw1BdzdbVq6natYuqkhKq9uyhurycLk4n52RmEigv57aPP6bK46HK56M6GKQ6FOI2i4UHgkFKw2Hy67n0E8Qme/QCLwJpBgMuk4k0sxmX1Yq5XTvo3p32JhMPrV9PWloaaenppGZkkJqZGZsTolMnzrZY2KM1aQUF9T6WcTrwzwY+xYJ4E0KI493s2bMJBoPySIoQQogW4XgsbrTRWhfHt0uIFTB+QCllAJ4GbgAGN3QxpdQ4YBxA+/btGzfSZiK3Vy+euOYa7njnHYbl5nL72LEM//3vMTscyQ5NNDdaQ00NO9eupXzHDty7d+MuKcFdWkqOUowqLISqKn7+ySfsrK6myuejKhikOhxmmFK8Eg4D0BvwHXDpscA5gDktjUUeT6woYbHQLi2NXnY7nbt1g1NOIdPp5IU1a0jLzMSVnU1aTg6uNm0o7NIFOnakU2oqHrP5oJ9CPvBIA5+iFcg9pk4SQrQmzfmxlOnTp9OhQwcGDBiQ7FCEEEKIY5aU4oZS6jMgr55Dv9v/hdZaK6XqW87lDuADrXXR3lm/D0Zr/QrwCsRmMj+6iJu/cW+8QUVZGS8uXMhlEyfy0HPP8egvfwm33gqdZYq/VkVr6oqLqdi2DXdREe5du6gsLsbo8zG6Y0dwu5k4fz7f7t6N2+ul0ufDHQrRHZgXjUIkwjBg7QGXvRAYZTSCy8UGr5dqpUi32eiemorL6WRAhw4QnzdiysaNWF0u0tu0IT0vD1dBAVkdOkDbthiMRrY1EL4F+HmCukYIIY5Uc30spaKigk8//ZR77rmHQ+VSQgghRHOQlOKG1vqgoy2UUnuUUvla62KlVD5QWs9pA4FzlFJ3ACmARSlVp7V+MEEhN3tGi4WHPvuMB/1+Pnz8cXovXQoTJ/LZE0/wp8xMxv70p4x+9FEsKSnJDlUcAW95OZXbtlGxbRvVu3czqLAQKip4b/FilmzYQEV1NRW1tVR6vRjDYRalpIDbzU/CYd4/4FqdgNEARiNfGY2s0poMi4Vsh4OuTic927SBIUMgI4M/ff89IbudjPx8MgoKyGjXjswOHaBNG1CKBYeI++qE9IYQQojD9d577xEOh+WRFCGEEC2G2rvO+fFCKfUUULHfhKKZWuv7Gzj/JqD/4ayW0lzWoG8yRUXM/M1v+PW777IjEiFbKW469VTGPvYY3S6+ONnRtSo6GqV6505S/X6MlZWs/fprln/1FRWlpVRUVFBRVUVlbS1vnXACVreb32/fzqTaWvz7XUMBIWJLg94GvAlkGo1kmc1k2e3kp6by5rBhkJnJB3v2UBKNkpGbS0ZeHhnxkROFPXtCSgrIX/GEEMegoTXoW6rmkmPsHaUxePBgtm3bxqZNm2TkhhBCiGajoRzjeJxzYyLwT6XUrcAO4n/kVUr1B27XWje00IA4EoWFXD5tGqPeeINP//xn/v7iizy7ciVvDx3K94MGYRw3Dn355Si7PdmRNjvBmhpK16+nbMsWynfsoLyoiPKSEq7t0IEcn4/3v/uOp9eto9znozwUojwaJQxsI7YG8lxik2NC7D9plsFAltlMXWEh1s6dOa1NG+6uriYzM5Os3Fwy27Qhq6AAzjsPcnJ4IT2dl53Og8Z3qOVAhRBCtGwLFizgwQcflMKGEEKIFuO4G7mRSM3lryrJVLJqFRuff55B8+cT3rKFk41GLuzTh7F//CO9Ro1KdnjJoTWe0lLKNm4kIxjE5fOxY9063lm4kNKyMsrcbspqaij3evlrWhoDa2uZ7vFwbT2X+g9wVnY2c6xWnqqtJcfpJNvlIjsjg+ycHMZcfDFZnTpRbjJRa7WS3aULKXl5ssKNEKJZaU0jN/abUHTspk2bkh3OIe1fzPjuu+/o27dvEqMRQgghjkxDOYYUN0T9olHKZ8/m7l/9ipnff08QGJiSwrhrruHqiRNxZGcnO8JjEqmro+i77yjbsoXSbdsoKyqidPduzs3MZIDRyMZt27hh5UpKAwHKIhG88fdNBW4kVqQ4B7ADuUYjOVYrOU4nE049ldN79GC7ycSnJSVk5+eT06ED2R07kn3CCWR27oyhgZU8hBCiJWhNxY29mkuOsbe4ceKJJ7Ju3ToZuSGEEKJZaW6PpYjjgcFA9mWXMe2yyyhfv56p99/PKx9/zM2TJ1MwbRpDxowhdPPNmE87Lalh6miUupISKrZupWL7dlyhEF1sNgIlJUycM4eKysrYpJp1dVT4fIyx27nL76fE46FjPdebaDQyoG1bnC4XWQ4HPfLyyMnIIDc3l5y8PM466yzo04fTMzKoc7lw5ta/aGhHYkubCiGEEMeja665RgobQgghWhQpbohDyj7xRH49Zw73RKMsfeklBi5bBq+/zvgXX2SRw8GVgwbhTEnBYDSS6XRy7emng8HAvNWrKfN4MBgMGIxGDAYD2S4XF/XrBwYD89esoTYQwGAwYDSbY8fT0zmtRw9Qio/+/W+Kd+6korSU8vJyKqqqOMlq5a70dKiooNP69eyORAjuF+ttwEvEvrAfAVKBLJOJLKuVbIcDV9eucMYZ5GZm8urmzeQUFJDbqRM5nTuTe+KJpOTlgcFAAfBhA31ijjchhBCiOZJVUoQQQrQ08liKODpuN1PuvpunZ8xgTSCwb3dPYG18+yxg6QFvOx34Ir7dF1h9wPHBwKfx7U7A9vi2mdikmpe7XDzfpw9kZXHvpk2YnU6ysrLIys0lKz+fbj170uPUUyEri3BaGiabrVE+XSGEEIdPHks5fu0drdGa8j8hhBAthzyWIhpfRgY3vfkmY6ZOpXrnTiLBIJFQCEP8GNEo/yopwe/zEQ2HiUYiRMNhLCYT5OdDNMq7W7fi8/mIhMP7zkm126F9e4hGmVdSgj0vj6zOnUnNz//RpJpPHyJE+eIWQghxOJRSnYHfAS6t9ZXxfaOB4UAaMFlr/UkSQxRCCCHEIcjvf+KYKIOB9A4d6j2WV1DQ4Hu79+7d4PGeRx2VEEKI1kIp9RowAijVWvfeb/9Q4C+AEXhVaz3xYNfQWm8FblVKzdhv3yxgllIqA5gESHFDCCGEOI5JcUMIIYQQzdkU4G/EFrQCQCllBJ4HhgBFwAql1BxihY4nD3j/LVrr0gau/1D8WkIIIYQ4jklxQwghhBDNltZ6sVKq4wG7BwCb4yMyUEq9A4zSWj9JbJTHIanY5BQTgQ+11l8f5JxxwDiA9u3bH1X8QgghhGgchkOfIoQQQgjRrBQAO/d7XRTfVy+lVJZS6iXgZKXU+Pjuu4nNc32lUur2+t6ntX5Fa91fa90/JyenkUIXQgghxNGQkRtCCCGEaNW01hXA7Qfs+yvw10O9Vyk1EhjZpUuXBEUnhBBCiMPRqoobX331VblSakcjXzYbKG/ka4oY6dvEkH5NHOnbxJG+TYxE9Wv9M003nV1Au/1eF8b3NTqt9VxgrlLqsuaUY+xdErYVk+8piSN9mxjSr4kjfZsYTZ5jtKrihta60ceMKqVWHmydXXFspG8TQ/o1caRvE0f6NjFacL+uALoqpToRK2pcC1yXyBtKjtG8SN8mjvRtYki/Jo70bWIko19lzg0hhBBCNFtKqWnAMqC7UqpIKXWr1joM3AV8DPwX+KfWem0y4xRCCCFEYrWqkRtCCCGEaFm01j85yP4PgA+aOBwhhBBCJImM3Dh2ryQ7gBZM+jYxpF8TR/o2caRvE0P69fgm/z6JI32bONK3iSH9mjjSt4nR5P2qtNZNfU8hhBBCCCGEEEKIRiMjN4QQQgghhBBCCNGsSXHjGCilhiqlNiilNiulHkx2PC2BUqqdUmqhUmqdUmqtUuqXyY6ppVFKGZVS3yil3k92LC2JUipdKTVDKbVeKfVfpdTAZMfUEiil7ol/L1ijlJqmlLIlO6bmSin1mlKqVCm1Zr99mUqpT5VSm+IfM5IZo/gfyTESQ/KMxJIcIzEkx0gMyTEaz/GSY0hx4ygppYzA88AwoCfwE6VUz+RG1SKEgXu11j2BM4A7pV8b3S+JrR4gGtdfgI+01icCJyF9fMyUUgXAL4D+WuvegJHYkp7i6EwBhh6w70Fgvta6KzA//lokmeQYCSV5RmJJjpEYkmM0MskxGt0UjoMcQ4obR28AsFlrvVVrHQTeAUYlOaZmT2tdrLX+Or5dS+ybd0Fyo2o5lFKFwHDg1WTH0pIopVzAIGAygNY6qLWuSm5ULYYJsCulTIAD2J3keJotrfVioPKA3aOAN+LbbwCjmzQocTCSYySI5BmJIzlGYkiOkVCSYzSS4yXHkOLG0SsAdu73ugj54diolFIdgZOBL5MbSYvyLHA/EE12IC1MJ6AMeD0+HPdVpZQz2UE1d1rrXcAk4HugGKjWWn+S3KhanDZa6+L4dgnQJpnBiH0kx2gCkmc0OskxEkNyjASQHKNJNHmOIcUNcVxSSqUA/wJ+pbWuSXY8LYFSagRQqrX+KtmxtEAm4BTgRa31yYAHGd5/zOLPZo4ilti1BZxKqRuSG1XLpWPLp8kSaqJVkDyjcUmOkVCSYySA5BhNq6lyDCluHL1dQLv9XhfG94ljpJQyE0s43tJaz0x2PC3IWcClSqntxIY4X6CUejO5IbUYRUCR1nrvX/9mEEtExLEZDGzTWpdprUPATODMJMfU0uxRSuUDxD+WJjkeESM5RgJJnpEQkmMkjuQYiSE5RuI1eY4hxY2jtwLoqpTqpJSyEJuAZk6SY2r2lFKK2DOF/9Va/1+y42lJtNbjtdaFWuuOxL5eF2itpULdCLTWJcBOpVT3+K4LgXVJDKml+B44QynliH9vuBCZRK2xzQHGxLfHALOTGIv4H8kxEkTyjMSQHCNxJMdIGMkxEq/JcwxTom/QUmmtw0qpu4CPic2u+5rWem2Sw2oJzgJuBFYrpb6N7/ut1vqDJMYkxOG4G3gr/ovIVuDmJMfT7Gmtv1RKzQC+JrbCwTfAK8mNqvlSSk0DzgOylVJFwARgCfJDyQAAIABJREFUIvBPpdStwA7g6uRFKPaSHCOhJM8QzZHkGI1McozGdbzkGCr2+IsQQgghhBBCCCFE8ySPpQghhBBCCCGEEKJZk+KGEEIIIYQQQgghmjUpbgghhBBCCCGEEKJZk+KGEEIIIYQQQgghmjUpbgghhBBCCCGEEKJZk+KGEKLJKaXSlVJ3xLfbxpfiEkIIIYQ4JpJjCNF6yVKwQogmp5TqCLyvte6d5FCEEEII0YJIjiFE62VKdgBCiFZpInCCUupbYBPQQ2vdWyl1EzAacAJdgUmABbgRCACXaK0rlVInAM8DOYAXGKu1Xt/0n4YQQgghjjOSYwjRSsljKUKIZHgQ2KK17gf85oBjvYHLgdOAxwGv1vpkYBnw0/g5rwB3a61PBe4DXmiSqIUQQghxvJMcQ4hWSkZuCCGONwu11rVArVKqGpgb378a6KuUSgHOBN5VSu19j7XpwxRCCCFEMyM5hhAtmBQ3hBDHm8B+29H9XkeJfc8yAFXxv8gIIYQQQhwuyTGEaMHksRQhRDLUAqlH80atdQ2wTSl1FYCKOakxgxNCCCFEsyU5hhCtlBQ3hBBNTmtdASxRSq0BnjqKS1wP3KqU+g5YC4xqzPiEEEII0TxJjiFE6yVLwQohhBBCCCGEEKJZk5EbQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNZMyQ6gKWVnZ+uOHTsmOwwhhBCiRfvqq6/KtdY5yY6jKUmOIYQQQiReQzlGqypudOzYkZUrVyY7DCGEEKJFU0rtSHYMTU1yDCGEECLxGsox5LEUIYQQQgghhBBCNGtS3BBCCCGEOEpKqZFKqVeqq6uTHYoQQgjRqklxQwghhBDiKGmt52qtx7lcrmSHIoQQQrRqrWrODdEArSESIRIM4q+rIxIMEgmFiAQChINBMlNTsRgM1FRVsae0lEgwSDh+jsFopGufPtjy8yElBZRK9mcjhBBCCCFEk9Jas3PnTtq1a4eSfFiIJifFjRbOvXUrn/zlL5yxaxcdVq7kk8pKrq6tJQxE9mufABcC7wI/qec6XwIDgOnAuHqOrwF6AS8YDEzQmgyTiQyLhXSbjQyHg79dcAHZ+fksr6vju+pqMnJyyGjThoyCAtILCujYpw+G9HQwGhPRDUIIIYQQQiTUhAkTePTRRxkwYAD33Xcfl112GSaT/LolRFOR/20tTDQc5ptp0/hwyhQ+XLGCL2priQL/Z7dzz/DhFJrN3PTf/2I0GDAajRiNRkxGIx1POQVycuhXWcmfNmyIHTOZMJlMGE0mOvTvDxkZnF9ezj+2bcNkNseOm81EwmE6dOoEPh8nfvMNV373HVV1dbg9Htx+P9tqajC+/z5UV/NeOMzEeuL2AnaleMhi4a1IhAyzmUybjeyUFLJdLp677DJUdjYrqqtxG41kd+hAVseOZHfpgiMnB2WQJ6yEEEIIIURyvPzyyzz66KMMHTqUTZs2cfXVV9OpUyfuuecebrnlFpxOZ7JDFKLFU1rrZMfQZPr3769b4jJtFZs2UTp7Nj1WraL6ww/JLi8nAvR3OBh66qkMu+EGBowZg9FqTW6gWuMrL6d861aqiopw796Nu7iYqtJSxvTqBW43b37xBR9v3ozb46HS66U8ECAcibA1GgXgGuCfB1y2A7C9bVvIzmZCTQ3rw2GyXS6yMjLIzsmhQ8eOjLroIsjOplRrbPn5pLZtKwURIYRIEKXUV1rr/smOoym11BxDCHFoc+bM4bLLLmPo0KHMnj0bpRSzZ8/mqaee4osvviAjI4M77riDu+66i7y8vGSHK0Sz1lCOIcWNZigaDrPyH//gw6lT+WjlSpbX1XE2sCgzEy6+mI8KCjjlppvI7dUr2aE2nnAY3G6+X72anevXU15URPnu3ZSXlmL0ermvc2eoqOCOL79kgdtNeShEpdZo4GTg6/hlBgAriA1ZylSKTLOZczMyeGnAAMjM5KmtWwlarWRlZ5OZl0dWfj7tu3ena79+kJkpc4oIIcRhkOKGEKK1+OKLL7jgggvo3bs3Cxcu/NEIjaVLlzJp0iRmzZqF2Wzmxhtv5N5776VHjx5JiliI5k2KG3HNOfGo3roV17Jl8OGHXPHuu8wMBlHAAKeTof37M3zMGE776U9lzor9RIJBqnbswFdcTKHJBBUV/Oujj9j+/fdUVFRQWVVFRW0tXY1GnsjIgIoKuhUVsemA/xNXADPi2wVA1GAg02wm02ol0+FgeOfOjDvjDMjI4KU1a0jNzCSjTRvS8/LIKCgg74QTyOjUCWy2pu4CIYRIitZU3FBKjQRGdunSZeymTZuSHY4Qoglt2rSJM888E5fLxdKlS8nNzT3ouRs3buSZZ55hypQp+P1+RowYwX333cegQYNk8lEhjoAUN+KaU3EjEgyyYupUPvzHP/joq6/42uNhD5CZnc2Hffrg7tGDi+6+m+wTT0x2qC2Ov7oa97ZtVGzfTuXOnaSGQpycng4VFfzuvfcoc7uprK2l0uOhwu9nlNnMI5EIQa+X+h78uQ94CqixWOgWDpMen2w1w24n3eHgul69GHHyydTZ7byzcSMZubmkt2lDRn4+rvx88k44AWfbtmA2N3FPCCHE0WlNxY29mlOOIYQ4dnv27OHMM8+kpqaGZcuW0aVLl8N6X1lZGS+88AJ/+9vfKC8vp3///tx3331cccUVMvmoEIdBihtxzSLx2LqVf91+O7d99hkVWqOA01NSGHbaadwxfjzZF14IMlfEcUkHApRt3hybT6SoiKqSEtx79tAtJYVTUlOp3rOH33z8cWyyVa+XKr8fdzDIfVYrt/v9bIhEqK9U9SJwO7DKYuGicJg0oxGX2YzLaiXNbufek07irG7d+B54d8sW0jIycGVl4crOJi03l559++IqLCSSkoIhNVXmGhFCJJwUN4QQLVldXR3nn38+a9euZeHChZx++ulHfA2fz8fUqVN5+umn2bRpEx07dtw3+WhKSkoCohaiZZDiRtzxnHhs+vRTfH/7G33nzaPYYOCBwkKGDR/ORb/4BVlduyY7PJFoWhOuqqJ4wwbcRUW4d+3CXVJCTUUFp+fm0t1mY+v33/Onf/+bGq+Xap+Par+fmmCQp9PSuCgQ4KOaGobVc+mPgIuBmcBVQJpSpBoMpJpMpJpM/L1PH/rk57PU5+PtXbtIdTpJTU0lNS2N1PR0Rg8aRHpeHntCIcqCQVJzc0nNzyc1Px+z3d6k3SSEaB6kuCGEaKnC4TCjRo3io48+Yvbs2YwYMeKYrheNRpk7dy5PPfUUS5YsIT09nZ///Ofcfffd5OfnN1LUQrQcUtyIOx4Tj/++/z6P330307Zv50KDgU9+8Qv4zW+gbdtkhyaamWg4TF1JCdW7dlFTUkJ1SQnVe/ZwWn4+2VqzZsMGpi9fTnVNDbVeL7U+H7V+P8+1a0e3cJh/FBfzq8pKarUmtN91NwDdgEnAbw64pxXYmplJ2/R0XgkEeKOmBqfZTIrVitNmI8Vu55mLLsLmcrG4tJS1bjcpLhfOtDRSMjJwZmRw5hlnoFJTqdUalZKCIzsbgwzLFKJZk+KGEKIl0lozduxYJk+ezMsvv8y4ceMa9frLli3j6aefZubMmZjNZq6//nruvfdeerWkRQKEOEYN5RjyG0SSrJk5k0d/9Sve3bkTO/Dr/v25d/Jk6Ns32aGJZspgMpFWWEhaYWG9x3vH28HcGG8AgZoaaouLqd2zh0KnE/x+Rq1fT/s1a6itqoq1mhpq6+pI79sXfD4s69Zh9/moDQYp9njwRCLURSL8dds28PmYDrxwwD3NQDC+fTfwRnzbATiVosBs5ptu3cDh4OHSUlZ4vTgtFhxWKw67nbbp6fzuggvA6WTuli2UBYM4UlNxulw40tLIbtOGk/r1A4eDCr8fY2oqzpwczA7H0XSxEEIIIVqxRx55hMmTJ/PQQw81emEDYODAgcyYMYPNmzfz7LPP8tprr/H6669zySWXcO2115KdnU16evoPms1mkwlJhYiTkRtN7dtv4dFH+b+ZM5kA3D1wIPdMnkyOLAclWrJoFG95OTUlJdSVlVFXXo6nshJ/TQ0Xdu0KdXV8vGIFq7Zupa6uDo/HQ53XizkS4blevcDr5f61a1lQWYk3HMYTieCNRikAvo1/DzsXWHzAbfdfBrg/8FV82wTYgfMtFmbn54PDwZXFxZREIjjMZuxmM3aLhdPz8rinf3+w23nq228JGY3YHY5Yczrp1qEDA/v1A7ud5du2YXY6saWmYktLw+ZykZadjTMrC6xWWUJYtCoyckMI0dJMnjyZn/3sZ9x000289tprTVJQKC8v58UXX+S5556jrKys3nMsFsuPCh6H21wuF9FoFJ/Ph8/nw+/3/+DjofYd7Hh6ejp/+ctfyMvLS3gfidZHHkuJS2biseKNN3j0gQe4Ys8exrhceO+4A/+tt5J5wglJiUeIFiMaBb8f965d1JSW4nW78brdeKqqsITDnNG+PXi9/HPxYnaVleGpq8Pr9eLz++los/HLLl3A5+OWL75ge10dvnA41iIRzrVYeMVuB6+XXK+XA9OKG4Gp8W0bEDjg+M+JjVaJACnxc2wGw742Ljube9q3p85s5ur167GZTNgsln1tVPfuXHziidRozUvffovVZsNqs2Gz27E6HPTv3p2unTrhiUb5ZudOrE4ntpQUrCkp2FJTyc7Lw5GZSdRsBqtVHvcRTUaKG0KIluSDDz7g0ksvZciQIcyZMwfzQVawe+utt7jnnnsYMWIEzz77LGlpaY1y/0AgwNatW6murqaqquqgrb7jfr+/UWI4kNFoxG63Y7fbsdlsP9hevXo1hYWFLFiwgIKCgoTcX7ReUtyIS0biseyVV3j0oYf4sKyMDKWYOHIk4954A9LTmzQOIcSx0dEowbo6fG433spKfFVV2LWmbWoq+Hx8/O9/46urw+/x4Pd68Xu99MjM5NyCAkIeDw99+in+QCDWgkH8wSCX5uRwfXY2lbW1DF29Gl84jD8a3dd+azZzTyTClkiE+haY+xtwJ7AKOKme468DNwFLgLOJPQZkBaxKYVWKV3NyGJaezrJwmF+WlGA1GrEYjbGPJhMP9+nDSW3a8FVNDa9t2YLFYsFqsez7eNMZZ1CQk8MGt5sl33+P1WbDsl8755RTSHG5KKmtZbfbjcXhiDWnE4vDQZuCAow2G2GDAWW1YrRYEvOPJ5pccy9uKKXaA38FKoGNWuuJh3qPFDeESAytNeFw+KAFhURbsWIF5513HieeeCKLFi066Eomn3/+ORdccAF7f7cyGAwMHjyYl156iU6dOjVlyD/g9/sbLIoYjcYfFSfqK1gcuN3QsrVLlixh2LBh5ObmsmDBAtq3b9+En7Fo6aS4Edekicfixdx1/fU8X1REtlLce9FF3PHqqwedD0EIIQ5Gh8N43W4CNTUEamsJ1NURqK0lx+kk02aj1u3mi2++IRAvqgS8Xvw+H4M6dqRrWho7SkqYsnw5/kCAQCBAIBgkEAxyZ5cunJySwoqSEv6wbh3BSIRAOEwwGiUQifD3Nm0YYDAwq7qasW43Qa0J8L8RKiuIPe7zCnBbPXH/FzgR+D/g3nqO7wQKgUeACYABsBArwliUYmtuLmk2G3+uq+ONujrMSmE2GGLNaGRh//4YLBZe3rWLzyoqMJtMmI1GzCYTKVYrz55/PpjN/HPzZtZUVmI2m7FYLJgtFlxOJ7cOGgRmM59v3kxxbS0miwWz1YrZYiEtLY1zTj4ZTCbWFRXhDYcxW62YbDbMNhvO1FQK2rUDs5lqrxdMJswOR+y4w9Hql1xOZnFDKfUaMAIo1Vr33m//UOAvgBF4taGChVJqOJChtX5TKTVda33Noe4rxQ0hGl9VVRVXXXUVK1as4De/+Q2//OUvm3SZ1C1btjBw4ECcTifLli076GMWGzZsoE+fPoTDYd5//31WrVrFpEmTqKioAKBfv34899xznH322U0We7J9+eWXXHzxxaSnp7Nw4cKkFnhEy9IsixuHSkKUUlZiI8JPBSqAa7TW2xu6ZqITDx2NsvCZZzj1vfdwLVnC3PR0Npx9Nre/+iopbdok7L5CCNGUdDRK2O/HGA5jCIfxuN2Ul5QQqKsj6PUS8vkI+nz07dABu1Js3bGDNVu2EPT7Yy0QIOj3c8Mpp+AAFm/YwKLNmwkGg7EWChEMhfi/AQOwRiJMXb+eOUVFhCKRfS0cibCwZ08IhXh4506mu92EtCYUjRLSGhuwJTUVQiGu9/l4+4CfdW2BXfHt4cAHB3yO3YH18e365nM5Fdj70+QU4JsDjp8PLLBYwGymv9/P9mgUk1KYAJNSXOR08krbtmAyMWT7dqqiUUwGA6Z48WZIdjbju3UDk4nrv/mGMMSOG40YjUbOLyjgxh490AYDv166FJPRiMlkih03mTirY0eGdO9OEHj+yy8xmUwYTabYOWYzp3TqRL8TTgCnE0aPPqqvg4YkubgxCKgDpu4tbiiljMBGYAhQRKw29xNiOcaTB1ziFmJPk80ANPAPrfXrh7qvFDeEaFzbtm1j+PDhbN68mbPPPpuFCxeSk5PDb3/7W26//XZsNltC719WVsaZZ56J2+1myZIldO/evd7zysvL6dSpE3V1dbz00kvcdtv/yv0zZszggQceYOvWrQC0a9eOxx57jJ/+9KcJjf148fXXXzNkyBAcDgcLFiyga9euyQ5JNJFp06Yxb948pkyZ0uAon6PR7IobB0tCtNbr9jvnDqCv1vp2pdS1wGWH+stKohIPHY3yycSJPDpxIktqa3kqLY37HnkExo4FWZVBCCGSTkejRIJBQh4PQY+HSCBAZkoKhELs3rWLmqoqwn4/oUCAkN+PGTi5c2cIhfhi1SrK3G7CgQChYJBQMEi6xcLwXr0gHObtZcsoqaoiFAoRCgaJRCK0T0nh5vjxR5csYY/HQzgcJhQOE45E6Jeezj1dukAoxI3Ll1MZDMaKNtEo4WiUwWlp/CEvD8Jh+q9fT100SkRrwvF2g83Gkw4H4VCIzKoqIkA43qLElm3+M1AFZNTTH48Avwdo0wZKShq9v5P9WIpSqiPw/n7FjYHAH7XWF8dfjwfQWh9Y2Nj7/vuA5VrrxUqpGVrrKw9y3jhgHED79u1P3bFjR2N/KkK0SsuWLWPUqFGEw2Hee+89zj33XL744gt+97vfsWDBAgoLC/nDH/7ATTfdlJDHVbxeLxdccAHfffcdCxYsYODAgfWe5/f76dSpEyUlJdx///386U9/qve8FStWcOedd7JixQoAXC4Xv/rVr3jooYca/Re/4813333H4MGDMZvNzJ8/nx6yiEKLFwwGyczMxOv1sm3bNjp06NCo128wx9BaH3cNGAh8vN/r8cD4A875GBgY3zYB5cSLNQdrp556qm5U27frWX376gFOpwZ0odGon7/mGu1zuxv3PkIIIcRhikYiOhIIaO3z6WhNjXZv367LN27UJatX66KVK/WOpUu1+5tvtN64MdYSAFipk5tHdATW7Pf6SmKjQPe+vhH4WwPv701s5MZLwKTDuWej5xhCtFLvvPOOtlqt+oQTTtDr16//0fH58+frM844QwO6S5cu+q233tKRSKTR7h8KhfTIkSO1wWDQ77333kHPi0QiumfPnhrQV1111WFde+fOnfrSSy/VRqNRA9pisegxY8Zodwv/3WHNmjW6TZs2Ojc3V69evTrZ4YgEu/baazWgf/7znyfk+g3lGEkvZNQb1GEkIcAaoHC/11uA7Iau29iJR9Rs1sSGrOqx3btrf01No15fCCGEaI6ae3HjCO81EnilS5cujduJQrQy0WhUP/744xrQZ599ti4rK2vw3Dlz5ui+fftqQPfp00fPmjVLR6PRY47htttu04B+/vnnGzx3yJAhGtCnn376Ed/H4/HoO+64Q9vtdg1og8GgBw8erDdv3ny0oR/31q9fr9u2bauzsrL0119/nexwRIKsXr1aAzojI6NRi477ayjHaPEznimlximlViqlVh5sfeijVTdpEntXuP77hg20dbl4//e/b9R7CCGEEOKY7QLa7fe6kP9Nu3JMtNZztdbjXC5XY1xOiFYpGAxyyy238Lvf/Y7rrruOzz77jOzs7IOer5Ri5MiRfPPNN0ybNg2/38/o0aM544wz+Oyzz/YWHo/YE088wcsvv8z48eO54447DnreuHHj+PTTT+nYsSP/+c9/jvg+DoeD559/nrq6OiZNmkRmZiafffYZXbp04aSTTuLzzz8/qviPZ927d2fx4sU4nU4uuOCCfY/oiJbl0ksvBeDNN9/EkITJ1Y/X4sbhJCH7zlFKmQAXsYlFf0Br/YrWur/Wun9OTk6jBpn6i1/g3rGDNipW4qjUmpGPPcZVNhu8916j3ksIIYQQR20F0FUp1UkpZQGuBeY0xoWVUiOVUq9UV1c3xuWEaHXcbjdDhw5lypQpTJgwgTfffBOr1XpY7zUYDFx77bWsW7eOV199leLiYoYMGcIFF1zA0qVLjyiOKVOm8NBDD3HjjTfy+OOPH/S8J598kr///e9kZGSwevXqY5ozw2AwcO+991JWVsbMmTPp0qULq1at4vzzz6ddu3a8/voh5zI+7pSWljJ9+nQWLVrEzp07iUaj+46dcMIJLFq0iIyMDAYPHsyyZcuSGKlobE8//TTbtm3jrLPO4pJLLklKDMfrhKImYhOKXkisiLECuE5rvXa/c+4E+uj/TSh6udb66oaum6gJRWuKirigWze+8vkAeBb4JTAnM5PQLbdwxVNPNfo9hRBCiONVkldLmQacB2QDe4AJWuvJSqlLiP2INgKvaa0P/tvLUZDVUoQ4clu2bGH48OFs27aNyZMnc8MNNxzT9QKBAC+//DKPP/44paWlDB8+nMcee4x+/fo1+L6PP/6YESNGcN555zFv3jwsFku9502bNo3rrrsOm83Gpk2bKCwsPKZ46/P1119z55138sUXXwCQlpbGL37xCyZMmHBcTj5aUlLC5MmTmTdvHmvWrKG2tvZH5yilMJvNWK1W7HY7drudkpISwuEw5557Lr1796agoICCggI6dOhA586dycvLS8pf/sXRqampIScnh2g0yp49e8jMzEzYvZrdaikA9SUhSqlHiD1jM0cpZQP+AZwMVALXaq23NnTNRCYetbt3M7JHDy6tqeHXBgPRaBQn4AfaGgw8c/fdXP3sswm5txBCCHE8SfZqKU1JKTUSGNmlS5exmzZtSnY4QjQbS5YsYfTo0USjUWbNmsU555zTaNf2eDz89a9/5c9//jNVVVVcffXVPPLII/Uu5/r1118zaNAgunbtyqJFi0hLS6v3mv/5z38499xzUUqxfPlyTjnllEaLtz67d+/mzjvvZO7cuUQiEQCMRuMPigQOh4PU1FRcLhcZGRlkZmaSk5NDbm4ueXl5FBQU0K5dO9q1a3fQgs2R8Pv9rFu3jtdff50FCxawdetW/H7/vuMWi4WsrCy6dOlC165dKSsro6KigqqqKmpqavB4PPj9foLxlcUOxWAwYDKZsNls2O12bDYbxviS6HubyWT6wfbBmtls3vdx/7a3YBSNRolEIkQiEaLR6L7Xe7cbeq21JhKJoLXed8xgMJCZmUl2dvYP/j0KCwvp0KEDqampx/zvcTwZMmQIn332GQ8//DB/+MMfEnqvZlncSIRE/1VF19Sghg+HpUt5ITOTO8vLf3A832DgmTvu4JrnnktYDEIIIUSytabixl4yckOIwzdt2jRuvvlm2rdvz7x58+jatWtC7lNVVcWkSZN49tln8fl8jBkzhgkTJuxbmnLbtm0MHDgQq9XKsmXLaNu2bb3X2bJlCz179iQUCjFr1qx98wo0Bb/fzwMPPMCiRYuoq6vD4/Hg8/kIBAKEQqHDKhLstbc4YrFY9hVHotEowWAwtlx5KLTvmvv/In80vy+efvrpLF26tMHRF5s3b2bYsGHs2LGDsWPH4nK5KCkpobS0lMrKStxuN7W1tfuKInsLCPqHkzof9Rwryba3eGO1WrHZbDgcDlJSUuotVrVt25a2bdtyzjnnNEqhqjF9/vnnnH/++RQUFFBUVJTw+0lxI65JEo+6OhaeeSaXrF7NmB49mPLf/xIArEAAOB9YkJcHkybB9dcnNhYhhBAiCaS4IYSoj9aaxx9/nN///vcMGjSImTNnkpWVlfD7lpaW8uSTT/Liiy8SjUa57bbbuP3227niiisoLS1lyZIl9OjRo973VlZW0rFjR2pra3nuuee46667Eh7vkQoGgxQXF1NUVMSuXbsoLi5mz549+0ZOuN1uqqur9xUK9i+OKKX2/ZJtNBoxGAyEQqF9BY/9f1c0Go24XC4KCgro2bMnmZmZpKSk7GtpaWmkpqbyyCOPsG7dOk4++WRWrlzZYIGjvLycIUOGsG7dOv71r38xYsSIY+6PcDiM3+/f1wKBAMFgkEAgUG8zGAw/GAVy4Ov9P+5/bG/b+5799/n9foqKiigqKqK4uHhf0aa8vJzKykqqqqqora2lrq4On8+H3+8nFAr9qM8PlJ6ezs6dO/l/9s47LKprfdvPnkbvHVGDCtgLIGKPiiF2sccW/UwsiS3GeKxHjSXR2AKWeI4tJ2oSu7FhjBKDEhN7b6igIiIiInUYZp7vD4b9A0GkDEWz7+taFzO7rPXuYcpaz36Lubl5qV8nQ6DT6eDs7Iz4+Hj8/fffaNq0aZmPWegc41VlVN7GVl416JNjY9nWyooygP/98EO2sbLKrmUN8IGjIwnwC4BOgsAfRo4sF5skJCQkJCTKC1RwKdgMYAjpAAAgAElEQVTybJBKwUpIFAm1Ws0PP/yQADh48GBmZGQU6bzPPvuMPj4+PH36dKltuH//Pj/++GPK5XICoJGREcPDwwu12dXVlQA4adKkUo9fGbl16xanTJnCxo0b09jYmADEZmVlxbZt23LZsmVMSEgocp9arZaNGzcmANavX58ajabQ4xMSEujr60ulUsldu3aV9pLeeLRaLR89esS//vqLO3fu5MqVKzljxgy2b99eLH1cWZg8eTIBsHv37uU2ZmFzjAqfFJRnKy9xgyRT4uL4rrU1ZQB/GD2a2ydN4mKlkgSYamfH7lZWFPRfHI6CwE0jRpSbbRISEhISEmVJUcUNALaFtaL0UVlaec4xJCTeNBISEti2bVsC4Ny5c6nT6V57jlarFc/JaT4+Prx27Vqp7bl9+zbHjBnDAwcOFDp+gwYNCIBBQUGlHrMycfbsWXbp0oUmJiZ5Xl8bGxu2a9eOwcHBTExMLNUYWq2Wfn5+BEAvL6/XChzPnz9n8+bNKZfL+dNPP5Vq7LeZpk2bEgCHDRtW0abw0aNHlMvlNDY2Znp6ermNK4kbFTTxSI2PZztrawoA/54zh0xPJzt3ZiBAAWD/qlXZQb8fAOvK5eR//1uuNkpISEhISBiaYogb9wDc1f/VAniK7LLuWgD3itJHZWmSuPHPJjIykg0bNuTx48cr2pRKx+3bt+np6UmVSsUtW7YU6ZykpCS6u7sTAGvWrMnQ0FDWqlVLXIS3bt2a0dHRZWp3p06dREHlbeDJkyf85JNPaGdnJ76OZmZmDAgI4KpVq5iUlGTwMbVaLVu1akUArFGjBtVqdaHHv3jxgm3atKFMJuP//vc/g9vzNpCRkUFbW1sC4Lp16yrUFh8fHwLg2rVry3VcSdyowIlHanw8v/Pyog4gN20iSYbOn09L/ZeKnSBwz7RpDLSz4ziABJhgY8N57dsz8d69crdXQkJCQkKitBQ3LAXAfwF0zvW8E4C1xemjopoUliKRnp5OK30IsoWFBbVabUWbVGkIDw+nnZ0d7ezsCg3/yM2tW7doaWlJAAwICMjzeu7bt49ubm4EQEEQGBgYyLi4OIPb/cknnxAAq1Wr9lqPg8qMRqPhkiVLWLNmTVHQkMvlbNWqFQ8ePFhuduSEU1SvXv21d/hTUlLYvn17CoLA9evXl5OFbxaRkZFUKBSUyWQ8f/58hdiwfft20SunvJHEjQoUN0iSaWlkx468DnCzPseGJj2dffRfzgA4vlYt8sED8v332SeXe5iDILBPlSo8umRJxdguISEhISFRTEogblwuyrbK3N6Wu7sSxScnt0BO69evX0WbVCnYvHkzVSoVPT09efv27SKdExoaSqVSSQAcN27cK4/bunUrHRwcCIAymYy9e/c2mOfB4sWLCYDW1tZl4s1QHuzfv58tWrQQc4sAoIeHB1esWFFhYk2OJ0yVKlWYnJxc6LFpaWkMDAwkAK5Zs6acLHyz2LFjBwHQ3Ny83N+nGo2GFhYWFAShyJ9tQyKJG5Vh4pGWxiEuLhQArssVIxW+ahXtBYHrANLSkgwNZcLt25zTti0bGhtTmevH8rxcTjZqxL9HjWJCBbyRJCQkJCQkikIJxI3DAGYCeEffZgA4XJw+KrpJ4sY/k2HDhonztIULF1IQBALg7t27K9q0CkOn03HOnDkEwLZt2xY5EWVwcDAFQaAgCPzuu++KdM7q1atFrxm5XM5hw4aVKvY/5260kZERo6KiStxPRXD9+nX26dOHZmZm4nvS3t6eY8eOZXx8fEWbR5Ls2bMnAdDJyem1C/L09HR27dqVAPjtt9+Wk4VvFpMmTSIA1q5du1zHHTJkCAFwRCE5I2NjY7lt27YyGV8SNyrJxCPt2TMG2tsTAP87dOj/7dBqyeHDSUGgN8DODg5Mz5XE57fFiznK3Z10cCABOud8YQkCe7m68tevvqqAq5GQkJCQkCiYEogbtgC+BXAewDkAK96UhKJSWMo/lzVr1oiLyE6dOlGn03HWrFmiN8GxY8cq2sRyJyMjg4MHDyYADh069LU5FnIYNWpUdmVBlYpHjx4t1pharZYLFy6kqakpAVCpVHL8+PHF9lCIiIigTCajXC7n33//XaxzK4qkpCROnjyZzs7O4nvR2NiY3bt354ULFyravALp37+/KLy8TvhSq9Xs1asXAXDx4sXlZOGbRYsWLQiAAwcOLJfxrl+/TkEQaGlp+coQvJMnT9LV1ZWWlpbFqrJTVCRxo5KIGySZnpjI9/UCx9pBg/LsU//1F11ksuyYTYCnv/8+fwcJCVwSGMhGL3l1OANkgwbknDlMf/CgnK5GQkJCQkIiP8VIKPqD/u+EohxfmVtlmGNIlB+nTp0SvTSsra0ZGxsr7nN0dBQXmX/88UcFWlm+3L59m61btyYAzp8/v8gVUdq0aSO+jnfv3i3x+FqtllOmTKGRkZH4+s+aNatIOVDu3r0rnlfZS5FqtVquXbuWdevWFd+DMpmMvr6+3L59e0WbVySGDh1KALS1tX2tV0lmZqYoiAwdOpSbN29mZGRkkd5fFUVsbCz//PNPXrhwgbdu3WJMTAwTExOZmZlp8LHUarUYorVq1SqD9/8yOYl99+zZk2+fTqfjypUrqVQqWbNmTV68eLFMbJDEjUo28Uh//pydHRzYFmDW6tV59mk1Gn5Sv372FxXA4N69C+3r6JIl7OPmxlHGxiTARH0lFjtBYJCLC0PnzaP2DU6EJCEhISHx5lEMceMaAFcAFwHYQCoFK/EGEB8fn6eE5vbt23njxg3279+fU6ZM4dKlS0UPAnNzc0ZERFS0yWVKTEwMR40aRYVCQVNTU27durVI5yUmJrJ69epiPojX5WEoKmq1mmPGjKFCoRBzEixdurRQO3JCW5YvX16qsR8/fsyJEyfmEbsMxfHjx9muXTsxJwkAvvPOO1ywYAEzMjIMPl5Z8/HHHxMAraysXvt6aTQafvrppzQ3N88TctO1a1fOnz+fv/32W4XlR3n06BH37dvHOXPmsFu3bnR1dc2Tg+flplAoaGVlRRcXF9aqVYsNGzZk8+bN2aFDB3bv3p0DBgzgiBEjOG7cOE6dOpVffvkllyxZwjVr1vD7779nZGRkPhuioqKoVCopk8nK1Oto5cqVBMBmzZrl25eamiqGq3Tp0oXPnj0rMzsKm2MI2fv/Gfj6+vLMmTMVbQYAQP3iBTT9+8M8NBRZISFQjB2bZ/8vM2agz8KF0ACI6tgR1UNDAZms8E6fP8ed+fPRd/VqXE1PR6Z+swLATEdHzB45EimtW0Ph5wdja+uyuCwJCQkJCQkIgnCWpG8RjhsPYAyAGgBiAAi5dpNkjTIy0eBUpjmGRNmh0+ng7u6O+/fvQyaTYcCAAfjggw8waNAgkER6ejqysrIgk8mg0+lgbm4OADh69Cj8/Pwq2HrD8uzZM3z99dcICQmBVqvFyJEjMXPmTDg7O7/23Js3b6Jp06ZITk7Ge++9h0OHDkH2unluMUlLS8PIkSPx448/QqfTwdbWFkuWLMHw4cPFY7KysuDu7o6HDx9i3LhxCA4OLtWY06ZNw9dff4369esjLCwM9vb2JepHp9PhyJEj2LFjByIiInD37l1kZGQAAKytrdG7d2/MnTsXVapUKZW9Fc348eMREhICCwsLXLlyBdWqVSv0eK1Wi6tXr+LUqVNiu379OgBAEATUq1cPzZs3h7+/P/z9/VG7dm2Dvq8ePXqEs2fP5mmxsbHi+F5eXvDx8YGPjw88PT2hVquRlpaG1NTUPH8L2vaqv5mZmXlsMDIywuzZszF58mQolUpx+y+//IIePXrAzMwMDx8+hLWB13qpqamws7NDVlYWHj16BEdHR3Hf3bt30atXL1y6dAlz5szBzJkzDf55zk2hc4xXqR6vawB2AegCQFbSPsq7Vbq7KhkZTO7Uia0AruzbN9/uB3//zRUWFiRAVqvGpJs3i9X98eBg9q9alY6CwO/1ZWYn5ZSBAmgFsJZCwXetrXk+KIhcsYKJhw8z/Q3NDC0hISEhUTlA8XNurCnO8ZWxVbo5hkSZ8N577xEAzczM6OLiwunTp1MQBHp7ezM6OppJSUncvXu3mHcip8lkMg4ePJi//fbbG3mXPTfJycmcP38+LS0tKQgCBw8ezDt37hT5/IMHD4peFePHjy9DS7NJTExkjx49xBAOZ2dn7tixgyTZpEkTAmDXrl1LPU5WVhZdXV1Zr149GhkZ0dvbm4m5cugVxoMHD7ho0SK2b9+eDg4Ooq05zdbWloGBgTx58mSp7axsTJ48WfxMlSQsKTExkYcPH+acOXP4/vvv09raWnzdLC0t2bFjR86aNYsHDhzg06dPi9SnTqfjw4cPuXfvXv773/9mly5d8uQ1EQSBderU4eDBg7l8+XL+8ccffPHiRbFtLwoajYZJSUmMjY3llStX2KdPHwJg48aNefbs2TzHTp06lQBYs2ZNg5ekzql2M3369DzbDx06RBsbG1pbW/PAgQMGHfNVFDbHKI24EQBgC4A7AL4G4FXSvsqrVcaJhzo5mT30H5YCQ1C0WjIwkEMAGgElTx6alESuWMEd777LVpaWdJfLaaEPfQHA3/TiR48clymA1oJAD6WS7a2tGTN4MBkSwvjQUKoN5DYoISEhIfF2Ulxx401ukBKK/mOYOXNmdl40CwsCYMuWLQmAgwYNYlpaWr7jc5JkNmzYkMbGxuLCyMzMjN26dePq1atLlWOivMnIyGBwcLCYU6R79+68dOlSsfpYvny5WBFl7dq1ZWRpwcTExLBDhw55Fr45i0RDLAQPHTpEANyxYwcPHDhApVJJf3//fItejUbDffv2cdiwYfTy8hJzfeQ0IyMjenp6cujQody7d2+Z5GmobEyfPp0AaGJiwlu3bpWqL61Wyxs3bnDTpk0cPXo0GzduTJk+pyH0IVBDhw7l6tWree7cOWo0Gj548IB79uzhrFmz2LlzZzo5OeURJuvVq8ehQ4fy22+/5YkTJwwWQlVSdu3aRWdnZ8rlcv7rX//K8/2Tk8OmT58+Bhvv5MmTojCYg1ar5ZdffklBENioUaMCw2XKijIRN/h/P+pWAEYDeAAgAsBwAMrS9lsWrTKKG2S2wNHTxYUAuCIoqMBjFnXqREH/IZveooVBx0968ICa0FBy0SKubdaMLczNWf0l8SNBL3545xI/bASBnkolO1hbUzt8OLloEa+sXs2Yl1RECQkJCYl/Fv8kcSOnVdY5hoRh2Lt3r7jwBEAbGxvKZDIuXbr0lYkNtVotzc3NKZPJGB4eThcXF1pYWHDAgAF0d3cXF09eXl6cOHEiQ0NDS1XGtKzIysripk2bxPwY7777bonyiOTkWFCpVAwLCzO8oUUkMjKS/v7+BMCqVasWu6rKq+jfvz/t7OzECjE7d+6kXC5ns2bNOHv2bLZt25Z2dnZ5vDIEQaC9vT3btWvHhQsXvnHlZw3JvHnzxESwV65cMWjfycnJDAsL41dffcUePXqIAh2QXUI4t5BRv359fvjhhwwODubJkyeZkpJiUFsMxbNnzzhixAhRsDl+/DjJbPEsR5wpbQ6ZHHK8VnI8hxITE9mtWzcC4ODBg5mammqQcYpKmYkbAOwATABwBsAvAPoDCAHwe2n6LatWmScemamp7KVPQLO2gBAVkjyxZg1N9R++lhYW5eZBkRQdTYaGkgsXcmGjRmyuFz/M9eKHoBc+CLBKbuVZn9jU28iIbNOGHDKEW/v04Y7Jk3n3+HEp0amEhITEW4okbki8TURGRlKhUFAQBFHUsLGx4ZEjR1577vfff08A9PX15c2bN+ni4kInJydeu3aNN27c4IoVKxgYGCiKJiYmJuzcuTODg4N5+/btcri6V6PT6bhr1y7WrVuXAOjj48PDhw8Xu0qFVqtlq1atRFGosizgExISDOa6/+zZMxoZGXHkyJHcsWMHhwwZQg8PDzH8JqcZGxuzdu3aHDFiBA8cOGAwYeVtYfHixaIAdv78+TIbR6fT8d69e/zxxx85ZcoUhoSEMCIiotwX6YbgyJEjolg6evRoJiUl8cGDB1SpVBQE4bWhTDqdjteuXXvl5zrHq6ZTp04kyUuXLrFWrVpUKBQMCQmpkKo1ZRWWshvZWc6nAXB5aV+lnNRU9olHZmoqP6lRgzcBcsYMsgD1PvHePXrpsySvMDUlS+m6ZQhSY2LIsDAyOJgL/f3Zyd6eDY2N6SqT0QygXS7xw+yljMFKgHVkMrJGDbJFC07y8uLMVq24dexYXvnlF2qKWB9dQkJCQqLyUJJ5AAAnAF31zbG451d0q+xzDImSkZ6eTltbW7EyRU48e3FyTHh4eBAADx06xGvXrtHR0ZEuLi553O9TU1N58OBBjhs3TjweAGvVqsUxY8Zw06ZNvHr1KrOyssriMvNx9OhR+vn5iZ4l27dvL9EiJjExkdWqVSMAenp6vpGLx5eJiori5s2bOXHiRAYGBtLT0zNP9ZzcXhmOjo6iOPTee+/9I0JMSsuKFSuy1whKZZlW/nibSElJ4aRJkyiTyejm5sb9+/eLYVImJiavzDUSGRnJjh07EgA3bNiQb39cXBzlcjmNjIyYkpLCrVu30tTUlC4uLjxx4kRZX9YrKStxo11Jz62o9kZMPDIzyaFDqQM4zNyc2z77jLoCVOVNzZtn//vkckYWUt6q0pCaSp46xR+GD+dn3t7s4exMHxMTVpXL6SeTkXI5mSsMJnfzAkhLS7JaNbY1N2cPZ2d+5u3NtYMGMWLtWqa+pj62hISEhET5UlxxA0A/ANEAvgfwPwD3APQpTh8V3d6IOYZEsWncuDEBiG7eXl5exXZTv3TpEgHQwcGBJHn58mXa2dnRzc3tlTk3IiMjGRISwi5duuQpf2lubs62bdty8uTJ/Pnnn3n37l2D3jn9+++/GRAQQAB0c3PjunXrSuxdcO3aNTE/yfvvv2/wBIdlRVZWFs+dO8eVK1dyxIgRbNWqFatXr04zM7N8iT5zQhlkMhmVSiXbtm3LTz75hEeOHMlzvTklNPv161duAtWbzHfffZcdBq9QVOgi+k3j1KlTrFevHgFw4MCB/Pzzz0VhNvf7Ua1Wc8GCBTQ2NqaFhQWrVKnC+vXr5/suadasWfYN9RUrOHHiRAJgq1at+OjRo/K+tDyUac6NN6m9SROPpzt3sqE++VQrS0ue/v77/Adt2MDV+i/Z4R4e5W+koVGref7HH7lpxAhO8fNjnypV2MzMjCPMzEhra6pzxcTlbvUBUiZjqrExXWQyNjAyYqCdHUfVqcOl3bvz4urVZFxcRV+dhISExD+GEogbF3N7awBwAHCxOH1UdHuT5hgSRWPYsGFiKEGOwFHSnBhdu3YlAM6ePZskef78edrY2LB69eqvDdPIysri1atXuWnTJn766af08/OjSqUS50F2dnZ8//33OWvWLP7yyy+MjY0ttn3Xrl1jr169CID29vZctmxZqfJ/HDhwQAzJmDRpUon7KUsuXrzIBQsWsH///vTx8aGzs3O+5J45TaFQ0NbWlnXq1GHnzp05ZcoUbtu2jY8ePeLVq1cJgMuWLSt0vG+++YYAOHTo0DdG6KlINmzYQEEQKJfLKzRHy5uGWq3mnDlzqFQqaW9vz/r16xPITgBMkuHh4aI3UZ8+fRgTE8P169cTAI8ePSr2s2fPHlEYyUlSOn78+GJ5H0VHRxv8+khJ3HhjJx5ZajX/M3gwHfUCxtCaNfn08uU8x1zbt482+v21VSomPXhQQdaWD1qNhpFHj3L7pEmc264dh7i7M6RmTdLTkzesrWmkzwGS+wcpUB8ScypXHpBaCgVbWliwf9Wq/LV/f3LDBqpPnJC8QCQkJCQMQAnEjcsvPZe9vK2ytzdtjiFROGvWrBFDCxQKBeVyealyACQnJ1OpVFKpVIqVFs6cOUMrKyvWqFGDD4o5f1Or1Txz5gzXrFnD//f//h8bNGiQpyKEm5sbg4KCuHDhQh45cuSVJUmjoqI4bNgwymQyWlhYcM6cOUxKSirxdZLk0qVLxYoo69atK1VfZcGpU6dYu3btfAKGkZERnZ2d6e3tzX79+nH+/Pk8cuTIaz11pkyZQoVCwbgi3EibO3cuAXDUqFEVkqvgTWPz5s0UBIEymYyhoaEVbc4bxZUrV0TPixzRLifUrFq1aty3b594bHp6Ou3t7UUBRKvV0srKigDo6OhIExMTbt68uchjJycns379+lQqlWUicEjixhs+8Ui6f5//ataM7gCTTUzIefPIXCV/0hMT2czMjNDntDhVCX9Iypu4K1cYOn8+l3TrxrBu3cjAQIa5u9NZnwckd/jLGL34sSrHvRCgCUBHQWBtlYq76tUjhwxh5Lhx3DpuHC/v2kVNJcxmLiEhIVFZKIG48Q2AwwCG6dshAIuL00dFNUilYMuMuLg4fvfdd+VeLjUiIkIMP8gJR1mwYEGp+81Z2Hbp0kXcdurUKVpYWNDDw6PUrt4pKSkMDw/nsmXL+MEHH7BWrVp5Fu8eHh4cOHAgly9fzrCwME6YMIEqlYpGRkacNGkS4w1wgyeneoORkRHDw8NL3Z8huXDhAhs1aiS+Hg0aNGBwcDDPnj1b4lARjUZDZ2dncVH4OnQ6Hf/1r38RACdOnCgJHEVgx44dosCxdu1aKQlrMcjKyuKyZcuo1OdrzAmNKkiwmzFjBgVBYGRkpPg5FgSBNWvW5MWLF4s85unTp8VQOl9f3zKpAFVWOTd2AegCQFbSPsq7vaniRg4ZV6+SvXpRDTDAyIhbx47Nk4/ji6ZNCYCdAHLJkgq09M1AnZzMi9u3MyYkhJw1i2EdOrCtpSW9lEo6CAJN9F4gIXrxY9xLCr9cLybts7YmGzTgjgYNOLRGDc5q04bfjxzJvzdtkjxBJCQk/pEUV9zIPgW9ACzTt6Dinl/R7U2fY1RGevToIf7m+vj48Ouvv2ZkZGSZjnn//n2xNGSTJk1obW1Nf3//1y6oNBoNly9fLpZjfBUODg4EwEuXLonbTpw4QTMzM9auXZuPHz82yHXk8OzZM/76669csGABe/bsySpVquTJFTFixAjev3+/1ONs3bqV9vb2BEBbW9tKUxGFJG/evCnesYY+b8rrKkgUlQMHDhAAd+/eXeRzdDodx48fTwCcMWOGQex429m7d28ezyRbW1u2atWKs2fP5o0bNyraPJLZuXTmzJnD9u3b09nZmcbGxjQ3N6eNjQ2dnJxYtWpVenh4sEGDBvTz82O7du3YpUsXDhgwgB999BEnTZrEOXPmcPny5dy0aRP37NnD8PBwXrlyhXFxcSUSdSIjI/nee+8RAE1NTcXPfUGlnGNiYqhQKDh48GDxde7UqROfPXtW5PGCg4PF/9Nnn31WbHuLSlmJGwEAtgC4A+BrAF4l7au82tsy8Yj++Wc20Wdlbm5unsdT48Q331CjUJAATzRvLpVbNQTJyWREBM/OnMkvmjZlnypV2NzcnDUVCtoKAiOUSlIQ2KWAGE0APAGQRkYcb2REd4WCvqam7OrkxDH16nFxly5M376djIwkpfhLCQmJt4QSeG4sKsq2ytzeljlGZeHXX38lAH7xxRf85ptv8ixOmzRpwgULFuSpNmIIoqKixFwWbdq0YWBgIE1MTF47TkxMDF1cXET7VCoVGzduzPnz5+cLBzl8+LDoRZGb48eP08TEhPXq1eOTJ08Mel0vc/z4cVpaWlKlUtHZ2Zk+Pj7s378/FyxYwKNHjxbrTmtoaCirVq0q3uXt3LlzpamIEhUVxdatW4v/F3d3d/72228GHaNv3760t7enupjV/XQ6HT/++GMC4Pz58w1q09vKlStXOGrUKNavXz9fdRqlUkl3d3f279+fmzdvLvP34MWLFzl79my2a9eOzs7OeYSXnO8AJycn2tnZ0dLSkiYmJlSpVJTL5QUmpS1Oc3R0fG2SVbVazYULF4oJQ0NCQqjRaBgUFCT2s3DhwnyCSffu3cX9ffv2LXJuGK1Wy549e4r/i71795b4tS0KZRqWAsAKwGgADwBEABgOQFnafsuivU0Tjyy1mhuGD6ez/sM02N2dL65fz94ZE8MrDg4UALrJ5Yw5e7Zijf2HkBwTw4i1a7lh+HBOb9GCA6tX57vW1kz09CRdXNhDLqeigC+pZL1niE8ubxBnmYy1VSq+a2VF9ulDTpzIgyNHcs/06bx24ADVlWTiICEhIVEQJRA3zhWw7VJx+qjo9jbNMSoajUbDunXrsmbNmszIyBC3R0VFcenSpWzevLn4G9qwYUPOmzeP13PmQCUkPDxcdN1u0qSJWK1h5cqVhZ7366+/ivHs77//PoOCgkQPhpzm4ODA3r17iwvrpnpP202bNuXp67fffqOxsTEbNWrEhISEUl3PqwgLCxOv09HRsdAEmnZ2dqxXrx67d+/O6dOnc/fu3WJJyb///pteXl7i8a1atSqz5IHF5dGjRwwICBAXkW5ubmWy2EpISKBKpeKECRNKdH5WVpZ4l3zpm1D5sJIRFxfH4OBgdurUiS4uLvkEBktLSzZt2pRffPEFz5ZiLXT+/HnOmjWL7777Lp2cnAoUMt555x326NGDwcHBjImJKVK/arWaMTExvHz5MsPCwrhr1y6uW7eOS5cu5axZszhx4kQOHz6cffv2ZadOndi2bVs2aNAgj/hQkDfHyZMnxSSivXv35sOHD/Psb9++vdiHt7e3mEvo0KFD4veBvb19kV+fuLg4sdyzi4tLsfMHlYQyEzcA2AGYAOAMgF8A9AcQAuD30vRbVu1tnHi8iInh9BYt2EIQqDU2JmfPpi45mVqNhp31ro8qgAfnzq1oUyX0aDUaRkdE8MDcuQzp1YscN47s2ZNjHB1ZU6GgnSDQWB8SI9MLHwTo8tLEQwBoC5A2NmT16hxkbc2OtrYcWqMGp7dowf8OGcKIlSvJ2FjJK0RCQqJcKaq4AWAMgMsAUgFcygbbRAUAACAASURBVNXuAdhclD4qS3sb5xgVRUhICAFwz549rzzm/v37XLFiBVu2bCn+LtarV49z5szhlStXijyWTqfjmjVrxAWLi4sLb926RTMzMwYEBBR65zInh4YgCPkWp/Hx8Zw7dy4bNWqUJ95doVCIySxNTU3z5XoIDQ2lSqWij4/PK5OAlpQtW7ZQJpNREASuWbNG3J6VlcUzZ84wODiYw4cPZ4sWLVi1alWampq+9i6zubk5Bw4cyO+//5737t0zqL3FJSEhgd26dcuTL+XHH38ss/FyyrteuHChxH1oNBr27t2bALh69WoDWvfPQ6vVMiIighMnTqS3t3eeEsoAKJfL6ebmxh49enDt2rUFfr7Onj3LmTNnsm3btnR0dCxQyHB3d2fPnj0ZEhJSZCHDkISHh9POzo4AaGFhwQMHDpDMDkEbNWoUAbBq1ar85ZdfCjxfq9WKYoS5uTnlcrnodZHz2XF3dy+S10ZucTcwMLDcqgCVibgBYDeAawCmAXB5aV+xY21znWsL4AiA2/q/NgUc0xjAnwCu6idB/YvS99s88dDeuUP268enABsqFPxh9GhqNRou6dZNrB7yha9vRZspUUw0qanktWvknj384YMPOL5RI/Z2dWUrS0vWVqnoo1CQFhakUkmrgiYducQRB71XiIMgsKZCQR9TU35StSo5dCg5dSp/+PBDHpw7l7dCQ7PHlZCQkCghxRA3rAC8A+BHANVzNduinF+Z2ts8xyhPnj59ShsbGwYEBBQ52eLDhw8ZHBzMNm3aiJPzOnXqcNasWbx06dIr+8nIyBBDAwDQxMSEcXFxbNmyJa2srF6Zi0Kr1TIwMJBAdpnYoiTOPHr0KPv27UtHR8c8v9NGRkbs0aMHDxw4IC4M9u/fT6VSST8/v1JXLsnhq6++Ehd4+/fvL9a5kZGRXL58eZ58HTnVUF6edwiCQHt7e7Zv356LFy8udZLUopCUlMR+/fqJC1FbW9tyqdLi6+vLxo0bl7oftVotlgp+2ZtHonQkJSVx3bp1DAoKYrVq1cTyxDnNzMyMderUKVDIMDIyYo0aNRgUFMRVq1aVqMRyWaHVavnRRx+Jn8EGDRqI1zBp0iSxItOrePLkiVjiOue7zM3NjQDE92LuaioFMXPmTPEz/9VXXxny8l5LWYkbnQvYZlTS/nL1sRjAVP3jqSg4DtcTgIf+sSuAWADWr+v7nzDxuLFlC331CWP8zMwYsXYtT61bRzOAVQBqq1UjXxOnJfHmknjvHk+tW8cfRo/m3HbtuLhpU7JzZ9LXl41VKtrpE6XK9V/crrnEj5dL6ArIDpWhpSXp4sIGKhX9zc3Z1dGRH3l6cnabNjz6+efk0aPU3rsn5XeRkJAQKc1Njje1/RPmGOXBJ598QrlcXizvi9w8evSIq1at4rvvvisuVjw9PTljxgyeP39eFDoePXokhrfIZDLKZDL+9ddfXLRoEQHwf//7X4H9x8XFiTkmqlWrVqIKI4mJiZw/f34+cUChULBu3bqcPn06N27cSIVCwRYtWrx2ofI6xowZIwoxZ86cKbatPXv2FG11cXHJE+IRFxfHHTt2cOrUqezatSs9PT3zhbrk5BIZPXo0f//9d4Pd3U1NTeWHH34oJoC1tLTkt99+a5C+X8fly5cJgCtWrDBIf+np6QwICKBMJuNPP/1kkD4lCubixYucNm0a/f39aW1tnUfI6NWrF1evXl2ksr6VgYMHD4qfN0EQOG/evCKf+8cff1AQBBoZGXHz5s0EskPoMjIyWKVKFQYEBBR4nlqtZqtWrUTvs9fl/ygLykrcKCg+Nt+2EvR7M8cTBIALgJtFOOdijthRWPunTDy0Gg2///hjuup/1AdUq8b4P/5grK8vCfAnvfARVclKdEmUP6nR0WREBLl5M7967z1+Ur8+e7m6srWlJesZGXGYqSlpbc1UlSpP+dyc5qsXRmJyCSIqgBYAnQSBk62sSG9vxrZqxQHVqnF8o0b8KjCQP4wezeMhIUy4dEkKmZGQeAuRxA2JknDp0iXKZDKOGzfOIP09fvyYa9asYYcOHUSho1atWpw0aRJdXFxoYmJCMzMzAuDatWt56dIlqlQq9urVq0Bvj+PHj4t3Ozt37lzqRfq6desIgHXr1uUHH3xAZ2fnfHeVBUFg7dq1S7TY0ul04l1Ya2vrYlUwSU9P57Bhw0ThwMbGhhs2bCjy+VFRUZw/fz7btGlDW1vbPNclk8no4uLCLl26cM2aNcUOv1Gr1Rw9erQY7mNmZsaFCxeWm0s8SX7++edUKBQGTf6akpLC1q1bUy6XFxqS9U/kzp07/OKLLzh06FDOnz+f27Zt48WLFytN8tryJjMzk1999ZVYkSX3d5yfn1+Rc/YsXrw4z2fz999/J0kuWLCAAPKJzJGRkWJOIQ8PD4OHzhUVg4obAJwB+AC4DqAJAG99exfAjeL2V0D/z3M9FnI/f8XxfnpbXluS9p828Uh5/Jj/bt2aA2Uy0tiYuunTeXfVKnbTZxgWAAa5uDC5ErlZSVRutBoNo0+d4tGlS7lu2DAeHTqU/PhjPggIoL+5OeuoVHSTy2mj9xD5UC9+HCxAGAHAAfr9e3OJIo6CwBoKBZuYmPCnevXIvn15bcAAzm7blt8NHMi9M2fy/M8/M7GCY3slJCRezZsubgCoC2AbgDUA+hTlnH/aHMPQ6HQ6tmvXjra2tmWSTPPJkyf8z3/+w44dO1Iul9Pd3Z2enp4EwOHDh1OtVrNRo0Z0dHQscMG6ePFiMRTDkNUtatSoQQBistGkpCQuWbKEvr6++TwgzM3N6e3tzbFjx/K3334rdDGv0Wjo7e0tupsXNbxFq9Vy8uTJYtUYMzMzLlq0qNTXqVaruW3bNg4YMIA1atTIk4ck59p8fHw4efJkMcFhDmFhYVyyZAk1Gg0///xz0TZjY2POmDGjXEUNMnth6eTkxKCgIIP3nZSURD8/P6pUKh46dMjg/b9J6HQ6HjlyhN27d6cgCJTL5XlCo3JatWrVGBAQwE8//ZTffvstQ0NDeffu3Xz5bN4WIiIixIShQUFBYgLPu3fvit9pSqWyyF5FOSW3c3tqxMfH09jYmCNHjhS3bd26VQzrGTRoULl/7nJjaHHjQwBhAJL1f3PaLwB6FbGP3wBcKaD1eFnMAJBYSD8uek8P/0KOGYnshKdnqlWrVlavcaVGFxVFDhzIOzlfAnI5W1tY0DTHDRLgtKZNpTvoEmWGOj6eF7dv597p07mqXz9Ob9GCIzw8eKBpU7JFC4a6ubFqLlEkJ2xmql78mPsKcWQ+QMpkXCyT0RzZ+USqy+VsYGTElhYWPNWyJTlsGE8NGsQl3bpx69ixDF+5klHh4VLFGQmJMqQk4gayc20E6B+bALAobh/6czcAeALgykvb39fPGSKhD38tpI/PAbTWP/6lKONK4kbp2LlzJwFw1apVZT5WUlIShwwZQiC7MgpJzpgxg0D+JKZarVac/BsZGRm8lOi5c+cIgM7OzgXuP3XqFDt37lxgjgtBEGhra8sWLVpw6tSpPH36tHh9OQkDGzVqVGBFhZfRarX86quvaKoPbVapVPziiy/KdAFz+fJlTp06lX5+frS0tMwXolO9enX26dNHzAWQI2qoVCpOnDixSNdVFuzbt48Ayqzc5bNnz9i4cWMaGxszLCysTMaozKSkpHDNmjWsW7euGCoxY8YMcRGfkpLC8+fP86effuKXX37JQYMGsWnTpvneQ0ZGRqxXrx579erFqVOncuPGjTx58qRY8aeykpaWxnv37vHPP//k7t27uWbNGs6ZM4ejR49mp06dKAgC3dzcXunds3jxYlGEqFOnzmurGGm1Wu7atSufGDRixAiamJgwISFBzE0kl8uL5cFVVhQ2xxCy9xcfQRB6k9xZopML7/cmgHdJxgqC4ILsyiteBRxnCeB3AAtJ7ihK376+vjxz5oxB7X2TSPjrL/y8fDl+P3kSv8fEIF7/v1cAaA5gl0qF1PHjUf2bbyrUTgmJHHQvXkD24AEenjuHI8eO4dGDB4iLj8fT58+RkJKCfzs6oiWApY8eYWFyMjJIZALQIvuX7WcA/QAM0D9+mV8BdJTL8TGJn3U6GAsCTGQymMnlsFAqsdvbG67OztiZlIQLaWlwdHKCk5sbXD08UKVBA1T384PM2LjcXg8JiTcFQRDOkvQtxvEfI/tmhC3JmoIgeAD4jmSHEozdBkAKgP+RrK/fJgdwC0BHAA8BnAbwAQA5gK9e6uL/6f/OBpAGoAXJlq8b958+xygNGRkZqFOnDiwsLHDu3DkoFIoyG0un02Hx4sWYNm0abG1tERMTgwsXLqBly5YYOnQoNm7cKB777Nkz+Pr64t69e3B1dcXp06fh6upqcJvef/99HD58GAsXLsS0adMKPObPP/9Ely5doFKpMHHiRFy5cgVnzpxBdHQ0MjIyxONkMpk4yff09MT+/fvh4eFR6Pjr16/H5MmT8fz5c8jlcgwbNgyrV6+GSqUy6HW+juTkZGzbtg379u3DmTNnEBsbC51Ol+eYkSNHIiQkpNxty02fPn0QHh6Ohw8fQqlUlskY8fHxePfddxEdHY0jR46gefPmZTJOZeLevXtYtWoV1q9fj+fPn6NJkyaYMGEC+vfvD+MizLVI4smTJ7h58yZu3ryJW7duiX/v3LmDrKws8VhbW1t4eXnB09MTnp6esLa2homJCUxMTGBsbCw+ftVzY2NjyGSyIl9bVlYW4uPj8fjxY7HFxcXleZ7TkpKSCuzD3t4eTk5O6NSpE/7973/DwsLileM9efIEnTt3xtmzZyGTyTBjxgx8+eWXRbYXAC5fvoyGDRvCyckJcXFxsLa2xokTJ1CvXr1i9VMWFDbHKLa4IQjCYJKbBUH4HNnrhzyQXFYyM8X+vwGQQPJrQRCmInuiM+WlY1QADgHYR3JFUfuWJh7/B3U6XNu3D2GbNyMoJQVmR49io0aDScie6QXY2mJg795oN2IEqjZrVtHmSkgUG11mJvD4MWQPHuBSRASORUQg7vFjxCUk4FlyMp6np2OzmxvcMjMx/tEjbE5Lg5qEBkAWsr/cHgBwA+AL4GwBY6QCMAXQGtkrJSUAI0GAsSDAUi7HtXr1AAsLfPn4MW5mZsLawgJ2NjZwcHSEa7Vq6N21K+DiggwbG6js7SErwwm9hER5UgJx4wKyw0z/ItlEv+0yyQYlHP8dAPtziRvNAcwhGah/Pg0ASL4sbLzcjxzALpI9XrF/JLJFGVSrVs0nOjq6JOb+41m4cCFmzJiBo0ePon379nn2ZWRkFGlh8ypI4vjx49i4cSOOHz+OBw8eQKfTQalU4saNG3B2dkbjxo2hVqtx6dIlWFlZAcgWEzp06ID09HR06NABoaGhZSa6JCUlwd7eHjKZDImJiTA1NS3wuKtXryIwMBApKSnYt28fWrduDQB4+vQpdu7ciZ9//hm///47Xp7bKxQKuLq6onHjxujYsSP69esHR0dH7N27F6NHj8bjx48hCAKCgoKwceNGWFpalsl1FhedTocOHTrgzz//hL+/P44fP45t27ahb9++FWbT06dP4erqinHjxmHp0qVlOlZsbCzatGmDJ0+e4NixY/Dx8SnT8SoCkggLC0NwcDB++eUXyGQy9O7dG+PHj0eLFi0gCIJBxtFoNIiKisonety8eROxsbEl6tPIyKhQAQTIFhkeP36M+Pj4fJ9LALCwsICzs3Oe5uTklG+bo6NjiYS0jRs3YsyYMVCr1ahevToOHTqEOnXqFOncM2fOwN/fH1qtFr6+vggPDy/Vd7EhMbS4MYrkWkEQZhe0n+TcEtiYu387ZMe5VgMQDaAfyWeCIPgCGE3yI0EQBgPYiOxSsDkMI3mhsL4lcaMQdDrc+fFHDBgxAmfUanGzDEDSO+/AvEMHXK5ZEzYBAXBr2rTi7JSQKE+ePwcePsSl8HBcOH8ecTExiH/yBE+fP8eL1FTs8PQEXrzA0MhIHE1NRQYpCiQyAOn6bqoAePRS13JkiygA4ADgKbKTDMmR7U3lJAiIsrcHjI3RJSEBsSTMlEqYq1SwMDZGXUdHzOnQAbCxwY6oKAiWlnB65x041KwJp9q1YenmJoklEhVGCcSNv0g2EwThPMkmgiAokJ2kvGEJx38HecWNPgDeJ/mR/vkQAM1Iji3k/OkAzACsIXnidWNKc4ySERMTAy8vLwQGBmLnzrwOwX369MHOnTthZ2eHLl26YPr06fDyyufMm4/Tp09j/fr1OHr0KO7duwetVgsg26uhatWqaNu2LWbMmAFPT0+MGzcOK1euxLFjx9CuXTsAQEhICCZMmACSmDlzJubNm2f4C3+JGTNmYOHChejZsyd27979yuPu37+P9957D9HR0fj555/RvXt3AMChQ4fQrVs3aLVaLFiwAIMGDcK2bdtw9OhRXL58GXFxceLrAAAqlQqZmZkAgPbt2+OHH34oE6+U0vDgwQO4u7tj8uTJWLBgARo3boz09HRcu3atwjw3QkJCMH78eFy8eBENG5bo66lY3L9/H23atEFycjKOHTuGRo0alfmY5UFqaiq2bNmC4OBgXL16FXZ2dhg1ahTGjBkDNze3crclOTkZGRkZSE9PR3p6ep7HxX2e81in0+URKl4WLZycnGBmZlbm15eSkoLu3bsjLCwMgiBg9OjRWLlyZaGeJyEhIZg4caLoOVXRouLLFDrHeFW8yusaAIeSnltRTYqHLRoXt29nbX1cIwAOMTIiraz4rv55LaWSH3l5ccsnnzDm7NmKNldConKj0TDu8mWe3bKFB+bM4aYRI7i4c2cuatuW/Phjsk8fjqpShf7m5mxgZMQaCgVdZDLWlclIU1NSqaRdAflGrPT5SKhPxvryfgeAFARSLqc1QDOA1oJAZ5mM1eVyDrSwIL29yVat2MPBgb1dXTmsVi2Ob9yYs9u04b6PPiI3bSL37mXEmjW8cegQE+7ckUr+ShQJFDPnBrLLwE8HcAPZoSO7ASwoTh8v9fcOcuXcANAHwLpcz4cAWFnS/l8aqxuA/9SqVassXsq3nsGDB9PIyIh37tzJsz2n1KZKpRLjxwHQ1taWgwYNypPF/+rVq5w4cSLr1q2bJ1GlIAh0dXVl3759uW/fvnz5I44cOUIAnDBhAsns2PO+ffuKCfkOHDhQ9i+AHq1WSzs7OwLg1atXCz02Pj6eTZs2pUwm4/r16/nf//5XzMnxqhK2ZPZrOmvWLLZp04aOjo708/PjrVu3DH0pBmPGjBmUyWS8p08gfvDgQQJgcHBwhdnk7e1Nb2/vch0zMjKSrq6uFASBLVq04JIlS/J9Xt4U7t27x8mTJ9PGxoYA2LhxY27YsIFpaWkVbdpbz549e8TqUA4ODjx16lS+Y7RaLXv27Cl+B+7evZvu7u5s2bJlBVj8agqbY5Tmx/wWskPWRwCwKWk/5dkkcaN47Jk+nY6CwOEAKZfzr/btuaRLF3Z3dqaVfuIQAJC1apFDhnDzhx/yzObNzJQSNUpIlAlajYbxN27w8q5dPL92Lfnzz+Tq1VzRqRMneXtzhKcne1epwvdsbTnW2Zls1Ij08KCHXE4HQaAlQBOASoCNcokjLwsjAFhfvy/9FfvbAaRCwRiViuYAbQWBLjIZ35HLWVup5DxnZ7J5cz5o2ZLdnZz4QbVq/NjLi5O8vTmnbVuemjCB3LCBSVu3MmzFCl7cuZMPzpxhegWVFZMwLCUQN2QAPgawHcAO/WOhOH281N/L4kZzAIdzPZ8GYFpJ+y+oSXOM4hMREUEAnD59er59OVn/oa/YUbVqVdrY2IjlDoHskqK5n+dM2rt168Yff/yRmZmZrxw7MTGRbm5u9PLyYlpaGpOSkujh4UEAdHR0fG0SvrIgJ1Fl7dq1X3tscnIyO3bsmCcBp6GTnVYkGRkZdHBwYI8ePcRtOp2O7du3p52dHZ8/f17uNl28eLHCxJUHDx7wyy+/ZJMmTcT/eaNGjTh37lxevny5wNLFlQWdTsdjx46xZ8+elMlklMvl7Nu3L8PDwyu13W8jarVaFC8AcMCAAWJi3ri4ODERsYuLi5jAdfny5QQgJiyuDBQ2xyhxQlEAEATBD9m5+noCuAbgJ5KbS9xhGSO5jJYM3ZIlkP373+iVno5QAPO7d8eE7dtxcft2aP7+G82io5EcEQGr+HgQgDEAX0tL+Ht5oW/v3vAbPBioUqWCr0JCQqJAdDo8vXMH8bdvIyEqCgkxMXgWG4vqRkZo7+CAjIQEjPn1VySnpSFFrUZKZibSsrLQxcQE8ywscCc1FU0TEqAhkYXsUBsdsn8UdgI4AuC9AoYdAOBHZCd6HVDA/rEAQmQybBEEfKTVQg5AKQhQ6v8utLHBh/b22J+RgXlPn8JEoYCpUglTlQpmxsb4zNsbjd3dcSklBcdiY2FhZQUrOztYOTjA2tkZ9Zo0gWmVKoC1NSCF7xicEoSlmAHIIKnVP5cDMCKZVsLx30HesBQFsm/KdAAQg+w0OQNJXn1VH8UYqxuAbrVq1fr49u3bpe3uH4NOp4O/vz9iYmJw8+ZNmJubi/s2b96MIUOGAAA6duyI6tWrIzw8HPfv30d6enqB/QmCAFdXVwQEBMDf3x/u7u5wd3dH9erVYWRklO/4Dz/8EFu2bEFERAQUCgXatGmD1NRUtGrVCmFhYWWa1LQwvL29cf78eWzevBmDBg0q9NihQ4fihx9+AJB9PRs2bChWksPKTM574MiRIwgICBC3nzt3Dj4+Ppg2bRoWLlxYrjZNmjQJK1euRGxsLOzs7Mp17Nzcu3cPu3fvxq5duxAREQGS8PDwQK9evRAUFISmTZtWivdBWlqaGHpy5coV2NnZYeTIkRgzZgyqVq1a0eb9o/njjz8QFBSEZ8+ewdLSElOmTMG8efOgVqsRGBiIgwcPiu+hpKQkuLm5oWfPnuL3TUVj0JwbrxjAHsAyAINIykvdYRkhiRulICsLX/j6YvnFi9ACcBQE/HfaNHRfsABAdoLS+3/+iVPbtuFUeDj+un0bZ1NSsBTZi5T7zs74XC6Hf5MmaNapE3wGDICJrW1FXpGEhEQ5kPXiBR5fv45n0dF49vAhEmJj8Tw+Hk3t7dHQ3By3o6OxOCICKRkZSMnIQFpmJtI0Gky0s0N/Y2PsfPYMY589g4YUBRQtgEUyGSYA+LdOh4Ki4YMBjAMwBsB3BezfDGCQvm3VbxOQ7T4gB3BMpUJLpRKfZWbih6wsKAUBqpwmk+GwhwfcLCzw7dOnOPz8OUxUKpioVDDVJxhb1LEjjC0tcSw2FpFJSTCztISFjQ3MbW1haW8PX39/wMICmcbGUFhavnX5UUogbpxCdhnYFP1zcwC/kmxRgrF/BPAuAHsAcQBmk1wvCEJnACuQ/S/eQHJBcfsuDGmOUTy+//57DBs2DD/88AMGDx4sbtfpdLC2tkZycjIsLS1BEsnJyeJ+S0tL1K1bF82bN0f9+vXx+++/47fffsPjx4/xqjmtq6urKHa4u7uDJObPn49Zs2bBzc0NY8aMgU6nw+TJk/FNBVeMi46Ohru7OywsLJCYmFjgIlWn0yEgIABhYWGws7ND9+7dsXHjRgwZMgTr168vswoe5Ym/vz+eP3+O69ev50sqOXjwYOzcuRO3b98ut/wMGo0GVapUQZs2bbBjR5GKNJYLjx8/xt69e7Fr1y4cO3YMWVlZqFKlCoKCgtCrVy+0bt263IQ6jUaDe/fu4datW/jjjz+wbt06JCYmolGjRpgwYQIGDBgAExOTcrFF4vXodDp89NFH2LRpU7bHgyDg66+/xpQpU/IdO378eHz33XeIjo6Gi4tLBViblzIRN/SlWIOQfdOtJrLjY7eRLKioQKVAmniUnmd372JQs2YIffoUANDZzAwHIiKAApIqqV+8QNa5czC7dAkR+/Zh8O+/456+DJMCQCNTU/yna1d4d+8OjY8PFJ6eECqB0iwhIfHmkZWWhufR0UiIjsbzmBh4WVvDWqvFlevX8eu5c0hOSkJKaipS0tKQmp6OWTVrwkMux7p797D+0SOotVqotVpk6nRQkzhkbY16AEa/eIHNGg20yBZVdPp2G9k/fM0BnCrAniQAlgAaArhcwP6cX14PAJG5tssAqACkK5WAXI7majWukZALAhQAFIIAO7kcl6tWBZRKDIiNxW2NBiqZDCq5HEYKBdxMTbGhWTPAyAhfXr+OeI1GzORuamKCqo6OGNS6NWBmBlhZAV27GuA/kJeSVEsh2fh12yojkudG8UlOToanpyfeeecdnDx5Ms8CPifBZw5yuRy+vr7o3r07PvroIzg6Or6y3/3792PZsmWIiIiAWp8cXaVSwcnJCfb29nj27JlYLcXb2xt16tTBli1boFAosG3bNgQFBZXdRReDHI+MsWPHIiQkJM8+tVoNb29vXLt2DTVq1MClS5dgamqKBQsWYNasWejcuTO2b9/+yoorbwKnT5+Gn58fQkJCMHZs/py/UVFR8PLywqBBg7Bhw4ZysWnv3r3o2bMn9u3bh65l8J1pCBITE7F//37s2rULhw8fRnp6uih+9erVCwEBAaWudpGVlYX79+/j1q1buH37dp4WFRUlJq2Vy+UICgrC+PHj0apVK4NVPZEwPBcuXMDnn3+OL7/8Ei1bFlz1/Pbt2/Dy8sKsWbMwd26paocYhLISN+4B2INsQePPUthXbkjihuG4GRqKfkFBGJ6RgYkAzlStihtdumDwmjWFnhd35Qr++vFHnAoLw6nr17FRrUb19HSsBDBHEODv4AD/Bg3g/957aDpgAKyqVSuX65GQkJAoCZkpKXgRE4OkmBgkPXqE548fIyUxEV1r14YsPR0H//4b56KikJaWhtS0NKRnZCArKwsbGjcGMjIw7coVnExMRIZWi0y9uKIEcNHZGdBo0O7pU1zIyoKWFMUVUwAJCgWg08FVp8PLReyM8X+VeswAqU1/5gAAIABJREFUvBzXYQHgRc4TQQD02dANSQnEjZMAxpE8p3/ug+yEn80NblwZIc0xis7UqVOxaNEi/PXXX/Dz8xO3P3nyBC4uLmKGfmNjY5w5cwb16tUr9hiHDh3CsmXLcPLkSTGUxczMDG3btkW/fv2waNEiXL9+HXZ2dvjrr79Qs2ZNw1ycAcjMzIS1tTUyMzPx6NEjUdBJSEhA/fr18fjxY/j7++PEiROQy//PYXrt2rUYM2YMmjdvjn379sH2DfWQHTZsGHbu3ImYmJhXlqWdPHkyli1bhosXL6JBgxJVjC4WQUFB+PPPP/Hw4cMKC1kqDqmpqTh8+DB27dqFffv24cWLFzA3N0eXLl3Qq1cvdOrUCRYWFgWeq9Pp8PDhwwIFjLt370Kj0YjHmpubw8PDI1+rXbv2G/v+kyiYrl274vTp07h//36BoX7lSVmJGwINEdNSjkgTjzLg6FFg3Di0uH4dfyJ7Iv2Blxe+CQ2F9TvvvP58rRa4dg3HNm3C5n378Nf9+7imv9uiAPDcywtmLVrgjLMz5A0bokHPnlBUkhrLEhISEpUJXVYW0p4+RcbTp7BXKoHUVJw5cwZPHj9GWlISUl+8QGpyMqzkcgyqUwdISwPkcqAMylyWQNxoCuAnZFdNFgA4A+hfmb1Bc5A8N4pHZGQk6tWrhw8++ACbNm3Ks69Fixb488/s+2Wmpqa4dOmSQUSHI0eOYOnSpfjjjz/y5Oxo2rQpTpw4UWFlRQtj9erV+PTTT9GqVSuEh4fjzp07aNKkCZKTk9G7d+9Xhkbs3LkTAwcOhIeHBw4fPowqb1jOs/j4eFStWhUfffRRHg+el0lMTETNmjXRrFkzHDp06P+zd99xVZftA8c/N3tvEREBFQeCe+eqnKllZcOWZZZlWq7SyuepfmW2zMyGDUtLy540LVeae+QeKQoqIohskSWbw7l/f3A0MydyOIDX+/U6LzjfcX+v8xUPF9e5h9lj8vf3Z+zYsRYftlQexcXFbNiwgcWLF/Prr7+SlpaGvb09vXv3ZtCgQQD/KGTExMRQWFh4/nxHR0dCQkIuWcTw8/OTXhk3iTVr1tCnTx/mzp3L448/btFYKrS4oZSaobUeq5Raxt89a8/TWt9VvjDNT4ob5hO/fTvj77uPZUlJFFOWmXZxcWHLihXQvft1tZV18iS7fvyR49u28ZzWsHMnfdPT+YOyTyzburnRsXFjevTqxcBRo6CS18MWQghxZddb3DCdYws0MT09qrUuudLxVY3kGNfm7rvvZt26dRw7duwfY7f//PNPunbtCpQVNqKiogg0Q+/NjRs3MmPGDFq1asUbb7xR4e1XpODgYE6ePMnMmTN58cUXKS4uZty4cUyfPv2K523YsIFBgwbh6enJH3/8QZMmTa54fFXy7rvv8sorrxAZGUloaOgVj/3www958cUX/zXpaEX7+OOPGTt2LBEREYSHh5vtOpWhtLSUbdu2nZ+Q9OTJk0DZ8K2GDRv+o3DRuHFjGjVqhL+/f5WYoFRYltaa8PBw7O3t2bt3r0WLWhVd3Girtd6rlOpxqf1a603liLFSSOJhfkaDgY/uuYePVq7E3mgkBqBWLWZ16MDwn37C7oLZ0K+Z1sRt2cL2hQvZuXUrO6Kj2Z+XRxdgPYC/Py86OVErJISOffvSbsgQXPz8KvR1CSGEuHblLG7cQtkSruf7fGutv6/g0MxGcoyrO/fJ37vvvsukSZP+sc/e3p7i4mLs7OyIj4+ndu3aFoqy6ti1axcdO3Y8/3zGjBmMGTPmms7dt28f/fr1Q2vNypUrad++vbnCrDAGg+H8H9hr16696vGFhYXnhz/s2bPHbH+At2rVCltbW3bv3m2W9i1Fa01UVBROTk7Uq1fvH0OchLiUL7/8kmeffZbNmzfTrVs3i8VxxRzjcmvEXu0BjLmWbVXpIWvQV66Sbdu07t5dLzq3Bjvo/rVq6WN//HHDbRdmZ+uEZcu0njlTGx56SIfa2v697j3o5g4O+qtu3bSePVvriAhtKCqqgFckhBDiWnCFNegv9QDmAduAz4FPTI+Z19OGpR7AncBXISEhFXsTa5ji4mLdrFkz3bBhQ11YWPiPfU2bNtWAVkrp1NRUC0VYNQ0ePFjb2dnpRYsWXfe5x44d08HBwdrZ2Vn/UQG5l7ktWbJEA3rJkiXXfM78+fM1oOfPn2+WmPbv368B/dlnn5mlfSGqk7y8PO3p6akHDx5s0TiulGPcyJwb+7TWbS7atl9r3bpcDVYC+VTFMnLT0vhvv37M2b+fbNO2hjY2/Pzqq7SpwBl3048eZddPP7Fz/Xp2Hj7MvQUFjMjPJxFoCrT38KBj06a079aNdvfeS70OHWR1FiGEMINyzLkRBTTT5U1KqgDJMa7sk08+4YUXXuDXX389P84foE+fPqxZswYoGzLSo8clOwaLckpOTqZfv35ERUUxf/58HnjgAUuHdFm9evU6P+fDtU7aaTQaad++PWfOnOHIkSM3vBrIxcaOHcusWbNITk6WCTKFACZNmsS0adM4ceIEQUFBFonhSjnGdf9lp5R6yDTfRn2l1NILHhuAjBsNVtQ8Lr6+fLRvH1las3jiRMLt7Yk1GPB5801wdmZ1nz5kHD9+9YauwqdJE/q//jr/t2kTq9LTGZGbC0ePUjp9OkPDw8kpLmbajh0M/uADgjp35n+enjBgAAnjxrHstddIOXiwAl6tEEKIcjhE2SSiogZKT0/ntddeo3fv3tx1V9nUbEajkR49epwvbNx6661S2DCDOnXqsGnTJjp16sSQIUP47LPPLB3SJUVFRbFu3TpGjhx5XauRWFlZ8cEHH3Dy5MkrTkBaHsXFxfzwww8MGjRIChtCmIwaNQqlVJV9LynPnBtBQH3gHeDlC3adBQ5qrQ0VF17Fkk9Vqo78Y8dweu01jIsX41xSQhHQxsmJ9954g54vvWS26xZmZXHgl1/Ys3o1g4CAyEi+iozkGdP/g7pWVrSvXZt2YWE8O2IE3rffDt7eZotHCCFqonL03NgAtAJ2AUXntusqPEn5xSTHuLxRo0bx5ZdfcuDAAcLCwjAajXTq1On8HAbW1tYUFRXJmH8zKigo4MEHH2TZsmW89tprvPHGG1VqlYvRo0cze/ZsTp06Ra1ata77/P79+7N9+3ZiYmIqrBCxZMkS7r33XlauXMkdd9xRIW0KURM88MADrFmzhoSEBJydnSv9+mZZCrY6ksSj6jEaDHzywANMW7qUhNJSALyV4o0+fRi9dClUwvJseamp/PXLL+xes4Y9f/3F7sREoktKOAN4Ap97e7PB0ZH2zZvTrmdP2t5/P+5mmMFdCCFqinIUN6rdJOXnyFKwV3bw4EFat27NqFGjmDlzJqWlpbRu3ZqIiAiUUmitmTVrFs8++6ylQ63xDAYDI0aMYM6cOYwcOZJPPvmkShSUcnJyqFu3LoMHD/7X8sDXKiIigpYtWzJ+/HimTZtWIXENGjSI3bt3Ex8ff129SYSo6c6tbmWp9+6KXi1lq9a6q1LqLP9cClYBWmvtVv5QzUuKG1Xbvh9/ZMKoUWzOyuJJ4GsrK442bszWDh0Y9s03WFXiL5azCQm4HjsGe/bwwQ8/MCsykljD352SWtnbs+/ee1EdOnDC35/at96Ks69vpcUnhBBVWTlXSwkCGmmt1yqlnABrrfVZ80RY8STH+DetNT179uTAgQNER0fj6upKeHg4x44dw9PTk8zMTOrWrUtCQoKlQ71paK155ZVXeO+99xg1alSFD+Uoj08//ZTnn3+e3bt3067ddb1t/MOTTz7JDz/8wNGjRwkODr6hmFJTU6lbty4TJkzgvffeu6G2hKhptNa0b9+e/Px8Dh8+XOm9wKTnhokkHtVDfno6vPUWTgsXcm9yMksoWxewnYsL44YP575p0yq10HHOmWPH2LNwIXs2buRsXBzvFhRAYiKdKOtH3djOjla1a9OqWTO69O5Nt0cfBVnKTghxEypHz42ngRGAl9a6oVKqEfCF1rqn2YKsYJJj/NvixYsZPHgwn332GcOGDSM0NJSTJ0/SokULDprmuYqMjCQ0NNTCkd58xo0bx4wZM1i7di09e1ruv5nWmtDQUDw8PNixY8cNtZWQkEDjxo255557+OGHH26orenTpzNhwgT5+RTiMubNm8fQoUNZvXo1ffr0qdRrm6W4oZRqCCRorYuUUrcCLYDvtdZZ5Y7UzCTxqH7it2/nrSee4NfoaNJNP6v2QEqXLnj897/Qt69lA0xOZtVXX7Fz40b+OnqUv06fJs5g4F7gFwA/Px6zsiIgMJDWnTrRql8/Qnr2tEhxRgghKks5iht/AR2AnedWXVNKRWitm5srxoomOcY/FRYWEhoaiqurK5s3byYsLIykpCR69erFvn37yMjIYMCAASxfvtzSod6UCgoKaNWqFUVFRURERODq6mqRONauXUvv3r2ZN28ejz766A23N3nyZKZOncqePXto27ZtudrQWtOiRQucnZ1vuOAiRE1VVFREUFAQbdq0YeXKlZV67QpdLeUCvwClSqkQ4CugHvDjDbQnxL8Edu7M10ePctpoJHLFCh4KDCTMygqPP/+Efv1obWVF/1q1+POLLywTYJ069Hv9dV7fsIElSUnElpSQGRvLRz/9BB99REHPnkRkZDBtxw4enDGDJv364WZry7TgYHjuOQxffMHu776jIEMWGhJC3NSKtNbF554opWz459BXUc1Mnz6duLg43nzzTRo3bkxSUhL33HMPQUFBZGRkYGNjw88//2zpMG9ajo6OzJkzh/j4eF5++eWrn2Amn376KbVq1eL++++vkPYmTpyIj48PL730EuX9AHf//v0cOnSIJ554okJiEqImsre3Z+TIkfz+++8cPXrU0uH8TWtdrgewz/T1JeB50/f7y9teZTzatm2rRQ2xe7cuGDhQu5YlvxrQrqAH+/vrAwsXWjq6fynMztb7FyzQ3w4bpl9o2VIvDwvT2s1NHzLFbg06zN5ePxIcrD8YMEDHfP+91qdPWzpsIYQoF2CPvr6c4n3gVeAI0BtYArx9PW1Y6gHcCXwVEhJSsTexGktISNDOzs66f//+2tPTUwP60Ucf1StXrjz/O3vKlCmWDlNorcePH68BvX79+kq/dmxsrLaystKTJ0+u0HZnzpypAb1y5cpynT969Ghtb2+vMzIyKjQuIWqalJQUbWdnp0eNGlWp171SjnEjw1J2AjOAycCdWutYpdQhrXV4uRqsBNJltGbaOGMG77z1FpszMigE+gG/e3qS1bcvZ55+moa3327pEC9Na7IPHmTdDz/w144d/HXsGPvT00koLWUF0B/Y4u3NFCA8KIjwli0J79GDZnfcIZOXCiGqtHIMS7EChgN9KJugfDUwW5c3SbEAyTH+9thjj/Hzzz9ja2tLXl4eI0aMYOrUqTRt2pT09HRq1apFWlqapcMUQH5+Pq1atcJgMHDw4EFcXFwq7dovv/wy06ZNIzY2lnr16lVYu8XFxYSFheHg4MBff/11XSvCFBUV4e/vT58+fViwYEGFxSRETfX444/zyy+/kJCQgIeHR6Vc84o5xuWqHld7AM2AmcBDpuf1gUnlba8yHtJzo+b77dVX9aE2bbS2tdUvmD4d8lVKjwwL04l791o6vGty+sgRnb9ihdYffKB/79VLt3Vy0o4X9FBRoCMCArS+6y69Z9gw/ePo0frgokW66OxZS4cuhBBa6+vruQFYAz9c6/FV9SE5Rplt27ZpQNva2mpAjx07VhuNRn3fffed/z22atUqS4cpLrBlyxatlNKjR4+utGvm5+drLy8vPXjwYLO0v3DhQg3ob7755rrOW7RokfyMCnEd9u7dqwH94YcfVto1r5RjyGopomYyGvl90iRe+/xz9ufnU2raXNfKir+GDsXn1VehUSOLhng9SouLid2yhUNr13Jo925e9PTEISqKCZGRTDf9H7YBGtvbE+7ry/dPPol9q1ZkBwXhEhaGtZ2dZV+AEOKmUo6eG1uB2/UF825UN5JjgNFopGXLlhw6dAgom9xxypQpzJ8/n8ceewyAdu3asXv3bkuGKS7h3OopGzdupEePHma/3pw5c3jyySfZsGEDt956a4W3r7Wmc+fOnDp1iujoaJycnK7pvDvvvJP9+/dz8uTJ6+rxIcTNrFu3biQkJHD8+PFK+X9jrtVSugBvAEGU/V2lAK21blDOOM1OEo+bk6GwkK+HDWPWkiWcLCoi27S9t7U1tp6ePDdyJP1fe61armBSlJPDsTVrOLRxI4f27SMiJoaUrCx2FRUBMARYCjRzciK8Th3CmzaldZcu9Hz4YahXD6xuZE5hIYS4tHIUN74HQil7y8o7t11rPd0M4ZmF5Bjwf//3f7zxxhsATJ06lVdeeYVTp04RHh5Obm4uWmvi4+MJCAiwbKDiX/Lz82nRogVaaw4ePIizs7PZrqXLejpRXFxMREQESimzXGfLli10796dt99+m1dfffWqx6ekpBAQEMDEiROZOnWqWWISoiZatGgR999/P0uWLOHuu+82+/XMVdw4AowD9sL5D8bRWp8pV4OVQBIPgcEA8+bBt9/itXUrmabNNkC4gwMjBwxgxNy5UIljTs0iNxeiovj1++/ZvG0bh0+e5FBmJklGI62BfQCOjjzp6EiBiwtNGzSgaYsWNO3alcY9e+Lo5WXhFyCEqM7KUdx4/VLbtdb/V3FRmdfNnmOsWbOGPn36APDRRx8xduxYjEYjvXv3ZsuWLZSUlPDEE08wZ84cC0cqLmfz5s306NGDF154gY8//ths19m+fTu33HILs2bN4tlnnzXbdQDuvvtu1q9fT0xMDLVq1brisdOmTeOll17iyJEjNGnSxKxxCVGTGAwGGjZsSIMGDdiwYYPZr2eu4sZOrXXHG4qskt3siYf4t53ffMPHb77J2lOnOK01bYE9QKG/P+Pc3Bj70Uc06dfP0mFWmIyYGE7v2EGT/Hw4coRHfvqJ7WlpxBkM59dcvBNYWr8+NG3KG5mZ+DdsSNOOHWl6++3UCg1FSW8PIcRVXG9x44LznLTW+eaIydxu5hwjOjqaJk2aoLU+PxQFYMaMGYwbNw6lFI6OjmRnZ2NTDXtJ3kxeeOEFPvnkEzZt2kT37t3Nco1HHnmE5cuXk5iYaPYJTI8cOUJ4eDjPPfccM2fOvOxxWmuaN2+Om5sb27ZtM2tMQtREH3zwARMnTuTAgQO0aNHCrNcyV3HjXcomAVsMFJ3brrXeV64G/27XC/gfEAzEAQ9orTMvc6wbEAn8qrUefbW2b+bEQ1xd2uHDZH7yCU02beLzI0cYZdruCtzi7c0zw4cz6O23q+XwlaspyMggesMGjmzdildGBr1KSiiKjMT7wIG/+4cDnkrxSr16vNSzJ4ZGjfg9P5+m3btTv1s3bBwcLBa/EKJqKUfPjc7AN4CL1jpQKdUSeEZr/ZzZgqwgSqk7gTtDQkKejo6OtnQ4lU5rjb+/PykpKXTp0oWtW7cCEBkZSZs2bXB2diYjI4PPP/+ckSNHWjhacTV5eXm0aNECpRQHDx685rkqrlVKSgqBgYE899xzzJgxo0LbvpyRI0cye/ZsIiMjaXSZ+dZ2795Nhw4d+PLLLxkxYkSlxCVETZKZmUlAQABDhgzhm2++Meu1zFXcuFSfE621vqF1N5VS7wMZWut3lVIvA55a60mXOfZjoJbpeCluiApjKCzkp3HjmL1gAbuzszn3MeInVlaMDgsjtm9fvMeMwa2Gjxs2Ggwk7N7NkY0bidq9myNHj9JbKe49c4bolBQam46zBRra2dHI05OxXbtye8+eFNSrR6qHB/U6dJAJTYW4yZSjuLETuA9YqrVubdpWpZeXv9jNmmM8//zzfPrpp9ja2pKQkICvry/FxcV06tSJ2NhYsrKyCAoKIi4uztKhimu0ceNGbrvtNsaOHctHH31UoW2/9dZbvPbaaxw9epTGjRtf/YQKkJKSQkhICHfccQcLFy685DGjRo3i22+/JSUlBXd390qJS4iaZuTIkcyZM4dTp05ddRjYjTDLUrDmegBHgTqm7+sARy9zXFvgJ+AJ4NNraVuWaRPltfeHH/TQBg10nq+v1qDbmZazq2NlpYc1aqQjfvnF0iFWusKUFL1j9mw996mn9KSOHfU9dero5g4Oeqmdndag15nukR3opnZ2eqCvrx7Xpo0+9vrrWv/xhy46ckQbioos/TKEEGbAdSwFW3Y4O01f91+w7cD1tGHpx82YYxw4cOD88q4LFy48v33y5Mka0N7e3hrQu3btsmCUojxGjRqllVJ6y5YtFdZmcXGx9vf313379q2wNq/VG2+8oQG9ffv2f+0rKCjQnp6e+uGHH670uISoSSIjIzWgp0yZYtbrXCnHuJGeG7WBqYC/1voOpVQzoLPW+ob6oSilsrTWHqbvFZB57vkFx1gB64FHgV5AOy09N0Rlycjgk0ce4Yv16zlaXHx+Nl0PILN1axg4kMInnsChQZVdOMi8jEZITiZx2zZ+X76c6CNHOJ6QwPGMDI4XFrIB6AB8DzwFNLCzo5GHByF16xLSqBEPP/AAnm3aQGAgyDJsQlRL5ei5sQiYDnwKdATGUPa7fYiZQqxwN1uOYTQa8fHxITMzk759+7Jq1SoAtm3bRrdu3WjXrh27du3i9ttvZ926dRaOVlyv3Nxcmjdvjq2tLX/99VeFDE9ZuHAhDzzwAMuWLWPgwIEVEOW1y83NJSQkhEaNGrF58+Z/rNByLq4//viD3r17V2pcQtQ0ffv25dChQ8TFxWFra2uWa5hrWMrvwBxgsta6pVLKhrJPXJpfw7lrAb9L7JoMfHdhMUMplam19rzo/NGAk9b6faXUE1yhuKGUGgGMAAgMDGx78uTJa3uBQlwDo8HAwgkTmPPDDxiys1lrMABgb3q0cnNjcM+eDJs5s8YPYbkW2mhEJyVhFRPD3rVrWbhmDccTEog+c4bjhYXkA0mUddn6wMqK2dbWNPTwoH7t2tQPCqJ+aCh33Xcfto0bg6fnVa4mhLCUchQ3fICPKfvAQgF/AGN0FV6B7WI3W3Fj6NChzJs3DycnJ1JTU3FxcSE3N5dWrVphMBhISUnBYDCQlpaGl6zAVS2tX7+enj17MmHCBKZNm3bD7fXo0YNTp04RHR2NtQU+vPjyyy959tln+fXXXxk0aND57f379+fQoUPExsZaJC4hapKVK1cyYMAAfvzxRx566CGzXMNcxY3dWuv2Sqn9+u/xsX9prVvdQKwopY4Ct2qtk5VSdYCNWusmFx3zA9ANMAIugB3wudb65Su1fbMlHsICsrIonDWLnlOnciA39x+TcQ6wtWV5794YhwzBeP/9MgHnRbTRSMqBA/jl5KBiYli0bBk/7d5NbEYGsYWFZGqNLVBA2UzGL9rZsc7amvoeHtT396d+gwaEhIfT7/77ITgYHB0t+4KEuIlda3FDKfWe1nqSUup+rfWlB8NXEzdTjrFjxw46d+4MlM3P0KNHDwCeeeYZvv76a3r27MnatWsZP348H374oSVDFTfoueee44svvmDr1q3ccsst5W7n4MGDtGzZkmnTpjFhwoQKjPDaGQwGmjdvjtaaiIgIbG1tSUpKol69erzyyivnV/kRQpSf0WgkNDQUDw8Pdu7caZZrmKu4sREYDKzRWrdRSnUC3tNa9yh3pGXtfgCc0X9PKOqltZ54heOfQIaliCoqfvt2vnzxRZbv28eg4mLeNBpZDtwF+FtZ0T0ggGEjR9LzxRdr5CosFSn75EkS9+yhmVIQG8tnS5eyMiqK2Oxs4oqLKaBsiaVY0/FDHRyItrGhgbc39QMCqB8SQrO2bel8550QEAByv4Uwm+sobkQALYC9Wus25o/MfG6WHKO0tBQPDw9yc3N55JFHmD9/PgArVqxg4MCBjBgxgq+//ho3NzcyMjKwkuXDq7WzZ8/SvHlzHBwc2L9/P47l/ODgmWeeYd68eSQkJFi0J8/SpUsZNGgQs2bN4tlnn+X9999n0qRJHDt27LIrqQghrs+nn37K888/z/bt2+nUqVOFt2+u4kYb4BMgHDhE2aol92mtD5Y3UFO73sDPQCBwkrKlYDOUUu2AZ7XWT110/BNIcUNUF/v28ft//8sLf/xBrMFwfr4Oa2Cury+PDh6M8amnsGpTrXP8SqeNRlIPHeLMwYOEmYofr//yC1vj4ojNzSXedK+7AlsArK3pa2tLvp0dgZ6e1KtTh8CgIFq1a8ctffuWzfchs6ULUW7XUdz4AHiasl6Y+ZQNSdHnvmqt3cwa6N9xNKBsaKy71vo+0zZn4HOgmLJepD9cqY2bJce4++67+e233/D09CQlJQU7OzvOnDlDWFgYtWvXBso+pf/pp5948MEHLRytqAjr1q2jV69evPTSS7z//vvXff65JSIffvhhvv76azNEeO201vTo0YOjR49y/PhxOnTogLe39/kljIUQN+7s2bMEBATQv39/FixYUOHtm6W4YWrYBmhCWRJyVGtdUu7GKsHNkniI6sFoMLBu2jTmzJrF5oQENhmNNAT6UzZbbhMHB/qGhzP05ZcJHzzYwtFWb4aCAk7t3k1hTAyhRiPExjJq4UIiU1OJz8vjlMFACfAwcO6vlyClcLOzI9DNjcBatQgMCKB7p0506dULAgMx+PpiI0NfhLik6yhu2Guti5RSv2mtB13t+Mu08S0wEEjTFywdq5TqR9k8HtbAbK31u9fQ1qILihuPAVla62VKqf9pra/4l/rNkGOc+yMXygoYzZuXTbM2dOhQFixYwLRp0xg7diyhoaFERkZaMlRRwZ555hlmz57Nn3/+ed2fxH700UeMHz+e/fv306rVDY1erxA7d+6kU6dODBw4kOXLlzN79myGDx9u6bCEqFHGjx/PV199RVJSEm5uFfs5hbl6btwPrNJan1VK/QdoA0zRWu8rf6jmdTP/kcnwAAAgAElEQVQkHqIaMxjgf/9jwn/+w3cnT3Lmgv+b9kBu/frYdO1KdOfONBw+HCs7O8vFWsMYS0pIiYig9NQp6hUVYYiNZcKCBcSnpnIyO5v4wkLOaM0k4F0gB/AE/K2tCXRyItDTk0A/P+7u2pXOXbtSUrs2aXZ2+LVogbX8O4mb0HUUN/aZhrbO01o/Vs5rdQdyge/PFTeUUtbAMaA3kADsBh6irNDxzkVNPKm1TjOdd2Fx4xXgd631X0qpH7XWD18pjpqeYxQXF+Pu7k5hYSHjxo1j+vTpAPz+++/079+fyZMn88UXX5CRkcHhw4cJDQ21cMSiIuXk5BAeHo6zszP79+/H4RrnDTMajTRu3Jg6deqwZcsWM0d57R588EF+/vlnHB0dSUlJqfA/voS42aWlpaG1Pt+jryKZq7hxUGvdQinVFXgLmAa8prXuWP5QzaumJx6iZslNSeGniRP5ddUqzmRlsd1gAK1xoyyL91WK1t7e3Hn77Tz83nt4BAdbOOKaLS8tDcPJk7hnZpJ15AjTFy0iPimJ+DNniM/N5ZTBwIfAaOAwZeP1rAE/KyvqOjoS4O7O2E6d6NahA5keHhzIz6duWBh1W7fGqVYti742ISradRQ3DlG2rPxbwEsX79daL77G6wUDyy8obnQG3tBa9zU9f8XU3sWFjYvbubjnRqbWerlS6qerLUtb03OM22+/nQ0bNuDv78+pU6ewsrI6/wevq6srd999N1OnTuWee+5h8eJr+mcT1cwff/xB3759mTRpEu++e9WOUMDfxa+qNkwpJiaG0NBQhgwZwvfff2/pcIQQ18FcxY39WuvWSql3gAit9Y8XrpxSFdX0xEPUcEYjrFnDyDFjWHfiBCdLSig27fIDkl1doWlT3nV25p5Jk2jSr58lo73pGA0GDMnJ2J0+zenISH5ZsYLEU6dISE0lMSODxLw8pllZcUdBAauBC/91PJSirp0dX7dsSeewMKIdHVmflUXdhg2pGxqKf/Pm1GrSBCszrRcuREW7juJGV+AR4AFg6UW7tdb6yWu8XjD/LG7cB/Q7N0+XqVDR8QrLxnsDb1PW02O21vod05wbnwKFwNZLzblxsyw3/9tvv3H33XejlCIuLo7AwEDg75U0Vq9ezYABA1BKkZmZiZOTk4UjFuby9NNP8+2337J9+3Y6dOhw1eMHDBjA/v37iYuLw66K9WTcv38/QUFBslSxENWMuYoby4FEyhKBNpSt0LhLa92yvIGamxQ3RE0TtXw586ZOxTchgbGZmUTl5tLMtM8OCLa1pVtwMM+OGUO7kSNBZq23vNxcMiMj2b9lC4nR0STExpKYnExiejpTvb0JzchgdnIyT1/03mwN7PfxoXlgIKusrVmUnU0dX1/q+PvjFxREnZAQ2t56K3aBgSDLDAsLu9bixgXHD9daf3MD1wvmBoobFaGm5hj5+fl4eHhQUlLCO++8w8svvwzA5s2b6dGjB+PGjWPTpk3s27eP9957j4kTL7vAnagBsrOzCQ8Px83Njb17915xeMrx48dp3Lgxr7/+Oq+//nolRimEqMnMVdxwouzDxwitdbRSqg7QXGv9R/lDNa+amngIcU5uQgJzx49n+fr17M/I4LTWaOAx4Hul2OnlxVtWVvTt3p37//Mf/KrAxF7i3wyFhaRERJB48CCJR4+SHBdHclISE+rXxzMjgy8iIvi/xETSjEaMF5yXRtmyVe85ODDXaKSOkxN13N3x8/Ghjp8fY+6/H9t69Ui3t8fa3x+PoCCUFLyEGVxHz43btdbrlVL3Xmp/ZQ9LKQ+l1J3AnSEhIU9HR0dXdPMW1759e/bs2UPjxo05cuQISikKCgpo2bIlpaWlPPnkk/znP/+hefPmHDx4QwvmiWpi1apV3HHHHbzyyitMnTr1ssdNmDCBmTNnEh8fT506dSoxQiFETWa21VKqGyluiJuNobCQlW+9RejhwzSKiGBMbCwzL5qoNMDGhrldutD10UfhvvvAw8NyAYvrUlpczOkjR0iOjCT52DH6+ftjlZbGgk2b+OXwYZJzckgpKCDZYMBIWfc6BTwJzAFsAV8rK3zt7Ql2dWVx375QuzYrzpwh3doa38BAfBs0wLdRI3ybNsVeJlwT1+g6ihv/p7V+XSk15xK7b2RYig1lE4r2pKyX6W7gYa314Wt8CdetJuYYc+fOZdiwYVhbW5Oamoq3tzcAEydO5IMPPuDHH3/ksccew8rKiqSkJHx8fCwcsagsw4cPZ+7cuezYsYP27dv/a39eXh4BAQH069fPLEtBCiFuXlLcMKmJiYcQ1+vwb7+x6KOP2HjgAJHZ2aRrzV6gFXAPsBoIsrWlbd26DBg4kEGvv46TJKzVmjYayU1OxjU3F5KT2bR+PfsOHuR0Whqp6emkZWdjU1zMEnd3SE2lT2Ehay5qozFw1MMDfH0Zc/YsCUpR29MTXx8ffP38aNykSdkSkbVqkWNvj0tAgMwRchO73mEpN3itBcCtgA+QCryutf5GKdUfmEHZqK5vtdZvm+n6NbLnRnZ2Nt7e3pSWlvLtt98ybNgwAPbs2UPHjh0ZPnw4a9euJTY2lrlz5/L4449bOGJRmbKysggPD8fDw4O9e/dib2//j/1ff/01I0aMYOvWrXTp0sVCUQohaiIpbphIcUOIfzMaDFjt3w+LF/PC3Ln8mJpKhmk4yzl5jo44hYTwnYcHbrfcwoD//Ac7FxeLxSzMSGtyU1JIjYoi7fhx0uLiSI2Px76ggMfr1oXUVIZt3syuzEzSios5Y/pZuR1YZ2qiEXAC8FIKH1tbfBwc6OPvz3+7dgUfH76MjsbB05NadeviExSET/36+DZujEudOqCUxV66qDjX0XNj/JX2a62nV1xU5lXTcozQ0FCOHDlC+/bt2bVrF1C2HGy7du04c+YMgwYNYtasWdx2222sX7/ewtEKS1i5ciUDBgxg8uTJTJky5fx2rTWtWrXCysqKffv2oeR9XQhRgaS4YVLTEg8hzMVoMLD5009ZMncucXFx/AaQnY0HkG06xg0IcXSkb7NmTH3nHbjtNrCxsVjMwjIMhYWkHztGcVISgVZWkJ7O10uXkpCUxOmMDNKzs0nPzaWzrS1v29hAejrOJSXkX9TOcGC2rS3a25u2WVl4Ojjg7eKCj7s7Pl5e3NaiBbd17Eipuzu7U1PxCgzEKzgYj6AgbGQC1SrnOoob52YZbAK05+8VU+6kbJLyR80UYoWpiT03ZsyYwbhx47C1tSUrK+v86idvvvkmr7/+OtOnT2fChAk4OTmRnp5+xUklRc02bNgw5s2bx86dO2nbti0AW7ZsoXv37syePZvhw4dbOEIhRE0jxQ0TKW4IcQMMBlZPncqSn35ie2wsJwoLyaVsAss00yFBSuFqZ0dLPz96dO3KwPHj8W/TxoJBiypHa7JPnSL9+HHSY2NJP3WK9MRE6tva0t3dncKUFIasWkV6fj7phYWkl5SQoTX/Ad6k7Get9kVNugNve3szKjiYVBcXxsbG4uXmhpeHB97e3nj5+tKlXTsahodT7OJClrU1nvXrYyvLVZpNOVZL2QwM0FqfNT13BVZorbubK8aKVlNyjLS0NPz8/NBas3TpUu68804ADh8+TOvWrRk8eDBr1qzhzJkzrFq1ir59+1o4YmFJmZmZhIWF4ePjw549e7Czs+PBBx9kzZo1JCQkyLLAQogKJ8UNk5qSeAhRVeRnZBA7Zw5hBw9SvHcvvocPn+/ZcU5HYEedOhhCQni1qIi+999Pj9Gj5dN2cc1Ki4sxnDmDfV4eBUlJbNy4kYyUFDLS0sg4c4aMzEzu8vGhp709xxISGBgVRYbBQKbW51eTmQM8AewAOpu2uQIe1tZ42NryUaNG9Kxfnyil+PLkSTzd3fHw8sLD2xuPWrXo0qkTPsHBFDo6UuLsjIufn6w0cwXlKG4cBVporYtMz+2Bg1rrJuaKsaLUtJ4bQUFBxMfH06dPH1avXg1AaWkpXbp0ISYmhi5duvDbb78xZMgQmShSALBs2TLuuusuXnvtNUaMGEFwcDBjx47lgw8+sHRoQogaSIobJlLcEML8jAYD22fPZuW8eeyMiqK7wcBrhYWsLymh5wXHuQABdnZMbNmSYU88AXfdBQEBFopa1ERGg4HshAQyYmPx1hqPkhKSYmJYsnHj+aJIZk4OWXl5vFqnDh2MRn5PSmLI6dPkXNTWJqA78CPwCGUzVLorhae1NR52dsxv2ZKmdeuytbCQ31JScHNzw93DA3cvL9y8vOjTvTvOfn5kW1lRZGeHe716NXr1mXIUNyYDDwBLTJvuBv5njqVbzaUm5Bj//e9/mTJlCo6OjuTk5GBjGmp4bhjKxIkTef/99/Hx8SE1NRUrKfAJk6FDh7JgwQLuuusulixZwvHjx2nQoIGlwxJC1EBS3DCpCYmHENVVblwcv0yZwoYNG9iflMTJwkJygAnAB8DnwBjAx8qKRi4utA8Joc+993LbmDEyeamodIaiInISEsg6dYqsxEQaubnhWlxMZGQkK3fuJCsri6ycnLLiSH4+s+rVI7CggFmJiUzIyaHgovbigXrAFOC/pm12lBVI3Gxs2NOsGR5eXvyYk8MfWVm4u7jg5uqKu7s7bp6ePNW/P1bu7pzIzSVHa1x9fXHz88O1Th3s3dyqXC+S8qyWopRqA3QzPd2std5f8ZGZT3XPMeLj4wkKCgL4xwoXMTExNG/enFtvvZVNmzZRUFDAvn37aNWqlSXDFVVMRkYGYWFhpKSkMHDgQJYtW2bpkIQQNZQUN0yqe+IhRE1jNBgwbN+O3bp1zP/lFyZHRZFSWkrxBcd8DTzl4MDnDg78z2ikZXAwXW+7jV6jR+MVEmKp0IW4opL8fHISE8lOTCQnNZUwHx9s8/LYd+AA2yMiyM7KIjs7m+zcXHLy8pgbGopdbi5To6P5Mj2dHKORHNOwGhugGFDAk5QNsbmQF3DGywtcXZmUl8eWwkJc7e1xdXDAzcmJAE9P3uzdG1xdWXnyJGeMRlw9PXHz8aFDx464dO1a4a+/MpeCtbSaMCxFa03t2rU5ffr0P4abaK3p2bMne/fupVmzZuzYsYPx48fz4YcfWjhiURUtW7aMIUOGsGLFCm699VZLhyOEqKGkuGEixQ0hqoeM48f5ffp01q1dy1RHR/xSUhh4+jQrLnq/sgGOeHnRsEEDFjk7c6ZuXfo88wz1u1ebOQiFuCxtNJKbksLZpCT8nZzg7FkO/vUXx2NiOJuZydmsLHJycqCoiFfDw+HsWd7es4eNKSmcLSribEkJZ0tL8QX2aA1GI7cBGy+4RqSnJ6EZGRUe+81U3DinOucYo0aN4vPPP8fd3Z3MzMzzS3d+9dVXPPPMMzz++ON89913NGjQgJiYGAtHK6qywsJCWT1HCGFWUtwwqc6JhxACsuLiWPvJJ2xZt46DcXHE5+YSbW2NVXExjYDjpuOsADelCLSzY3///lh16kRSeDh+ffpgJcvVipuR1lBQQHpcHJmJiZxNS+NsejodGjfG8Y47KvxyUtyoPiIjIwkLCzv/fWhoKAAJCQmEhYXRokULdu7cidFo5MSJEwQGBloyXCGEEDe5K+UYkuULIaoNj+Bg7vvwQ+67eEdxMfO//poV//sf+44c4VhWFsklJZwoKsJqyRJYsoTmQAbgDNS2sSHYxYUuISG8OXo0dO8O9etX+usRotIoBU5O+DRrhk+zZpaORlQRWmtuueUWAJ5//vnzhQ2tNSNHjqSkpITU1FRKSkr48MMPpbAhhBCiSpOeG0KImstohEOHYO1aRn7+OdsSE0koKiJba0oxzVVgOtQV0ICPtTVBzs6E1q1L3x49uOeFF6BJE6hiEzYKUZXdTD03qvOcGw899BA//fQTvr6+pKamnt++YMECHn74Yfr168eqVato27Ytkj8JIYSoCmRYiokUN4QQ52QcP07CihW0SE2FiAharVnDqeJicrTGYDomBIgGjIAH4GFtTT1HR5rUqUObli3p++ijNLrzTil8CHGRm6m4cU51yzF27NhB586dUUoRHx9PgGkp7tOnT9OsWTMCAgI4ePAgtra2pKSk4OHhYeGIhRBCCBmWIoQQ/+IVEoLXmDHnn/91wb6chAT+nDMHu+hoyM0lLSoK+6NHSSkt5VRuLtuio5kTHU23RYvYDMTa2dHVYMDfwYH6Xl40bdCA1p060W3oUHxMY9mFEKKqKC0tpWfPngC88cYb5wsbAC+88ALZ2dlYW1tjNBr57rvvpLAhhBCiWpCeG0IIcR3y09PZ8d13bF+1itYFBfTPz2f1iRPclZ39jyVsAYYC3ynFShsbni4tpY69PUGenjQNDqZlx470GjYMr+bNLfEyhDAr6blRtfXr14/Vq1cTHBxMbGzs+e1Lly5l0KBBtG/fnt27d9O3b19WrVplwUiFEEKIf5JhKSbVKfEQQlQ/hsJCIpcvZ9fSpRw8cID77O3pnpfHlydP8kJe3r+KH1OAyUrxsbU17xmN1La3J9jdncZBQbTq0IEBTz2FW3i4DHsR1Y4UN6quVatWcccdd2BlZcXp06fx8vICICsri7CwMJycnDh+/Diurq6kp6djZ2dn4YiFEEKIv8mwFCGEqAQ2Dg60uO8+Wtz3z/VcnjE9jAYDUStWsGvZMg7u28d9rq6QkUHaiRNk5OeTXFDAXwUFkJICO3fy2yefcBfwvJUVC7TGy8aGOk5OBHl5ERIczNhhw3Dr2hWCgqQAIoSFXDChqKVDuSZDhgwBYObMmecLGwAvvfQSycnJuLi4AGW9OKSwIYQQojqRnhtCCFFFGA0GYjZsYOfixRzYs4fJPj54JCXxbHQ08wsKKKBsctNzEgF/oAewHXBWCi9ra2o7OBDo6cn8Rx7BJjyctIAAvDp2xMbBwRIvS9yEpOdG1WVnZ0dpaSmlpaXnt61bt45evXoREhLC8ePHeeKJJ5gzZ44FoxRCCCEurVoNS1FKeQH/A4KBOOABrXXmJY4LBGYD9ShbwbG/1jruSm1Xl8RDCCEuJz89nQO//krExo2M8PWFEyd47s8/WZ6ZSVZpKfnAuT9Zzr27BwMnKeuq50TZqi8NHB3Z0KMHBAbyS24uNvXqEd6zJ/W7d8fKRjr1iRsjxY2q6+LiRl5eHs2bN6ewsJDk5GT8/PxITEzESnqDCSGEqIKqW3HjfSBDa/2uUuplwFNrPekSx20E3tZar1FKuQBGrXX+ldquLomHEELcCENhITGrV9MkOxuiopi0eDGbExNJLSwk02gkT2tsgTzT8e5AzgXnWwOBSnGidm3w9OSJjAxKHBwI8venUdOmNO3UibCBA3Hz96/01yaqByluVF0XFzfGjRvHjBkzsLOzo6SkhIiICMJklSchhBBVVHUrbhwFbtVaJyul6gAbtdZNLjqmGfCV1rrr9bRdXRIPIYQwO6MREhLg8GHmzJvH/sOHOZWWRvLZs5wuKqI2sM3GBoqKsNUaw0Wn1wLSlAI7O4KKi7GyssLH3h5fZ2fqeHpya1gYjw4aBCEhZNWujUc1mY9AVAwpblRdFxY3duzYwS233IKvry+pqam8+uqrvP3225YOUQghhLis6lbcyNJae5i+V0DmuecXHHM38BRQDNQH1gIva61LL9HeCGAEQGBgYNuTJ0+a+RUIIUTNkp+eTuTKlUT++SfHo6KIS0ggSGvecnGBjAw8kpLIg38UQJoCUaZttqZtNoA9ZXODDHZ15fMmTcj38mJMbCz1/P0JbtSIhm3aENqzJ16NGlXuixQVSoobVde54kZ+fj6tW7cmOTmZrKwsmjRpwpEjRywdnhBCCHFFVW61FKXUWsDvErsmX/hEa62VUpeqvtgA3YDWQDxlc3Q8AXxz8YFa66+Ar6As8bihwIUQ4ibk5ONDu6FDaTd06CX3Z5m+Gg0GUg4e5NjmzTinpYG1NYUnTtB39WrS8/PJKC4mx2jkrNak5uTA7t0coWzyJI4dg40bz7fZH1hhY8M+GxvuKCrCxdoaD1tbPB0cqOXqyhOtW9P3llvI8vQkqrSU+rfcgm+zZjJfiKh01W21lHMfak2ZMoWoqCisra2xsbFh/fr1Fo5MCCGEuDEWyQK11r0ut08plaqUqnPBsJS0SxyWAPyltT5hOudXoBOXKG4IIYSoHFY2Nvi3aYN/mzbnt7kAqy53gtFIsxMnWPfbb5w4cIDYmBgSU1NJzsriXmdnsLYmNT2ds4WFnDEYOGEwQEEBZGbiHh9P399+YwHw3IUxUNZTZKq9PeO9vFiuFG9lZ+Pt6EgtNzf8vL0JqFePe/r2JaBdOwz+/lj5+EhRRJSb1noZsKxdu3ZPWzqW6/Huu+/i5uZGTk4On3/+Of4yh44QQohqripmc0uBx4F3TV9/u8QxuwEPpVQtrfVp4Hag6vcFFUII8TcrKxxCQrh9wgRuv8whdwAXzhSdk5DAia1b8SsshLNn6bx3L49v3UpadjZnCgrILi4mp7QUXysryMhgZ1ERuwDy8iA9HU6cgN27sV68mOeA0cCXgKLsF6Id4KAUi3x8uNXHh28KC1mYk4OXszM+np7UrlULv7p1uf/OO3Fr0gRjYCBWbm5mvElCVDyj0YiDgwM5OTl07tyZkSNHWjokIYQQ4oZVxTk3vIGfgUDKVi98QGudoZRqBzyrtX7KdFxv4EPKctK9wAitdfGV2q4u42GFEEJUHKPBQPrRo8T8+SfxERHEnzjBg35+BBYUMD8igk9jY8kpKSG3tJR8o5FCrVljbU1no5EBWrPyEm3uBdoAtwEbKesxcm5OEXuliPLzw8fdnTeys9lcUIC7gwMeLi54ubnh4+PDpMGDsfLzI14prPz88GveHBsHh0q7J+Ymc25UXdbW1hiNRpRSODg4kJaWhouLi6XDEkIIIa5JtZpQ1JyqS+IhhBCiajAaDGTFxRG3axcJhw+THBdHSmIiLzVqhNPZs7y7Zw+/JCdz9lxxRGuKtOaMjQ0ORiMtjUYOXqLdc795GwInLthuBTgBZ52dwcGBQbm5RBmNOFtb42Jnh4udHfVcXfmqZ0/w8GB+XBxnbW3x9vPDJyAA3/r18WvWDJ9GjcDKyty357KkuFF1lc3VXmbx4sXcc889FoxGCCGEuD5VbkJRIYQQojqwsrHBKyQEr5AQ2lxi/8umx+UcAAqzskg9dIikyEhSYmLISE6Gxo3hzBme3rSJP5OSyCks5GxxMbkGA7Zag4MDFBVxrKiIE0BpSQkUFgJgl57OV7NnAzAKyLnomk5Anun7WkA2fw+5sVOKZra2bAwKAicn8t3dcdq0qZx3R1RngwYNksKGEEKIGkWKG0IIIYQZOXh4ENS1K0Fdu/5r35UKI1C2nO45RoOBjNhYsk+cAEdHSEvj6z/+IObkSTIzM8nKySEnPx9vpSAwEPLyaHrkCPHFxRQajRQDeVqTWlwMMTFgNFKsFE4V+WJFtbFo0SJLhyCEEEJUKCluCCGEENWAlY0NPo0alQ05MXngvvuueM6Wq7TpYTRWQGSiOrKRFYKEEELUMJYbkCuEEEIIy7LgvBxViVKqgVLqG6XUoittE0IIIUTVJVmNEEIIIaotpdS3Sqk0pdShi7b3U0odVUodV0pdcQSQ1vqE1nr41bYJIYQQouqSPolCCCGEqM7mAp8C35/boJSyBj4DegMJwG6l1FLAGnjnovOf1FqnVU6oQgghhDAXKW4IIYQQotrSWm9WSgVftLkDcFxrfQJAKfUTMEhr/Q4wsHIjFEIIIURluKmKG3v37k1XSp2s4GZ9gPQKblOUkXtrHnJfzUfurfnIvTUPc93XIDO0eT3qAqcueJ4AdLzcwUopb+BtoLVS6hWt9TuX2naJ80YAI0xPc5VSRyvsFZQx28+9UsoczVYn8p5iPnJvzUPuq/nIvTWPSs8xbqrihta6VkW3qZTao7VuV9HtCrm35iL31Xzk3pqP3FvzkPtaRmt9Bnj2atsucd5XwFfmikv+fcxH7q35yL01D7mv5iP31jwscV9lQlEhhBBC1DSJQL0LngeYtgkhhBCihpLihhBCCCFqmt1AI6VUfaWUHTAEWGrhmIQQQghhRlLcuHFm644q5N6aidxX85F7az5yb82j2t9XpdQCYDvQRCmVoJQarrU2AKOB1UAU8LPW+rAl4yynav/vU4XJvTUfubfmIffVfOTemkel31elta7sawohhBBCCCGEEEJUGOm5IYQQQgghhBBCiGpNihtCCCGEEEIIIYSo1qS4cQOUUv2UUkeVUseVUi9bOp6aQClVTym1QSkVqZQ6rJQaY+mYahqllLVSar9SarmlY6lJlFIeSqlFSqkjSqkopVRnS8dUEyilxpneCw4ppRYopRwsHVN1pZT6VimVppQ6dME2L6XUGqVUtOmrpyVjFH+THMM8JM8wL8kxzENyDPOQHKPiVJUcQ4ob5aSUsgY+A+4AmgEPKaWaWTaqGsEATNBaNwM6AaPkvla4MZRNsCcq1sfAKq11U6Alco9vmFKqLvAC0E5rHQ5YU7bqhSifuUC/i7a9DKzTWjcC1pmeCwuTHMOsJM8wL8kxzENyjAomOUaFm0sVyDGkuFF+HYDjWusTWuti4CdgkIVjqva01sla632m789S9uZd17JR1RxKqQBgADDb0rHUJEopd6A78A2A1rpYa51l2ahqDBvAUSllAzgBSRaOp9rSWm8GMi7aPAj4zvT9d8DdlRqUuBzJMcxE8gzzkRzDPCTHMCvJMSpIVckxpLhRfnWBUxc8T0B+OVYopVQw0BrYadlIapQZwETAaOlAapj6wGlgjqk77myllLOlg6rutNaJwDQgHkgGsrXWf1g2qhqnttY62fR9ClDbksGI8yTHqASSZ1Q4yTHMQ3IMM5Aco1JUeo4hxQ1RJSmlXIBfgLFa6xxLx1MTKKUGAmla672WjqUGsgHaALO01q2BPKR7/w0zjc0cRFli5w84K+WlmwcAACAASURBVKUetWxUNZcuWxte1ocXNwXJMyqW5BhmJTmGGUiOUbkqK8eQ4kb5JQL1LngeYNombpBSypayhOMHrfViS8dTg3QB7lJKxVHWxfl2pdR8y4ZUYyQACVrrc5/+LaIsERE3phcQq7U+rbUuARYDt1g4ppomVSlVB8D0Nc3C8YgykmOYkeQZZiE5hvlIjmEekmOYX6XnGFLcKL/d8P/s3XlcVGX7+PHPYRgYlmEHAREX3MMtMdsezcjdTM2nTFMzK6uvrZbtWpal6aOVS1lmVpZZapm7j6al2VO5hrnkjgiyrwMDs9y/P8D5iaKCAgN4vV+v++Us59znOgOM97nOvdBM07TGmqa5UTwBzY9OjqnW0zRNo3hM4QGl1Axnx1OXKKVeUkpFKKUaUfz7+pNSSjLUlUApdQY4pWlai5KXYoH9TgyprogHbtQ0zbPkuyEWmUStsv0IjCx5PBJY4cRYxP8nbYwqIu2MqiFtjKojbYwqI22MqlftbQzXqj5AXaWUsmqaNhZYT/HsuguUUn87Oay64BZgOBCnadqektdeVkqtcWJMQpTHE8BXJRcix4BRTo6n1lNK/a5p2lJgF8UrHOwGPnZuVLWXpmmLgduAIE3TEoCJwBTgW03TRgMngXucF6E4S9oYVUraGaI2kjZGJZM2RuWqKW0MrXj4ixBCCCGEEEIIIUTtJMNShBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIUe00TfPTNO3xksfhJUtxCSGEEEJcFWljCHHtkqVghRDVTtO0RsAqpVS0k0MRQgghRB0ibQwhrl2uzg5ACHFNmgJEaZq2BzgMtFJKRWua9gAwAPACmgHTATdgOFAI9FFKZWiaFgXMAYKBfOBhpdTB6j8NIYQQQtQw0sYQ4holw1KEEM7wInBUKdUeeP6896KBQUAnYDKQr5TqAPwGjCjZ5mPgCaVUR+A5YG61RC2EEEKImk7aGEJco6TnhhCiptmslMoFcjVNywZWlrweB7TVNM0buBn4TtO0s/u4V3+YQgghhKhlpI0hRB0myQ0hRE1TeM5j+znP7RR/Z7kAWSV3ZIQQQgghykvaGELUYTIsRQjhDLmA8Up2VErlAMc1Tfs3gFasXWUGJ4QQQohaS9oYQlyjJLkhhKh2Sql04FdN0/YB066gimHAaE3T9gJ/A3dVZnxCCCGEqJ2kjSHEtUuWghVCCCGEEEIIIUStJj03hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUau5OjuA6hQUFKQaNWrk7DCEEEKIOm3nzp1pSqlgZ8dRnaSNIYQQQlS9S7UxrqnkRqNGjdixY4ezwxBCCCHqNE3TTjo7huombQwhhBCi6l2qjSHDUoQQQgghhBBCCFGr1cjkhqZpCzRNS9E0bd9F3tc0TftA07Qjmqb9pWna9dUdoxBCCCGEEEIIIWqGGpncABYCvS7xfm+gWUl5BPiwGmISQgghhBBCCCFEDVQj59xQSv2iaVqjS2xyF/CFUkoB/9M0zU/TtDClVFK1BCiuiLWggLyUFPIzMopLVhb5WVlEh4XhrRSHjx7l17/+Ij8vjwKTCRedDm8fH+7u0oWA0FCSioo4bTJhDArCOzgY75AQvEND0bm5OfvUhBBCCCGuabm5uXz11Vd4e3vToEEDIiMjqV+/Pm7SThNCVJMamdwoh/rAqXOeJ5S8JsmNamK3Wvlr2TI2LVrE7UAHg4E/EhMZ//ff5FutxcVmI99u51uDgS5FRSyzWhlSRl3/AzoDW4HRZbzf5csvCQAWA+PKeD/e3Z0GPj7MsduZZzLhrddjdHPD290db4OBD++4A09/f35KSSEuK4vAevUIql+foMhIgpo0oWH79mheXqBplfb5CCGEuDZomnYncGfTpk2dHYoQTvPHH39w3333cezYsVKva5pGaGgokZGRjoTH2X/PPg4JCUGTNpgQohLU1uRGuWma9gjFQ1eIjIx0cjS1mFLk7t3L19OmsemXX9h8+jRpSgGwLDCQDqGhuCiFAgI9PGjg5oanuzueBgOBMTEQGcn1+fnMPH4cTy8vPI3G4uLjQ4sOHaBePe622bjdYsHTzw8Pf39sVit5KSnUMxjAbGbg4cM0O3CAvKys4pKTQ25uLgFt20JREUFxcTQ9epTcwkJyCgtJzMsjz2rFdelSMJn4vrCQ2eedlg6wABgMvKjXs95qJcjDg2CjkSBfX+qHhPDCwIEQHMwBkwmr0UhQVBSBzZrh5uVVvT8DIYQQNY5SaiWwMiYm5mFnxyJEdbPZbLz77rtMmDCB8PBwfvrpJ8LDwzl16hTx8fHEx8c7HsfFxbF69WoKCgpK1eHu7k5ERESZiY+z/xqNRiedoRCiNtFUyQVqTVMyLGWVUiq6jPfmAVuUUotLnh8CbrvcsJSYmBgly7SVX9KePWyaNw//I0fo+88/ZMbHEwSE63TENmpE7B13cPtDD1E/JsbZoZaLJT+f3KQk0o8dI+34cdJOnSI3JYWhUVGQlsasX37hvydOkGoykVZYSJrViq9SnCjZvzew7pz6fIAYDw82tW0LwcFMT04mTaejXr16hNSvT0hkJJGtWtHihhsgKAhc63wuUQghANA0badSqnb851BJpI1RO9jtdiZMmEB+fj5PPvkkjRo1cnZItdbp06cZPnw4mzdv5t///jfz5s3D39//kvsopcjIyCiV9Dj38alTpzh9+jR2u73Ufu3atWPFihU0bNiwKk9JCFELXKqNUVuTG32BsUAfikc0fKCUuuFydUrD4zKyslg9fTrrfvyRTYcOcaCoCIC79Hp+6N8fYmM52bIlkV27ornU1LloK5fNbEaXnQ2pqez89VeO//MPqYmJpKWkkJaejq/NxqTwcEhJofuBA/xcWFjcE6REV2ALgKZxi05HposL9Tw9CTEaCfHz48YWLRjWvTuEhLAzIwPfhg0JadECY3j4NfMZCyHqHkluiJrIarXy4IMP8uWXX+Li4oKmadx7772MHz+edu3aOTu8WmXFihU8+OCDmM1mZs2axahRoyptaInVaiUpKcmR7Dh+/DhTp07Fy8uL9evXEx19waWBEOIaUuuSG5qmLQZuA4KAZGAioAdQSn2kFX97zqZ4RZV8YJRS6rItCml4lFaQkcGv8+dzaONG/i8rC3bupJvdzh/AvwIDie3cmdihQ2l3zz3o9Hpnh1srKLudrJMnSTl4kJSjR9Hn5nKjry+kpDB+xQqOpaaSnJtLSkEBKVYrfZTiq5J9fYDckscGIESnY1RICK936IAKCuLlQ4cIDAoiJDyckMhIQho3pmGbNgQ2bw4Gg3NOWAghyiDJDVHTFBUVMWzYMJYuXcpbb73FiBEjeO+99/j444/Jy8ujZ8+ejB8/nm7dusn8D5dQUFDAuHHj+PDDD7n++uv5+uuvadGiRZUfNy4ujp49e1JQUMCqVau45ZZbqvyYQoiaqdYlN6rKNd/wsFrZ/913LP/0Uzbt3Mn2rCyKKL6QTr/xRjx79CChTRtCevXCzdvb2dFeE+wFBbhkZKDOnGH92rWkxMeTkphIcnIyyRkZdPX0ZLSbG3nJyQSdPk3hefu/DEwGMoxGOpvNhBgMBHt5EeLnR0hgIHfecAOdO3XC7OfHkYICgps3J7BpU1wlGSKEqEKS3BA1idlsZvDgwaxevZr//Oc/PPvss473MjMz+eijj3j//fdJTk4mJiaG8ePHM2jQIHQ6nROjrnni4uIYMmQI+/fvZ9y4cUyePBl3d/dqO/6JEyfo0aMHp06d4rvvvqNfv37VdmwhRM0hyY0S13TDY9s2GDSImampPAu09/AgtnVrYvv351+PPIJ3aKizIxSXoex28pKSHL1CUk6cIMrNjWi9npQTJ3h6wwZSzvYKKSoi1W5nNvAY8BdwtsOtBvhrGsF6PdOiorizRQtOGAx8Eh9PUHAwwWFhBEdEENyoEc2vvx7vhg3B09Np5y2EqH0kuSFqCpPJxIABA9i4cSNz587lscceK3M7s9nMl19+ybRp0zh8+DBRUVGMGzeOBx54AA8Pj2qOumZRSjFnzhyee+45/Pz8+OKLL+jRo4dTYklJSaFPnz7s2bOH+fPn88ADDzglDiGE80hyo8S12vBY99ZbZE6axH2NG5P54ovYbr6ZoGroQiicy261YktNRZ+VRebRo2z86SdSEhJISU4mNT2dtOxsngoO5haLhU0JCfTMysJ2Xh1rKJ5IdbW7O/9ntRLs7k6QpyfBPj4E+/nxZGwsDZs357SmcaKoiMCGDQls3JiAqCh0sq69ENcsSW6ImiAnJ4e+ffuyfft2FixYwMiRIy+7j81mY8WKFUydOpU//viD4OBgnnzySR5//HECAgKqIeqaJTU1lQcffJBVq1bRp08fPvvsM0JCQpwaU25uLoMGDWLjxo28++67PP/8806NRwhRvSS5UeJabHh89+yzDJs5k/aenvx25Ai6sDBnhyRqKLvVSvapU6T+8w9px4+TGh/PzcHBBJvN/O+vv5j7xx+k5uSQlp9PamEhqTYbvwFtgbnA/51Tlwb4aRp/RkYSFRrKCquV5ZmZBPr5ERgQQGBICIGhodzZoweGsDBMnp64hoTg7uPjlHMXQlQuSW4IZ8vIyKBnz57s2bOHr776invuuadC+yul2Lp1K++++y6rV6/Gy8uLhx56iGeeeeaaWbFj48aNjBgxgvT0dKZNm8YTTzxRY+YjKSwsZOTIkSxZsoRx48bx7rvv4iITsQtxTZDkRolrreGxYNQoHl64kJuMRlbFxeF3jfxnLKqPMpnQ0tNJPHCAuB07SE9MJD05mfS0NNIyMpjcrBm+ubnMPnCAaUlJpNtsmM7ZPwcwAs8D0wEvIEinI9DNjUAPD9becQe64GBWp6dz2GwmIDgY/3r1CAgPJzAykpYxMeDvD9JLRIgaRZIbwplSUlLo3r07Bw8eZOnSpdx5551XVV9cXBzTp0/n66+/RinFfffdx/PPP0/btm0rKeKapaioiFdffZVp06bRqlUrFi9eXCNXk7Hb7Tz11FPMnj2b4cOH8+mnn6KXCfBFDbBq1Sp+++03nn/+efz8/JwdTp0jyY0S11LDY+aAATy7YgU9AgNZvn8/Xk7uQijEWeasLDKOHiXt+HHaBASgZWSwZft2tsfFkZaRQXpWFum5uZjMZjbXqwcZGQzLyODr8+oJAlJLHg/X6fgZCNDrCTAYCPDyomlQEFN69oSAANYlJmJycyMgLIyAiAj8GzQgoFGj4rlmashdKCHqktqe3NA0LRL4AMgA/lFKTbncPtdSG6MmO336NLGxscTHx7NixQq6d+9eaXWfOnWq1AorvXr14oUXXqBr1641pkfD1Tp8+DD33XcfO3fuZMyYMcyYMQPPGjzvllKKyZMn89prr9GnTx++/fZbvLy8nB2WuAYdPnyYV155hTVr1mAyFd/K0zSNLl26MHv2bFnCuBJJcqPENdHwUAreeIPX3niDA/Xr89X+/dLVX9R6Z4fMZJ48SUZ8PBmnT1OUmUm/Ro0gI4MPt2zhj5MnycjLIyM/n4zCQsKUYiNAURE3Af87r84bgN91OvDzo39BAUmAn8GAv6cnft7edIyMZMxtt4G/P6uPHcPV1xe/0FD8IyLwi4jAv1Ej9NKAEqJMzkxuaJq2AOgHpCilos95vRfwPqAD5l8qYaFpWl/AXym1SNO0JUqpey933GuijVHDnThxgtjYWFJSUli9ejVdunSpkuNkZmby4Ycf8v7775OSkkKnTp0YP348AwcOrLUrrCil+Pzzzxk7dixubm7Mnz+fQYMGOTuscvv444957LHHuOGGG1i9evU1OT+KqH75+fm89dZbLFy4kKSkJAAMBgM9e/akffv2fPjhh6SkpADQtGlTJk+eXOEhcgDZ2dls3bqVX375BRcXFzp27EjHjh1p3LhxnUmsVoQkN0rU9YaH3Wrl1COP0PCzz1APPID9o4/QVeMSXULUOEpBQQFJBw6Qevw4GQkJZCQmkpGcjK/dzr8bNoTMTJ7etIl/MjLIKiggs6iITKuVLsC3djsAoUDyeVUPARZ7eoK/PzdmZKDX6/EzGPD19MTX25vbmzXj7htvRPn48O2BA/gGBeFbrx6+oaH4hocT0LAhHkFB0nNE1ElOTm50AfKAL84mNzRN0wH/AN2BBOBP4D6KEx3vnFfFg4ANWAoo4Eul1GeXO25db2PUdP/88w+xsbHk5eWxfv16brjhhio/ptls5osvvmDatGkcOXKEJk2a0KFDB+rVq0e9evUICQm54LG3t3eNuxjJysriscce45tvvqFr164sWrSIiIiICtVht9sZNmwY3377LS4uLnh6euLj40NQUBD16tUjIiKCxo0b07x5c6677jqaN2+Oq6trpZ7H8uXLGTp0KFFRUaxfv77C5yDqvoKCArKyskqV3NxcGjduTJs2bTAYDJetw263s3jxYqZNm8Zff/2FUgoXFxc6dOjA+PHjL0herF27lvHjx7Nv3z4A/Pz8GDt2LBMnTrzo30BOTg5bt25ly5YtbNmyhV27dmG323Fzc0MphcViAcDf35/rr7/ekezo2LEjTZo0qXHfMZVNkhsl6nLDw2o283CbNqw6coS4hx8m9KOPQCZWEuLqmM2QmcnBXbvISEgg68wZMpOTyUxLo4nBQJ+QEFRGBv9ev56M/HyyCgvJtljIttkYBUxTinyK5xI530vA2zodmUYjHfPy8NPr8XV3x7ckQTI0Opqe7dqR4+7Ot//8g09AAD6BgfgEB+MTEkJk8+b41K8PRiPU0juFou5y9rAUTdMaAavOSW7cBLyulOpZ8vwlAKXU+YmNs/s/B/yhlPpF07SlSqnBlztmXW5j1HT79u3jjjvuwGaz8d///pf27dtX6/HPrrDyySefcPLkSZKTk8nIyChzWw8PjzKTHmW9FhAQUOWTZG7fvp2hQ4eSkJDApEmTeOGFFyrc++T333+nd+/eZGZmVmg/FxcXDAYD3t7e+Pv7ExISQnh4OI0aNSIqKopWrVrRpk0bfH19y13nli1buOuuu/D19WX9+vW0atWqQjFdraysLLZv346/vz/h4eGEhYXhVoPmBbNYLCQlJZGQkEBCQgJnzpzhlltuoWPHjs4OrVwKCwsdSYnMzMwLEhWXK4WFhRetW6fT0bp1azp06OAo7du3d/z+7dmzh1deeYVNmzY56omIiGD06NG8+OKLl02MHD16lCeeeIINGzZgs9nQ6/XcddddzJo1Cy8vL7Zt28bmzZvZsmULO3fudCQzbrzxRm677Ta6detG586dcXFxYd++fezcudNR/vrrL0fCw8/Pj+uvv75U0iMqKuqi3yX5+fmsWrUKk8nk2EbTtAseV/Q9FxcX9Hp9pQ4NPEuSGyXqasOjMCeHYa1asSwxkddvu40JmzahSWJDCOdSCvLzsWVkcGj3brLPnCE7JYXs1FSy09Np5+dHZ19f0s+c4amffiI7P59ss5msoiKyLRZecXPjEbOZv5WirFGanwAPUXz7uRvg4+KCr6srPno9Pu7uTIiO5l9NmnDEbufzY8fw8fHBx8/PkSTp3LEjQQ0akO/qSp6mYQwLw+DnJ98dolLUwOTGYKCXUuqhkufDgc5KqbEX2T8aeB1IA/KUUs9dZLtHgEcAIiMjO548ebJyT0Rc1q5du+jRowdubm5s2rSp2i9mL8ZisZCamkpycjLJycmkpKSU+Tg5OZnU1FRstvMXYy++2AoODiYoKAhvb2+8vb3x8vK64N+yXrvYv2fvFNtsNiZPnsykSZOIjIzk66+/5sYbb6zQOdrtdh599FE++eQTx2sNGzYkJCSE5ORkMjMzyc/PL/PcgFJ3ly91PaJpGj4+Prz22muMGzfusnHt2bOHXr16YbFYWLNmDZ07d67AWVXc2aTawoUL+eGHHy64gA4ODiY8PJz69esTHh7uKOc+Dw4OvuohTWazmdOnTzsSF+eWs6+fOXOmzM/6pptuYuzYsQwePLhGJWMA0tLS+Pzzz/nkk084dOjQJbfV6/X4+/vj5+fnKOc/P794enpy+PBhdu3axe7du9m9ezdnzpxx1Onr60tBQQFFRUUAeHl50b9/fyZPnkzjxo0rfD75+fmMGzeOhQsXYjabL4j/bDLjtttu46abbsLDw+OydRYVFZWZ8Dgbs6+vLx06dKBjx460atWK+Ph4tm3bxp49ey6aiK0sVZFrkORGibqY3DClpDCodWs2pKczc8AAnv7+e2eHJISoLHY71sxMzhw9Ss6ZM2SfOUNOaio56el0DAmhibs7x0+eZPbWreTk5ZGTn0+O2Uy22cw7QUF0tdlYk55Ov/x8zv+m3wTcDiyheIgNgCvgrWkYXVxY2bAh7YKD2VBUxEdnzmD08MDo5VVcjEbG3H47gaGhHM3P52h2NsagIHxCQvAODsY7JAT/iAhcytG9U9RNtT25cSXqYhujpvvtt9/o3bs3vr6+bNq0iaZNm5ZrvxUrVmC32xk4cGAVR1g+drudjIyMMhMfKSkppKWlYTKZMJlM5OXlXfC4Itzd3fHy8sLFxYW0tDSGDh3K3LlzK9Q7Aop7y/To0cMxzwDAs88+y3/+858LtjWbzezevZs9e/awf/9+jh49SkJCAqmpqWRnZ2M2my96AaTT6dA0DavVCkBAQADTpk3jwQcfvGR8R48epWfPniQlJbFs2TJ69epVofMrj7///pvPP/+cRYsWkZSUREBAAEOHDmXQoEGYzWYSExNJTEzk9OnTpR4nJydfcL46nY7Q0NBLJkB0Ot0lkxdpaWkXxOjr60tERMRFi5+fH8uWLWPOnDkcPnyY0NBQxowZwyOPPEJ4eHilf2bldXYp5nnz5rF06VKKioq45ZZb6N27NwEBARdNVBgMhqsekmG325k2bRqzZ88mISGhzG3CwsJK9fC4/vrradSo0UWPnZeXx6+//sqWLVvYvHkzO3bswGazodPp0Ol0jiRE/fr1mTBhAg8//PBVn0dRURF///03P//8M99++y1xcXHk5eWV2kbTNAIDA+nQoQPBwcG4urqi0+lwdXVFr9ej0+kcPTDO9sg4+7urlMJut1/w/OxjpRSurq7MnDnzqs6jLJLcKFHnGh5ZWbwcHc3U06f5ZNQoHlywwNkRCSFqILvVSn5aGjmJieQkJZGTnEyLgAB87XYOHz7Mhp07yc3JITc3l9y8PHJNJt5o1oxIm41vT5xgUnw8uVYruXY7uUphBY4BjYEpFA+xOV8yEKLX845Ox1yLBW+dDqNej7dej7e7O9917Yq7ry8/JiezIzOz+K6kjw/ePj4Y/f0ZGBsL3t6cNpko1OvxCgrCKygIz6AgXCp5nLaofDUwuVGhYSkVPNadwJ1NmzZ9+PDhw1dbnSinLVu20K9fP8LCwti0aRORkZHl2u+tt97itddeAyAwMJCXXnqJZ555psqHf1QVu91OQUHBBQmPspIg575mMpno0aMHQ4YMufxBzvP8888zffp0x3MfHx/WrVvHTTfddMXnkZKSwo4dO/jrr784ePAgJ06cIDExkfT0dHJycrBarXh6epKfnw9AaGgoc+bMueSkp8nJyfTq1Yt9+/axcOFChg0bdsXxnZWens4333zDwoUL2bFjB66urvTp04cHHniAvn37lqvXg9VqJTk5uczEx9nHiYmJl72jHhQUdMnERf369fH29i7XedntdjZs2MCsWbNYu3YtOp2OwYMHM3bsWG6++eZqm8PhxIkTzJ07l8WLF5OQkIC7uztNmzalXr162Gw27HY7Pj4+jh4ZgYGBBAYGEhISQkhICGFhYYSFheHj41PhmLdt28aECRPYunWrI5kWFRXFY489xlNPPYXJZGLPnj2lengcOHDA0TPJz8+P9u3bOxIegYGBbNu2jS1btvDnn39itVpxdXXlhhtuoFu3bo6eGV5eXvz222889dRT7NixA6UUXl5ejBo1iqlTp1Z4taKUlBQWLFjAqlWriIuLIycnx/Geh4cHkZGRNGnSBD8/P44ePcrevXsvOVznXO7u7nh6euLh4VGqlPWah4cHRqORt99+u0Lxl4ckN0rUqeRGSgr07EnBvn1sf/llYt94w9kRCSGuAcpupzAnB7fCQlxMJpKOHePoP/+Qm5ZGbmYmeVlZ5OXkMKZdO9zNZpbv2cOqI0fIKygg12wmr6iIPIuFnfXr42Iy8WRaGrMtllI9SzyBs/ci7we+Oi+GSE3jZGAgeHnxdG4uvxUW4qXX4+Xmhpe7O438/Jhy223g7c3iI0dItljwMhqLi68v9UJDubFTp+LkSU4OLl5eeAYG4hkUhL4c3T/F5dXA5IYrxROKxgKnKR7RNVQp9XdlHbNOtTFquHXr1jFw4ECaNGnCxo0bCQsLK9d+L730ElOmTMHDw4Obb76ZzZs3Y7fb8fT0ZMyYMUyZMqXGdcmvSY4fP063bt04d/jV7bffztq1a6v0c7Pb7cTGxrJlyxaCgoJo1aoVW7duBaBRo0Z8+umn3H777WXum52dzYABA9iyZQszZszgmWeeqfDxLRYL69atY+HChaxcuRKLxUL79u0ZOXIkQ4cOJSQk5KrO72IKCgpISkpyJDusVqsjcREeHl6uyS+heHWfXbt2ERcXx8GDBzl+/Lijp8fZC9+zd+r1ej2aplFQUEBubi52ux0vLy8iIyNp3LgxRqMRT09Px1Anb2/v4mGvJcXX1xc/Pz/c3d0dvUqSkpJISkoiNTWV9PR0ieDBzAAAIABJREFUsrKyyMnJIS8vj/z8fAoLC7FYLI67/pVF0zRHLwQ3Nzfc3d0xGAx4enri7e2N0WjEx8cHFxcXNm/eTHZ2NlA8SefgwYOZNGkSoaGhlzxGQUEB+/btK5Xw+OuvvxzDTVxdXenUqZNjzoybb775kksVnzlzhqeffprly5djsVjQ6XR0796d2bNnExUVVeY+CQkJLFiwgDVr1vD333+X6p3h5eVF69at6dOnD6NGjaJhw4YX7G+xWDhy5Ag5OTkUFBQ4Sn5+fqnnV/KaTqcrs0fR1ZLkRom60vCI/+03nu/Rg3lWK34//AA9ezo7JCGEuGLKbqcgI4O85GTyUlIoyMjgutBQyMvjt507+ef4cUy5ueTl5mLKy8PNZuOVNm3AZOLNHTv4NSUFk8VSXKxWIlxc2OThAXl53GK1sv2843UC/ih53B7Ye857rkAvV1dWhoSApyd3JieTphSeJckTTzc3bgoL46kbbgBPT/6zZw92V1c8vb3xMhrxNBpp2rAh17dpA56e/HXqFO4+Pnj6++Ph749nQAAGP7863/vEyaulLAZuA4Io7kQ0USn1qaZpfYD3KF4hZYFSanIlHU96blSjH374gXvuuYfrrruODRs2EBwcXK79nnjiCWbPno2XlxdxcXE0btyYrKwsxo4dy7fffovFYsHV1ZXBgwczZ84cWUr0PG+++SYTJ050dEHX6XTMmTOHMWPGVFsM9913H9988w1Go5EVK1bw0ksv8fvvvwPQunVrvvjiizInxjSbzQwbNozly5fzwgsv8M4775Trrv7evXv5/PPP+eqrr0hJSSE4OJj777+fkSNH0q5du0o/vyuRlZXFzp07L5q4uNiQH03TcHd3d6zeY7FYsFqtWK1W7Ha7o5dEVV0nnk06nB1yZLVacXFxITw8nOuuu45mzZoRGhpKeHg4kZGRjqLT6UhJSSEpKckxbOts0iQjI4PMzExycnIcyROTyURBQQFms5mioiIsFovj3M6l1+vp2rUrkyZNuqoeSFDcM+fQoUOkpqYSExNT7t4z59fx1ltv8cEHHzgm6m3dujXTp0+nVatWzJ8/n3Xr1nHgwAFHbyYAo9FIdHQ0ffv2ZdSoUU4dWlSVJLlRoi4kN/5Zv547+vYl22bjp/nz6Th6tLNDEkKIGqsoLw9TaiqmtLTikpGBq8VC29BQMJlYsXUrZ1JTMeXlkW8ykZ+fTyMPDx6JigKTidHbtnHKZCLfYikuNhuxbm7McXOD/Hz8zGayzzvmKODsIEE9YD3v/bHALIOBQg8PorKz8dDp8NTp8HB1xcPVlZGRkTzQvDm5rq48v3cvHgYDnh4eGAwGPDw8uK11a2JatsQEbDh0CIO3Nx5GIx4+Pnj4+NCgUSP8Q0OxublhBgz+/uj0+qr9oM/j7J4bzlAX2hg13eLFixk+fDgxMTGsXbsWf3//cu03atQoFi5ciK+vL/v377+gwV9UVMSrr77K3LlzMZlMaJrG7bffzrx58y56t/RakZiYSGxsLAcPHnS8FhkZyS+//FLmXeCqNm7cOGbMmIG7uzvbtm1Dp9MxYsQIxzKbnTp1YtGiRTRv3rzUfjabjf/7v/9j3rx5PPjgg8ybN6/MZThTUlL4+uuvWbhwIXv37kWv19O/f39GjhxJr1690F/Fd6nVaiXn7BDQ3Nwyhwzl5+c77nqfe0e8sLCQ9PR0EhISyp24MBqNBAcHExYWRqNGjWjZsiXR0dF07Nix3ElBKJ4/Yd26dXzwwQesX78egM6dO9OtWzciIiLIy8sjNze31LCnoqIixzLA4eHhREREEBkZScOGDdm/fz/z5s3jm2++oaCggJiYGMaMGcOQIUOuKBFwpYqKijhz5gxZWVlER0fX2KFpy5Yt46WXXqKs5Lmvry9t27blzjvvZNSoUQQFBTkhwup3yTbG2Qk/roXSsWNHVZvt/uYbFaJpKljT1K6vv3Z2OEIIcc2zWSwqLzlZJe/bp45v3ar2/fCDOrlypVK//KLsa9eq5S+8oL56/HH1yYgR6oO771ZTevdWG+6/X6nx41X+o4+q0c2bq/saNlQDwsJUj8BA9S8fH/VJw4ZKtW6tEhs0UCEuLsoIyhUUJWV68Vo86uA5r51bPip5f8c5r+lB+YCq5+KilgcHK9WqldrZsqU6etttVfK5ADtUDfh/vzpLbW9j1HSffvqp0jRNde3aVeXk5JR7v8GDBytABQYGqtTU1Etua7PZ1HvvvaeCg4MdfzsdOnRQ27dvv9rwa6X3339fubq6lvp+GT16tLLZbE6Na/r06QpQOp1OrVmzRiml1JYtW1RUVJQjzttuu00lJCSU2s9ut6sJEyYoQPXv31/l5+crpZQqLCxUy5YtU/3793ecb0xMjJo9e7ZKS0u7bDw2m02tX79eDR8+XDVq1Ei5ubkpnU6nXFxclKZpZX5PX2nRNE0ZDAYVHBysWrdurWJjY9Xo0aPVtGnT1Nq1a1VKSkrlf+DnOHnypHrxxRdVYGCgAlTr1q3V3LlzVW5u7iX3y87OVnPnzlXt2rVTgPLy8lKPPPKI2rlzZ5XGW5fs27dP9ezZU3Xr1k299957KjMz09khOc2l2hjSc6OW+GP+fHo8/DBGnY6NK1fSondvZ4ckhBCiGlnNZgoyM3G1WPAAzFlZHDxwgIKcHApycjDn5VGQl0eH8HCaGI0knTnDl7/9RkF+PmazmYKS8lCTJnTy8mLXmTPU8/Oj/o8/Vnqs11LPDRmWUvVmz57NE088QY8ePfj+++/LPcFenz59WLt2LaGhoRw6dAgfH59yH3PZsmWMHz+eY8eOAdC4cWPeffddBg8efEXnUJtkZGTQvXt3du3a5XjN09OTH374ge7duzsxsv/vq6++Yvjw4QB89tlnjBw5EoAff/yRxx57jMTERDRNo1+/fixcuLDUMKM5c+bwxBNPcMstt9C+fXsWL15Meno6YWFhDB8+nJEjR9K6deuLHttut7Nq1Sq+/vprtm/fzunTpx3DHFxcXAgJCcHLy8sxh8XZ+R7OnffBYDDg7u5e5qSMZ5f3PXduC6PR6FgytiYoKChgyZIlzJo1i127duHr68uoUaN4/PHHadasmWO7HTt2MG/ePBYvXozJZKJ9+/aMGTOGoUOHVujvUYhzSc+N2n5XZcMGFW8wqDs8PNSJbducHY0QQghxSUjPDVFJpk6dqgB11113KbPZXK59bDab6tq1qwJUgwYNlMlkuuLjb9++XV1//fWOO+fBwcFq5syZTu+9UFU+++wz5ebm5uglAKhOnTpd9s68M2zcuNHR0+Ltt98u9d7ChQsdvQtcXFzUsGHDSv0eLFmyROn1euXu7q6GDBmi1q5dqywWS5nHsVgs6ttvv1V33323Cg8PL9Ubw8XFRTVs2FANGzZMrVmzps7+XlyM3W5Xv/76q7rvvvscP4vevXuradOmqY4dOypAeXh4qAcffFD9/vvvym63OztkUQdcqo3h9MZAdZba2PD435QpyqrXK9W2rVJnzjg7HCGEEOKyJLkhrtavv/6q+vfvrwA1ZMgQVVRUVK79bDabiomJUYBq2rSpKiwsrJR4jh07prp37+64sPXy8lLPPvtspdXvbLm5uerWW28tNQTCxcVFTZ061dmhXdLu3buVwWBQgBo7duwF78+cOVMZjUYFKFdXV/X44487fpeOHz9eZtd+s9msvvjiC9W/f38VGhpaKpmh0+lUkyZN1AMPPKA2bdp0zSUzLiUxMVG9/vrrKjQ0VAGqTZs2avbs2SorK8vZoYk6RpIbtbTh8fnDDysdqGmRkUplZDg7HCGEEKJcrqXkBnAn8HHTpk0r6+O7ZtlsNrVy5UrHRXZAQICaNGmSslqt5drfYrGo6OhoBajo6OiL3om/GpmZmWrYsGFKr9cXz2ej16uhQ4eq9PT0Sj9WdVm6dKny8PBwJDQAFRISovbv3+/s0Mrl5MmTytfXVwFq0KBBF7xvs9nUhAkTHEkQd3d39corrzgSEyaTSc2fP1/17t271HwrZ3++zZs3V4888ojaJr2ny6WwsFAdPnxYemlUMpvNptasWaM2bNhQJd9ttcml2hgy50YNNWvwYJ5ctoxYf39+2L8f78ussyyEEELUFOWdc0PTtEuut6mUyqi8qKpWbWpj1DRFRUUsXryYadOm8ffffxMZGcmzzz7L6NGjy716QlFREdHR0Rw+fJiYmBh+//33Kl39oKioiFdeeYUPP/zQscJKt27d6Nq1K1FRUbRo0YKWLVtW6+oPFVVUVMRdd93FunXrSr0+ePBglixZUmNXjyhLVlYWrVu3JikpiZtvvpmtW7deEL/VamXcuHF8+OGHWCwWvLy8MBgMpKenO7Zxc3MjKiqK2NhYRo4cSUzMNTF1kKiB7HY769atY9GiRWzbtq3U3C4Afn5+REVFcdNNN9GvXz9iY2PLXAGoLpKlYEvUlobHzAEDeHbFCgaEhbF4/34Mfn7ODkkIIYQotwokN45TfIdUAyKBzJLHfkC8UqpxlQZaiWpLG6MmycvL45NPPmHGjBkkJCQQHR3NCy+8wL333luhJTfz8/Np1aoV8fHxdO3alZ9++qnaLsztdjuzZs1i8uTJpKamXvC+pmno9Xo8PDwwGo34+/s7lueMjIykUaNGNG/enJYtWxJaDTeyrFYrx44dY9u2bTz11FPk5eWh1+uxWCy4u7uzaNGiWjtpqtlspn379hw6dIgWLVqwZ88eDAbDBdsVFBTw6KOPsnjxYlxcXGjevDndu3dn1KhRREdHOyFy57Db7aSlpREUFFSrElllyc/P5+TJkyQkJJCYmEhSUhIpKSmkpaWRnp5OVlYW2dnZ5OXlOZbYLSoqwmq1YrfbMRgM1K9fn7Zt29KtWzcGDhxIREREtZ6D3W5n/fr1jmRGQkJCqYlqIyMj6dKlC5qmsWPHDk6cOIHJZCpVh6+vL02bNqVz587069eP7t2718mEhyQ3StSGhoclL48Qo5Ebg4JYeeoUrmV8KQshhBA1WUVXS9E07RPge6XUmpLnvYEBSqkxVRVjZZHVUiouJSWFWbNmMWfOHDIzM+nSpQsvvPACvXv3RtO0CtWVk5NDixYtOHPmDL1792bNmjWX3efw4cMYDAYaNGhwpadQph07drBr1y6OHz/OqVOnSEpKIjU1lYyMDPLy8igoKMBisXCptrerqyvu7u4YjUb8/PwIDAwkODgYHx8ffH198fX1xd/fH39/fwIDAwkMDCQgIACbzUZ8fDxHjhy54PhZWVmYTCbMZnOpO78AOp0Om83Gddddxy+//FJqVZHayG6306VLF3799VfCwsLYt29ftZxTUVERM2bMYN68ecTHx+Pq6oqXlxf+/v6EhIRQv359mjRpQvPmzbnuuuto06ZNlfbqsdvtHD58mD179vD3339z9OhR4uPjOXPmjOP3saioCACDwcC9997L9OnTCQoKqrKYrsbff//N+PHj2b9/f6nkhMViueB3+mI0TcPV1RW9Xo/BYMDDwwNvb28MBgOJiYmkp6eXqsvV1ZXQ0FBat27Nv/71LwYMGFCpyS+73c5///tfvvzyS7Zt28apU6dKJTMaNGhA165dGTFiBN26dSszAZWfn8+qVatYu3YtO3bs4Pjx42UmPJo0aULnzp3p27cvPXr0wM3NrdLOwxkkuVGiNiQ3+P57jg4ahH3+fJqNHu3saIQQQogKu4LkRpxSqs3lXqvJakUbw8mOHTvG9OnT+eyzzygsLOSuu+7ihRde4MYbb7yi+tLS0mjZsiXp6ekMHjyY77777rL7mEwmmjRp4rj7Wd13Z6G4x8qBAwc4dOgQR48e5dSpU5w+fZqUlBQyMjLIyckhPz+fwsLCSyZCKkLTNHQ6nePCTq/Xk5KSgqZpvPjii7z99tuVcpyaYvDgwSxbtgxfX1/27t1Lw4YNq+Q4a9eu5c033+SPP/7AZrOhaRoNGzbEYrGQnZ1NQUEBNputzH01TcNgMODt7U1AQAChoaFERETQpEkTWrRoQbt27WjZsuUFd96LiorYv38/e/fuZf/+/Rw9epSEhASSk5PJzMzEZDJhtVrLPKZOp8PDwwNfX19CQkLw9fXlf//7H2azGU3TiImJYcaMGdx6662V/llVlN1uZ+bMmbz//vucOnUKKE44nF1S9+xSuWcTgf7+/gQFBREcHExoaChhYWFERETQoEEDQkJCytU7Zc+ePaxYsYJt27Zx4MABkpOTS32WLi4uBAUF0bx5c8dwkFtvvbVcddvtdjZv3sznn3/OL7/8UmYy49Zbb2XkyJHExsZecW+a/Px81qxZw5o1axwJj7y8vFLb+Pj4OBIeffr0oVevXrUq4SHJjRK1ouExeDBs3QqnT0Md7EYkhBCi7ruC5MZ6YCuwqOSlYUAXpVTPqoivKtSKNoaT7N69m6lTp/Ldd9+h0+kYMWIEzz33HC1btrziOhMTE2ndujXZ2dk88MADfPbZZ+Xab9q0aYwfPx6DwUDbtm35+eefyxy64Gxr167l1VdfZdeuXWW+r9PpHHeh9Xo9rq6u6HQ6NE1D0zSUUthsNiwWi6P7/dku+Gfb/gEBAaxfv77OzivxxBNPMHv2bAwGA7/99hvt27evlHqPHz/OK6+8wsqVKx0XjcHBwdx///1MmDABv/OGk1utVg4fPkxcXBwHDhzg2LFjnDp1ijNnzpCenk5ubi6FhYUX7YGg0+kwGAxomnbJZImrqyuenp6O3iIRERFERUXRsmVL2rVrR3R0dJm/63a7nTlz5jB16lROnz4NQGhoKM888wzPPfdctQ9ZOXToEOPGjWPDhg1YLBY0TaNDhw68+eab9OnTp1pjATh58iTff/89W7ZsIS4ujtOnT1NYWOh4X9M0fH19iYqKolOnTvTq1YuePXvi5ubGli1b+OKLL/j555+Jj48vlcyIiIjg1ltv5f7776dnz55V+jmbzWZWr17N2rVr+eOPP8pMeLi4uODi4oJOp7vg++VsQsnd3d3R68XDwwNPT088PT0xGo2ORNPZ4uvri5+fHz17Vv5/45LcKFHTGx7Z8fE83LgxL99zD+0XL3Z2OEIIIcQVuYLkRgAwEehC8RwcvwCTZELR2kspxU8//cTUqVP573//i9Fo5NFHH+Xpp58mPDz8quo+efIk0dHR5OXlMXbsWGbNmlWu/XJzc2ncuDExMTGMGTOGQYMG8eCDDzJ//vwKD4epCnl5eUyYMIGFCxeSmZkJQEREBPfffz9t27alVatWtGzZslKSMVartU6OxT/fO++8w8svv4yrqytr1qyhe/fuV1SP2Wzm3XffZf78+Y5eBO7u7nTv3p3JkyfTtm3bq47VbDYTFxfHvn37+Oeffzh69KijR09mZiZ2ux1/f39CQ0OJjIykSZMmtG7dmvbt29OiRYtK+Xn+/vvvjBs3ju3bt6OUws3Njbvuuov33nvvqv9uL+Xs3DUzZ87k5MmTABiNRoYOHcrbb79d44ZLZWRksGLFCjZu3Mju3buJj4+/YDiIi4tLqWRG/fr1HcmMXr16OX2eE7PZzNq1a1mzZg27d+/GZDJRWFhIUVGRY8iPxWLBZrNhs9mw2+2lkqPlVRW5hku2MS62jEpdLDV9KdgFo0YpQP1v/nxnhyKEEEJcMcq5FCzwZcm/T5Vn+5pYkKVgS7FarWrJkiWqY8eOClChoaFqypQpKisrq1LqP3jwoGPZ0vHjx1do37fffru4nfW//ymllHr11VcVoObMmVMpsV2prVu3qptvvtmxDKtOp1M9evRQe/fudWpcdcWCBQuUpmlK0zS1aNGiCu27fPlyFRMT4/jZaJqm2rZtqxYtWuRYSrYuyszMVA8//LDy9PR0LIvbtm1btW7duko9zpEjR9SAAQOUm5tbqeP88MMPlXqc6lBQUKCWL1+uxowZo66//nrVuHFjNWTIELVy5co697tis9lUZmamOnbsmPrzzz/Vxo0b1dKlS9WCBQvUe++9p9544w31/PPPq6effrpKjn+pNobTGwXVWWp6ciPW319Fuboqex37AxBCCHFtqUByYz8QDuwF/IGAc0t56qgppaa3Mapafn6++vDDD1VUVJQCVLNmzdTHH3+sCgoKKu0Yu3fvVu7u7gpQb775ZoX2zc7OVv7+/qpv376O12w2m+rXr59ydXVVP//8c6XFWR6FhYXqtddeU8HBwY6Lunr16qk33nhDFRYWVmss14I1a9YonU6nADV9+vRLbvvPP/+owYMHl7qwDw0NVS+++KLKzc2tpohrjvnz56tGjRo5PovAwED12muvKYvFckX12Ww2NXfuXNWkSRNHnd7e3mr06NEqNTW1kqMXdZHTkhvAcqAv4FKVxylvqckNj9M7dyoN1IR//cvZoQghhBBXpQLJjSeBA0AhcAw4fk45Vp46akqpyW2MqpaSkqIiIyMVoDp16qSWLl2qrFZrpR5j+/btSq/XK0DNnDmzwvtPmjRJAerPP/8s9XpWVpZq3ry5CgkJUfHx8ZUV7kXt2rVL3X777Y4LbRcXF/Wvf/1Lbd++vcqPfa37888/HcmxZ599ttR7JpNJvfzyyyosLMxxwe3h4aEGDRqk9u/f76SIa5a4uDh1++23O3qxuLq6qv79+6tjx46Va/8TJ06ou+++2/EzAFR0dLRasmRJFUcu6hpnJjfuAL4CjgJTgBZVebzLlZrc8JjRv78C1ME1a5wdihBCCHFVypvcOFuADyuyfU0sNbmNUdUeffRRpdPp1Nq1a5Xdbq/0+jdt2uRIBsybN6/C+2dmZio/Pz/Vv3//Mt/fv3+/MhqNqlOnTpXa0+Qsi8WipkyZosLDwx0XdQEBAer5559XJpOp0o8nLu7YsWPKaDQqQA0ZMkR98803qn379krTNMewk44dO6rvvvvO2aHWWCaTST399NPKx8fH8fvcsmVLtXTp0gu2tdls6pNPPlFNmzZ1bOvp6alGjBihkpKSnBC9qAucPiwF8AUeBU4B24FRgL46jn1uqckNj/mRkWqwn5+zwxBCCCGuWkWTG3Wh1OQ2RlXau3evcnFxUU8++WSV1L9y5Url4uJyRfMlnDVx4kQFqF27dl10mx9++EEB6oEHHqi0BM2BAwdU3759HT1ONE1TnTp1Uhs3bqyU+sWVSU1NVSEhIY6LbUDVr19fvfbaa5JsqqCvv/5aNW/e3PE5+vr6queee04dOXJE3XvvvcpgMJRKgFzp37AQ57pUG6PKV0vRNC0QuB8YDiRS3JPjVqCNUuq2Kj34eWrsTOYHD0KrVjBjBjzzjLOjEUIIIa5KRVdLqQtqbBujCimluOOOO9izZw+HDx+u1BUNrFYrEydO5J133kHTNJYuXcrAgQMrXE9GRgaNGzfmjjvuYNmyZZfcduLEiUyaNIlZs2YxduzYK4rbbrfz0UcfMW3aNE6cOAGAj48P999/P2+//Ta+vr5XVK+oXGazmX79+hEUFMTkyZOJiopydki12uHDh3nqqafYsGFDqaVqPTw8GDhwINOmTavS1VbEteVSbYwqXQNK07TvgRbAl8CdSqmkkreWaJp2bbUALuHQBx/QWNNwGzLE2aEIIYQQogI0TbsTuLNp06bODqXarVixgp9++onZs2dXWmIjLy+Pp59+mkWLFlFYWIirqyurVq2iZ8+eV1TfjBkzyMnJ4fXXX7/sthMnTmT37t0888wztG3bli5dupT7OHa7nREjRrB06VIKCwsBaNu2LW+88QYDBgy4othrm+zsbF5//XViYmLo378/RqPR2SFdlMFgYOPGjc4Oo85o1qwZa9asoaioiNdff53NmzfzyCOPMHLkSKcveSquLVXac0PTtG5Kqc1VdoAKqol3VZTdTlN3d9r6+/N9SoqzwxFCCCGu2pX03NA0rR7QqeTpH0qpWvWfYk1sY1SlwsJCrrvuOgwGA3v27MHV9erulyUmJvLYY4+xevVqbDYbBoOBUaNGMX36dDw9Pa+ozrS0NBo3bkyfPn1YsmRJufbJzs6mc+fOZGRksHPnTho0aFCu/V588UWmTp2Kp6cn99xzD1OnTiUkJOSK4q6t3nnnHV5++WWgOHnQp08f7rnnHvr164eXl5eToxNC1BWXamNUaSqtJiU2aqrfFyzgmNVK/379nB2KEEII4RSapt0D/AH8G7gH+F3TtMHOjUpcyvvvv8/Ro0eZOXPmVSU29u3bxy233EJERAQ//vgjRqORN998E5PJRM+ePXnzzTevuO7p06djMpmYOHFiuffx9fXlhx9+wGw2M3DgQAoKCi67j91u54MPPkCv15Oens5nn312zSU2LBYLc+bMITY2lm3btvHwww+zfft2hgwZQkhICPfeey/Lly8v1+cphBBXSvoJOdlXH3yAOzCoHN0lhRBCiDrqFaCTUmqkUmoEcAPwmpNjEheRnJzMW2+9Rb9+/ejevfsV1fHTTz9x3XXX0aZNG7Zv305YWBjz588nKSmJ3NxcAgMDGTBgAFOmTOE///lPhetPSUlh9uzZ3HfffbRu3bpC+7Zs2ZJFixaxc+dOHn30US7Xy/n111+noKCAESNGYDAYKhxrXbBs2TJOnz7NM888wy233MIHH3xAQkICmzdvZuTIkWzevJm7776bkJAQhg0bxooVKxzDd4QQotJcbKZRZxagF3AIOAK8WMb7DwCpwJ6S8lB56q1pM5kXmUwqWNPU4Pr1nR2KEEIIUWmo+FKwcec9dzn/tZpealoboyo99NBDSq/Xq0OHDlV43y+//FI1aNDAsYJCixYt1Jo1a9TBgwdVz549HUu+6nQ6x3Oj0ahsNluFjvPcc88pFxcXdfDgwQrHeNbrr7+uAPX+++9fdBubzaa8vLyUq6vrNb3Sxo033qiaNWt20Z+TxWJRGzduVA8//LAKCAhQgPLx8VEjRoxQq1atUoWFhdUcsRCitrpUG6NKe25omrZc07S+mqaV+ziapumAOUCJnrksAAAgAElEQVRvoDVwn6ZpZaXclyil2peU+ZUUcrXa8t57pCrFsOHDnR2KEEII4UzrNE1b///YO+/wqKqtD79nanojhF4iHZReBYNKR5rAFQFRES6Iil5BinIpVgQBP0QURSxcRcEIgoKgXi5NkC4dAgESQhohbVImk5lZ3x8ziZQQEshkEjjv8+xnzpy1z16/GUKyzzprr60oytOKojwNrAd+cbMmlQI4ePAgy5YtY/z48dSvX79I19jtdt59912CgoIYMWIEFy5coF27dhw8eJDp06czfvx4GjZsyKZNm/Dz82Pq1KlkZmayceNGHnvsMUwmE2+//XaRNcbHx7N48WKGDx9OgwYNbvWjMn36dPr378+ECRPYsmVLgX1mz55NZmYmQ4cOveXaIOWdP//8kz///JMXX3zxhsUjdTodXbp04dNPPyU+Pp6NGzcyaNAg1q1bR58+fahcuTKjRo1i06ZN5ObmlvInUFFRuVNwdUHRrsBIoD3wPfCFiJy6yTUdgFki0sP5/lUAEZl9RZ+ngdYiUqx9uspasS954gl2rl1L64sXMfr5uVvOLZF47BjHf/uNrLQ07q9dmwCdjr8iIth58iRms5mcvJaTw8RmzQjWall18iQ/nz+PxWol12bLf13RsCFBisIb586xLiUFBTBoNBh1OgxaLavbtcPLy4tPo6PZk5qK0WDAw2DAw8MDLy8vpvXqBZ6e7LhwgdisLLz8/PDy98e3QgV8KlSgUdOm4O2N3c8PjcHg7q9ORUVF5Y7lFguKDsSxVTzAdhFZU/LKXEdZm2O4AhHhwQcf5Pjx45w+fZqAgIBC+5vNZqZMmcLSpUvJzs5Go9HQo0cP5s+fz4cffsjy5cvJyMgAoEmTJrzzzjv069fvqjEyMjIIDAzEYDBgMpmKtPPCyy+/zKJFizhx4gT16tW79Q8MpKen065dO5KSkti/fz81a9bMt9ntdvz9/cnOziY1NRUfH5/b8lVeGTp0KL/88gsxMTHF/g4sFgu//fYbK1eu5Mcff8xfkjRo0CAee+wxOnfufNvFalVUVO4sCp1j3CiloyQb4A88C1wAduIIeOhv0Hcw8NkV70cAH17T52kgDjgMhAM1CvE9BtgH7KtZs2bJ5MKUBBkZIt7eIqNHu1tJoWSnpMj2Dz+U+X37yplHHxW5/355x99ffEAUZ0ppXgsHEZDB15zPa1ud9u43sJ902h+4gT3Tab/3BnZxtnsKsClX2KtdcU4LYgCpCCJ+fiIVKshDBoPU0mqlgV4vzTw8pL2PjwytVEmkTx+RoUPl9Vat5OWWLWVW587y/oAB8vnIkfLf118X2bpV5OhRSTl1Smy5ue7+p1NRUVFxGxR/Wcqcopwry+1uWJby/fffCyBLliwptN/ly5dlyJAhotPpBBC9Xi9PPvmkbN26VcLCwkSj0eSff/TRR+X8+fOFjjdy5EgBZOrUqTfVePHiRTEajTJy5MhifbbCOHnypPj5+UnLli0lKysr//zcuXMFkMcff7zEfJU3Lly4IDqdTiZMmHDbY2VnZ8uPP/4oQ4cOFW9vbwEkJCRExo0bJ4cPHy4BtSoqKncChc0xXJq5AaAoSgXgCRxBiljgGxxPZu4TkQcL6D8Y6Ckio53vRwDt5IosDeeYGSKSoyjKWGCIiDx8My1l6anKuldeYdP8+by7fj2+vXu7TYfdauXUxo38uXo1LbKzaZ6czKqjRxkXF0e6CNYr+s4EZgELNRpeF6GiTkctX19qBgfjaTQyoU0bQitVYldCAttjYzF6eODh4YGHtzcenp70at8ev6AgotPTScjKwtPPD6OfH54BAXgFBhJQtSoaDw+45qmMJSODrMRE/DQaNNnZnIuI4GJ0NJlpaWSkpZGdkUFOVhajWraErCy+2bOHQxcvYs7JwZyTQ05uLlq7nc+bNwezmXGHDrE/PR2z1Uq2zUaOCD7AcT8/yM2lfmYm50WwAXanBi8g84rja2t9+wOpzmMjYHEeK4AWqA8c8/YGg4H66enkAB4aDZ5aLV46HZ0qVGBuy5bg68ukw4cxeHkREBBAYIUKBFaqRMPGjWnSpg0EB2MNCEB3lxYsU1FRKR8UN3NDUZQDItLymnOHRaRpyasrWRRF6Qv0rVu37j9Pnz7tbjkuw2w206hRI/z8/Dhw4ABarfa6PpGRkYwdO5bNmzcjInh7e/Pcc89Rs2ZN3nvvPaKjowEICQlh/PjxTJ06tUhP5c1mM35+fmi1WkwmU6HXjB8/niVLlnDq1CnuueeeW//A1/Dzzz/Tr18/hg8fzvLly1EUhYCAAEwmE8nJyfj7+5eYr/LEa6+9xpw5czhz5gyhoaElNm52djYbNmxg5cqV/Pzzz3h4eBAXF4fRaCwxHyoqKuWTwuYYrl6WsgZoAPwH+FJE4q6w7StIVFGWpVzTXwski8hN/6qUpeBG30qVOHj5MtFmM5pSSLezZGSQPncuwcePc+DoUR45fZpUux3zFX2GAiuAn4HHgQpaLdU9PakbEkLTRo0YPGIEtfr3h7vwxtqSno4hIwOSkti9YwexUVGkXrpEWkoKaSkpVFAUXqhTB9LTGbZjBxczM8nMzSXLZsNss9FIp2O9jw9YLASYTGTBVcGTe4BI57FSgP8mwFHADHhe0U+DI3jSR6PhB19fEnU6WqWm4qEoeGq1eOh0eOv1PF69OmPvvZckvZ65J07g5++Pf0AA/kFBBFWuTNPmzanZqBH2ChWw+/mpwRMVFZXboqjBDUVRxgHPcfWvQQBf4A8RecJFEkucsjTHcAXvvPMO06ZNY/PmzTz00ENX2axWK2FhYezatQuAihUr8vLLL3Pq1ClWrVqVv/1ny5YtmTt3Ll26dCm2/+eff56PPvqIf/3rX7z//vsF9omJiaFOnTo89dRTfPrpp8X2cTPefPNNZsyYwfvvv49Go+Gll15i0KBBhIeHl7iv8kBWVhY1a9YkLCyM1atXu8zPL7/8Qu/evfnpp5/o06ePy/yoqKiUD9wZ3OgtIhuuOWcUkRvu/aQoig6IALoAF4G9wDAROXZFnyp5gRJFUR4FpohI+5vpKSsTj6RTp6jSsCH/atOG9/bscamv9JgYXnzwQVZERtIK2AVE4Yg4BSgKlY1GQgMDaRwayqABA2g5YgRUruxSTSpXY7dasaamYkhLg6Qkft6wgeS4OFKSkkhNTibNZKK5jw9PVqlCRkoKfXbvJjM3l2xn4MRst9NPr+cjo5FTFgtNzeb8wEne/+7eOKrz/QZ0L0DD48C3wErnMVwdPJmi0/GGlxfrRBiXmYlRUTBqtXhptXjqdLxWty69a9dmb3Y2n0dH4+Plha+vryOIEhhIj44dqVqnDqkaDWlaLRXq1cMrOLhIa6dVVFTKH8UIbvgDgcBsYOoVJpOIJLtKnysoK3MMVxAbG0v9+vXp3r17gTexY8aMYenSpVSvXp0xY8awfv169uzZg4hgNBoZPHgwCxYsICQk5JY1WCwW/Pz8EBFMJhOGAmpnPffcc3z22WecPn2aWrVq3bKvG2G32xk0aBA//fQTXl5eZGZmcunSJYKCgkrcV3lg6dKljBkzhq1btxIWFuYyPxaLhZCQEAYMGMCXX37pMj8qKirlg8LmGK5OGXgL2HDNuV1AywL6AiAiVkVRXgA24biv+lxEjimK8gaO9TXrgBcVRekHWIFkHDU4yg3fz5qFFRg+caLLfMQeOMDYXr3YkJiIHcfT/odatYIvv6RW48aY1ZvKMoNGp8MQHAzBwVCnDn3atbthXx9gSyFjNQCujRyaU1OxJyZCVhbtoqNZuXkzqUlJpKWkkJ6eTlp6On0rVwY/P+rExhJ29ChZziU7ZueyncrO5UKXsrK4bLc7gic2W37myb6DB+l98CCrgSUF6Prgiy8YD7wGfHyNTQF+0Gh4VK9nss3GJ1YrekXBkNc0GtbUrk0Tf38+SU1ldXIyXgYDXkYj3h4e+Hh7M6NLFwIqVmRvcjJnMjLwDwrCv3Jl/CtVIqBGDao2aoTmLi30pqJSlhGRNCANR/KgShnltddeIzc3l/fee+86W3x8PMuWLcNgMJCbm8uMGTMAqFatGq+88kqhO2gUB4PBwPjx45k3bx4vvvgiS5Zc/dcmKiqKzz77jNGjR7sksAGg0WhYvnw59evXJz4+nq5du961gQ0RYeHChbRo0YIHHnjApb4MBgP9+/dn7dq1WCyWAgNbKioqKuCizA1FUSoD1YCvgWH8nWnvBywRkYYl7rQIlJWnKg/4+5Ock8PRrCyUkg4ynDgBY8dSZ/t2zuLIzpjcrRtT1q8vleUvKncfdqsVMjLQpKSQGBnJof37SUtMJDUpifTUVNJTUxlRpw51dDp+PnWKzyIiyLRYyLJY8gMoy4ODaa0ovJqczBKzmVxnzRMrjgyUP4E2QFfgvwVoOAPUwbEt0+4C7Gk4fvm0xVFdWMPfWSkGIM3fH3Q6Bmdmsjc3Nz+oYtRqCdLr+b1VK/D05I3z5zmTnY2Xhwfenp54e3tTOSiI53r0AF9f/oiJwazV4lexIj4hIfhXrkxAzZp4BQVdV0tGReVO5lZ2SynvlJU5Rkmzd+9e2rZty+TJk5kzZ8519k6dOvHHH38AoCgKHTp0YP78+bRvf9OE2mJjtVrx8/MjNzeXtLS0q7ZeHTNmDF999RWRkZFUr169xH1fSVBQECkpKdx7773s3r37rtwC9vfff6dbt258+eWXPPXUUy7399NPP9GvXz82btxIjx49XO5PRUWl7FLqy1IURXkKRzZFaxz3EnmYcNTecN3CvEIoCxMPW2Qkz9Wty719+jD+p59KbNw/lixh3Msv847ZTB9gQ2Agcf37M+qLL0rMh4qKu7FbraRHR5MSE0NKTAypcXGkJSbySP36GLKy2LB3L9tPnyYjM5OM7GwyzWaycnJYd++9aHJyeOn0aX5PSyPHbsciQq5zD504Pz+wWmmXlcVBEez8vaxHC/mFdSsBiddo0vN3AdlA/i4sm4cnkOU8DsIRaNFc0WorCif8/ECno2laGiki+Vkreq2Wll5efNmoERiNDD1+nBxFwUOvx8NoxNNopGW1aoxq2xa8vPjk4EF0np74+Pvj7e+PT1AQtUJDCW3YEHx9ydLp8AgKUgOdKi5HDW7cGYgInTp1IjIykoiICPyu2bZ+x44dPPDAA2g0GkSEyMjIEi0qWRAzZ87kjTfeYMSIESxfvhyAs2fP0qBBA5599lkWLVrkUv9ffPEFzzzzDK1ateLAgQMMGzaM//znPyhKQRWz7lz69u3Lnj17iI6OLpUin2azmZCQEIYMGcLSpUtd7k9FRaXs4s6aG4NE5AeXOSgmZWLi8c47MG0anDsHtWvf9nBrpkzhlQULOGt13H497evLFytWgFpwSUWl5LBYIDWV6BMnSIyKIi0xkfRLlzClpKC1WBjeuDFkZDB/yxbOXL5MltlMtsVCtsVCRZ2Oz+vUAbOZnidOEJWTkx9YyRWhtqKwy8cHbDYqZWSQClcFV6oD0U4ZGv6uo5JHbeCc87igqXUj4DiOAMy1008FeBj4XacjHgi1WtHiCOhoFQUd8LiHBx8EBxMpQu+EBAwaDXqNBoNGg0Gr5clq1RgdGso5q5VpJ0/iYTTiYTA4Xo1G+jZuTIcGDYjNyeGXM2fw8vV1ND8/PP38aNioEcHVq2PR6zHrdHgFB6sFbe8AbiW4oShKLaCeiPyuKIonoBMRk2sUljxlYo5Rwnz77bcMGzaMzz77jFGjRl1nr1GjBjExMQB06dKF33//3eWa7HY7fn5+mM1mkpOT8fPz45lnnmHFihWcPXuWqlWrutR/pUqVuHTpEhcvXmTZsmVMnz6d+fPnM2HCBJf6LUucPn2a+vXrM3PmTGbNmlVqfocPH86mTZuIj48v0i47KioqdyalXnNDUZQnRORroLaiKNf9theRBa7wW+YR4a9ly2h2//0otxnYsC9ZQu3nn+eC3VH1oKWnJx8tWkS7AiYfKioqt4nBACEh1AwJoWYh3W5WRWfjTewJhRnNZuIjIzElJGBKTCTj8mVMyckE6/VQpQpkZjJvwwYyMjLIys4m22wm22ymdUAA1KiBPSODLnv2kGOzYclrdjstvbwgIAC72UxAYiJW5xbQVhEsQHpODiQkkGS1csZuR7g6wBKSns7oEyc4gKMo7bXE79pFBxy7MI0twD4BmA8sAF69xqYAc4BJWi2z7XZmiVxV6FYDfOntzaOeniwwm1mQlYVOUdAqCnpFQafR8GXNmrT292dZSgpfJyWh12oxaLUYdDqMej3vtW5N9aAg1l28yJaEBIzOwIzRaMTDw4MxDz+Ml58ff8XHcy41FS9fXzx9ffF0BmcaN22Kxtsbs0aDxscHg1rb5ZZQFOWfwBgcCU51cMT1luAoLq7iBrKyspg8eTItWrTg6aefvs6+aNEiYmJi0Ov1WK3W/CwKV6PRaJg+fTpTp05l9OjRvPPOOyxfvpzx48e7PLDxzTffkJiYSNeuXalSpQqvvfYaBw8eZNKkSTRr1uyWdoEpjyxatAiDwcCzzz5bqn4HDx7MihUr2Lp1613zXauoqBQPV4U9vZ2v6izvCg6Hh9Pi7Fm+7NSJW1mdaLda+ah/f57bvh2NyURtoE5AAJ+uWkW9bt1KWK2KikqZwsODkCZNCGnS5IZdJj733I0vBwp7ploViCvE3g7H9sVXYrdasWdlQVYWvS5dYv/Ro2SnpZGVmkpWejpZJhMtK1WCgAC6xcTw+p49mM1mzDk5jmax8GitWuDvT/uLF+keEYHFbsditWKx28m122lSsaLjsycnUyk1FasINmdNFhugtdkgO5uEnByS7Parsl4ESDx9GnDsFrSlgM/1YnQ01YEPKLieS/916wgFnqXgei6ZgBeOmjBHr7FpAJuigKLQym7nsPNcXoDGC0jy9QWNhocyMzlmszkCN84ATbBWy4GaNUGn4x+xsZyxWNBqNOicS5ZqGI2saNYM9HpePHmS2Jwc9DodBp0OvU5HaEAA09q1A6OR+fv3Y7LbMRqNGAwGjB4e1K5UiT4dO8LQMlHL83kcZXF2A4jIaUVRbn1rDZXb5r333iMmJoYVK1ag1WqvslksFqZMmYKiKOTm5tK7d2+XBxauZNKkScyePZsffvgBRVEwGAxMmTKlVPwCfP7554Aj0PLll1/Svn17hgwZwr59+6hdAlm5ZZnU1FQ+//xzHn/8cSqX8u56PXv2xNvbm/DwcDW4oaKiUiCuXpZSUUQuucxBMXF3yuiUdu1YsGcPcSdPEtygQZGvM6emMiksjM+OHMEMfKAojB8wAJYsgdvYVk1FRUXlbsJqNpOVlERWcjKZSUlkpqbSsFIlDLm5nIqI4HhkJOasLLIyMsjJzsZsNvNcixZ4iPDDoUP8ER1NjsWCxWJxBGCsVr5p0QKN1cobJ06wJTmZXLudXJsNq92OAuy95x6wWhkWE8NOsxk75AdoPBWF8/7+YLfT1mTi+BXBGTuOpwQpWi2IUMVuJ/6az3NlPRfvK47z8MNR4wUcS5Is19grAomKAnY7JU1xl6UoirJbRNopinJQRFo4t4U/ICJNS1yci3D3HKMkiYmJoX79+vTp04dVq1ZdZ3/66af56quvMBqNWCwW4uPjb2ub11th0aJFvPjiiwC88sorBe7kUpKEh4fzj3/8g86dO7Nly5arbKdPn6ZNmzbUrl2bnTt33tEFRhcsWMDEiRPZv38/LVvecPNDlzFkyBC2bNlCbGzsdUE3FRWVuwN31tyIAM4DK4HVIpLiMmdFwJ0TD7vVSm0PD5pWqMDPCYUmn+eTfv48Yzt3Jjw6GiuOXR2erF+f97duxaeUo+UqKioqKmULq9mMzmoFs5nYc+fITE0l22QiJz2dnMxMPIDWtWpBTg5r//iD5NRULDk5mLOzseTkUNXLi+GtWsHUqSWu7RaCG3Nx1ON9EhgPPAccF5FpJS6uaHoaA7OAy8B/RST8ZtfcScGNJ554gvDwcE6ePHldJkJMTAw1a9bEYDCQk5PDgAEDWLNmjVt05gVXjhw5wr333utSX3n1RSIjI7nnnnuus//yyy/07t2bWbNmMXPmTJdqcRc2m426detSo0YNtm3b5hYN33//PY899hhbtmyhc+fObtGgoqLiXkq95kYeIlJfUZS2wOPANEVRjgPfOetx3FVsX7yYCzYbcx577Oado6NhzBismzaxEkfq8qQOHXhj82a10J6KioqKCsDffw98fKgaHFxo3/6DBpWCottiKjAKOIKjPMsG4LNbGUhRlM+BPkCiiNx7xfmewEIcJVs+E5F3CxmmF7BIRLYrirIOuGlw407hzz//5JtvvmHatGkFLrEYNGgQIoKiKGg0Gr5w065sx48fx2Jx5CNNnDiRTZs2uczXunXriImJ4f777y8wsAHQq1cvHn30URYsWMD48eMJCgpymR53sW7dOs6fP8/8+fPdpqFXr154enoSHh6uBjdUVFSuw6WZG1c5UpRgHDXjhouIW/LI3PlU5fkmTfjq+HESEhLwLiR1M/nMGbrXr8+3ItSrUIF9Tz5Jy7lz1a0bVVRUVFTKDbeQueENmEXE5nyvBYwicu1qm6KMFQZkAMvzghvO8SKAbkAMsBcYiiPQMfuaIZ5xvs7EsdrnfhHpeDO/d0Lmht1up0OHDly4cIGIiAh8rimQu3nzZrp06UJQUBDJyckMGTKE7777zi1ahwwZwoYNG/D09CQpKYlz585Rq1Ytl/iqXbs2UVFRnDp1ivr169+w35EjR2jWrBmvvvoqb7/9tku0uJMHH3yQ8+fPExkZ6dYlIYMGDWLXrl3ExMSg0WjcpkNFRcU9FDbHcOlvBEVR/BRFeUpRlF+AnTjq1bV1pc8ySU4O8y5eZHPPnoUGNgAevO8+9ouw5uGHISmJ1gsWqIENFRUVFZU7nf/iKCOShyeF18C9ISKyDUi+5nRb4IyInBURC/Ad0F9EjohIn2taorM9jyOjJOlGvhRFGaMoyj5FUfZdulRmSozdMt988w179uxh9uzZ1wU2wLFcBRw7qWi1Wj799NPSlgg4ggjff/89L730EgsXLkREePLJJ13ia+PGjURFRdG2bdtCAxsA9913H4899hgLFy7kTvh5uJK//vqLrVu3Mn78eLfXuhg8eDBxcXHs2rXLrTpUVFTKHq4Odx4CmgNviEh9EZkiIvtd7LPs8csveKal0dZZ+OpGvP7ggxwxm2np6cnk/xZUt19FRUVFReWOxENEMvLeOI9LsipjNeDCFe9jnOcKRFGU2oqifAosB25YqVJEPhWR1iLSumLFiiUm1h1kZGQwdepU2rRpw4gRI66zL1iwgLi4OEJDQzGbzQwbNgw/Pz83KIXXX38dX19fJkyYwNChQ6lWrRrbtm0jIiKixH298MILACxbtqxI/WfOnEl2djZz584tcS3uZOHChXh7ezNq1Ch3S+GRRx7BaDQSHn7XrBZTUVEpIq4ObtwjIi+LyF0dWp0yZQof+vhAIdu1Hlu7lte3bsUD+O/x46UnTkVFRUVFxf1kKoqSv/WCoiitgGx3iRGR8yIyRkSGi8iOwvoqitJXUZRP09LSCutW5pkzZw6xsbH83//933Wp/haLhWnTpqHVaomLi0On07FkyRK36Pzrr7/44YcfePnll/PrWixevBigxLM3Nm/eTGRkJC1btixywdJGjRoxbNgwFi9eTHz8tXsclU8SEhJYsWIFTz/9NAEBAe6Wg5+fHz169CA8PBy7C3Z7UlFRKb+4JLihKMr/OQ/XKYpyXXOFz7JKekwMH0REcCo0FG60vMRup9/AgQiwYvJkAu7wPdJVVFRUVFSu4V/A94qibFcUZQeOXdZeKMHxLwI1rnhf3XnuthGRn0RkjL+/f0kM5xaioqKYN28eQ4cO5f7777/OPnLkSMxmMy1atMBsNjNy5Ei3bXc6a9YsAgIC+Ne//pV/rn///tSqVYvdu3dz9OjREvM1btw4oOhZG3nMnDkTi8XC7NnXlnMpn3zyySdYLJb8rXfLAoMGDSImJoa9e/e6W4qKikoZwlWZG/9xvs4D5hfQ7hpWz5qFGRhe2B+EYcNYa7fz7wYNeHTOnFLTpqKioqKiUhYQkb1AQ2Ac8CzQqISXse4F6imKEqooigHHLm4l8rDlTsjcmDx5MoqiMKeAOUhUVBTffvstfn5+HD58GL1ez6JFi9ygEvbv38/atWuZOHHidRkEefU/Sip7Y8eOHURERNC0aVOaN29erGvr1q3LU089xZIlS4iJiSkRPe4iJyeHjz76iN69e9+05khp0rdvX/R6vbo0RaVMkpuby+XLl90t467EJcGNKyYkzUVk65UNRw2Ou4Zv1qyhjk5Hu2eeKdB+9MMPsaxcyb3BwbypLkdRUVFRUbl7aQM0BVoCQxVFuaW7VEVRvgV2AQ0URYlRFGWUiFhxZIJsAk4Aq0TkWEmILu+ZG9u3b2fVqlVMnjyZGjVqXGfP2/q1Q4cOWCwWxo4di9FodINSR0ZEUFBQgRkE3bt3p169ehw8eLBEnuaPHTsWgM8+u6UdiZk+fToiUu53TVm1ahUJCQlXZcqUBQIDA+natSvh4eGU1s6PKio3wmw2s23bNt566y26d+9OYGAgwcHBtGnThrfffptjx46pP6elhEu3glUU5YCItLzm3EERaeEyp4VQ2tu0xf31F9VbtGBap068sX37dfb0mBgq1ahBBSDm0CFo2rTUtKmoqKioqLiKW9gK9j9AHeAvwOY8LSJSdvLgb0J53ArWbrfTpk0bEhMTOXXq1HVLTTZt2kTPnj2pV68eUVFRKIqCyWRCr9eXutY9e/bQrl07Zs+ezdSpUwvss337dsLCwmjSpMltLU/ZvXs37du3p3Hjxhw7dusxsHHjxrFs2TIiIiKoXQ6XHIsIrVq1Iicnh6NHj6IoirslXcXnn3/OqFGj2L9/Py1btrz5BUyfebkAACAASURBVCoqJYTJZGLXrl1s27aNbdu2sXv3biwWC+DYNSksLIxKlSqxfv16du/eDTgyugYMGMCAAQNo376923cdKs8UOscQkRJvOPaO/wlIwZH2mdf+B/zXFT6L0lq1aiWlyYkpU6QPyIn16wu0t/byEkD+3alTqepSUVFRUVFxJcA+Kd684QTOBy7lrQF9gU/r1q1bcl9gKbFs2TIB5Ouvvy7QHhISIoAMHjxYAHnllVdKWeHf9OzZU4KDg8VkMhXar3HjxgLI9u3bb9nXfffdJ4Ds2LHjlscQEblw4YIYjUZ55plnbmscd7Ft2zYB5JNPPnG3lAJJSkoSrVYrr776qrulqNzhXL58WdauXSsTJ06UNm3aiFarFUC0Wq20bdtWXnnlFVm3bp1cvnz5umsvXrwoH3/8sfTo0UP0er0AEhISIqNHj5aff/5ZsrOz3fCJyjeFzTFckrmhKEotIBSYjWOP+DxMwGFxpIeWOqX+VKVNG7DbYf/1y4bnPvIIUzZsoLHBwLGcnNLTpKKioqKi4mJuIXPje+BFEYlzoSyXUt4yN0wmE/Xq1SM0NJSdO3de91R+9uzZvPbaa3Tv3p3Nmzej1+sxmUxuedq4c+dOOnbsyNy5c5k0aVKhfffu3Uvbtm2pV6/eLW0Ne+DAAVq1akX9+vU5derUrUrO56WXXmLx4sWcPHmSunXr3vZ4pcngwYP53//+x4ULF9xWQPZmdO/enXPnzhEREVHmMktUyi9xcXFs3749PzPjyJEjABiNRtq1a0dYWBhhYWF06NABHx+fIo+blpbGL7/8wo8//siGDRswmUx4e3vTq1cvBgwYQO/evQkMDHTVx7pjKPXMjbLaSjNzI2HnTokCkfnzr7NF/PabaEAMIJdOniw1TSoqKioqKqUBxc/c+B+ObM9NXJHxWZwx3N1KOzv0dpk6daoAsnv37uts2dnZYjQaRafTybBhwwSQadOmuUGlg65du0pISIhkZGQUqX/z5s0FkF9//bXYvlq0aCGAbN68udjXFkRcXJx4enrKE088USLjlRbnzp0TjUYjU6dOdbeUQvnkk08EkEOHDrlbiko5xW63y7lz5+Srr76SUaNGSb169QQQQLy9vaV79+7y1ltvybZt20o0y8JsNsvGjRvl2WeflSpVqgggOp1OunbtKh9++KFER0eXmK87jcLmGC75Aw/scL6agPQrmglId4XPorTSnHjMCAsTLcilI0euNths8mNQkBhAvh43rtT0qKioqKiolBa3ENzoXFArzhjuapTDZSmRkZFiMBhkxIgRBdrzlqG8/PLLotVqxdvbW2w2WymrdLB161YBZMGCBUW+5siRIwJI7dq1i+Ur77o6deoUV2ahvPLKK6Ioihw/frxEx3Ulr7zyimi12jJ/g5WQkCAajUamT5/ubikq5YjExET59ttv5ZlnnpEaNWrkBzMCAwOlX79+Mm/ePNmzZ49YLJZS0WOz2eTPP/+UqVOnSsOGDfP1tG7dWt588005cuSI2O32UtFSHihsjuHSgqJljdJKGRW7nfoeHtT08eG/yclXG595Br74AkuPHhg2bnS5FhUVFRUVldKmuMtSnNfUAuqJyO+KongBWhExuUZhyVOelqUMGjSIjRs3EhERQbVq1a6yRUZGUq9ePQICAujevTsrV67krbfeYtq0aTccLy0tjY4dO5Keno6fnx/+/v5XvRZ0rqBXDw+P65YWPPTQQ5w8eZKzZ8/i6elZ5M/Yvn17du/ezY8//kj//v2LdE3btm3Zu3cvmzZtonv37kX2dTMuXbpEaGgojzzyCCtXriyxcV1FRkYG1atXp2fPnnz33XfulnNTHn74YeLj4zmu7jqocgPMZjN//PEHv/32G7/99hsHDhwAICAggC5duvDQQw/lFyPWaFyymWixOHnyJGvXruXHH3/kzz//BKBOnToMGDCAMWPGlKltmd2B25al4Kh8bnQePwi8CAS40mdhrbQyN3Y7C3Qte/rpq87/PneutAJJ8fMTyckpFS0qKioqKiqlDcXP3PgnsBeIdL6vhxsLkN9KKy/LUv73v/8JIG+++WaB9mbNmgkgX331lWg0GvH19b1p1saHH34ogAwZMkQGDhwoXbp0kTZt2kiDBg2kcuXK4uUsoH6zptPppEKFChIaGirNmzeXDh06CCAffPBBsT9nRESEAFKtWrUi9T9x4oQAUqtWrWL7KgqvvfaaAHL48GGXjF+SLF68WADZtWuXu6UUiTy9x44dc7eUckdsbKzbsrJcid1ul8OHD8v8+fOlR48e4unpmf87JiwsTN588035888/xWq1ulvqTYmNjZUlS5ZIz549Ra/Xi4+Pj6y/wWYVdwuFzTFcvRXsX0BroDawAVgLNBGR3i5zWgil9VTlpebN+eTQIRKiovCvWROArKQkQipWJAvY/fnntBk50uU6VFRUVFRU3MEtFBT9C2gL7BbndvGKohwRkftcpbGkKS+ZG48++ii7d+8mMjLyukyIn3/+mb59+9K4cWMaNmzI6tWrmTdvHhMnTrzheCJC06ZNMRqNFPb5c3NzMZlMpKWlkZ6env965XFBr/7+/qxcuRIPD49if9awsDC2b9/Ot99+y+OPP15o344dO7Jz507WrVtH3759i+3rZiQnJxMaGkqXLl1YvXp1iY9fUtjtdho1akRAQED+FpZlnbi4OKpVq8asWbOYMWOGW7VYrVb++9//0qJFC0JCQtyqpSBEhMOHD7N69WrWrFnDkSNHmDRpEnPnznW3tNsmLi6O33//PT87Iz4+HoCGDRvSvXt3unXrRufOnfH19XWz0lsnJiaGfv36cejQId5//33Gjx9/VxbSdWfmxgHn6yRgvPP4oCt9FtZK46mKLSdHqmk0MuiaJwUP+Pk51q+2aOFyDSoqKioqKu6E4mdu7JYr5giADsfuam7PyCiC9nJVc6N79+7Svn37Am3BwcECyB9//CEajUYCAgJuus57x44dAsjSpUtdIfe2OH/+vCiKIpUqVSq035kzZwSQGjVquFTPrFmzBJD9+/e71M/tsGHDBgFkxYoV7pZSLB544AG577773C1DZs+enZ+J1KpVK5k2bZps375dcnNz3abJZrPJH3/8IRMnTpTQ0FABRKPRSFhYmDz00EOi1Wrl6NGjbtN3q2RmZsovv/wiEyZMyN++GZAKFSrI448/LsuWLSvzNWNuhYyMDBkwYIAAMm7cuFKrC1KWKGyO4eo/+LuBocBRINR57qgrfRbWSiVldONGiQc5vXhx/qnFQ4Y4ClTpdK73r6KioqKi4mZuIbgxF3gNOAl0A9YAbxdnDHe38rIs5UbBjbwb7379+skjjzwigCy+Yi5zI4YPHy5+fn5F3smktOnatasA8tlnn92wT1hYmAASHh7uUi2pqakSGBgojzzyiEv93A7du3eXqlWrlrsbpoULFwogJ924C2FiYqL4+vpK165d5a233pJOnTqJVqsVQPz9/WXgwIHy6aeflsoNt8VikV9//VWeffZZqVy5sgCi1+ulV69esnTpUklISBARkUuXLklgYKA89NBDZb5gpc1mk/3798u7774rDz/8sBgMBgHEYDDIww8/LO+++67s37//jlxmcy02m02mTJkigHTr1k1SUlLcLalUcWdwozHwATDU+T4UmOJKn4W1Upl4jBgh4u8v4twqKDcyUowgOpALe/a43r+KioqKioqbuYXghgZH3Y3vgXDnsVKcMdzdynNwIzMzUwwGg+j1ejl9+rQoiiIVKlS46ViXLl0Sg8EgL7zwgqvk3jaxsbGFfp6oqCgBpEqVKqWi55133imz9SyOHTsmgLz99tvullJsLly44Hbtzz//vGi1Wjlx4kT+uZSUFAkPD5fRo0dL9erV87MLGjduLBMmTJBff/21xLYXzczMlDVr1siIESMkICAgfyvTwYMHy4oVKyQ1NbXA6z766CMB5LvvvisRHa7AZrNJr1698r+/++67TyZMmCAbN26UzMxMd8tzG59//rno9Xpp2LChnDlzxt1ySg23BTfKWnP1xCPz0iXprdXKtisj8vfcI+tB/jNypEt9q6ioqKiolBWKE9wAtMA3Re1fVlt5Dm7kpThPnz5dunXrdtNMhzzee+89Acp8SnufPn0EkEWLFl1n69KliwDyzTfflIoWk8kkFStWlG7dupWKv+IwduxY8fDwkEuXLrlbyi3Rvn17aeGm5d8nT54UrVYrzz333A372O12OXr0qMyfP1+6deuWn3ng6ekpvXv3lg8++EAiIiKKlUGRkpIiX3/9tQwcODC/cG9gYKA89dRTsnbtWsnKyrrpGFarVVq2bCnVqlUTk8lUZN+lyccffyyAzJgxQ2JjY90tp0yxZcsWCQoKkgoVKsi2bdvcLadUcGfmRkfgNyACOAucA8660mdhzdUTj+9efFEA2Tx/voiI7Bg4UGwg8uCDLvWroqKioqJSlriFzI0dgKE415SVVt5rbpw8eTI/s+HcuXOiKIqEhITcdBybzSZ16tSRBx54wJVyS4SkpCTRaDTi7+9/1Y1jTExMkT9vSTJv3jwBytSNyOXLl8XT01NGjx7tbim3TN736o4n2P379xdfX9/85R5FISMjQ9avXy/jx4+XevXq5Wcl3HPPPTJu3DhZu3atpKenX3ddfHy8fPLJJ9KjRw/R6/UCSNWqVeW5556T33///ZaWFO3cuVMAmTx5crGvdTVRUVHi6+srXbp0KfNLZ9zF6dOnpUGDBqLX6+Wrr75ytxyX487gxkmgFxACVMhrrvRZWHN1cKNvpUpSTaMRW26u7HBGGLtotflLVFRUVFRUVO4GbiG4sRzHVrDTgQl5rThjuLuV18yNJk2aCCBr166Vzp07CyBff/31Tcf59ddfSzXj4XYZPHiwADJnzpz8cz169BBAPv/881LVkpmZKZUrV5bOnTuXmZu1d999t9xsVXsjzp07d92/cWmwZcsWAeSdd965rXEiIyPlo48+kn79+om3t3d+nYyHHnpI5syZI/Pnz5dOnTqJoiiOWn516sikSZNk165dJVJnYuTIkaLT6a5aVuNu7Ha79OzZU7y8vOTs2bPullOmSU5Ozs9Ee/XVV+/o2iNuLSjqyvGL21w58UiKiBAdyCutW0uOySR+zujr/95/32U+VVRUVFRUyiK3ENyYWVArzhjubuUxuBEeHp6/fj0yMrJYtScGDhwowcHBYjabXSm3xEhNTRWtVis+Pj5is9kkISFBFEWR4OBgt+j54IMPBJDff//dLf6vxGKxSPXq1aVLly7ulnLbtG7dWtq2bVtq/mw2m7Ru3VqqV69epCUgRSUnJ0c2b94skydPlqZNm+ZndTRr1kxmzZolhw8fLvHAWEJCggQEBEjXrl3LTNDtq6++EkAWLlzobinlAovFImPGjBFABg4ceMfWI3FncONd4D2gA9Ayr7nSZ2HNlROPJcOGCSAHVqyQbkFBAsg/GzRwmT8VFRUVFZWySnGDG3kN8LqV68pCKy/BjW7dukn79u3FZrNJYGCgKIoiERERcv/99xd5x5CLFy+KVquVSZMmlYLikuOJJ54QQGbOnJlfh2PJkiVu0ZKdnS3Vq1eXDh06uP1GcuXKlQLIunXr3KqjJMjLQDl//nyp+Pvmm28EkOXLl7vUz8WLF0vlMy1atEgA+f77713u62bExcVJYGCgdOzY8Y7OQihp7Ha7LFiwQBRFkVatWsnFixfdLanEKWyOoTjsrkFRlP8VcFpE5GGXOS2E1q1by759+1wydnijRnx/8SK9HnuMkcuWUUOr5bzZjEanc4k/FRUVFRWVsoqiKPtFpHUx+ncAlgE+IlJTUZRmwFgRec5lIksYV84xSpLu3buTkZHBgw8+yOzZsxk4cCBvvfUWjRs3pkaNGkRHR990jDfeeIOZM2dy5swZ6tSpUwqqS4bMzEwCAgLQ6XRYLBb8/f1JTk52m55PPvmEZ599lg0bNtCrVy+36bj//vtJTEwkIiICjUbjNh0lwZkzZ6hXrx4LFizg5Zdfdqkvs9lMgwYNqFChAvv27Sv33x2A1WqldevWJCcnc+LECby9vd2mZdCgQaxfv55Dhw7RoEEDt+kor/z0008MHTqUgIAAfvrpJ1q0aOFuSSVGYXMMl/4vFJGHCmhuCWy4lKgoBp88ycrnn+fiF1/gCWzdvFkNbKioqKioqBSN/wN6AJcBROQQEOZWRUVEUZS+iqJ8mpaW5m4pRcZms/Hee+9hMBj4z3/+w5NPPgnARx99dNNrrVYrS5cupXv37uUqsAHg7e3NyJEjMZvN2O12Zs2a5VY9I0eOpHbt2syYMQNXPmwsjD179rBr1y5eeumlO+LmvG7dujRv3pzw8HCX+/rggw+Ijo5m3rx5d8R3B6DT6Vi8eDEXLlzg7bffdpuO8PBwVq9ezeuvv64GNm6Rvn378scff6DRaOjUqRM//vijuyWVCi79n6goSiVFUZYpivKL831jRVFGudKnOzj6/vukA6xaxTS7nYz58wkNKxdzMhUVFRUVlTKBiFy45pTNLUKKiYj8JCJj/P393S2lyERERGC1Wpk+fTqnT59m3759hIaG0qdPn5teu2HDBmJiYnj22WdLQWnJs2jRIoxGI4GBgYwfP96tWgwGAzNmzGDfvn2sW7fOLRoWLlyIn58fTz/9tFv8u4LBgwezc+dOLl686DIfSUlJvP322/Tp04eHH76zntt27NiRJ598knnz5hEREVHq/i9fvszzzz9Pq1atmDhxYqn7v5No1qwZe/bs4d5772XgwIG89957bguklhauDjN+CWwCqjrfRwD/crHPUmfokiXcp9HwyNmzWNu0QTNhgrslqaioqKiolCcuKIpyPyCKougVRXkFOOFuUXciGRkZpKamUrFiRf7973/z1FNPAbB06dIiXf/xxx9TtWpV+vbt60qZLsNoNHLu3DkiIiJQFMXdchgxYgR169ZlxowZ2O32UvUdGxvLqlWrGDVqFL6+vqXq25UMHjwYgNWrV7vMxxtvvEFmZiZz5851mQ93MmfOHDw9PXnxxRdL/Wb4X//6F8nJySxbtgydmgV/21SuXJktW7bwj3/8g8mTJzN69GgsFou7ZbkMV//EBIvIKkVRXgUQEauiKOXiSUxRORweztGcHAAuAeZ16/BxrySXIHY71pwcrNnZaO12DBoNNrOZ+NhYbLm5V/UNDAjA18eH3NxcEpKS4JrJQ2BAAN5eXlgsFpJSUq52pCgE+vvj6emJxWolLSMDjU6HRq9Hq9Oh0enw8PZGZzBgB0SjQaPVotwh6YAqKioqdynPAguBasBF4FfgebcqukM5cuQIAF999RV79+7l0KFD1KtXjy5dutz02rNnz7Jp0yZmzJhRrm86qlSp4m4J+eh0OmbOnMmIESP44Ycf+Mc//lFqvj/66CNsNhsvvPBCqfksDRo0aMC9995LeHi4S7JzIiIi+Pjjjxk9ejSNGjUq8fHLApUrV+b111/n5ZdfZu3atQwYMKBU/K5fv56vv/6aGTNm0KxZs1LxeTfg6enJt99+S4MGDXjzzTc5e/YsP/zwA0FBQS7zmZubS3x8PDVq1HCZj4JwdUHRLcAg4DcRaakoSntgjoh0LsK1PXFMdLTAZyLy7jV2I7AcaIVjje4QETlf2JiuKPY1qU0b5jnHXD9rFr1nzizR8a9F7HasGRnozWYwmTj611+kJiRgSkoiIzUVU0oKtby86FK1KphMvLRhA6mZmZiys8nIycFis9EvMJAJISFYLRZanjxJrt2OVST/9VlPT/5tMJCSm0vVjAysgPUKDW8B04BooFYBGt/HkZ5zHGhSgP0zYBSwG2hfgH0l8BjwO9CtAPsGoBfwI/Co85yCIw1JC2w2GOio0/Gd3c5YsxmtouTbNIrCb8HB3OvhwdfZ2cxKTUULaBUlv/1Uty41PD35OjmZJYmJaDUaxxjO1+9atCDQw4MVcXH8EBfnsF/RPu3UCaPBwKpz59gSH+84r9Wi1WrRa7W8+/DDoNWy9swZ/kpIQKvVotPp0Gq1eBmNPB8WBlotv0VEcDY52RHU0WjQ6nT4enkxsF070GrZERFBosmEVqfLb77e3nRq1gw0Gg6dO0dGTg6aPLtej4+PDw3uuQe0Ws7FxmKx2dDq9Y4Akk6Hl5cXIZUqgUbD5bQ00GjQ6PVotFq0BgN6oxGjlxdoNNgBRQ0sqaioFEBRC4oqijJHRKYoivIPEfm+NLS5ivJSUNRgMGCz2bDZbDRp0oTjx4+zfft2OnXqdNNrX331VebOnUtUVBTVq1cvBbV3Bzabjfvuuw9wBJ+0Wq3LfWZnZ1OzZk06derEmjVrXO6vtHn99dd5/fXXiY2NpXLlyiU69sCBA/ntt984ffp0iY9dlrBarbRo0QKTycTx48fx8vJyqb+0tDSaNGlCQEAABw4cwGAwuNTf3co333zDM888Q61atfj555+pX7/+LY+VlZXF2bNnOXPmDJGRkURGRuYfR0VF4e3tTWpqaolnyRU2x3B12H0CsA6ooyjKH0BFYPDNLlIURQssxnFvGwPsVRRlnYgcv6LbKCBFROoqivI4MAcYUtIfoDDsVisfOicyw2rVuj6wIUKOyYQpPp6MxEQykpLIuHwZrdlMm+rVwWTi+61biYqLIyMjA1NGBhlZWdQyGHitVi0wmRh48CAnsrIw2Wxk2Gxk4Lix/8npohsQf42uIUAXAIOBdVYroij46nR463QYdToUvR4CA9HqdNRJSECv1aJz3njrdToa1qoFDRrgCYzfvRudXo9ep0Ov16PT6QirVw/q1aOCzcanBw+i0Wiu+qFtGxoK1apRJTOTpfv3X/eddKpXDypXJjQtjU/++uu677VVw4YQHEyDy5f58NAh7HY7NpsNu92O3WajQePGEBhIw4QEXj982HE+r48I1Zo2BV9f6sTGMvL4cYddJL9PQPPm4OFBpQsXaHfmDDa7/e8mgr5yZdDr0ZnNGHU6bHY7uU7fNrsdnNkolxMSOHX5MjaR/GYXQXJywG7nUHo632dlYQOHHUcA5t2DB8Fm40e7nS+v+eyBwPPOScYnwA/X2GsAA53Hb+J4tHkljYFjzuPngJ3X2NsBfzqP+wNHrrF3BX5zHrcBzl1jfxTIS/KsBCThCCxpnZ/tCa2WZR4eoNFQKSODXOd5DY7A0jOenrwTGIhVUagXF5d/Pu/1n87AW7oID0ZGOmxX2MdWqcJTlSqRYLUy9OTJv+3ONrZWLfpXqUJ0djYvHTuGRqP5267RMLZuXR6sUoUzGRm8eeRIvl3JszduTKuQEE6mpbH46NH8n+28fv9s1owGwcEcu3yZFSdO/G1z9hvZsiU1AwM5nJjI+lOnUPL8O+1PtmlDRT8/DsXGsu3sWRRFcfRx2oe1a4eflxeHL15kX1SUIysp73qNhsFt2+JhNHL4wgVOxMbmn1ec1/dv1w6tTsfR6GjOXbqUP67iDLB1b90aNBqOR0cTn5KSb1M0Ggx6PR3uuw8UhVPR0SSbTPnjarRajEYjTevXB0UhMiYGU3Z2vk1RFDw8PKhbuzYoClGxsZgtlr+1aTR4enhQrUoVUBRiExPJtVqvsnt4eBBcoQIoCknJydhErtJnNBrx9fMDRSEtPR2Bq+x6gwEPT09QFLLNZoCrxs8LAAqQF9LPs6m4ld6KokwFXgXKdXCjvLFjxw6OHz9O48aNixTYyMnJYdmyZfTt21cNbJQwWq2WWbNmMWTIEL777juGDx/ucp8rVqwgKSmJl156yeW+3MHgwYOZNWsWa9asYdy4cSU27o4dO1izZg1vvvnmHR3YgL+Li3bu3Jl3332XN954w6X+Jk2aRFxcHKtXr1YDGy5k+PDh1K5dm0cffZR27drxww8/FFo3Jjk5+brARd5xXFzcVX0DAgKoW7cubdq04fHHH6du3brY7fZSCdjm4dLMDQBFUXRAAxz3QKdEJPcml+RtCTdLRHo43+cta5l9RZ9Nzj67nD7igYpSyAcq6acq3zduzGMnTqAFOvn5kWm1kmG1EgT84eUFGRl0s1r5/Zrr7uXvm8r7gV3OY2/AR6Oho6cnP9StC76+PB8dzSW7HR9PT3y9vPDx9qZJzZoM69QJfH3ZdPo0Gm9vfIOD8Q0OxqdiRQKrVcOvalVQfzGUbUSwW63YLBZsubnYLBbsubn4enmBzUZqcjJZGRnYrFbsubnYcnPRALWrVAGbjXPR0aSnpzuutVqxW60YtVqa16kDdjt7jx0jNT3d8YQuNxe7zYa/pydhDRuC3c4v+/aRkpGB3WZzBG6sVqr4+9OzcWOw2Vi+axdpmZl/B45sNuoGBTGgUSOw23lv61YyLZb8wJPNZqNlSAiP1a8PdjsTt2wh1xlwygtAda5cmaGhoeRarYzeseNvmzMw1L9yZYZVr44pJ4fh+/djs9sRyO/zdJUqDAsJId5s5rFjxxxLk5zX2kWYUKkSQwICOJ2dzeBz5xznId/+ToUKDPL2Zn9WFoMSEx1jO+0CfOrnRx+9nv/l5DDYZLrKZgd+NBjoqtGwxmrlMavV4Z+/b5Z3AB1xFBsaWcA/+SGgKbAIeLEA+1kgFJgNvFaA/RIQ7LTNLsBuBozAeODDa2w6IO+X79PAV9fYA4G8DREH8XcQK4+aQJTzuDt/B8HyaAIcdR5f+Xstj/ZXnLvvir55dOPvYF3tK3zlMZC/g30VrtCax1OQHyw0AteuJn0ex3dicdqvZSowW1G4DFR2/hlRnA3gDa2WKXo9USL8P3v3HR5VtT18/LtnJskkISRAwBAChN4JSBFQEASkKNVYEFGxIF4V9V71CldFBZRXRUQRBSmK/EAQkC5wRQVRQWmXKib00EJIJW3K2e8fmUSIoc9kMsn6PM95Zubsc/ZZcwjJnjW7NHYNRTy//N2AAIYHBLDXMLg5M/Nv5ZODgxlktbLFbueO9PS8cqUKq1mRYgAAIABJREFUjvksNJQ7rFY22Gzc7xqud3757EqVuDUwkNXZ2fzDtXRlft0KmB8RQSurlcXnzvHy2bN/Xd9Vx5Jq1WhgtfJ/aWm8dV75spgYam/eXMQduT5X0XPjXeBxoByQ5QpL5z9qrcu7PTgP8ZWeG35+fhiGQd26dfnzzz/57bffaNOmzWXP++qrrxg0aBCrV6+mR48exRBp2WIYBi1btiQ7O5u9e/d6bNhPZmYms2bNYuzYsURERLB9+/YSMfeIu2mtady4MZGRkaxbt85tdbZr146EhATi4uI83pOhpBg8eDCLFi1iz549Hlshad26dXTr1o0XXniBd9991yPXEBc6dOgQd955J3/++SeTJk2iadOmRSYxUgpNIVC1alXq1q1LnTp1qFOnzgXPPTnM5XyXamN4eljK3cBqrXWGUuoV4EZgrNZ622XOiwV6aq0fc70eAtyktX76vGN2u45JcL0+4DomqVBdw4BhADVq1Gh15EjhJvO1y6pQgeDUVAAa+vlRKyyMcgEBRJYvzwfdukG5ciw8dIiTNhvlypenXFgY5cLCCI+IyGtIhISQbLfjFxZGcOXKsnSsED5KGwbaMFBaowCnw4HDZsNwOtGuxJDhdBIcGIjZZCInK4vMzEwMh6PgXMPppHLFilhMJtLS0khNTc1L3LiOMQyD2tWqYTaZSExKIuns2bxyp7OgjmZ162ICjp48SeLZswX1aq3BMGjXpAlozf7DhznlOl8bBlprzMCtzZuD1uyIj+dUcnJBmdYaq58fXZs1A635ee9eEl3xaVeCqrzVSg/X+f/duZMzaWkF5VprwoOD6eUqX7J1K8nnzl1QXi00lN5Nm4LWzNm0ifScnAuuX6dSJXo3bgzApxs3km23XxB/kxtuoFeDBqA1723YgMP1vvO31pGR9KhbF6fTybgNGy4o01rTsUYNuteqRZbNxriNG/P2A7jKb4+O5rYaNUjOzubtTZv+KievwTugTh06RkZyIiOD/7d16191u455oF492kVEcDAtjXe3by8oy/8b/ETDhrQKD2dPcjITd+/+W/k/GzemWYUK/H7mDB/98UfB/vzH15o2pX758qw/fZqpcXEF5+Zf/93mzakRFMS3J04w8/Dhgvc26ZZbqDZ/vtv/T1xFciNAa52rlFqqte7n9kCKkS8lN5yu/x8xMTHsKKIHZVE6d+7M0aNHiY+PLzXLXpY0S5YsYcCAAcycOZOhQ4tKkV+7M2fOMHnyZD7++GPOnj1L+/bt+eijj2jVqpVbr1OSvPrqq7z11lucOnWKypUrX3d98+fP57777mPWrFmlanWZyzlx4gQNGjTg1ltvZcWKFW6vPzMzk2bNmmGxWPjf//5HYGCg268hipaWlsZ9993H6tWrC/aZzWZq1qx5QdIiP4lRu3btEpHUu2Qbo3ADz50bsNP1eAvwA3AHsPkKzoslb56N/NdDgMmFjtkNRJ33+gB5E5hetN5WrVppd/vs3nu1yfXl7T+aNnV7/UIIIYSvAbboK2snbHM9fnklx5fEDegDTKtbt677bqAHWSyW/A5neseOHVd0zt69ezWgx48f7+HoyjbDMHSrVq10dHS0zs3NdUudcXFxevjw4dpqtWpA9+3bV2/cuNEtdZd0O3bs0ICeNm3addeVk5Ojo6OjdUxMjHY4HG6Izre89957GtDLli1ze93PPvusBvT69evdXre4PLvdrhcvXqxXr16t4+Pjtc1m83ZIl3WpNoanU+/5K6PcAXymtV4JXMlYiePkTS+QL8q1r8hjXMNSQsmbWLRYPfbVV2xftIhQYMru3bQMDCQrKemy5wkhhBACf6XU/UAHpdTAwpu3g7sSWuvlWuthoaGh3g7limhXb5/WrVtf8WoEn376KX5+fjzyyCOeDK3MU0rx5ptvcvjwYWbNmnVddW3evJnY2Fjq16/PzJkzeeCBB9i3bx9Lly7l5ptvdlPEJVvz5s2pU6cOCxcuvO66Jk+ezOHDh3nvvfeKdf6AkmLEiBE0btyYZ599luzsbLfV+/PPP/Phhx/y1FNP0alTJ7fVK66cxWJhwIAB9OjRgzp16uDn5+ftkK6Lp5Mbx5VSU8mb43KVa4WTK7nm70A9pVQtpZQ/cB95E5Oebxl5w6whr6fH9zr/L3Yxaz5wICfOnKFlYCDHcnKw1K4NO3d6IxQhhBDClwwHOgJh5PWAOH+704txlVpOZ973TrNnz76i47Oysvjiiy+IjY11S9d+cWm9evWiXbt2jB07lhzX5MhXyjAMVqxYQadOnWjXrh3r1q1j5MiRHDlyhM8++4yGDRt6KOqSSSlFbGws33//PcnJhWdqunJnz55l7Nix9OrVi27durkxQt/h5+fH5MmTOXToEO+8845b6szJyeHRRx+levXqvP12UTOJCXH1PJ3cuAdYA/TQWqcCFYEXL3eS1toBPO06dx+wQGu9Ryn1plKqr+uwGUAlpVQ8eauyvOyJN3ClgsLD2ZaVxdHHHsM/I4MdMTFMHzLEmyEJIYQQJZrWeqPW+kngJa310EKbdBPwoEaNGl3RcfPnzyctLY3hw4d7OCIBeR/Ix4wZQ0JCAp999tkVnZObm8vMmTNp2rQpffr04ciRI0ycOJGjR48ybty4Ur+qx6XExsbicDhYtqzwd6RXbuzYsaSnp7vtQ72v6tKlC/feey/jx4/n0KHC6+ldvTfeeIP9+/fz2WefERIS4oYIhSiG1VJKkmKb7GvhQmrdfTeHgUE1azInPl4mCxVCCFFmXMWEordprb+/2BAUrXXhhXtKLF+ZUDR/ZYwrbf+1bduWzMxMdu/eXSpX1SiJtNZ07tyZP//8kwMHDlx0Ar/U1FSmTp3KpEmTOHnyJC1atODFF1/k7rvv9vmu5e6itaZWrVo0bdr0mibDjI+Pp3Hjxjz88MNMmzbNAxH6loSEBBo2bEjXrl1ZunTpNdezbds22rZty4MPPsjMmTPdGKEoCy7VxpDprj0hNpbv16+nslLMO3KEhkFBpB4+7O2ohBBCiJLmVtdj4SEpMiylBNi6dSu///47w4cPl8RGMcrvvXHq1Ck++eSTv5UfO3aMf/3rX1SvXp2XX36Zpk2bsnbtWrZt28b9998viY3z5A9NWbt2LWlpaVd9/siRI/H39+eNN97wQHS+Jyoqitdee41ly5axatWqa6rDZrMxdOhQqlSpwoQJE9wcoSjrJLnhIbU6dSIhPZ2O5csTZ7dTrVYttlzn5FBCCCFEaaK1Hu16LDwkRYallABTp04lMDCQITLMtth16tSJbt26MX78eM6dOwfAzp07GTJkCLVr12bSpEn069eP7du3s3btWrp37y4JqIuIjY3FbrezfPnyqzrvl19+YeHChbz00ktUrVrVQ9H5nueee46GDRsyYsSIq54XBuD//b//x86dO/nkk0+oUKGCByIUZZkMSykG/7n5Zj745Rf2AjXfeQdevOy0I0IIIYTPuophKf+8VLnW+n33ReVZpW1YSlpaGtWqVePee+9lxowZxRGaKGTTpk20b9+eoUOHcuLECdasWUNwcDDDhg3jueeeo0aNGt4O0ScYhkHNmjVp1aoVS5YsuaJztNZ06NCBI0eOEBcXR3BwsIej9C3fffcd3bt3Z8yYMbzyyitXfN6ePXto2bIlAwcO5KuvvvJghKI0k2EpXjbu559JW7GCmgEBpL70Eo9Vr47hcHg7LCGEEMLbQlxba+BJoJprGw7c6MW4yrw5c+aQmZnJk08+6e1Qyqx27drRu3dvZs2axf/+9z/eeustjh07xvvvvy+JjatgMpm46667WL16NRkZGVd0zsKFC9m0aRNjxoyRxEYRunXrRmxsLG+99RZHjhy5onOcTiePPPIIoaGhfPTRRx6OUJRV0nOjOJ06xQO1a/N/2dlEmc1s3rKFyBYtvBePEEII4QFX2nPjvOM3AHdorTNcr0OAlVrrTp6K0d283sa4QlfSc0NrTfPmzQkICMAX3lNpdvLkSX7++Wf69OlDQECAt8PxWRs3bqRjx47MmzeP++6775LH5ubm0rhxY4KCgtixYwdms7mYovQtR48epVGjRvTs2ZNFixZd9vgJEybwwgsvMHfuXAYNGlQMEYrSSnpulBQREcxOT6d35cokOJ3UbtmSNePGeTsqIYQQwttuAGznvba59hULpVRtpdQMpdTC8/YFK6W+UEp9ppQaXFyxlAS//PILu3fvluVfS4CqVasSGxsriY3r1KFDB6pWrcrChQsve+yUKVM4ePAg7733niQ2LqFGjRr85z//YfHixaxdu/aSx8bFxfHKK6/Qt2/fyyaXhLgektwoZiaLhZWJibzTuzc2oOcrrzC+SxdvhyWEEEJ402zgN6XU60qp14HNwOdXcqJSaqZSKlEptbvQ/p5Kqf1KqXil1MuXqkNrfVBr/Wih3QOBhVrrx4G+V/pGSoNPPvmE8uXLy7erotQwmUwMHDiQVatWkZmZedHjkpOTGTNmDLfffjs9evQoxgh907/+9S/q1avHM888Q25ubpHHGIbBY489RkBAAJ988olMfCs8SpIbXvLiypX89MknhAHNf/wROnUCm+1ypwkhhBCljtZ6HDAUSHFtQ7XWb1/h6Z8DPc/foZQyAx8DvYDGwCClVGOlVDOl1IpCW5WL1BsFHHM9d17dO/JdSUlJfP311zz44IMy14AoVWJjY8nOzubbb7+96DHjxo0jNTWVd999txgj810BAQF8+OGH/Pnnn0ycOLHIYz799FM2bNjA+++/T2RkZDFHKMoaSW540c3Dh5OSkkLvevUwfvqJ/iEhHNqwwdthCSGEEMVOa71Naz3JtW2/ivM2AMmFdrcF4l09MmzAV0A/rfUurfWdhbbEi1SdQF6CA8pQe+nzzz/HZrPxxBNPeDsUIdyqY8eOVK5c+aJDUw4ePMjkyZMZOnQozZs3L+bofFfPnj3p378/Y8aM4dixYxeUHTlyhH//+990796doUOHeilCUZaUmT/WJVZYGPzxB0s7dmSpzUb9W29l4b/+5e2ohBBCCF9Wjb96XUBeoqLaxQ5WSlVSSn0KtFRKjXTtXgzcpZT6BFh+kfOGKaW2KKW2nDlzxk2he49hGEydOpVbbrmFpk2bejscIdzKbDYzcOBAVqxYQXZ29t/KR40ahcVi4c033/RCdL5t4sSJGIbBv877DKO1ZtiwYWitmTZtmgxHEcVCkhslgcnEgA0bmDpkCAZw9/vv079qVeL++19vRyaEEEKUelrrs1rr4VrrOvnDYbTWmVrroVrrJ7XW/3eR86ZprVtrrVtXrly5eIP2gHXr1hEfHy/Lv4pSKzY2lszMTNasWXPB/k2bNjF//nxeeOEFqlW7aB5UXER0dDSjRo3i66+/5rvvvgPgiy++YO3atYwfP57o6GjvBijKDFkKtoTZuXAhne+5hxStCQIyq1aFBx7A8fLLWCpW9HZ4QgghxGVd7VKwbrheNLBCa93U9bo98LrWuofr9UiAq5jH42qu3QfoU7du3cfj4uLcXb3bXWop2LvuuosNGzaQkJAgq3OIUslutxMREUGvXr2YM2cOkPd/oWPHjsTHxxMfH0+5cuW8HKVvysnJoWnTpvj5+bF69WpatGhB06ZNWb9+PSaTfJ8u3EeWgvUhzWNjSTYM5j/7LOOiouD0aU69+y7WSpVoHBDA1MGDMRwOb4cphBBClGS/A/WUUrWUUv7AfcAyT1xIa71caz0sNDTUE9UXmxMnTrB06VKGDh0qiQ1Ravn5+dG/f3+WL19esLrHN998w88//8yYMWMksXEdrFYrkyZN4o8//uCmm24iJyeHGTNmSGJDFCv5aSuh7vngA547dgwyM0l48kmizGb22WwMnzuXAD8/OoeFsWPaNG+HKYQQQniVUmoe8CvQQCmVoJR6VGvtAJ4G1gD7gAVa6z0eun4fpdS0tLQ0T1RfbKZPn47T6WTYsGHeDkUIj4qNjSU9PZ3vvvsOm83Gv//9b5o0aSITXrrBHXfcQZ8+fTh9+jRvvvkm9evX93ZIooyRYSk+5MS2bbw2aBCL4+JI0Zr5wD0hIWxu354q//kPtTp18naIQgghRLEPSykJfKWNUdSwFIfDQa1atWjcuPHf5iIQorSx2WxUqVKFAQMG0LJlS5599llWrlxJ7969vR1aqXD69GkWL17M448/jsVi8XY4ohSSYSmlROSNNzJ9/36SDYPts2dzT8+eYLNx/9q11L71VqqZzYzq0IFzp055O1QhhBBC+IhVq1aRkJDA8OHDvR2KEB7n7+9Pv379WLJkCW+88QZdu3alV69e3g6r1Ljhhht48sknJbEhvEKSGz6qxZAh8O23kJXFW089RcvAQE4aBm//+ivlq1alc3AwTJ8OhuHtUIUQQohSqzQMS/n000+JjIykT58+3g5FiGIRGxtLamoqKSkpvPfee7JMqRClhCQ3fJ3JxL2TJ7MtK4uslBRev/VWqpvNOLKy4PHHsfn7c2d4OBs++sjbkQohhBCljq9PKHro0CFWr14tXchFmdK9e3fCw8MZOnQoLVq08HY4Qgg3keRGKWINC2P0jz9yxOFg45Ej8PDDfOXvz8qzZ7l1xAhClaJDSAhPNWvGvg8+gPR0b4cshBBC+DRf77kxbdo0lFI89thj3g5FiGJjtVrZt28fn376qbdDEUK4kSQ3SqsaNWDWLB7MymLjJ5/QvWJFbMCv584xZfdufnj+eQgN5W2LhRoWC10rVODf7dqx7t13sZ075+3ohRBCCJ/gyz03bDYbM2bMoE+fPkRFRXk7HCGKVXh4OH5+ft4OQwjhRpLcKANuHj6ctWfPkq01GSdPsvill7jvscegQweO+ftz0unk+9RU3tm8mW4vvURASAjbrFaoV485LVsyrnt3ts2di+FwePutCCGEEMJNFi9ezJkzZ3jyySe9HYoQQghx3WQpWAHAqZ07+faDD9jw00/sOn6cTQEBWNLTqW8YxLmOUUAIUDMggB39+mHq2JFzt95KuWbNvBi5EEKIkkaWgi25zl8KtnPnzhw9epT4+HhMJvm+SwghRMl3qTaGzBwlAIho3pyhM2cytND+b9euZcUnn7Dx99/Zc+YMCTYbB3JzMS1YAAsWUAs4C1iBYKWoYDbTJCSEb7p0gRo1WJCWRmidOjTp2ZPImBhMMlmZEEKIUkQp1QfoU7duXW+HclX27dvH+vXrGT9+vCQ2hBBClArSc0NcPcOA33+HNWt4cOpUfjtzhhSHg3NakwuEkpfwAAgAbOedagGamEzsqFoVKlbk7lOnCAoJoWa1atRv0oSG7dvTuHdvgsLDi/tdCSGEcBPpuVFy5ffcePbZZ5kyZQoJCQlUqVLFy1EJIYQQV+ZSbQxJbgi3M2w2TIcOwd69TJo1iz8OHODYmTOcOneOJJuNBkqxxmQCux1VxM9fbeCAUhhmM6EOB/5KYVWKYLOZYLOZflWq8Hrz5uSUL8/IffuoVLEiVSIiiKhZk6r16lGnTRsqNmgA0ktECCG8QpIbJVd+ciMsLIxevXoxd+5cL0ckhBBCXDkZliKKlcnfHxo0gAYNeHbAgEsem5aQwJ5Vq/hj0ybi9+/n8PHjxJhMYLWSk55OwIkT5GpNptacNgycdjtBR4/y+tGjHAM+KKLOrsB3wBagHXk/5P5AgFIEmkz8IzSUl6tVY6fTyTMJCQT6+REcEEBwQADlgoK4v3lzbmncmASnk3XHjhEWHk5oRAQVIyMJq16diAYN8A8LA+nGK4QQwkelpqYyfPhwb4chhBBCuI0kN4RXlY+Kov2wYbQfNuxvZUFAUlEnORxw4gTVDx1i8apVJCYkcObUKc6cPUtKejo9QkOhXDn8ExOJPniQLMMgR2uytCbN6eRYcjKkpLBTazYUUb3as4dbgIXA80WUjwTeAt4G/gOYyVt2yOR6PtVqZXBgIB/ZbIzPzsaiFH5K4Wcy4WcyMbVmTdpXqsS81FRmJyZitViw+vtj9fMjMCCAUR06EFWlCj+fOcOmkycJDAoiIDAQa1AQ1uBgerVvT1BYGAkZGSRlZxNcqRKBYWEEVahAUHg4/uXKydwmQghRTHx1zo3GjRvTsWNHb4chhBBCuI18AhK+x2KBGjWw1qjBgFtvvehhzYH4S1TzAHC/w0Hq4cOcPXSI1OPHST5+nEYVKoDFwh0HD5L8yy+cy8wk49w5MnNyyMzN5fZq1cBqpc6JEzQ8cYJcw8CmNQ6tsWuN1TXk5kxuLmcNAwMwAO3aTuzfD8BSYHURccXu3UsUMPYi5buApsAgYGMR5aeBKuT1WvnNtU+5NhNg8/cHk4muNhubDaMgMWNSCitwIjwcTCb6paayzeHADJiVwuyaMHZz7dpgNvNgQgL7cnOxmExYTCbMSlE1IIB5MTFgNjPijz84mpOD2WTC7DqmZkgIb7dpAxYLb2zfTpLNhsViwWI2Y7FYqFWxIsPatgWLhalbt5LpdOLn54fZbMZssVCjcmV6tWwJZjOLtm7FqTVmPz8s/v74+fsTGR5Oi4YNwWzm1z/+wOTnV1Bu8fenYqVKREZGYphMJCQmYrJYsAQEYPLzw+LnR1D58liDgjBMJhyGgcVqlUSR8BjD4SjYTOT9QTYcDtJTU/P2O50Fj+WsVsoFBeGw2TiWkPBXudOJYbdzQ4UKVCxfnqzMTP44cADD6UQbBg67HcPppE5EBBEVKpCans7WffswDAOHw8HNMTGU79vX27fCp2mtlwPLW7du/bi3Y7kaw4cPLxiiIoQQQpQGMueGEF5iO3eO9OPHyTh9mozERDKSkjiXksLNNWtSzjDYvGsXm+LiyM7KIjcnh1ybjdzcXEa3bk15rfli717WHDuGzeEg1+HA7nRidzpZ2aQJVqeTlw4dYk1aGg7DwOFKvmitORgRAYbBgLNn2Wi3FyRfDK3xA5KCg8EwaJWTw26tC5IymrxVcc65GsORWnOy0HsKAHJcz0OAc4XKg8/bZwVyC5VX5K/JaP0AR6HyqsAJ13OTK6bz1QYOuJ4X1WRvBux0xRBSRPlNwCYgDqhfRPntwBpgM3nJo8LuB/5PKVZoTVEfF58CPjKZmGMYPFREnK8qxWizmSmGwbOG8bfy900mnjabGe90MtpVfr6ZZjODLRZG2e28X6hcAYv9/OhlNjPCbuczp/Nv5//k709rk4mhNhtfFVH/bn9/6phM3G2zsbKI8lP+/pQ3mehls/FjEdfPsloB6Jiby++F/vb4A+kBAQDcaLOx97xyTd7PTrK/PwANbDYOFbp2GJDoSkRFORycLlReGThhNgMQ7nSSel7dAFHAEddQs3KGQVah82sD8a6ffT+t//az2RDY53pe1M9mc+B/XPxnrx3wKxf/2esG/Je8hGZR37UPBBa5ttgiyocCM4FpwBPn7V8O3OmBdoDMuVFy5Sc0UlJSCAsL83I0QgghxNWROTeEKIH8y5UjvEEDwhs0KLL8Jtd2MQ+5tot5x7VdzDeXiW/rZcpPFHptOBw4slwfCW02Dpw4QXZ6OrbsbGxZWdizs/FTCqKiwG5n3Y4dpKWlYc/NzdtsNipardCwITgcTNuwgbSsLJwOB06nE6fdTnRYGDRpAk4no3/8kSybDcPpxGEYOJ1OmlaoAI0agdPJYz/+iN0wMAwDp2FgaE2HihWhdm38HQ76bt6M4Ur45D/2qFQJatSgQm4uXXbtQgOGYeQ9ak2vSpUgIoIq2dm0iY9Hu87LL29XsSKEhxOZmUmThATAlRhyHdO0QgWoUIHIc+eoe/p0wQfg/PLosDAoX54bzp0j6uzZv31ArhIWBkFB3HDuHDekpxfszz+uQmgoBAZSJSOD8HPn/qrf9RgSEgIBAVTMyCAsq/DHd7CGhICfH+Hp6YTl5Pyt3K98ebBYCE9LIzS3cGoKTK65aCqnphJm+2udpPxeQ1SoAEBESgqVbLYLzrUqBa5VkqolJZFot19QHmYyQZUqoBQ1ExPJdjgKEj8KuMFshqpVQSnqnTqFv90OShUcU9NigWrVQCkaJyRw6rzkjgIa+vtD9eoAxBw5QorTmdfjyVVHy8DAvHKlaBMfT5ZhXFDeoVw5qFEDlKLdvn04XfXml3cJDYXoaPy1puPu3X+Vucp7hYdDdDSV7HZu37XrgjKlFAMiIqBmTaJzc+l/frlru7t6dahZkxaZmdzvKjcBJpMJpRSD6tSB6tXpmJ7OE7t2Fexvfsstf/t3FGWDJDaEEEKUNtJzQwghhBBuJT03Sq78nhtlqf0nhBCi9LhUG0OWexBCCCGEEEIIIYRPk+SGEEIIIcQ1Ukr1UUpNS0tL83YoQgghRJkmyQ0hhBBCiGuktV6utR4WGhrq7VCEEEKIMk2SG0IIIYQQQgghhPBpZWpCUaXUGeCIm6sNB5LcXKfII/fWM+S+eo7cW8+Re+sZnrqvNbXWlT1Qb4klbQyfI/fWc+TeeobcV8+Re+sZxd7GKFPJDU9QSm0pazPCFxe5t54h99Vz5N56jtxbz5D7WrLJv4/nyL31HLm3niH31XPk3nqGN+6rDEsRQgghhBBCCCGET5PkhhBCCCGEEEIIIXyaJDeu3zRvB1CKyb31DLmvniP31nPk3nqG3NeSTf59PEfurefIvfUMua+eI/fWM4r9vsqcG0IIIYQQQgghhPBp0nNDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpkty4Dkqpnkqp/UqpeKXUy96OpzRQSlVXSv2glNqrlNqjlHrW2zGVNkops1Jqu1JqhbdjKU2UUmFKqYVKqT+UUvuUUu29HVNpoJR63vW7YLdSap5SyurtmHyVUmqmUipRKbX7vH0VlVL/VUrFuR4reDNG8RdpY3iGtDM8S9oYniFtDM+QNob7lJQ2hiQ3rpFSygx8DPQCGgODlFKNvRtVqeAA/qW1bgy0A56S++p2zwL7vB1EKTQJWK21bgjEIPf4uimlqgEjgNZa66aAGbjwJTPlAAAgAElEQVTPu1H5tM+BnoX2vQys01rXA9a5XgsvkzaGR0k7w7OkjeEZ0sZwM2ljuN3nlIA2hiQ3rl1bIF5rfVBrbQO+Avp5OSafp7U+qbXe5nqeQd4v72rejar0UEpFAXcA070dS2milAoFOgEzALTWNq11qnejKjUsQKBSygIEASe8HI/P0lpvAJIL7e4HfOF6/gXQv1iDEhcjbQwPkXaG50gbwzOkjeFR0sZwk5LSxpDkxrWrBhw773UC8sfRrZRS0UBLYLN3IylVPgBeAgxvB1LK1ALOALNc3XGnK6WCvR2Ur9NaHwfeA44CJ4E0rfVa70ZV6tygtT7pen4KuMGbwYgC0sYoBtLOcDtpY3iGtDE8QNoYxaLY2xiS3BAlklKqHLAIeE5rne7teEoDpdSdQKLWequ3YymFLMCNwCda65ZAJtK9/7q5xmb2I69hFwkEK6Ue8G5UpZfOWxte1ocXZYK0M9xL2hgeJW0MD5A2RvEqrjaGJDeu3XGg+nmvo1z7xHVSSvmR1+D4P631Ym/HU4rcDPRVSh0mr4vzbUqpOd4NqdRIABK01vnf/i0kryEirk834JDW+ozW2g4sBjp4OabS5rRSqiqA6zHRy/GIPNLG8CBpZ3iEtDE8R9oYniFtDM8r9jaGJDeu3e9APaVULaWUP3kT0Czzckw+TymlyBtTuE9r/b634ylNtNYjtdZRWuto8n5ev9daS4baDbTWp4BjSqkGrl1dgb1eDKm0OAq0U0oFuX43dEUmUXO3ZcBDrucPAUu9GIv4i7QxPETaGZ4hbQzPkTaGx0gbw/OKvY1h8fQFSiuttUMp9TSwhrzZdWdqrfd4OazS4GZgCLBLKbXDtW+U1nqVF2MS4ko8A/yf64PIQWCol+PxeVrrzUqphcA28lY42A5M825UvkspNQ/oDIQrpRKA0cB4YIFS6lHgCHCP9yIU+aSN4VHSzhC+SNoYbiZtDPcqKW0MlTf8RQghhBBCCCGEEMI3ybAUIYQQQgghhBBC+DRJbgghhBBCCCGEEMKnSXJDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpktwQQgghhBBCCCGET5PkhhCi2CmlwpRS/3A9j3QtxSWEEEIIcV2kjSFE2SVLwQohip1SKhpYobVu6uVQhBBCCFGKSBtDiLLL4u0AhBBl0nigjlJqBxAHNNJaN1VKPQz0B4KBesB7gD8wBMgFemutk5VSdYCPgcpAFvC41vqP4n8bQgghhChhpI0hRBklw1KEEN7wMnBAa90CeLFQWVNgINAGGAdkaa1bAr8CD7qOmQY8o7VuBbwATCmWqIUQQghR0kkbQ4gySnpuCCFKmh+01hlAhlIqDVju2r8LaK6UKgd0AL5WSuWfE1D8YQohhBDCx0gbQ4hSTJIbQoiSJve858Z5rw3yfmeZgFTXNzJCCCGEEFdK2hhClGIyLEUI4Q0ZQMi1nKi1TgcOKaXuBlB5YtwZnBBCCCF8lrQxhCijJLkhhCh2WuuzwM9Kqd3Au9dQxWDgUaXU/4A9QD93xieEEEII3yRtDCHKLlkKVgghhBBCCCGEED5Nem4IIYQQQgghhBDCp0lyQwghhBBCCCGEED5NkhtCCCGEEEIIIYTwaZLcEEIIIYQQQgghhE+T5IYQQgghhBBCCCF8miQ3hBBCCCGEEEII4dMkuSGEEEIIIYQQQgifJskNIYQQQgghhBBC+DRJbgghhBBCCCGEEMKnSXJDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpFm8HUJzCw8N1dHS0t8MQQgghSrWtW7cmaa0rezuO4iRtDCGEEMLzLtXGKFPJjejoaLZs2eLtMIQQQohSTSl1xNsxFDdpYwghhBCed6k2hgxLEUIIIYQQQgghhE+T5IYQQgghhBBCCCF8miQ3hBBCCCGukVKqj1JqWlpamrdDEUIIIcq0MjXnhs+YMiXv8R//8G4cQgghhLgkrfVyYHnr1q0f93YsQojSx+l08u6775KRkcGYMWMwmeS76csxDIPU1FTOnj1LcnIyycnJpKamkpqaSlpaGunp6WRkZJCRkYHdbmfkyJE0bdrU22ELN/BqckMp1ROYBJiB6Vrr8YXKOwEfAM2B+7TWC88rcwK7XC+Paq37Fk/UHmYYnHz1VZ5MTubNKlVoHhvr7YiEEEIIIYQQxez48eMMHjyY9evXA5CZmcnEiRNRSnk5suL36quvsnDhQnJycsjNzcVms2G323E4HDgcDpxOJ4ZhoLW+6rrnzZvHU089xaRJkyR55OO8ltxQSpmBj4HuQALwu1JqmdZ673mHHQUeBl4ooopsrXULjwdazE6vX8/+5GQ2Ak8+8gg/9e+PySIdbIQQQgghhCgrVq1axUMPPUR2djZffPEF27dv54MPPqBSpUq8+uqr3g6vWI0bN46xY8eilMJsNmM2m7FYLPj5+REcHIy/vz9Wq7VgCwoKIigoiODgYMqVK0e5cuUoX748oaGhhIaGEhYWRlhYGBUrVuTgwYMMGzaMyZMns2jRItasWUOzZs28/ZbFNfLmp+a2QLzW+iCAUuoroB9QkNzQWh92lRneCNAbvvrwQ54D3uzShdd++IFZjz3Go59/7u2whBBCCCGEEB5ms9kYNWoUEyZMICYmhvnz59OgQQMeeOABUlJSeO2116hYsSJPPfWUt0MtFkuXLuWVV17BarVy4MABIiMj3Vr/TTfdxF133cWAAQNYtWoVMTEx0ovDDaZOncq6deuYPn065cuXL7brevNfrBpw7LzXCa59V8qqlNqilNqklOp/sYOUUsNcx205c+bMtcZabL7/9Vfq+Pnxyn//S8fy5Xlp9myS9u/3dlhCCCGEEEIIDzp48CC33HILEyZM4KmnnmLTpk00aNAAAJPJxPTp0+nXrx9PP/00c+fO9XK0nrdv3z5iY2MxmUx8//33bktspKSkMGfOHO6++24iIiJ4/PHH+fjjj1mxYgXBwcFMnjyZqKgodu3adfnKRJFGjhzJokWLcDgcxXpdX05H1dRatwbuBz5QStUp6iCt9TStdWutdevKlSsXb4RXyZGTw4+nT3NbnToos5kpn39OutaMGTjQ26EJIYQQQgghPGT+/Pm0bNmSuLg4Fi9ezOTJk7FarRccY7FY+Oqrr+jcuTMPPfQQq1at8lK0npeamspNN92Ew+Fg+vTptG/f/rrqO3LkCB9++CFdu3alcuXKDBkyhI0bN9KhQwcWLFhA/fr1WbNmDXv37qV3796cPHmSmJgYnnnmGQyjzAwicIupU6eSkpJCnz59qFixYrFe25vJjeNA9fNeR7n2XRGt9XHX40HgR6ClO4Pzhu3z55MO3Hb77QA0HTCAr/v35/W9e+Hnn70bnBBCCCGEEMKtsrKyGDZsGPfddx9NmjRhx44dDBgw4KLHW61Wli5dSkxMDHfddRc//fRTMUZbPAzDoGXLlmRkZPDcc88xdOjQq65Da8327dsZPXo0LVq0IDo6mmeffZaTJ0/y4osv8uuvv3L8+HEWL15MXFwcDz/8MFOmTKFRo0bceOONzJ8/X3pxXKNXXnkFpRTTp08v9mt7M7nxO1BPKVVLKeUP3Acsu5ITlVIVlFIBrufhwM2cN1eHr/r+q68A6PL4X6vJ9f/ySypUr45j+HAcOTneCk0IIYQQQgjhRnv27KFt27ZMnz6dkSNHsn79emrWrHnZ88qXL8+3335LzZo1ufPOO9mxY0cxRFt8br/9dg4fPkzXrl2ZOHHiFZ9nt9v57rvveOaZZ4iOjubGG29kzJgxlCtXjnfffZc///yTvXv38vbbb9OuXbuCOTWioqKYNm0ae/fu5Y477mDs2LE8+eSTvPLKK/Ts2VN6cVyFWbNmkZSURI8ePQgPDy/266trWS7HbRdXqjd5S72agZla63FKqTeBLVrrZUqpNsA3QAUgBziltW6ilOoATAUM8hI0H2itZ1zueq1bt9Zbtmzx1Nu5buldu7LlwAFuO3z4gv2pc+bQecgQHuzbl38uXeqd4IQQQogrpJTa6ho6WmaU9DaGEKLk0FozY8YMRowYQUhICHPmzKF79+5XXc+xY8e4+eabyc3NZePGjdSrV88D0Rav559/ng8++IBatWoRHx9/2Uk909PTWb16NUuXLmXlypWkpaVhtVq5/fbb6devH3feeSdVqlS5qhi2bt3KqFGjWLt2LVFRUQwYMICZM2eSmZlJ1apVZUWVS4iIiCAxMZGEhAS3T/6a71JtDK8mN4pbiW542GxQoQI8+ih8+OEFRdow6FO1KusTE9n3229EtWnjpSCFEEKIy/P15IZSqgbwIZAM/Km1Hn+5c0p0G0MIUWKkp6fzxBNP8NVXX9GtWze+/PJLIiIirrm+/fv307FjR4KCgti4cSNRUVFujLZ4zZgxg8cee4yQkBASEhIuusrG8ePHWbZsGUuXLuX777/HbrcTHh7OnXfeSf/+/enevTtBQUHXHc8PP/zAyJEj2bx5M/Xr1yc4OJjt27ejlJIVVYowb9487r//frp27cp3333nsetcqo0h/xolxM65cxmTlcXZ1n//d1ImEx99/TVO4LlLjMETQgghyjql1EylVKJSaneh/T2VUvuVUvFKqZcvU00zYKHW+hFKwZxeQoiSYcuWLbRs2ZKvv/6acePGsWbNmutKbAA0aNCA1atXk5yczO23305SUpKboi1ev/76K8OGDcNisbB58+a/JTYOHz7MuHHjaNu2LVFRUfzjH/8gPj6eESNGsGHDBk6dOsWsWbPo16+fWxIbAF26dOHXX3/lm2++wWKxsH37durWrUtAQIDMxVGEF154AYCZM2d6LQZJbpQQS2bPZjRg6tixyPJanTrxSrduLDp+nG/ffLN4gxNCCCF8x+dAz/N3KKXMwMdAL6AxMEgp1Vgp1UwptaLQVgXYBDyqlPoeWF3M8QshShmtNRMnTqRDhw7Y7XbWr1/PqFGj3Pat/4033sjy5cs5dOgQvXv3JiMjwy31FpcTJ05w2223YRgGixYtolGjRgVlTqeTCRMm0KhRo4KJKseNG8fu3buJi4vjvffeo2PHjpjNZo/EppSif//+7Ny5k88//xybzUZOTg6VKlWSuTjO880333DixAk6depEjRo1vBaHDEspITqHhZFhs7E1K+uix+SmpxNTuTL1LRaWJSVBYGAxRiiEEEJcGW8PS1FKRQMrtNZNXa/bA69rrXu4Xo8E0Fq/fZHzXwB+01pvUEot1FrHXuS4YcAwgBo1arQ6cuSIu9+KEMLHJSUlMXToUFasWEH//v2ZMWOGx5bHXL58OQMGDKBz586sXLmSgIAAj1zHnWw2G9WrVycxMZG33nqLkSNHFpTt3buXRx55hM2bN9O3b18+/PDDK5pw1ZNyc3OZOnUqY8eO5cyZM5jNZpxOZ5mfi6NmzZocPXqU+Ph46tSp49FrybCUEi4rKYlf09K4rUmTSx4XUL48386cyaKsLHi7yPaYEEIIIf6uGnDsvNcJrn0XsxoYoZT6FDh8sYO01tO01q211q0rV67slkCFEKXHhg0baNGiBWvXruWjjz5i8eLF15TY+Oabb5g2bdplj+vTpw+zZs1i3bp13H///TgcjmsJu1i1b9+exMRE7rvvvoLEht1uZ9y4cbRs2ZL4+Hjmzp3LkiVLvJ7YAAgICGDEiBEcOHCAN954g0DXl81luRfHqlWrOHr0KO3atfN4YuNyJLlRAvwycyY24LY+fS57bK3Bg/EbPJj08eM5XgrXtRZCCCG8TWu9W2sdq7UerrV+4VLHKqX6KKWmpaWlFVd4QogSzul08uabb9KlSxeCgoLYtGkTTz/9NEqpq6rHMAwGDBjAwIEDeeKJJ3jjjTcue86QIUOYNGkSixcv5oknnqAk99IfPHgw27ZtIyYmhnnz5gGwY8cO2rZtyyuvvEL//v3Zu3cvgwYNuup752khISG89tprHDp0iH/+85/4+fmhtWby5MlERkaWqbk4nnnmGcC7c23kk+RGCXBk/XpCgFsee+yKjjfeeYf2TicP9++PLmOZQSGEEOIaHAeqn/c6yrXvummtl2uth4WGhrqjOiGEjztx4gTdunVj9OjRDB48mK1bt9Ky5dXPS7x//36qVq3KkiVLiIiIIDAwkNdff50pU6Zc9twRI0YwevRoZs6cyYsvvlgiExzvvPMOc+fOpXLlymzatInc3Fxee+012rRpw8mTJ1m0aBHz58+/6mVci1t4eDgTJkwgPj6ehx56CIDTp08TExNDWUh6r1u3joMHD9KqVasL5krx1s+czLlRErRvj0MpLL/8csWnTLn3Xp5asIB5zzzDfYWWjhVCeI/hcGDk5GBxODCysjgSH09Oejq5586Rm5lJblYWNwQG0qBKFWyZmSzYsIHcnBxsOTnYcnOx5ebS6oYbuC0qiuS0NMZt3Ijd4cDhdOJwOHAYBndERnJXtWocSkvjxe3bcRoGDsPA6doerlqVQZUrsyU1lWfj43FqjVNrDNfjC+HhPFC+PN+mpfF8YiIGeX+E8h/HhIUxODiY2efOMSo1FQ0Fm6E1U0JCuMvfnwlZWbyVnV2wP/+vyTyrld4WCyNzc/nIbi+4N/nla/39udlsZpjNxpdO5wVlAFstFpqYTMTa7Swr4m/UUZOJCJOJ251Ofiii3G6xANDB4eC3QmVmINc16Vhzp5O9hcoDgExXeQOnk4OFykOAZFf90Q7H3z4dhwMn/fwAiLTbSQLO/66pOhDvGgN9Q24u6eeVKaC+UuywWkEpKmdlkXXe+Qq40WRifXBwXnl6OnYo+DZLAZ0sFpaEhIBSVElOLtivXMf19PdnVoUKJGtN88REvqlWjTZHj/7tHl6vEjjnhgX4E+hKXlLjd+B+rfUeN1yrD9Cnbt26j8fFxV1vdUIUC4fDgdlsLnHfhvsqp9PJpk2bWLp0KbNmzSIrK4spU6YUfNi9Wh999BHPPfcchmFw1113sWDBAvbt20fLli2x2+3Mnz+fe+6555J1aK0ZMWIEkydP/ttcFt62atUq7rjjDgICAoiPj+fEiRM88sgj7NmzhwcffJCJEyd6bF4ST9u3bx+9e/fm8OHDDB06tET0ZvCk+vXrExcXx//+9z+aN29esH/ixIksWLCAdevWuW31mnyXamNY3HolcfXS0+H337Fc5S+cJ778klkrVvD8xx/T64UXCPXirLRCFBdHTg7pCQnkJCcTGRQEGRls/v13EhISyExNJTMjg6xz5whRimFNmkBWFq/99BOHU1PJttnIttnIdTqp7ufHzFq1wG6n6x9/cNJux6E1DsPAATQ0m1kbFgZOJ1HJyaS7Pvg7yfsQ3gTYajaD1lgMA2ehOBsC+1zPaxfxPloBW4AkYEgR5Z2A24CjwPtFlCfGxXEXeZ/UFhVRHp6czCBgP1BUynRbQgIPKMUxrYnjwg/PAMdTUiA9nWSnkyRX7zB1XnlmdjY4ndjsduxaF5SZlMp7bjaDvz9WhwOra7zv+ef7BwVBQADh584Rlp19wfUVYA0PBz8/aqakUPW88nz+VauCxUK9pCTis7NdJ6uC44yoKEwmE43PnCExv9xVt59SEB0NQLNTp8jJyQH++oahnMkE1fO+4G908iQOm+2Ca1c0mSAqCrSm3smTmFzJm/wUSzWzGapWBSD65Eks5yVvtNZUs1igUiUAqiQmYjaMgnO11lSyWCAkJC+WnByUK2mUf4zVZAJXcgWlwJW0yr9GrmGAzYbhdJJ53v78+pNsNkhJweb6t808e5bSRik1D+gMhCulEoDRWusZSqmngTXk5bhmuiOxAXk9N4DlrVu3ftwd9QnhaceOHePWW2+lWrVqLFiwgKqu31ni6mRmZvLf//6XpUuXsmLFCpKSkrBYLHTr1o2JEyfSsGHDq67TZrPRs2dPfvjhB/z8/Jg9ezaDBw8GoEmTJqxfv56OHTsyaNAgKlWqRNeuXS9al1KKSZMmkZKSwqhRo6hYsSJPPPHENb9fd9m/fz/9+vVDKcXKlSv58MMPmTBhApGRkaxcuZLevXsXSxxHjhzhvffe44cffqBv376MHTvWLavXNGrUiFmzZtGlSxe++OILXnrppWv6WfAFGzduJC4ujpiYmAsSGwCLFy8mJyfH7YmNy5GeG1727Rtv8NrrrzP/yy+p/cADV3XultmzafvQQzwTE8OkHTs8FKEQF+FwQHIyJ/bsIX73blJPnSI9KYn01FTOpafzQosWmLKymLplCz8mJJCdm0uW3U62w4HT6eSXWrUgN5e7ExL4OTcXm9Z5CQbAD0ixWMAwqG0YHCp0aQuQ3x+gIpBSqNwK5H+kLQdkFioPgYJvzEOg4NtxRd5YvTpKsddqBbOZqMxMslzXNCuFGWgTEMA3kZFgsdD6yBEMpbCYTPgphZ/ZTMcKFRjToAFYLNy1bRtmsxk/sxk/iyWvPCqKB5s3x6YUY377DT8/P/z9/fG3WvH396dVnTq0b9SIHGDl7t0EBAbiFxCAn9WKv9VKdI0aRFWrhg04lJiIf1AQfoGB+AcF4R8cTFBYGP7lyv31IViIYubtnhveUBLbGEIUlpSURMeOHTl+/DhOp5OwsDAWLVpEu3btvB2aTzh16hTLly9n2bJlfPfdd+Tk5BAaGsodd9xB37596dmzJ9c6RG3btm107dqV1NRUoqOj+fnnn4mMjPzbcatWreLOO+/EbDbz66+/0rr1pX/V2u12Bg4cyMqVK5k3bx733nvvNcXnDunp6VSvXp309HRefPFFlixZQlxcHMOGDeOdd9655nt3pTZv3syECRNYt24dya7ejfnKlSvHmDFjeO655677OoZhYLFYMJlMNGvWjE2bNvnEyjVXq3Hjxuzbt4/ff//9gp/DxMREIiIiGD16NKNHj3b7dS/VxpDkhpf9q3VrPt66lZSzZwm8hu5XTzdrxqHdu1n222+Y27TxQITCpxkGWadOcWTbNk7Hx5N4+DBnT58mOSmJh+rWJQpYtHs3s+PiOJebS6bdTrbTSbbTydKKFWmkNU+mpvKlzYaDvJ4L+b0X/gTqAe2BTUVcOgUIA2KAnUWUOwGT2czNTifbyPsq1ULeN+shJhMHo6LA35+HExPZZbMRYDYTYLEQYDZzQ1AQX3ToAFYr7//5J8dzcwkKDCQoOJig4GAiwsO5t0sXCA5m24kTGIGBhFSuTMgNN1C+WjWCwsMxyQd/ITymLCU3ZFiK8BXp6el07dqV3bt3s3btWsLCwujfvz/Hjh3j448/5vHHpfNRYVpr9u7dy9KlS1m2bBmbN28GIDo6mr59+9KvXz86duyIn2s44rV68803ef3119Fa8+ijjzJt2rRL9iKYPXs2Dz30EAEBAezatYt69epdsv7s7Gx69OjBpk2bWLZsGT179ryueK+FYRjUr1+fAwcO0Lx5c3bt2kXNmjWZPn36JXugXO81Fy5cyKeffsqmTZvIdvXm9PPzo0WLFjz66KMMHjyYp556ijlz5mAYBpUqVWLSpEkFPWauVaVKlTh37hw2m41//vOfTJgwwR1vqcT47bffuOmmm2jSpAm7d+++oGz69Ok8/vjj7Nixg5iYGLdf+5JtDK11mdlatWqlS5qWgYG6c1jYNZ+fe/q0NqpU0bptW60dDjdGJrzFnp2tj23apFPWrNF6yRJ9+O239ds9eugX27TRj9Wvr2OrVdO3V6yoVzVsqHWzZnpOlSo60mTSFZXS5UAHgDaD/hS0Bv0kF0yZULB94SofXGi/cp2/zmLROjBQP+/vrysppSNNJl3bYtGN/f11q8BAfaRtW6179tRftG6th9arp0fExOhRHTrot3v00B/fc4/OnTVL66VLdfzcuXr7vHn68E8/6bRjx7TTbvf2LRZCeBiwRZeAv/vFuZXENoYQ+bKzs3WXLl20xWLRK1asKNh/9uxZ3aNHDw3oJ554Qufk5HgxypLBbrfrH374QT///PO6Tp06Be2jNm3a6DFjxuidO3dqwzDccq2MjAzdqlUrDWir1aqXL19+xedO+P/snXd8FMX7xz97/dJJIyEhgUDokBAIvdfQpEoEpEkRkS6gCCJN+IIg0ouIKKAIoQgCShGR3gQEkQ6RhBBCer1c+fz+SLIS0pNL0d++X695JTczO/Ps3t7dzLNPWbaMAGhpacmwsLA8+8fExNDX15darZZnzpwpitiFolOnTuJ5CoLACRMmMD4+3uzzJCcnc9myZfT19aVCoRDfPysrKwYEBPDgwYPZHhcZGcnu3btTEAQCYMWKFXnkyJFCy9G0aVMC4MiRIwmAhw8fLvRYZZF69eoRAE+fPp2lrVu3bqxcubLZPievktsao9QXAyVZytrC48XduxQAzmvXLlP9BB8fVlcq2cDCgqu8vcnevRkWGMhp/v5c0rUrt4wYwZ/mz+f1XbsY/+gR+c03fAzw8LhxpXMiEiIZiomzGzbw7qpV5Jo1DH/vPY6tU4dveHiws4MDm1hZsbZazcV2dqSzM49otaJC4mUlw8h05cP6HJQTkwBSELhWEKgGaAXQPl0JUUWh4B4PD7JpU/7k58d+bm4cWa0ap/n7c2GnTlw/cCDDNmwgjx1j5C+/MPjsWSZHR5f25ZOQkPiPICk3JCTKDnq9nj179iQAbtu2LUu7wWDgjBkzCIBNmzbl06dPS0HK0iUuLo67du3im2++yXLlyhEA1Wo1u3btyvXr1zM0NNTsc544cYKWlpYEwNq1azMyMrLAY2S8b/b29oyNjc2zf3h4OL29vWlnZ8fr168XRuxCMW7cOHH96u3tzVOnTpl1/LCwME6dOpWVK1cWlRMA6OzszMGDBxfoXIODg9miRQtxjBo1avDSpUsFlum9994jAK5fv5516tShs7Mznz17VuBxyiJXr14lAFarVi1LW1xcHFUqFSdPnlxs80vKjTK68Ng9bVqaxmvdOrEuMSKCwksb2L7pG9x9OWxwh6S3+6a/1qfPN0UAACAASURBVAC0BegsCKwkl3NLhQpkkyY86+/PwIoVOc3fn5uGDuXFr76SNrPZoE9O5uNTp3hq9WpeWriQXL6cxunTOdzbmz1dXNjKxoY+Gg29FAqO0GhIW1uGqVRZFBMA2Cr9vbmeTZsA8A1BILVaXrGyoku6QsJHo2FLGxt2d3bmvjZtyAkTGDplCte8/jq/nziRJ5Yt4639+xn96JFkASEhIVFm+f+k3ADQA8DGqlWrmuvySUiYDaPRyKFDhxIAV61alWvfXbt20dLSkq6urqXyZL+kCQ0N5dq1axkQEECVSkUAdHBw4NChQ7l79+5isSrIYPLkyeKacMqUKUUaK8MywM3NjTqdLs/+jx8/ppubG11cXHj//v0izZ0fpkyZIp7rhAkTmJSUZJZxr1+/zkGDBtHJyemf9bUg0MvLi9OmTcuXNUtu3LhxQ7ROAMBGjRoV6HqdOnWKAPjGG2/wxo0bVKvV7NKlS7FZM5QkGdZGx48fz9K2c+dOAuDJkyeLbX5JucGyqdz4tVcv9pPLqUtIEOvmtm1LAJzVogVJ0hgfT96/z+gff+T3EydyVb9+/KhlS46tXZtveHjwYP36ZNOm3OjsnEm5oQWoALgofYM9KwflyDKAtLDgFzY2rKVSsX25chzu7c2FnTpx34wZjP/jD9JoLK1LVCB08fF8fOoUz37xBffNmMED775LLlhATp7MCTVqsKeLC9vY2bG+VsuqCgW7qtWknR2p1VKbzbWpnH7tmE2bHGBbmYy0s6O+fPksiokhXl7c0aULuXAhdevX8+CcObz63XeMuH1bUkpISEj85/n/pNzIKGVtjSEhYTKZOGnSJALg3Llz83XMjRs3WKVKFSqVSm7YsKGYJSwd7t27x7feekt0WfD29ubUqVP522+/UV/Ma7TIyEjWqFFDdCcxlwVDr169xCfpxnys22/dukUHBwdWrlyZW7Zs4Q8//MCTJ0/y+vXrfPz4MWNiYvI1Tm5ERkaya9eu4tp5+/btRRrPaDTywIED7Ny5M62srMRxFQoF69evz+XLlzM5OblIc2THyZMn6eXlJc7XsWNHhoeH50teQRBE64bVq1cTAFesWGF2GUuSmzdvEgC9vLyybR84cCAdHR1pKMZwCbmtMaSAoqVJrVqApydw+LBYVV+txrXUVMQ+eQIbd/cCDTezeXMsPHsWv37+OVpPnPhPQ3pQyftnz+LPkyfx1/XrePjkCZ5ERWGprS38k5PxbnQ01hmNePVuOACgO4B3BAHfkbCTy+GkVsPdxgaVXF3x8eDBsKtRAzcfP8bDp09h1OvTisEAk8GAAY0bA0Yjfrl5E/eePYPRYBCLHMD4pk0BoxHfXbuGO8+fw2gywZCeTUNpNOKTatWAmBgMvXIFV+PjkWgwINlkQgoJWwCPlErAYICtySRmv8jg5YwYGgC6l9rkAKoKAm7b2ABaLRpGRcEgk8FWpUI5CwvYW1ujSeXKGN2lC+DqinPR0ahQpw5cfX3TslBISEhISOTI/6eAohmUuTWGxP97FixYgI8++ggTJ07E8uXLIQgCfvzxR3z++ec4f/48GjdujOPHj2c5Ljo6GgMHDsRPP/2EUaNGYdWqVf+JTA9//fUXPvnkE3z33XdQqVQYPXo0xowZgxo1akAQXk06bn7279+P/v37Q6fToVGjRjhx4oRZ02S2bNkSp0+fhr+/Py5evJhn/0uXLqFTp06IiYnJtl0QBNja2sLOzk78m1Feff1q3dWrVzFmzBi8ePECAPD999+jf//+hT63H3/8EQMHDkR8fDwAwMLCAk2aNMHYsWPRu3dvs6RwzYu9e/di7NixePbsGWQyGfr27YvNmzfDKpd9gaOjIxITE5GcnAySeO2113DkyBFcunQpS+rUfwtNmjTBhQsXcOjQIXTp0iVTW2pqKpydndG3b198+eWXxSaDFFC0DD5Vib9/n6EAuWTJP5XR0TQCPOnmVqgxEyMiWEmhYE2VirpCmtJFP3rEE8uXc1W/fhxfrx4jAwLIBg041tKSNunWIHiphKZbNtTPwTIkw/KhWh7tFbNpk73U7op/Al1qAFoD9JbLyYoVyerVOaBcObaxs2NPFxcOrVKFk+rX59oePcgNG8h9+3hj61Y+PnWq0NdFQkJCQiL/IJ+WG0jL5pxjyc8YpV0guaUUGwkJCTx8+HCRnyD/f2TNmjUEwDfffJM7duxgy5YtqVar/7FAlcsJgLNnz872+JfjcDRp0qRYYk6UFNeuXWO/fv0oCAItLS05derUIrssFASj0chhw4aJbhPz588vtnnq1KlDAAwICMjXMYmJibx//z6vXLnC48ePc/fu3fzyyy+5bNkyzp49mxMmTOCQIUP42muvsVWrVvTx8aGnpydtbW2zXde/XDIsY/JrNZQdycnJYiBSQRDYu3dvXrx4sdDjmYMNGzaI569QKPjOO+/kaPHTrFkzAmBUVBRJ8vnz53RxcWGtWrWYmJhYkmKbhbt37xIAPT09s23/+eefCYD79+8vVjlyW2NIlhulxHfjx2Pg6tW49u238BkwIK3y/feBJUuAhQuBGTMKNe6Ps2fjx/nzsXTuXFjNnm1Gif/BZDDgwYkT+OPnn9HXzg54+hTfPXiAi+HhkMnlkMtkkCsUEGQyLGzfHpDL8cOdO/grMhJyhQJyuRxyhQIqpRLvtGkDyOU4fucOQmJjIVcqxT4OLi5o37UrUKECYG8PlIBWVkJCQkKi6OTXckMQhEdIWwgLADyQlkVaQFom6b9JVi5WQc1IWVpj/FeYNWsWPvnkEzRr1gybNm1CzZo1S1ukfwXbt2/Hm2++CTs7OyQkJMBgMAAA7Ozs0LFjR3zwwQfw8vJChQoVkJKSgnPnzqFx48bZjhUUFIRhw4bB2toau3fvRrNmzUryVIrEpUuXsGDBAuzfvx82NjYYP348Jk2aBEdHxxKTISQkBC1atEBwcDDKlSuHY8eOwc/Pr9jmMxgMqFq1KoKDgzF48GB88803xTaX0WhEfHw8YmJiEBsbi5iYGLHMmzcPDx8+RN++fREUFFSo8Xfu3Ilhw4YhOTkZ7u7uOHz4MOrUqWPmsygcJpMJCxcuxMKFC5GcnAyNRoNp06Zhzpw5maxIpk+fjk8//RSbN2/G8OHDAQBHjx5Fp06d8M4772Dt2rWldQqFIsM6aN++fejZs2eW9rFjx+Kbb75BREQEtFptsckhWW6UQcuNkdWr0xag4aXAP3WUSjYHyKL6i/XqRVpYkI8fF1FKCQkJCQmJgoMCxtwA8AWAri+97gJgQ0HGKO1SltYY/xVq1qzJKlWq0N7eniqVivPmzctXwMT/j+j1eq5ZsyZTbACkB8gcPHgwb968meWYI0eOEACtra1zfYp88+ZNVq1alUqlkuvXry/zARFPnTolpre1t7fnvHnzGF0KQfS3bt0qWi+0b9++xO7dxMREMcimOTNW6HQ63rhxg0FBQVy0aBHHjBnD7t2709/fn15eXnRwcKBGo6FMJiMA1q1bt1DzxMfHs1WrVqK1xtSpU812DuZGr9dzwoQJVCqV4mfp5cC9p0+fJgAGBgZmOm5aelKJffv2lbTIhebx48di4NrsMBqNdHV1Zd++fYtdltzWGKW6EAAQAOAOgPsAPsimvRWA3wEYAPR7pW0ogHvpZWh+5itLC48qCgV7uriIr8PTg7PUVquLPnhwMM+r1ZwumchKSEhISJQChVBu3MhPXVkuZWmN8V/g9u3bBMCVK1cyPDycgYGB4obpwoULpS1emSA5OZlLlixh7dq1xQ0l0k3lhw4dyocPH+Y5xvjx4wmAjRs3zrVfVFQUu3TpQgAcOXIkU1JSzHUaZsFkMvHYsWNs06YNgbQUoIsXL2ZcXFyJy2I0GsUAn3K5PM8sNcVBREQEbWxsCIALFy7MsZ9Op+Mff/zBHTt28JNPPuHo0aPZrVs3NmzYkJUrV6a9vX0mhUVORS6X08LCgs7OzqxWrRq7d+9eqOCeX3/9teg+VblyZd69e7col6HESExM5KBBg8Tr5OTkxF27dolBRb29vTP11+l09PPzo729PUNCQkpJ6oLRNj3pxY4dO7JtP3/+PAFw69atxS5LbmuMUnNLEQRBDuAugI4AQgBcAjCA5K2X+lQCYANgKoD9JIPS6+0BXAbQEGkfqisAGpCMzm3OsmIyGnzmDCq1aIHPe/fGxD17AAATfHyw6o8/sLJvX4wvpPnWyyzp1g3vHzqE/TNnoseCBUUeT0JCQkIif9BkgslohEmvh8lggDH9r1alglwQkJKUhPi4OJjSAy+bDAaYjEa4OjhAIZMhKioKERERaWMYjWJ77cqVoZDJEBIWhqfPn8OUMU96aVGnDmQA7v79N/5+9kxsp8kEmkzo2qABYDLh93v38Pj5c5iMRnTy94fNG2+Y/RoUNKCoIAg/AzgFYFt61SAArUh2NrtwxURZWWP8V1i8eDE++OAD/P3336hYsSIA4MCBA3jnnXcQFhaGiRMnYv78+bC0tCxlSUuWhIQEfPbZZ9i+fTvu3buXoQiEs7MzYmJiULFiRZw7dw5OTk75HrNWrVr466+/MHfuXMzOxaXZaDTi448/xieffILGjRtj9+7dcHNzK/I5FQWSOHz4MBYsWIBz586hQoUKmD59OkaNGmXWYJ35wWAwYMuWLZg5cyaeP38OFxcX/Pbbb/D29i5ROTIIDg5GjRo1kJKSgg0bNmD06NGZ2o8ePYqAgACYTKZsj5fL5dBoNLCysoKdnR0cHR3h6uoKd3d3eHl5oWrVqqhVqxYqVqxY5ICeUVFR6Nq1Ky5cuACZTIaZM2di3rx5RRqzNHjx4gWGDBmCn376CSSxbds2TJw4UQwq+jJ3795F/fr10aRJExw9erREgqIWlpCQEHh4eKB8+fIICwvLts+MGTOwdOlSPH/+HOXKlcOSJUvw66+/4ttvv4WdnZ1Z5cltjVGayo2mAOZkLFwEQZgBACQXZdN3C4AfX1JuDADQhuTb6a83APiV5He5zVlWFh5bRo7E8C+/xB+7d6Nunz4AAFe5HM9NJuiSk6HQaIo8hz4pCfXt7ZFgMODPp09h6exc5DElJCQkAAAk9Ckp0CclpZXkZBhSUqASBNhbWQEGA/66cwd6nQ6GlBQYUlNhSE2Fs7U1qrq4wJSaisPnz6fV6/Xi35rly8PP3R0pSUnY9NtvMBgMae0GAwwGA1p7eKClmxuiExLwv7NnYTQaYTAaxb+vV6qEduXLIyQ2Fu9fuQKDyQRjejEYjRjv4YFO9va4FRuLsbdvw2AywUTCmF4Wubqio4UFziUk4K3QULHeSMII4Bs7O7RVKHAwORlD4uPF+ozyi1yO5iYTviExNJvLdg2AD4A1AMZl0/4AgBeAxQA+yKY9HIAzgFkAPsmmPQmAFsBEACtfaZMjzQQSAN4C8FX6/7fs7VEzMjLbt7koFEK5YQ/gY6RZbBLAbwDmkYwyu3BmRhCEHgB6VK1addS9e/dKW5z/DE2bNoVer8er67bY2FjMmDED69atQ+XKlbFhwwZ07NixlKQsGaKiovDpp5/i+++/x6NHj8R6T09PBAYGok+fPnjttdegVqtx+vRpeHh45DpeSkoKmjVrBg8PD+zZswcxMTFwc3ODTqfDhQsX4O/vn+vxe/bswdChQ2FpaYmgoCC0aNHCLOdZEEwmE3744QcsWLAAv//+Ozw9PfHBBx9g2LBh0JhhHZ1foqKisHz5cuzatQv37t0TFQW9e/dGUFBQqW9Yb968CT8/PxgMBuzatQt9+/YFkJY5pl69ejAajejbty88PT1RuXJleHt7o2bNmnBzcysx2detW4dJkyYhNTUV1atXx88//wxPT88Smbu4+PPPP1GvXj0oFAr4+Pjg0qVLiIyMhL29faZ+mzdvxogRI7B48WJMnz69lKTNm4CAAPz888/4+uuvMWTIkGz71KhRAxUrVsTRo0cBAB4eHggNDYVOp4NCoTCrPLmtMcw7U8FwA/DkpdchALKPZpS/Y7NVHQuCMBrAaAB5ftmXFJ1jYvC1tTVqpwdiCT59Gs9MJvhptWZRbACA0sIC65YuRavx47GgZ08sOnfOLONKSEiYF5PBAF1cHFLj46FPSoKjlRWg0+FJcDBePH8OXWIiUpOToU9JgcxoRNuaNQG9HieuXkVweDj0Oh1SdTqkpqbCRqHACF9fIDUV6y5cwL0XL5Cq10Ov1yPVYEBFjQbzatYEUlMx7upV3ElIgN5ohN5kgt5kgp9Gg/WuroBej7bBwbiv18NAQp9eAuRyfC8IgMEANwARr5zLIPzz2L0BgORX2scAWJf+f/dsrsVUAH5IS9s8Ppv2uQBaCgIS5XKsMBigQNqmXSEIkAPwDQlBOxsbpJC4EB4OhUwGuSCktQsCkqKjAYUCQmoqAECtUEAuCJAJAuQyGdTlywPOzrCKj0ddvT4tOPJLxaFuXcDJCe7R0Rhw+3ZafUYQZbkcFfz8AAcH+L54gbl37kAuk0Eml0OW3u7asCFgZ4dWz55h1YMHkMvlae3pfRwbNQKsrNAjLAweT5780yaXQxAE2Pj7AxoNBj99imbPnmVpV9WvDyiVmPD0KV6Pjk6rl8kgk8kgUyiAOnUAmQxznj3DpMRECDIZKletWrAb1swIgrCV5GAAg0lOzPOAMgjJAwAONGzYcFRpy/JfISwsDOfPn8eCbCxPbW1tsXbtWgwYMAAjR45Ep06dMHToUHz22WdZNg7/dlJTUxEQEIATJ04ASEvNWbVqVQwcOBBTpkyBra0tQkND0bx5c5hMJhw9ejTPta7JZEK9evVw7949XL16FR4eHrh8+TL27NmDrl27okOHDggPD89VQdCnTx/UqFEDvXr1Qtu2bbFy5UqMGTOmRNKpGo1GBAUFYcGCBbh58yaqVKmCL7/8EoMHD4ZSqSz2+YG0jeuyZctw+PBhPHv2TKyvWLEiunfvjmnTpqFy5bIRC7lOnTr45Zdf0Lp1a/Tv3x/Hjx+Hj48PGjduDIPBgI0bN2LUqNL56nr+/Dk6d+6Ma9euQS6XY9GiRfjgg+xU+/8+ateujU8//RTvvfceHjx4ACAtleyIESMy9Rs+fDh++uknzJw5E+3atUPDhmUvg/rz589x5MgRODk55ajYuH37Nu7cuYPx49NWbzExMXjy5Alq1KhhdsVGXpSmcqNEILkRwEYgzXKjlMUBSLieP48hXbsCcjkAIHrZMtQEMHngQLNO1XLcOAxbsQJLz5/H0B9/RI3u2W0nJCT+H2IyQZ+YiITISOji4pASF4eU+HikxMWhhqsrNCQePX6MG3fvIiUpCSmJidAlJyMlORlv1a8PS5MJx/76Cz/dvYuU1FSk6HRISU2FTq/HNz4+0BoMWPPoEbaHhUFnNCLVZILOZEKqyYRHjo4QUlMxLj4eGwwG8Wk6AFgBiE//fzqAHa+I7Qrgafr/nwH48ZV2bwAjdu8GBAH7AJwjoRQEqNKLr0YDmEyASoX4xEQk6fVQyGTQKhSwkctRzs4OqFYNUCrhL5ejsl4PhVwOpUIBpUKBeuXLA35+gFKJmZcvI8VkglKphFKlgkKpRPUKFYB69QCFAluvXAHkcrFNoVajoosLUKUKZAoFLty5A6VaDcVLxd7BAXBygrVMhoiEBCg0GijUashVKig0GshVKkChgDuAlFze3qpIC+SUEzUB/JpLe10AO3Np9wGwOpf2euklt/Hr5tJeK73kRPX0khNV0ktOeKSXMkIDQRAqAHhLEIRvkJYpReTfYLkhYX5++OEHAECvXr1y7NOyZUtcv34d8+fPx+LFi3H48GGsXr0a/fr1K5FNdnHzxx9/oHXr1qJVxbvvvouJEydmcrWIjIxEp06dEBUVhRMnTqB69dy+GdIUG40aNcK9e/fQtGlT2Nvb4+DBg6hUqRIOHjyId955B+vWrUP79u1x5syZXMeqVasWLl68iEGDBmHs2LG4fPky1qxZU2xWEwaDAd9++y0WLlyIO3fuoGbNmti2bRsCAwNLZPN06NAhrF69GqdPn0Z8fNovtVwuR926dTFgwACMHz8eVlZWxS5HYWjRogX27t2LXr16oWPHjrC3t0d8fDymTp1aaoqNzz77DO+//z4MBgPq1q2LI0eOwMXFpVRkKS6mTJmCoKAgnEt/wHzkyJEsyg1BELBhwwacP38eAwYMwNWrV8vcfTRixAiQzFbZnMG+ffsAQMygsmLFCgDAoEGDil/AV5DcUkqYJydP4lCbNnh92TLYT5mSVunkBMTEADqd2dOdRvz1F75u0AAT/P2h+vVX4D/wgy/x34MmE5Kjo5EUGQkLEhYk4iMicP3GDSTFxiI5Ph7JCQlITkhA28qVUcnSEveePMHXly4hOSUlreh0SNbpMLNKFdRVKnE8LAzvP3yIZKMxrZhMSDaZcEypREO9HpsAZPeT/ifSNpYrAEzKpj0YaRvDRYKAT0hoBAFqQYBGJoNaJsP56tVhY2GBDZGRCIqKglqhgEouh1qphFqpxJdt2kCu1WLv33/j0osXUKtUUKvVUKnVsNBqMaZDB0CtxsW//0ZYQgKUGg3UFhZQabWwsLZGg7p1AZUKodHRSAWgsrBIK5aWUFlZQWtrKypOJSRKiwKkgp0A4B2keeSEIrNygyS9iklEs1MW1hj/FQICAvDgwQPcvXs3X4qKa9euYcSIEfj999/Rs2dPrFmzptRjQRSFJUuWYMaMGTCZTBg+fDi+/PLLLNchPj4eHTp0wPXr1/Hzzz+jdevWANIsG8LDwxEaGoqQkBCEhISI/x86dAjR0dEQBAEk8frrr6Nhw4bi0/I5c+Zg+/btuHv3Lj755BN8+OGHecpqMpkwZ84czJ8/H40aNcKePXuyXHuS0Ov1SEpKQnJyMpKSkgpcjh8/jkePHsHHxwezZs1Cnz59itVtIjU1FZs2bcJXX32F69evQ6/XAwC0Wi0aNWqEt99+G4GBgaXudlIQvvrqK7z11lsAgLZt2+KXX34pcRlCQkLQuXNn3Lp1C0qlEsuWLROf9v8XSUpKgpOTE5KSkuDu7o4nT55k2+/UqVNo06YNhg4dis2bN5ewlDkTFRUFJycn2NnZITIXF9bGjRuDJC5evAgAqFmzJm7fvo3Y2FjY2NiYXa4ixdwQBGEPgC8BHCaZfcSZwgmlQFpA0fZIW9BcAjCQ5J/Z9N2CzMoNe6QFEc1IFP070gKK5vqEpywsPNYPGoR3vv0Wd48cgXfHjnh07Bh+6dgRwxs1guzCheKZdONG4O23wa+/hpCDOZGERG7QZIIuPh6Jz59DkZICW5kM+thYnDp3DglRUUiIiUFifDwS4+PR2MUFTR0cEBUVhQ9//RVJKSlI1OmQlJqKJL0e79rbo79Gg9uxsWgZFoYkEkkvzbUZwHAA5wE0zUaW7wH0B3AMaemWtAA0ggCtTAatTIZNHh5o6eiIM6mp+CQkBFqlElqVClq1Glq1GpOaNIGXiwtuxsbiWHAwNBoNNBYWUFtYQGNhgfb+/rCxt8ezxESExsVBY2UFjbU1NDY2UNvYoJyLC+QWFkAJm9lJSPybKETMjXUk3ylOmYqbsrDG+C8QGxsLJycnTJo0CUuWLMn3cQaDAcuXL8fs2bOhUqmwZMkSjBo16l+1+UxNTUWHDh1w6tQpqFQq7Ny5U3wSCgA6nQ5Pnz7Fw4cPMWnSJNy6dQvdunWDWq0WFRlhYWEwGo2ZxlWpVFAqlUhMTISlpSXefvttREREYOvWrdizZw+cnJzQqVMnJCcno3Xr1jh37pwY78TPz+9VMbNl7969GDJkCJRKJSpUqJBFOfGqTPlBpVLBwsICFhYW8PLywrRp09CjR49is8x5/vw5li1bhj179uDBgwdisFYHBwe0a9cOkydPRtOm2a1M/h28+eab2L59OwDAysoKDx48gHMJxuRbsGAB5syZA6PRiIYNG+Lw4cNwdHQssflLi+PHj6NDhw4A0j7DKpUq236zZ8/G/PnzsWPHDgQGBpakiDnSr18/7N69GytXrsxRCRUaGgp3d3dRIZqamgqNRgN3d3f8/fffxSJXUZUbHZC212gCYBeAr0jeMZNgXQF8jjS36c0kPxEEYR7S0rvsFwTBH8BeAOWQZoX8jGTt9GPfApChUv6E5FdZZ8hMWVh4BHp44OzTp/g7NRWCTIZBlSrh2+BgBE2Zgr7LlhXPpCYTjtWpg+n37uH7Q4fg/R8PvCUBwGgE4uMRevcuYsLCEBcejriICMRFRqK8UolWbm5AQgLmHD6M6Ph4JCQlISElBQkpKWhvbY0p5crBFB8Pj/v3kWAyIQFpARMB4D0AS5HmPpGdLnY2gLkyGcK1WvgkJ8NCJoOFXA5LhQIWSiXGVq6M16tUQbhMhrl//gkLjQYWFhawtLSEhaUl2vv4oFbVqoglcfHvv6G1sfmn2NmhvLs7LBwcQI0GgkolWSNJSJRBCqrc+DcjBRQ1L9999x0GDhyIM2fOoFmzZgU+/v79+xg9ejROnDiB1q1bY+PGjahWrVoxSGperl69inbt2iEmJgZVq1bFmTNnoNVqsXLlSuzevRshISGIiHg10lHaJtXd3R3u7u5wc3PL9v958+Zh9erVcHZ2xqNHj2BhYQG9Xg9/f388f/4cf/31F/R6PRo2bIjg4GDY29sjKioKtra2ePbsWb5dTW7duoW5c+fCaDSKSolXi1arzbHt1X4l4W5y7do1LF26FEePHsXz588BpLkKeHh4oHfv3pg8eXKZidlXFObPn4/Zs2fDyckJb775JpYvXw4HBwc8fvy42N0gHj16hE6dOuH+/ftQq9VYs2ZNFveM/BAfH48bN25Ap9NBp9MhJSWlUP+/WieXy/HZZ58Va2BcFxcXhIeHo1WrVjh58mS2fQwGA1q1aoVbt27h2rVrqFSpUrHJkx9iY2Nhb28Pa2trxMTE5Nhv7dq1ePfdd3Hr1i3UrFkT69atw9ixjaGXSQAAIABJREFUYzFhwgTRPcXc5LrGyClH7KsFgC3S4sE9AXAWaQoPZX6PLwultHPQG/V6OgkCB3t5iXV2gkAVQKNeX6xzX92xg+r0XNT+lpb8rGdPhly6VKxzShQcg07HuOBg8sED8soVXlq/nj98+CG3jhnDNYGBXNS5MzcEBJDjxpFDhnBc5cpsV64cG1pYsJpSSVeZjL3lchIgAXpkk4u8T3obAboAtBMEusnlrK5SsYGFBRdUqkR260YGBnJ09eqc4OPDD5s148JOnbiib1+enjGD3LmTxgMHeHLlSl7Zto13fvqJTy5eZNTDh0xNSCBNptK+lBISEqUIcslB/18tpb3G+K/Qv39/li9fnkajsdBjmEwmbtq0iba2tlSr1Vy0aBFTU1PNKKV5WbRoEQVBIACOHDmSSUlJXLp0KR0dHQmArVu35ujRozl37ly2aNGCAPjBBx8wNjY2z7Hnz59PALS1tWVkZGSmtkuXLlEmk3HMmDEkSaPRyNdee40AKJPJCIAtW7YslnMuTYxGIz/++GPa2NiIayOFQkFfX18uXbqUiYmJpS1iJhITEzl69Gi+8cYbTElJKfDxO3bsIABqtVqGhYWRJIcNG0YArFixIkNDQ4v0ecuNGTNmiPdSixYt8nXPZseTJ0/o6emZZU2bUxEEgRqNhnZ2dixfvjw9PDxYrVo11q1bl/7+/mzRogXbt2/Pbt260c3NjZ6enoyLizPz2f/D9OnTRdm++OKLHPs9fPiQ1tbWbN68OfXFvDfMizfeeIMAuGTJklz7dezYkdWqVaMpfe2fHuOST548KTbZcltj5Fex4YC07HKXAewHEAhgFdLiXJT6giK/pbQXHn8EBREAvxoxgiR5Zfv2tB8tW9sSmf/v8+e5pGtX+mm1BMBqAE0tW5Jr1zIpOLhEZPivYzIamRQZSYaGkn/+yb+2b+ePH3/MrWPGcFW/fpzXrh3nNm1KDh9O9u7N9ytWpK9WS0+5nLbpX3rVXlI+tM7mC9sPIO3tSU9PDrS1ZXNra3ZxcmJgxYocVb06V7VtS86ZQ372GYPGjOHOSZN4eP58nlm/njf27GHYxYvkixdkSoqkhJCQkCgWJOWGRGFITk6mlZUVR48ebZbxnj59yj59+hAAfX19eeXKFbOMay6Sk5PZvHlzAqBarWZQUBDXrl3LChUqEAA7duzICxcukExT2Lz33nsEwNmzZ+dr/LVr14qb2uAc1nlTpkwhAP72229i3dKlS0VlCwAuXry46CdbBtDr9Zw2bRq16etguVzO9u3bMygoqNg290Xl3r17rFevnvh+9O/fv0CyXrx4kTKZjHK5nJcvX87U1r179ywKAYVCQa1Wy3LlyrFChQr09vZmgwYN2LZtW/bp04ejRo3ihx9+yM8//5zff/89T58+zeDg4Cwb8Vu3btHDw4MAqNFo+O233xb6GkRERLBmzZq0trbmd999xxMnTvDs2bO8cuUK//zzT96/f58hISGMiIhgXFwcU1NTxY12fjhz5gwFQeDYsWMLLWNeXLhwIdM1zm3jvz19fzhnzpxikycv4uPjKZfLaWVllev9Fh0dTYVCwenTp5NMUxwqFAo6OjoyNja22BSFRVJuIM0t5BaAGQBcX2n7Vy1eSnvh8fXAgQTAx2fOkCR7u7oSAA989FGJy3Ln8GH+MmwYWaMGdQCdAHZ2cOCWESMYIyk60jCZmBQezocnT/LiV1/x4Jw5/HrUKC7r0YOG6dPJESO4rl49NrO2ZnWViuVlMqoAKgGa0pUTw7NRTrgKAunuTtapwzkeHuxRvjyHeHlxgo8PP27dmhv79ye3bCH37eMfX37JK9u28d6xY3x24waTIiNpKqM/wBISEhIZFGZ9AKA80rIEdwfgXNDjS7uU9hrjv8DBgwcJgIcOHRLrzPH0MigoiC4uLpTL5Zw+fXqZeDJ/+fJl2traEgC9vb25cuVKVqpUiQDYvHlz/vrrr5n6L1y4kAA4bty4fG3cvv/+ewKgUqnkzZs3c+yXkJDASpUqsUaNGkxOThbrT506RY1GI65dfv/998KfbCmj0+k4btw4qtVq8ZoMHz68TNwHubF//37a2tqyXLlyPHz4MJcsWVKgeyAkJER8D4OCgrLt8/HHH7Nr165s3rw569aty0qVKtHZ2ZnW1tZUq9WUy+X5tpbIUBhpNBpRGdO+ffsiXee4uDj6+/tTrVZn+UyYk0mTJhEAT5w4USzjG41GCoJAJycnAmDlypVz7T9kyBDKZDKePn26WOTJiyFDhhAA582bl2u/bdu2EQDPnTtHktyzZw8BcNCgQZw1axadnJwKba2TG0VVbrTNq8+/pZT6wqNnT76oVEl8WQ6gJi0afOlhMjHm1CnOaNqUlRQKAqAKYC9XV15etIgs41/8BcGg0/HZjRu8uXcvk376idy5k7/PmMF57dpxfL16HODpyY729vTVavnUxYVUqzk3hy/vCIWCdHXlmgoV2K5cOb7u7s7RNWrw/caNuahzZxrWriV37ODtTZt4YfNm3j1yhM9v3WLqf+h6SkhISOREQZUbSIsTHAzgawDfAHgEoF9BxijtUuprjP8AI0eOpLW1tWh6/8477xAAu3btmmnjXRiioqI4YsQIAmCVKlV46tQpc4hcKBYsWJBp81ejRg0CYIMGDXj48OEsG9f169eLG4b8PLU/duyY+LQ+P5ujn3/+mQD40SsP2yIiIujs7Cw+cX706FGBzrO0SUxM5IgRI6hUKkXrmLFjxxb5XsoNvV7PW7duFWkMg8HAmTNnplnr+vlluu4Z1jsLFizIdYykpCTRrWnhwoVFkodMszK6e/cuT5w4wW3btnHp0qWcNm0ahw0bxp49e7JVq1b08fGhl5cXXVxc6Obmxj179hR5znbt2lEul3P//v1FPofcSExMZJUqVejl5cWEhIRimcPJyYlqtZpt27YlANEdLDvi4uLo5eVFT09PRkdHF4s8OZGcnEyFQkELC4s8v2/69etHV1dXsV+7du0IgBcuXKCjoyNfe+21YpGxyG4p/5VSqgsPg4G0tSVHjUp7feoUowEeKUOLIZPRyPObNnGiry9dZTKeBkhLS/7ZtSv3z5rFlGLQvJmDhPBw3j92jKfWrOGuKVO4ql8/Pn73XfKtt3jM35/1tVq6yGSUvaScuJBuWfFl+mtbgFUUCjaxsmJ3Z2f+/frr5LRpvDppEjcPH84DH33Ec198wfvHjzMmOFiynpCQkJDIhUIoN66/bK0BwAnA9YKMUdpFUm4UDYPBQGdnZwYGBop15cqVE3+3LSwsuGPHjiLPc/z4cXp5eVGhUHD16tUFMl8vKsnJyWzWrJloPeDl5UUArFWrFnfv3p2tLF988QUFQWC3bt3yFTfk0qVLVCgUFASBBw4cyLdsgwcPpkKh4I0bNzLVG41G0b1AEAT+9NNP+R6ztIiNjeXAgQOpSH9op9VqOXXq1GKLYZCamsrVq1fTx8dHjC9RpUoVPnjwoMBjRUREsGPHjgTAESNGZFHEGI1GvvnmmwTAjRs3ZjuG0WhkzZo1CYCDBw8u1DmVNnq9nr169SIAbt26tUTm/PXXXwmAkyZNKpbxW7ZsSQAMCQkR473kZily4cIFKhQKBgYGluj31KhRowiAH374Ya79kpOTaWlpmUlJo9VqaWVlxY0bNxarJYyk3CgDC4/ft21jV4C3ly1Lq+jSJe3ynzxZajLlhkGno+n4cXL0aE5JN2mzEwS+5e3No4sXU1+MWm+SNKWmks+eMf7MGR6eP5+bhw/nwk6dOMHHh6+7u/OXunVJb2/+8pLJ5Mtlj0xGVqjAc9Wrs6uTE0dUq8aZzZtzVb9+3DFxIiP27CGvX2fKo0fUxccX67lISEhI/H+jEMqNG6+8lr1aV9aLpNwoGqdPnyYAUYFx//59AmCTJk04ZcoU0dKhadOmRX6SGRMTw27duokbyMIEaSwoFy9eFDc0Ga4CXl5e3Lp1Kw0GQ5b+ycnJHDlyJAGwU6dOTEpKynOO+/fvi64XX3/9dYHki4iIoKOjIxs3bpxFHpPJRHt7e3GN9fHHHxdo7JIiMjKSffv2FV0pLC0t+dFHHxVLPI3U1FSuWrWK9erVExUaAOjq6sp69eoRSAvKmhGLID9cuHCBFStWpFqtzjXoZGpqKrt06UKZTMa9e/dmae/SpYv4Wfk3YjQaxYCnK1asKNG5x44dS0EQeCY9hIA5mTFjBgFw/fr1PHv2rHiP5ua2k+GOtmXLFrPLkx06nY5KpZIajSbPz82BAwcIQFR4ZpxT165dWatWLfr6+habUkZSbpSBhcfi9C+asD/+IElWFASOkMuz7zx+PB/37VvsGVTyS2pCAg/NncvBXl60Tv/yrimX0zR2LHn6NGk00mQ0MiE8nGHXr/PukSMM/ekn8tdfqd+3j9+OG8cNgwbx0+7dObtVK0728+P+jh3JwEBGdujAljY29NVqWUWhoJMgUAPw03TLijuvKC1sAVZXqRhUqxYZGMino0bxfwEB/HrUKP68cCGv79rF8Js3y8y1k5CQkPj/SCGUG58C+BnAsPRyGMCSgoxR2kVSbhSN9957j0qlUvTPfvvttwmAmzdvJpm2ca9atapo9bBq1aoizWcwGPjhhx+Km8CMLBLFwdy5czMF6HR3d+eGDRtytMR49OgRGzRoQACcOXNmtsqPVwkLC6OlpSUBcFnGg7QCkuE/v3LlymzHz7CEAMB27dqVejaHDMLCwtitWzdRyWBjY8NFixaZXamRodCoW7duFoXGuHHjGBISIvb97rvvxMCl7u7uWSxiXsZkMnH9+vVUqVT09PTMEvgzOxISEti4cWOq1WqefOlBaUbsCA8PjzLz/hQEk8nEyZMnEyidgJpxcXH09PRk9erV86VQLAgXL14kAPbt25fkP+9VixYtcjzGYDCwTZs2tLS05L1798wqT3aMGzeOADh16tQ8+44YMYI2NjbU6XQkKQZvzlDIfPPNN8UmZ1FjbuwB0A2ALK++Zb2U5sKjs4MDa6nVJMlD8+YRAHu5uGTteOUKwwGqAXopFIwuY/6NSZGRDJo6lev9/EiNhiaAdQQhk8sHAL6TrpzQZ2NVYQlwjpUV6e3NeB8ftrG1ZY/y5TnQ05Nv16zJqQ0b8sSwYeTq1dTt2MEz69fz4cmTTIyIKO3Tl5CQkJDIBwVVbqQdgj4APksvvQt6fGkVAD0AbKxatao5L+H/K0wmE6tUqcKAgACxrkKFCpTJZJw1a1amYJaLFi0SN9m1atUqcrrBnTt30sLCgm5ubrx48WKRxnqVpKQk1qlT558HNLa2XL58ea4xHw4fPkx7e3va2trmO85AbGysaFnxwQcfFFpek8nEgIAAWllZZZtdJSg961/Gxt7V1ZWhoaGFnq+oBAcHs0OHDqLiyN7enp9//rlZ50hNTeXKlSuzKDQqVKjA8ePH8+nTpzkem5iYKLqYCILAMWPGZFG4JCUlcejQoQTAgIAAvnjxIt+yvXjxgjVq1KCtrS2vX78uZsexsbFhTExMoc+5NFmwYAEBcPz48SXqivEyR44cIQC+//77Zh3XZDJRJpOxSpUqYp23tzcB5HrfPnnyhOXKlWPDhg1FRUJxoNfrqVarqVar81SMGQwGOjk5ccCAAWKdnZ0d1Wo1O3XqRFdX12KVtajKjQ4AtgN4AOB/AKrndUxZLaWl3NDFx9MC4Li6dUmSbe3sCICXsjEZ/MLNjYkA26Rr3y0BXilC+qRiJS6OMRs2cFL9+pzZvDn/FxDANYGB/Obtt3l56VLy2DHywgX+dfAgQy5dYuyTJzQU440uISEhIVE2KITlxuL81JXlIlluFJ4//viDALhhwwaSae4FGZvVjM2kr68vV61axcjISIaHh4uWDRkKkKJw7do1enp6Uq1WF9idIyd27NghKmEyZIzPxQ3WaDSKFh716tXL91NanU5HNzc30cWmqDx69IgWFhbs1q1btpvLjCwKGVkfVCpVpuw2JcH9+/fF+AUA6OzsLN475kCn03HFihWFUmhkx/79+2llZSXKmqFEe/DgAX19fUVXn/xY6LxKcHAw3dzcaG9vT0EQqFQqeefOnQKPUxbIUM68+eabpZ6ad+TIkZTJZGZXeGYEFc0gLCyMSqWScrmcDx8+zPG43bt3F1l5mRcZwWrHjRuXZ9/ffvuNAPj999+TJO/evUsArF+/PoG8A94WFbO4pQCwBTAGwBMAZwEMB6DM7/FloZTWwuN0+od19/TpNOr1VKW7V2Tpt24dAbC5VkuSnNqwYdqPIsAtZvjBkpCQkJCQKAkKodz4PZu6PwoyRmkXSblReObNm0dBEETXkAx3EUdHR7Zu3Zpr1qyhn58fgbSMF2+88QaPHDnCTZs2ifErKlasmGvK07yIiIgQsxhMnjy50Cb9Dx48oI+Pj7ghbtiwYZ4xQiIjI8U4CUOGDMl36kyj0chq1aoRAHv27FkoebNj+fLlmeKfvDpnRsraXr16iVYTr2ZaKQ5u3rzJRo0aZVI2fGumB4A6nY6ff/4569Spk0WhMWHChAIrNLIbPyNAJgC2bduWtra2tLOz48GDB4s09o8//iiOu3PnziKNVVp8++23FASBPXr0yFfg3OImJiaGbm5urF27tllj8mQo5cLDw8W6rVu3EgDd3NxyVeqMHj2agiDw+PHjZpMnA4PBQI1GQ6VSmS+LiylTplClUoluhBnxgVq1akWNRsOIYra2L7JyA4ADgIkALgPYDyAQwCoAv+bn+LJSSmvhcWL4cDYH+OLePQZNnUoAfMPDI0u/aumpqi5+9ZVYt2vKFCoAWgE0jh5dglJLSEhISEgUjvwqNwC8A+AGgEQAf7xUHgHYlp8xykqRlBuFx8/Pj82aNRNfZ8TWAMDly5eL9VevXuX48ePFLCoeHh6cMWOGmIFEEASOGjWq0E99U1NTOX78eAJghw4dGBkZma/joqOjeeDAATEIIgDK5XLxqWZuXLlyhZUqVaJSqeS6desKZIqfsdHPzWe/MBgMBvr7+9PJySlbN4nQ0FAqlUrKZDJu375djC3Rtm3bQiuFkpOTGRoayhs3bvDkyZPct28ft2zZws8//5xz584VLRwA0NPTs8hpRsk0hcPy5cuzKDTc3Nw4ceLEYonDcvToUTHoq1wu57Zt24o0XnR0NK2trYn0WDQNGzZkXFycmaQtGQ4ePEiFQsFWrVqZPc5FUchQGplTcZeR4nfdunWZ6rt27UoAHDp0aI7HJiQksHr16qxatarZFUAZCuXR+dhrmkwmenl5sWvXrmKdq6srZTIZVSpVvsYoKkV1S9kL4BaAGQBcX2krsE9taZZSW3i0aUP6+ZEkv69WjS4Ab+7bl6nLkf/9L83sUqPJcvjtw4d53sqKBBjh4yNl95CQkJCQKNMUQLlhC6ASgO8AeL5U7PNzfFkqknKjcDx+/JgAuGTJEpJpm1xBEOjg4EAA/Ouvv7Ick5yczB07drBTp04UBIGCINDHx0e04nBwcOCpU6cKLdPmzZupUqno5eWVbSDI8PBwBgUFccKECfT19c0ULBQAq1WrxqioqDzn+fLLL6lWq+nu7s7z588XSMaAgAACYJ06dYrFhP/atWtUKBQcNmxYtu07d+4Ur3V4eLiY1tbJyYktW7ZkgwYNWLt2bVapUoXu7u50dnamnZ0draysxCfEMpksy7XLrQiCQAsLC1pbW9PKyooWFhbUarXUaDRUq9VUqVRUKpVUKBSUy+WUy+WUyWTiPLnNlaHQePbsmdmvZQYvXrxg586dCUC8XhkWMIWJT6DX68U0vZMmTeKBAwcol8vZoUOHYo13YE5OnTpFjUZDPz+/MhknJCNF8tWrV80y3uXLlwmAffr0yVSv1+tFpW1ubl4HDx4kAK5evdos8pBp1lgWFhZUKBS5xgPK4Pr16wT+SUUcERFBACxfvjwB8NatW2aTLSeKqtzomk2dOq/jymIpjYVHamwsE5RK8r33SKORVChIB4cs/Sqlp626vmtX9gMlJtJYuzZdAToKAh8X4UdbQkJCQkKiOPm3PfwwR5GUG4VjxYoVBMC7d++SJD///HMCYNWqVenh4ZGnJcPjx485d+5c0VVCmW4FC4C9e/cu9Cbv3LlzdHV1paWlJTdu3Mjt27fz7bffZs2aNcXxtVot27dvzx49eogb5wkTJuQ59stpXjt06MDnz58XSLbBgweLFgzFmREjI3Xl0aNHs20fNGgQAbBz5840Go3s27dvFmWEXC6nSqWihYUFbWxs6ODgQFdXVzEjhY+PD5s0acJ27doxICCAfn5+LF++fKb3MeNaZ7hxlCtXjg4ODnRycqKzszNdXFxYoUIFuru708PDg56envTy8mLVqlVZrVo11qhRg7Vr12bdunXp6+tLPz8/NmzYkE2aNOGkSZOKVaGRwaVLl+jp6UmVSsUNGzbQZDLxwoULYuwSKysr/vjjjwUas2nTpgSQ6Qn6V199lWYh/sYbpR63Ii+uXr1KW1tbVq9evcCfgZIiMjKSLi4u9PX1NYu1REZQUS8vryxtV65coSAI1Gq1ortHdse3bduWTk5OOfYpKF988QWRHuskP2TEBsr43HzwwQfiPdylSxezyJQXRVVuZOcHm6Xu31BKY+FxfOlSKgGe/vRTXpw9m6cA8hUtePT27dQAbGRpmed4gzJ+vAEemjevuMSWkJCQkJAoNJJyQyK/tG3blrVr1xZfZ7gfWFtbc9SoUfkex2g08tixYxwwYABVKpW4KVapVNy6dWu+xzGZTHzw4AG/+uor9u/fX3QheHnx/r///Y9nz56lTqcTFQ0KhYJ79+7Nc/zCpHl9mYw0mU5OTvmOzVFYkpKS6O3tTS8vr2znMhqNouVAxpNknU6X70210Wjkvn372KtXL3GT//K1btGiBVeuXJlrINZ/A1988QVVKhU9PDyyBKg0Go0cM2aMqBzr2LFjvlwzMu67mjVrZrne/0u3Bp8wYUKpZRzJi7t379LZ2Znu7u7ZZuYpS+zdu5cAOH/+fLOM5+zsnCmo6MtkuIfk9nty6dIlAihyIOUMWrRoQQC5BjR9GV9fXzZv3lx8XaVKFfFze+TIEbPIlBeFUm4AcAHQAMBfAOoD8EsvbQDczum4slxKY+Exs3lzygHGhoSwgYUFATD03LnMndzdqQMYmU+TxFX9+lFIv4nmtm1bDFJLSEhISEgUHkm5IZEfXrx4QblczpkzZ5JM2+jJ5XLRPDsoKKhQ40ZFRXHlypV0dHQUF91OTk7cu3dvlo2gyWTirVu3uH79eg4cOFDMPAKkZWvp0aMH/f39CYCvvfaaGM8gPj6etWrVEl0z8rMxKEya15dZuHChqPgp7oB9GZw4cYIAOH369Gzbnzx5ImZ7uH37dp7jXb16lW+//Ta9vLwyxblQKpWsXbs233//fT5+/Njcp1EqJCUl8a233hKVFrm9Zzdu3KC7u7topZJdMNcMMtKlOjo6ZqsIMZlMohJs4cKFZjkXc/LkyRN6enrS0dExW7ezskhgYCCVSmW2bmoFpXXr1gSQY0yXjPTRub13AwYMoFarNUsq5gyrqvzw6NEjAuCnn35K8h83QpVKxTp16pSYMq2wyo2hAE4AiE//m1H2A+iT03FluZTGwqOplRWbWFlRn5xMOcDygpCp/eKCBXwCkC1bFmjcsxs2UIu0TCoRHTqkubxISEhISEiUAQqj3EBarI0O6f9rAVgXdIzSLJJyo+Bs2bKFAHj58mWSaelTAbBevXqUy+V5ZhnJD7t37xYDLgJguXLl+PHHH3PFihXs27dvJosBFxcXBgYGcs2aNbx586aoCDGZTFyxYgXlcjlr1arFgwcP0sbGhgDYqFGjPLMpFDbN68ts2LCBAKjRaEp88z9y5EjK5XL+/vvv2bZ/++23ogLpVTeZZ8+ecc6cOaxfv34mKxhBEFixYkUOGTKEp0+fLonTKFEePnwoZviZNWtWvi10pk2bJip9mjdvniUOxa5du8T7ICQkJMdxjEaj6Da0adOmIp2LOYmIiGDNmjVpbW0tfu7/DTx//pyOjo709/cvsivYrFmzCIBr1qzJtj0yMpJqtZoymSzHDFAPHz6kUqkscvrna9euia5l+SHDbTDjO2zZsmXiZ7ok77OiuqX0zavPv6WU9MIjLjSUcoAfNmvGNf37EwDH1qmTqU95mYwKgLp0X9OCEH7zJoPs7UmAeg8PRj94YC7RJSQkJCQkCk1BlRsARgG4BOBB+mtvAMcLMkZpF0m5UXB69uxJd3d38Wlfq1atCKQFyXzZ7NkczJo1K5OlAABWqlSJQ4YM4aZNm3jv3r08nzoeP36clpaW4vHjx4/Pc97IyEgxE0JB0ry+TFBQEAVBoEKh4PXr1wt8fFGJioqii4sL/fz8ctzYBQYGipukTZs2sX379rS1tc10ve3t7dmlSxdu3769WGOFlDaHDh1iuXLlCm2h8+DBA9HUX6VSiYEbL126JAZJfdW9JTt0Oh07d+5MmUzGH374ocBymJu4uDj6+/tTrVbz119/LW1xCkyG8nXx4sVFGuf3338XYwLlRFBQEAHQ2dk5RzevyZMnUyaTFcmaJMOyKD+Zncg0q5M6L+1lM9JeOzg45CsYqbkorOXGm+l/3wMw5dWS03FluZT0wuPgnDkEwGOffsq66drqsJd+lDalpwzrYG9f+EmMRrJjR7YEaAHw0tdfm0FyCQkJCQmJwlMI5cY1ACoAV1+qu1GQMcxZANQCsBPAOgD98nOMpNwoGImJidRqtRw3bpxYp9FoaG1tTUEQOK8Y4oqF/h975x0eZZU18N+dnkoCaRACGAi9J3REitJBUPwsu2BB0FVw1bU3wFWkrBR11VVEgVVWpQSUqhARXGQhQUIJvQYIhEASQiaZdr4/ZjIGDKSQQvT9Pc99ZuY9t5yZJJN7z3vKyZPSqlUrbxjEihUrSjV+7Nixl3keTJ8+/Zqs1a+iAAAgAElEQVQGkaSkpDKXeS3g+++/91b82LBhQ6nHlxcFHgMF7uhX4nQ6vWEVBc3Hx0c6duwoU6ZMKXFZ3epITk6OrFq1Sp555hlp166dANKmTRs5ePDgdc37+uuvi95TcKBdu3bekrslPYiKuMOnOnbsKBaLRX788cfr0ud6sFqt0rt3b9Hr9TeEoaUsuFwuGT58uJjN5hKFYF1rHp1OJzfddNM1+40YMUIAGTFiRJHyc+fOSY0aNWTQoEFl1qVu3bqi0+lKlCcnPT1ddDqdN9dHQRghIBMmTCizDmWhrMaNRzyPE4pqVxt3I7fK3ngcHTNGpur1knPihOhA6ur1l8lrKSUK5GRi4nWv9aKnxrsO5OORI697Pg0NDQ0NjbJSBuPGFs/jds+jAUguzRyF5poLnAV2XXG9P7APOAi8UMwcfwNu9jxfXpJ1NeNG6ShI0rdu3ToR+TW3Q4Erf0nuTJeVmTNnehM4lmRTnpub6z20BgUFydatW70Hjz/96U9F5j2YO3dumcu8FjBhwgRvCdP4+PgyzVFeuFwuuf3228XHx0cOXcVT+Pjx49K9e3cZP358pZSDrCpsNpv89NNPMmnSJOnRo4e3sovJZJKePXvKW2+9VW7JXlNTU6VFixZeg1FZklqmp6dLkyZNJCgoSJKTk8tFr9Jgt9tl2LBhAsj8+fMrff3y5PTp0xIcHCxdu3YtdTLgwoSHh4vJZLpmH6fTKWFhYdfMPzRt2jQBZP369aXWITc3VwBp0qRJifoXVOIpCCf697//7T576nSVUnGoMNcblhJaXJ+ytuI2GoAZ+NIj3wI08FxvAFg9d3p+AT4syXqVvvFo316kZ0+RqVNlD8i6//s/r+hdzz/FwWFh5bZc/IsvisHz5Te6ceNym1dDQ0NDQ6M0lMG4MQ14CdgL3AYsBd4szRyF5uqBOwH6rkLX9MAhINrjIbLD453RCvj2ihbmaf8EpgM/lWRdzbhROkaNGiXBwcHe8opDhw71hjXUqlXrug4OJeG///2v9074bbfddtU7l/v27fMmOG3Tpo330OpyueSNN94QpZTExsbK8ePHRcR9h3rMmDFuz9wylHkVcYcT3HzzzV7vh4SEhDK/z/IkNTVVAgIC5NZbb71hq3BUBC6XS5KTk2XmzJkyaNAg8ff393rvxMbGynPPPSdr1qyp0Oo1H374oUybNq3M448ePSp16tSROnXqVGrOFqfTKQ94PNVnz55daetWJPPnzxdAZs2aVeY5evbsKYCcOnXqmv327NkjOp1OzGZzkd5PVqtV6tWrJ3FxcaUu/VtQhvtqyYKvZOjQoRIVFeX92+/cuXOx4TUVxfUaN/YDa4HRQHBx/UvarrbRuKLPYwWGC+Ae4Ev51bixq7RrVubGI/PIEVkMkvXSSyKNG7s/6oJfSqdTOuv17mSg1+HWVBQH162TYM/diA2NGolUYvyThoaGhoaGSJmMGzrceTe+BhZ5nqvSzHHFfJftE4AuwJpCr18EXizBPHpg2TXkY4FtwLZ69epV0Kf5+8Nut0twcLCMGjXKey0wMFAsFotERETIPffcUyl6pKenS/369QWQqKgoOXPmzGXyL7/8UgwGg/um0VUS9y1fvlwCAgIkLCxMvvzyy+sq8yriLpFZq1YtAaRRo0Y3XDjH+++/L4B89tlnVa1KhXLkyBGZM2eO3Hvvvd6754DExMTIX/7yF1m0aNEN97Mpjp07d0pQUJA0bty4UqrtuFwuefrpp6skbKEicblcMmjQIPHx8Slz6NFrr70m8GsJ5WtRUCWpVatWRcoLjC0LFy4slQ6dOnUSQE6cOFFs35ycHLFYLJflGSr4bqwKb6Br7TGUW35tlFIdPcaFYcAe4D8i8u9iB157zi7ARBHp53n9IoCIvFWozxpPn81KKQOQBoTizqj+rYi0LM2acXFxsm3btutRu8Qsff557pg2jTWTJzPqpZd4LjiYp8+fdwunT4fnniOlb1+arVlT7mvnZWYyr1UrHklNhZo1yV63jsC2bct9HQ0NjRsIlwscDlx5eWSePYstNxdHfj52qxVbbi61/PwI8fMj9+JFknbtwmG3Y8/L8z62iorippAQzp47x9odO7Dn5+N0OHDa7dgdDvo0akSzkBAOpKXx1S+/4HQ6cTgc3sc/NWtG6+Bgtp46xfw9e3C4XDidTlwiOF0unmrWjNaBgaxKTWXe4cM4XS5cIrg8j5ObNKGFnx+fp6Yy7+RJt6xQ+7RRIxqazcw6eZIvMjJwuU3GuACXCCsbNKCO0cirp0+zJDsbF27jfcHj9qgo/JXi0bNnWW21/hoUDijgeHg4iHDX+fNsstvd83vkJiC1Zk0Q4dbsbJKcTgr+c4oI/kqR6u8PQNylS+x1ubw/FgGCgVQfHwAa5+VxotD/XQHCgWMmEwC1bTYyCskAooDDBgOIUMPp5FKhH7sADYH9Oh0AFpcLe6Gx4HZP2KUUAHoR7/sGWKnXM8DhKPGvWUlRSiWKSFwp+vsBeSLi9LzWA2YRyS3j+g0otE9QSo0A+ovIw57XI4FOIjLuGuNfAvyAD0RkU3FrVuYeo7qzfv16+vTpw5IlSxg+fDi7d++mZcuWxMbGkpiYyKeffsoDDzxQKbq4XC6GDBnCypUrsVgsfPfdd3Tv3p0nn3yS2bNno9Pp+Pjjj3nooYeuOkdKSgq33347Bw4coEaNGixYsIAhQ4aUWpf58+fz0EMP4XQ6+dOf/sT8+fPRef62bxRcLhc9evQgJSWFlJQUwsLCqlqlcuHcuXOsX7+edevWsW7dOg4dOgRAREQEffr04dZbb6VPnz5ERUVVsabXx6ZNm7jtttto1aoV69evx9/zv6simDx5Mi+//DLjx49n9uzZKM//od8DqamptGjRgnbt2rF+/fpS/53u2LGDtm3bcvvttxMfH19s/7i4OBITE3nllVf4+9//fpnM5XLRvn17srOzSUlJwWw2l0gHHx8fLBYLFy5cKLbv0qVLueOOO1i3bh29e/dm9erVDBgwgJCQENLT00u0XnlyzT3G1aweRTUgBJgPOEsz7ipzjQDmFHo9Enjvij67gLqFXh/y6NAAuARsBzbgiYu9yjpVcldlXKtW4uuplALIxFtuERERp90uWy0WEb1eJCurYpV44AF5CsQIsuyllyp2LQ2NSsRpt8ul9HTJOHBATm7bJgfXrZO933wjsnWryKZNkvj++7Ji4kRZ9Mwz8sW4cTL3wQfli4ceEnnnHZFp02TOsGEyoUcPebFLF3kmLk6eaNNG3ujYUWTMGJEHHpCnmzaVu6Ki5I46dWRoeLgMCAmRx6KiRHr3FunRQwYHB0tHPz+J9fGRNhaLtDSb5Z6AALeXVsOG0tJolHp6vdTV66WOTicROp0MNplEQkJEataUEKUkECQAxM+TDPg2nU7EYpF8g0GMIAYQvafpQHqDiFJyjMvO5d7WG0RAfr6KfJhHvuwq8lEe+dyryJ/wyKddRT7RI3/hKvJ3PfJHryL/j0d+z1Xk33vkQ68i3+X5fPqBKM9npiv0GaYrJWIwSB+lxOj5XjR5mhlEzGYRi0VuUUp8QHw8PxdfkCAQ8fMT8feX7jqdBIAEgtTwtEilRIKDRYKDpateL7WUklpKSYhSEqqUNNXrRcLCRMLCpLPRKBGe34naOp3U0emko9EoEhkpUreudDSZJEqvl/qe1kCvl74Wi0h0tEh0tHQwm6WRwSAxBoPEGI0SYzTKCH9/kSZNRJo2lVizWZqaTNLMZJLmJpO0MJtldFCQSKtWIq1aSazFIq0tFmljsUhbi0V2tG1bIX+jlN5z42fAv9Brf+C/pZnjivkacLnnRrF7jutYawjwUaNGjcr/g/ydMn78eLFYLJKTkyMiIvfff78Acu+995bIVbsi+Pvf/+4NNSjw5ggICChxdZILFy7I66+/XqYyr06nU0aOHCmA6PX6G94rYvfu3WIymeTee++talXKzJkzZ+Tbb7+VZ555Rtq2bev9XxIYGChDhw6V2bNny+7du3+X4TfLli0TvV4vffv2lfz8/ApZo8DD589//nOpwyWqC3PmzBFA3n///VKPLUgq2qBBgxL1z8rKEh8fH1FKSWIRuRrXrl0rgMyYMaNE8/38888ClDgZ6ciRIyU4ONhb5aggB9H1hEpdD9faYxTruaGUCgSG4/bcaIg7DvYrEUm85sBiKMldFKXULk+fVM/rQ0An4CLuTVCGUioWiAdaiEj2tdaszLsqLSwWovz92Z+ZyVGnk+zTp/GPiGDiLbcw6ccfeb9jR/6yZUuF6/HRn//MXz7/HBfwSvfu/H3jxgpfU+PGx+VwYMvJIefMGS6lp5Obmcml8+dpGhaGvwgHDh1iy+7d5F68iDU3F2tuLnlWK4+2bEmEycSylBTiDx0i32Yj3+Eg327H5nQyv0kTInQ63jp2jEUZGdhFsLtcOEVwuFwkRUQQJML9GRmstNlw4r7r7sS9q8ixWMDloqvNxv/49eQK7rvrTs/zesCJK96TrpA8DLjSjmwC8j3Pg4CsK+S+4L0j7os7qU9hgoAC27YZsBXSC9wnqcM6HShFgNNJvkdW0NopxX99fUEpQnJycCqF8uitA24xmfi6Zk1cQIOzZ9EDOqXQK4UOGBQQwNt16pDpctH7yBF0SnnleqW4IzSUp+vX55TdzkMpKeh1Ogw6nbuPTsdd9epxd3Q0x/LymLRzJ3qlMBgMGPR6dDodw2Ni6HnTTRy7eJE5u3a5xxuN6PV69AYDA5s3p2W9ehzPymJVSgoGo9E93mTCYDTSrUUL6oaHcyo7mx3HjrnHGo2YzGb0RiPNGjYkKDiY8zk5nL5wAYPZ7B5rMqE3mwkLD8fk60uew4EDMFgsGCwWdAYDOoMBjepFGTw3fhGRtsVdK8V8Dbjcc6NYb9HrRfPcKBkiQv369Wnfvr33jmV4eDjnz5+ne/funD9/nh07dlSJbgsWLGDUqFEABAQEcOLECWrUqFGha54/f57OnTtz4MABatWqxU8//USTJk0qdM3yYNKkSUycOJEVK1YwcODAqlbnmpw7d47ExEQSExPZtm0b27Zt48QJ9y7CZDLRtWtXr2dGXFwchj/A/5y5c+cyevRo7rvvPmbMmIHVaiU3N7fU7Wrjjhw5wqBBg1iyZAlGo7Gq326FICL069ePzZs3s2vXLurXr1+q8REREVy4cIH8/PziOwOrVq1i4MCBREREcPr06d/I+/Xrx9atWzl06BDBwcHXnGvkyJH8+9//ZtmyZQwdOvSafe12O+Hh4QwZMoR58+YhIhgMBkQEh8NRJd5l19pjlMS4cQS38eArEdlcjkqVOSxFrlBaKfUD8IyIXHNXUVkbj7SdO6ndujUTevRg0o8/0sRoZK/NhsvhwN9oxA5kpafjGxJS4boAbP30U3o+9BC5uA9lY/z8eLdTJ7JbtmRLnTrc8vjjmCrQLU3DjcvhwJWbiyEnh7zTp9memEh2ejpZ6elczMwkJzubruHhdAgK4kBqKlP/9z9y8/LIdzjIs9vJdzh4NDycEQEBfJeRwV9TU7G7XG4DgggOEd708eFho5H3rVaeKTAeeJoA7wDjgPHAe0XoOA8Y5WkLipCvAAbijk9bVoT8f0AHoC/wHZcf7hVwRK+nrsHAcLud71wu78FerxR64FRoKAajkQczM9mYn49BKQw6HXqlsOh0bGnZEgwGnjt+nKRLlzDq9Rh0OkwGAzVMJuZ26wYmE7P27uXwpUsYDQbMZjMmo5GQwEDG9ewJJhPL9uwh027H5OOD0WTCZLFQMziY7nFxYDaTcuoULoMBS0AA5oAALP7+WGrUwD8kBAwGuMHchDU0bjTKYNz4CRgvIkme17G4PSu6lHH9Blxu3DDgziHWBzgJbAXuE5HdZZm/KDTjRslITEwkLi7OG3py6tQpIiMjad26NSkpKTz55JNMmzat0vVavnw5I0aMwG63Y7FYyMvLIyYmhm3bthEYGFgha/7www8MHDgQq9XKzTffzPfff4/JE6J2o5Ofn0/79u25ePEiu3fvJiAgoKpVAuDChQskJSV5jRjbtm3j6NGjXnnjxo2JjY0lLi6O2NhYOnTogK+vb9UpXIVMmTKFF198sVRjdDodfn5++Pr6XrNFRUXxyiuv4OMJyfy9cuzYMVq2bEmXLl1Ys2ZNqUJvevfuTUJCAqmpqURGRpZozIABA1i9ejWzZs3ir3/962WyHTt20K5dO5599lmmTp16zXlq165Neno6NputWOPElWGE8+fP5/777ycmJob9+/eXSO/y5lp7jJKYJqOvNCaUE1uBGKXUTbg3GvcA913RZzlwP7AZt0vpehERpVQocF5EnEqpaCAGOFwBOpaJTXPnAnDw+HEARt92GwAvdO2KFRjTpEmlGTYAOjz4ICduvpn/69iR3VlZBOfmwvr1fL1+PQ8DvPACvkBtg4GmwcG8OGwY3caOhfbt/xCHuJy0NDIOHiTj+HF88vJoFhgI58/z9vLlZGZlkX3xItmXLpFjtdIlIICnw8Pdhog9e7A6neSLkO9y4QAG6/XMM5k4YLfT3G73GhUK/oD6A6uA/+LeYV/JCNzZ9HYAnxQhb3DhAiOA47hLCuiuaFl2OxiNBJpMBNrtGJTCqBRGnQ6TTkd0nToQGsqt2dnsSUvDZDBgNhgwGQxYjEZi27eH2rV55Nw56qemYrFY8PH1dcfl+frSuVs3CA3lnZwcns/Jwa9mTXcLCcG3Zk38w8LAZGJtMZ/50mLknxYjL27b+2Qx8tuLkTcrRq6hoVHuPAl8rZQ6hdsWGgHcXZaJlFILgZ5AiFIqFXf5+k+UUuOANbiThM4tL8OGUmoIMKRRo0blMd3vnvj4eHQ6nTcnxdtvvw1Ap06dSE5Opn///t6+drudn376ibZt2xIUFFRhOr344otMmTIFnU7HP//5T8aOHUvv3r3ZuHEjkZGRbNy4kbblnLts0qRJTJo0CYAJEyYwceLEcp2/ojGbzcyZM4du3brxyiuvMHv27ErXITs7+zJDRmJiIgcPHvTKo6Oj6dixI4899hhxcXG0b9++wj1xqhPPP/88TZo04fTp08UaKwqa0Wj8XeXOuF7q16/P1KlTefzxx73eMCWlR48eJCQksGTJEsaPH1+iMZ9//jlhYWHeXCaFDRNt2rRh1KhRzJ49m8cff5x69eoVOUd2djZpaWk0b968RF4XS5cuxcfHh379+gHwyiuvAPDaa6+VSOfK5qqeG0qpWSLypFLqG349m3kRkWv7sJRkcaUGArP4daPxplLqddxxNMuVUhbcN5DbAeeBe0TksFLqTuB1wI77pvQEEfmmuPUq666KjBnDvv/8hy+AD3NyOH7hAjqDgcCAAAS4ePFi1XtKpKWxe84c/jFvHsknT3I0L49McSffewf3nf1JwAygrslEi7AwunXowMC//IUYj7GmssnLzCT78GHCXC44e5ala9Zw7PhxzmdkkJmVRebFi9TW65larx7k5HDzrl2cstmwulzki2ATIUYpkvR6cLkwegwShbmJX61kRX11Nwd24w5JsODxOvA0AzDYaOSLoCDO6fV0SE/HpNNh1ukw6fVYDAbujohgfOPGpCnFC3v24Ofj426+vgTUqEGPFi2Ia9WKHL2epDNnCAwNxa9WLQLCwwmsUwdLUJDmoq+hoXHDU1rPDc8YI1Dgj79PROzlr1nFoXlulIyWLVsSGhpKQkICAA0aNOD48eOMHTuWBQsWcP78eW9CvP79+7PGk3hdr9fj7+9PWFgY9evXp3nz5rRv357u3bsTHR1dpgOXw+Hg1ltvZcOGDfj6+vLDDz/QoUMHr/zZZ5/lH//4Bzqdjo8++qhUB5erYbPZuPXWW9m4cSM+Pj6sXLmSnj17Xve8VcW4ceN4//332bx5M506daqwdXJycti+fftloSX79u3zyuvVq0dcXJy3xcbGUrNmzQrTR0OjAJfLRZ8+fUhKSmL37t3UrVu3RON27txJ69atS5xUtIAxY8YwZ84cnnzySWbOnHmZ7MSJE8TExHD33Xczb968IsdPnz6d5557rsjkpFciItSrV4/Y2Fji4+M5fPgwDRs2RClVZSEpUMawFKVUrIgkKqVuKUouIhvKUcdKodI2HjEx0LAhrFkDrVpBcjKf9O7NwwkJPNG2LbO3b694HcrIge++IzwpicDERCYmJDDz3Dkucrl1ax3Qu2ZN3vP1JdFioWXTpthsNqxWKw6bjckdOoDVyttJSWw+c4Y8hwObw0G+04kJ+K5RI7DZuOvIEZLy8rwhFQ4RApTikL8/OJ3E5OZytFA+BgAfoCB1vl+h5wUEAAWJVwI9cgNgBExK0cZoZH2dOmCx0PPECWxK4WcyuZvZTMfISP7arRsEBvLBzp34BQURFBZGrchIatatS+2mTQlq0MAdmqChoaGhUSRlNG50xZ2+xvsFKyLzy1m1cqeQ58aYAwcOVLU6NzQHDhygcePGXpfqnJwcAgICiImJQURo0qQJ3377LQBnz54lIiICf39/YmNjOX78OOnp6Vy6dAlXoYpEAEopfHx8qFmzJlFRUcTExNCmTRu6dOlCbGxskaEeqampdOjQgbS0NKKjo9m2bVuRceqLFy/mnnvuweFwMHr0aObMmXNd779Lly5kZGQQExPDzz//XO0P4NnZ2bRo0YKgoCASExOvO6zGbrdz8OBBdu3adVk7ePCg9+ceGRn5G0NGaGhoebwdDY0ycejQIVq1akWvXr349ttvS2RsLchdERUVdVnoVHHYbDZq1KiBw+EgIyPjN2FzL7zwAtOmTSMpKalIj7OCyitnzpwpttrRtm3b6NChgzeM8OGHH+aTTz6hZcuW7Ny5s8Q6lzfXVS0F+GtJrlWHFhsbKxXN8c2b5X6QeTExcgxE/vlPEatVxGiUDUaj2K3WCtehvHHa7bL1s8/kjT59ZHBYmOTfdJOIr680v0rVAvG0RkXIVIFcKWmKuyKEEcTiqUpQWymRoCCRWrXkVpNJog0GaWE2S0c/P+kdFCSj69UTGTlSZNw4+degQTJz2DCZN2aMrJg4Uf736adyYvNmkUuXqvoj09DQ0PhDQ+mrpSzAHbH3PvCup71TmjmqulXGHqO6M336dAHk6NGjIiIyefJkAeSxxx4TQN555x1v39tvv10A+fDDD38zz5kzZ2TRokXywgsvyJAhQ6RFixZSq1YtMRqNRe5LjEajhIaGSuvWrWXYsGHy1FNPiclkEkCGDx9ebDWH/fv3S3BwsADStm1bsZZhLzdv3jzR6/UCyMiRI39XFSSWL18ugLzxxhslHuN0OuXQoUOybNkyefPNN+Xee++V1q1be38ugOh0OmncuLEMHz5cJkyYIN98802VVNLR0CgJM2fOFEDmz59f4jERERFiMplKvdYbb7zh/f66kgsXLkjNmjWlb9++RY41mUxSq1atEq3z8ssvi06nk3PnzklmZqb3O/bdd98ttc7lybX2GCVJKJokIu2vuLZdRNoVb1e5sagMz43PHn6YBz/5hFpKkS1CXn4+J0aOpP5XX8GLL8LkyRW6fmViy8lh4wcfsGPTJnx8ffELCMA3IIARt94Kfn4cy84mz2gkIDQU/4gI/MPCtJAKDQ0NjT8AZUgomgI0l+I2JTcwWlhK8XTr1g2r1UpSUhLgDlHZvXs3U6dO5fnnn2f//v3ExMRw8eJFgoKCCAgIIDMzs1Rr5OXlsWXLFrZs2cKOHTs4ePAgqampnD9/nry8PG8/pRTTp0/nb3/7W4nn7dq1K9u3byc4OJgtW7YQExNT7DiXy8UDDzzAggUL0Ov1zJ0711uR5ffE3XffTXx8PMnJyZdVexERTp8+/RtPjN27d5Ob+6v/bb169WjZsuVlrWnTpr/7hJQavx+cTic9evQgJSWFPXv2EBERUeyYPn36sH79ek6cOFHicBZwf6+EhoZy4cIFjhw58ptKLbNmzeKpp55izZo19O3b13t9w4YN9OzZk+HDh7NkyZJi1ykcRjhjxgz+9re/oZQiLy+vSpMflzUs5V7cCT67A4XrhwYALhEpKh/iDU1lbDzub9iQbw8f5jwQ6+vLD4cOEVy7Nu2VYovD8YdI0KmhoaGh8cemDMaNr4EnROS39e1ucLSwlJKRlpZGnTp1mDRpEq+++ioOhwOz2Uzt2rWJjY1l586dHDp0CKUUo0aNYsGCBUyePLnU1RyuhcvlIiUlhc2bN9O9e3eaNm1a6jkK4t0NBgMLFy5kxIgRV+1bXcu8loW0tDSaNWtG8+bNue+++7wGjF27dnHhwgVvv/Dw8N8YMZo3b15hFWk0NCqTvXv30rZtWwYOHMjixYuLDU95/fXXmTBhAjNnzmT06NGcOXPG286ePfub5+np6fTv35+3336br776ivvuu4/OnTuzefPlBU3z8/Np1qwZgYGBJCYmotfrAbcR8quvvmLt2rXcVkwOxcJhhI8//jjR0dHenB5VVSWlgDKFpQD1cWcb3wzcUqi1BwxXG3cjt4p2GXU5nVJXr5cGHrfDeWPGyL316gkgf+/Tp0LX1tDQ0NDQuFGg9GEpCcAF3NVMlhe00sxR1U0LS7k2//rXvwSQ5ORkERGZM2eOADJmzBjx9/eXRx99VERE8vLyxGAwiK+v7w0bujF37lzR6XQCyNNPP11kn4SEBPHx8RFAevToIfn5+ZWsZeXzySefeENKgoKCpHv37vLoo4/Ke++9JwkJCXL27NmqVlFDo8KZOnWqALJw4UJJT0+X3bt3y/r162XhwoUya9Yseemll2T06NEyePBgadWqlTcEiyJC6gCpVauWNGvWTHr27Cl9+/YVQO69916x2WwSHR0tgPz888+/0WPhwoXu8+i8ed5roaGhYjAYxOVyFfs+pk2b5g0j/Oqrr7z6vPrqq+X6eZWFa+0xqnwzUJmtojce+7/7TgDx8+SSyDhwQHQgASBOu71C19bQ0NDQ0PKZvxUAACAASURBVLhRKINx45aiWmnmqOqmGTeuzYABAyQ6Otq7qe7cubMA8sUXXwgg8fHxIiIybtw4AeS5556rSnWLZfv27eLv7y+AdO/eXeyF9nkTJ04UpZQopWTixIlVqGXl4nK5ZOvWrZKamlqiw5OGxu8Ru90uHTp0uKqxQq/XS+3ataVt27bSr18/UUpJYGCgTJ8+XebNmyerV6+W7du3y8mTJ8Vms/1m/ilTpnjzbaxfv14AadSo0W/6OZ1OiYuLk6ioKMnNzZWMjAwBpE2bNiV6H127dpV27dqJiEiXLl28+TYyMjKu7wMqB661x7hqAgSl1CYR6a6UurJYhnI7fIjmP3YFaWvW0AA4CnT19+fhHj1wAROHDtVyTWhoaGhoaFwFEdmglKoPxIjI90opX9xVtjV+B2RnZ7Nu3TrGjx/vddNOSkqiZs2aJCcnYzAY6NWrF06nkzlz5mAymXjjjTeqWOtr07ZtW06ePElcXBybNm2ibt26bNmyhVGjRvHjjz/+Lsq8lhalFHFxpSqSpKHxu8NgMLBkyRI+++wzAgMDCQ8PJzw8nLCwMMLDwwkODr6shGrt2rXJyMjgmWeeKdH8zz//PL6+vjzxxBPk5eURGxtLYmIiixYtuixMTqfTMX36dHr16sW7776LzWYD4K677ip2jbS0NDZv3szEiRPZsmULmzdvRilFZGTkDV/h6aonbhHp7nkMqDx1qjc3nzjBER8fvrVaCXviCW6ePJlgpXh62bKqVk1DQ0NDQ+OGRSk1BhgL1AQaApHAh8ANn9+rUM6NqlblhmXVqlXYbDaGDRsGwMqVK7HZbPTp04c1a9bQtWtXAgMDefXVV8nLy2Ps2LEYjcYq1rp4AgMD2bt3L3fffTeLFi2iQYMGAL+bMq8aGhplo27durzyyisl6tuiRQvWrVvHiRMniIqKKtGY8ePHY7FYeOSRR+jUqRNKKR599NHf5ADq2bMngwcPZvLkyURGRgLw2GOPFTv/8uXLERGGDx/Om2++iY+PD1arlaFDh5ZIv6qk2OyWSqmGSimz53lPpdQTSqmgileteiEuF65168DhYLDZTMekJPYCS558sqpV09DQ0NDQuNF5HOgGZAOIyAEgrEo1KiEi8o2IjK1Ro0ZVq3LDEh8fT1hYGF26dAHgnXfeAeChhx5i+/bt9OvXDxFh1qxZGAwGZs2aVZXqlgqdTsfXX3/NzJkz8fHxYeTIkezdu1czbGhoaJSIW265BYDFixeXatyYMWOYP38+W7duJSgoiIyMDKZMmfKbflOmTCE7O5u9e/cSFhZGcHBwsXPHx8cTHR1NYGAgixYtIijIffR/9tlnS6VjVVCS0h2LAadSqhHwERAFfFGhWlVDdi9bRvC5c4Tb7SyKisKxejU3hYbSc8aMqlZNQ0NDQ0PjRidfRGwFL5RSBi4PidWopuTn57NixQqGDh3qzdi/adMm/Pz8SE9PB6B///7MmDGDnJwcRowYUS3Lfz755JPk5uYyf/78y1zONTQ0NK7FnXfeCcC6detKPfbPf/4zX375JdnZ2QBMmjQJh8NxWZ8WLVrQt29fXC4XHTp0KHbOgjDCYcOG8d577wFw7tw5atasyU033VRqHSubknz7ukTEAQwH3hWRZ4HaFatW9SPh88/JBs4Cf09NJRA4O2FCFWuloaGhoaFRLdiglHoJ8FFK3QZ8DXxTxTpplAMJCQlcvHjRG5Kybds2Ll26RNeuXVmzZg2hoaG0bduWN998E51OxwcffFDFGmtoaGhUHs2bN0ev15OcnFym8XfeeSfLli1Dr9eTl5fH6NGjf9OnINeR1Wotdr6CMMJ+/frx8ccf06VLF+x2e7GlY28USmLcsCul7gXuB771XLvxAyErmfX//S8KsADJeXkE6XSEPf54VauloaGhoaFRHXgBSAd2Ao8AK4GSBSxXMUqpIUqpj7KysqpalRuS+Ph4/P396dPHnT7l7bffBmDcuHGsWbOGvn378tlnn3HhwgUGDBjgdX/W0NDQ+KMQFhbG6dOnyzx+0KBBfPut+5g+f/589uzZc5l869at6PV61q9fz9atW685V3x8PKGhoaSkpJCVleVNRPq3v/2tzPpVJiUxbjwIdAHeFJEjSqmbgAUVq1b1wmmz8f3p0whu4wbAu08/XZUqaWhoaGhoVAuUUnpggYh8LCJ3icgIz/NqEZai5dy4Oi6Xi2XLljFgwAAsFvcOae3atRiNRmrXrs25c+fo378/L7/8MkopPvrooyrWWENDQ6PyadGiBXa7nWPHjpV5jv79+/O458Z6XFycd64zZ86QkZFBq1atCA0N5dlnn+Vq/14LhxG+++67dOnShd27d+Pn51eikJYbgWKNGyKyR0SeEJGFntdHRGRqxatWffjlq6/I8TzPBKL0eu6cPr0qVdLQ0NDQ0KgWiIgTqK+UMlW1Lhrly5YtW0hLS2P48OEAHDt2jPPnz9O+fXu+++47ABwOB2lpafTo0YM6depUpboaGhoaVUJZk4peyXvvvUdQUBBWq5UuXbpw8OBBb96M++67jwkTJrBhwwZWrlxZ5PiCMMLatWtz6NAhhg4dyqVLl+jWrdt16VWZlKRaSjel1HdKqf1KqcNKqSNKqcOVoVx1IWjXLhoDBbuyD197rSrV0dDQ0NDQqG4cBn5SSr2qlHq6oFW1UhrXR3x8PEajkYEDBwIwdar73tjDDz/M6tWradeuHZMmTQLQvDY0NDT+sBQkFV2/fv11zzV37lwA0tPT6dGjBwsXLgTgkUceYezYscTExPDcc8/9JvEo/BpGuGHDBurXr09SUhLgLj1bXShJWMonwAygO9ABiPM8anho+P337AMuAG/XqsVAzbihoaGhoaFRGg7hzuulAwIKNY1qioiwdOlSevXqRUHIzvLly9HpdNxxxx1s3ryZZs2acfToUWJjY2ncuHEVa6yhoaFRNTRr1uy6kooWZvjw4cTExOBwOMjLy+PQoUOEhIQQGBiI0WhkypQp7Nmzh3nz5l02riCMsHPnzmzcuJHx48ezbt26ywzU1YGSGDeyRGSViJwVkYyCVuGaVRPsubm8m5jIOcAXeHrRoqpWSUNDQ0NDo1ohIpNEZBIwveC55/UNj5ZQtGhSUlI4cOCANyQlMzOTkydP0rRpU3788UccDgc//fQToHltaGhoaISHh19XUtHCfP7558CvVVKysrL43//+B7iNH126dOG1117j0qVL3jEFYYRWqxV/f39uu+02bxhhdSpvXRJNE5RS05VSXZRS7QtahWtWTdjy6ac8AYQCM0JDoWfPKtZIQ0NDQ0OjeuHZY+wB9npet1FKvV/FapUILaFo0SxduhSAoUOHAjBjxgzAHfe9Zs0afH19OXbsGM2aNaN9e21bqaGh8cemRYsWOBwOjhw5ct1zdejQga5du3L+/HkAQkNDufXWW9m4cSNKKaZPn86pU6eYOXOmd8zSpUsxGAz8/PPPjB49mg8//BBwhxFWJ0pi3OiEOxRlMvC2p/2jIpWqTrw39dfcql0mT65CTTQ0NDQ0NKots4B+QAaAiOwAelSpRhrXRXx8PJ07d/YmCf3yyy8BeOKJJ1i9ejVGoxGAf/7zn1Wmo4aGhsaNQk/PDfLrTSpaQMF3LsDPP/9MnTp16N+/P99//z3dunVj+PDhTJ06lbNnz3rDCKOionC5XDzxxBPeMMIHHnigXPSpLEpSLaVXEa13eSyulOqvlNqnlDqolHqhCLlZKfWlR75FKdWgkOxFz/V9Sql+5aFPWfjmxAkAmhiNdKlmli0NDQ0NDY0bBRE5ccUlZ5UoonHdnDhxgm3btjFs2DAAbDYbBw4coH79+pw+fZqjR4+SlZVFgwYN6NWrVxVrq6GhoVH1FCQVTUhIKPe5P/30UzZs2EDDhg0ZPHgwK1as4K233sJqtfL666+TkpLCwYMHOXPmDMOGDSMoKMgbRmgwGMpdn4qkJNVSwpVSnyilVnleN1dKjb7ehT117f8JDACaA/cqpZpf0W00cEFEGgEzgakFOgD3AC2A/sD7nvkqlUvp6eR6nv9n/vzKXl5DQ0NDQ+P3wgmlVFdAlFJGpdQzQEpVK6VRNpYtWwbgNW589NFHiAjDhw9nzZo13n6FXaI1NDQ0/sg0adIEvV7Pzp07y2W+d955BwCdTsfkyZMJDg4mISGBli1bMnz4cHbt2sXYsWP517/+xbRp0wDIzc3lqaeeYtasWYA7jLC6URJTzGfAp8DLntf7gS9xV1G5HjoCB0XkMIBS6j/A7cCeQn1uByZ6ni8C3lPuzCi3A/8RkXzgiFLqoGe+zdepU6kY3dxtiwkE2t5zT2UuraGhoVHtEZcLl8OBOJ0Y9HpwucjLzcVhs+FyOHA5nbgcDvQ6HTX8/cHlIj09HbvNhjiduDzjLSYT4bVqgcvF4WPHsNtsuJxO9/xOJ4F+ftQLDweXi1/27sVht3vl4nIRWqMGDSMjweVi4y+/4PJcd7lciNNJVGgojSMjcdjtrE1M9I4TEVxOJ03q1KFpnTpY8/L49kq5y0W7evVoVqcO2bm5LN227Tfybg0b0iwigvTsbBYnJV0mExH6Nm5Mk7AwUi9c4KtffvHKC9odLVrQqGZNDp47x1fJyZfJRIRRbdrQoEYNktPS+HrPnstkT/XsSeiNEVL5KDAbiAROAmuBx6tUI40yEx8fT7NmzWjSpAkAn332GQDPPvssI0eOBCAiIsJr/NDQ0NDQcH8vlldS0QIj87hx43jnnXd49NFHmTt3LuvWrWPgwIHcfffdvPPOO1gsFubNm4fFYqFFixZ0796d0aPdfgx//etfy0WXyqQkxo0QEflKKfUigIg4lFLl4SoaCRR2QU3Fnd+jyD6edbOAWp7rP18xNrKoRZRSY4GxAPXq1SsHtX/l1awslgIPtW1brvNqaGhUAC4XOJ24bDZyL17EabP92ux2Anx88DObyc/N5XhqKk67/bJWPzSUmv7+ZGVlsWP/fvd1hwOn3Y7DbicuOprwwEBOnzvHxt27cXoO506HA6fDQb/mzakTGMiB06dZs2sXTqcTp9Pp7uN0MqpNG2r7+ZGYmsqylJRf5Z5D9nOxsYSZzaw7dozFhw7hcrlwemQul4sZsbEEGwwsPnaMr44dwyXilovgEuE/bdrgqxQfHT/Ol2lp3usFbWPz5uhEeOvkSRadP+++DrhEMCvFtvr1weXiqbNnWXbpklfuFCFEp2NHzZrgcnFfdjar7HZcIgjgAqKVItlkApeL2xwO1nvGFtAOSPI8vxnYdsWP7mbgx0LP910hHwisKCQ/dYX8buA/nuc9gItXyB8GPi4kv5IncbsO5gGDipC/CrwOZAL/V4R8GtAMSAMeKEL+gUd+AvhLEfJ/A01w10r9WxHypqtW0Qh3Js6Xi5Df/MMPNMB95+BNQBVqIw8frlLjhlJqqog8D/QSkT9VmSIa5cb58+f54YcfeO655wB3ecEdO3YQGhpKrVq12LBhAwBvvvlmVaqpoaGhccPRokULTp48yeHDh4mOji7zPE6nk4MHDxIZGcnMmTP55JNPmDdvHtOmTSMkJIQ1a9YwZMgQxo0bx9ChQ1m2bBl5eXk89dRT2O12Dh48SP369fH39y/Hd1c5lMS4cUkpVQsQAKVUZ6Da1DsTkY+AjwDi4uKkPOdulptL24AAvkpO5o2zZ/ELCyvP6TU0KgYRHHl52C5dwpGXh91qxW61opxOwoOCwG7n0OHDXMzKwp6XhyM/H3t+Pv5GI+1vugkcDr7fto0LWVnY8/Nx2O3YbTbqBAQwoGlTcDj418aNZF665JY5HDgcDprXrMl9jRuDw8EzGzaQk5+Pw+n0th4hIYytXx8cDgZv3ozd6cThOcA7XC7uqlmTv4aGYrXZ6LhvH04RHCLex/F+fjzj48NZm40mmZnu64ADd+D+W8BzwGEgpoiP5X3cB8s9QFF5+xcAfwZ2ALcUIY/H7VKWhPswfSXfA3U88vFFyHutXk1tYDvwd0DvaTrP48N79xJmNHLAZmOR1YpOKbfM85hns4HJxJmLF0nOzLxcrhTO9HQwmbDn5ZHvcKBTCr1Oh0GnQymFBAaCXk9gTg517HZ0Op17DqWwGAzQti3odMQcPEj3jAy3zNMnyGyGrl1Bp6NnSgqhFy6gCslD/PygSxdQinuSk+mcne2WeVpEQAB07Ag6HU/88gtncnLQ6fXoPLpFBgVBbCwoxcTERLLy871jlVJEhYRAq1agFO8lJpLndLrX1+tRSlEvNBSaNgWl+E9SEi5Aecbq9HrqhoZCdDQoxffbt6N0OvdYzxqRYWFQty4+Lhc/79vnHlvQRylqh4VBWBghDgc7jx1Dea4XzBFaqxYEB3OTw8GhM2d+Ha/TofR6goOCwN+fVg4HpzIzf5V55AEBAWCx0M3pJDM31zu+oJl9fMBoZIDL5X7vV8h1ej3odNyDO57zBmOgJ+fWi8DXVa2MxvWzYsUKnE6ntwTskiVLcDgc9O/fn5UrV+J0OvHz8+PBBx+sYk01NDQ0bix69erF2rVrWbx4Mc8++2yZ51m8eDEul4t+/fqh0+mYMmUK48eP57777mPt2rX4+/uzcuVK7rjjDpYtW0ZAQAB+fn7cddddl4URVkeUyLXP+56yr+8CLYFduKuejhCR5OtaWKkuwEQR6ed5XeAZ8lahPms8fTYrpQy4b3yFAi8U7lu437XWjIuLk23brrwneH389MEHdH/sMSb27MmECkgAo1F9cNps6BwOlM1GzvnzXEhPJz8nh/ycHGy5ueRfukTcTTdhcLnYc+AAKUeOYMvLI99qJd9qxZafz+MdO6JzOPgmOZmfjh7FZrdjt9uxORzgdPKvjh3BZmNWSgrfnzmD3enE5nRidzrxV4rV0dFgt/NYaiqrLl3C5nJhE8EuQqRS7NbrweHgVmDdFfq3xn1wB7cL1f+ukHcDNnmet+Dy+DFwlzlY7Xlej8vdsvTACJ2O//j4gMFAo4sXycFtXTUohUEp7goM5K3atcFgoNOBAyjP4duo06HX6bgzPJzHoqOxKcU9SUkY9Hr34Vyvx6DTMaRBA+5o1Igcl4uX/vc/93W9Hr3BgEGvp29MDDdHR5Npt/Pxtm3oDQb0Hrler6dH06a0iIriQl4eK3budF8v1GIbNyYqIoJMq5XEQ4fQG41umdGIwWgkpkEDgoODuZiXx/GzZ71yncGA3mQiPDwcHz8/8mw2Llqt6E0mdx+jEZ3RiMXPD53RiHgOpBoa1RmlVKKIxJWg33RgDOAP5OJ2KJGCRxEJrFBFywGl1BBgSKNGjcYcOHCgqtWpcu688062bNnC8ePH0el09O7dm4SEBHbu3MmIESPYt28fb775Ji+99FJVq6qhoaFxQ3HgwAEaN25M//79WbVqVZnn6devH2vXruWXX36hTZs2ANSuXZu0tDT27NlDs2bNAMjPz+fuu+9m2bJlvPXWW7zwwgvExsaSlJTEiRMnqFu3brm8r/LmWnuMYo0bngkMuL1iFbBPROzloJQBd/6OPrjja7cC94nI7kJ9HgdaicijSql7gDtE5P+UUi2AL3Dn2aiD+5wWIyLXDJepCOMGwP9FRbEiNZUDiYnU0Wq133A4rFayTpwgMzWVcKMRfyDt5Em2JCeTe/Ei1pwcrJcuYc3N5d5mzYg0Gtly+DCfJidjzc/HarORa7Nhtdv5uEEDokWYn5bGK+npWF0urCLk4fYOOAI0wF03uSj38HQgBHgJtyfBlVgBC/BX3K7qZsCoFCal8FGKI/Xrg9HIaxcusOLiRUx6PUadDqNeT02Tia87dQKjkdlHjpCUmYnRYMBkNGIyGgn19+flHj3AaGThnj0cz8nB6DmYG41GQoOCGNG5MxiNrN+7l6z8fIxmMwaTCaPZTM3gYNo1bw5GI3tTU3EARosFo48PBrMZv4AAaoWHg8FATl4eerMZg8WC3mRCV80yLWtoaFwfpTBumEUkXym1TERurwzdKoqK2mNUJ6xWKyEhITzwwAPeEq++vr4YDAZOnz6Nv78/er0em82GTjPiamhoaPwGo9FIREQEJ05cWUCs5NSoUQO73U5ubq732sqVKxk0aBCtW7dmx44d3ut2u51vv/2WQYMGYTAYMJvNBAcHc/bs2et6HxXJtfYYxZ44lFJ3AatFZLdS6hWgvVLqDRFJKm7stfDk0BgHrMF9Y3euZ43XgW0ishx30tIFnoSh5/F41Hr6fYX75rEDeLw4w0ZFMmXBApb16sWchx/mtaTr+lg0isCem+s1TtQEaopw7vhx4jdsIDMjg8zMTDKzs8m8eJG/1K5NN52O/546xd3Hj5PpdJJTaK4VuOPztwBFpTGLW7GCSIOBEwYDS/Pz8dHp8NHr8dHr8TUYsFssEBJCZI0a9Pbzw8dsxtfHB4vZjNlsJrB7dwgOZuDZs4SdOoXZx8fdLBZMPj4EdOwI/v6My87mntxczH5+mPz8MPv7u1tEBFgszDYama3UVT+T1z3tahSX/ufeYuTF1Xpu2qHDNeXVL0JPQ0OjitiMOxIsu6oV0bh+vvvuO3Jzc73uzJs2bcJqtTJ48GAeeeQRAG655RbNsKGhoaFxFcLDw0lLSyvz+EOHDpGdnU337t0vuz5w4ECaN29OcnIy69ato0+fPoDbmFLwnb1o0SJvGGF1pSS3U18Vka+VUt1xe1n8A/dN5SuTf5YaEVkJrLzi2muFnucBd11l7Ju4c6NVOdE9e7Jl1Chaz58P27dDu3ZVrVK1Iuv4cfYnJLB/yxYa22x0uHSJg8nJ9Ny7l0yXi0uF+r6DO19BGm4/ZnDnJAhSiiC9njt1OmjQgNCYGG4zGAgKCCCoRg2CgoMJqlWL1p06Qb163OJ0kpiRgU+NGvgEBXmbX0gIWCyMAEZcQ+c+nnY12nra1ajjaRoaGhp/cExKqfuArkqpO64UisiSKtBJo4zEx8cTFBTELbe4MxO9/fbbADz22GMMGTIEgKlTp1aZfhoaGho3Oi1btuTkyZMcPHiQRo0alXr8u+++C+CtTFWYhQsX0qZNGx544IEiPUMKPO4KEkJXR0pi3CjwiBgEfCwiK5RSb1SgTtWStrNnw8qVnH/iCYI3bNBi5q8gPzubQz/8gDp2jGZWK/kpKdy2ZAn7c3I44/q1bsJTQIfoaCKjo+nvcFCjsHEiJISObdpAy5Y09vPjuN1OUFQU/hERv/m8Y4C519AniKKTRmpoaGhoVCqPAn/C/bU85AqZAJpxo5rgcDhYvnw5gwcPxmg0ApCQkIDZbCYhIQGn04mPjw+xsbFVrKmGhobGjUuvXr1Ys2YNixcv5vnnny/1+G+++QalFPfff/9vZK1bt6Znz5788MMPfPLJJ96SrwVs2bKFgIAAWrZsWWb9q5qSGDdOKqX+BdwGTFVKmXHfLNcoTFAQvzz8MLdMmcKCV19l6B+wxJnL4SBz925qnj0L+/fz4qefsv3oUfZnZXHM4cCFu0zil4A5PJwaBgODGzWiccOGNGnblsZduxLdowcEBuIDzLnGWiYgqjLelIaGhoZGhSEim4BNSqltIvJJVeujUXZ++uknMjIyGDbMHfS5b98+srKy6N69O++99x4Ad9xxB+oaIZcaGhoaf3TuvPNOXnjhBRISEkpt3LDb7Rw5coR69ephNpuL7LNw4UIiIyN5+umnefDBB71hggVhhIMGFVX0vvpQEuPG/wH9gX+ISKZSqjZQ9to0v2NaTphA5IwZPDN9Ov1ffBFTNawNXBqs58/z5XPP8c2qVezPyOBgfj7tgP965Jt1Oi6azXSqU4eRDRrQuGVL2tx8MwwYADVq8E1VKq+hoaGhUeUopXqLyHrgghaWUr1ZunQpZrOZfv36Ab+Gn9SuXRur1QpQ7TfNGhoaGhVNo0aNMBgM7Nq1q9RjFy5ciIgwYMCAq/aJiIjgnnvu4YsvvuCVV15h8uTJwK9hhE899VTZFL9BKFG1lN8LlZHJfOWkSQyaOJHZd9zBE4sXV+haVcbRo/DBB9wxaxZLbTYaGAy0Dgmhcd26tG3Thj+NHAmNG0NEBGh3aDQ0NDT+cJSiWsokEZmglPq0CLGIyEMVoF6F8EeqliIiZGVlcerUKU6ePMmpU6d4+eWXad++PcuXLwfcRo309HR8fX3JyclBREhPTyckJKSKtdfQ0NC4sYmKiiLt/9u7++ioyrPf499rEiQCSkBBICCRF+MDCHIK1pdVVECrpyKPgCgtiopYKCot1jcerT6lKj1QRCrahSIgVgUMKvh4HEoVcJ1qEZXKm2h5DxDAIChBgiHX+SMTRCQYwuzZM8Pvs9asmdmzZ88vt65w5Zq977uwkG++OboFSiuW3j54udfD2bt3L3Xr1gVg165dZGVlkZ2dzd69e9m7d+8xZU+EY1otRY7OFQ88wKXjx/PQK6/Qf/Vq6rdsGXakuCgrLWXe6NE8OX48EwoLycnI4O6f/ITbe/Tg4l//WnOMiIjIUXP3B2P3N4WdRcrt2bOHzZs3H7hVNC8OfV5xNkYFM2PcuHEAbNu2jcLCQnJycti0aRP16tWjZcuWamyIiFRBu3btKCgo4NNPP+XMM8+s8vsWLVpE7dq1j9jYAMjKyuLOO+/k0UcfZeDAgdx///0HLiNMdWpuxJlFIvxp4kQ69unDnF/9igHRaNiRjsmuDRuY+pvfMGHOHD795hsamvHJz39OzqhRnNdMs16IiEj1mdnwI73u7mMTleV4sX37dt55551Kmxc7d+783ntOPPFEcnJyaNKkCZ07d6ZJkyYHnlc8bty4MbVq1QJgzJgxAOzcuRMzY+fOnSm9tKCISCJ17dqVN998k/z8fO67774qvWflypUUFxdzySWXVGn/P/zhD0yYMIGXXnqJkpISAAYPHlztzMlCzY0AnN27N59eey0t8vPh00/LL9FINcuW8dVjj9H82WfZBZxXpw7P33ILfUaNoubJJ4edTkREjud1ZAAAFhdJREFU0sNJsfs8oDMwO/a8B7AoUSHMrAXwX0Bdd+8T21YbeBLYB8x3978mKk+QBg8ezKxZ5VOZZGZm0rhxY5o0aUJeXh5du3Y90LA4uIFRt27do5oIND92WW5xcTFt27Zl+fLlB+biEBGRI+vduzd333038+fPr3JzY/z48QCHXSXlcCKRCGPHjuWWW24hPz+fjIwM+vXrV+3MyUJzbgSlsBBat2bDBRdweoqcvfHNnj289sADLJ45k1EbN0LNmkzo2JHzhg7lR/37hx1PRERSRFXn3Dho/4XAz9z9q9jzk4D/cfcuVXjvs8CVwDZ3b3fQ9suBx4EM4Bl3H1WFY718UHPjemCnu88xs+nufu2R3psqc2789Kc/pbCwkLlz59KgQYMDM+XHy549e6hTpw6RSIT9+/dzzTXXEI1G+fzzzw8sESsiIkdWo0YNGjZsyKZNm6q0f25uLhs2bKCkpOSoftc2a9aMgoIC2rdvz7/+9a/qxk2oI9UYmighKI0a8Wbv3rSYO5f5sWtQk1Xhxx8zsls3ck86iWvGjmXGli189fvfQ0EBQ999V40NEREJ2mmUnyFRYV9sW1VMoXxVtwPMLAOYAFwBtAH6mVkbMzvbzF4/5NawkuM2BTbGHu+vYpaUUKtWLU477bS4NzYAJkyYgLuzf/9+OnfuzHvvvUf37t3V2BAROQqNGjVi69atVdq3pKSEDRs2cMYZZxz179qpU6dSs2ZN7r333urETDpqbgToorFjycnIYPiIEZSVloYd57vc4d13mXPRRZzeoQO/e+stzq5Xj9n3389nxcWc9MADoIm/REQkMZ4DFpnZQ2b2EPBPypsWP8jdFwI7Dtl8LvBvd1/j7vuAl4Ce7r7U3a885LatkkMXUN7gANVLVTZt2rQDj++55x42btyoS1JERI5S+/bt2b9/P6tWrfrBfadOnYq7c+WVVx7153Tt2pW9e/emxSUpoH+sA3Vi/fo8+stf8tHXXzNtyJCw4wDw9Y4dPHvTTfzfVq3gggu44MMPGXrOOax6803e/PxzeowcScYJJ4QdU0REjiPu/jBwE/BF7HaTuz96DIfM4duzLqC8UZFT2c5mdoqZ/QXoaGYVFzjPAnqb2VPAnEred6uZLTazxdu3bz+GuOmhrKyM5cuXA9C2bVs2bNgAoOaGiMhRqpgYtGIOoyOpaCrfcccdgWZKBWpuBOy6xx/n3Nq1GfHssxRvq+zLoeCVfPkl951/Pk1PPZWBU6bwQlERPPUUp2zZwmMffcSZKjxERCRE7v6huz8eu32U4M8ucvfB7t6yoqni7sXufpO7D6lsMlF3n+jundy9U4MGDRIZOSk9//zzlJWVAfDEE08QjUY566yzaN68ecjJRERSS+/evQGYP3/+D+77wQcfcPLJJ9OyZcuAUyU/NTcCFsnMZOzo0RSVlfHub38bSobibdu4qkULRr33Hpc0acL8ceN4bscOGDwY6tQJJZOIiEiANgEHr1feNLYt7sysh5lN3LVrVxCHTyl/+tOfAMjJyeHHP/4xCxYs0FkbIiLVcMYZZ5CZmXngbLjKLFmyhK+//przzjsvQcmSm5obCXDhkCFsvOoquufnQxVnvI2bXbt4o0sX5hUVMXngQF4uKOCiYcOwACYRExERSRLvA63N7AwzOwG4jm+XmY0rd5/j7rfWrVs3iMOnlKVLlwLlZ20sXLiQvXv3qrkhIlJNjRs3ZuvWrRxpddM///nPAAwcODBRsZKa/sJNkAaPPQalpSwdOjRhn+nbtkHXrlyzZg0rxo3jxmeeSdhni4iIJIKZvQi8C+SZWYGZDXT3UuA2IAqsBGa4+5G//qr+56fUmRtHKpKPxeTJk3F3srKy6NmzJ9FolJo1a3LRRRcF8nkiIumuYlLRlStXVrrP3LlziUQiBy5jOd6puZEoLVrw9MUX0+G11/jwr4e9dDeuNi1ezI+bN+fdZcvgtdfIGzYs8M8UERFJNHfv5+6N3b2Guzd190mx7W+4+5mxeTQeDvDzdeYGcNdddwEwfPhwzIxoNEqXLl2oVatWyMlERFJT165dAZg1a9ZhXy8uLqagoIBWrVqRkZGRyGhJS82NBOo7cSKnmHHnbbfhsQm3grBm/nx+cv75fLJ3L9+MGQNXXBHYZ4mIiBzPUu3MDQAzi9uxCgsL6d+/P0VFRQCMHDmSjRs3smLFCl2SIiJyDHr16gXAggULDvv6pEmTAOjZs2fCMiW7zLADHE/qNm/Of/fty9Dp05l9//30fOSRuH/Gitmz6X711ZS489bUqXS64Ya4f4aIiIiUc/c5wJxOnToNCjtLvH355Zd8/PHHLF++nFWrVrFu3To2bdrEtm3b2LFjB7t37z6wOgpAu3btiEQiRKNRQEvAiogci9zcXGrUqFHppKIvvPACALfffnsiYyW1UJobZlYfmA7kAuuAvu7+xWH2GwDcH3v6B3efGts+H2gMfB177TJ3D2+d1aNw65QpPPHKK9w1ZgxXjBjBCXFcreTfr75Kl169qGHGgvx82l19ddyOLSIiIumhrKyMJUuW8PHHH7Nq1SrWrl1LQUEBhYWFfPHFF+zevZuSkpJK5+cws++81qhRIy677LIDq6VEo1FycnJo27ZtQn4eEZF01bhxYzZt2oS7f+esO3dnyZIlZGdn06xZsyMc4fgS1pkb9wJ/d/dRZnZv7Pk9B+8Qa4A8CHQCHPjAzGYf1AT5hbsvTmToeMjMymLMiBHc+NBDrBo5krP/+Mf4HPidd8i94QZ+XqcOd7zyCq26dYvPcUVERKRSZtYD6NGqVauwo1TJokWL2LVrFx07dvzea5FIhKysLLKzs6lfvz6NGzemWbNmtGzZkoYNG/LGG28we/Zs3J1IJELfvn159NFHyc3NPXCM0tJS5s2bR69eveJ6+YuIyPGoffv2bNiwgRUrVnynYbxo0SJKSkro3r17iOmST1jNjZ7AxbHHU4H5HNLcAH4K/M3ddwCY2d+Ay4EXExMxOFc88ABrFy6k9tNPwz33QP36x3S8t/74R8566CGaNG/O+HnzoGnTOCUVERGRI0m1y1L27NkDwHXXXUeLFi3Iy8ujXbt2tGnThqysrO/tv379ekaMGMGDDz5IWVkZkUiEfv368cgjj9C8efPv7b9o0SJ27typS1JEROKga9euvP766+Tn53+nufHEE08AMGhQSvzTkzBhNTdOc/ctsceFwGmH2ScH2HjQ84LYtgqTzWw/kE/5JSuHPXfSzG4FbgU4/fTTjzV3XFgkQu1x4yjt0IF/DhnChdOnV/tYs+6+m+tGj6ZPdjYvLFwIDRvGMamIiIikm0gkwosvHvm7orVr13LfffcxY8aMA2dq9O/fn4cffviI9VQ0GiUSiejbRBGROOjduzfDhw9n4cKF39k+b948MjIy6NGjR0jJklNgq6WY2TwzW3aY23emc401JY520fVfuPvZwE9it+sr29HdJ7p7J3fv1KBBg6P+OQJz9tn8/pxzuHjGDD6NTbx1tJ679VauGT2aTnXq8OSSJWpsiIiIyBFVNo9GhdWrV3PttdfSsmVLpk+fjplx/fXXs3btWqZNm/aDXxRFo1HOPfdc6h/jWakiIlL+5fyhk4ru2rWLwsJC8vLyiES0+OnBAhsNd+/u7u0Oc3sN2GpmjQFi94ebDHQTcPDsKE1j23D3ivuvgBeAc4P6OYL0qylTyALuuemmo37vhL59GfD001xSrx5zP/uM7MOcGioiIiLBSsWlYA/ns88+o0+fPrRu3ZoZM2ZgZgwYMIB169bx3HPPVens16KiIhYtWqRLUkRE4qhJkyZs27btQHN64sSJwLdLxcq3wmr1zAYGxB4PAF47zD5R4DIzq2dm9YDLgKiZZZrZqQBmVgO4EliWgMxx16h9e+679FJe3bKF+ePGVfl9JSNH8peZM+nZqBGvr1lDnUaNAkwpIiIilXH3Oe5+a926dcOOUi2rVq3i6quv5swzzyQ/P59IJMKNN97I+vXrmTJlylHNwj9v3jzcXc0NEZE4at++PWVlZSxbVv4n7/TYlAZDhw4NM1ZSCqu5MQq41Mw+A7rHnmNmnczsGYDYRKIjgfdjt9/HttWkvMnxMbCE8rM5nk78jxAfv3npJZplZDB8xAjKSkuPuK+XlfHN3XdT83e/461evZi5ejVZ2dkJSioiIiLpYuXKlVx11VWcddZZvPrqq2RkZHDzzTezbt06Jk+eTNNqTE4ejUapV68enTt3DiCxiMjxqWIOo1mzZuHuLF26lPr169NIX3B/TyjNDXcvcvdu7t46dvnKjtj2xe5+y0H7PevurWK3ybFtxe7+I3dv7+5t3X2Yu+8P4+eIhxPr12fUL3/JN19/zZbYrLeHU1Zaym0dOnDt6NGUDhpEg5kzqVGrVgKTioiISDooKyujTZs2zJkzh4yMDAYOHMj69euZNGlStZoaUD6XRzQapXv37mRmhjVfvYhI+qm4/GTBggUsWLCAffv20aVLl5BTJSfNQJIE+o0fz0edO5MzejQUF3/v9dK9e7kxL48nly2jZefOZPzlL6DJY0REREKXanNulMbOEs3IyGDQoEFs2LCBZ555hpycnB9455EtW7aMzZs365IUEZE4a9q0KTVq1GDlypU89dRTAAwePDjkVMlJfyEnAcvIIPOxx9i1eTPzhgz5zmslX35J3xYtmLZmDSO7deP/vPcepsaGiIhIUkjVOTfGjRtHr169KCgoYPXq1XzxxReUlZVV+3jR2Mpvam6IiMRfxaSib7/9NpmZmVx66aVhR0pKOm8wWVx4IcNzc3lp2jQ+veMOcjp1guJiBuTl8UphIY/36sUd+flhpxQREZE0cPvtt39vWyQSoV69epxyyinUr1+/yvcnnXQS0WiUtm3bVvuyFhERqVyHDh1Yv34927dvp3379loCthJqbiSR/5o8mecvuYT7+/Vj8uLF8LOf8eutW7n85pu5cdKksOOJiIhImvjkk08oKipix44dld5v3ryZZcuWUVRUxO7duys9VmZmJqWlpQwfPjyBP4GIyPGjW7duzJ49G4A+ffqEnCZ5qbmRRFpcfDHDOndm9PvvUyc3lz8XF3Pe9Omcd801YUcTERGRNJKXl3dU++/bt48dO3Z8rwlS8Xj37t1allBEJCC9e/dm2LBhAAw5ZBoD+ZaaG0lmxMyZjM7N5YmdO7lryhROV2NDREREQnbCCSfQqFEjLT0oIhKCnJwcTjzxRLKzszn11FPDjpO01NxIMtnNm7N01iwsEuH0nj3DjiMiIiJHYGY9gB6tWrUKO4qIiKSxf/zjH9SpUyfsGElNzY0k1O7qq8OOICIiIlXg7nOAOZ06dRoUdhYREUlf55xzTtgRkp6mWRURERERERGRlKbmhoiIiIiIiIikNDU3RERERERERCSlqbkhIiIiIiIiIinN3D3sDAljZtuB9XE+7KnA53E+ppTT2AZD4xocjW1wNLbBCGpcm7t7gwCOm7RUY6QcjW1wNLbB0LgGR2MbjITXGMdVcyMIZrbY3TuFnSMdaWyDoXENjsY2OBrbYGhck5v++wRHYxscjW0wNK7B0dgGI4xx1WUpIiIiIiIiIpLS1NwQERERERERkZSm5saxmxh2gDSmsQ2GxjU4GtvgaGyDoXFNbvrvExyNbXA0tsHQuAZHYxuMhI+r5twQERERERERkZSmMzdEREREREREJKWpuXEMzOxyM1tlZv82s3vDzpMOzKyZmb1tZivMbLmZDQs7U7oxswwz+8jMXg87Szoxs2wze9nMPjGzlWZ2ftiZ0oGZ/Sb2u2CZmb1oZllhZ0pVZvasmW0zs2UHbatvZn8zs89i9/XCzCjfUo0RDNUZwVKNEQzVGMFQjRE/yVJjqLlRTWaWAUwArgDaAP3MrE24qdJCKXCnu7cBzgOGalzjbhiwMuwQaehx4E13PwvogMb4mJlZDnAH0Mnd2wEZwHXhpkppU4DLD9l2L/B3d28N/D32XEKmGiNQqjOCpRojGKox4kw1RtxNIQlqDDU3qu9c4N/uvsbd9wEvAT1DzpTy3H2Lu38Ye/wV5b+8c8JNlT7MrCnwM+CZsLOkEzOrC3QBJgG4+z533xluqrSRCZxoZplALWBzyHlSlrsvBHYcsrknMDX2eCrwnwkNJZVRjREQ1RnBUY0RDNUYgVKNESfJUmOouVF9OcDGg54XoH8c48rMcoGOwD/DTZJWxgF3A2VhB0kzZwDbgcmx03GfMbPaYYdKde6+CRgDbAC2ALvcfW64qdLOae6+Jfa4EDgtzDBygGqMBFCdEXeqMYKhGiMAqjESIuE1hpobkpTMrA6QD/za3b8MO086MLMrgW3u/kHYWdJQJvC/gKfcvSNQjE7vP2axazN7Ul7YNQFqm1n/cFOlLy9fPk1LqMlxQXVGfKnGCJRqjACoxkisRNUYam5U3yag2UHPm8a2yTEysxqUFxx/dfdZYedJIxcCV5nZOspPce5qZs+HGyltFAAF7l7x7d/LlBcicmy6A2vdfbu7fwPMAi4IOVO62WpmjQFi99tCziPlVGMESHVGIFRjBEc1RjBUYwQv4TWGmhvV9z7Q2szOMLMTKJ+AZnbImVKemRnl1xSudPexYedJJ+5+n7s3dfdcyv9/fcvd1aGOA3cvBDaaWV5sUzdgRYiR0sUG4DwzqxX73dANTaIWb7OBAbHHA4DXQswi31KNERDVGcFQjREc1RiBUY0RvITXGJlBf0C6cvdSM7sNiFI+u+6z7r485Fjp4ELgemCpmS2JbRvh7m+EmEmkKm4H/hr7Q2QNcFPIeVKeu//TzF4GPqR8hYOPgInhpkpdZvYicDFwqpkVAA8Co4AZZjYQWA/0DS+hVFCNESjVGZKKVGPEmWqM+EqWGsPKL38REREREREREUlNuixFRERERERERFKamhsiIiIiIiIiktLU3BARERERERGRlKbmhoiIiIiIiIikNDU3RERERERERCSlqbkhIglnZtlm9qvY4yaxpbhEREREjolqDJHjl5aCFZGEM7Nc4HV3bxdyFBEREUkjqjFEjl+ZYQcQkePSKKClmS0BPgP+w93bmdmNwH8CtYHWwBjgBOB6oAT43+6+w8xaAhOABsAeYJC7f5L4H0NERESSjGoMkeOULksRkTDcC6x293OAuw55rR3QC+gMPAzscfeOwLvADbF9JgK3u/uPgN8CTyYktYiIiCQ71RgixymduSEiyeZtd/8K+MrMdgFzYtuXAu3NrA5wATDTzCreUzPxMUVERCTFqMYQSWNqbohIsik56HHZQc/LKP+dFQF2xr6REREREakq1RgiaUyXpYhIGL4CTqrOG939S2CtmV0DYOU6xDOciIiIpCzVGCLHKTU3RCTh3L0I+H9mtgwYXY1D/AIYaGb/ApYDPeOZT0RERFKTagyR45eWghURERERERGRlKYzN0REREREREQkpam5ISIiIiIiIiIpTc0NEREREREREUlpam6IiIiIiIiISEpTc0NEREREREREUpqaGyIiIiIiIiKS0tTcEBEREREREZGUpuaGiIiIiIiIiKS0/w8xg2nKQCrfjAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "eps=1e-4\n", + "op=model.getParameters()\n", + "\n", + "\n", + "solver.setSensitivityMethod(amici.SensitivityMethod_forward) # forward sensitivity analysis\n", + "solver.setSensitivityOrder(amici.SensitivityOrder_first) # first-order sensitivities\n", + "model.requireSensitivitiesForAllParameters()\n", + "solver.setRelativeTolerance(1e-12)\n", + "rdata = amici.runAmiciSimulation(model, solver, edata)\n", + "\n", + "def fd(x0, ip, eps, symbol='llh'):\n", + " p = list(x0[:])\n", + " old_parameters = model.getParameters()\n", + " solver.setSensitivityOrder(amici.SensitivityOrder_none)\n", + " p[ip]+=eps\n", + " model.setParameters(p)\n", + " rdata_f = amici.runAmiciSimulation(model, solver, edata)\n", + " p[ip]-=2*eps\n", + " model.setParameters(p)\n", + " rdata_b = amici.runAmiciSimulation(model, solver, edata)\n", + " \n", + " model.setParameters(old_parameters)\n", + " return (rdata_f[symbol]-rdata_b[symbol])/(2*eps)\n", + "\n", + "def plot_sensitivities(symbol, eps):\n", + " fig, axes = plt.subplots(4,2, figsize=(15,10))\n", + " for ip in range(4):\n", + " fd_approx = fd(model.getParameters(), ip, eps, symbol=symbol)\n", + "\n", + " axes[ip,0].plot(edata.getTimepoints(), rdata[f's{symbol}'][:,ip,:], 'r-')\n", + " axes[ip,0].plot(edata.getTimepoints(), fd_approx, 'k--')\n", + " axes[ip,0].set_ylabel(f'sensitivity {symbol}')\n", + " axes[ip,0].set_xlabel('time')\n", + "\n", + "\n", + " axes[ip,1].plot(edata.getTimepoints(), np.abs(rdata[f's{symbol}'][:,ip,:]-fd_approx), 'k-')\n", + " axes[ip,1].set_ylabel('difference to fd')\n", + " axes[ip,1].set_xlabel('time')\n", + " axes[ip,1].set_yscale('log')\n", + " \n", + " plt.tight_layout()\n", + " plt.show()\n", + "\n", + "plot_sensitivities('x', eps)\n", + "print('------')\n", + "plot_sensitivities('y', eps)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1557,7 +1610,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1567,7 +1620,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1613,19 +1666,19 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " 0.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -0.580906\n", - " 1.138852\n", - " 2.548393\n", - " -0.328878\n", - " 3.430770\n", - " 0.265899\n", + " -0.979183\n", + " 0.192956\n", + " 1.072430\n", + " 0.048621\n", + " 1.944063\n", + " -0.727894\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1634,19 +1687,19 @@ " NaN\n", " \n", " \n", - " 1\n", + " 1\n", " 0.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.061815\n", - " 2.587035\n", - " 0.052490\n", - " 0.495810\n", - " 3.480146\n", - " 0.057071\n", + " 1.318564\n", + " 0.893174\n", + " 0.119221\n", + " 0.667590\n", + " 2.991938\n", + " -0.606037\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1655,19 +1708,19 @@ " NaN\n", " \n", " \n", - " 2\n", + " 2\n", " 1.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -0.364329\n", - " -0.076008\n", - " 0.770576\n", - " 2.179266\n", - " 4.011141\n", - " 0.968669\n", + " 1.998418\n", + " 0.319199\n", + " 1.230149\n", + " -0.398608\n", + " 3.856450\n", + " -0.913528\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1676,19 +1729,19 @@ " NaN\n", " \n", " \n", - " 3\n", + " 3\n", " 1.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.002332\n", - " 1.337097\n", - " -0.756828\n", - " 0.599910\n", - " 4.724282\n", - " 1.996087\n", + " -0.014750\n", + " -0.427097\n", + " -0.279452\n", + " 1.433348\n", + " 4.788364\n", + " -0.074601\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1697,19 +1750,19 @@ " NaN\n", " \n", " \n", - " 4\n", + " 4\n", " 2.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 2.469387\n", - " 2.777323\n", - " -0.917034\n", - " 2.146876\n", - " 4.111527\n", - " 2.106783\n", + " 0.407775\n", + " 0.463747\n", + " 0.119668\n", + " 1.180980\n", + " 3.065187\n", + " -0.101223\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1718,19 +1771,19 @@ " NaN\n", " \n", " \n", - " 5\n", + " 5\n", " 2.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -0.690338\n", - " 1.233353\n", - " -0.617748\n", - " 0.443415\n", - " 5.329311\n", - " 1.042524\n", + " 1.481813\n", + " 0.293208\n", + " -0.159899\n", + " 0.218286\n", + " 3.183441\n", + " 0.933746\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1739,19 +1792,19 @@ " NaN\n", " \n", " \n", - " 6\n", + " 6\n", " 3.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -0.090433\n", - " 3.113311\n", - " -0.246096\n", - " 0.139758\n", - " 2.567485\n", - " 1.001862\n", + " -0.064053\n", + " 1.484332\n", + " 0.119981\n", + " 1.719267\n", + " 4.822919\n", + " 1.856944\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1760,19 +1813,19 @@ " NaN\n", " \n", " \n", - " 7\n", + " 7\n", " 3.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.369380\n", - " 0.579885\n", - " -0.851098\n", - " 0.000604\n", - " 4.472670\n", - " 0.904686\n", + " 1.411443\n", + " 1.836223\n", + " 1.359105\n", + " 0.048072\n", + " 4.722903\n", + " -2.202143\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1781,19 +1834,19 @@ " NaN\n", " \n", " \n", - " 8\n", + " 8\n", " 4.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -1.099564\n", - " 3.210831\n", - " 1.263742\n", - " 0.448372\n", - " 4.271006\n", - " -0.690721\n", + " 0.805056\n", + " 0.163220\n", + " 0.146697\n", + " 0.425173\n", + " 3.338153\n", + " -1.097586\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1802,19 +1855,19 @@ " NaN\n", " \n", " \n", - " 9\n", + " 9\n", " 4.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.064880\n", - " -0.812373\n", - " 0.581151\n", - " 0.178842\n", - " 4.296181\n", - " 1.771814\n", + " 2.785217\n", + " -0.098704\n", + " -0.560119\n", + " 2.580439\n", + " 4.363146\n", + " 1.110953\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1823,19 +1876,19 @@ " NaN\n", " \n", " \n", - " 10\n", + " 10\n", " 5.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.398187\n", - " -0.764161\n", - " -1.909564\n", - " -0.135744\n", - " 3.378465\n", - " 0.877764\n", + " 0.117663\n", + " -0.734754\n", + " -0.664079\n", + " 0.541150\n", + " 3.478977\n", + " -1.436971\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1844,19 +1897,19 @@ " NaN\n", " \n", " \n", - " 11\n", + " 11\n", " 5.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.399516\n", - " 1.470097\n", - " -0.238305\n", - " -0.305426\n", - " 4.508414\n", - " 1.382739\n", + " 1.059940\n", + " 0.499436\n", + " -0.805301\n", + " 1.440611\n", + " 2.165131\n", + " -0.749951\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1865,19 +1918,19 @@ " NaN\n", " \n", " \n", - " 12\n", + " 12\n", " 6.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.963333\n", - " -0.402086\n", - " 0.775235\n", - " 1.567235\n", - " 3.003864\n", - " 0.148294\n", + " 2.044621\n", + " 0.089834\n", + " -0.030406\n", + " 0.931452\n", + " 4.924059\n", + " 1.285210\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1886,19 +1939,19 @@ " NaN\n", " \n", " \n", - " 13\n", + " 13\n", " 6.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.860035\n", - " 1.720437\n", - " -0.257288\n", - " -0.008972\n", - " 4.657872\n", - " 0.009823\n", + " 1.136111\n", + " -1.453566\n", + " 0.570666\n", + " 1.460973\n", + " 1.416084\n", + " -0.236831\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1907,19 +1960,19 @@ " NaN\n", " \n", " \n", - " 14\n", + " 14\n", " 7.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -0.268294\n", - " 0.790623\n", - " 1.565493\n", - " 0.390212\n", - " 2.289319\n", - " 2.018072\n", + " -0.077502\n", + " 1.456230\n", + " 1.537391\n", + " 0.465748\n", + " 5.488972\n", + " -0.039388\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1928,19 +1981,19 @@ " NaN\n", " \n", " \n", - " 15\n", + " 15\n", " 7.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.376917\n", - " 0.094986\n", - " -1.076985\n", - " 0.047076\n", - " 3.485641\n", - " 1.122709\n", + " 1.736106\n", + " -2.389954\n", + " -0.401374\n", + " 1.470112\n", + " 4.389249\n", + " 0.794856\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1949,19 +2002,19 @@ " NaN\n", " \n", " \n", - " 16\n", + " 16\n", " 8.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 2.327584\n", - " 0.272424\n", - " 0.786510\n", - " 0.857738\n", - " 4.751938\n", - " -1.117641\n", + " -0.882210\n", + " 2.627972\n", + " 0.680587\n", + " 1.609892\n", + " 3.058685\n", + " 0.085670\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1970,19 +2023,19 @@ " NaN\n", " \n", " \n", - " 17\n", + " 17\n", " 8.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.212276\n", - " 0.653588\n", - " -0.085610\n", - " 2.219086\n", - " 2.986550\n", - " 1.023628\n", + " 1.328443\n", + " 0.587181\n", + " -0.485711\n", + " 1.499816\n", + " 4.450632\n", + " 1.079241\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1991,19 +2044,19 @@ " NaN\n", " \n", " \n", - " 18\n", + " 18\n", " 9.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.817425\n", - " 0.707867\n", - " 1.353827\n", - " 0.159925\n", - " 3.563772\n", - " 0.916139\n", + " -0.655710\n", + " -0.594330\n", + " -1.469235\n", + " 0.276059\n", + " 2.635020\n", + " 0.752944\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2012,19 +2065,19 @@ " NaN\n", " \n", " \n", - " 19\n", + " 19\n", " 9.5\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " -0.643787\n", - " 2.453173\n", - " -0.375571\n", - " 0.045604\n", - " 4.114438\n", - " 1.291537\n", + " 0.560821\n", + " -0.423914\n", + " 0.248592\n", + " 1.040715\n", + " 3.336944\n", + " 0.784157\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2033,19 +2086,19 @@ " NaN\n", " \n", " \n", - " 20\n", + " 20\n", " 10.0\n", " data\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.660324\n", - " 0.137157\n", - " -0.152916\n", - " 2.334600\n", - " 2.762463\n", - " 1.414332\n", + " 0.872973\n", + " 1.334567\n", + " -1.307793\n", + " 2.725420\n", + " 2.947031\n", + " -1.336964\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2059,74 +2112,73 @@ ], "text/plain": [ " time datatype t_presim k0 k0_preeq k0_presim observable_x1 \\\n", - "0 0.0 data 0.0 1.0 NaN NaN -0.580906 \n", - "1 0.5 data 0.0 1.0 NaN NaN 0.061815 \n", - "2 1.0 data 0.0 1.0 NaN NaN -0.364329 \n", - "3 1.5 data 0.0 1.0 NaN NaN 1.002332 \n", - "4 2.0 data 0.0 1.0 NaN NaN 2.469387 \n", - "5 2.5 data 0.0 1.0 NaN NaN -0.690338 \n", - "6 3.0 data 0.0 1.0 NaN NaN -0.090433 \n", - "7 3.5 data 0.0 1.0 NaN NaN 0.369380 \n", - "8 4.0 data 0.0 1.0 NaN NaN -1.099564 \n", - "9 4.5 data 0.0 1.0 NaN NaN 1.064880 \n", - "10 5.0 data 0.0 1.0 NaN NaN 0.398187 \n", - "11 5.5 data 0.0 1.0 NaN NaN 1.399516 \n", - "12 6.0 data 0.0 1.0 NaN NaN 0.963333 \n", - "13 6.5 data 0.0 1.0 NaN NaN 1.860035 \n", - "14 7.0 data 0.0 1.0 NaN NaN -0.268294 \n", - "15 7.5 data 0.0 1.0 NaN NaN 0.376917 \n", - "16 8.0 data 0.0 1.0 NaN NaN 2.327584 \n", - "17 8.5 data 0.0 1.0 NaN NaN 0.212276 \n", - "18 9.0 data 0.0 1.0 NaN NaN 1.817425 \n", - "19 9.5 data 0.0 1.0 NaN NaN -0.643787 \n", - "20 10.0 data 0.0 1.0 NaN NaN 0.660324 \n", + "0 0.0 data 0.0 1.0 NaN NaN -0.979183 \n", + "1 0.5 data 0.0 1.0 NaN NaN 1.318564 \n", + "2 1.0 data 0.0 1.0 NaN NaN 1.998418 \n", + "3 1.5 data 0.0 1.0 NaN NaN -0.014750 \n", + "4 2.0 data 0.0 1.0 NaN NaN 0.407775 \n", + "5 2.5 data 0.0 1.0 NaN NaN 1.481813 \n", + "6 3.0 data 0.0 1.0 NaN NaN -0.064053 \n", + "7 3.5 data 0.0 1.0 NaN NaN 1.411443 \n", + "8 4.0 data 0.0 1.0 NaN NaN 0.805056 \n", + "9 4.5 data 0.0 1.0 NaN NaN 2.785217 \n", + "10 5.0 data 0.0 1.0 NaN NaN 0.117663 \n", + "11 5.5 data 0.0 1.0 NaN NaN 1.059940 \n", + "12 6.0 data 0.0 1.0 NaN NaN 2.044621 \n", + "13 6.5 data 0.0 1.0 NaN NaN 1.136111 \n", + "14 7.0 data 0.0 1.0 NaN NaN -0.077502 \n", + "15 7.5 data 0.0 1.0 NaN NaN 1.736106 \n", + "16 8.0 data 0.0 1.0 NaN NaN -0.882210 \n", + "17 8.5 data 0.0 1.0 NaN NaN 1.328443 \n", + "18 9.0 data 0.0 1.0 NaN NaN -0.655710 \n", + "19 9.5 data 0.0 1.0 NaN NaN 0.560821 \n", + "20 10.0 data 0.0 1.0 NaN NaN 0.872973 \n", "\n", " observable_x2 observable_x3 observable_x1_scaled \\\n", - "0 1.138852 2.548393 -0.328878 \n", - "1 2.587035 0.052490 0.495810 \n", - "2 -0.076008 0.770576 2.179266 \n", - "3 1.337097 -0.756828 0.599910 \n", - "4 2.777323 -0.917034 2.146876 \n", - "5 1.233353 -0.617748 0.443415 \n", - "6 3.113311 -0.246096 0.139758 \n", - "7 0.579885 -0.851098 0.000604 \n", - "8 3.210831 1.263742 0.448372 \n", - "9 -0.812373 0.581151 0.178842 \n", - "10 -0.764161 -1.909564 -0.135744 \n", - "11 1.470097 -0.238305 -0.305426 \n", - "12 -0.402086 0.775235 1.567235 \n", - "13 1.720437 -0.257288 -0.008972 \n", - "14 0.790623 1.565493 0.390212 \n", - "15 0.094986 -1.076985 0.047076 \n", - "16 0.272424 0.786510 0.857738 \n", - "17 0.653588 -0.085610 2.219086 \n", - "18 0.707867 1.353827 0.159925 \n", - "19 2.453173 -0.375571 0.045604 \n", - "20 0.137157 -0.152916 2.334600 \n", + "0 0.192956 1.072430 0.048621 \n", + "1 0.893174 0.119221 0.667590 \n", + "2 0.319199 1.230149 -0.398608 \n", + "3 -0.427097 -0.279452 1.433348 \n", + "4 0.463747 0.119668 1.180980 \n", + "5 0.293208 -0.159899 0.218286 \n", + "6 1.484332 0.119981 1.719267 \n", + "7 1.836223 1.359105 0.048072 \n", + "8 0.163220 0.146697 0.425173 \n", + "9 -0.098704 -0.560119 2.580439 \n", + "10 -0.734754 -0.664079 0.541150 \n", + "11 0.499436 -0.805301 1.440611 \n", + "12 0.089834 -0.030406 0.931452 \n", + "13 -1.453566 0.570666 1.460973 \n", + "14 1.456230 1.537391 0.465748 \n", + "15 -2.389954 -0.401374 1.470112 \n", + "16 2.627972 0.680587 1.609892 \n", + "17 0.587181 -0.485711 1.499816 \n", + "18 -0.594330 -1.469235 0.276059 \n", + "19 -0.423914 0.248592 1.040715 \n", + "20 1.334567 -1.307793 2.725420 \n", "\n", " observable_x2_offsetted observable_x1withsigma observable_x1_std \\\n", - "0 3.430770 0.265899 1.0 \n", - "1 3.480146 0.057071 1.0 \n", - "2 4.011141 0.968669 1.0 \n", - "3 4.724282 1.996087 1.0 \n", - "4 4.111527 2.106783 1.0 \n", - "5 5.329311 1.042524 1.0 \n", - "6 2.567485 1.001862 1.0 \n", - "7 4.472670 0.904686 1.0 \n", - "8 4.271006 -0.690721 1.0 \n", - "9 4.296181 1.771814 1.0 \n", - "10 3.378465 0.877764 1.0 \n", - "11 4.508414 1.382739 1.0 \n", - "12 3.003864 0.148294 1.0 \n", - "13 4.657872 0.009823 1.0 \n", - "14 2.289319 2.018072 1.0 \n", - "15 3.485641 1.122709 1.0 \n", - "16 4.751938 -1.117641 1.0 \n", - "17 2.986550 1.023628 1.0 \n", - "18 3.563772 0.916139 1.0 \n", - "19 4.114438 1.291537 1.0 \n", - "20 2.762463 1.414332 1.0 \n", - + "0 1.944063 -0.727894 1.0 \n", + "1 2.991938 -0.606037 1.0 \n", + "2 3.856450 -0.913528 1.0 \n", + "3 4.788364 -0.074601 1.0 \n", + "4 3.065187 -0.101223 1.0 \n", + "5 3.183441 0.933746 1.0 \n", + "6 4.822919 1.856944 1.0 \n", + "7 4.722903 -2.202143 1.0 \n", + "8 3.338153 -1.097586 1.0 \n", + "9 4.363146 1.110953 1.0 \n", + "10 3.478977 -1.436971 1.0 \n", + "11 2.165131 -0.749951 1.0 \n", + "12 4.924059 1.285210 1.0 \n", + "13 1.416084 -0.236831 1.0 \n", + "14 5.488972 -0.039388 1.0 \n", + "15 4.389249 0.794856 1.0 \n", + "16 3.058685 0.085670 1.0 \n", + "17 4.450632 1.079241 1.0 \n", + "18 2.635020 0.752944 1.0 \n", + "19 3.336944 0.784157 1.0 \n", + "20 2.947031 -1.336964 1.0 \n", "\n", " observable_x2_std observable_x3_std observable_x1_scaled_std \\\n", "0 1.0 1.0 1.0 \n", @@ -2175,7 +2227,7 @@ "20 1.0 NaN " ] }, - "execution_count": 21, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -2188,7 +2240,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -2198,7 +2250,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 24, "metadata": {}, "outputs": [ { @@ -2237,298 +2289,298 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " 0.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.680906\n", - " 0.738852\n", - " 1.848393\n", - " 0.528878\n", - " 0.030770\n", - " 1.658994\n", + " 1.079183\n", + " 0.207044\n", + " 0.372430\n", + " 0.151379\n", + " 1.455937\n", + " 8.278943\n", " \n", " \n", - " 1\n", + " 1\n", " 0.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.477552\n", - " 1.902356\n", - " 0.139001\n", - " 0.582924\n", - " 0.204532\n", - " 4.822960\n", + " 0.779197\n", + " 0.208496\n", + " 0.072270\n", + " 0.411145\n", + " 0.692741\n", + " 11.454045\n", " \n", " \n", - " 2\n", + " 2\n", " 1.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.944402\n", - " 0.809295\n", - " 0.674152\n", - " 1.019122\n", - " 0.277854\n", - " 3.885968\n", + " 1.418346\n", + " 0.414088\n", + " 1.133725\n", + " 1.558753\n", + " 0.123162\n", + " 14.936001\n", " \n", " \n", - " 3\n", + " 3\n", " 1.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.431933\n", - " 0.606445\n", - " 0.832904\n", - " 0.540889\n", - " 0.993630\n", - " 14.256878\n", + " 0.585149\n", + " 1.157749\n", + " 0.355528\n", + " 0.292550\n", + " 1.057712\n", + " 6.450000\n", " \n", " \n", - " 4\n", + " 4\n", " 2.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.908853\n", - " 2.061487\n", - " 0.986728\n", - " 1.025807\n", - " 0.395691\n", - " 15.462488\n", + " 0.152759\n", + " 0.252089\n", + " 0.049974\n", + " 0.059911\n", + " 0.650649\n", + " 6.617580\n", " \n", " \n", - " 5\n", + " 5\n", " 2.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.243394\n", - " 0.534602\n", - " 0.684049\n", - " 0.662697\n", - " 1.630560\n", - " 4.894680\n", + " 0.928757\n", + " 0.405543\n", + " 0.226200\n", + " 0.887826\n", + " 0.515310\n", + " 3.806906\n", " \n", " \n", - " 6\n", + " 6\n", " 3.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.637304\n", - " 2.431349\n", - " 0.309829\n", - " 0.953983\n", - " 1.114478\n", - " 4.549911\n", + " 0.610923\n", + " 0.802369\n", + " 0.056249\n", + " 0.625525\n", + " 1.140957\n", + " 13.100735\n", " \n", " \n", - " 7\n", + " 7\n", " 3.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.171979\n", - " 0.086224\n", - " 0.912605\n", - " 1.082116\n", - " 0.806561\n", - " 3.633264\n", + " 0.870083\n", + " 1.170115\n", + " 1.297599\n", + " 1.034648\n", + " 1.056794\n", + " 27.435032\n", " \n", " \n", - " 8\n", + " 8\n", " 4.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.635844\n", - " 2.559529\n", - " 1.204247\n", - " 0.624189\n", - " 0.619704\n", - " 12.270016\n", + " 0.268776\n", + " 0.488083\n", + " 0.087202\n", + " 0.647388\n", + " 0.313150\n", + " 16.338665\n", " \n", " \n", - " 9\n", + " 9\n", " 4.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.533342\n", - " 1.449888\n", - " 0.523497\n", - " 0.884234\n", - " 0.658666\n", - " 12.402753\n", + " 2.253679\n", + " 0.736219\n", + " 0.617772\n", + " 1.517363\n", + " 0.725632\n", + " 5.794149\n", " \n", " \n", - " 10\n", + " 10\n", " 5.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.128904\n", - " 1.388843\n", - " 1.965524\n", - " 1.189927\n", - " 0.246216\n", - " 3.506723\n", + " 0.409429\n", + " 1.359436\n", + " 0.720039\n", + " 0.513033\n", + " 0.145704\n", + " 19.640623\n", " \n", " \n", - " 11\n", + " 11\n", " 5.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.876601\n", - " 0.857365\n", - " 0.292705\n", - " 1.351255\n", - " 0.895681\n", - " 8.598242\n", + " 0.537026\n", + " 0.113297\n", + " 0.859701\n", + " 0.394782\n", + " 1.447601\n", + " 12.728659\n", " \n", " \n", - " 12\n", + " 12\n", " 6.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.444344\n", - " 1.003688\n", - " 0.722275\n", - " 0.529257\n", - " 0.597738\n", - " 3.706950\n", + " 1.525632\n", + " 0.511769\n", + " 0.083366\n", + " 0.106527\n", + " 1.322456\n", + " 7.662203\n", " \n", " \n", - " 13\n", + " 13\n", " 6.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.344736\n", - " 1.129208\n", - " 0.308918\n", - " 1.039571\n", - " 1.066643\n", - " 5.054765\n", + " 0.620811\n", + " 2.044795\n", + " 0.519037\n", + " 0.430374\n", + " 2.175145\n", + " 7.521306\n", " \n", " \n", - " 14\n", + " 14\n", " 7.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.780124\n", - " 0.209067\n", - " 1.515094\n", - " 0.633448\n", - " 1.292236\n", - " 15.062423\n", + " 0.589332\n", + " 0.874674\n", + " 1.486992\n", + " 0.557912\n", + " 1.907417\n", + " 5.512185\n", " \n", " \n", - " 15\n", + " 15\n", " 7.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.131651\n", - " 0.477543\n", - " 1.126244\n", - " 0.970059\n", - " 0.086888\n", - " 6.141412\n", + " 1.227539\n", + " 2.962483\n", + " 0.450634\n", + " 0.452977\n", + " 0.816720\n", + " 2.862886\n", " \n", " \n", - " 16\n", + " 16\n", " 8.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.822083\n", - " 0.291679\n", - " 0.738307\n", - " 0.153263\n", - " 1.187835\n", - " 16.231417\n", + " 1.387711\n", + " 2.063869\n", + " 0.632384\n", + " 0.598891\n", + " 0.505418\n", + " 4.198303\n", " \n", " \n", - " 17\n", + " 17\n", " 8.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.290340\n", - " 0.097354\n", - " 0.132834\n", - " 1.213856\n", - " 0.569684\n", - " 5.210123\n", + " 0.825828\n", + " 0.030947\n", + " 0.532935\n", + " 0.494585\n", + " 0.894398\n", + " 5.766254\n", " \n", " \n", - " 18\n", + " 18\n", " 9.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.317523\n", - " 0.158986\n", - " 1.307512\n", - " 0.839878\n", - " 0.014890\n", - " 4.162367\n", + " 1.155612\n", + " 1.143211\n", + " 1.515550\n", + " 0.723745\n", + " 0.913861\n", + " 2.530417\n", " \n", " \n", - " 19\n", + " 19\n", " 9.5\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 1.141136\n", - " 1.911165\n", - " 0.421041\n", - " 0.949096\n", - " 0.572429\n", - " 7.941869\n", + " 0.063471\n", + " 0.965922\n", + " 0.203122\n", + " 0.046015\n", + " 0.205065\n", + " 2.868075\n", " \n", " \n", - " 20\n", + " 20\n", " 10.0\n", " 0.0\n", " 1.0\n", " NaN\n", " NaN\n", - " 0.165375\n", - " 0.398424\n", - " 0.197602\n", - " 1.344701\n", - " 0.773118\n", - " 9.193829\n", + " 0.378024\n", + " 0.798986\n", + " 1.352478\n", + " 1.735521\n", + " 0.588551\n", + " 18.319130\n", " \n", " \n", "\n", @@ -2536,76 +2588,76 @@ ], "text/plain": [ " time t_presim k0 k0_preeq k0_presim observable_x1 observable_x2 \\\n", - "0 0.0 0.0 1.0 NaN NaN 0.680906 0.738852 \n", - "1 0.5 0.0 1.0 NaN NaN 0.477552 1.902356 \n", - "2 1.0 0.0 1.0 NaN NaN 0.944402 0.809295 \n", - "3 1.5 0.0 1.0 NaN NaN 0.431933 0.606445 \n", - "4 2.0 0.0 1.0 NaN NaN 1.908853 2.061487 \n", - "5 2.5 0.0 1.0 NaN NaN 1.243394 0.534602 \n", - "6 3.0 0.0 1.0 NaN NaN 0.637304 2.431349 \n", - "7 3.5 0.0 1.0 NaN NaN 0.171979 0.086224 \n", - "8 4.0 0.0 1.0 NaN NaN 1.635844 2.559529 \n", - "9 4.5 0.0 1.0 NaN NaN 0.533342 1.449888 \n", - "10 5.0 0.0 1.0 NaN NaN 0.128904 1.388843 \n", - "11 5.5 0.0 1.0 NaN NaN 0.876601 0.857365 \n", - "12 6.0 0.0 1.0 NaN NaN 0.444344 1.003688 \n", - "13 6.5 0.0 1.0 NaN NaN 1.344736 1.129208 \n", - "14 7.0 0.0 1.0 NaN NaN 0.780124 0.209067 \n", - "15 7.5 0.0 1.0 NaN NaN 0.131651 0.477543 \n", - "16 8.0 0.0 1.0 NaN NaN 1.822083 0.291679 \n", - "17 8.5 0.0 1.0 NaN NaN 0.290340 0.097354 \n", - "18 9.0 0.0 1.0 NaN NaN 1.317523 0.158986 \n", - "19 9.5 0.0 1.0 NaN NaN 1.141136 1.911165 \n", - "20 10.0 0.0 1.0 NaN NaN 0.165375 0.398424 \n", + "0 0.0 0.0 1.0 NaN NaN 1.079183 0.207044 \n", + "1 0.5 0.0 1.0 NaN NaN 0.779197 0.208496 \n", + "2 1.0 0.0 1.0 NaN NaN 1.418346 0.414088 \n", + "3 1.5 0.0 1.0 NaN NaN 0.585149 1.157749 \n", + "4 2.0 0.0 1.0 NaN NaN 0.152759 0.252089 \n", + "5 2.5 0.0 1.0 NaN NaN 0.928757 0.405543 \n", + "6 3.0 0.0 1.0 NaN NaN 0.610923 0.802369 \n", + "7 3.5 0.0 1.0 NaN NaN 0.870083 1.170115 \n", + "8 4.0 0.0 1.0 NaN NaN 0.268776 0.488083 \n", + "9 4.5 0.0 1.0 NaN NaN 2.253679 0.736219 \n", + "10 5.0 0.0 1.0 NaN NaN 0.409429 1.359436 \n", + "11 5.5 0.0 1.0 NaN NaN 0.537026 0.113297 \n", + "12 6.0 0.0 1.0 NaN NaN 1.525632 0.511769 \n", + "13 6.5 0.0 1.0 NaN NaN 0.620811 2.044795 \n", + "14 7.0 0.0 1.0 NaN NaN 0.589332 0.874674 \n", + "15 7.5 0.0 1.0 NaN NaN 1.227539 2.962483 \n", + "16 8.0 0.0 1.0 NaN NaN 1.387711 2.063869 \n", + "17 8.5 0.0 1.0 NaN NaN 0.825828 0.030947 \n", + "18 9.0 0.0 1.0 NaN NaN 1.155612 1.143211 \n", + "19 9.5 0.0 1.0 NaN NaN 0.063471 0.965922 \n", + "20 10.0 0.0 1.0 NaN NaN 0.378024 0.798986 \n", "\n", " observable_x3 observable_x1_scaled observable_x2_offsetted \\\n", - "0 1.848393 0.528878 0.030770 \n", - "1 0.139001 0.582924 0.204532 \n", - "2 0.674152 1.019122 0.277854 \n", - "3 0.832904 0.540889 0.993630 \n", - "4 0.986728 1.025807 0.395691 \n", - "5 0.684049 0.662697 1.630560 \n", - "6 0.309829 0.953983 1.114478 \n", - "7 0.912605 1.082116 0.806561 \n", - "8 1.204247 0.624189 0.619704 \n", - "9 0.523497 0.884234 0.658666 \n", - "10 1.965524 1.189927 0.246216 \n", - "11 0.292705 1.351255 0.895681 \n", - "12 0.722275 0.529257 0.597738 \n", - "13 0.308918 1.039571 1.066643 \n", - "14 1.515094 0.633448 1.292236 \n", - "15 1.126244 0.970059 0.086888 \n", - "16 0.738307 0.153263 1.187835 \n", - "17 0.132834 1.213856 0.569684 \n", - "18 1.307512 0.839878 0.014890 \n", - "19 0.421041 0.949096 0.572429 \n", - "20 0.197602 1.344701 0.773118 \n", + "0 0.372430 0.151379 1.455937 \n", + "1 0.072270 0.411145 0.692741 \n", + "2 1.133725 1.558753 0.123162 \n", + "3 0.355528 0.292550 1.057712 \n", + "4 0.049974 0.059911 0.650649 \n", + "5 0.226200 0.887826 0.515310 \n", + "6 0.056249 0.625525 1.140957 \n", + "7 1.297599 1.034648 1.056794 \n", + "8 0.087202 0.647388 0.313150 \n", + "9 0.617772 1.517363 0.725632 \n", + "10 0.720039 0.513033 0.145704 \n", + "11 0.859701 0.394782 1.447601 \n", + "12 0.083366 0.106527 1.322456 \n", + "13 0.519037 0.430374 2.175145 \n", + "14 1.486992 0.557912 1.907417 \n", + "15 0.450634 0.452977 0.816720 \n", + "16 0.632384 0.598891 0.505418 \n", + "17 0.532935 0.494585 0.894398 \n", + "18 1.515550 0.723745 0.913861 \n", + "19 0.203122 0.046015 0.205065 \n", + "20 1.352478 1.735521 0.588551 \n", "\n", " observable_x1withsigma \n", - "0 1.658994 \n", - "1 4.822960 \n", - "2 3.885968 \n", - "3 14.256878 \n", - "4 15.462488 \n", - "5 4.894680 \n", - "6 4.549911 \n", - "7 3.633264 \n", - "8 12.270016 \n", - "9 12.402753 \n", - "10 3.506723 \n", - "11 8.598242 \n", - "12 3.706950 \n", - "13 5.054765 \n", - "14 15.062423 \n", - "15 6.141412 \n", - "16 16.231417 \n", - "17 5.210123 \n", - "18 4.162367 \n", - "19 7.941869 \n", - "20 9.193829 " + "0 8.278943 \n", + "1 11.454045 \n", + "2 14.936001 \n", + "3 6.450000 \n", + "4 6.617580 \n", + "5 3.806906 \n", + "6 13.100735 \n", + "7 27.435032 \n", + "8 16.338665 \n", + "9 5.794149 \n", + "10 19.640623 \n", + "11 12.728659 \n", + "12 7.662203 \n", + "13 7.521306 \n", + "14 5.512185 \n", + "15 2.862886 \n", + "16 4.198303 \n", + "17 5.766254 \n", + "18 2.530417 \n", + "19 2.868075 \n", + "20 18.319130 " ] }, - "execution_count": 23, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -2617,7 +2669,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -2663,7 +2715,7 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " 0.0\n", " simulation\n", " 0.0\n", @@ -2684,7 +2736,7 @@ " 0.1\n", " \n", " \n", - " 1\n", + " 1\n", " 0.5\n", " simulation\n", " 0.0\n", @@ -2705,7 +2757,7 @@ " 0.1\n", " \n", " \n", - " 2\n", + " 2\n", " 1.0\n", " simulation\n", " 0.0\n", @@ -2726,7 +2778,7 @@ " 0.1\n", " \n", " \n", - " 3\n", + " 3\n", " 1.5\n", " simulation\n", " 0.0\n", @@ -2747,7 +2799,7 @@ " 0.1\n", " \n", " \n", - " 4\n", + " 4\n", " 2.0\n", " simulation\n", " 0.0\n", @@ -2768,7 +2820,7 @@ " 0.1\n", " \n", " \n", - " 5\n", + " 5\n", " 2.5\n", " simulation\n", " 0.0\n", @@ -2789,7 +2841,7 @@ " 0.1\n", " \n", " \n", - " 6\n", + " 6\n", " 3.0\n", " simulation\n", " 0.0\n", @@ -2810,7 +2862,7 @@ " 0.1\n", " \n", " \n", - " 7\n", + " 7\n", " 3.5\n", " simulation\n", " 0.0\n", @@ -2831,7 +2883,7 @@ " 0.1\n", " \n", " \n", - " 8\n", + " 8\n", " 4.0\n", " simulation\n", " 0.0\n", @@ -2852,7 +2904,7 @@ " 0.1\n", " \n", " \n", - " 9\n", + " 9\n", " 4.5\n", " simulation\n", " 0.0\n", @@ -2873,7 +2925,7 @@ " 0.1\n", " \n", " \n", - " 10\n", + " 10\n", " 5.0\n", " simulation\n", " 0.0\n", @@ -2894,7 +2946,7 @@ " 0.1\n", " \n", " \n", - " 11\n", + " 11\n", " 5.5\n", " simulation\n", " 0.0\n", @@ -2915,7 +2967,7 @@ " 0.1\n", " \n", " \n", - " 12\n", + " 12\n", " 6.0\n", " simulation\n", " 0.0\n", @@ -2936,7 +2988,7 @@ " 0.1\n", " \n", " \n", - " 13\n", + " 13\n", " 6.5\n", " simulation\n", " 0.0\n", @@ -2957,7 +3009,7 @@ " 0.1\n", " \n", " \n", - " 14\n", + " 14\n", " 7.0\n", " simulation\n", " 0.0\n", @@ -2978,7 +3030,7 @@ " 0.1\n", " \n", " \n", - " 15\n", + " 15\n", " 7.5\n", " simulation\n", " 0.0\n", @@ -2999,7 +3051,7 @@ " 0.1\n", " \n", " \n", - " 16\n", + " 16\n", " 8.0\n", " simulation\n", " 0.0\n", @@ -3020,7 +3072,7 @@ " 0.1\n", " \n", " \n", - " 17\n", + " 17\n", " 8.5\n", " simulation\n", " 0.0\n", @@ -3041,7 +3093,7 @@ " 0.1\n", " \n", " \n", - " 18\n", + " 18\n", " 9.0\n", " simulation\n", " 0.0\n", @@ -3062,7 +3114,7 @@ " 0.1\n", " \n", " \n", - " 19\n", + " 19\n", " 9.5\n", " simulation\n", " 0.0\n", @@ -3083,7 +3135,7 @@ " 0.1\n", " \n", " \n", - " 20\n", + " 20\n", " 10.0\n", " simulation\n", " 0.0\n", @@ -3224,7 +3276,7 @@ "20 1.0 0.1 " ] }, - "execution_count": 24, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -3236,7 +3288,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 26, "metadata": {}, "outputs": [ { @@ -3272,7 +3324,7 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " 0.0\n", " 0.0\n", " 1.0\n", @@ -3283,7 +3335,7 @@ " 0.700000\n", " \n", " \n", - " 1\n", + " 1\n", " 0.5\n", " 0.0\n", " 1.0\n", @@ -3294,7 +3346,7 @@ " 0.191491\n", " \n", " \n", - " 2\n", + " 2\n", " 1.0\n", " 0.0\n", " 1.0\n", @@ -3305,7 +3357,7 @@ " 0.096424\n", " \n", " \n", - " 3\n", + " 3\n", " 1.5\n", " 0.0\n", " 1.0\n", @@ -3316,7 +3368,7 @@ " 0.076076\n", " \n", " \n", - " 4\n", + " 4\n", " 2.0\n", " 0.0\n", " 1.0\n", @@ -3327,7 +3379,7 @@ " 0.069694\n", " \n", " \n", - " 5\n", + " 5\n", " 2.5\n", " 0.0\n", " 1.0\n", @@ -3338,7 +3390,7 @@ " 0.066301\n", " \n", " \n", - " 6\n", + " 6\n", " 3.0\n", " 0.0\n", " 1.0\n", @@ -3349,7 +3401,7 @@ " 0.063733\n", " \n", " \n", - " 7\n", + " 7\n", " 3.5\n", " 0.0\n", " 1.0\n", @@ -3360,7 +3412,7 @@ " 0.061506\n", " \n", " \n", - " 8\n", + " 8\n", " 4.0\n", " 0.0\n", " 1.0\n", @@ -3371,7 +3423,7 @@ " 0.059495\n", " \n", " \n", - " 9\n", + " 9\n", " 4.5\n", " 0.0\n", " 1.0\n", @@ -3382,7 +3434,7 @@ " 0.057653\n", " \n", " \n", - " 10\n", + " 10\n", " 5.0\n", " 0.0\n", " 1.0\n", @@ -3393,7 +3445,7 @@ " 0.055960\n", " \n", " \n", - " 11\n", + " 11\n", " 5.5\n", " 0.0\n", " 1.0\n", @@ -3404,7 +3456,7 @@ " 0.054400\n", " \n", " \n", - " 12\n", + " 12\n", " 6.0\n", " 0.0\n", " 1.0\n", @@ -3415,7 +3467,7 @@ " 0.052960\n", " \n", " \n", - " 13\n", + " 13\n", " 6.5\n", " 0.0\n", " 1.0\n", @@ -3426,7 +3478,7 @@ " 0.051629\n", " \n", " \n", - " 14\n", + " 14\n", " 7.0\n", " 0.0\n", " 1.0\n", @@ -3437,7 +3489,7 @@ " 0.050399\n", " \n", " \n", - " 15\n", + " 15\n", " 7.5\n", " 0.0\n", " 1.0\n", @@ -3448,7 +3500,7 @@ " 0.049259\n", " \n", " \n", - " 16\n", + " 16\n", " 8.0\n", " 0.0\n", " 1.0\n", @@ -3459,7 +3511,7 @@ " 0.048203\n", " \n", " \n", - " 17\n", + " 17\n", " 8.5\n", " 0.0\n", " 1.0\n", @@ -3470,7 +3522,7 @@ " 0.047224\n", " \n", " \n", - " 18\n", + " 18\n", " 9.0\n", " 0.0\n", " 1.0\n", @@ -3481,7 +3533,7 @@ " 0.046315\n", " \n", " \n", - " 19\n", + " 19\n", " 9.5\n", " 0.0\n", " 1.0\n", @@ -3492,7 +3544,7 @@ " 0.045471\n", " \n", " \n", - " 20\n", + " 20\n", " 10.0\n", " 0.0\n", " 1.0\n", @@ -3531,7 +3583,7 @@ "20 10.0 0.0 1.0 NaN NaN 0.494949 0.535581 0.044686" ] }, - "execution_count": 25, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } From bad607e0bc2ac03247e07fc1724296c83c270ad8 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Wed, 15 Jan 2020 19:28:09 +0100 Subject: [PATCH 03/23] Fix Matlab compilation error if AMICI or model path contains blanks Quote sensitive strings. Closes #910. --- matlab/@amimodel/compileAndLinkModel.m | 12 ++++++------ matlab/auxiliary/compileAMICIDependencies.m | 8 ++++---- 2 files changed, 10 insertions(+), 10 deletions(-) diff --git a/matlab/@amimodel/compileAndLinkModel.m b/matlab/@amimodel/compileAndLinkModel.m index b5c4f23340..5d26d91c72 100644 --- a/matlab/@amimodel/compileAndLinkModel.m +++ b/matlab/@amimodel/compileAndLinkModel.m @@ -121,11 +121,11 @@ function compileAndLinkModel(modelname, modelSourceFolder, coptim, debug, funs, if(numel(funsForRecompile)) fprintf('ffuns | '); - sources = cellfun(@(x) fullfile(modelSourceFolder,[modelname '_' x '.cpp']),funsForRecompile,'UniformOutput',false); + sources = cellfun(@(x) ['"' fullfile(modelSourceFolder,[modelname '_' x '.cpp']) '"'],funsForRecompile,'UniformOutput',false); sources = strjoin(sources,' '); eval(['mex ' DEBUG COPT ... - ' -c -outdir ' modelObjectFolder ' ' ... + ' -c -outdir "' modelObjectFolder '" ' ... sources ' ' ... includesstr ]); cellfun(@(x) updateFileHashSource(modelSourceFolder, modelObjectFolder, [modelname '_' x]),funsForRecompile,'UniformOutput',false); @@ -143,8 +143,8 @@ function compileAndLinkModel(modelname, modelSourceFolder, coptim, debug, funs, % compile the wrapfunctions object fprintf('wrapfunctions | '); eval(['mex ' DEBUG COPT ... - ' -c -outdir ' modelObjectFolder ' ' ... - fullfile(modelSourceFolder,'wrapfunctions.cpp') ' ' ... + ' -c -outdir "' modelObjectFolder '" "' ... + fullfile(modelSourceFolder,'wrapfunctions.cpp') '" ' ... includesstr]); objectsstr = [objectsstr, ' "' fullfile(modelObjectFolder,['wrapfunctions' objectFileSuffix]) '"']; @@ -173,7 +173,7 @@ function compileAndLinkModel(modelname, modelSourceFolder, coptim, debug, funs, mexFilename = fullfile(modelSourceFolder,['ami_' modelname]); eval(['mex ' DEBUG ' ' COPT ' ' CLIBS ... - ' -output ' mexFilename ' ' objectsstr]) + ' -output "' mexFilename '" ' objectsstr]) end function [objectStrAmici] = compileAmiciBase(amiciRootPath, objectFolder, objectFileSuffix, includesstr, DEBUG, COPT) @@ -203,7 +203,7 @@ function compileAndLinkModel(modelname, modelSourceFolder, coptim, debug, funs, baseFilename = fullfile(amiciSourcePath, sourcesForRecompile{j}); sourceStr = [sourceStr, ' "', baseFilename, '.cpp"']; end - eval(['mex ' DEBUG COPT ' -c -outdir ' objectFolder ... + eval(['mex ' DEBUG COPT ' -c -outdir "' objectFolder '" ' ... includesstr ' ' sourceStr]); cellfun(@(x) updateFileHashSource(amiciSourcePath, objectFolder, x), sourcesForRecompile); updateHeaderFileHashes(amiciIncludePath, objectFolder); diff --git a/matlab/auxiliary/compileAMICIDependencies.m b/matlab/auxiliary/compileAMICIDependencies.m index d433ce45bb..d20285ed0d 100644 --- a/matlab/auxiliary/compileAMICIDependencies.m +++ b/matlab/auxiliary/compileAMICIDependencies.m @@ -33,13 +33,13 @@ sourcesToCompile = ''; for j=1:length(sources_sundials) if(del_sundials || ~exist(fullfile(objectFolder,objects_sundials{j}), 'file')) - sourcesToCompile = [sourcesToCompile, ' ', fullfile(sundials_path,sources_sundials{j})]; + sourcesToCompile = [sourcesToCompile, ' "', fullfile(sundials_path,sources_sundials{j}), '"']; end end sources_ssparse = getSourcesSSparse(); for j=1:length(sources_ssparse) if(del_ssparse || ~exist(fullfile(objectFolder,objects_ssparse{j}), 'file')) - sourcesToCompile = [sourcesToCompile, ' ', fullfile(ssparse_path,sources_ssparse{j})]; + sourcesToCompile = [sourcesToCompile, ' "', fullfile(ssparse_path,sources_ssparse{j}), '"']; end end @@ -48,8 +48,8 @@ % compile if(~strcmp(sourcesToCompile, '')) - eval(['mex ' DEBUG ' ' COPT ' -c -outdir ' ... - objectFolder ... + eval(['mex ' DEBUG ' ' COPT ' -c -outdir "' ... + objectFolder '" ' ... includesstr ' ' sourcesToCompile ]); end From 242126d2cfaca825cf4818a7a3183d30f3d5f188 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Wed, 15 Jan 2020 20:43:41 +0100 Subject: [PATCH 04/23] Don't pass empty include strings to mex --- matlab/@amimodel/compileAndLinkModel.m | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/matlab/@amimodel/compileAndLinkModel.m b/matlab/@amimodel/compileAndLinkModel.m index 5d26d91c72..e460289cf3 100644 --- a/matlab/@amimodel/compileAndLinkModel.m +++ b/matlab/@amimodel/compileAndLinkModel.m @@ -63,7 +63,10 @@ function compileAndLinkModel(modelname, modelSourceFolder, coptim, debug, funs, dependencyPath = fullfile(amiciRootPath, 'ThirdParty'); gslPath = fullfile(dependencyPath, 'gsl'); [objectsstr, includesstr] = compileAMICIDependencies(dependencyPath, objectFolder, objectFileSuffix, COPT, DEBUG); - includesstr = strcat(includesstr,' -I"', modelSourceFolder, '"', ' -I"', gslPath, '"'); + includesstr = strcat(includesstr, ' -I"', gslPath, '"'); + if (~isempty(modelSourceFolder)) + includesstr = strcat(includesstr,' -I"', modelSourceFolder, '"'); + end %% Recompile AMICI base files if necessary [objectStrAmici] = compileAmiciBase(amiciRootPath, objectFolder, objectFileSuffix, includesstr, DEBUG, COPT); From 8a28b7fd56f642b4c31961a4d626430892ebc4be Mon Sep 17 00:00:00 2001 From: FFroehlich Date: Thu, 16 Jan 2020 09:25:47 -0500 Subject: [PATCH 05/23] add section about integration tolerances --- .../ExampleSteadystate.ipynb | 1027 +++++++++-------- 1 file changed, 552 insertions(+), 475 deletions(-) diff --git a/python/examples/example_steadystate/ExampleSteadystate.ipynb b/python/examples/example_steadystate/ExampleSteadystate.ipynb index 158a8b4a26..99c3d9d145 100644 --- a/python/examples/example_steadystate/ExampleSteadystate.ipynb +++ b/python/examples/example_steadystate/ExampleSteadystate.ipynb @@ -191,40 +191,40 @@ "name": "stderr", "output_type": "stream", "text": [ - "2020-01-15 15:30:05.015 - amici.sbml_import - INFO - Finished processing SBML parameters (7.95E-04s)\n", - "2020-01-15 15:30:05.018 - amici.sbml_import - INFO - Finished processing SBML species (2.23E-03s)\n", - "2020-01-15 15:30:05.033 - amici.sbml_import - INFO - Finished processing SBML reactions (1.43E-02s)\n", - "2020-01-15 15:30:05.034 - amici.sbml_import - INFO - Finished processing SBML compartments (2.22E-04s)\n", - "2020-01-15 15:30:05.116 - amici.sbml_import - INFO - Finished processing SBML rules (8.09E-02s)\n", - "2020-01-15 15:30:05.192 - amici.sbml_import - INFO - Finished processing SBML observables (6.24E-02s)\n", - "2020-01-15 15:30:05.249 - amici.ode_export - INFO - Finished writing J.cpp (3.75E-02s)\n", - "2020-01-15 15:30:05.261 - amici.ode_export - INFO - Finished writing JB.cpp (1.06E-02s)\n", - "2020-01-15 15:30:05.267 - amici.ode_export - INFO - Finished writing JDiag.cpp (5.27E-03s)\n", - "2020-01-15 15:30:05.276 - amici.ode_export - INFO - Finished writing JSparse.cpp (8.72E-03s)\n", - "2020-01-15 15:30:05.285 - amici.ode_export - INFO - Finished writing JSparseB.cpp (7.53E-03s)\n", - "2020-01-15 15:30:05.302 - amici.ode_export - INFO - Finished writing Jy.cpp (1.52E-02s)\n", - "2020-01-15 15:30:05.397 - amici.ode_export - INFO - Finished writing dJydsigmay.cpp (9.41E-02s)\n", - "2020-01-15 15:30:05.434 - amici.ode_export - INFO - Finished writing dJydy.cpp (3.66E-02s)\n", - "2020-01-15 15:30:05.443 - amici.ode_export - INFO - Finished writing dwdp.cpp (7.90E-03s)\n", - "2020-01-15 15:30:05.447 - amici.ode_export - INFO - Finished writing dwdx.cpp (2.91E-03s)\n", - "2020-01-15 15:30:05.454 - amici.ode_export - INFO - Finished writing dxdotdw.cpp (5.28E-03s)\n", - "2020-01-15 15:30:05.467 - amici.ode_export - INFO - Finished writing dxdotdp_explicit.cpp (1.17E-02s)\n", - "2020-01-15 15:30:05.484 - amici.ode_export - INFO - Finished writing dydx.cpp (1.27E-02s)\n", - "2020-01-15 15:30:05.498 - amici.ode_export - INFO - Finished writing dydp.cpp (1.28E-02s)\n", - "2020-01-15 15:30:05.504 - amici.ode_export - INFO - Finished writing dsigmaydp.cpp (5.58E-03s)\n", - "2020-01-15 15:30:05.508 - amici.ode_export - INFO - Finished writing sigmay.cpp (3.23E-03s)\n", - "2020-01-15 15:30:05.513 - amici.ode_export - INFO - Finished writing w.cpp (4.27E-03s)\n", - "2020-01-15 15:30:05.516 - amici.ode_export - INFO - Finished writing x0.cpp (1.98E-03s)\n", - "2020-01-15 15:30:05.517 - amici.ode_export - INFO - Finished writing x0_fixedParameters.cpp (7.01E-04s)\n", - "2020-01-15 15:30:05.520 - amici.ode_export - INFO - Finished writing sx0.cpp (2.19E-03s)\n", - "2020-01-15 15:30:05.524 - amici.ode_export - INFO - Finished writing sx0_fixedParameters.cpp (3.26E-03s)\n", - "2020-01-15 15:30:05.532 - amici.ode_export - INFO - Finished writing xdot.cpp (7.64E-03s)\n", - "2020-01-15 15:30:05.536 - amici.ode_export - INFO - Finished writing y.cpp (2.85E-03s)\n", - "2020-01-15 15:30:05.538 - amici.ode_export - INFO - Finished writing x_rdata.cpp (1.54E-03s)\n", - "2020-01-15 15:30:05.540 - amici.ode_export - INFO - Finished writing total_cl.cpp (1.33E-03s)\n", - "2020-01-15 15:30:05.544 - amici.ode_export - INFO - Finished writing x_solver.cpp (2.67E-03s)\n", - "2020-01-15 15:30:05.564 - amici.ode_export - INFO - Finished generating cpp code (3.66E-01s)\n", - "2020-01-15 15:30:17.005 - amici.ode_export - INFO - Finished compiling cpp code (1.14E+01s)\n" + "2020-01-16 09:24:10.771 - amici.sbml_import - INFO - Finished processing SBML parameters (6.90E-04s)\n", + "2020-01-16 09:24:10.776 - amici.sbml_import - INFO - Finished processing SBML species (3.02E-03s)\n", + "2020-01-16 09:24:10.791 - amici.sbml_import - INFO - Finished processing SBML reactions (1.44E-02s)\n", + "2020-01-16 09:24:10.792 - amici.sbml_import - INFO - Finished processing SBML compartments (2.46E-04s)\n", + "2020-01-16 09:24:10.876 - amici.sbml_import - INFO - Finished processing SBML rules (8.26E-02s)\n", + "2020-01-16 09:24:10.962 - amici.sbml_import - INFO - Finished processing SBML observables (7.26E-02s)\n", + "2020-01-16 09:24:11.015 - amici.ode_export - INFO - Finished writing J.cpp (3.75E-02s)\n", + "2020-01-16 09:24:11.024 - amici.ode_export - INFO - Finished writing JB.cpp (8.14E-03s)\n", + "2020-01-16 09:24:11.028 - amici.ode_export - INFO - Finished writing JDiag.cpp (3.66E-03s)\n", + "2020-01-16 09:24:11.036 - amici.ode_export - INFO - Finished writing JSparse.cpp (7.40E-03s)\n", + "2020-01-16 09:24:11.045 - amici.ode_export - INFO - Finished writing JSparseB.cpp (7.93E-03s)\n", + "2020-01-16 09:24:11.061 - amici.ode_export - INFO - Finished writing Jy.cpp (1.48E-02s)\n", + "2020-01-16 09:24:11.161 - amici.ode_export - INFO - Finished writing dJydsigmay.cpp (9.81E-02s)\n", + "2020-01-16 09:24:11.199 - amici.ode_export - INFO - Finished writing dJydy.cpp (3.70E-02s)\n", + "2020-01-16 09:24:11.208 - amici.ode_export - INFO - Finished writing dwdp.cpp (8.14E-03s)\n", + "2020-01-16 09:24:11.212 - amici.ode_export - INFO - Finished writing dwdx.cpp (2.15E-03s)\n", + "2020-01-16 09:24:11.218 - amici.ode_export - INFO - Finished writing dxdotdw.cpp (5.14E-03s)\n", + "2020-01-16 09:24:11.237 - amici.ode_export - INFO - Finished writing dxdotdp_explicit.cpp (1.69E-02s)\n", + "2020-01-16 09:24:11.259 - amici.ode_export - INFO - Finished writing dydx.cpp (1.61E-02s)\n", + "2020-01-16 09:24:11.270 - amici.ode_export - INFO - Finished writing dydp.cpp (1.09E-02s)\n", + "2020-01-16 09:24:11.277 - amici.ode_export - INFO - Finished writing dsigmaydp.cpp (5.89E-03s)\n", + "2020-01-16 09:24:11.281 - amici.ode_export - INFO - Finished writing sigmay.cpp (3.75E-03s)\n", + "2020-01-16 09:24:11.286 - amici.ode_export - INFO - Finished writing w.cpp (3.71E-03s)\n", + "2020-01-16 09:24:11.289 - amici.ode_export - INFO - Finished writing x0.cpp (2.25E-03s)\n", + "2020-01-16 09:24:11.290 - amici.ode_export - INFO - Finished writing x0_fixedParameters.cpp (8.19E-04s)\n", + "2020-01-16 09:24:11.293 - amici.ode_export - INFO - Finished writing sx0.cpp (2.54E-03s)\n", + "2020-01-16 09:24:11.297 - amici.ode_export - INFO - Finished writing sx0_fixedParameters.cpp (3.07E-03s)\n", + "2020-01-16 09:24:11.304 - amici.ode_export - INFO - Finished writing xdot.cpp (5.76E-03s)\n", + "2020-01-16 09:24:11.307 - amici.ode_export - INFO - Finished writing y.cpp (2.37E-03s)\n", + "2020-01-16 09:24:11.309 - amici.ode_export - INFO - Finished writing x_rdata.cpp (1.36E-03s)\n", + "2020-01-16 09:24:11.310 - amici.ode_export - INFO - Finished writing total_cl.cpp (7.47E-04s)\n", + "2020-01-16 09:24:11.313 - amici.ode_export - INFO - Finished writing x_solver.cpp (1.82E-03s)\n", + "2020-01-16 09:24:11.326 - amici.ode_export - INFO - Finished generating cpp code (3.59E-01s)\n", + "2020-01-16 09:24:22.266 - amici.ode_export - INFO - Finished compiling cpp code (1.09E+01s)\n" ] } ], @@ -657,7 +657,7 @@ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " order: [0 5 5 5 5 5 4 4 5 5 5 5 5 5 5 4 5 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 5 5 5 5\n", " 5 5 5 4 4 4 5 5 5 5 5 4 4 5 5 5 4 4 3 3 3 3 4]\n", - " cpu_time: 1.2739999999999994\n", + " cpu_time: 1.268999999999999\n", " numstepsB: None\n", "numrhsevalsB: None\n", "numerrtestfailsB: None\n", @@ -761,7 +761,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Log-likelihood -102.648113\n" + "Log-likelihood -92.752605\n" ] } ], @@ -785,6 +785,75 @@ "print('Log-likelihood %f' % rdata['llh'])" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simulation tolerances\n", + "Numerical error tolerances are often critical to get accurate results. For the state variables, integration errors can be controlled using `setRelativeTolerance` and `setAbsoluteTolerance`. Similar functions exist for sensitivies, steadstates and quadratures. We initially compute a reference " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAFBCAYAAADANgorAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdZ3iUVbs+/HMlVAVRJBAQNIAIBkTR2CiKFMECCiIiYkPs2Bsqtkfd2AsCFpSmiFIVEFECIoiIgIrSpZNAIKBEQksga384czMlM5OZZGbSzt9x5BhyT1t53/1/lte9rmKstRAREREREZGyKaaoFyAiIiIiIiJFR0GhiIiIiIhIGaagUEREREREpAxTUCgiIiIiIlKGKSgUEREREREpwxQUioiIiIiIlGHlinoB0VCjRg2bkJBQ1MsQEZEoWLp06S5rbVxRr6Ok0B4pIlI2BNofy0RQmJCQgCVLlhT1MkREJAqMMZuLeg0lifZIEZGyIdD+qPRRERERERGRMkxBoYiIiIiISBmmoFBERERERKQMKxM1hb5kZ2cjJSUFBw8eLOqlhKxSpUqoW7cuypcvX9RLERGRUkh7pIhI2VJmg8KUlBRUrVoVCQkJMMYU9XKCZq3F7t27kZKSgvr16xf1ckREpBTSHikiUraU2fTRgwcP4sQTTyxRmx0AGGNw4oknlsi7tyIiUjJojxQRKVvKbFAIoMRtdo6Sum4RESk5SupeU1LXLSJSlMp0UCgiIiIiIlLWKSgUEREREREpwxQUFqHFixejefPmOHjwIPbt24emTZti+fLlRb0sEZGo2LsX2L+/qFdRuhhj2hpj5htjPjDGtC3q9RSU9kcRKWv27gUyM4vu+8ts99Hi4Nxzz0XXrl0xcOBAHDhwAH369EGzZs2KelkiIlHRtSuwciXw7rvAddcBZb0UzBgzAsCVAHZaa5u5Xe8M4F0AsQA+tta+EuBjLIBMAJUApERwuRGl/VFEypLdu4HzzgPOOAP46quiWYOCQgB48EHgjz/C+5lnnQW8806+L3v22Wdx7rnnolKlShg8eHB41yAiUoz98Qewbx9w/fXAZ58Bw4YBJ59c1KsqUqMADAEwxrlgjIkFMBRARzDIW2yMmQoGiIO83t8XwHxr7Y/GmFoA3gJwQ6FXVUR7pPZHESkLsrOBHj2ADRuAKlWKbh0KCovY7t27kZmZiezsbBw8eBDHHntsUS9JRCTiMjKAPXuAQYOAihWBgQOBxEQgORm44IKiXl3RsNbOM8YkeF0+D8A6a+0GADDGfAHgKmvtIPBU0Z9/AVSMxDqjRfujiJQFDz4IzJ0LnHIKkJ5edOtQUAgEdaIXKXfeeSdefPFFbNy4EU888QSGDBlSZGsREYmWzZv52KAB0LMn0K0b8OqrQIsWRbuuYugkAFvdfk8BcL6/FxtjugPoBOB48NTR3+vuAHAHAJyc3/FsEe2R2h9FpKSzFli0CEhKAsr5iLo++IBZMo89BsTEAG+9xfcURTmFGs0UoTFjxqB8+fLo3bs3BgwYgMWLF2POnDlFvSwRkYhzgsKEBNfj++/z1FAKzlo72Vp7p7X2Omvt3ACv+8ham2StTYqLi4viCoOj/VFESoPvvgMuvBC4/XYgJ8fzuWnTgPvuAy6/nFkzcXFMJd27t2jWqpPCInTTTTfhpptuAgDExsZi0aJFRbwiEZHocILCU04p2nWUAKkA6rn9Xjf3Wqmm/VFESoNvv+XjqFFA9erAG2/wFHDiRNbTt2gBfP45EBsL1KjB16anA8cdF/21KigUEZGo27QJqFQJqFmzqFdS7C0G0MgYUx8MBnsB6F20SxIREceePcA99wBvvgnUru35XHIy0LEj0KQJU0Nr1GBDtZtu4gnijBmuANBJ2ti1C2jYMLp/A6CgUEREisDmzdwYy/oYCnfGmHEA2gKoYYxJAfCctfYTY0x/AN+BHUdHWGtXFOEyRUTEzaJFwLhxbJY2cKDr+rZtHLt0yy3AI49w7MRTT3Hfa9sWmDrVs9uo+0lhUVBQKCIiUbd5s6ueUMhae72f6zMAzIjyckREJAhOEDdhgmdQmJzMx44d2URm1CjWFR4+DIwZA1Su7Pk5TlC4a1fEl+yTgkIREYm6zZs5qk5ERKQkc4LCP/8E1qwBGjfm78nJTAlt3py/ly/PE0V/3NNHi4K6j4qISFTt3w/s3KkmMyIiUvKlp/MkEOBpIcCxEsnJQPv2rufyU6UKUKFC0aWPKigUEZGo2rKFjwoKRUSkpEtPZ9O0li1dQeHKlcD27UCHDsF/jjE8LdRJYRlUJbe6dNOmTWjWrBkAYNSoUejfv39RLktEJKK8ZxSK+KI9UkRKgvR0BnM9e7pSSN3rCUNRo4bvk8KxY4FJkwq/1kAUFIqISFRpRqGIiJQWTlB4zTX8fcIEYNYsoFEjdtkORY0avk8K33wTGDGi8GsNREFhMbRt2zZ07twZjRo1wuOPP17UyxERCatNm4By5YA6dYp6JVISaY8UkeLECQrr1mUK6bhxwI8/hn5KCPhPH01JAerVK/xaA1FQWAz98ccf+PLLL/HXX3/hyy+/xNatW4t6SSIiYbN5MzfP2NiiXomURNojRaQ4cYJCgCmkK1cCmZmh1RM6fKWPHjzIa3XrFn6tgWgkBYAHHwT++CO8n3nWWcA77xTsve3bt0e1atUAAImJidi8eTPqRfr2gIhIlGhGYcmiPVJExLesLGDPHldQeM01/N/MmBjgkktC/7y4OH5edjZHWAA8JQR0UlgmVaxY8ei/Y2Njcfjw4SJcjYhIYPPmAYsXB//6zZtVTygFpz1SRIoLJ9XTCQrr1mUw2Lo1cPzxoX+eM8B+927XNScZItJBoU4KUfC7lSIiZd2uXUCXLtwQ//6bLbUDycoCUlMVFJYk2iNFpLQ4fBgYMgS4/Xbg2GML/3lOqqcTFALAlCmcU1gQ7gPs4+P572gFhSXypNAY09YYM98Y84Expm1Rr0dEpKwaNAj47z9g/XoW1ucnJYWbpYJCERGJtvnzgYceAiZODM/n+QoKq1Ur2Ckh4DopdG824wSFka4pjHpQaIwZYYzZaYxZ7nW9szFmjTFmnTFmQD4fYwFkAqgEICVSa420zMxMAEBCQgKWL+f/57jlllswZMiQo6+ZPn062rZtWxTLE5FSbs8e4J57gH/+Kdj7t2wBhg4FevXiJvjxx/m/RzMKJVjaI0Uk3HL/pwSrVoXn83wFhYXhBIXuzWZSUoATTwQqVw7Pd/hTFCeFowB0dr9gjIkFMBTAZQASAVxvjEk0xpxhjJnu9VMTwHxr7WUAngDwQpTXLyJSKnz3HfD++wWfffTCCzz1e/VVoE8f3nn999/A79GMQhERKSorVvAx1KBw506gc2fXqZ0j3EGhe/qoY+vWyKeOAkUQFFpr5wHwvi99HoB11toN1tosAF8AuMpa+5e19kqvn53W2pzc9/0LoCJERCRkK1fy8dNPQ3/vqlXAqFHAvfdyOG+/fsChQ8DYsYHft2kT6w7VLFJERKKtoEHhV1/xRurcuZ7X09O5p1WvHpbl4cQTXZ/rKLVBoR8nAXCPvVNyr/lkjOlujPkQwKcAhvh5zR3GmCXGmCXp3gM/RETkaFD455/8CeTIEd65PHSIvz/9NIv0n3ySv591FnDOOcDw4a4C+0OHGDS+9prrczZvBmrXBipUCO/fIiIiEoi1rqBw/XrXfhaM5GQ+btrkeT09nYFcuObuli/PesQycVIYDtbaydbaO62111lr5/p5zUfW2iRrbVKcnzNdW9DWQEWspK5bRIqXlSuBli2BcuUCnxZmZwNt2jCtpVIlBnRTpgCPPuqZMtOvH4PLpUuB/fuBq64Chg0DnniCYysAzSgsSUrqXlNS1y0ikZWWxhKHCy4AcnLYMTsYOTnAnDn898aNns+5D64PF/cB9vv2cc2RbjIDFJ+gMBWAewxcN/daxFSqVAm7d+8ucZuHtRa7d+9GpUqVinopIlKCZWdzQ2zTBrj8cuDzz3ka6MugQcDChQzuXn4ZeOQRnhA+8ojn666/noXwb70FdOoEzJoFvPce0KAB0LcvA0XNKCwZtEeKSGnjnBL26MFH7xTSHTt4o9TJonEsW+aaG+jrpDASQaFzUhitwfVA8ZlTuBhAI2NMfTAY7AWgdyS/sG7dukhJSUFJTC2tVKkS6kbjloGIlHjWAn/8wfRO9xmC69czMExMBJKSgKlTeSe0Y0fP9y9bBrz4ItC7N/DKK4G/q1o14NprgTFjmALzxRf8vVkzDvMdMIAdS3v2DP/fKeGlPVJEShsnKOzeHXjssbzB38yZvAH63ntswuZwUkcvucT3SWHTpuFdZ1ycq6FNtGYUAkUQFBpjxgFoC6CGMSYFwHPW2k+MMf0BfAcgFsAIa+2KSK6jfPnyqF+/fiS/QkSkyH3xBQO677/3DPiczTAxkUFbtWpMIXV/TXY2cMstrJcYPDi473vwQeDXX4G332anNgBo25a1he+9x991Ulj8aY8UkdJmxQo2hElI4I/3SeFPP/Fx3DjuYU7CQXIy98oLL2QpxOHDLLsAIndS+Ntv/Hc0g8Ki6D56vbW2trW2vLW2rrX2k9zrM6y1p1lrG1prX472ukRESpucHOCll/hv745pTlDYpAk3vp49gcmTWb/geOUVnjJ+8IGrI1p+WrTgRtu5s+f1V15x1RKqplBERKJtxQqe6hkDnH563qBwwQKgZk0gI4PdRgE2o5k/H+jQAahfn2UWqbkFbkeOcM5vuIPCuDimj1rrCgpP8tt+M3yKS02hiIiE2ZQpDP4qVXLdAXWsXMkTuypV+PuNNzIgfPNN4N13OZDeSRu9+urCr6VKFWD0aN5tbdGi8J8nIiISLKfzqJPqefrpwJo1rlr63bsZJN5/P8csjRrF6wsXAgcOMCh0bmg6KaS7d/NzwxYUZmcDR46gRg0Go5mZDApr1gQqRmEAn4JCEZFSyFqeEp52GnDHHUzpzMpyPb9qFTdFR6tWvAv63HNMAV2wALjuOlfKZzhcdBE35Vq1/CzYaVEqIiISRtu28QTQPSg8dMjVOObnn/nYpg1w880suUhJYepobCxw8cXcIwHXe5yS65o1C7Gw/fuBSZPYqa16daB7d9Sowad27YreOApAQaGISIk0dy67e/rzzTdM/XzqKQZjBw+6ahSOHAFWr+apnSMmhieLEydyE9q6lTWG4RrIG1ByMnD++dx1FyyIwheKiEhZ4jSZcQ8KAVcK6YIFbJB27rkMCq3lHpicDJx3HnDccQzOjHGdFDpBYYFPCn/5hYN7e/TgFzVqBEyfjrhy/wJgUJiSoqBQRET8sBa47Tbg8cf9P//ii0x16d2bp4CAK97atIlBontQCABnnglcc0105iEB4FDD9u3Z3WbHDmDECAaHIiIiYeQvKHTq63/6CTjnHI5VatiQN1M//BBYvJipowBn9Nat6zop3LmTjwUKCvftY93GCScAs2cD27cDn30G5OSgxu+845uerpNCEREJ4K+/gA0bOIjXl+Rkpos++STvfMbHA6ee6qordO88WmSsBbp1Y2D47rvA2rXArbe6WrqJiIiEyYoV7OrppHqecAL3xlWreJN08WLXDVSA29HmzWzY5gSFAG+2huWkcMAAYN06Fi+2a8e9LzEROPNMxM35EgD3+f/+i96NWgWFIiIlzOTJfExP9z1wfuhQoE4dpsA4WrXiSaG1rnQZ95rCqFu9mjveSy+xsj8aVfQiIlImuTeZcTgdSJcuZc1969au53r0AI49FjjmGOCCC1zX69fPW1MYbHfuo2bPBoYMAR54gDOb3F1/PWos42DE33/nJZ0UioiIT1Om8PHIEXY/87ZuHbMw3eOs1q25gf39N08Ka9cGjj8+Ouv16dtv+XjZZUW4CBERKe2s5b7nLyh0SitatnQ9V6UKa/Lvu49po46EBNb5ZWVxTz3hBGbk+LV7N9CnD/C//3G2RXo6jyEbNwYGDcr7+l69cBz+Q/nYI0f7AEQrKFSejohICbJhAzMuW7Zkt7S0tLydz7ZvZ88Wd05azE8/cXMs0tRRgEFhYiJ7f4uIiERISgrTMH0Fhf/9B0yYwE7d3nvpU0/l/az69V3zA4MaXD9uHDB2LDvUPPccH2NiuIFXrpz39aecAtOqFWos2o0VK7ggnRSKiEgezinh3Xfz0buu8OBBDtOtU8fzepMmTHEJe1DodL159NHg35OZyfETOiUUEZEI824y43BKKJYs8awnDMSZVbhpk1tQmJYGdOrkyit1N20au4ru2sUN/IEHgOHD2dLUn969UeNwGrKzGUPWqQOeOP79d3CLLCAFhSIiJciUKcBZZ7lqHLyDQuf32rU9rxvD08UpU9j0LGxB4ccfs2vom29y8wvGDz8w90ZBoYiIRFh+QSEQfFDozCrcuNEtKPz6aw42/PBDzxfv3cv5UV27cr7T1VcDb7/N9NFArr0WcdgFAIiPtyg/fBgDy1tu4Y3YCFFQKCJSQqSlMeOkWzd2TXOuudu2jY/eJ4UA6wr37OG/wxIUbtoEPPwwcMklQPPmwJ13Av/+6/maOXNc1fKOb79lBb97Vb+IiEgErFjB1FBnKLyjdm2gWjX+O9jt6KSTOMze46Rw7lw+OXYs25U6vv+eN0C7dAltwXFxqBEfCwCol7EcuPde3g3+8EPe4Y0QBYUiIiXE11+7JjlUqcK4ascOz9ds385H75NCwPNOaKE7j+bk8G6nMcDIkfzZuRN46CHX8888wzmEnToxdQbgH/Dtt7yujqMiIhJB1gI//ug7W9MY7oU1arCmMBjlyrEUfv16ZnTG1bAMCk88kYWG8+e7XjxtGjvRBHsM6aZGU975rWe3suhx9mygWbOQPycUCgpFREqIKVM4b9DZF+LjQzspTEpiHFajRgHnKrkbMoQb4dtvA6ecApx9NucujR4NfPkl02Reegm45hoeTz7wAN+3Zg1vsSp1VEREImztWjZou/xy388/9RSrH0I5gEtIYALMkSNAHNK5ET/zDO/WfvYZX3TkCPDNN9zrCjB/N64Vo9R6fTtyPkYETwgdCgpFREqAjAxmYnbr5tobfAWF27dz//E1N6liRXYlDVTfHpSNGxkAXn450Lev6/ozz7Boo1cvYMYM4L33eIfzqaeAzz8Hpk/ndUBBoYiIFNjmzUwJnTUr8Ovy23K6dAFuuim0765fn/c3ASAu7S/+44orgO7duecdPAgsWsQMmVBTR3PViONGX7d+oHkX4aWgUESkBPjtNyA7G+jY0XXN30lh7drseO3LhAnskF0o774LHD6ct76hYkVgzBimynz/PdC/P59/6ikeb951FxeQmMjTRRERkQIYN441fc88E7j3yowZ3HKcrqHh4P5ZcRsWsdCwYUPOI8zI4A3QadN4h7Zz5wJ9h5PNE61xFICCQhGREiElhY/um1GtWr5PCn3VEzqOO44/BZaZyfrBa68F6tbN+/zZZ3PuRbt2rmsVKrBD6fbtwC+/6JRQRESC8vffvoO+8eO5tSxa5Orz4s2ZfuQvdbSgnA6kABD31xygbVveAG3XjndrP/uMQWGbNsDxxxfoOxIT+fedeWZ41hwMBYUiIiWAExSedJLrWnw8ZxJmZbmubdvmu54wbD79lNN++/cP7X3nnstOpUD4d2gRESl13n2XDWCGDvW8/vffrOl7/nneHB00yPf758yJzPQjj5PCf1azAzfAtqS9e/OkcMUKjqIooDPOAPbvBxo3LtxaQ6GgUESkBEhNZROzY45xXXPGUuzc6bqW30lhoVjLBjPnnOMalBiKl19mLo+zgYqIiPgwfjybWZcrB7zxBisWHBMm8LFPH75m1ixg6dK8nzFjBnu/hHv6kcdJIdJ5Uujo04dNZoAC1xM6YmML9faQKSgUESkBUlLyZmt6zyo8dIgtsiN2UvjDD8DKla5awVBVqMBbtlHooiYiIiXT3LnAjTeyPH3sWDaVcQJBgAFjy5ast7v7bs4a9D4ttJZBYceO3HqCkpUFvPUW6wIDqF2bn1m13H5UrFsTaNDA9eRZZ7GGvmlT1hmWIAoKRUTcDB4M3HFHUa8ir9RUz9RRIG9Q6DxG7KRwyBC2Ne3VK0JfICIipV1WFuv9fFm+nBONGjbkbN4ePYAmTYDXX2egt2YNsGwZy9oB1sjfey8weTKwerXrc1as4NjAkKoVZswAHnkEeOGFgC+LiQFOOcUiLmenq57QYQzw1VecIVXCKCgUEXEzZYrnHcniwtdJYa1afHSCwUAzCgtt82bu0LffDlSqFIEvEBGRsuDuu4ELL/T93MCBQPnywMyZQPXqDMAeeYQ1hHPmuPbnHj1c73ngAW5LAwa4gs1vv+VjSPWEs2fzcdgwRpQBNE/Yi0Y5q32XQzRsCDRqFMIXFw8KCkVE3Kxfz1nr/u5iFlZODvDrr4FbaHvLzgZ27Mh7UugdFG7fzsewnxRmZLjunN51V5g/XEREyooDB4Avv+SJYGqq53PWsnl1ly7AySe7rvfpw/3ujTeYOtqqledN0po1gaef5n3L004DRo1ir5czz8y7bwLwnx46ezbfZG2+p4UjO3+JL3GdZz1hCVeuqBcgIlJcHDrk6vKZksKUlXDasYN1ErNmMUsl2DuY27dzj/I+KaxYkc1nAp4UWss6wMTEvLV8Bw8C77zDCNha/lSuzB22Zk3+PmECU2EOHgRuu03zBYs5Y0wbADeA+3uitbZlES9JROSob78F9u3jvxcsAHr2dD23Zg3r4lu18nxPpUrA/fcz8APYldTb00/z0O6hh4Bbb+W1AQN8LGD5cqBFC2DqVM9NeNs2YNUq4LXXGK2+9x7w2GN+239WnTUZqFfNs+tMCaegUEQk16ZNrhO8rVvDGxT+8AM7Ve/ezd83bAj+vU6g6mssYHw8g02AwWO5ckCNGm4v+Ogjnu75ikI//xx48kkGizExfHRv8QYwf+e224CbbuJYCYkYY8wIAFcC2GmtbeZ2vTOAdwHEAvjYWvuKv8+w1s4HMN8YczWAxRFesohISMaP5x61fz9PBd2Dwp9+4qOvbqF33QX83//xfddc4/uzW7YEFi7k1vbRR8DNN/t40cSJ3OdGjPDcE+fM4WP79txsP/kEeOYZLtjbl18yv/Xll0tV4zQFhSIiudavd/07n3KCkIwYwVK8Ro14lzQpyXWqFwwnxcZXGkx8vOdJYXw84zsAjDwfeYT/Hjcub1A4aRJP/jZudG1shw4Bu3ZxzsW+fcB554XQuk0KaRSAIQDGOBeMMbEAhgLoCCAFwGJjzFQwQPSeztXXWusMKOkN4LZIL1hEJFj79zOts08fzhp0gkDHggUMGE87Le97q1fnXMING/ykhOaKieHn9+nj5wXTprke//uPnWoApo5Wr87uoTExnKv7v/9x1sU557jev307cM89wPnnA48/HuyfXiKoplBEJJf76V04g8LBg7nPLFnCx/h4V/1fMAKdFNaq5VlTeLSeMCcH6NuXg446d2axxaFDrjdmZDCPtXt3zzudFStyx23RgrdrFRBGjbV2HoB/vC6fB2CdtXaDtTYLwBcArrLW/mWtvdLrZycAGGNOBpBhrd0b3b9ARMQ/J3W0Z09uL8uWMS5zLFjA0z5/h2+PPsoeMAWWmgr89htw1VXcDydP5nVrGRReconrruojj7Db9i23sMuN87p+/VgYOXo0U3NKEQWFIiK51q/ncPhatcIXFGZmAn/9BVxxBYfoAqz5C+WkMCWFpX7HH5/3Oe+TwqP1hEOGAD/+yJrB++/nzjtrluuN06ezg417Czcpjk4C4P5/jSm51wK5DcDIQC8wxtxhjFlijFmSnp5eyCWKiORv/HiWq190EYPCnBzgl1/43M6dPD0M96B5D9On8/HFFzlb8PPP+fu6ddz027d3vfa444AxY7iwpCTuo2+/zVKMV1/1W2tYkikoFBHJtWED94l69cIXFC5ezI3Pvf12qEFhaipPCX3dPY2PZ+CZmel2Urh2LSvsL7+cdznbt2dE6T5rY9IkLuSCCwr6p0kxZa19zlr7cz6v+cham2StTYqLi4vW0kSkjNq3jzHZNdfwgO2CC3go56SQLljAR+8mM2E1bRqQkMDh8r1783QwLc01iqJDB8/XX345hx/edRdvtD7yCNCuHQcjlkIKCkVEcq1fz/FC9eq5UjYLa+FCPp5/vuta7dqhp4/6Sh0FXAPst25lKWCdOuCGVakSMHw4I8kKFTgN2Ekh3bePRfLdurkVIEoxlQqgntvvdXOviYhElDOZ4bbbfI9RmjsXeP/94D5rxgzWFDqNZapWZTmFe1BYsaJn+V5Y7d/P4K9LF+6LvXvzju348bxerx5w6ql533fCCcDQoZwldccdTBstpftm6fyrRERCZC1PCp2gMFwnhb/8wiyT6tVd1+rUYQCXlRXcZ6Sk+C+sd4LCZcv4WHv/eiA5mROA3WdTXHst6wiTk1nYceCA/xZuUpwsBtDIGFPfGFMBQC8AU4t4TSJSymVnM9Hk+efZLO233zyftxbo35+D4w8cyP/zxo9naUabNq5rrVtzj8zOZlCYlMTAMCKSkzlaqUsX/n766YxKP/2UnUfbtw/cSTQpCfjwQ/93aEsBBYUiImAGyYEDrvTRvXv9z7cNlrU8KXRPHQVczWCcWsBAcnKYaupvH3IG2Dsbdp3Zn7I4/s47PV/YoYMrhXTSJLZ4c9+dpcgZY8YBWAigsTEmxRhzm7X2MID+AL4DsArAeGvtiqJcp4iUbvv2sRfLmDHAE08w8eSTTzxfs3AhsGIFA7rFPobfLFoE3H03cMMNjMOmTWMJe2ys6zWtW3Pf/flnNvmMaD3htGk8nrz4Yte13r3ZAe6ffzzrCcuo0tU2R0SkgJxxFA0buoLBrVuBatUK/pkbNvBE0LtszznA27YNOPnkwJ+Rns5NN7+TQqc5Wu3FXwMvPggce6znCytU4C7/1VfAkSNAr16lrnNaSWetvd7P9RkAZkR5OSJSBmVlAR07Mqj78ENmTKamAmPHAm+8wWZsAOcAHnssA8iffmLzGHdPPcXTv3r12LOlTZu8pXhO/eDbb3Ofi1g9YU4OCxo7dfLsqN2rl2usRLt2EfrykkMnheGJJUAAACAASURBVCIicI2jcE4KgcKnkDr1hP5OCoNpNuPMKPR3UhgXx/IGJyisU2Uvc3p8cVJIMzOVOioiInlMnsy9a+RIBoQApzD89x/nvgPAv/9yfvuNNwKJiXnnDTqD6fv3Z0fRpUvZ/Pr00z1fV6cO99yvv+bvLVtG6I9aupSpOU7qqKNePQaDZ57pWW5RRikoFBEBTwqNYWMyJwArbFD4yy8cQ9G0qed1Z+8JptmM3xmFWVnAwYOIjWVguHs3EIvDiOt/ne/ZFQBv/1arxh/dFRURES9DhjBjxn34+0UXsQeLk0L62Wcsz7vjDqZ8/vwzE1Ac8+Zxi7r00vy/z0kZPf10Vj5ExLRpvHt6+eV5nxs/nnX2oqBQRARgUFivHjNL6tTh/lHYDqQLFwLnnedZQwEwiIuNDe6k0FlDnvTRa69lXeDNNyO+CmeUx2MHYh5+0P+HVagA/N//AS+/rKH0IiLiYdkypnzec49ng01jeFo4bx6wZg1TR5OSgBYtmBaakcH6Qsf337NhTDBl605QGLHU0f37gY8/Btq25Z7p7cQTXek7ZVzAoNAYE2uMeSNaixERKSpO51GApXa1axfupHDfPm6w3qmjADfb+PjgTgpTU7memjXdLqak8M7naacBX32FWus5kq52rSOMOAO5555SO2Mp2rRHikhpMnQoULkycOuteZ+7+WbezLzrLmD5cldqqRPUuaeQfv89TxcrV87/Oy+5hHtixPq8DBnCzfa55yL0BaVHwKDQWnsEQCR7AYmIFAvr17O2wVHYsRRLlzKdxt9s+GAH2KekMED1OG0cO5atTSdMALZvR3ybRvzMs2oVfMESMu2RIlJa7NnDraV3b47m8xYfD1x5JWcTVqnCHi0AcMopzGRxgsLUVJ4aBpM6CjAtdf164LrrwvJneMrIAF55BejcOW8nHMkjmNZzvxtjpgKYAGCfc9FaOzliqxIRiaLMTGDnTtdJIcCg0Jn9VxBOkxl/QWHt2sCmTfl/TmqqVz2htewT3qrV0QXHX9gAmA/UTojUgCcJQHukiJR4o0Yx0zJQIkm/fmwK07s3pzsATC1t3RqYP5/b06xZvB5sUAiwlr9A1q/nm71rNBxvvMGuOC+/XMAvKFuCqSmsBGA3gHYAuuT+XBnJRYmIRJN751GHc1JobcE+85dfgEaNfJcwAKGdFHrUE/72G7ByJXDTTUcvOWMp1DytSGiPFJESLScHGDaM5Q4tWvh/3WWXMb565hnP661bc6/asoWpo7VqAWecEdk1Y9YsHjOefz5nDXrbuZOzLq69Fjj77AgvpnTI96TQWusjs7hoGWPaALgBXH+itTZSTWxFpAxwgkLvk8IDBzjTNtSOaM7Q+kB3SmvX5gzDrCz/PV+s5UZ72WVuF8eMYQX/tdceveQEhaqVj77iuEeKiIQiOZmjI/Iru4uN5fxBb05d4bx5jNUuu4wniBFz+DDw0EO8Y5qaysDw3nuBgQO5YcfGsqnawYPAiy9GcCGlS74nhcaYusaYKcaYnbk/k4wxfiZm5c8YMyL3c5Z7Xe9sjFljjFlnjBkQ6DOstfOttXcBmA5gdEHXIiICuAbXu58UOimbBelAunQpsGOH/9RRwHWql5bm/zX//ceGNUfTR7OygM8/B7p29Sj6cE4S/c0ylMgJ9x4pIhJtr7/O070ePQr2/jPOYDrpkCG82dmxY3jXl8cnn7Bw8d13gdWrgbvv5pfXqsXObFWrAu+9B9xyC9C4cYQXU3oEU1M4EsDnAJzb0n1yrxX0/5ePAjAEwBjngjEmFsDQ3M9MAbA4t0YjFsAgr/f3tdbuzP13bwC3FXAdIiIAGBQefzxQvbrrmvsA+zPPDP6zdu8GevZk0Od2mJeH+wD7k0/2/Zo84yhmzuSOe/PNHq9r3ZpzoyK+EYsv4d4jRUSiZu5cnhS+9RaTUAoiNpaD57/7jr936BC25eWVkcH81TZtgO7deSQ5ZAjQty//mL17eUc1K4snhxK0YILCOGvtSLffRxljAgzCCsxaO88Yk+B1+TwA66y1GwDAGPMFgKustYPgpzbDGHMygAxr7d6CrkVEBPAcR+FwDwqDdfgwO6ilpjKNJtB0iGAG2Kem8vHoCeCYMZxN4ZWXGhMD3HBD8OuUsArrHikiEi3WMr6qU4ejJgqjdWsGhc2bh6mU4a+/OCPj66+BLl2A//2PtRKDBgHp6cCMGZ45qmefrdrBQgqm0cxuY0yf3HlMscaYPmBRfTidBMD9P71Scq8Fcht4N9YnY8wdxpglxpgl6enpYViiiJRW3uMoAFcWSihB4RNPALNnAx98wBKHQJygcNuwr3wXacDrpPCffzibsHdvoHz54BclkRaNPVJEJOxmzeIoiYEDg5spGIhTVxhK11GffviBwwubNwdGj2bnm1Gj2FTmiSfYPOamm4CkpEJ+kXgLJijsC6AngDQA2wH0AFDkhfXW2uestT8HeP4ja22StTYpLr9hziJSZh05wtEQ3ieFsbEMxoINCr/8kuk3993ne/Cvt7hqWYg1R7AteQXnKP39d57XOEFhnTrgRpiVxRQZKU6K5R4pIhKItQwGTzkFuC0MhVgtW3KgvTPUPqBHHuEXjx7N1qcAO7s9+CDQrh3Td157jZvgjBnsuN25M6/FxmrERIQETB/NrfXrbq3tGuF1pAKo5/Z73dxrIiIe9uwBqlUrfGez7Gzgm29Yr374MMdHeAtlgP2YMbyR+eabQbx4/37E9OiBePsRtjfvBKz+HwvmhwzxeFlqKrNFK2bkttbu2TMKfb4lWFHcI0VEwmraNGDxYmDECP8dsENRoQLw4YdBvPDff4H332dwd8stwODBDAZffZXNY+67j/92P7o89VRg4kRg0SJu2OqqFhEBTwqttUcAXB+FdSwG0MgYU98YUwFALwBTo/C9IlKCpKezpODppwv3OdOnc0/p1o3jjZ54AujTJ+/r6tYNvvtoWhqbnOWb2XnwIO94zpyJ2qdUxLbaSSwIHDmSKaLgrKfHHwfGjcs9wXzlFd5FfeGFkP5Oiawo7pEiImFz5AhrCRs1Am68McpfPmoU97N584CxY7mx33QTu7TNnMkg0V8u6/nnA61aRXW5ZUkw6aMLjDFDjDFtjDFnOz8F/UJjzDgACwE0NsakGGNus9YeBtAfwHcAVgEYb61dUdDvEJHSadky4NAh1plPnFjwz3nzTaBSJd4p3bqVMZevO6X16jEoDGaAfVqaa15gQGPHAvPnA6NHo86ZcWw089BDwP792D9kBG64gfWNb73FWU+fvJzGqcI33QQ0aRLqnyqRF9Y9UkQkkE2bWK4QzL7kzwsvAH/+ySzMcsG0nAyXnByeErZsyVrB3r05UuKzz9hYplOnKC5GvAXzfwpn5T7+z+2aBdCuIF9orfV5V9VaOwPAjIJ8poiUDctzp5s2b86sk9NPB5o2De0zcnKA337jXnSlz97GLvXqMQhNT2caZ6DP3LEjiKDQWgZ4zZoBffqg9gLg55/BlNAOHfDZWzvxeQYzaR56KHdUxZ3P8QvymyosRSWse6SISCCDB7OaYPZsbiehBnXffQe89BJr3wONTYqI5GTWzz//vOvaMceofXYxkV9NYQyA962146O0HhERv1asAE48Efj2W+Ccc5j++euvnDEYrA0bOMLonHPyf637WIpAQeHu3UzHqVUrnw9cvJgR6bBhgDGoU4djB7OygAoPP4yRlx+PxJP24K23jmfN5Pr1LPi4804gISHIv1CiRXukiETbP/9wDNHw4aw7//JLoEqV4N6bksJSiaZN85SwR8ewYZzVdM01RfDlkp/8agpzADwepbWIiAS0YgUP2erUASZMADZuDLLTmZulS/kYSlC4aVPg16Wl8THfk8Jhw7h75xYwOmMp0tKA1ad0wi+4ELfYkTDJs1hU2LkzixQLW0QpEaE9UkSiLSMDSEzk6KOZM4G2bZnNkp/sbKBXL5a1T5zIA7qo2rKFNRv9+gEVK0b5yyUYwdQUJhtjHjXG1DPGVHd+Ir4yERE31jIodNJFW7fmsN2pU3lKF6ylS1k/GEzaadOmQNWq3HgDCSoo3L0b+OIL1gZWrQrANeB32zZg1JgYxMbk4MZtr3LQ0zvvcCbG2LFhmgQsEaI9UkSiZs8eZsfceSf3vz//ZDpofl5/HViwAPjoIzZFizqnNemddxbBl0swgslEvi738V63axZAAx+vFRGJiNRUpn26B3Nnnsmavy1bgPr1g/ucpUtZwhdMC+5KlYCuXYHJk3nI56+zqM+gcN06Lio2lr+PHMnF3n330Zc4J4Vbt3KkxWWdgfiOA4DTTgMuuij4nCApStojRSRqMjJ4vxAArrgC6N6dfVpee83/AVxODmOyjh2B66PdLzkjA/j+e0ajV17J+YRSLOV7Umitre/jR5udiETVitx+xO5BoXO3c82a4D7DWpb0BUwdXbGCFfy5evZkDcecOf7fkicoHDqUvb4vuIB1hE7HtTZtmP+ayzkAHD0a2L4duPW2GHaZufxyBYQlhPZIEYkmZ1av47bbuEd99ZX/98ydy5unt9wS6dW5+fVXoEMHoEYNbqQAMHBgFBcgoco3KDTGHGOMGWiM+Sj390bGmHx69omIhJevoPC00/gYbFC4YQM31IBB4QMPAFdfDezfD4CZnMcdB4wP0EokLY31GVWqAJgyhcN327RhVf/55zPI27ABuOcej/fFxfEg8ZtvuG/m1w1Vih/tkSISTRkZns3V2rfn4dsnn/h/z+jRrFq4+urIr++oe+9lbuvDD3MMU1oacO65UVyAhCqYmsKRALIAtMz9PRVAENnLIiLhs3w5O4DWqOG6VrMm75gGGxT+9hsf/QaFBw+y6CIzk5EaXCmkU6awUN8XZ0ahWfgzZ12cdx4LEVevBu6/H5g1i61Ju3f3eF9srKtj6Q03BJfSKsWO9kgRiQprGRS6nxTGxHC8RHIysHlz3vdkZgKTJvGwLuzNZaz1XdS/ahWwZAnw5JPAq6+yCYBTSiHFVjBBYUNr7WsAsgHAWrsfgInoqkREvDidR90ZwxTSYIPCpUtZF+j9OUf98gsDQwAYN+7o5Z49gX//9cgq9ZCWBsRX2w906QLUrcsOa8ccw537nXcY0c6Z4zPqc+oKb701uL9Bih3tkSISFfv2MQbzHsPkpIWOGpX3PZMn83033xyBBT32GIv0ve+Yfvopo9WoFzBKYQQTFGYZYyqDhfMwxjQEcCiiqxIRcWMtsHKl746hoQaFzZoF6IY9Zw7vZt56K08K9+wBkE8K6caNSPt9G+L/+I7vnTmTeaHuTj+dPcR9OOMMoFUrNs2REkl7pIhERe6W5HFSCDB9tEMH9jPLyfF8bvRooEEDHtaF1f79HJa4ahWDQEdODrtmX3ppEHOapDgJJih8DsBMAPWMMWMBzIbmMolIFG3ZwhQYf0FhaiqfD8RaBoUB6wnnzAGSktgyOyuLOaNgEHn11fw1Kyv3tVlZfF2jRkj7tyLiE6vzCxo2DOlvGz7c/wmklAjaI0UkKjIy+Oh9Ugiw4czmzZ77yZYtwA8/8JTQhDt/YfJktgSPiwNefhk4fJjX583jF990U5i/UCItmO6jswB0B3ALgHEAkqy1cyO7LBEpKZYuPdqTJWJ8NZlxOB1I//7b8/r+/Z4DfTdtYgqo36AwMxNYtAho1441gQ0aeKSQXnst79ImJ+de+PRT4KOPcKjv3fgHJyL+uotd0+5DEBurOb4lmfZIEYkWfyeFAG9cVq8ODB7s2vs+/ZQ3RCMSn40YwX1y+HA2Uhs7ltfHjGFXm6uuisCXSiQFc1IIa+1ua+031trp1tpdkV6UiJQMGRmcuvDRR5H9nmCCQu8U0vvu80wtXbqUj36Dwp9+4p3OSy7hLdXrr+ct19x5Ex07ciOeMAFMj3njDeCss7Bz4GAAypIpy7RHikg0BDoprFgRuOsuYPp0NmFr0oQl7RdfDCQkhHkhGzbwCPLWW9mJ7ayzeFq4dy8wcSJwzTUR6GojkRZUUCgi4ktKCuOodesi+z3Ll3Om3wkn5H3u1FMZw7kHhdYC337Lk8ErrgB27WLn0XLlWMPn0w8/sAtNq1b8vXdvBn8TJgDghnvZZWwkihkz2Fn0sceQtoM5OQoKRUQkkgKdFALAiy+ygfYrr3BUboUKHH0bsu3bgR9/BL74Anj77bxDEEeN4sbr5KU++yzTdfr0YWCo1NESqVxRL0BESq5t2/i4dWt4P3ffPuDYY12/++o86qhcmUX27kHh6tXc0/r1Y/rM1VczIGzWjCMmfJozB7jwQtfdzcREoHlzppDedx8ANoP54gsgY9AwVKtXD7j2WqTN5MsVFIqISEHs3w+89x47Xdev7/91gU4KATb8bNmSP088UcDFfPMNN02nRtDx+uvAo4+y/emoUWwk45RMXHUV77hOncprF19cwC+XouT3pNAYUz3QTzQXKSLFUySCws2bGWDdfTdP/HJy2NzMV+qow7sD6Zw5fHzySZY3LFjAm55nn+3nA/79l0eJ7dp5Xr/+emDhQmDtWgCuBqKrfv4HeOghoHx5J7tUQWEZoz1SRMJh82YmqAwYAAwbFvi1+Z0UFtrPP7OAvnlzFtCvWMECxeuu4/iJd95hWcXWrUDfvq73xcTwtBDg0N0YJSKWRIFOCpeCLbZ99SuyABpEZEUiUmJEIij8+GP2fPngA9aq33UX76LmFxQuWMAg0hjuWQkJrIFv0ABYvx546in2j/Fp3jxGn95B4Q03MB/noouAzz5DYmIHAMDKykm4oF8/AEdLDlGzZuH+bilxtEeKSKHMmcPTwcOH2cQzv/FKGRlMCfWb8VIYK1cCV14JnHQS6y/cN7VPP+UiH3qIR5nVq+dtJNO9O5vOdO8egcVJNPgNCq21AQ6wRUQ4CgJgzd7Bg4XfqLKzgU8+YR3gKacwW+WPP/hcfkFhZiaD1Ph4lge670sDBgDnnusqF8xjzhzmoZ5/vuf1evXYkfS664BLL0X9O+9BRbyBlc16MmIFg8Lq1dVBtKzRHikihTF1Kvep004Dvv6aNy6XLQv8nj17eEoY9vESW7cCnTpxI/v++7x3OcuXBz7/nKeIU6eypMJ704uJYc2GlFhB1RQaY04A0AjA0f/ks9bOi9SiRKRkcE4KATadOfXUwn3e9OmsBbzzTgaG//0HfPYZn/Mz+x2AZwfStDRunO3bu543hoN9/ZozB2jThrdgvTVrBvz6K3D//Yj9YCia4HasrOo6ckxLA2rVCv5vlNJHe6SIhOqdd5jRsmgR7zE2buyahetrKwJ4UuivnrBQ7ruPHz5/vv+ixgoVgPHj2W68V68ILEKKWr5BoTGmH4AHANQF8AeACwAsBNAu0PtEpPTbto03Cw8d4o3GwgaFH34I1K3LLp8xMRyDdOAA0z8D1VC4B4V79/Lfl1wS5Jf+/jvbm/bp4/81xx579Agz8c1q+Hm960h0xw7VE5Zl2iNFJFTp6axzf+qpo0knaNKEPVzWrwdOP933+5yTwrBas4anfwMHsptaIBUrHm28JqVPMJWgDwA4F8Bma+0lAFoA2BPRVYlIibBtm6t5S2HrCjduZNZKv37sFAowY2XCBGDJksDvPekkNg1ds4aHfomJHGGRr9WrmTJTr15wLbS7d0fiZQnYvJnpqgBPChUUlmnaI0UkJF9/zTL2a65xXWvShI+rV/t/X0ROCt9+m6eA994b5g+WkiaYoPCgtfYgABhjKlprVwNoHNlliUhxl5PDVE+nDK+wQeHw4UzzvO02z+vGALGxgd9rDOsy/vqL2S/e/WJ82rCBOaYxMexME1QU6UpjdTZuBYVlnvZIEQnJpElsguZ+MHfaaXwMFBSG/aQwPR0YPRq48UbVQUhQQWGKMeZ4AF8BmGWM+RrA5sguS0SKu1272IysYUOgRo3CBYXZ2UwVveIKpo8WROPGwNy57FTqXk/oU2oqiwwPHmTb7UaNgv4ep+HNypU8Ldy3T0FhGac9UkSCtmcP70Nec41nw5jjjgPq1AncgTTsJ4XDhnEffPjhMH6olFT51hRaa7vl/vN5Y8wPAKoBmBnRVYlIsec0malTh4FcYYLCr79mbd6ddxb8Mxo35ullTEw+c3N37mRAuGsXc02bNQvpexo2ZFrrypUcEAwoKCzLtEeKSCimTeONUPfUUUeTJlE8KTxwABgyhGMo/BUxSpmS70mhMeYCY0xVALDW/ghgLlgzISJlmHtQWK8eu48W1NChwMknA507F/wznGYzZ58NnHCCnxf98w9w6aWcFvzNN0BSUsjfU64cv2vlSmhwvWiPFJGQTJrEG6nnnpv3ucaNGRRam/e57GxmwoTtpHDMGN4cffTRMH2glHTBpI++DyDT7ffM3GsiUoZ5B4UFPSn880+mffbvn3/tYCBOUOi3nnDvXrY1XbUK+OorjqAooMREBYVylPZIEQnK3r3AzJmcTxjj47/AmzRhiujOnXmfy8jgY1hOCnfsAN54gzdGL7ooDB8opUEwQaGx1nXPwlqbgyDnG4pI6eUEhfHxDAr//Zf1daEaPJhz470bzOTr77/ZObRBA+DVV9H85D24+27g9ttymJ/ToQMX16IFixXbtAGWLuWcpUsvDX2hbhIT2adm40b+rqCwTCtWe6QxJtEYM94Y874xpkdRrUOkLJo/nxUJo0b5fn7GDI5w8pU6CgTuQOoEhR4nhdbyjmxOTnALPHyYm27jxsyY+d//PAsbpUwLJijcYIy53xhTPvfnAQAbIr0wESnetm0D4uLYybpePV4L9bRw1y5g7FhOg6hePcg3ZWUBL78MnHEGp/7WqwcMGIDyDU/GsKx+OPWKxkDXrqzWv/xy5umkpTFiHTsWuOqq0BbpQ2Ii9+Iff+Tp5oknFvojpeQK2x5pjBlhjNlpjFnudb2zMWaNMWadMWZAPh9zGYD3rLV3AwhizoqIFNaRI8BLLwFt2wIrVgBPPsmSPW+TJgE1awKtWvn+HCfjxVdQuCd30E218vvZma1PH+5vJ58MPP54/otctow3SR94gG3D//qL2TMiuYIJCu8C0BJAKoAUAOcDuCOSixKRyNu2jWkshXl/nTr8d0GDwuHD2fgs6Fm4mZnAeedxyG7XrkwF/fFH4LffgC5deHs2Lg748kse5Y0YwVPDpUt5snjddaEt0A9nLMWPP3KDL0zaq5R44dwjRwHwqKw1xsQCGAoGe4kArs89DTzDGDPd66cmgE8B9DLGvA5AtytEImzXLiatPPMMt5ipU3kf8uOPPV+3bRtL2bt1879n1KvHzBlfHUiPnhRO+oSpNbNmMQPmiiuAt94CFi70v8i9e4GrrwZ27wamTOHm31iTc8RTMN1HdwLoFYW1iEgUvfMO8OabTPs87rjQ35+aWrigMDubDWY6dHCNecjX0KG82zl+PHDtta7rLVrwFHD0aHaCibBGjbipZ2aGNM1CSqFw7pHW2nnGmASvy+cBWGet3QAAxpgvAFxlrR0E4Eo/H3VvbjA5ORzrEhH/XngBmDePQWDfvszGvOgi4JVXgNtvBypVYmbJHXfw8ZFH/H9WTIyr2Yy3oyeFf84HLrmEcy2MYcDXrBm//Pff+YXeHn4Y2LKFC/V3TCllnt+TQmPM47mP7xljBnv/RG+JIhIJW7awDGHJkoK93/2k0HkMpQPp5MkMLO+/P8g37NvHwvjOnT0DQndRCAgBpsw6waDqCcumKO6RJwFwv92SknvN37oSjDEfARgD4PUAr7vDGLPEGLMkPT09bIsVKUtycpgSesUVPLxzyvOefZZ75MiR/H30aJ4SvvJK/jcS/QWFR08K/17MoND5sqpVmXazejXw/PN53zh9OiPWxx9XQCgBBfovqFW5jwX8T0YRKc6cAO7XXwN07PTj8GE2Lzsp9z9NK1YEatUK7aRw8GDO/LviiiDf8MEHzNN59tnQFhshTZtyD1ZQWGYVyz3SWrsJQaSvWms/AvARACQlJflogC8i+fnlF2D79ryNY9q1Ay68EBg0iKmlDzzA08P+/fP/zCZNmAxz8KDnod/Rk0Lsydsx9NJLGZW+/joX48y72LUL6NcPaN7cd8Ao4sZvUGitnZabfnKGtVZDTERKmdRUPv76a+jv3bGDaTDOCSHgeyxFaiqDRe8DvLQ04OefuWH6asudx/793Ow6dOBOWwwkJvIOsYLCsimKe2QqgHpuv9fNvSYiRWzyZKB8ec5/d2cM719edhnQsiUb0YwcGdx+16QJ99e//2Y/NYdzUnhcuQOsrff25pusFezcmQN769dnceI//wDff8+7tyIBBPw/T2vtEQA6axYpZXJyXCMlFi0K/f3uMwod3kFhSgpPAn215t6Q25uxefMgv3D4cEaixeSUEHA1m1FQWHZFaY9cDKCRMaa+MaYCWL84NcLfKSL5sJY3Bjt08D1QvlMnHtjt2AG89hqnJwXD31iKPXuAqjH7EHt+ErvReKtWjTN4O3YE/vsP+Ppr1hAOGhTCZitlWTAFOH8YY6YCmADg6BQya60K2EVKqF27ONnh1FOBdet4oneS3yqlvPwFhcnJrt/HjeM8pj//zPv+TZv4mJDg48NTU1kUX7Mmx0ecdx7w6qvs9V2IgfPhdvbZvBvcsGFRr0SKWNj2SGPMOABtAdQwxqQAeM5a+4kxpj+A7wDEAhhhrV0RlpWLSIH9/jv3soEDfT9vDBtgf/MNcNddwX+uU3Po3YE0Y3c2js/ZHXjYfFIS8MUXrt+zs3mUKRKEYILCSgB2A3CvOrJQVzOREstJHe3enXcwf/2VbbKD5S8o3LuXKS7VqgGff87rzoB3d36Dwq1bWUC/fTtvww4Zwq4uWVnsLlqMnHYaN+1TTy3qlUgRC9seaa293s/1GQBmFGh1InLUsmVM+Xz++cLPbJ80iV2oA42+bdaMP6E49liOHsxzUrjxX1RDRuCg0JsCQglBMCMpbo3GQkQkviqBEAAAIABJREFUepyg8IorgLffZgppqEFhTAwP8xx16/Jx61Z+/h9/cMPc4GOM96ZNfO8xx7hd3LKFAeGuXWy13bw5jx6/+gqoUoUnhcWMxlGI9kiRkmHHDu55qakca5uUVPDPclJHL74YqFEjfGt0NGmSNyjMSM3E8djDIkWRCMi35NUYc5oxZrYxZnnu782NMX4Oy0WkJHA6jzZoAJx5ZujNZrZtYy2d+wBeZ1ZhSgpPCWNigF69eFJovXobbtzodUq4aRN31927OZD3ggsYMXbtyvybwYMLf1tXJAK0R4oUf9nZQM+e7LkSG8t7jYWxciUzRby7joZL48b8fPe9c8+uw6h2HAo2WFgkCMH0/RsO4EkA2QBgrf0TGmYvElXW5g2sCiM1lUFbfDxw/vmcVXjkSPDvd59R6HCCwi1bGBQ6jUIPHOAdWnebNrkFhStWAK1bM+909mzfXdVEii/tkSLF3GOPsefK8OHMvpwypXCfN2kS71OGkmGTr6yso/9s2hTIzOR+6jyXsa8cjq/jo8GMSJgEExQeY631Pkc4HInFiIhvo0axzmDgQNbtFVZqKgPCcuUYg+3dm7eoPRBfQWGdOgw0J0zgSWDv3uyIDXimkObkAJs35waFCxYwILQW+PFH4JxzCvuniUSb9kiRYuyzz4B33+WswBtuAK6+mid9a9cG/xk7dnAq0rPPAo8+ylnwLVsCtWuHaZH//guccgrw5JMAXHWIy5fnPr9kCfbYaqiWUD1MXyiSVzBB4S5jTEOwcB7GmB4Atkd0VSLi4aefeBPx5ZfZ2OT99zlAvqBSUlzdRp2DuVBGU/gKCsuV4waZnMyBu926uVpwuzeb2b6dqTz1M//kcWJcHIND94FMIiWH9kiRYmr2bM5uv+giBnUAg0KAExuC9dFHwOOPAy+9BHzwATtr33tvGBc6diwH+L7yCjBzJpo25WUnKLQ/zkMGquH4JrXC+KUinoIJCu8F8CGAJsaYVAAPArg7oqvKhzEm0Rgz3hjzfu4GLFKqrV3Lu5K//soC9HvucW1wBZGa6moMc9pp7BYabF3hoUPsBeNrhIWTQtqlC8senBRR95NCJ0BM+OBJ5sj89JOf2RQiJUKx2yNFhPcau3ZlQzBnyDzAzp5nnx1aCmlaGlC9OsssMjN5cni9z17BBWAt81rPPJNHhDffjOMP7UDduq6gcN8Pv+IIyqFa7WPD9KUieeUbFFprN1hrOwCIA9DEWtvaWrupoF9ojBlhjNnpFOW7Xe9sjFljjFlnjBmQz8dcBuA9a+3dAG4q6FpESoq1axm8nXsuMHcuH7/5puCf5z6XMCaGnxdsULg99wzE+6QQcAWaN9zAx0qV+Dr3k8JNyesAAAmNKwJz5ni2MBUpYcK9R4pI4S1ZAlx+Ofek5GTgxBM9n7/6auCXX1z7WX527WJSS0T6nS1ZwoG+d93FAb8ZGcAtt+CMZhbL/7LAxInIWMD/ZD7++Ah8v0iuYLqPHm+MuR/AiwBeNsYMNsYMLsR3jgLQ2es7YgEMBYO9RADX554GnmGMme71UxPApwB6GWNeB+D1/9RFSpc9e4CdOxkUAtyU2rVjELdvX+D3+pKZyT3H/aTvvPO4Jx04kP/7fc0odDRvzuud3f5feIMGbieFq1Zh02vjAQCnzHhfXdSkxIvAHikihbBmDdCpE0/2Zs8GavnIuOzWjQd006YF95m7dkVm9AQAnhIecwwL8Zs1A958E5g5E802TsOqZYdw+NpeyDghAQCzekQiJZj00RkAEgD8BWCp20+BWGvnAfjH6/J5ANbl3nHNAvAFgKustX9Za6/0+tmZ+3MvgAEAdhV0LSIlwd9/89EJCgGO7MvOBn7+OfTPc2YUOqd6ADuQHj4M/P57/u8PFBQ+9RQ35IoVwUi2c2fUX/c9Niz9B3jnHaBTJ2yyp6BWjcOonKDaCCkVwrpHikjhDBrE/XH2bM99zl3TpkDDhp6jKbKz2e/Fl/T0CAWFmZk8HezZ03WT9J57gK5d0WzNRBxCJawb8h32jPsWgE4KJbLyHV4PoJK19uEIr+MkAFvdfk8BcL6/FxtjEgA8BeBYAD4rq4wxdwC4AwBOPvnkMC1TJPp8BYWtW7Oxyw8/AB07hvZ5TlDofVIIsGV3fnNx8wSF//0HVK0KGIPYWM6Zx8GDzM/54w80qN4Dn2V2QNZDj6PCcZWxqXlX1I8J5n96REqEaOyRIhKEzExg4kTW+zmNznwxhlvUe+/x/uXEicBrrzEzZ8eO3Bubbnbt4s3TsPvySy769ts9Fzd+PJp9lw5cBSyv1R7HZvIpnRRKJAVzUvipMeZ2Y0xtY0x15yfiKwvAWrvJWnuHtfYGa+1Pfl7zkbU2yVqbFBcXF+0lioTN2rXcIxo2dF2rUsVVXxgqX0FhfDwDzQ8/DNzVdO9eFuxXrpxbo5GczNycDh2Arbn3daxlu7eFC4ExY9Dg//rBIgabf94GbNmCjbuqqq+MlCbFbo8UKasmTGBZxa235v/abt3Y1bt+fXYSPXCApRVpaZ6vszbE9NHk5Lwf4s/w4UBiIof6uqtYEad3rAtj2Gxmzx5e1kmhRFIwQWEWeBq3EK60mCVhXkcqgHpuv9fNvSZSqq1cyYO2QNau5fgi7zuXbdsCixfzJmMoUlL46N099OGHOVTePZ3G+31t2rBZ6HvvAebnBcBVVzE/Z9EiFhSOGwf83/+xvfZLLwE9ehydVbhxbw0cqVINW7ao2aiUKtHYI0UkCCNHAo0b542xfLngAiApia+dM4ezBwGeFLr77z+mlgZ1vvDVV0zfadXKtdn689df3Dv79fPZwaZyZY6gWr6cwSqgoFAiK5ig8BEAp1prE6y19XN/AhzKF8hiAI2MMfWNMRUA9AIwNczfIVLstGoFvPBC4Nc4nUe9XXIJT/UWLAjtO1NTubEc69XZumtXnka+9Vbe9/z+O1NnNmxg19PbWvzmau3200/AsmWcldG7NzBwINCnDwsM4Urh2bCBqaeHDysolFIlGnukiORj3Tpg/nzglluC6xIaG8sbq8nJ3E/j43ndOyjcldu5It+Twq1bgb59efKXns6OcP7am+7fD9x3H+/23nij349s1szzpFDpoxJJwQSF6wDsD9cXGmPGgXdUGxtjUowxt1lrDwPoD+A7AKsAjLfWrgjXd4oURwcP8n/oA42CsNZ/UNiyJecu/fBDaN/rPo7CXWws8OCDzPpcuNB1/bffOPg3NpYBaKeTVwGXXgqccIIrfbRhQ+7GL7/MgHD48KO7cu3a3Pc2bOBJJICjp4cipUBY90gRKZhRozhiKUCMFZDTpdQ78zM9nY8Bg8LDhzmLKTubp4UzZ/IuaLt2eaPMQ4eAa65hEf+IEQE/uFkz9hXYsQOoUIFjnkQiJZhuD/sA/GGM+QHAIeeitfb+gnyhtdbnuE9r7Qywi5tImeDc+fvjDyAnh5uZtx07WMfnKyg89lg2iAm1rjAlxXdQCPAO6zPP8LRwwgQGcpddxtbeCxYAdeMOAUk9GSEmJ7um1QPsfJN7OuguJoYngxs3uoJCnRRKKRLWPVJEQnfkCDB6NO9X+tvf8uOMzPV3UhgwffSll3hjdMwYoFEj/syYwflMLVvyVLB3b26mvXszaBw+nP8OoFkz/vfBL7/wlDAicxJFcgUTFH6V+yMiYeTUCGRmMu3FV+Dnq/Oou7ZtgVdeYeBYtWpw35uayvI/X6pUAe68E3j9dabV3HADb4B+911ua+8nn2cuyzffsNghSM6sQmeIvRoCSymiPVKkiM2Zwxueb75Z8M+oVImBV1DpowcOsCnAypUsn3j7bR5Ruh9TXnQRg7+HHwYeegh47DEGi6tW8fX9+uW7pmbN+Lh0qW6mSuTlGxRaa0dHYyEiZY1zUgiwZs9X4Ld2LR/9BYWXXMKMzZ9+4olefrKzmRoT6E5q//7cWFu35inf7NksF8TChezZ3a8f6wlDUL8+375pE9NJlQIjpYX2SJGiN3IkKxq6di3c59SqlTcodNJHj54UZmXxpqgzn6l8eW7GQ4fm/cCLLgKWLAFWrOAp4sSJvJP74INBradRI6aNZmWpnlAiL9+aQmPMRmPMBu+faCxOpDTzDgp9WbuWG4K/k7ULLwytrjAtjXWKgYLCunU54+nwYY5QatkSLIq/+WamixbgVmyDBvx7f/9ddzuldNEeKVK0Nm4EJk1iZkthbzjGx/s+KaxY0a052/z5DAhffpmnfvv2sZwiULpO06bAq68C69cDTzwR9HrKl8+9KQt1HpXICyZ9NMnt35UAXAtAM5hECslJHz3mmMBB4amnsoTPl2OOYVvtYOsKfc0o9OWDD7hvNW2ae2HAAOayzpkDHHdccF/mxmkss2wZA06RUkR7pEgEZGUxw+TQIdbVWcuxSFWqeL5u4EDukSHEWn7VqsV9yl16OlNHj9bzTZvG6PPBB7kJR1izZsCff+qkUCIv35NCa+1ut59Ua+07AK6IwtpESjXnpLB1awaF1uZ9zdq1TB8JpEMHZqfMnJn/dzpBYd264Bv69mWxgpdjjskNCA8cAG6/nYMJH3iAKTIF4IylsFYnhVK6aI8UiYzXX2fdfKdOLI+4/HL+fuCA6zVLlwKff86Svbp1C/+dvtJHd+1ySx21lkFh+/ZRCQgBV12hTgol0oJJHz3b7SfJGHMXgjthFJEAnJPCtm15J9IpT3AcOeK/AY27hx8GzjgD6NULWLMm8GuPDq7fvgTo1o2FGElJ7JA2f75nZLpmDYcTfvwx8PTTwBtvhPT3uXMfQaGgUEoT7ZEi4ZeVBQwZwvuQCxbwxPDjjxkE3nEHtypr2bulRo3wnBICDAozMjgyyrFrl1uTmdWr2TXtyivD84VBcIJCnRRKpAWzcbkXEB0GsAlAz4isRqQM2bOHKS+tW/P3337zTOvcupUbY35BYZUqwNdfA+eeyyL7RYtcdxS3buVdz6TcBLfUVKBCeYsaN17GL/vuO86eeOstFsRXqMCiitq12WW0cmWeKHbqVKi/tVo1duL+5x8FhVLqaI8UCbPx41kDP2pUbl07WCqxbRvw7LNAixastfvhByayFKCqwSdnVuHOna5a/vR0t31r+nQ+XhG9ZAAFhRItwXQfLVi+mIgElJHB/5E/6yzWKvz+O9Cli+v5/DqPuktIYKF9+/Y8Mezdm43O5szh8yNHsk9M6vqDOMmmw8AC337LofMDBgD338+uMmvWcNfdvp35Ou+8U/ChT14aNFBQKKWP9kiR8LIWePddBn2XXur53NNPc7bvY4/x3uWpp/LkMFzi4/m4Y4crKPQ4KZw+nZu2+4zeCEtI4N/do0fUvlLKqHyDQmNMRQDXAEhwf7219n+RW5ZI6bdnD0/0qlZl3aB3s5lQgkKAB33DhnGD/O47BmHPPcdxFX37AhXL5yA1eSVOOnKANRHuxYrHHAPc+v/t3Xd4VNXWBvB3EZp0BUGQGooKooKIiAVERVAQFHu7CIp6LdgFxQ7Klc8KFkAQRQQUUQGVIiKodOlFFCJIU2rokBD298c740wyM8kkmckkmff3PHlm5mTmzM656r7r7L3WuiMyf1gIdepw6496FEphojlSJLJmz2ae/LvvBjZrL1KETerPO4+bWcaN4waXSPGuFP79Nx9TUzlXV6oE3tX85Regd+/IfWEYzIC+ffP0KyVOhbN99GsAewD8CuBIdIcjEj+Sk33bQZo0AebOTf/7339nwOidpMJx113cplmlCnD++ZxMDh7kot+ttwEljzVAh+bbgfPqZH2yCLv6ak7eJUrk+VeLRJPmSJEIeust3jC9/fbgvy9ThlkN06cD11yTzZP/8w+we7evz0MG3vnWW2xm504+nngi+KVpaXmaTyiSl8IJCqs759pFfSQicWbPHl/uX5Mm3L25axeDOoBBYYMGgXdKs9KlS/rXpUoBkyYcw+XVlmHOwbNQ/fy8qZiW0U03qR2FFEqaI0Ui5K+/gPHjWUDt376AQZx8cuigMcDs2cDIkezd9NtvTOafPx9o2jTgrRmDwh07+FipEoDxE4HKlZnAL1IIZVl9FMBsM2sc9ZGIxBn/lULv3OTdQupceO0owlV25iR8d7AVbmmZhE5Xh/OvvYiESXOkSIS88w7nv/vui9AJDx5k36ZPPmEOQ//+QMWKwH//y+aH/saPR8nLLkS5Eofxz5KtQFoatm/nr048/ihXCq+8kntYRQqhcP7JvgDAr2a2xsyWmdlyM1sW7YGJFHYZVwoBX7/CJ58E/vyT1dayZd8+tpF4/nlfewnngL59UT6xEj6ZWRMXXhipv0BEoDlSJCJSU4Fhw4DOnYFatSJ00l9+YWPDzz8Hvv2Wk+v//R/LdA8b5nvf4sXArbcCa9bgpCMb8M+4WUDlytjxIFODKw1/lXdytXVUCrFwto+2j/ooRAqwlBTghReAI0fY7u/CC8PLm/NfKaxUiY13f/2VNzDff5+PDzyQzcH07cttMfPnAwcOAK++CkydCixYAAwdChRV+zSRCNMcKRIB06czh+8//4ngSX/4gfOet/cTwODvgw9Yefvqq3njtHNnriAuXIgqV5+Av5OPB1p0wvYZxwEAKo1+m30vLrssgoMTyV/CaUmxIS8GIlIQHT7MMtHffAMUKwa89hpz+Dp14m6VULtM0tK4qOddKQS4WjhmDJ/36gW8/HI28wn/+AN44w3OqGXL8m5oaiojzerVs5GAISLh0hwpEr6DB5n3fsUVgTc9x45l3JXLtrjpTZ/OLTdlyviOmXGf6llnAY89BmzYwMaEP/0EVKmCKicDy3dVBoYPx44XATwHVNzxO1AkjXOrSCGljdESd9LSAlMJsuIcG+a+9BIbwAOc3Dp1YkA4eDCLxEycyPSF0aOZMB/K3r189A8KvVtFX34ZeOWV7BeYwcMPAyVLMmfi7bf5+q232JPiyScjW7dbREQkm+6/n6l5zz3HzSxeKSnAl19ywS5iFaqTk3lTtE2bwN+dfjrnyI8+YgGaoUOBZs0AsNiMf6GZChWAYhXLAccfH6GBieRP2ksmcad5c7ZoyE7fn7FjGRACTNfr0IFVrX/+GRg+3Nfir0MHVkybMAFISgrdqD05mY/e7aMAq621b+/LLwxw7FjopcfvvmN0OmCAr/vua69xMN9/D3TvHv4fKyIiEmEffsifjh15A/WTT4C77+bvpk5lnv0NN0TwC2fN4rwZLCgEGJlOn86J+9Zb/z1cpQrn6CNHgO3bPe0oROJAWCuFZlbLzC71PD/OzLR+LgXS4cPMJ58yJfzP7N4N9OzJm4hr1gBPPMGegr/8wirXGXu+Jybycd260Ofcs4eP/iuFJUtmEhAOHMgTe5cp/aWkAA89xP4VDz7oO27GSHbOHOC447L8O0UkZzRHimRu2TLmybdpwxXBpk25ocVbD+2zz7gQd+mlEfzS6dM594Wq2FamDLBoEfDii+kOe++rbtvGlcJKlSI4JpF8LMug0MzuAjAOwGDPoeoAvormoESiZcMGTkJLl/IuYDiefJLJ70OGMO565RVg40ae65ZbAt9fvTrz2pOSQp8z2EphSP/8Azz1FL+wRw/fLOr10kvsX/Hmm9oiKpLHNEeKZG7vXubeH3888OmnbBPYsyewahU3shw+DHz9NWu+RHQK++EHFpjJ5n5U/16FCgolnoSzUngfgPMB7AUA59wfACpHc1Ai0eIN1FJTeecyKz//zFSDhx5Kv4pXvDiDv2ASErhtNLOgMNhKYUjPP89Zs2dPltT+8EPf70aP5j7YO+7g3lMRyWuaI0UyMXIk66CNHu0LuG64gc/feos7d/buBa6/PoJf+s8/wIoVwCWXZPuj3jH+/be2j0p8CScoPOKcS/G+MLOiAFwm7xfJt/wDtQULMn9vSgrzHWrVYsuJ7EhMDHOl0CUzQg1l1SpGpffcA7z+OtCqFZPj//oLmD2bweBFF7GHhYjEguZIkUwsWgRUrsypyqtECU5r33wD/O9/7AYRKvUvR2bM4GMOTqqVQolX4QSFM83sKQDHmdllAD4HMDG6wxKJjqQk5u5Vrpx5UJiSAnTtypjs3XdZryU76tYNc6WwbXMmKYby5JP88mefZZGZ4cNZPvXmm1mmrUYNYPx4bRsViR3NkRL3du5kjmCwyt6LF7P7Q8aK2vfcw1ZOc+YA11zD5xHzww/Mz2jaNNsf9QaF69YxzUQrhRIvwgkKewHYDmA5gLsBfAugTzQHJRItSUlcxTvnnNBB4b59rI42ejTzB6+4Ivvfk5jIFhXeFcGM/l0p3JXEZMXduwPf9MMPwKRJzCf0zkqJiew/+MsvXGGcNIm3WEUkVjRHStwbO5YZDgsXpj+ekgKsXBm8iNpJJ/mqjUZ06yjAIjOtWzOfI5uOO479Eles4GutFEq8CKd5/TEAQz0/IgWaNyhs1oxdHPbvT9/Tdts24MoreWfTv9VEdnkrkCYlBb9RmZwMlC56GEVLlGSzpmHD2ETXKy2Nr2vWTF9RFOCe1uRk4OKLgVNOydkARSQiNEdKYZKaysCuRYvs9crdsoWPc+aw7ZPX6tUMDM86K/jn+vYF6tXjdBYx69dz8u3ZM8enqFKFwSygoFDiR5ZBoZktR2B+xB4ACwH0dc7tjMbARCLNOc4TrVtzpfDYMeY6ePMcjh0DLr8c+O03lszu2DHn35VVULhnZyoqpO0EbruNs+bAgaxmU9Tzr+Q77zAyHT06sJ2EGdCrV84HJyIRozlSCpPBg4EHHmA9s65dw//c1q18nD07fSy2eDEfQ7VbqlWL7QKz7cgR5g3+8Qewdi0n2x07uNVnxw6+JwdFZryqVGGhOUDbRyV+hNO8/jsAaQA+9by+EUApAH8DGAEgF//XWSTv7NjBlUHv9lGAW0i9QeGPPwJLlvia6+aGf1AYTPJvf6O828u9M8nJrMX91Ves271xI/D004xQI9rJV0SiQHOkFBojR/Lx/vuBli3Zhikc/iuF/pYsAUqV4mpgxCxdymbz3v2dpUszkb9yZaBaNW4FatAAaNgwx1/hzSsEtFIo8SOcoPBS55z/WsdyM1vknGtqZrdGa2AiufH330DZsukLxHgDtMRE3vmrVSt9XuGQIeyjdOONuf/+cuU4kYQKCvf8uRsVih0GLryQB+rUYW3ua6/lbdq0NOC997K3f0dEYkFzpBQKf/wBzJ/Plb6RI1nPbPbs8OqYeVcKN24ENm8GTj6ZrxcvBs48M0epfYHS0oDXXgP69GEu/eefcw6tXDnic6V/UKiVQokX4RSaSTCzf3eIm9k5ALz/eh+NyqhEciEpCTjtNO7GzHgc8K3i+Reb2baNRTz/8x9WJ42EkG0p9u1D8o5UlK9WmjNlQgLzBn/+mZPd11+zN2GdOpEZiIhEU0znSDNLNLNhZjYus2MiWRk1irHV448zzf3XXzklhWPrVl/eoHe10DmuFIbKJwxp/37gp5+AN98EevTgzdI2bZhD/+STwFVXAcuX83iVKlG5eXrSSXwsVow3mEXiQThB4Z0AhpnZn2a2HsAwAHeZWWkAr0RzcCLZdfgw54nkZG4H9ecN0Lyx1jnn8NjOncBHHzHBvkePyI0lMZElrQNMmIA9rhwq1Pfrb92tG2eefv2AM85gL0IRKQhyPEea2XAz22ZmKzIcb2dma8xsrZllmkDsnEtyznXP6pjEt6uvBu66i4FaMM4xKLz4Yq7yde7MlhEDBgCTJ2d+7tRUNnlv3543Vb1B4Z9/sil9qHzCAGlpDPjKlWNex8MPM61i9Wp+SaNGwCefcIUwyns6vSuFlSppw47Ej3Cqjy4A0NjMynte7/H79WfRGphITvTsye0ql10GTJvGFcDKntgrKYl3/0qV4mv/vMIhQ7gL5bTTIjeWxETOXUeP+urHAADGjkVykXaoUO8E37Fy5YDu3bmFdMiQCDdsEpFoyeUcOQLAIAAfew+YWQKAdwBcBmATgAVmNgFcfcwYZHZzzm3L1R8ghd6yZYytAKbb3X134Hvmz2e9lt69fcdee43djzp1AoYOBW6/Pfj5//mHQWWtWsDZZ/uCwiVL+Bj2SuHgwcDEiUyhuPxynsy7ZJfHvEGhto5KPAknpxBmdiWARgBKmueWiXPuxSiOSyTbPv6Y8VSvXkCHDgwK58zhhAb42lF4nX027wC++ionwxxVQMtEYiJvfG7c6LcTNDkZbvIUJKMCylfIcPuxXz+uGDZuHNmBiEhU5XSOdM7NMrPaGQ43B7DWOZfkOfcYAJ2cc68A6BDBYUucGD6ceYEtWjCt4vzzgdNPT/+eUaOAEiWALl18x0qV4o6b665jasXKlcDLLwfmB3rzCatWBc47j03sjxzhDdqEhMDvCmr7dhZYu+QS3hyN8fKc/0qhSLzIcvuomb0P4AYADwAwANcBqBXlcYlky6JF3OrSqhXw0ksM+IoVY5K8V1ISC5R5lSvHFIUZM1hgxn8yjATvdyV1eACoUIFLlvXr41BqAo4eS0CFChk+UKqUAkKRAiYKc+TJADb6vd7kORbq+yt6xtDEzHqHOhbkcz3MbKGZLdy+fXsuhiv52ZEj3HHZuTPw2WdA+fIsan3woO89qanAmDGsul2+fPrPn3ACt4/ecw9voF57Lds3+csYFKakMCBcsgQ49dTArkpB9erFXMKBA2MeEAJaKZT4FM5KYUvn3Blmtsw594KZvQaW4BbJFxYsANq25X+8R4/mVs2iRRkYeoPClBSu2PmvFALcQvrbb7wLGtbElQ2JdRwAQ9LqFFxy903/DiS5TAPg7cDJV0QKpJjOkZ4+iPdkdSzI54YAGAIAzZo1C5FpJgXdhAnMm+/WjYHOJ59wvrz/fi7IlS0LfP89F+puDVErt1gx4N13eV/zxRe5HdV/S6g3KKxWDahenc/nzGFgGFZT+rlzuZz5+OORzeHIBa0USjwKp9DMYc/jQTOrBiAVQNXoDUkkfHPmAJdeypW+mTNAKJRYAAAgAElEQVR5p9KrZUsGjCkpwIYNzHnIGBRecAFQpAgT8CPt5InvoxhSkNSqK9tLvPceMGwY9tzzJAAErhSKSEEU6TlyM4Aafq+re46JZNvw4UCNGpwnAT726sV+vOXLcyXvwQc5h7ZvH/o8ZlxtBAILqG3Zwt9XqcI5uFYtBqObN4eRT5iWBtx3HyPKZ57J8d8ZaaVKAddfzwBaJF6EExRONLMKAAYAWARgPXxNekVi5ocf+B/sypUZENaunf73LVv68hoytqPw6taNhc1y0eM2uF9/RcKjD6F2qe1YV6lFul8lJ/NRQaFIoRDpOXIBgPpmVsfMigO4EcCEXI9S4s7GjcCUKUDXrunzAPv25fEXXmBQmJLC2i5Z9SP0pkRkDAq3buVOHW9BtfPO81X/zrLy6LPPMv/jtdfyXe+HsWNZDFUkXmS6fdTMigCY7pxLBvCFmU0CUDJDdTWRPLNnD7eIDh/OVcBTTmFwWK1a4HvPO4+Ps2f7eg9mDAqLFgUaNIjwILdt4y3GypWRWP9EJP2ZPj9ij+ffHm0fFSnYcjtHmtloAK0BVDKzTQCec84NM7P7AUwBK44Od86tjM5fIIXZRx9xh0zXrumPFynCG6rZXQUrV47bKdeuTX9869b0c3DLlsxRBLJYKXzxRVau6d6diY4iElOZBoXOuWNm9g6AJp7XRwAcyYuBiQDsczRpEvvULl/OxPXDh1mP5c03mQsYasWtWjWuHs6ezceSJSNY3XrdOs64deqwr+Cpp/KLhg0DvvySmfgzZ6LuqOKYPzr9R7VSKFI45HaOdM7dFOL4twC+jcggJS4dO8abp23aBN4MzY169YJvH/VP3fDekK1Zk4VqgurXjyW/u3Zl2fB8UFxGJN6FU2hmupl1ATDeuVBtT0UiLy2NvQM3b+bE0rgxcO+9wM03+9pJZKVlS25jSUtj/FYknA3TWdm6lWWzN2wI/N0JJ7BMW48eQKNGSJwD7N7Nn+OP51u0UihSqGiOlHzn5595U/WllyJ73rp1eW5/W7emXxE880wWbgu5Svh//wf06cPKNh98EKGJWURyK5yg8G4AjwBIM7NDYMlt55wrF9WRSdybNYsB4ccfc+7IyY3Eli2BTz/lJNa8eQQGtX8/myDu2MFuvxUqsBTbypXcy9qpk2+vKnx3aP/80xcUaqVQpFDRHCn5zsyZnDM7RLizZd26TOE4coR9DdPS2Lzef6WwWDFgxIj0LaD+NXkyq4zecAPflLHpoYjETJZBoXMuppm/ZpYI4GkA5Z1z14Y6JoXPZ5+xAliXLjnfWdKyJR+3b4/AFpqjR5kruHQpS6udcw6P168fssmh9zvXrQOaNuXz5GTmMka6BYaI5L1Yz5EiwcydywJqkd6RUrcut6auX8/7oNu383XGvP7rrw/y4U2bgNtu47afDz9UQCiSz4TTvN7M7FYze8bzuoaZhbXmYmbDzWybma3IcLydma0xs7Vm1iuzczjnkpxz3bM6JgXHtGkske2tCBrM0aPAF1/wLmepUjn/rsaNgdKl+TxXQaFz3Lv63Xds2HTFFWF9rE4dPvr/rXv2cJVQKRQiBV9u5kiRaHAOmDcPOPfcyJ+7Xj0+evMKt2zhY9WsmrAcPQrcdBNw6BDw+ee6KyqSD4WzkftdAOcBuNnzej+Ad8I8/wgA7fwPmFmC5/PtATQEcJOZNTSzxmY2KcNP5TC/RwqIY8e4c2TTJqB//9DvmzmTdyCD3m3MhqJFfRNjjoNC54CePZn78PTTzBcMU7lywMknsy2GV3Kyto6KFCK5mSNFciVYFuu6dWxYH42gMGNbCm/j+iyDwmeeYR7HkCFcYhSRfCecoPBc59x98DTodc7tBpBFNxtyzs0CsCvD4eYA1npW+1IAjAHQyTm33DnXIcPPtvD/FCkIvviCuy8bNGA6waZNwd/3+edc4cusmW64vFtIswwKnQMGDwY++YSNm7zHHnkEGDiQjznI2m/dmsVuvJP3nj0qMiNSiOR4jhTJjeHDuW0zYzXQefP42KJF4Gdyq3Jlzs3ethTeoLBa6gZgxgyWB/e3cydvpvbvzxuqN98MEcmfwgkKUz2rew4AzOxEAMdy8Z0nA9jo93qT51hQZlbRzN4H0MTMeoc6FuRzPcxsoZkt3L59ey6GK5GSlsYK1Kedxl2YzgEDBgS+z7t1tGPH3G0d9erWDXj4YXaNyNTLL7Ny6G23AbVqscPvww+z90XPnqyYloM9nxdfzET81av5WiuFIoVKpOdIkSxNnswY6++/eRPV39y5DNwaNYr895pxtXDdOgCff46tr7Pn0kkX1Wf/i8qVgdtvB77+Gujdm/2gXn4ZuPFGzqUikm+FU330bQBfAqhsZv0AXAugT1RH5cc5txPAPVkdC/K5IQCGAECzZs1UJjwfGD2agdHnn3PV7rbbgKFDgaeeAqpU8b3vxx9Z3PO66yLzvXXqAK+/nsWbBg/2lci+5Rbgrbe43QUA7rsPeOONHCcBtmnDxxkzmPi/Z08E+yWKSKzFdI6U+LNkCefHxo2ZkvHVV0Avv+oM8+axDlq06rjUqwesmrMH+OZ6bCnzMSqW2Ifib77NZcuvvwbGjwdGjuScef31nFtPPz06gxGRiMlypdA5NwrAEwBeAbAVQGfn3OeZfypTmwHU8Htd3XNMCrHUVOD559m/6JpreKxXL5a1fuON9O+N5NbRsIwbxyIyV17J/Tjt2nEpc/VqRrIDB+aqKkydOlx4/OEHvtZKoUjhEYU5UiSkjRs5VR1/PPDNNwwO583zbeM8fJhBYzTyCb3qJqxH0taSSGt9CbZefDOqNSjLXTZXXQUMG8atMVOncg4dM0YBoUgBkeVKoZm9DWCMcy5SifMLANQ3szpgMHgjfAn6UoAlJwMrVnAlbM8e4OBBoEwZ5s8tXMjtJhMm+PrUNmjAm4jvvAM88QT7vnu3jl51VZSLk+3dyyXJadOY+N6yJXtgFCvme8+pp4ax5zQ8bdrwBuqxY7xOyikUKRyiMEdKHNu+nTtozj4buPzywN/fdRfb5f7yCxfmOnfmppaJE7mddPFi3oSNRj4hAGDJEtSd8CFS8BY2DxyPrd0TAovMFC8OXHZZlAYgItESzvbRXwH0MbNTwC0yY5xzC8M5uZmNBtAaQCUz2wTgOefcMDO7H8AUAAkAhjvnVuZo9JJv/PUXJyHv3cpgmjcPbKT71FO8kdiiBVcH9+1jXnqkto4GSE5mkuHEiYxAjzuOt12HDYtMAmMIF1/MtkyLFgEHDmilUKQQyfEcKeK1YQPw2msscn3oENCqVfCgcPly7rbxLr41asR0jK++YlA4dy6P53ilMC2NS41NmwbukFm7FrjiCtQrexFwBFi3vRy2bGGdABEp+MJpXv8RgI/M7AQAXQD8z8xqOufqh/HZm0Ic/xbAt9kdrORPe/cyrjp4kKt8J5/MlbBSpXhH07ty2KRJ4BzTuDHw7LPAnDmMz0qWZOB45ZVRGOjGjewvuGYN8NBD3J/asiW/NMouvpiPX33FRwWFIoVDbuZIEYCbVtq2ZfG1225j7BXsBmtaGndm+q/MmXG1cNAg3lSdNw+oWTOMFhGh9OrFomrXXsslS+9k9f333NpTpAjqjnoBaAf88QcL3WRsXC8iBVM4K4Ve9QCcCqAWgNXRGY4UNKmpXNX77Tem4V16afbP8cILkR9XgOXLGQTu28eBXnJJHnypT/XqQP36wJdf8rW2j4oUOpojJdtSU1nLrEYNBoc1arDY9YcfBr53xw4GhhkDvk6dWExt8mSuFOZ4lXD2bC5XnnMO72AuXMitPHPmAI8+ykppX3+NGrUSUawYMH8+N9zkOAAVkXwly0IzZvaqmf0B4EUAKwA0c851jPrIJN9zjpPZ1KnA++/nLCDME9OmARdcwOc//ZTnAaFXmzbAqlV8rpVCkcJBc6Tkxvvvc154/XUGhABX3vbt404bf//2BMywMteyJVCpEtPjN2zIYVB46BBwxx1cZpw+nXOlc8B557E101VXMWhMTERCAjtN/PQTP6qgUKRwCKdP4ToA5znn2jnnPnTOJUd7UJL/OcfiMEOHshVR9+6xHlEQzrEvUrt2LP85Zw5wxhkxG453CymglUKRQkRzpOTIjh1Mn7j0UsZcXt4gK+MWUu/rjEFY0aJMu/j+e77OUZGZPn2A339nfn3ZsjzJ4sXMwe/Xj7khZcv++/Z69fj2YOMRkYIpnJYUgwGkmVlzM7vI+5MHY5N86uhR4M47mXZw333s8R5TKSnASy8x8/7OO7ntZedORqoPP8y9NbNn+27Dxkjr1r7nWikUKRw0R0pW0tKAd9/lit7bb7MVE8Cqofv2sS2uf759doNCgNMcwACxadNsDvCXX9gb6t570++kOf54Vr556ilf2XCPunV9z5VTKFI4hNOS4k4APcF+gksAtAAwB0Cb6A5N8qMjR4Cbb2Zv2mefZe/BXLTwy725cxkIrlzJO5uff847nV7PPgs891zAhBYLVaqwUtzKlVopFCksNEdKZhYvZgu/+fO5M7NnT25guftubve8/36m6vnzBllbtqQ/nllQ2LYti7U1bJjNdk47d7K6Ta1awKuvhv0x/6BQK4UihUM4/0+5J4BzAGxwzl0MoAkAbY+JE8uXc5tI9er8qVaNAeEbb7BATMwCwrQ04PHHeet1zx62mJgzh/txfviBdzYnTuQg80FA6OXdQqqVQpFCQ3OkBPX660CzZsD69cCoUXycMoU3BXv14kLc888Hfi6zlcIKFYIXzC5VChgwgOkcYUtJYZXRLVtYUKZMmbA/6g0KQ41HRAqecKqPHnbOHTYzmFkJ59xvnn5MEgeGDgU2bQJuvdV37Morgauvjt2YkJIC3H47MHYsb7cOGODLdShWjJGXfwJfPvLII+wpdfzxsR6JiESI5kgJkJzMNL22bYFPP/X9N79tW+YQfvklb7IGmwuOPx4oUSJ4UJjZqtx992VjgM4BDzzAkqeffJLt6jT16vFRW0dFCo9wgsJNZlYBwFcAppnZbgAbojssyQ+OHgU++4xB4AcfxHo0HgcO8M7m5Mnc6vL447EeUbbUqcM0RxEpNDRHSoBPPmFBz759AwO/IkWALl1Cf9aMwV+w7aMR26o5aBD3r/buDdxyS7Y/XqeOb5wiUjiE07zeuyb0vJnNAFAewOSojkryhR9/ZKPcm26K9UjACHXBAuCxx5hH+MEH+bTkqYjEE82RkpFzwODBwNln8ycnqlYNvlJ4/vm5HNyRI8z/ePppVqfJYaW4kiXZe9e7YigiBV92mtfDOTczWgOR/MebYnDllTEcxMSJwPDhwIwZzB0sUYLFZK65JoaDEhEJpDlSABa7XrGC6Rc5VbUqsHq177VzuVwpdA6YMIFN6NetAzp3BkaOzFXO/fffp+tSISIFXP6pwCExM24c2/ctW+Y7duQI2xJ17pzNSmaRNGUKB7BwIbeMjhnDBEcFhCIikg88+yyri6al+Y4NHsxg6cYbc37eatXSbx9NTua8HHZQOHw4E9hr1OBez9q1OZ8WLw5MncqkxmwUlgmmRg0VTRMpTLK1UiiFz9ChrNXiHGu3zJ/vmzOSk2O4dXTtWs6ojRuzh1Lp0jEaiIiISHBjx7KJe0IC0/R272YufrduuYu5qlbl5phDh3hjNrN2FOkcPsw+F8OGAeedB5x6KiPWo0dZrbtHDxZkExHJQEFhHNmwAahYkROVc8D//scc8yuuYEB4443sAf/SS8Do0cAJJ7BKWp7bt4+5DgkJbESvgFBERPKZtDS2mTjpJDanr1yZ7SaOHOHN1tzwb0uRmBhmUPjnn9xVs2gRcwZfeIHzqIhIGBQUxokZM4A2nlbKlStzElu2jI3oR4zgjcPJk4FXXgEuuQT4+mu2oShePI8HeuwYG+muWcPlytq183gAIiIiWduyhR2SnnuOu2yefx4oVw5o0QI488zcndu/gX2WQWFqKjBwIAeSkMDcwY4dczcAEYk7yimMExMmsEbLyy8DV10FVKoEPPMM88y9O0nefJMT0ZVXAgcPRnHr6JEjwLRp6ZMwAL6+915GpK+95otiRURE8pmkJD7WrcvuDlddBezdm/tVQiCwgb03vzAgKPz5Z5Y4ffRRoFUrYMkSBYQikiNaKYwT06YBF17I7aKhlC/P3PTLLmNweOGFURrM/fezpUSrVmzmVL068x26dgVGjQJ69QIefDBKXy4iIhLali2cjg4c8B27/nqgZ8/07/MGhYmJQNGirIU2dSrQoUPux+BdKfQGhVu3MpPi32qfznFrz9NPAzVrMtXiqqvYPFBEJAe0UhgHNm8GVq4E2rbN+r2XXgq89Rbwf/8XpVSEceMYEF5xBauKnnEGs/Kvu44B4csvc6LTxCYiIjEwYABTLkqV4s/69cA77wS+LymJHR1q1uTr447zpcPnVsWK3MXjXSH0tqMwA3fVPPAAA8KbbwZWreIXa94UkVzQSmEc+P57PoYTFAJRXKTbuBG46y7gnHN4V3P9eu5RveEG/v7ttznRiYiIxMDOndwKesstzLcHmKrXty8Le5Ys6XtvUhIDwmgU8zRj7r//SmHVquAgbruNN1gfe4wV43LRa1BExEtBYRyYOpXFZRo3juEg0tJYueboUeDTTzmL1q/PLr8DBvD59dfHcIAiIhLvBg5kTv0TT/iONWzIGmi//87NLV5JSdw6Gi3VqqUPCps0PAJcfjkwaxbz7h95JHpfLiJxR0FhIXfsGFcKL7sshjcT//oLePVVTmQffQTUq+f7XfHi3AIjIiISQ/v3Myjs1ImBoJf3+cqVgUFhp07RG0/VqsAff/D51s1puOKfT4Ej83hjNWZNhEWksFJQWMgtWwZs28agME9t3w689x63iS5ezGPdunHbi4iISD7zwQfArl2sdeavQQPmCa5a5Tu2fz/n1miuFFatynup+7+Ygv0HL0fVMpuBmTOBc8+N3peKSNzSRvQCZsECTkJr1oT3/mnT+JhnQWFqKntb1K/Ppk2lSnGVcM0aYNgwJcKLiEie++cfYNAgTk+bNwf+PiWFOzJbtWKfQX8lSnCDi39Q+OeffIzq9tGqx7BrF7D+uscBAFVfvFcBoYhEjVYKC5DUVODOOzkZjRsX3q7LadOARo185a2jauZM9hlcvZpVbd58EzjttDz4YhERkUDjxvF+pH9r3EceAS6+mGnsJ57IYwsXAps2AUOHBj9Pw4bpg0L/dhRRsWMHqo4dCeBhLD73HmAuUPX0ilH6MhERBYUFyltvcTto+fLA5MlZB4WHDnHryX//mweD+/prtpWoWROYMIGNmrQqKCIiMTJ7tm9aeuIJVhQtVowpeaNGAffck/79TZuyjkswDRtyaktJYSp8xIPC7du5nLljByt1P/UUqv7dFMDDWHTuvQwKMzauFxGJIAWFBcSGDSyL3bEjq4j+739AcjJQoULoz/z8M3DkSPitKHLsyy95y7VZM0ar5ctH+QtFREQy99NPfPz1V6BSJd/x55/nfPrHH+zw4FW7duh7mQ0bcqXx99+B009nUFi+PHD88Tkc3LFjwPz5jDQnTGAVG3+Jiaj2cX/gZuDXRRyUgkIRiSYFhfnQsWMM6Bo1YgNb54D77+dkNWgQi3m+/DIwfTrQpUvo80ydyjuaF10UxcGOH88+g+ecw4CwXLkofpmIiEh45s0D6tZNHxB6mbGATLgaNeLjqlW+oDAxMQcbYpxjEPj444xKExI4Sd9+O6PSSpW4p7VBA1RNLgGAtdqKFwdOOCGb3yUikg0KCvOh3r1Zm8UMOPtsTkCTJgH/93/cBlOtmm8LaaigcMcOYORIJs2XKhWFQaamAq+/DvTpAzRvDnz3nQJCERHJN+bNA1q3jsy5GjRgWydvXmFSki9QDNvixUxo/PFH4NRTOUlfeWXI5cYTT2TMuH8/535lZIhINKn6aD4zZAgDwv/8B3jhBVY9GzmSuQ49e/I9RYsCl17KoNC5wHM4B/ToAezezUAy4hYtYiDYqxebNCkgFBGRfGTTJmDLlsgV6zzuOK4MrlrF3Tx//pmNfMJjxzihn302sGIF8M47LBBw662Z7j8tUgQ46SQ+19ZREYk2rRTmI5MnsyhM+/bsl1S0KPDMM8DevXxe1O9/rXbtgC++4ASV8W7liBFM8xswIH2j3Wzbvx9Yvpxf8s8/bMq0aRN7D1auzK2jV1+diy8QERGJvHnz+BjJDg4NGzL1b+tW5uuHFRQmJ7M/76RJfHz77cyLAWRQtSpbaORJBXERiWsKCvOJZctYq+X004GxY9MHgMEW4bwV0iZPTh8UJiUBDz7IctuPPJKDgaSmAs8+y4Dvjz/SL0WWLctgsEcPJjVmY2ITEZHIM7NEAE8DKO+cu9Zz7DQAPQFUAjDdOfdeDIcYdXv2BNY3mzePeXhnnRW572nYEPj2W1+f4CyDwhUrgM6dWSlu0CDe9c3mHlBvMKiVQhGJNm0fzQecY4552bK8mVi2bNafqVGDweDkyb5jR4/yRmRCAvDRR9x6ki27d3OZsn9/Zuc/9xxXBdetAw4e5JLl2rXAu+8qIBQRySUzG25m28xsRYbj7cxsjZmtNbNemZ3DOZfknOue4dhq59w9AK4HcH7kR55/jBnDgmzffJP++Lx5DAhLlIjcdzVqxHl26lS+zjQo3LOHW3oOHGAO4X335Sgp0BsMKigUkWjTSmE+MHkysHQpt31Wrx7+59q1AwYO5Jxz8CBw443syzRqFIPGbFmzhv0u1q8HPvwQ6No1mycQEZFsGgFgEICPvQfMLAHAOwAuA7AJwAIzmwAgAcArGT7fzTm3LdiJzewqAPcCGBn5YecPq1cDd97JVhHvvMOaLQADt4ULge7dM/98djVsyMdJk3jTtWZNMHHRLDBqe/JJ7jOdO5fVuXNIQaGI5BWtFOYD/fsziLvppux9rn17NtJ9/XW2CJw9m4HlzTdncwDjxwMtWjD3YcYMBYQiInnAOTcLwK4Mh5sDWOtZAUwBMAZAJ+fccudchww/QQNCz7knOOfaA7glen9B7Ozfz+rbpUoB3boBU6Yw5R1g3t/Bg5HNJwRYMNSM569RAyi+YhEbB59xBrBkie+NM2cCgwcDDz2Uq4AQ0PZREck7CgpjbPZsYNYs4NFHmf+QHRdcwAnx2Wf5+uefWbU0bHv3MgDs0gWoV4+NdM8v1DuNRETyu5MBbPR7vclzLCgzq2hm7wNoYma9Pcdam9nbZjYYwLchPtfDzBaa2cLt27dHcPjR562wvWYNMHo08NRTLPD5sWe9NRpFZgDOt7Vr83lipb3AJZcAZcqwNGmbNlyePHQIuOsu7i198cVcf2fjxqwxcOqpuT6ViEimtH00xvr3Zz7EnXdm/7MlSgB3383iMkOHsqdRWFJT2UbiwQeBjRtZ4vSZZ4BixbI/CBERiRnn3E4A92Q49iOAH7P43BAAQwCgWbNmQZobhW/oUNYle/XV3JwlPEePAv36MRjs25dxGcB+hMOHs8/vvHmcV+vWjfz3N2zoaUex7Cug+vHADz/wF23acDBt2/JifP89ULp0rr/Pu4knAqcSEcmUVgpjaMUKYOJExmY5/Q/+66+zFkxYAeGUKcAddwBVqrC/YNGiXF588UUFhCIi+cNmAP5Z4dU9x/KtFStYXPPQoeh+z4wZQJMmwPPPA9ddxwDQq1s31kSbNYtBYfPm0Wn23qjS3wCAxLLbuU20dm3+zJzJuXXcOA7GG61GgAJCEckLCgpj6NVX+R/7++7Lgy8bO5aVab78EujQAfj6ayZGnHdeHny5iIiEaQGA+mZWx8yKA7gRwIQYjylT7doxIJw1K/P3paVxd8y2IJmQhw/zd7t3B/4uNZW58m3aAPv2sUfv2LHpK2x36cLK3W+9xda6kd46CgDYtg0NJ3I5NLHvHekrutWowcDw+eeB116LwpeLiESXgsIY2bwZ+PRT5kVUrBjlL3OO+20aNmQT+o8/Bq66KrK1ukVEJFvMbDSAOQBOMbNNZtbdOXcUwP0ApgBYDeAz59zKWI4zK61bAyVLpm+RFMzs2VzdC3Yj9JVX+LvPPgv83cyZ3C76yCOsOHrNNYGrgKVKsVjbl19yyot4UJiaClx3HS4+MAlnNTiI8zucEPieqlXZykktm0SkAFJQGCM//8y7prfdlgdf9t13wPLlLJGtQFBEJF9wzt3knKvqnCvmnKvunBvmOf6tc66Bc66uc65frMeZleOOA1q14lSTmcWL+ThuHLMZvP74g6uE/u8J9rmnnuJ3hdKtm+958+ZZjzukffuAl19m88ODB3ns4YeBWbNQc9hzWLymVPbbPomI5HMqNBMjS5cypc/b9yiqctrzQkREJAzt27MDw59/AnXqBH/PokVA5cpcSLv/ft6rLFGCz0uWZIXNRYuCf65mzax31TRvzjk1LQ04IchCXli8pU3HjOHrEiWAs8/mMuejjwK3FMoOHyIi+X+l0MwSzWyYmY3zO3aamb1vZuPM7N5Yji8ze/bwzuU//wT+btky4LTT8mDh7pdfgJ9+Ah57TMVkREQkKtq142NmW0gXLWJP3UGDgLVrmVf/xRfA1KmsJHrZZZwbU1PTf27xYhaYyYqZL98wx957jwHhCy9wYPfeC+zcCXTu7FvOFBEphKIaFJrZcDPbZmYrMhxvZ2ZrzGytmfXK7ByeBr7dMxxb7Zy7B8D1APJtY71x44APP2SOQ0ZLl7LfbdR5e1507571e0VERHKgQQOuEIYKCg8fZgGYJk0Y/N1wA3doPvAAj917Lx+PHAF++833uf37gd9/B5o2DW8cp54KnHlmDv+IhQu5TbR9e6BPHw70jTc4oC+/5PYeEZFCKtorhSMAtPM/YGYJAN4B0B5AQwA3mVlDM2tsZpMy/FQOdWIzuwrANwjRmDc/mDSJj3Pnpj++axewaVMuJq5Qli3j3pmuXVlddMECDiI3PS9ERB0j3GUAABZESURBVESyYMbVwunTGdhltHw5t3V6g7vXXweKF+dOmvfeY7zl/Z1/XuHSpdzRGc5KYa7s3s0+F1WqACNHpi9tKiISB6L6Xz3n3CwAuzIcbg5grWcFMAXAGACdnHPLnXMdMvwEKVz977knOOfaA8iXG/wPHwamTePzefPS/27ZMj7maKVwzx5gwAB2s/XnHEuzbdzIgLBzZyZYlC7NhA0REZEoat8eOHCAWQsZeQM9b3BXrRq3eQ4Z4qsU2qABq4j65xV6n4e7Upgjs2cDl1/Ou7Vjx+ZBSXARkfwnFnshTgaw0e/1JgAhi0ebWUUA/QA0MbPezrlXzKw1gGsAlECIlUIz6wGgBwDUrFkzVwPetQuYkKFLVLNmwOmnh/7MzJmcHFu25HyTnOyrUu0NCnO0Uvjgg2wpsWQJMGqU7/iUKbxF++abwH//C/z4I4PDZs1ykXEvIiISnosv5urfd9+xp6C/RYs4B9au7TvWvn369yQkcF70XylcvBg48UQGkRG3ejVLmn71FVcIR41S714RiVv5foO8c24ngHsyHPsRwI9ZfG4IgCEA0KxZM5ebMfz1F3DHHemPNWzI3u+hfPMNS2f37g107AjMnw+0bcvfLV3KSa5KlWwOZMIEBoSNGrHJYadOwPXXc0/OE08AiYlMzChWjLkQl12WzS8QERHJmTJlgAsvZF7hgAHpf+ctFpOxv2BGTZpw9+axY9zBuWgRVwmz+lxYUlLYD2rqVP4sXsyO9337snSq0ixEJI7FYtP8ZgD+HX6qe47lWw0bssy29+ehh5h37m1flJFzTOW75BLgoos4mflvIV22jHdDszXJ7doF3H03Pzh/PreG3nsvsGULZ9Dly9n9t3jxXP2tIiIiOdW+PbBiBXdieh09ynkvnLzApk3ZJjApibmJK1dGIJ9w1y6gXz/2tbjkEuC114By5VjpZt064OmnFRCKSNyLRVC4AEB9M6tjZsUB3AhgQhafianixbnlxftzwQW8ixlqpXD1agaPHTpw3jntNF+xmaNHOWFmO5/wwQeBHTuAESOYdDFyJHDoEIvK9OkDnHMOk+RFRERi5Ior+PjZZ75jv/3GPPtw8gK9AeCiRZwrjx7NRT5hSgrbMdWsyXnyrLO4VXTXLqZY9O7NbTsiIhL1lhSjAcwBcIqZbTKz7s65owDuBzAFwGoAnznnMtmImf94cwG9uYEZeauOXnklH1u04Eqhc+zNdPhwNvIJnWMAOGoU8MwznNQAZuQPGMBqNps383lE9teIiIjkzGmncQvp228zoAN8xWLCWfFr1IgZEIsXBxanybZ33+WqYOfOzNuYPJlpF2XL5vCEIiKFV1RzCp1zN4U4/i3ycSuJrCQmcqfJ0qXBfz9pEmO36tX5+txzgeHDuUvF+5ksVwr37WMg+N57jD6bNeNdTX/33gvMmcPkxVatcvU3iYiIRMKjjzIOGz+eae+LF3OaOuWUrD9bogSLuC1axGLb5cpxzs22/fuZUnHJJcAnn+TgBCIi8UWNeHKgSBGgcePgK4W7drEcd4cOvmPectvz5vEzRYvybmpI334L1KjBoC8hARg6lOVMixULHMgnn/D3IiIi+UDHjkD9+lykc44B3plncjoLR5MmDCQXLeIN1hy1DBw0CNi2DXjppRx8WEQk/igozKEzzvA11fU3eTLzDb1bRwFuhyldmnmFS5cCp57Ku6FBjR3L7S2JiVwF/PVX4M47mUcoIiKSzxUpAjz8MGui/fwzOyhlJy+waVNg+3Zg4cIc5hPu2QO8+ionYrWYEBEJi4LCHDrzTPYe9K+wBnDr6Iknsu6LV9Gi3P3pXSkMmU/4wQfATTdxEpsxg8mIyhMUEZEC5j//YQ/4Bx8E9u7NXl6g971paWF8bv16Lk2OGuW7S/vGG8Du3cCLL+Zk6CIicUlBYQ55cwL98wqPHuVKYfv2gdtkzj2XW2E2bgyRT/j++8BddwGXX86TlC8ftbGLiIhEU6lSzIBYsoSvs7Pi59+yKdPPHTjAnTWTJgG33src+hkzgNdfB7p0yUXZUhGR+KOgMIcaN+ajf17hnDm8OdmxY+D7W7TgXU8gyErh338zM//yy4Gvv9ZWURERKfDuu48tnYoWZRpFuEqXZlGakiWZbhGUc8Add7BvxTffMLd+1SqgTRsWmXnhhYj8DSIi8SKq1UcLs/Ll2bPQf6Vw0iROfm3bBr7fW2wGCLJS+NJL7Kc0aJCaz4uISKFw0kncPrp2bSZ59CFcfTX7/RYN9f9S+vcHPv8c+N//fM0Rr7kG6NuX+1azE4WKiIiCwtw488z0K4WTJnH3Srlyge+tVo0tKo4c4UT5r7VrgSFDuHW0Xr2oj1lERCSvDBiQs8+9/HKGA7/+yihxzx7gr794M/Wmm4DHH/e954QTuHVURESyTUFhLpxxBjBxInDoEHeArlrF2C6U7t3ZfjBd7Zg+fbg6+OyzUR+viIhIgTN2LHDjjemPtWzJ4mwqxiYiEhEKCnPhzDPZfmLlSrabANK3osCxY1wJrFsXSEjA889nOMGvv3Kye/rpDMuHIiIigl27uAe1WTNg+HBuxSlfnj8KCEVEIkaFZnLBmxu4bBm3jjZowIa92LwZ6NeP20FPOYU9B/v143Ki16FDQO/ezH3w3/4iIiIi9MQTwM6dLCTTuDFQqxZQoYICQhGRCFNQmAt167JQ6C+/sAp2hw5g8FezJreF1qnDfkn16/N1jRqMHCtU4AenTQOeekrtJ0REJD6lpXG7zccfM43C28MCAH78ERg2jNW5zzorZkMUEYkH2j6aC0WK8MblqFEsHtqh1T7gxn4sPzpwoK9wzEMPAb//zjudGzZwq2jVqowqu3SJ7R8hIiKSV1JSgPnzeSf1hx/4/OBB3+9feonzYu/eQI8e3Gnz3HOxG6+ISJxQUJhLZ54JzJvHNIcL1gzjttBXXgmsJNqgQc7LsImIiBR0f/0FnHMOsG0bt3+eeSYrsDVrBpx9Nm+YvvUW8OabwBdf8DPTpql3r4hIHlBQmEvevMJ2lzsUGzwIOP98bXMRERHJ6M03WTjms8+ASy5hC4mMXnwR6NmTqRdlygCXXpr34xQRiUMKCnPp7LP5eFXtZcDn69g4V0RERHz27mULieuvB667LvP3VqyouVREJI+p0Ey45s4FnAs4fO65TI24aWUfoEoV4JprYjA4ERGRfGzYMDbqffjhWI9ERESCUFAYjpkzgfPOA/r3D/iVGdC6ZhKKfPcNcPfdbEQvIiIidPQocwUvuoj5gyIiku8oKAzHRRcBN9/M9hFjxgT+/r33WIq0R4+8H5uIiEgs/fgjm/UePRr89199xcrbWiUUEcm3FBSGwwwYPhy48EKga1c2JvRauZLbYq65Bjj55JgNUUREJCbefBPo2JFz4COPAEuXpk+3eP11tmDq2DF2YxQRkUwpKAxXiRLAl1+yMX2nTlwdvOgi4PTT2Ybi8cdjPUIREZG899lnXA08/3xg0CBW4K5bF/jvf1lFdM4c9utNSIj1SEVEJARVH82OihWBb78FWrTgZFe3LnsPdu0KVKoU69GJiIjkveLFebO0Uydg505g3DjOlR9/DBw4AFSowHlSRETyLQWF2VWvHvDzz8DWrUCrVswlFBEREd48vftu/qSkMN2ifHn2HBQRkXxLQWFOnHoqf0RERCS44sWBiy+O9ShERCQMWuYSERERERGJYwoKRURERERE4piCQhERERERkTimoFBERERERCSOKSgUERERERGJYwoKRURERERE4piCQhERERERkTimoFBERERERCSOKSgUERERERGJYwoKRURERERE4pg552I9hqgzs+0ANsR6HBFUCcCOWA8in9E1CaRrEpyuS6DCdk1qOedOjPUgCgrNkXFB1ySQrkkgXZNAhe2ahJwf4yIoLGzMbKFzrlmsx5Gf6JoE0jUJTtclkK6JFCb65zmQrkkgXZNAuiaB4umaaPuoiIiIiIhIHFNQKCIiIiIiEscUFBZMQ2I9gHxI1ySQrklwui6BdE2kMNE/z4F0TQLpmgTSNQkUN9dEOYUiIiIiIiJxTCuFIiIiIiIicUxBoYiIiIiISBxTUCgiIiIiIhLHFBQWEmaWaGbDzGxchuOlzWyhmXWI1dhiJdg1MbPOZjbUzMaaWdtYji8WQlyT0mb2kee63BLL8cWSmdU0s6/MbLiZ9Yr1ePIDMytiZv3MbKCZ/SfW4xHJCc2PgTQ/BtL8mDnNkYEK2xypoDAf8PwLts3MVmQ43s7M1pjZ2qz+BXTOJTnnugf51ZMAPovkePNCtK6Jc+4r59xdAO4BcEPkRx49Ufzn5BoA4zzX5aoIDztPROLaAGgMXoduAJpEbbB5JELXpBOA6gBSAWyK1lhFQtH8GEjzYyDNj5nTHBlIc2SgorEegAAARgAYBOBj7wEzSwDwDoDLwH/QFpjZBAAJAF7J8PluzrltGU9qZpcBWAWgZHSGHVUjEIVr4qeP51wFyQhE55pUB7Dc8zwtwmPOKyOQy2sDYC6AcWbWDcDIPBhztI1A7q/JKQBmO+cGe+6eT8+DcYv4GwHNjxmNgObHjEZA82NmRkBzZEYjoDkyHQWF+YBzbpaZ1c5wuDmAtc65JAAwszEAOjnnXgEQ7laX1gBKA2gI4JCZfeucOxaRQUdZtK6JmRmA/gC+c84tityIoy+K/5xsAie+JSiguwcicW3M7DEAz3nONQ7Ah9EddXRF6JpsApDieVmQ/w+RFFCaHwNpfgyk+TFzmiMDaY4MVGD/AY8DJwPY6Pd6k+dYUGZW0czeB9DEzHoDgHPuaefcQwA+BTC0oEx4mcj1NQHwAIBLAVxrZvdEbaR5JxLXZDyALmb2HoCJURtp3svWtQEwGcCDnuuzPorjiqXsXpPxAC43s4EAZkVzYCLZoPkxkObHQJofM6c5MlBcz5FaKSwknHM7wTyAYL8bkbejyR+CXRPn3NsA3o7NiGIvxDU5AOCO2Iwo/3DOrQBwbazHkZ845w4CCJaLJVJgaH4MpPkxkObHzGmODFTY5kitFOZfmwHU8Htd3XMsnumaBNI1CU3XJpCuiRQG+uc4kK5JIF2TzOn6BIrra6KgMP9aAKC+mdUxs+IAbgQwIcZjijVdk0C6JqHp2gTSNZHCQP8cB9I1CaRrkjldn0BxfU0UFOYDZjYawBwAp5jZJjPr7pw7CuB+AFMArAbwmXNuZSzHmZd0TQLpmoSmaxNI10QKA/1zHEjXJJCuSeZ0fQLpmgQy51ysxyAiIiIiIiIxopVCERERERGROKagUEREREREJI4pKBQREREREYljCgpFRERERETimIJCERERERGROKagUEREREREJI4pKBTJBTPbH4FzdDWzQVm8p7aZ3ZzN81Yws/+G8b7aZrYiO+cWERHJKTP70cyaZfGeh8yslN/rb82sQgS++6kw35fr+V2kIFFQKFIw1AaQraAQQAUAWQaF2WVmRSN9ThERKTyMcvv/MR8C8G9Q6Jy7wjmXnMtzAkBYQWF2ROjvFYkp/QMsEgYz+8rMfjWzlWbWI8Pv3vAcn25mJ3qOPWhmq8xsmZmN8Rw7wXOeZWY218zOCPI9I8zsWr/X3juV/QFcaGZLzOxhM0swswFmtsBzvruDDLs/gLqezwzwTFoDzGyFmS03sxuCfH/Q85pZazP7ycwmAFiV2TUxs/1m1s/Mlnr+ziqe41XM7EvP8aVm1tJz/FYzm+8Z52AzS8jG/zQiIpIPeHadrDGzjwGsAFDDzNqa2RwzW2Rmn5tZmSCfe8/MFnrmkhc8xx4EUA3ADDOb4Tm23swqmVl/M7vP7/PPm9ljnueP+81fLwT5rv4AjvPMN6M8xx7xzIsrzOyhEH9bwHlD/L0Bf4vf2F/wXIflZnaq53gZM/vQc2yZmXXxHM/yuolEnHNOP/rRTxY/AE7wPB4H/se/oue1A3CL5/mzAAZ5nm8BUMLzvILncSCA5zzP2wBY4nne1e9zIwBc6/e9+z2PrQFM8jveA0Afz/MSABYCqJNhzLUBrPB73QXANAAJAKoA+AtAVf/3hTqv5/sP+H9HFteko+f5q37nGwvgIc/zBADlAZwGYCKAYp7j7wK4Pdb/e+tHP/rRj36y9+OZS44BaOF5XQnALAClPa+fBPCs5/mPAJp5nnvnkgTP8TM8r9cDqOR3/vWeczYBMNPv+CoANQC0BTAEgIGLHpMAXBRknPv9np8NYDmA0gDKAFgJoIn/+0KdN+PfG8bf8oDn+X8BfOB5/j8Ab/p9/vjMrpt+9BPNH20DEwnPg2Z2ted5DQD1AewEJ4SxnuOfABjveb4MwCgz+wrAV55jF4CBGZxzP5hZRTMrl8PxtAVwht+qYnnPmP7M5DMXABjtnEsD8I+ZzQRwjmesWZ03BcB855z/+UNdkxRw0gSAXwFc5nneBsDtAOAZwx4zuw2clBeYGcAAc1tYV0BERPKbDc65uZ7nLQA0BPCL57/vxQHMCfKZ6z27TYqCNyobIv28lI5zbrGZVTazagBOBLDbObfRzHqCc9hiz1vLgPPSrEzGewGAL51zBwDAzMYDuNDvHPCcM9h5/8rw92b1t3j//8GvAK7xPL8UwI1+f9tuM+uA8K6bSEQpKBTJgpm1Bv/DfZ5z7qCZ/QigZIi3O8/jleCdxI4AnjazxmF+3VF4tnUb8xOKhxoWeNdxSpjnDVfQ83quwYEMr0Ndk1TnnPc6pCHz/84YgI+cc70jMnoREYmlA37PDcA059xNod5sZnUAPAbgHE9ANAKh51d/nwO4FsBJ8N2YNQCvOOcG52TgmQh6XjOrjfTzYlZ/yxHPYzjzYqbXTSQalFMokrXy4J3Ig548gBZ+vysCTkwAC8H87AnmajjnZoDbPsqDdxZ/AnAL8G9QtcM5tzfDd60HV84A4CoAxTzP9wEo6/e+KQDuNbNinvM1MLPSGc6V8TM/AbjBkzd4Ihi0zs/wmXDOm9U1CWU6gHs9500ws/KeY9eaWWXP8RPMrFYY5xIRkfxtLoDzzaweAJhZaTNrkOE95cDAao8n/7y93+8yzmH+xoIrbNeCASLA+aubN//OzE72zi0ZpHrnOHBe7GxmpTxz3dWeY/7CPW9mf0so0wD450cej/Cum0jEaaVQJGuTAdxjZqsBrAH/g+11AEBzM+sDbnu8Acwl+MQT9BiAt51zyWb2PIDhZrYMwEEA/wnyXUMBfG1mSz3f670LuQxAmuf4CABvgfkMi4z7S7YD6Ox/IufcTjP7xdhu4jsATwA4D8BScEXzCefc3567nV4fZHXeMK5JKD0BDDGz7uCd0nudc3M8126qJ5hOBSfIDWGcT0RE8inn3HYz6wpgtJmV8BzuA+B3v/csNbPFAH4DsBHAL36nGAJgspltcc5dnOHcK82sLIDNzrmtnmNTzew0AHM82y73A7gVgSkJQwAsM7NFzrlbPCt63hukHzjn/LeOZnbetAzvy+xvCaUvgHc883QagBecc+Ozum4i0WC+XV4iIiIiIiISb7R9VEREREREJI4pKBQREREREYljCgpFRERERETimIJCERERERGROKagUEREREREJI4pKBQREREREYljCgpFRERERETimIJCERERERGROPb/sgGC2r5BuxAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "solver.setRelativeTolerance(1e-16)\n", + "solver.setAbsoluteTolerance(1e-16)\n", + "solver.setSensitivityOrder(amici.SensitivityOrder_none)\n", + "rdata_ref = amici.runAmiciSimulation(model, solver, edata)\n", + "\n", + "def get_simulation_error(solver):\n", + " rdata = amici.runAmiciSimulation(model, solver, edata)\n", + " return np.mean(np.abs(rdata['x']-rdata_ref['x'])), np.mean(np.abs(rdata['llh']-rdata_ref['llh']))\n", + " \n", + "def get_errors(tolfun, tols):\n", + " solver.setRelativeTolerance(1e-16)\n", + " solver.setAbsoluteTolerance(1e-16)\n", + " x_errs = []\n", + " llh_errs = []\n", + " for tol in tols:\n", + " getattr(solver, tolfun)(tol)\n", + " x_err, llh_err = get_simulation_error(solver)\n", + " x_errs.append(x_err)\n", + " llh_errs.append(llh_err)\n", + " return x_errs, llh_errs\n", + " \n", + "atols = np.logspace(-5,-15, 100)\n", + "atol_x_errs, atol_llh_errs = get_errors('setAbsoluteTolerance', atols)\n", + "\n", + "rtols = np.logspace(-5,-15, 100)\n", + "rtol_x_errs, rtol_llh_errs = get_errors('setRelativeTolerance', rtols)\n", + "\n", + "fig, axes = plt.subplots(1, 2, figsize=(15, 5))\n", + "\n", + "def plot_error(tols, x_errs, llh_errs, tolname, ax):\n", + " ax.plot(tols, x_errs, 'r-', label='x')\n", + " ax.plot(tols, llh_errs, 'b-', label='llh')\n", + " ax.set_xscale('log')\n", + " ax.set_yscale('log')\n", + " ax.set_xlabel(f'{tolname} tolerance')\n", + " ax.set_ylabel('average numerical error')\n", + " ax.legend()\n", + "\n", + "plot_error(atols, atol_x_errs, atol_llh_errs, 'absolute', axes[0])\n", + "plot_error(rtols, rtol_x_errs, rtol_llh_errs, 'relative', axes[1])" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -803,7 +872,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": { "scrolled": true }, @@ -1326,7 +1395,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": { "scrolled": true }, @@ -1335,9 +1404,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Log-likelihood: -1540.615428\n", - "Gradient: [ 2.00932843e+02 1.83428692e+02 -4.64936420e+02 -5.31266369e+01\n", - " -7.09252643e+02 -7.16051763e-02 -5.63883590e-01 2.82926928e+04]\n" + "Log-likelihood: -1205.195087\n", + "Gradient: [ 1.13739826e+01 1.23993091e+01 -3.54960044e+01 -9.76603519e+00\n", + " -6.22459540e+01 6.68794579e-01 -6.46531682e+00 2.13965462e+04]\n" ] } ], @@ -1384,23 +1453,23 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "sllh: |error|_2: 42.592180\n", + "sllh: |error|_2: 32.261882\n", "\n", - "sllh: p[0]: |error|_2: 0.031244\n", - "sllh: p[1]: |error|_2: 0.016243\n", - "sllh: p[2]: |error|_2: 0.018955\n", - "sllh: p[3]: |error|_2: 0.010088\n", - "sllh: p[4]: |error|_2: 0.016982\n", + "sllh: p[0]: |error|_2: 0.010290\n", + "sllh: p[1]: |error|_2: 0.023725\n", + "sllh: p[2]: |error|_2: 0.035811\n", + "sllh: p[3]: |error|_2: 0.007622\n", + "sllh: p[4]: |error|_2: 0.095420\n", "sllh: p[5]: |error|_2: 0.000280\n", "sllh: p[6]: |error|_2: 0.001050\n", - "sllh: p[7]: |error|_2: 42.592175\n", + "sllh: p[7]: |error|_2: 32.261730\n", "\n", "sy: p[0]: |error|_2: 0.002974\n", "sy: p[1]: |error|_2: 0.002717\n", @@ -1513,43 +1582,11 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": { "scrolled": false }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAALICAYAAACJhQBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd1hUxxoG8Pdsp4sIIiCgFLtir7EmGo16NfYeSzQaSxITY9cba6xJbLG3GBKDiS3FRI29Y4nBXlFEQUSQuuye9/4B7hUBXZBlUef3PPMAp8yZQ9E535n5RiIJQRAEQRAEQRAEQRCEwkxh7QYIgiAIgiAIgiAIgiA8jwhgCIIgCIIgCIIgCIJQ6IkAhiAIgiAIgiAIgiAIhZ4IYAiCIAiCIAiCIAiCUOiJAIYgCIIgCIIgCIIgCIWeytoNKEjFihWjr6+vtZshCIIgCK+c0NDQ+yRdrd2OgiT6FYIgCIJgGTn1K16rAIavry9OnDhh7WYIgiAIwitHkqSb1m5DQZEkqQ2ANv7+/qJfIQiCIAgWkFO/QkwhEQRBEARByAWS20gOdHJysnZTBEEQBOG1IgIYgiAIgiAIgiAIgiAUeiKAIQiCIAiCIAiCIAhCofda5cAQBEEQ8gdl2VRkgwGywQClQgGVUgnZYEBSYmLmY4xG2Op00Go0SNPrERsbm2k/ZRlFHB1hq9UiJTkZ96KjQRIgTR+Lu7jA1sYGiYmJiIyKAknTuQBQ0t0dtjY2iIuPx51799L3ZxwDAH5eXrDRahHz8CEioqKeuiEi0McHOq0W0Q8e4E50dPq1nzikQunSUKtUiIyOxt2YmCzfk8oBAVAqlYiIikJ0bCwgSZn2VylTBpIk4fa9e3gQF5e+MeMYhSShYkAAIEkIj4xE3KNH6bsV6e8ZVCoVypYuDUgSbkVGIiE5+f/7JQlajQalSpYEANy+dw/JKSmAJEHKKFqNBl4eHunXVCoBH5+8/eAFwcKio6Ph4uIChUK8YxMEQRCyEgEMQRBeG0a9HkoSSEtDUnw8kh49QlpyMgypqTCkpkLW6+Hn4QEYDLh24waio6Nh0Oth0OuRlpoKJYkmFSoAaWnYf/YsbkVFpe9PS4PRaIS9SoVu1aoBRiN+PHECN2NiYDQaYTQYYDAa4W5riw+qVAGMRsw7dgw3Hz6EUZZhMBphNBoR4OCAUeXKAUYjPj5xArcTE2EkIcsyjCRqOjpiop8fYDSi85kziNbrYZRlyCSMJN50dMQUDw/AaES9ixfxyGhMPx+AkURnOztMK1IENBpR8s4dMGOfDEAmMVinwxc6HRKMRnjEx4OP92WU8QoFJkgS7hiN8Mzm+zsbwKcALgMom83+bwEMAvAPgBrZ7N8AoDuAIwCaZLN/K4A2AHYDaJvN/r8BNAbwW0Y9TzsBoDqATRnteNoFAGUArMu4j6dFAPAAsAzA5Gz2xwNwADAfwNxs9j8OhkzJqONJdgASMj4fDSD4qf3uACIzPh8CYPtT+wMAXMr4vCeAvU/trwYg9PEXRYsC2QRgBPM9mcRTyD/nzp1DUFAQ3nzzTaxfvx4uLi7WbpIgCIJQyIgAhiAIL4SyDH1CAlLj45H66BEctVpoAcTdv4/r169Dn5SE1MREpCYlQZ+cjHp+fiiiVuPijRvYFxYGfUoKUlNToU9NRWpqKj6sUgXFVCrsvnoVGy9eRJrBAL3BkP7RaMTyihXhIklYGx6OFRERSDMaoZdlpMky0kic8PCAvcGAybGxWJCUBD2JNAB6pD9AGpE+d+5jZH2ItAWQmPH5eGR9iCwO4G7G57MBbHtqvx+AbqtXA0h/WN/z1P5qAD7YuRNQKrFFr8cZWYZKkqAEoJQk1NVqgfv3AaUSFyIjcdNggFKSoJAkKCUJfiTw4AGgUCDNYIAsy1AqFNBkHGNrZwe4uQEKBXyjopBKpp+rUEChUKB0iRJAQAAkpRItDh6EQpKgyNgnSRKqlCwJ+PtDLcvof/hw+r4njqnr6wv4+cEhLQ2Tjh6FlLHv8ccGfn6Ary9ck5Mx6/hx09t/hVIJSZJQLzAQ8PREyYQELDx9GlLGuY9LzXLlAHd3lImLw8p//03fnvEWVpIkBJUvDxQrhqoPHmD9hQum7Y+PK1ehAlCkCOpFR+OHK1cyjUCQJAmlK1UCHBzwVlQUNl2/nuV32SMoCLCxQds7d1A6PBwZF4CUMUrCOSgI0GrRJSICQRERWc7XVa8OqFR47+ZNNIiMzLSPsgzUqQMAGHT1KlpkjPB4TKlQADVrAgA+unwZHWJiTCNHAECrUgHVqwMARp07h56xsf8foQLAXqsFqlUDSIw7exbvx8WBQPoxAIra2gJBQenX1GiytF3IHZLbAGyrUaPG+9Zuy6tkyZIlAIBdu3ahWrVq2LhxI2rXrm3lVgmCIAiFiUTy+Ue9ImrUqEGx3JnwqpINBqTExkKRmgqdLCP14UOcCwtD0sOHSI6PR1J8PJITElDVwwOBRYogKjoaqw8eREpKClJSUpCckoKU1FT09vVFPUdHhEVFYeQ//yDFYEgvRiNSZBnfFCmC5pKEPx89QtukJKQ+1Y6/ALwJYCOALtm08zCAOgBWAeifzf6zSiUqarVYSmJiSgo0CgXUkgS1JEGjUODPgACUsLPDugcPsCY6GmqlEhqlEmqVCmqlEivr1YO9nR1+uX0bu+/ehUathlqlgkajgVqtxthmzaDUaLD7+nWci46GSq2GWq2GSq2GRqtFt4YNAZUKJ8PDcTc+HmqNBiqNBiqtFja2tqhRqRKgVuNWdDSS0tKg1umgzNiv0engWrw4oFIhKTUVVCigytiv1GhMD+OC8CqSJCmUZHaDa15Zol+RfxITE+Hh4YE2bdrgo48+QqdOnRAREYE5c+Zg2LBhpkCiIAiC8HrIqV8hRmAIQgExpKYiMSoKSEyEk1IJJCTg4OHDePTgARJiY5EYF4eE+HiUdXJCM3d3GBISMOzPP5Gcmoqk1FQk6/VISktDpyJF8IGDAx4mJKDSzZtIkmUkkUjJuM40AGORPlKgWjbt+BpAIIBopA9VBwANAB0AnSShUVQU6rm4gAAepqRAp1KhiE4HnVoNnVoNp0qVgJIl4ZucjI8uXoRWq/1/0ekQWL06UKIE6iUk4OfwcGhsbKC1tYXWxgYaW1tUKFcOKFIEnQ0GNE9NhcbWFloHB2gcHKCxs4My4+3wIGQ/zP+x3hklJ+0zSk6aZpScZPe9e1LJ5+y3fc5+QRAE4f9++OEHxMfH4+bNmzhz5gxCQ0Px3nvvYcSIEThw4ABWrFgBR0dHazdTEARBsDIRwBCEnJBIuHsXD2/fRnxkJOKjohAXFQWbtDQ09PIC4uLw9Z9/4mZ0NBKTkpCQnIyE1FRU0enwRfHiQEICal6+jBtpaUh4IsDQDcD3GZ+/jf/Pe39sAIBmkgSljQ1+Tk6GjUIBG6UStkolbNVqUKsFSpWCjUaD5kolbHU62Oh0sLW1ha2tLd4oWxaoUAHFVSpsvnABNo6OsHVygo2jI2wcHeHh4wO4uaGcRoNkhQIaBwcoVFn/KaiI9FwEOQkEMPMZ+70ySk7sM4ogCIIgLF26FO7u7jhw4AAOHDiAH374AUuXLkWDBg0wduxYnD59GiEhIahcubK1myoIgiBYkQhgCK8uWcbDGzdw9+JF3L9+Hfdv3ULc/ftAcjL6lC0LxMdj/v79OHrnDuKTkxGXkoJ4vR6ekoQ/tFrg0SO8Kcs4+lS1dZA+DQIAVgO4CsBeoYCdUgl7pRK+zs5AkSKApycakagpSbC3tYW9vT3s7OxQoVQpoHZtwM4O269ehdbJCXbOzrB3dYVdsWJwdHcHnJ0hSRLuPeP2tABWPmO/DsB/nrFfkXGMIAiCIFhTaGgojh8/Djc3N9SpUwe9e/fGqFGjULlyZcycORM7d+5E9+7dUbt2bSxatAj9+vWzdpMFQRAEKxEBDOGlQFlGwt27uH/lCu5fv44axYpBionBHwcOYN+//+J+bCzux8XhfmIikvV6HLe3Bx48wGBZxg9P1eUGoA8A2NjgHxInjUY4qtVw0mrhZm8P/6JFgWbNAEdHjLxxA7EkHF1c4OTiAkc3N7iVLAlUrgw4OuKUvT0kpTLHds95zn01erFviyAIgpBPJEnyBvANgAcALpF81iAzIR8tXboUWq0WUVFRmDdvHnr06IFWrVph4MCBGDZsGN544w2EhIRgwoQJ6N+/Pw4cOICFCxfC1lZM1hMEQXjdiCSegtXJBgMiQkNx5eBBXD55ElcuXcJkb2/YxsbimwsX8OXdu7gvy9A/cU4C0pcdHIn03mYxhQLF1GoUs7GBq709fmjdGgpXV+yJjcUdWUYxLy8U8/ZGEU9POHl6wsXHR2TiFwRByEfWTOIpSdIqAK0BRJGs+MT2t5Ge+kcJYMWzghKSJL0DwJnkd5Ik/UgyuzzEmYh+xYuLi4uDp6cnXFxckJKSgvDwcGi1WgDpq+isWbMGn3zyCVJSUjB58mQ8evQI06ZNQ6VKlRASEoLAwEAr34EgCIJgCSKJp2BVssGAiBMncPngQVw5dQrtHB3hducO1p04gUEREab8EEB6QskBUVEI9PSEj6cn3razQ7GiReFarBiKubujmIcHVG++CXh4YIaTE+a4uOS4ukPjgrg5QRAEwdrWAFgIYN3jDZIkKQEsAvAWgNsAjkuStBXpwYwZT53fD+lpf0IkSeoHYH0BtFkAsGHDBiQmJiIpKQnjxo0zBS+A9GWS+/btixYtWmDIkCEYPXo0atasiSVLlmD8+PGoUaMGVq5ciU6dOlnxDgRBEISCJEZgCPlGNhhw+/hxXD5wAGWNRnjev4/Dx45hwLFjuJqammm5zd9UKrQMDMSJYsUQnJiIgMBA+AcFIaB+fXjVrGlaiUIQBEF4OVh7GVVJknwBbH88AkOSpLoAJpNskfH1GAAg+XTw4vH5nwI4RnKfJEkhJDvmcNxAAAMBwNvbu/rNmzfz+1ZeGyRRpUoVREVF4f79+7hx4wa8vLJP/0wSGzduxNChQxEXF4dhw4bhwIEDOHbsGIYNG4Y5c+ZAI/oOgiAIrwwxAkPIXyRw8iRur1mDD0NCcCU2NlOQYhmA97VaFC1ZEgHOzmjp5ZUepKha1RSkgEqFGgCs1tsVBEEQXmWeAG498fVtALWfcfwfACZLktQdwI2cDiK5TJKkSABtNBpN9fxo6Ovq8OHDOHv2LOzt7dGuXbscgxdA+miMLl26oGnTphg+fDjmzZuHSpUqoVu3bliwYAGOHj2KjRs3wsfHpwDvQBAEQShoIoAh5Mq5rVsRPHs2Sl26hH5RUbBTKnFVpUKAszNaeXkhoEwZ+FetiipvvQVUrIgyCgU2W7vRgiAIgvAcJP8FkO2oi2yO3QZgW40aNd63bKtebd9++y10Oh0SEhIwdOhQs85xdXVFcHAwunbtisGDB2Pjxo1o3749du7ciWrVquG7775Dy5YtLdxyQRAEwVpEAEN4rqu7d+PHmTPxw/79OJuSAgWAD7y80G/FCji3b49/ixa1dhMFQRAE4WkRAEo+8bVXxrYXJklSGwBt/P3986O611JMTAx+/PFHODk5wc/PD40a5W5drv/85z9o2LAhPv30U6xatQqlS5eGQqFAq1atMHbsWPz3v/+FSiW6uYIgCK+a7DMfCq+9+//8A8ybB9SqhWHNmmHcX3/BUa3Ggk6dEPHPP1h06xbQvz8ggheCIAhC4XQcQIAkSaUkSdIA6Apgq5XbJGRYu3Yt9Ho9oqOj8eGHH0KSpFzX4ezsjJUrV2LHjh0wGAy4evUqKlSogOnTp+Ott97C3bt3LdByQRAEwZpEAEMwiQoLw+KuXdHQyQnuVaogYuRIQJYxa+RI3Dx0CAfi4zF040a4V6pk7aYKgiAIgokkScEADgMoI0nSbUmS+pM0ABgKYAeA8wA2kgzLj+uR3EZyoJOTU35U99ohiW+//Raurq5wcHBAz549TfuuXLkCvV7/jLOzat68Of79918MGTIEYWFhcHV1xaFDh1C1alXs3bs3v5svCIIgWJEYW/e6e/gQYQsW4OOvvsKuBw8gAyiv1WJys2bQTJsG1K6NitZuoyAIgiA8A8luOWz/DcBv+X09MYXkxfz999+4fPkyVCoVBg8eDAcHBwDA6dOnUa1aNQQEBGD27Nlo06aN2SMzHBwcsHDhQnTu3Bn9+/dHdHQ0kpOT0aRJE0ybNg2ff/45FDksuS4IwosxGo2m5ZATExPN+vxZ+2VZxoQJE/Duu+9a+9aEQkgso/oaSrh7F1unToX7yZNoeuIE7qSlobFajc61aqHryJGo2L69tZsoCIIgvGSsvYyqNYh+Rd507twZ27dvR3JyMs6fP4+yZcsCAD744AOsW7cOPj4+uHDhApo2bYq5c+ciKCgoV/UnJSVh0qRJmDdvHrRaLZKTk/HOO+9g7dq1cHFxscQtCcJrafTo0fjqq6+Qmpr6/IOfIEkS7OzsYGtrm+nj489v3LiBc+fOYfbs2fjkk0/yNMVMePnl1K8QAYzXhD4hAb9OmYIfgoOx7dYtJAPobmODDYMHA127gtWrQxJvJgRBEIQ8EgEMwRx3796Fl5cXbGxsUKdOHfz1118AgEePHsHDwwMdO3bEsmXLsGzZMkyaNAkPHjxA3759MXXqVJQoUSJX1zp27Bj69euHsLAwKBQKuLu748cff0SDBg0scWuC8Fr59ddf0bp1a7Rt2xY1atTIEoTILjDx+KNOp3tmUCI5ORm9e/dGSEgIBg8ejG+++UYk5X0N5divIPnalOrVq/O1dPcuWzo5EQBdJYlDKlbk/oULaUxLs3bLBEEQhFcEgBMsBP/XF0QB0AbAMn9///z69r02pk2bRgAEwM2bN5u2L126lAB4+PBh07YHDx5w5MiRVKvVtLOz45QpU5iUlJSr66WkpHD8+PFUKBRUqVRUKBScNm0ajUZjvt2TILxuoqOjWbx4cVaqVIkpKSkWuYbRaOSoUaMIgK1atWJ8fLxFriMUXjn1K8QIjFfduXPAO+9g9507uNOvH7rOnw+VTmftVgmCIAivGDECQ3geo9EIPz8/xMfHw8HBAdeuXYNSqXz8kglGoxGnT5/O8mb26tWrGDVqFH7++WeULFkSM2bMQLdu3XKV0+LQoUPo3r07wsPDQRLNmjXDhg0bULx48fy+TUF4pZFE586dsWXLFhw/fhxVqlSx6PWWLl2KDz/8EJUqVcL27dvh6elp0esJhUdO/QoxZ+AVtmvWLHxdvTqQnIymBw6g55IlInghCIIgCIJV7NixAzdv3kRsbCwGDx4MpVIJADhx4gROnTqFQYMGZTus3M/PD5s2bcLevXvh6uqKnj17om7dujh48KDZ165Xrx7++ecf9OrVCwCwe/duVKhQAbt27cqfmxOE10RwcDBCQkLwxRdfWDx4AQCDBg3C9u3bceXKFdSuXRtnzpyx+DWFwq1QjsCQJOltAF8DUAJYQXLmU/sbAvgKQGUAXUmGmFPv6/SmZFXfvhi0Zg3KabU4/s8/0AYGWrtJgiAIwivsdRqB8cQqJO9fvnzZ2s15abRt2xY7d+6ELMu4desWXF1dAQADBgxAcHAw7ty5g+ctTSvLMr777juMGTMGd+7cQefOnTFz5kyUKlXK7Hb8+OOPeP/995GYmAhZljF+/HhMmjRJzLF/RcXExGDAgAH4888/4ejoCEdHRzg5OZk+Pvn58/bZ29u/1gklb9++jUqVKqF8+fLYt2+fKQhZEM6cOYN33nkHcXFx2LhxI1q2bFlg1xas46VJ4ilJkhLAJQBvAbgN4DiAbiTPPXGMLwBHAJ8C2CoCGP8nGwwY37AhZhw+jOYuLth48iScvL2t3SxBEAThFfc6BTAeex36FfklPDwcvr6+UKvV6Nq1K9auXQsAiIuLg4eHB7p164YVK1aYXV9iYiLmzJmDWbNmwWAw4KOPPsLYsWOfGwB5sj3du3c3jeKoW7cufvrpJzE8/RVz6NAhdOnSBVFRUXjvvfcgyzLi4+MRFxeX5eOjR4+eW59CoYCDg4MpoOHi4oI+ffqgd+/eBfowbw2yLKNFixY4fPgwzpw5Az8/vwJvQ0REBFq3bo2zZ89i0aJFGDRoUIG3QSg4OfUrCmOouRaAKySvAYAkST8A+A8AUwCD5I2MfbI1GlhYMSkJPcuWRfCtWxhUrhwWnDgBta2ttZslCIIgCMJrbsWKFSAJvV6PoUOHmrZv2LABSUlJuX4QsbOzw6RJkzBgwACMGzcOs2bNwurVq/HFF19gwIABzx1N4e3tjb1792L27NkYP348jhw5gvLlyyM4OBitWrXK0z2+Lh48eIDz58/j/PnzcHV1Rdu2bQvdqARZljF37lyMGTMG3t7e2LNnD7y9veHu7p5joEGWZTx69CjHAEd2265cuYJ+/fph3rx5mDlzJlq1alXovhf5ZcmSJdi5cye+/fZbqwQvAMDT0xP79u1D165d8cEHH+DatWuYMWNGrvLhCC+/wjgCoyOAt0kOyPi6F4DaJIdmc+waANvFCAwAUVFA27ZYdPQoklu3xsgtW8SyqIIgCEKBeZ1GYIgpJLmTlpYGb29vPHr0CBUqVMDRo0cBpCcDDAoKglKpRGho6As9+IWGhuKTTz7Bvn37UKFCBcydOxctWrQw69wTJ06gY8eOuHnzJgDgk08+wcyZM6FWq/PcnpcdSURERJgCFU+WqKioTMe+/fbbWLp0KbwLyYjfmJgYvPfee9i+fTs6dOiAHj16YOTIkbh+/TpUKhVKliwJX19f+Pj4wNfXN9PnXl5euZpKRBIhISEYO3Ysrly5gkaNGmHWrFmoVauWBe+w4F26dAlBQUFo1KgRfvvtN6sHaQwGA4YPH44lS5agY8eOWLduHWxsbKzaJiH/vUxTSPI1gCFJ0kAAAwHA29u7+uP/nF4l57dtw63330fz+HhgwwagfXtrN0kQBEF4zZgTwJAkqeiz9pN8kL+tsqxX+sVIPvrll1/w7rvvAgDWrl2L3r17AwCOHDmCunXr4ttvv82XoeAksXnzZnz22We4evUqWrZsiTlz5qB8+fLPPTcxMRHDhg3D6tWrAQBVqlTB5s2b4evr+8LtKswMBgOuXbuWJUhx4cKFTFMq7O3t4ebmBnt7eyiVSiQnJyM2NhYqlQoxMTFQqVSYOXMmBg8ebNW34UeOHEHnzp1x9+5d/Pe//8X58+exfv16BAYGYsiQIbh37x5u3LiBmzdv4saNG7hz506m8xUKBby8vHIMcJQsWRIajSbLddPS0rB8+XJMnjwZ0dHR6NSpE6ZPnw5/f/+CunWLMRgMaNCgAS5fvoyzZ8/Cw8PD2k0CkP73Pm/ePHz22WeoXbs2tm7dasqrI2SVlpaG2NhYuLm5WbspZnuZAhh1AUwm2SLj6zEAQHJGNseuwWs+AmPX7NnoMGoUXJVKnNu/H+q6da3dJEEQBOE1ZGYA4zoAApAAeAOIzfi8CIBwkuZnYiwEXsV+hSW0aNEC+/fvh52dHW7dugVdxopoffv2RUhICO7cuQMHB4d8u15qaioWLlyIKVOmICEhAYMGDcLkyZPNerjZvHkzevfujUePHsHGxgYbNmxA+1fgxVBycjIuXryYJVBx+fJl6PV603H29vawtbWFJElISkrKkhfi8QgGHx8f+Pj44NChQ7h8+TJcXFwQExODBg0aYOXKlQgs4OTxjx9mR48eDS8vL7z33ntYsGAB4uLiMHr0aIwbN870e/ek1NRU3Lp1K1NQ48nPIyIiIMv/n7EuSRI8PDxMQY3SpUujT58+pkDFo0ePMHfuXMyZMwepqakYNGgQJkyY8FIv1zt16lRMmDABP/74Izp37mzt5mSxadMm9OzZEx4eHvjtt99QpkwZazfJKkgiJiYG165dy7bcunULsixj4MCBWLRo0UuRtDjHfgXJQlWQnpfjGoBSADQAzgCokMOxawB0NLfu6tWr81Wyok8fqgBW1Gp548ABazdHEARBeI0BOEHz/69fDqDVE1+3BLDU3PMLS3nV+hWWcOXKFQKgJEkcM2aMaXtsbCxtbGw4cOBAi107OjqaQ4cOpVKppKurK/fv32/WeREREaxfvz6RHmzj+++/z5SUFIu109KOHz9OOzs70/0AoFarpVqtzrQNADUaDf39/fnmm29ywIABnDJlCtevX899+/YxPDycBoMhU92pqamcP38+nZycKEkSNRoNtVotZ86cybS0tAK5v5iYGLZp04YA2Lx5czZp0oQAWLduXZ49e/aF6tbr9bx27Rp3797N1atXc9KkSezTpw8bN25MX19fKpVKqlQqDhkyhHfv3jWdFxkZycGDB1OpVNLe3p6TJ0/mo0ePXvRWC1xoaChVKhW7detWYNeMiYnh999/z4cPH5p9zpEjR+jq6kpnZ2fu2bPHgq2zrpSUFF68eJG///47Fy1axJEjR7J9+/asUqUKHRwcsvw9Fy9enHXr1mWPHj04YcIEDh48mADYpk0bJiYmWvt2niunfoXV//PPtlFAK6SvRHIVwLiMbV8AaJvxeU2kr1CSCCAGQJg59b4qHQ3ZYOCYunXT/6F2ceHDmzet3SRBEAThNZfLAMZZc7YV9vKq9CssadSoUZQkiQqFgjef6K988803BMDQ0FCLt+Hs2bMMDAykWq3msmXLzDrHaDRy1qxZVCqVBEB/f39evnzZwi3Nf/fu3cv0YKPVahkYGMi3336bgwYN4owZM/j999/z0KFDjIiIoNFozNN17t+/z+HDh5se6AGwatWqPH36dD7fUWZHjhyhj48PVSoV27ZtSxsbGzo4OHDhwoV5vpfceDJQYWdnx0mTJjE+Pt60/+LFi+zQoYPpYXLx4sXU6/UWb1d+SE5OZvny5enh4cGYmBiLXkuWZe7bt489e/akVqslAFauXJkRERFm13H16lWWLVuWarWa69evt2BrLS8qKoobNmzglClT2LdvXzZq1IglS5akJEmZAhQ6nY7lypVjy5YtOWjQIE6dOpWrV6/m77//ztDQUJ45c4bHjh3j/v37uXPnTu7YsYNffPEFJUlinTp1GB0dbe1bfaaXKoBhqfJKdDSSkih37MgBAAeWK0f9SxA9EwRBEF59udf2ZcAAACAASURBVAxg7AAwHoBvRhkHYIe55xeW8kr0KywoJSWFLi4u1Gg0bNeunWm7LMusUKECa9SoUWBtefDgAVu0aEEAHDp0qNkPkadPn6a3tzcBUK1Wc+3atRZuaf6Ji4ujq6srAbBXr168d+8eZVl+4XrT0tL422+/sUePHuzSpQvPnTtn2nfhwgXTaAiFQkGlUslx48bl+wgWWZY5f/58qtVqlihRgmXKlCEAtm3blrdu3crXa5nj4sWL7NSpEwHQ1dWVCxYsYGpqqmn/4cOH+cYbbxAAAwMDGRISki8/C0saOXIkAfCPP/6w2DXu37/PefPmsWzZsgRAR0dHDhkyhKtWraK9vT29vb0z/X49z4MHD9i4cWMC4BdffFHov8c5qVGjhilIoVaraWtrS0dHRxYpUoTOzs50cnKinZ0dNRpNllEX5hQnJycqFAq6uLhw9erVvH//vrVvOVs59SsKXQ4MS3rZ56pGhYXhYY8eCPznHxi//BKKkSPFSiOCIAhCoZCbVUgyknlOAtAQ6R2qfQC+4EuSxFOsQmKe4OBgdO/eHQDw119/4c033wQAHDx4EA0aNMDy5csxYMCAAmuPwWDA559/jnnz5qFp06bYuHEjXFxcnntecnIyhgwZgjVr1gDAS7HqwZ07d1CjRg1ERkaiW7du+P7771+oPpI4deoU1q9fj+DgYNy7dw/Ozs4wGo1ISkrChx9+iEmTJsHZ2RkAsGvXLgwfPhznzp0DAPj6+uL7779H3XzI1RYbG4u+fftiy5Yt8PPzw/Xr1+Hm5oaFCxfi3XffteoKGceOHcOoUaOwd+9e+Pn5Ydq0aejUqRMUCgVI4tdff8Xo0aMRFhaGOnXqYNasWXjjjTes1t6c7N27F02aNMEHH3yAxYsX52vdJLFv3z4sW7YMISEh0Ov1qFOnDgYOHIjOnTvDzs4OAHDy5Em0atUKer0e27ZtQ/369c2qX6/XY8CAAVi/fj369OmDZcuWZZt4tbD66aef0LlzZzg4OCAoKAi2trbQarXQaDTQarWm8qyvc9oHAP/++y+OHTuGPXv2IDw83HTd0qVLo1atWqhZsyZq1aqFqlWrmn4W1vLS5MCwZHmZ35SEbdlCX5WKFSSJhp9+snZzBEEQBCETmDECA8D6jI8jnnfsy1Be5n5FQWjYsCG1Wi3LlCmT6U1or1696ODgYLWcAGvWrKFGo2Hp0qX577//mn3eli1baGtrSwAsUaIEw8LCLNjKvDt79qxp5EWTJk1e6C10eHg4Z8yYwfLly5veBrdv354///wzU1JSeO/ePQ4cOJCSJNHFxYWLFi0y5b4wGAxcvnw5ixQpYnrz269fPyYkJOS5PUePHqWvry8VCgWLFi1KABw4cCBjY2PzXGd+k2WZv/32GytVqkQArF69Onfu3GnabzAYuHLlSnp6epryERSm36W4uDj6+PjQ39//hX5WT4uOjuacOXNMo2WcnJw4dOhQnjlzJsdzrl69yoCAAOp0Ov7yyy9mX0uWZU6ePNn0N1CYfj+e5ejRo6ZRFRs3brT49Y4cOUI3NzdqNBrWr1+fJUuWNP2tKhQKVq5cmQMGDODSpUt56tSpAp/+lFO/wur/+RdkeVk7GjtnzaITwOIKBY+tWWPt5giCIAhCFmYGMM4B8EB6gm5nAEWfLM87v7CVl7VfURDCwsJMHeEFCxaYtsfExFCr1XLw4MFWbF36kH53d3fa29tz69atZp9379491qpVy9TBnz17doHkWjDXzp07aW9vT0mS8vwAGhcXx1WrVrFJkyamOff16tXjkiVLcsyFcPr0adPQ/YoVK2Z6YI+Pj+fIkSOpUCgIgEWKFMnV95xMfyD96quvqFKpTEGkMmXKcO/evc89NyUlhRs2bODEiRO5fPly7tixg+fPn7d4EkODwcB169aZpiC1aNGCp06dMu1PTEzkjBkz6OjoSIVCwX79+lll+svT+vXrR4VCwUOHDr1wXbIsc/fu3ezatavpwbxevXpcs2aN2d//6Oho1q5dmwqFgkuWLMnV9deuXUu1Ws1y5crx+vXrebiDgnP16lW6urrS0dGRGo2mwAK8t2/fZuXKlalSqbh+/XpGRkZy69atHD9+PFu0aEFnZ+dMOTfq1avHESNGcMOGDbx06ZJFp+mIAMZL2tFY+d57VAGsIFYaEQRBEAoxMwMYwwGcB5CK9BXHrj9Rrj3v/MJWXsZ+RUEZPnw4FQoF7ezsGBcXZ9o+f/58ArB4ckdz3Lp1i9WrV6ckSZw+fbrZHXFZljl9+nTTw32jRo149epVC7f2+dasWUOlUkkbGxva29vz4sWLZp+r1+u5fft2dunShTqdjgDo5+fHyZMn88qVK2bVIcsyQ0JC6OvrSwBs165dpnNv3LjBpk2bmh6G3njjDbOSQ8bGxrJdu3amESBqtZoTJ058bl6N27dvc8KECXRzc8sxF0CxYsVYrVo1tmvXjiNGjODcuXP5008/8dixY7x7926+PJwlJydz7ty5phEjPXr04LVr10z779+/z48//pgajYY6nY6jR4+22oiBLVu2EADHjh37QvVERUVx1qxZDAgIMAWthg8fnudVYRISEvjOO+8QAMePH5+rn8vff//NIkWK0M3NjUePHs3T9S0tJiaGZcqUobOzMwMCAtisWbMCvf7Dhw9Nq/d8+eWXmb6/sizzypUr/P777/nxxx+zfv36tLGxMf0NOTs7s3379hZpV74HMAD0f+prJYBJea2vIMpL1dEwGmkYNYoNxEojgiAIwkvAnADG4wJgibnHFubyUvUrClBiYiIdHByoUCg4ZMgQ03ZZllm2bFnWrl3biq3LLCkpid26dSMAdu3aNVdv5VevXp0pyd4333xjldEYsixz0qRJBEAvLy8C4KZNm8w67/jx4xw+fLhpyknRokU5ZMgQHj58OM8P78nJyZw+fbopyeCoUaMyBbH+/vtvenh4EABVKhWnTJmSY13Hjx+nl5dXppEgz5pu8Xg1i86dO1OlUlGSJLZp04Y7duxgamoqb968yX379vG7777j9OnTOWjQILZs2ZIVKlSgvb19lgCHVqulv78/mzVrxr59+3LSpElctWoVd+7cyUuXLjE5Odns70tsbCzHjBlDGxsbqtVqjhgxItMqENevX2ePHj1MiUDXr19foEkoo6Ki6ObmxipVqmRKQPosy5YtY48ePXjo0CEajUbu2rWLXbp0MS3R26BBA65bt45JSUkv3L60tDT279/fNBUpN9MZzp07x1KlStHW1pZ//fXXC7clP6WkpLBhw4bUaDT86aefCIBz5syxSju6du1KABw2bFiWJZOflJaWxtOnT3P58uUcOHAgBwwYYJE2WSKA8T2A3wCUAFABwHEAc/JaX0GUl6WjkRQTw9j//IcEGPvee2KlEUEQBKHQy00AozAWAOUBbASwBEBHc855WfoVBW3VqlWmB8AnHzb37t1LAFy1apUVW5eVLMucOXMmJUlitWrVGB4ebva5I0aMIABTvoOGDRsW6HKrqamp7N27t2lEAwB++umnzzznxo0bnDZtmmnlB41Gww4dOnDz5s1mP7iaIyIign369CEylhBduXKlKcAjyzKnTZtmetD19PTk4cOHTec+XmVEoVBQkiTa2tpy8eLFOQaIEhMTuWzZMlauXNn0VvjTTz/N1cgYWZb54MEDnj59mlu2bOGCBQv42WefsXPnzqxTpw49PDyyLGOpVqv5/fff5+r7cvv2bQ4YMIAKhYIODg6cOnVqpqk+oaGhrF27NgGwWbNmuRpJk1eyLLN9+/bUaDRmj5LYt28fFQqFaWrQ4+VPixQpwo8++sgieT1kWebEiRMJgK1atcrVFKnIyEhWqlSJGo2Gmzdvzve25YXRaDQFUIODg7l06dIs/24WdHs++eQTAmDHjh1zFaCzBItMIQHQBcB9ADcB1H+RugqivAwdjXv//ss69vZsClCePZt8SZf/EQRBEF4v1gxgAFgFIArAv09tfxvARQBXAIx+Th0jAbyR8flWc677MvQrrKFmzZpUq9Vs0qRJpu3du3enk5OTxXMP5NW2bdvo4ODA4sWL8+DBg2ado9fr2aRJE2q1Wk6cOJFOTk60sbHh/Pnzn/kGMz/ExsaapmR8+OGHtLW1ZcOGDU1JNJ/08OFDrlixgo0aNTI9fDdo0IBLly7lgwcPLNrOo0ePsm7dugTAatWqcf/+/Zna9eabb5ra9Pbbb/PatWum4eyPH1Rv376dbd1Xr17lyJEjTYlCK1euzOXLl1vsdyw1NZVXr17l33//zbVr17JOnTq0tbXN1VKfj507d840Ncbd3Z3ffvut6WdnNBq5ZMkSOjk5UaPRcPLkyfm+FO2T1q5dSwCcPXu2WcdHRUWxePHidHR0pEqlMuVHAMCSJUtyzpw5fPjwocXa++2331KhULBmzZqMiooy+7yYmBjWrl2bSqWS69evt1j7zDVmzBgC4IwZM0iS7dq1o7e3t9WXf507d64pKGrpfx+exRIjMAIAHAKwFOnLn30LwDav9RVEKewdjccrjdgA3PTZZ9ZujiAIgiCYzcoBjIYAqj0ZwMiY2noVQGkAGqQnDi0PoBKA7U8Vt4yyCMBsAAfNuW5h71dYQ2hoqOnB88lpDNHR0dRoNBw6dKgVW/d8YWFh9PPzo0ajMXukSFRUFH18fOjl5cVTp06xdevWpukOFy5csEg7b9y4wfLly1OtVnPZsmUMDAyku7s779y5k+XYvXv30sHBgQAYEBDAL774IlMOhoIgyzI3bNhgmuLSpUsX3nxievSePXuy5KpwdHTMdiqM0Wjkjh072Lp1a0qSRKVSyc6dO3Pfvn0F/uAXERFBV1dXVqhQIc9Bk4MHD7J+/foEwMDAQG7atMl0H5GRkaZh/YGBgdy9e3d+Np8kefPmTTo6OvKNN94wK+j28OFDli5d2jQFaNiwYTx//jwNBgO3bNliCpLZ29tzxIgRFvtd27x5M3U6Hf39/XM10iY+Pt4UIFu0aJFF2maOZcuWERmr6MiyzNTUVNrb23PQoEFWa9OTgoODqdFoWL58+VyNSstPlghgXADQLONzKePNRVhe6yuIUpg7Gn/OmEFHgO5ipRFBEAThJZTbAAaA4gBaZxS33JybQ32+TwUw6gLY8cTXYwCMMaMeJYAt5lyzMPcrrGXgwIFUKBT08PDINBJgzpw5BJDnJH4FKSYmhs2aNSMAfvzxx9mOaHjaqVOnaGNjwwYNGjAlJYXr16+ns7MzdTodZ8+ena+jMU6cOEF3d3c6OTlx165d7NChA5VKZbYrchw6dIj29vYsW7Ysjxw5YvU3uwkJCZw4cSJ1Oh11Oh0nTpxomgZgMBj46aefUqPRsF27dlne4D98+JBff/01AwMDCYBubm6cMGFCjqMzCsqOHTsoSRL79euX5zpkWeaWLVtMy9XWqFGDISEhpt+bP/74wxQ06N27d65GHTyL0Whk06ZNaW9v/9wgQFpaGpcsWUI7OzsCYM2aNXNc2SM0NJQ9e/akSqWiQqFghw4dePDgwXz//Tt48CCLFi1KNzc3njhxwuzzkpOT2aZNm0yjHwrS77//TqVSybffftv078vu3bsJoNBMbyHT2+To6EhPT0/+888/BX59SwQwHLPZFpjX+gqiFNaORuqiRSwNsJJOx5v5sGSRIAiCIBS03AQwAHTOmH66FsA6pK9CYlbeiWfU+XQAoyOAFU983QvAwuecvwzABgANnnHcQAAnAJzw9va22PfzZRQXF2fKTj916lTTdlmWGRgYyHr16lmxdbmTlpbG4cOHEwDfeusts4ZRBwcHE4Bpidg7d+6YpgjUrl07T9MMnrZt2zba2trSx8eHYWFhpqHe2SX9O3HiBJ2cnOjv78+IiIgXvnZ+unHjBrt06WLKf/Hdd9+ZHm6ffsgNCwvjkCFDTEk269Spw++++86iUypya/z48QTAtWvXvlA9aWlpXLlyJf38/EyjLpYtW8bk5GQmJSVx3LhxVKvVLFq0KFesWPHCSWO//vprAuDy5ctzPEaWZW7bto3lypUzjY5p3ry5WcGI27dvc/To0aalOGvVqsUffvjBrKCguc6fP08fHx/a2dnxjz/+MPs8vV5vyj8xevToAgvunTp1ivb29gwKCmJ8fLxp+2effUa1Wp1pW2Fw5swZenh40MnJiX///XeBXjvfAxgvYylsAQxDairTPv6YBHixYUPGFYK1nwVBEAQhL3IZwDjz5KgLAK4Azph7fg51vlAAI5fXagNgmb+/f/5/I19iixcvNiU2vHfvnmn74zeLL/pwZw0rVqygWq2mv7+/WQGIUaNGEQCXLVtGMv3hLzg4mC4uLtRqtZwxY0aeH94WLVpEhULB6tWrMzIykvv27aNSqeS7776b5eHrzJkzLFq0KH18fDJN1Shs9u/fz2rVqhEA69aty2PHjpFMH43xyy+/mEbCaLVa9unTh8ePH7dyi7OXlpbGRo0a5TkfxtMMBgM3btzI6tWrm3JkzJgxg7GxsQwLCzMlbG3QoEGeEz6eO3eOOp2OrVu3zvHhPTQ01DTdolSpUixatCgDAgJy/ZCdkJDARYsWmZZV9fb25uzZs/NtudiIiAhWqVKFKpWK69atM/s8g8HAgQMHEgCHDBli8VWEwsPD6eHhQS8vryxBxYoVK2bJG1RY3Lx5k+XKlaNGo+GPP/5YYNcVAYxCFsBIuHeP7UqU4GCA8ocfkvkYiRQEQRCEgpbLAMbZp75WPL0ttyW/ppCYeS0RwHiKLMssX748FQoFe/TokWlfly5d6OzsnC9LKVrDgQMH6ObmRkdHR/7666/PPNZgMLB58+ZUq9WZEoHevXuXHTt2NE0PyM1UGqPRyE8//ZQA2KZNGyYkJDAyMpLu7u4MCAjItEQpmf5g6urqSk9Pz1zlBrAWo9HIlStXsnjx4gRgSmSIjISQ06dPz7cpE5aUH/kwnibLMnft2sUWLVoQAB0cHPjpp58yPDycK1euZNGiRalWqzl27Nhc/X3p9XrWqFGDLi4ujIyMzLI/PDycvXr1IgAWK1aMX3/9Nd966y1qtVqePn06z/djNBq5detWNm7cOFOejPz4PX348KEpqe3MmTPNHlEhyzI/++wzAmCvXr3ydXTI0+2rVKkSHRwcskzHCA8PJwDOmjXLItfODzExMaxfvz4lSeJXX31VINcUAYxCFMCICA1lNVtbKgB+3aGD1ecjCoIgCMKLymUAYzaAHQDeyyi/A5hl7vk51Pl0AEMF4BqAUvh/Es8KL3KNp0th6VcUBocOHTINL39yOcx79+5RrVZzxIgRVmzdi7t58yaDgoIoSRK//PLLZ/bdYmJi6OfnR3d39yz5GTZu3EhXV1eq1WpOnTqVer3+mddNSkoyBT6GDh1Kg8HAtLQ0NmzYkLa2tlkCIZcvX2aJEiVYvHjxAll+Mz/FxcXx888/p62tLZs0acJNmzZZ7GHSUvIjH0ZOTp06xW7dulGhUFCtVrNv3748cOCAaRnd0qVLmz2FYvLkyQTAkJCQTNvj4uI4ZswY6nQ6arVajh49mg8fPuS0adMIgEuXLs23+zl58iR79eplypPx7rvv8sCBAy/0XJSSkmKaFvL478Ucsixz6tSppgBafk9P0uv1fOutt6hSqfjnn39m2f84oWdhzxGUlJTEd999l8hYrtnSI1byPYAB4GcA7wBQ5LWOgi6FoaNx6ocf6KlU0g7gtokTrd0cQRAEQcgXuQlgpB+OdwHMyyjtc3NuNnUFA4gEkAbgNoD+GdtbAbiE9NVIxr3INZ66nhiB8ZRevXpRoVAwKCgo0wPIl19+SQD5Mqze2hISEtipUycCYI8ePZ75xvvs2bO0s7NjrVq1mJycnGlfVFSUKf9D1apVeebMmWzriIqKYt26dSlJEufOnWv6vj5+W/zdd99lOv769essWbIkixUrxn///fcF71bIq/zKh5GTa9eucejQoaZ8M23btuU333xjSm7atWvXbEdVPHb8+HEqlUr27NnTtE2v13PRokV0dXUlAPbs2ZM3btwgmb6KjUKhYLdu3Szy0jUiIoJjx4415cmoWbMmg4OD8/xwbDQaOXLkSAJgx44ds/z9Pcs333xDAHzzzTdNyWVflCzL7NevHwHkuLJR+/bt6eXl9VK81DYYDBwyZAgBsHv37kxNTbXYtSwRwHgT6YmurgKYCaBMXusqqGLtAEZiSAjdAHoqlTz1ww9WbYsgCIIg5KdcjsD40pxthb1Yu19RWMTExFCtVmfpoBuNRvr5+fGNN96wYuvy15NvamvWrPnMN6abNm0iAPbt2zfbB5NNmzbRzc2NKpWKkydPzvQgcOnSJfr7+1On02V6S/64ziFDhmSq69atWyxdujSLFCnCU6dO5cOdCnmV3/kwchIdHc1JkyaxaNGiphwi3bp1o1qtppOTExcvXpwlCJCUlMSyZcvS09OTsbGxptVPypQpQwBs1KhRpjwj9+7do4eHBwMDAy2eXDIhIYGLFy82BWJGjRr1QvU9TnDbsGFDs5LwPrZmzRoqFArWq1cvX3J0TJkyhQA4YcKEbPfr9Xo6ODjw/ffff+FrFRRZljl9+nQCYLNmzbJMY8svFptCAsAJwAcAbgE4BKAvAPWL1muJYtWOxtdfkwoF/woIYERoqPXaIQiCIAgWkMsAxslstv1j7vnWLmIERmbz588nADo5OWUalfDXX39lO1LgVfDLL7/QwcGBAPif//yHR48ezfa4CRMmEAAXLFiQ7f779++zR48eBMDKlSvz5MmTPHDgAF1cXFisWDEeemJ1uosXL9LBwYG1atXKNMQ9MjKSgYGBdHBwMCXBFKzLEvkwcpKQkMBvvvmGPj4+BEB/f3/TiiG1a9fOlLNixIgRBMC//vqLx48fZ6NGjQiAZcqU4datWzMF2oxGI5s3b06dTpfjKCFLMBqNpsSaL7qkaHBwMNVqNStUqMBbuVgsISQkhGq1mkFBQZkSEufW+vXrTbk1chpdsWfPHgLgzz//nOfrWMuaNWuoUqkYFBRkkVWBLBLAAOACYATSlxPbCqALgAUA9rxIvZYq1ghgpCUnc2ilSlwKkO3akfk0HEkQBEEQChNzAhgABgM4CyARwD9PlOsAvnve+YWtiBEY6W/iSpcuTQD87LPPMu3r2LEjXVxccjWE+2Vy//59Tpw4kUWKFDENO9+9e3eWh8DWrVtTqVQ+cwnCLVu2sESJElQqldRqtQwICOCVK1dM+xMSElixYkW6uLhkWlUkOjqaFSpUoJ2dHQ8cOGCR+xTy5s8//6QkSezbt2+BXE+v13PDhg2sXLkyAdDZ2Zl2dnZUKBQcOXIkt2zZQgDs06cPu3fvTgB0dXXl4sWLs83F8nik0eMVdQpScnIyq1evTicnp0x/B3mxa9cuOjg40MvLK1c5Jv744w/a2NiwTJkyDA8Pz/V1d+/eTbVazcaNGz9zmsXnn39OlUplsVEMlvbHH39w3rx5FqnbElNIfgFwDulZvUs8tS9X82ALqhR0RyPu1i22zJhL9nmtWqSFE50IgiAIgrWYGcBwQnqyzWAAPk+Uos87tzAWEcAg//77bwKgJEm8du2aaXtkZCRVKhU/+eQTK7auYMTHx3PWrFmmVTTq1KmT6W32w4cPWaZMGRYrVuyZS5o+ePCA/fv35zvvvMP79++btsuyzJ49e1KSJO7YsSPT8UFBQdTpdNy9e7flblDIs8cjcNasWVNg15Rlmb///rtp+VONRmNKsOvs7EytVkudTsexY8fm+NC8Z88eKhQKdu/e3Wp5Ga5fv05nZ2cGBQW98ApGp0+fZokSJViqVKlc5dbYv38/HR0d6e3tzUuXLpl9XlhYGJ2cnFiuXLnnTl+pXLkyGzdubHbdrxNLBDBaZbNNm9f6CqIUZEfj5qFDrKTTUQlw6VPLiQmCIAjCq6awvrywRBFTSP6vY8eOlCSJrVq1yrT98fzoCxcuWKllBS85OZmLFy82DeWvXLkyg4ODaTAYeOHCBTo6OrJq1aq5nlKwZMkSAuB///tf07a4uDjWqlWLGo2Gv//+e37fipBPDAYDGzduTFtbW4aFhRX49Y8dO2b6G30caOzdu/czRxTcu3ePJUqUKJC8F8+zfft2AmD//v1fuK7g4GAC4M6dO3N1XmhoKIsVK8bixYtnWf40O5GRkfTx8WHx4sV5/fr1Zx57+/ZtAuCXX36Zqza9LiwRwMhu/mqWbYWpFFQA4+Hu3SyhUNAR4J8zZhTINQVBEATBml6nAMbj8rqPwLh79y6VSiUBZFq+0Wg0slSpUmzSpIkVW2c9er2ea9euZdmyZU05CVasWMFffvmFkiTl6q320aNHqdFo2LJlS9Ob40ePHrF+/fpUqVTcsmWLJW9FyAd37tyhm5sby5cvn28rW+TWpUuXOH36dIY+Jw+f0WjkW2+9VeB5L55l3Lhxz1zBw1xJSUl0cnLKtPqKuc6dO0dPT086OzvnmO+GTJ/qVb16ddra2mZKhpqTFStWEIBZgZEXJcvyS7HKyZPyLYABwB1AdQDnAVQFUC2jNAZwIbf1FWQpkI7Gpk2kjQ0XFi3KMPGfiiAIgvCaeJ0CGGIERroZM2YQAH18fDINy/7jjz8IgD+85iuuGY1Gbtq0idWqVSMAenl5sVWrVgTAOXPmPPf86Ohoent708fHxzSlJCkpiU2aNKFCoeDGjRstfQtCPinofBh5Zc28FzkxGAxs2rQpdTrdC6+wM2jQINrY2OQp38S1a9dYunRp2tvbZztly2AwsE2bNlQoFNy6datZdXbo0IGenp6ZAgsGg4EDBgygvb09bW1taWtrSxsbG+p0Oup0Omq1Wmo0Gmo0GqrVaqpUKqpUKiqVSioUCioUCtOIm6eLSqXir7/+mut7t5ac+hVS+j7zSZLUB8B7AGogPXnnY48ArCH5c64qLEA1atTgiRMnnn9gHlCWg/vpYQAAIABJREFUMbdNG9T67Tc0rFMH2LIFcHOzyLUEQRAEobCRJCmUZI1cHO8DIIDkTkmSbACoSD6yXAvznyX7FYWdLMvw8vJCZGQk5s+fj48++si0r3379jh48CBu374NjUZjxVYWDiTx559/Yvr06di3bx80Gg3S0tKwadMmtG/fPttzjEYjWrVqhT179uDgwYOoUaMGUlNT0a5dO+zYsQPr1q1Dz549C/hOhBcxceJETJkyBWvWrEGfPn2s3Zws9u7di6ZNm6Jbt25Yv349JEmydpNMoqKiULVqVdjY2CA0NBROTk55qufIkSOoW7cuVq5ciX79+uX6/Dt37qB58+a4cuUKQkJC0Lp1awDpf+PDhg3DokWLsHDhQnz44YfPrSstLQ3FihVDp06dsGLFCgDpf/d9+/bF+vXr0bNnT7i7uwMAJEky/Tyy+2jutrVr16JIkSI4efJkofr55iTHfkV2UQ1zCoAOeT3XzPrfBnARwBUAo7PZrwXwY8b+owB8n1enpUZg6BMTOSBj/eRBfn7kCyaaEQRBEISXDXK3jOr7AI4DuJrxdQCAXeaeX1jK6zyF5PfffycAav/H3n2HR1WlDxz/nqmZTHpCiUDooBQFDSqCrAgKFqQoKioSF5CyiLog2BZFFhTLsv6QVcFlAQvrSglFAuIiCCiCgiyI0qUHQnoyyWTK+/tjBgyRmjaZcD7Pc565c8+9576ZtDtnznmP1SqZmZmn9x85ckSMRqOMGTMmgNFVXWvXrpXbbrvt9CeiQ4cOPesyjS+99JIA8v7774uIb1rKPffcI4DMmDGjssPWykGg82GcT2pqqsTHx0vz5s0lNzc30OGc1bp168RkMkmvXr1KPRXC6/VK8+bN5eabby51HCdPnpTExEQxmUwyd+5cERF56623BJBRo0ZddDtr1qwRQObNmycivhFbSUlJAsjEiRNLHd/5zJo1S4CgmXp2rvuK0nQsPOJ/HAX8uWS51PbOcQ0jsBdoBFiArUCLEscMB97zbz8IfHqhdiviRiNz/37pEh0tgLzQoYN4XK5yv4amaZqmVXWX2IHxo///+5Zi+7Zd7PlVpVyOHRher1c++ugjiYmJEUAGDRp0Rv0rr7wigOzevTtAEQaHRYsWidlsFkBCQkJk5MiRpxMrLlu2TJRSMmDAAPF6veJyuaRv374CyDvvvBPgyLWyqAr5MEpyu93StWvXKpX34lz+9re/CSBvvPFGqds4NfWtLH+jsrOzpVOnTqKUkkGDBolSSu69995LWuHk2WefFZPJJFlZWeLxeGTgwIG/S9Zb3lwulzRu3FiuvfbaoMiHUZ4dGEP8jy+drVxqe+e4RntgRbHnzwHPlThmBdDev20CToJvSsy5SnnfaJyYOFHqKCVGkCeuuUZWTJok6/7xD/ll4UKRnTtFDh+WnAMHxJmbKxIEPySapmlaEPN6xet2i9vpFFdBgRTl54szN1ecOTkiBQUiDoc4MzPFU0Gfrl1iB8Z3/sct8tv/8f9d7PmBLlymOTD27dsn3bp1E0ASEhJ+l3zO7XZLvXr1pGvXrgGMMnisWLFCDAaD1K9fX4xGo5jNZhkwYIDExMTI1VdfLfn5+eJ2u+WRRx656LwZWtW3cuXKKpUPY8KECUEzssfr9cq9994rRqNR1qxZU6o2Dh8+LAaDQf7yl7+UKRaHw3E6p0379u0veanXNm3aSKdOncTj8cjjjz8ugIwbN65MMV2MmTNnCiBLliyp8GuV1bnuKy45B8YpSqkaIpJWqpMv3PZ9QHcRGeR/3h+4QURGFDtmu/+Yw/7ne/3HnCzR1uPA4wAJCQnXHThwoNzi/DkyktY5OXhK7L8F+Mq/3QzYje/OLBSwGwzcZbczo0EDsNt5YN8+CpTCbrUSarVit9loX78+/Tp1gtq1WZuWRkzDhtRu0YKYxo1RRmO5xa9pWtmJ14vH5cLrcmExmcDrpdDhwOlw4PV48LrdeF0uxOulZkwMeL2knThBXl6er87txuN2Y1SKpvXqgcfD3gMHyMrJ+e18jwerycS1TZuC18vmX34h81S9v0TYbHS48krwelm1dSuZubm/1Xu91AwLo0uLFuD1Mn/jRrIdDrxeL16PBxEhISqKO666CkSYsX49+YWFvnp/aVGjBnc3bw4ivLZ6NUVu92/1IrSrXZueTZrg9XoZ+9VXp//JeP2PnevUoWeDBhS4XPx53boz6rxeLz3r1eOeevXIKChg5MaNvvPxzbMXoH9CAnfXrs3h/Hye2Lr1jPMFeCIhgW5xcezMy+OJHTt85xaLYVxCArdGRfFDTg4j9+37rX3/45S6dekQFsbqnByePnz4d/Wzr7iC60JCWJKTwzNpab+rX1yrFi3NZj7KzeX5rCzf2HB/nQDrY2JoaDQyLT+f8fn5vnP5LbPWzrAwairFXwsLmVxUdEY9wEmzGTsw2u3m7WLtCqDg9P+hQcA/S/yMRgDZ/u0HgBcjImidnU15u5QcGEqp14Es4FHgCXyjKneIyAvlHlgFulxyYLjdbt5++23GjRuHwWDg1Vdf5V//+hdms5kNGzacPu7zzz/n7rvv5rPPPuO+++4LYMTB48033+SZZ55h9OjRFBYW8sEHH2CxWPjhhx9o1KgRQ4YM4YMPPmDChAm8+OKLgQ5XKycvvfQSr7zySsDzYaxevZouXbpUybwX55KTk0NiYiK5ubls2bLldJ6IS9G9e3d+/vln9u/fj8FgKHUsRUVFfPzxx/Ts2ZOYmJiLPu/YsWNcccUVTJo0iUOHDvHuu+/y/PPP89e//rXCvwcul4vmzZsTGxvLxo0bq/T3/Fz3FaYytLleKfUrvjwUC0QkswxtVRgRmQ5MB9+NRnm2Hb9mDbFt2xJtNjNn+nSKHA4c2dmEKwX16kF+PmNXrSI1PR2Hw0G+w0F+QQGtw8Kgbl1wOMgpKiLV6cThdpPv8eAQwbl9O/2WLMELdOa3G1MzUMtoZHitWjzXti2emjV5adcuasfHUzshgdqNG1O7eXOuaN2aUJ1AVDsP8XhwFRTgcTpx+4vH6STEbCbMasVdWMiBgwd9+10u3EVFuJ1OroiJoXZUFI68PDZu3477VF1RER63m2sSEmgQG0t6ZibLt2zB7X9z7nG7cbvddG3alKaxsRxMS+PTU/Uej+8Yj4eHW7SgeVQU21NT+eB//8Pjf/Pt8ZdnWrakWVgY648dY9rOnaf3e7xePCJMufJKGoeEsCQ1lSkHDuAVwSNyuv6zRo1IMBqZdfIkb6Wl+epE8OB7I/pd7drUAN7IyeGtvDw8Injh9OOx0FDsXi+ji4r4u9d7RuelwveGE3zvxj4o8ZqHAznF6j8tUX8FcMS/PRJYVqK+OfCLf/spYG2J+kR8CQXAN7/vxxL1nYEu/u2x+OboFdcDuMO//RfgeIn6h4C7/dsTAId/W/nLEIOBniYTSimmOZ0owOCvMwDhv/xCz9BQ3MD8zEwMSp2uMyhFq7Q02LuXIo+Hb1NTfe0qdbr+pNsNmZm43G72Zmb62j7VhlI4MjNBKTyFheQWFf3Wvj+RlSgFJhMGiwWbP85TxyilMMfEQHQ0tpAQ6uXknL72qURYtiZNIDKS6PR0rjEYfne+vU0biIigTmoqXfbtOx3bqfNDExPBbqfZkSPc679hKn5MSPv2EBLCdQcOMPjgwdNxnyqmm28Gs5nOe/diOXLkjLaVUtC5MyhFz127SEhNPaPOajJBp06gFA/t2EGt5s2pAp4FBgLbgCH4fuRL/tpoVcDmzZsZPHgwmzdvpkePHkybNg0RX8K6119//Yxj33//fWrVqkXPnj0DFG3wGTVqFFu2bOGtt95i8eLFjBs3jsLCQurWrcvIkSP54IMPeOGFF3TnRTUzbtw4vv76a4YPH067du1o0aJFpcdw/Phx+vXrR9OmTXnvvfeq9BvZ4iIiIpg/fz433HAD/fr1Y+XKlZhMl/aWNikpiX79+rF69WpuvfXWUsdisVh47LHHLvm85cuXA7Bt2zbmzp3LmDFjKqXzAsBsNvP8888zePBgUlJSuPPOOyv8muWt1CMwAJRS1+PLP9EL2AH8W0Q+KnNQSrUHXhaRbv7nzwGIyKvFjlnhP+ZbpZQJSAVqyHm+oIr4pGTh2LH0ef11XrvjDsYuK/mWo5REICcHz5EjrFu5ktR9+zh+6BCpqamkpqXRNTSUhwwGThw5Qnxa2uk3TadMBJ632zkWF0ffjAxqR0RQOyaGuJgYwsLC6N62La2aNiVbKb47dAh7dDRhMTHY4+Kwx8YSW68elqgouAxHe4jXi/J4wOUiPyuLgtxcXIWFuAoKcBcWojweGtauDS4Xv+zeTUZGBu6iIt8xRUXYTSZubtYM3G5SNm3iRGYmrqIi3C4XLpeLeLud+1q0ALebqevWcTwnB7fbjcv/Bv+qyEiGNm8OLhcjvvmG9MJCXB4Pbo8Ht9fLzZGRjE1IALeb2378kRy3G7fXi1sEtwj32e2Mj4xEXC7qHD3q2w+4RXABI5Visgi5+D6VLekl4GXgKFDnLPVv4ntzvBO48iz17+F7J/I90O4s9R/jeyP8FXC2fxdLDAbutlhYJkI/pxOj/02kUSmMwLzYWG4KDWVxYSGjMjJ8+4uVjxs2pEVYGIuys3nz2DHf+UphNBgwGgx80Lo1dcPCWHTiBHMOHcJgMPjO9de/fcMNRNtsLD58mGWHD/vqDYbTj5M6dSLEYmHZr7/yzZEjGIxGjEaj7xpGI8/deivKaGTlnj1sP34cg9GIwX++1WJhUKdOYDCwetcuDmRm/lZvNGK32bjn+uvBYGDDnj2cyM7GaDb/Vh8aSserrwaDgR/37iW3sNB3vr+E2e20bNoUDAZ2HTqE0+XCYDKdrg+126lXpw4oxeETJ/CKYDCZUAYDBpOJEJuN6OhoMBjIzMnx7TcafccYjZgsFqwhIWAw4PZ6T58bLDc8WsW7xBEYdqBQRDz+50bAKiKO859ZtVTnERj5+fm89NJLTJkyhZo1azJ16lTuvfdelFJMnTqVkSNHsmvXLpo2bQrAoUOHaNCgAWPHjmXSpEkBjj64OBwOOnbsyN69e9m4cSPNmjXjmWee4a233mLUqFG88cYb+m9tNXTs2DHatGlDXFwcGzduxG63V9q1PR4P3bt3Z926dXz33XdcffXVlXbt8jJnzhwGDBjAs88+y6uvvnrhE4opKCggPj6ee+65hzlz5lRQhOfWt29fUlJSyM/PD8jveFFREc2aNaNWrVps2LChyv59Odd9RZk6MIo1Hgf8DXhYRMr8rtffIbEL3weGR/B9sPiQiPxU7Jg/Aa1FZKhS6kGgj4jcf752K+pGo0+dOqQcPcr/Vq6kadeu5d7++XiKikjftYvUX34hdfduUvfvp43dztVKsX/PHgauXUuqw0Gqy0Wm/3s9E3gM+Ba46SxtfgrcD6y2WLjf5cJuNGI3GgkzmbBbLExu1YrEunX5sbCQWfv3Y/J3dJz64X/i2mtJiIxk07FjzNu163S7p+qfvv56atntrD98mM/37j1VyalfnWfatyfKauXLPXtYvnev7827x4Pb7cbt8fB/7doRCny0Zw/Jhw/j8XpPv8F3e72saN0ag8fD6wcPMi89/bc3+F4vZmBrfDy43QzLyODTwsLTb+5dQBy+njCAe4AlJV6bxviWvQHfJ9qrS9S3Abb4t9tx5jrDADcDX/u3r8L3Q27GNxTKrBTdzWbmxsaCyUSHEyc46fViMhgwKYXZYKBbVBQTGzYEk4meP/2EUwSz0YjJaMRkMNA1Pp4hV14JZjOPf/utb7/RiMlkwmQ00ql+fe6+6ipcSvH6N99gMpkwmky+epOJ6xs35vomTSjweJi3ZYuvzmw+XVo2bEjjevVwuN1s3L0bk8XiO8ZqxWgykVCnDnE1alDodnPoxAmMZjNGi8V3nMVCVHQ0IWFhuEVwut0YLRaMVitGiwXDZdhhpmnVySV2YGwAuopInv95GPCFiJzt31KVVV07MFasWMHQoUP59ddfGTx4MJMnT/Z1cPp16dKF1NRUfvrp9G0ZL7/8Mq+88gp79+6lYcOGgQg7qB04cIDExERiY2Pp0aMHb775Jn/605+YOnVqlX1zoZXdl19+ye23386AAQP417/+VWnXnTBhAuPGjWPGjBkMGjSo0q5b3oYMGcL06dNZtGgR99xzzyWf+9FHH5Gamkp4eHgFRfh7LpeL8PBwnE4nTz75JFOmTAnI7/j06dMZMmQIy5cvp1u3bpV+/YtR7h0YSqkIoDe+ERiNgYXAf0Tkh7IEWqz9O4G/41uRZKaITFRKvYIvmcdipVQI8CHQFsgAHhSRfedrs6JuNI5u3sxV113Hw3Xq8I9Dh6CK/qPxFBXhOHkSs9NJiMdD7vHjbNu2jbzMTPKzssjLziYvO5tuDRrQyGrlpwMHmLZpE3kFBeQXFpLndJJfVMTf4+NJ9HpZcPIkSVlZZ8zTBlhttdLOYGCWy8UwtxtK1G8xm7lKKf7P7Wa01/u7+n0GA/WUYjIwwePBBJiU8hVge506RJnNvJWTw8zc3N/q/J+Sf33NNZjMZt45epRlGRm+DgB/nc1sZk6nTmAyMWvfPn5IT8dkMmE2mzGbTESGhjLmllvAbGbxzp0cyM7GbLFg9r8JjwoPp+eNN4LZzHf79pFVWIjZasVstWKyWomIiKDllVeCycTBtDTcgNlmw2yzYbJaCQkLIywqCsxmvP5PvjVN06qDS+zA+FFE2lxoX1WllOoB9GjSpMng3bt3BzqccpOWlsbTTz/Nxx9/TPPmzZk+fTqdOnU645iMjAxq1qzJ2LFjmThxIuDLkdGgQQNatWp1emi0dulWr15N165d8Xg8DBw4kOnTp5dpfr4WHE7lw/jXv/5FUlJShV/vq6++omvXrjz00EPMmTMnqDvICgsL6dChA/v27TudN+Ziffvtt9x0003MnDmzVNNASkNE6N+/Px9//DHdu3dn2bJlAXv9i4qKaNq0KXXq1GH9+vVV8ufgnPcVZ8vseTEF2A9Mwb8SSDCUilzu7McXXxQXiMycWWHX0DRN07SqiktbhWQ9cG2x59cB317s+VWlVJdlVL1er8yaNUtiYmLEbDbLuHHjpKCg4KzHzpkzRwDZuHHj6X2LFi0SQBYsWFBZIVdbc+fOlRdeeEHcbnegQ9EqidvtlltuuUVsNpts3769Qq+VmpoqtWvXlubNm0tuBa1IVdn27dsnUVFRcu21157z79bZeL1eadasmXTq1KkCozvzei+88IIAopSSjIyMSrnu+bz77rsCyBdffBHoUM7qXPcVZRmBoaS0JwdIhQ719Hqhc2cyt27Fs349cS1bVsx1NE3TNK0KusQRGO2Af+NLuaOA2sADUk6jOCtLdZhCsnfvXoYMGcJ///tfbrrpJqZPn07L89zD9OnTh40bN3Lw4MHTowPuuusutmzZwoEDBzCbzZUVuqZVG5WRD6N43ouNGzfSunXrcr9GoCxdupQePXowePBgpk+fftHnvfrqqzz//PPs2bOHxo0bV2CEvml248ePJzY2lquuuoq1a0umY698TqeTJk2aUL9+fdauXVvlRmGc677ikselKaX+7t9crJT6XSlzpMHKYMD5zju0zc7mT3fcceHjNU3TNO0yJSKb8OUCHgYMBa4Kts6LYOdyuZg8eTKtWrVi06ZN/OMf/2Dt2rXn7bxwOBwsX76cXr16ne68OHDgACkpKQwcOFB3XmhaKcXHx/PJJ5/w888/M2LEiHJr1+VykZOTw/Hjxxk/fjxffvkl77zzTrXqvAC4++67ee6555gxYwazZ8++6PP69++PUqrCE3lOmDCB8ePH069fP9LT06vMyh9Wq5Vnn32W9evXs2rVqkCHc9EueQSGUuo6EflBKfWHs9WLyJpyiawCVMYnJRNvu40Xv/ySRS+8wD1//WuFXkvTNE3TqopLGYHhP/4moAHFlnQXkcpPB18GwToCY9OmTQwePJitW7fSu3dvpk6dSp06Z1t76kyLFy+mZ8+erFy5kq7+pOV/+ctfmDhxIvv376d+/foVHbqmVWunPqV/7rnnSEhIwOFwUFBQcEa5lH0ej+eM9h955JGgz3txLm63m9tvv50NGzawYcOGi15ZpVu3buzcuZN9+/ZVSM6ZSZMm8cILLzBgwAA6derEwIED2bx5M23bti33a5VGYWEhjRs3pkmTJqxZU7XexldEEs8nReTtC+2rSirjRqMoL4/r4uLIdLvZ8euvRNStW6HX0zRN07Sq4BKnkHyILwH4j8CpO2wRkZEVFV9FCLYOjLy8PF588UWmTp1K7dq1eeedd+jdu/dFn//HP/6RBQsWkJaWhtlsxuVyUb9+fdq2bcvnn39egZFr2uXB4/Fwxx13sHLlyjP2GwwGbDYbNpuN0NDQ09vFy4X2R0dH07t3b0JCQgL01VW848eP07ZtW8LCwti0aRORkZEXPGfu3Lk89NBDrFq1is6dO5drPK+//jpjx47l4YcfZvbs2Tz88MOsWbOGo0ePVqlOpFNLY3/11VfccsstgQ7ntIpI4rn5LPu2lLa9yiiVlWxrwwcfiAL5U+vWlXI9TdM0TQs0Li2J58/4P0QJRAEaAf8E5hXbZwdmAzPwLQtfZe4rysPnn38uCQkJAsiwYcMkKyvrks53uVwSGxsrDz/88Ol9CxYsEEAWLVpU3uFq2mXL4/HIvn375NixY5KVlSVOp1O8Xm+gwwoaX3/9tRiNRunTp89FvW4Oh0MiIiLk0UcfLdc43nrrLQHkwQcfFJfLJS6XS6KjoyUpKalcr1MeCgoKJD4+Xm655ZZAh3KGc91XlCYHRj+l1BKgYYn8F1/hW870snfDwIGMbNOGQ9u24akCCVo0TdM0rYrZji9x5yVTSs1USp1QSm0vsb+7UmqnUmqPUurZ87UhIvtEZGCJ3X3wdWgMBu4pTWxVkYiQlJTEXXfdRVhYGOvWreMf//jHRX0yWdw333xDeno6vXr1Or3v/fffp06dOlVmPremVQcGg4GGDRtSu3ZtIiMjsVgsVerT+qru5ptvZvLkySxYsIApU6Zc8HibzcYDDzzA/PnzycvLK5cY3n77bUaNGkXfvn358MMPMZlMbNy4kczMTO6ogrkSQ0JCGDt2LKtXr+brr78OdDgXVJqJPt8AbwG/+B9PlVFAt/ILLbi9sWoVyfXqYRwyBJzOQIejaZqmaVVJHLBDKbWiFInAZwHdi+9QShmBacAdQAugn1KqhVKqtVJqaYlS8xzt1gUO+bc95zgm6Bw4cIDZs2czaNAgNm/eTIcOHUrVTnJyMlarle7dfS/9/v37+eKLLxg0aBAmk+kCZ2uaplWeP//5z/Tp04cxY8awbt26Cx6flJREfn4+8+bNK/O1p02bxlNPPUWfPn34+OOPT/99TElJwWAwcNttt5X5GhXh8ccfp1atWowfPz7QoVzQJXdgiMgBEVktIu1FZE2xsllE3BURZDAyR0ej3n+ffT//zCcPPRTocDRN0zStKnkZ6AVM4swPQy5IRL7m9yM+rwf2+EdWFOFborWniGwTkbtLlBPnaPowvk4MOM/9kVLqcaXU90qp79PS0i4m5IDyer2A71NJq9VaqjZEhIULF3LbbbcRFhbGjh07GD58OEopBg0aVJ7hapqmlZlSipkzZ9KwYUMeeOABTpw41599n/bt29O0aVNmzZpVpuu+9957jBgxgp49ezJ37twzVmZKSUmhffv2REdHl+kaFcVmszFmzBhWrVp1UZ0+gVSaKSTr/I+5SqmcYiVXKZVT/iEGsTvuYEKjRiQtWMCOxZfvCrOapmmaVpz4Viz7FTD7tzcBm8vQZB1+Gz0Bvs6Icy6roZSKVUq9B7RVSj3n370AuFcp9S6w5DyxTxeRRBFJrFGjRhlCDh7/+9//+PXXX2nVqhU9e/akZcuWrFmzhkmTJlFXJyvXNK0KioyMZN68eWRkZNCvX7/frchSnFKKpKQk1qxZw759+0p1vRkzZjBs2DB69OjBf/7zHywWy+m648eP88MPP1TJ6SPFDR06lJo1a/LKK68EOpTzKs0IjI7+x3ARiShWwkUkovxDDG6TlywhXCkGP/IIXrceoKJpmqZpSqnBwDzgff+uOkByZV1fRNJFZKiINBaRV/378kXkMREZJiIfn+98pVQPpdT07Ozsygk4gESE119/HYDXXnuNdevW8dJLL3Hw4EHGjh0b4Og0TdPO7ZprruHdd99l1apVjBs37rzH9u/fH6UUc+Zc+mreM2fO5PHHH+fOO+/ks88+O6PzAmDFihUAVb4DIzQ0lGeeeYaVK1fy7bffBjqccyr1pEWlVGPgsIg4lVK3AFcDc0Qkq7yCqw5qtmjBlEGDGDBjBu898gjD//3vQIekaZqmaYH2J3zTPr4DEJHd58lNcTGOAPWKPa/r36eVksvl4tNPP2Xy5Mls374di8XCG2+8wcCBA7Hb7YEOT9M07aIkJSWxfv16Jk2aREJCAs2bN0cphVIKg8Fwxna7du2YPn06d955J0aj8azHlNxevXo1w4YNo1u3bsyfP/+sU/VSUlKoVasWbdq0CcArcGmGDRvG66+/zvjx41m+fHmgwzmrsmRdmg8kKqWaANOBRcAngE5FXUL/997jo/nzefbTT7ln1CjqtmsX6JA0TdM0LZCcIlJ0KrO+UsoESBna2wQ0VUo1xNdx8SBQYQmoRGQJsCQxMXFwRV2jvPhWort4+fn5zJw5kzfffJODBw/StGlTACZMmMDIkSMrIkRN07QKNXXqVDZv3szQoUMv6vgbbrjhktrv2rUrCxcuJCQk5Hd1Ho+HL774gh49emAwlGb9jMplt9sZPXo0Y8eO5bvvvrvk16IylKUDwysibqVUb2CqiExVSm0pr8CqE2Uw8P6CBfy9Sxcixo2DZctAL4ekaZqmXb7WKKWeB2xKqduA4Zwn70RxSqm5wC3HHfWTAAAgAElEQVRAnFLqMPCSiPxTKTUCWAEYgZki8lPFhO6bQgL0aNKkSUVdotxdaBnG9PR03nnnHaZOnUp6ejodO3Zk2rRp7Nmzh6effpo+ffpUUqSapmnlKyQkhLVr1/L999/j9XoRkdOPxbcdDgePPPII7du358knn/xd/dnOsVgs3HXXXdhstrNee+PGjWRkZFT56SPFDR8+/PQojGXLlgU6nN8pSweGSynVDxgA9PDvM5/n+Mtawz/8gbcnT4bRo2HePOjbN9AhaZqmaVqgPAsMBLYBQ4BlwAcXc6KI9DvH/mX+dipcMI3AuJCDBw/yt7/9jRkzZuBwOOjRowdjx449vdzqLbfcQqtWrQimzhpN07SSQkND6dSp0wWPe/jhh5k7dy633norYWFhZb7u8uXLq/TyqWcTFhbGqFGjeP7559m0aRPtqtjsgbKMY3kMaA9MFJH9/mGbH5ZPWNXUk0+y+aqr6PrII2Tu3x/oaDRN0zSt0imljMCHIjJDRPqKyH3+7bJMIalU1SGJ5/bt23n00Udp3Lgx06ZN47777mP79u0sXrz4dOfFyZMnWbt2Lb179w5wtJqmaZUjKSmJ/Px85s+fXy7tpaSkcMMNNxATE1Mu7VWWESNGEBMTUyVXJCl1B4aI7BCRkSIy1/98v4hMLr/QqiGTCcNLL7G6qIhnuncPdDSapmmaVulExAPUV0pZLnhwFSUiS0Tk8cjIyECHcsnWrVtHjx49aN26NQsWLGDEiBHs3buX2bNn07JlyzOOXbp0KV6vl169egUoWk3TtMp100030aRJE2bNmlXmttLS0vj++++DavrIKeHh4fz5z39m6dKl/PDDD4EO5wyl7sBQSnVQSq1USu1SSu1TSu1XSpVu4dzLSJsHHmD0DTfwz127WPXWW4EOR9M0TdMCYR+wXin1F6XUn0+VQAd1sYJpBMapgS1btmyhY8eO3HzzzXz77beMHz+eAwcOMGXKFBISEs56bnJyMvXq1aNt27aVGbKmaVrAKKVISkpi9erV7C/jiPkVK1YgIkHZgQHwxBNPEB0dXeVGYZRlCsk/gb8BHYF2QKL/UbuAl5Yto7HJxOPPPktBRkagw9E0TdO0yrYXWIrvPiS8WAkKwTQCo6CgAIApU6Zw+PBhpk6dysGDBxk3bhyxsbHnPM/hcPDFF1/Qq1evCyYA1TRNq0769++PUoo5c+aUqZ2UlBRq1qzJtddeW06RVa6IiAiefvppFi9ezJYtVWetjrJ0YGSLSIqInBCR9FOl3CKrxmwxMcx47TX2ut28p5N5apqmaZcZERkvIuOBN05t+59r5SwtLQ2AO++8k927dzNixAhCQ0MveN4XX3xBQUGBnj6iadplJyEhgS5dujB79my8Xm+p2vB4PKxYsYJu3boFxfKp5/LEE08QGRlZpUZhlOXV/Eop9YZSqr1S6tpTpdwiq+Y6jxrFsttu44nVq+HHHwMdjqZpmqZVGv+9ww7gF//za5RS/whwWBctmKaQnFKvXj3M5otfLG7hwoVER0dz8803V2BUmqZpVVNSUhL79+9n7dq1pTr/+++/Jz09PWinj5wSFRXFU089RXJyMlu3bg10OEDZOjBuwDdtZBLwlr+8WR5BXS7u+Pe/MdWoQWZSEu7CwkCHo2mapmmV5e9ANyAdQES2Ahde366KCKYpJKXhdrtZsmQJPXr0uKROD03TtOqid+/ehIeHlzqZZ0pKCgaDgdtvv718AwuAJ598koiICCZMmBDoUICyrULS+Szl1vIMrtqLieHIyy9z1datvK2nkmiapmmXERE5VGKXJyCBVHOlWZ127dq1ZGZm6ukjmqZdtkJDQ7n//vv57LPPyMvLu+TzU1JSuP7668+bayhYREdH8+STTzJ//ny2bdsW6HDKtApJLaXUP5VSKf7nLZRSA8sakFIqxr+6yW7/Y/Q5jluulMpSSi0t6zUD6YrHH+f6WrX4y9Kl7Fu9OtDhaJqmaVplOKSUugkQpZRZKTUa+DnQQWk+ycnJhISEVItPDjVN00orKSmJ/Px8FixYcEnnpaWlsWnTpqCfPlLcU089RXh4eJUYhVGWKSSzgBXAFf7nu4CnyhoQ8CzwXxFpCvzX//xs3gD6l8P1AkoZDExbtAgjMPTee5FSJorRNE3TtCAyFPgTUAc4ArTxPw8KwZgD42KJCMnJydx+++3Y7fZAh6NpmhYwHTp0oHHjxpc8jWTlypVBvXzq2cTExDBy5EjmzZvHTz/9FNBYytKBESci/wG8ACLipnyGf/YEZvu3ZwNnHb8oIv8FcsvhegFX74YbeK1vX1ZmZPDh0KGBDkfTNE3TKoRSarJ/s7OIPCwitUSkpog8EkwrmVXnHBg//vgjBw8e1NNHNE277CmlSEpK4quvvuLXX3+96PNSUlKIi4vjuuuuq7jgAuDpp5/GbrcHfBRGWTow8pVSsYAAKKVuBMrjo4haInLMv50K1CpLY0qpx5VS3yulvj+1lFhVNOyTT2gfFsaq2bPhxIlAh6NpmqZpFeFOpZQCngt0IJcb38t+YcnJyRgMBu6+++4KjkjTNK3qe/TRR1FKMWfOnIs63uv1VovlU88mNjaWESNG8J///Ieffw7crM+yvKp/BhYDjZVS64E5wBMXc6JS6kul1PazlJ7FjxNf5qlLzz51ZhvTRSRRRBJr1KhRlqYqlMFkYvl//8u/vF54+ulAh6NpmqZpFWE5kAlcrZTKUUrlFn8MdHCab/nUjh07UpXvmTRN0ypLQkICt956K7NmzcJ7EVP9f/jhB9LS0qrV9JHiRo0aRWhoKH/9618DFkNZViHZDPwBuAkYArQUkf9d5LldRaTVWcoi4LhSKh7A/3jZDEeIuP561AsvsPeTT1j72muBDkfTNE3TytuLIhIFfC4iESISXvwx0MFVR5eyCsnevXvZtm0bvXv3rsCINE3TgktSUhL79+9n3bp1Fzw2JSUFpRTdunWrhMgqX1xcHH/605/497//zc6dOwMSQ1lWIekL2ETkJ3x5Kj5VSl1bDjEtBgb4twcAi8qhzaAhzz5L/9BQej7/PL9exC+JpmmapgWRb/2PQT3aorom8Vy0yHfL1bNnzwscqWmadvno3bs3YWFhF5XMMyUlhXbt2hEXF1fxgQXI6NGjCQkJCdgojLJMIfmLiOQqpToCXYB/Au+WQ0yvAbcppXYDXf3PUUolKqU+OHWQUmot8BnQRSl1WClVLbq5VEgIcxYvxiNC327dcOYE9T2epmmaphVnUUo9BNyklOpTsgQ6uIsVTEk8L2UERnJyMtdccw0NGzaswIg0TdOCi91u5/777+ezzz4jPz//nMelp6fz3XffVdvpI6fUqFGD4cOH88knn7Br165Kv35ZOjBOrThyFzBDRD4HLGUNSETSRaSLiDT1TzXJ8O//XkQGFTvuZhGpISI2EakrIivKeu2qokmXLswaM4bvHQ6eat8+0OFomqZpWnkZCtwMRAE9ShSdNbICXSiJ54kTJ1i/fr1efUTTNO0skpKSyMvLY8GCBec85osvvqh2y6eey+jRo7FarUyaNKnSr12WDowjSqn3gQeAZUopaxnb04rpPXkyoxMTeW/HDpJ1Uk9N0zStGhCRdSIyDBgjIo+VKH8MdHyXs6VLl+L1enUHhqZp2ll07NiRRo0anXcaSUpKCrGxsSQmJlZeYAFSq1Ythg4dykcffcTevXsr9dpl6XC4H1gBdBORLCAGeKZcotIAeHXtWiY3aEC399+Hn34KdDiapmmaViZKqVv9m5nBPIUkmFzsFJKFCxdSv359rrnmmgqOSNM0LfgopUhKSmLVqlUcOHDgd/Ver5fly5fTrVs3jEZjACKsfGPGjMFsNjNx4sRKvW5ZViFxiMgCEdntf35MRL4ov9A0U0gIY775BltEBDm9epF79GigQ9I0TdO0sviD/7Hk9BE9haSCnW8KSV5eHitXrqR3794XnGqiaZp2uXr00UcBmDNnzu/qtmzZUq2XTz2b2rVrM2TIEHbt2oXb7a6065oq7Upa6cTHU/Thh7S//XZa3nADnx44gDLomTqapmla8BGRl/yPjwU6FqVUI+AFIFJE7jvXvmB3MSMwVqxYgdPp1NNHNE3TzqN+/frceuutzJo1ixdffPGMDt/qvnzquUyePBmLxVKpnd/6nXAQsNx2G492785nhw/zf/dVi/spTdM07TKklPrz+coltDNTKXVCKbW9xP7uSqmdSqk9Sqlnz9eGiOwTkYEX2nc5SE5OJjY2lg4dOgQ6FE3TtCotKSmJffv2sW7dujP2p6SkkJiYSI0aNQIUWWBYrdZKH7mnOzCCxJjPP+ee2rUZvXAh37z/fqDD0TRN07TSCPeXRGAYUMdfhgLXXkI7s4DuxXcopYzANOAOoAXQTynVQinVWim1tESpWfYvpXpwuVwsXbqUHj16YDLpgbmapmnn06dPH8LCws5I5pmRkcGGDRsuq+kjgaQ7MIKEMhiYvWEDCSYT9w8fzgmd1FPTNE0LMiIyXkTGA3WBa0VklIiMAq4DEi6hna+BjBK7rwf2+EdRFAH/BnqKyDYRubtEOVHar0Ep9bhS6nul1PdpaWmlbabSXGgKyddff01WVpaePqJpmnYR7HY7ffv25bPPPiM/Px+AlStX4vV66d69+wXO1sqD7sAIIlH16zP/ww9pKoJryBDweAIdkqZpmqaVRi2gqNjzIv++sqgDHCr2/LB/31kppWKVUu8BbZVSz51rX0kiMh0YD2y2WCxlDLnynGuI78KFC7HZbNx2222VHJGmaVpwSkpKIjc3l4ULFwK+6SMxMTFcf/31AY7s8qA7MIJMmwcfZNX06dRZvx556aVAh6NpmqZppTEH2KiUelkp9TLwHb5pIZVGRNJFZKiINBaRV8+17xznLhGRxyMjIysv4AogIiQnJ9OtWzdCQ0MDHY6maVpQ6NixI40aNWLWrFmnl0+9/fbbL5vlUwNNd2AEITVoEFkPPUSPiRP5/OWXAx2Opmmapl0SEZkIPAZk+stj5+swuEhHgHrFntf17yt3SqkeSqnp2dnZFdF8uTrfFJIffviBI0eO0Lt370qMSNM0LbgZDAYGDBjAqlWrWLx4McePH9f5LyqR7sAIUtapUzkSEkL/V17h1xJZcDVN0zStqhORzSLytr9sKYcmNwFNlVINlVIW4EFgcTm0+zvBOALjbFNIkpOTMRqN3HXXXQGISNM0LXg9+uijiAjDhw8HuOyWTw0k3YERpGwxMcxbuhSvCPd164YzJyfQIWmapmlapVBKzQW+BZorpQ4rpQaKiBsYAawAfgb+IyIVkvE6mEZgnE9ycjKdOnUiNjY20KFomqYFlQYNGtC5c2eOHTvGddddR61aZU3jpF0s3YERxBp36cLsZ5/lB4eDp9q3D3Q4mqZpmlYpRKSfiMSLiFlE6orIP/37l4lIM38Oi4kVeP2gG4FR0u7du/npp5/06iOapmmllJSUBKCnj1Qy3YER5Hq++ipjrr+exTt2cPLddwMdjqZpmqZVe9VhBMaiRYsA6NmzZ4Aj0TRNC059+/Zl6NChDBo0KNChXFZ0B0Y1MHHNGn688UbiRo2C7dsDHY6maZqmVWvVYQTGwoULadu2LfXr1w90KJqmaUHJZrPx7rvv6r+jlUx3YFQDppAQaixYgDs8nNc7dybn8OFAh6RpmqZp1VYwjcA42yokqampfPvtt3r6iKZpmhZ0TIEOQCsn8fFsnTCB54cMYdONN/KfgwdRBt0/pWmaVp2J241yu/EUFJB18iQuh4Mih8P3WFBA7chIom02cjIz2bJjB67CQm5s0YKwHj0CHXpQE5ElwJLExMTBgY7lYhVfhWTJkiWIiF4+VdM0TQs6ugOjGrnu8cd5ddEixixbxtv33stTCxcGOiRN07SgI16vrwMgLw+cTsIsFnA62bN7NwU5ORQVFODMz6eooIA4m41WV1wBTieffv01hQUFFDmdFBUWUlRUROu4OLrWr4+nsJDnv/ySIpeLIpcLl8tFkdtN95o1eTA+nlyHg/s2baLI4/mteL0Mj4piiN3O4YIC2qWmUiSCSwQXUARMAUbiW3Kj9Vm+lpnAY8AO4Bb/vv9FRNA6CEYOaOXjbCMwkpOTadSoEa1atQpARJqmaZpWeroDo5oZvWQJ39SpwzPJybR79106DBsW6JA0TdPOz+0Gp5OctDRy09Nx5uZSmJODMz8fiopo26ABOJ1s2LqVQ6mpOB0OnAUFOAsLCTMYePTqq8HpZPqGDexMS8NZVOQrLhf1rFYmNmsGTieDt25lR14eRR4PTq8Xp8dDosXCx5GR4HRyTWYmv3i9FBUL7R5gkX+7A3CiROgPAR/7t/8IOErUDwG6Agp4G7ACFqV8xWDgyuxsyM3FYDSS43RiMRiwmUxEhoRgNhqJbtAAGjXCLkKPLVuwmM2YTSbfo9lM4pVXQuPGXOF2839bt2K2WLBYrZj95frmzSEhgauKivjv/v2YQ0JodPXV5fe9u0wppXoAPZo0aRLoUC7aqREYubm5fPnll4wYMeKMURmapmmaFgx0B0Y1owwG/rVhA4lNmvDoE0+ws2dPTFdcEeiwNE2rosTrBbcb5XSSn55O+rFjFObkUJibS0F2NoV5edzYqBFWr5dtO3fyw65dFDocFDgcFBYUUFhYyPOJiVjdbj7bsYOl+/fjLCqi0OXC6XZT6Haz6sorUU4nLx06xEdZWRR6vRSK4BTBBGT5YxkKzC0RXy0g1b89CVhSor4x8Ohc31nzgG8Aq1KnyzU2G5jNYLWivF5C/J0DVpMJq8nEVTEx0K4dWCz027qVLLcbi8WC1WrFYrXSLD4eEhPBYuG9//0Pj8GANTQUS0gIVrud+Fq1oFkzMJv58dgxTDYbltBQLHY7FrudkIgICA/HYDRSeJ7vgx349jz10cD089THAE+cpz4SuPU89dqlCcYpJKcsX76coqIinf9C0zRNC0q6A6MaiqpfnwUff4yrf39Mjz4KK1aA0RjosDRNuwjuwkIKMjJwZGRQkJVFQVYWV4SHE2kykXbsGBu2bqUgL89X8vMpcDjo3bQpDUJC+PHAAWZs2UKB0+krRUUUuFz8vWFDrlKKBampjElNpdDjoVCEAhEKgf8BLYEPgKfOEtOvQH1gMfDiWeqf2LABq83GHo+HNQUFhBgMWI1GQoxGrEYjbrsdc1wcDYxGbkpPJ8Rsxmq1EmKxEBoSAt26gdXKHw8c4JbsbKw2GyGhoVhDQwkLD4cbbwSrlSlpaUz0eLCGhflKeDi2yEioUQOsVr64wN+583UAADx7gfoLZQtoqkc2aFVQySkkCxcuJC4ujptuuilAEWmapmla6VW5DgylVAzwKdAA333z/SKSWeKYNsC7QATgASaKyKeVG2nVdvX990NeHgwcyLbhw2n9/vuBDknTgpvXizcvj7SDB3FkZJCfno4jK4v8zEwSIiJoHBlJXmYmH61eTUF+Po78fBwFBTgKCrinTh06R0dz8ORJhn3/PY6iIhxuNwVuNw6Ph4l2Ow8A3+XlcaPH87tLfwrcD2zFN6WhpGZAA6U4YrHw76IibAaDrxiN2IxGnCJQowY1bDZuMBiwWa2E+DsQbDYbMR06QI0adM3M5J9HjhASGkqI3Y4tLIyQsDBqXnstREYyrLCQh9xubJGRhPiLNSLidMLg5/zlXB7zl3PpeoFvQeML1Guadn5FRUV8/vnn3HfffRj1BxuapmlaEKpyHRj4PgT7r4i8ppR61v98bIljHMCjIrJbKXUF8INSaoWIZJVs7LL2xz8yd84cHpo+naXx8dz18suBjkjTKo4IFBWRcegQuSdOkH/yJPmZmeSlpxNtMtGmZk3Iz+e9FSvIyskhPz+ffIcDR0EBN0RF8Vh8PJKXxx82bCDf5cLh8eDweMj3ehlsMPCqx0M+UPssl/4L8AqQBxTPOmPANzWg0Z49dI6LQ5lMnMjPJ9RsJsZmI9RiwWaxULNlS2jcmASvl1d27CA0NBSb3Y4tNBRbWBg3Xn01JCRwvdfLphMnsEVG+kpUFLboaMLi4iA0lLuUIv08L9HN/nIuLf3lXGL8RdMud8GUA6P4CIzVq1eTk5OjVx/RNE3TglZV7MDoyW/J0mcDqynRgSEiu4ptH1VKnQBq8NtUas2v14IFtKlbl/6vvMLmrl1p0LFjoEPSNNyFheQdP07u8ePknTiBNy+PljVrQl4eK775hl8PHSLP38mQl5dHLbOZUU2aQH4+Q777jh05OeS7XOS53eR7PNxoMDBfBDwe2gIHS1yvN7DAv/0ikI4vqaIdCFWK0PBwyMlBhYZiMxqJCAkh1GLBHhKCPSSEdo0bQ5s22G02pm3eTGh4OPaICEIjIrBHRdGwQQNo0oQaVitH8/MJjYnBFhuLOTT0jCR59YBN53ld4vF1hpxLBJB4Sa+0pmkVIRhzYCilSE5Oxm6306VLl0CHo2mapmmlUhU7MGqJyDH/diq+HG7npJS6HrAAeys6sGBki4lh/uefc+2tt9K1c2cGdenCkPHjib7hhkCHpgURd0EBpoICyM3l0K5dHNq3j9yTJ8lJTycnI4Oi/HyGXXMN5OUxc+NGvj54kNyCAvKcTnKdTkJF+LJGDcjLo1dGBou83jPabwbs9G+/hq/X8pQQ4EazmVFHjoDdjrOwELPBQN2ICOxWK2EhIbSOj4cOHSAsjL/u2IHLZMIeEUFYVBT26Gji69aFFi3Abme3y4UtNhZrZOTpqQ/FrTjP62AAhp+n3oivE0LTNK2qEREWLVpE9+7dsdlsgQ5H0zRN00olIB0YSqkvOftI7BeKPxERUUr9fgHz39qJBz4EBoiI9xzHPA48DpCQkFDqmINZo86dWfDmm4wdN45xK1YwdMUKaN6cr6+7DtMf/sCNf/wjBlNV7MvSysLrdpN3/Dg5R4+SffQoTaOjsRQU8NNPP/Hdtm3kZGWRm5NDTk4Oufn5vNmyJWGFhbz7yy/MOHKEXLebHLebHH+ixyLADEwGppW4lgkYOm8eymJhq1KsdrsJM5kIN5sJs1ioHRoKN98MYWH0PXiQ6woKCAsPJzwykrDISOJq1YKOHSEsjI8cDpTdTljNmthr1sRosZxxrVkX+Lr7X6A++uJfQk3TtGrj+PHjHD16VK8+ommapgU1VTI7daAppXYCt4jIMX8HxWoRaX6W4yLwfVA7SUTmXUzbiYmJ8v3335drvMEmfds2YteuheRkblm5kjVALYOBe5o1o9eDD3Lrk08SEhUV6DAve0V5eeQcOUL2kSPkpKaSfeIEV8fFEeP18suuXSz47juyc3LIzs0lJz+f7IIC/l6vHk2Liphz9CgjMzLIAYr/du/EN9LhLWB0sf02IMJgYEtCAvHR0cxxOPgsM5MIm43w0FAiwsKICA/nmTvvxBodzfbMTI4UFhIeF0dEzZqE16xJeO3aRNeti7JaK/FV0jStKlFK/SAil9Usp2C4r1i8eDE9e/YkMTGRLVu2kJaWRnS07srVNE3TqrZz3VdUxY/dFwMD8I0kHwAsKnmAUsoCLATmXGznheYT27o1tG4Nw4eTfOAAKW++SfKiRcz95RdmvPwyd0yYwLLevaFXL/L/8AfsdesGOuSgVJSXR/ahQ2QdPkzW0aNkHTtG88hIEkwmDv36K++tXk1WTg5ZublkORxkFRbySnQ0XdxuvkhPp5vT+bs2U4DuwM/4hipZgUiliDCZiDSbcRiN0LQpTevVY8DRo0SEhxMZGUlkTAyRsbHU6tgR4uP5owh9DQbCa9cmPD4eU0jIGdd51F/OpZW/aJqmXa6CKYnnKXv37uWWW27RnReapmlaUKuKHRivAf9RSg0EDuBbPRClVCIwVEQG+fd1AmKVUkn+85JE5McAxBu0ourXp9/UqfSbOhVnTg5f/d//YfnuO1i3jvR586gLdIiOpleXLvQcPZp6l1HeDPF6yUtNJfPAATIPHSLz6FHiTSaah4aSm5rK6ykpZGZnk5mTQ5bDQWZhIUPCwxkA7M7IoFlh4e/anIYvf0IGvmkYUUoRZTQSZbEQZbWi6teHZs1ophSv7NtHZFSUr/MhLo7IGjW4pk0bSEjg7tBQCsPCsEZEnDX29v5yLtHoaRSapmllEYxJPDMzM/X0EU3TNC3oVbkpJBUpGIZ6VgleLydWrGDKK6+QvHkzvxQVAXCtzca0Rx7hxieegFatoNjqClWRMyeH7EOHyD56lOxjx7C73VwVGQmZmUxZtIi09HRfJ0RuLpkOB7fZbIy22XBlZBCano67RHujgTeAHHwdAFFKEX2qAyIkhEFNm/Jgq1bk2GxM/flnovwjH6Jq1CCqdm2atWxJzcaNkchIsNvPmkBS0zQtWOkpJFXTqSkkAAcPHqRevXoBjkjTNE3TLiyYppBogWYwUPOOO3j1jjt4FdiZksKiqVNJXruWGjNmwIwZLK1Vi1V16nBP//7UadkSg9GI0WymQb16YDCQkZ1NgdOJwWRCGY0YDAaMZjOxsbFgMOAoLMTt8fxWbzRiMJmw2mygFIV5eWQfPkz2kSNkp6aSffw4FqeTTnXqQHY201auZE9qKtl5eWT7c0C0Mpv5e2QkZGfT5MSJ3y1L0weY79+eiG/N3WiliDaZiLZYcMfEwHXXYY6O5vlt2wiPjCQ6Lo7oGjWIrl2bRldeCS1bEh4VhSss7JyJTyMokY22hKrd7aNpmqZVR7Vq1dKdF5qmaVrQ0x0Y2gU1v+MOxtxxB2MAUlNhyRK2v/UW/9i8mSmbN58+zgY4/NsjgY9LtFMTOO7f7ocv2UlxjfhtLdxuwNcl6tsAW/zbs/Hlgog0GIg0m4k0mzFERMC110JkJMN27aLQZPJNw4iNJTI2lvqNGkG7dhAdzQGLhdAaNc45CmL8eV4Phe6E0DRN04JDTk4OAI0aNQpwJJqmaZpWdroDQ7s0tWvD4P9n787jbCz7P4B/rruP4XcAACAASURBVLPPPmdmGIxlmGEsZakRsi/hQaEIpeJRiqxpkSfpSVoeFUpCi5QkFCVlVLbIvm8TMsKYwZh9Pdvn98cZ87Nvc86cM+P7fr3u15xzn/u+ru+5Mb7ne677up7C2KeewrOnTmHNxx8jIyUFDrsdWqWApk0BhwODDh5Eq+RkkITD4QAdDph0OqBJE8DhwL/37kWrM2f+/3USQUajs8DgcGDYgQPo43A454AoVw5B5cqhXJUqQMOGQFAQNvn7Q6PXXzXMMdd5G36uvSpCCCFKGaVUDTgHzAWR7FW4rweArnAOpvuM5EoPhugS2dnZAICAgAAPRyKEEEIUnxQwxC0LqFQJ90+ceMXX2hZuV9P9Om33vs7rMnuEEELcvpRSnwPoBuAMyTsu2N8ZwDQAWgCfknz7am2QPApgkFJq8QX7lgJYqpQyA3gXQKkvYJynkXmXhBBClAFSwBBCCCFEafMFgOkAvjy/QymlhXPBp/sAnASwVSn1I5zFjLcuOf/fJM9co/1XCtsSQgghhBeRAoYQQgghShWS65RSkZfsvgfAkcKRFVBKLQDQneRbcI7WuC6llIJzOfdfSO643vFCCCGEKFkynlAIIYQQZUEEgBMXPD9ZuO+KlFKhSqmZABoppV4u3D0cQAcAvZRSz1zlvMFKqW1KqW1nz551UehCCCGEuBEyAkMIIYQQtx2S5wA8c8m+DwB8cJ3zZiulkgDcbzAY7nZjiEIIIYS4xG1VwNi+fXuKUuofFzcbBiDFxW0Kua7uItfVPeS6uodcV/dw13Wt5oY2b0YigCoXPK9cuM/lSC4DsEwp1bO05BUrVqyA8w6Z25b8PnEPua7uIdfVPeS6ukeJ5hW3VQGDZDlXt6mU2kYy1tXt3u7kurqHXFf3kOvqHnJd3aMMX9etAGoqparDWbjoC+ARd3YoeUXpIdfVPeS6uodcV/eQ6+oeJX1dZQ4MIYQQQpQqSqlvAGwEEKOUOqmUGkTSBmAYgDgABwEsJLnfk3EKIYQQwrVuqxEYQgghhCj9SPa7yv6fAfxcwuEIIYQQooTICIzim+3pAMooua7uIdfVPeS6uodcV/eQ6+rd5M/HPeS6uodcV/eQ6+oecl3do0SvqyJZkv0JIYQQQgghhBBC3DQZgSGEEEIIIYQQQgivJwUMIYQQQgghhBBCeD0pYBSDUqqzUuovpdQRpdRYT8dTFiilqiilViulDiil9iulRno6prJEKaVVSu1USv3k6VjKCqVUsFJqsVIqXil1UCnVzNMxlQVKqdGFvwP2KaW+UUqZPB1TaaSU+lwpdUYpte+CfSFKqV+VUocLf5o9GaP4f5JXuJ7kFe4jOYV7SF7hHpJXuIY35BVSwLhFSiktgI8A/AtAXQD9lFJ1PRtVmWADMIZkXQBNATwr19WlRsK5vKBwnWkAVpCsDaAB5PoWm1IqAsAIALEk7wCgBdDXs1GVWl8A6HzJvrEAfidZE8Dvhc+Fh0le4TaSV7iP5BTuIXmFi0le4VJfwMN5hRQwbt09AI6QPErSAmABgO4ejqnUI5lEckfh4yw4f2lHeDaqskEpVRlAVwCfejqWskIpFQSgFYDPAICkhWS6Z6MqM3QAfJRSOgC+AE55OJ5SieQ6AKmX7O4OYG7h47kAepRoUOJqJK9wA8kr3ENyCveQvMKtJK9wAW/IK6SAcesiAJy44PlJyH+ILqWUigTQCMBmz0ZSZkwF8CIAh6cDKUOqAzgLYE7hMNpPlVJ+ng6qtCOZCOBdAMcBJAHIILnSs1GVKeEkkwofJwMI92QwoojkFW4meYVLSU7hHpJXuIHkFW5XonmFFDCEV1JK+QP4DsAokpmejqe0U0p1A3CG5HZPx1LG6ADcBeBjko0A5ECG4xdb4b2T3eFM5CoB8FNK9fdsVGUTnWupy3rqosyTvMJ1JKdwK8kr3EDyipJTEnmFFDBuXSKAKhc8r1y4TxSTUkoPZ5LxNcnvPR1PGdEcwANKqWNwDktup5Sa59mQyoSTAE6SPP9t3mI4Ew9RPB0AJJA8S9IK4HsA93o4prLktFKqIgAU/jzj4XiEk+QVbiJ5hctJTuE+kle4h+QV7lWieYUUMG7dVgA1lVLVlVIGOCeC+dHDMZV6SikF531/B0m+7+l4ygqSL5OsTDISzr+rq0hK5bmYSCYDOKGUiinc1R7AAQ+GVFYcB9BUKeVb+DuhPWQSM1f6EcAThY+fAPCDB2MR/0/yCjeQvML1JKdwH8kr3EbyCvcq0bxC587GyzKSNqXUMABxcM5k+znJ/R4OqyxoDuAxAHuVUrsK940j+bMHYxLiWoYD+LrwA8dRAAM9HE+pR3KzUmoxgB1wriCwE8Bsz0ZVOimlvgHQBkCYUuokgAkA3gawUCk1CMA/AB72XITiPMkr3EbyClHaSF7hYpJXuI435BXKeZuKEEIIIYQQQgghhPeSW0iEEEIIIYQQQgjh9aSAIYQQQgghhBBCCK8nBQwhhBBCCCGEEEJ4PSlgCCGEEEIIIYQQwutJAUMIIYQQQgghhBBeTwoYQogSo5QKVkoNLXxcqXBJKyGEEEKImyZ5hRC3H1lGVQhRYpRSkQB+InmHh0MRQgghRCkneYUQtx+dpwMQQtxW3gYQpZTaBeAwgDok71BKDQDQA4AfgJoA3gVgAPAYgAIAXUimKqWiAHwEoByAXABPkYwv+bchhBBCCC8geYUQtxm5hUQIUZLGAvibZEMAL1zy2h0AHgTQGMAkALkkGwHYCODxwmNmAxhO8m4AzwOYUSJRCyGEEMIbSV4hxG1GRmAIIbzFapJZALKUUhkAlhXu3wugvlLKH8C9ABYppc6fYyz5MIUQQghRCkheIUQZJAUMIYS3KLjgseOC5w44f1dpAKQXfssihBBCCHEtklcIUQbJLSRCiJKUBSDgVk4kmQkgQSnVGwCUUwNXBieEEEKIUkXyCiFuM1LAEEKUGJLnAGxQSu0DMPkWmngUwCCl1G4A+wF0d2V8QgghhCg9JK8Q4vYjy6gKIYQQQgghhBDC68kIDCGEEEIIIYQQQng9KWAIIYQQQgghhBDC60kBQwghhBBCCCGEEF5PChhCCCGEEEIIIYTwelLAEEIIIYQQQgghhNeTAoYQQgghhBBCCCG8nhQwhBBCCCGEEEII4fWkgCGEEEIIIYQQQgivJwUMIYQQQgghhBBCeD0pYAghhBBCCCGEEMLrSQFDCCGEEEIIIYQQXk/n6QBKUlhYGCMjIz0dhhBCCFHmbN++PYVkOU/HUZIkrxBCCCHc42p5xW1VwIiMjMS2bds8HYYQQghR5iil/vF0DCVN8gohhBDCPa6WV8gtJEIIIYQQQgghhPB6UsAQQgghhBBCCCGE15MChhBCCCGEEEIIIbzebTUHxu2IDgcOxcWh1sGDUPv348eEBCxMSIDNbofd4YDd4YDN4cDXDRogAMCnx4/j6+Rk2M6/RsLucGBTzZrQOxx4PTkZ8zIynPtJOAAEaLXY36gRVEgIPk9NxY7cXJiDgmAOCYE5NBRhFSvi/o4dAbMZaUpBX64c/MqXh9JI/UwIIYQQQpQ+f//9N/r27Yv27dvj+eefR1hYmKdDEuK2IAWMMig3JQWrp0/Hz999h1/i45Fgs2EXgAYVKiDRYsGmzExolYJWKeg0GmiVgu30acBkgt1igYOEXqOBj04HrUYDrUYDVq0KGAyoYjIh9swZaLVaaDUaaDQaOCwWqIAA4MwZ7Dx8GPOzspBOgoXxVACQ9OabAIAnACyD8y+eWSmYdTrc4e+P7+65BzCb8eHJk0h2OBASEoKwChUQFhGBytHRaNCsGRAaCgYGSuFDCCGEyymlqgL4AEAqgEMk3/ZwSEIIL5WTk4OePXviyJEj2L59Oz766COMGDECY8aMQUhIiKfDE6JMUySvf1QZERsby7I6W7gtPh66X3/Fxq+/RtvNm1EAwBdA+/BwdGnbFr1eeAFhd91VYvE4bDZkJiYi7Z9/kHfmDOqazUBaGn5auxYHjx5FWloa0jIykJaVhVAAH1WoAKSlof2xY1hjs8FxQVv3AthQ+LgRgCSNBmF6PcJMJoT5+6N5lSoY3a4dEBaGJceOwRgairAqVRAaGYmw6GgERkRI0UMIIdxMKbWdZKyH+v4cQDcAZ0jeccH+zgCmAdAC+PRaRQmlVFcAZpLzlFLfkuxzvX7Lcl4hhLgykujXrx8WLVqEX375BZUrV8brr7+OhQsXwt/fH6NGjcLo0aNhNps9HaoQpdrV8gopYJRS+enpWPvRR/h50SL8cuAAHrNaMR5AdnQ0xgcEoEvv3mg5ZAhMwcGeDvWm0eFA5smTOHf0KFISEqDJzESs2QykpOCdn37C0aQkpGRmIiUnB+fy89Fco8EsiwWw2xEK51dnF3pMKXxZoQIQGopOiYnw8/FBiL8/Qs1mhIaEoNmdd6Jls2ag2YwD6ekIqVYNIVFRMAYEeOLtCyFEqeThAkYrANkAvjxfwFBKaQEcAnAfgJMAtgLoB2cx461Lmvg3ADuAxQAI4CuSc67Xb1nKK4QQN+bdd9/FCy+8gLfffhsvvfRS0f59+/bhv//9LxYvXoygoCCMHj0ao0aNQlBQkAejFcK9jhw5AoPBgKpVq7q8bSlgoAwkGgkJ4M8/4+E33sDy5GTkATABaFuuHJ584AE8+PLLQFSUp6P0DBLIyMCR7duRcuwYzp04gZTERKQkJyPGZEI3sxm2M2fQfs0anMvPR6rVinMOBywAXgTwDoAMABeWe/wAhGi1GFuxIobGxCAtIADjDh1CqNmMkNBQhJYvj5AKFdDorrtQOSYG9sBAWHx94SNDB4UQtyFPFjAK+48E8NMFBYxmAF4j2anw+csAQPLS4sX5858HsIXkOqXUYpK9rnLcYACDAaBq1ap3//PPFZepF0KUQb/99hs6deqEBx98EAsXLoRS6rJj9uzZg9deew1LlixBcHAwxowZgxEjRiAwMNADEQvhPiTRsWNHHDx4EAkJCdDr9S5t/2p5hcyB4cUKMjOxftYs/Pzttzh16BC+ycqCAhASEIBB9eujy0MPoc2wYfKBGQCUAoKDEd2+PaKvcogOwNoLntPhQG5KChwpKYDFAmNSEr5duRKpp0/j3NmzSE1Lw7n0dFQ2m4G8PKQePYrFx44htXDy0vM+BvAMgD0A7gJgBBCs0cCs0yHYYMDEunXRIToaRzUafJ6QALPZDHNYGMzlyyM4PBwNY2NhrlYN9oAAaIKCoLRat1wiIYS4zUQAOHHB85MAmlzj+BUAXlNKPQLg2NUOIjkbwGzA+cVI8cMUQpQGx44dQ58+fVCnTh3MmTPnisULAKhfvz6+//577Ny5E6+99hrGjx+PKVOmYMyYMRg+fDgCZISvKCPi4uLw22+/YcqUKS4vXlyLjMDwNvn5+OHFFzFn0SL8lpyMHAAGAG1DQ7Fs3Djou3UDatZ0fmAXHnF+fo/UhASc++cfVDEYUEGjQWJCAr5as8Y5v0dmJtKyspCWl4fxYWFobbNh5dmz6JyVhUv/xcUB6AjgOwAPAwhWCsFaLYL0egQZjfioUSPUrVIFW/Pz8WNiIoKCgxEYHIyg0FAElSuHFk2bwr9iReQaDLD7+cG/QgWZ80MIUeK8cARGLwCdST5Z+PwxAE1IDnNBX/cDuD86Ovqpw4cPF7c5IYSXy83NRfPmzZGQkICtW7eiZs2aN3zutm3b8Nprr2H58uUIDQ3FCy+8gGeffRb+/v5ujFgI97Lb7WjYsCFyc3Nx8OBBGAwGl/chIzC8XH56OtTnn8P4/vtISUzELq0Wj9erhy4PPoi2w4bBr3x5T4coCml0OgRXq4bgatVQ44L9EQDGjh171fM6ArDZbMg6dQppx48jPTERaYmJaBAWBthsqHXwIMZt2uSc3DQzE5l5ecjIz4fu1Cng6FHsPHMGb+blXTT6AwAOA4gG8BGct8MoAIEAggqLIKsaNEBYWBiWZGRgZWoqAvz8EBAQgMDAQAQEB+Ox++6DPiQE/+TkIBNAQPnyCAgPR0DFijDItwRCiNIrEUCVC55XLtxXbCSXAVgWGxv7lCvaE0J4L5IYPHgwdu/ejWXLlt1U8QIAYmNj8dNPP2HLli2YMGECxo4di/feew8vvvgihg4dCl9fXzdFLoT7zJ07F/v27cO3337rluLFtcgIDA/LS03F7CefxDs//ICxDgdGtGwJx/jxUO3by7fo4jJ0OJCdnIzMU6eQceoUMpKTcVeFCjDm5WHr7t1Ys2cPMtLTkZmVhYzsbGTk5uLrmjXhl5ODN48dw5S0NGSRKLigTSuclcwhAGZe0l8ggIzQUCAgAONzcrA6Px8BRiMCTCYE+PigQnAwJnXqBPj7Y8Xx4zhtscA/OBj+wcHwM5thDg9HvQYNAD8/5Gm1MIaEQKOTuqkQZZEXjsDQwTmJZ3s4CxdbATxCcr+r+vTGvEII4VrTpk3DqFGjMHHiRLzyyivFbm/jxo2YMGECfv31V4SHh+Oll17CM888Ax8fHxdEK4T75eTkoFatWqhSpQo2btx41dupiksm8YR3JRq5KSmY9eST+N+yZUh2ONA6KAhvTJyIFsOHezo0cRuw5uYiKykJ2adPo2pgIJCZiT27d+PQkSPISktDVkYGsjIzYcvLw4T69YGsLLy9fTtWJiUhy2JBls2GLJsNwQD2kwCJznDeDnOh2gAOFj5uBeAPOJf39VMK/lot7vHzw4I6dQB/fzx/7BiSbTb4+/jA39cXfn5+qB0RgX733gv4+uLnQ4dg1+vhFxwM36Ag+JnNCKtUCRUjIwE/P9iNRmiNxhK7hkKIi3l4FZJvALQBEAbgNIAJJD9TSnUBMBXOlUc+JznJRf3JLSRC3AbWrFmDDh06oFu3bvj++++hceGXi+vXr8eECROwatUqVKxYEWPHjsXgwYNhMplc1oc7FRQUYMOGDUhMTERYWBjCwsJQrlw5hIWFwc/Pz20faoXnvfHGGxg/fjz++OMPtGjRwm39SAEDXlLAyM0FZs5E93Hj8GNBAdoGB2PCa6+h9ciRno1LiFvlcDgnOT15EulJSchOSUF2aipyUlOhs1jQtnp1ICcHX61di7+TkpCdk4Oc3Fxk5+Whml6PN6pVA7Kz0X3fPuzNy0OO3Y5sErkAOgP4pbCbKnDOwHehXgAWFT4OAZADwFcp+CkFX60WfUNC8HpUFODri17798NgMMDHYICvyQQfkwltoqPRpUED2AwGzNm5Ez5+fvANCICPvz98g4JQo0YNVImMhN1gwOmcHPiYzfAxm2EMDJQRUkJcwtMjMDzBK/IKIYRbnDhxAnfffTdCQkKwZcsWt60ism7dOrz66qtYu3YtIiIi8PLLL+PJJ5+E0cu+lCGJv/76CytXrkRcXBzWrFmD3NzcKx5rMpkuKmhc6eeFj0NCQqCVSexLhdOnTyM6OhodOnTAkiVL3NqXFDDg2UQj58wZzBw0CP03bUJ4Sgo2x8bC8sQTaDms2HOJCVEmOWw2WDMzYbTbgZwc/LV/P7LOnUNOWhpyMzKQk5GBCj4+aFG5MpCTg7dWrEBGVhZy8/KQm5+PnPx8tA4OxjPlysGRk4O7du1Cjt2OXLsdeSTySAwDMBmXL6F73msAJsA59rzyBfsVAB8A7/j6YlhoKBJ0OvRISoJJq4VJp4NJp4OPXo9nY2JwX/XqOG61YsqBAzAVFk5MJhNMPj74V6NGqFmtGs5aLNj8zz8w+fsXbT5BQagWGQn/kBBYNBrkkzAFB0Pv6yvFE+GVbqcChozAEKJsy8/PR8uWLfHXX39hy5YtqF27ttv7XL16NV599VWsX78eGo3GuWqd2YyQkJCi7dLnl+4zm80unY8gJSUFK1asQFxcHFavXo3EROc0QpUrV8Zdd92FO+64A61atUJQUBBSUlJw9uzZop8XPj7/MzMz84r9KKUQEhJSVNAIDQ2FyWSCTqeDXq+HTqdzyWONRgOHw3HRZrfbL9t3MxtJBAYGXvbnEhISgqCgIJeO2vEGQ4cOxezZs7F//37ExMS4tS8pYMAzBYzs5GTM+Pe/8e6KFThLYmadOnj6k0+A5s1LNA4hxOVot0MVFMCRk4NTx44hLz0duWlpyMvMRF5mJqoFBaFGUBCyUlMxf9065OXkIC83F3l5ecjLy8P9lSujldmM4ykpGLltG/KsVuRbrci32ZBvt2NCSAh66nTYkpWFDmlpyIdzzpHzFsE5imQlgE5XiO8XOEehfA/goQv2GwGYAKwwm9E0IAA/WK14JTUVJq0WxsIiilGnw/RGjVA9NBSrUlOx8MQJmAwGGA0GGI1GGAwGDGvVCsHBwdh1+jR2JCXBaDLB4OMDo48PDD4+aHfPPTD4+eFUZibO5ebC6OcHg58fjP7+MAYEwBweDmU0AjqdrIwkbqsCxnkyAkOIsock/v3vf+OLL77A0qVL0b179xLte9WqVVi9ejXS0tKQmppatJ1/np6ejmt9fvP3979i4SM4OBg2mw25hXlMbm7uRY/z8vKQk5ODjIwMZGdnw2KxXLOf80wmE1auXImWLVte91iLxYKUlJTLChuX/jx37hwKCgpgs9lgs9lgtVov+nnhY2+m0WgQHBx80Z9FaGjoFYsdF27BwcHQeeGccfHx8bjjjjvw9NNP46OPPnJ7f1LAQMkmGszMxOQ+fTA5Lg4pJDqFhmLCm2+i2eDBJdK/EMI72S0W5GdkID89HX4aDUwAMs+exeHDh5GXlYX8rCzkZWcjLzsbrWrUQAUfHxw6fhzLdu5EQUEB8vPznT8tFoyuWxeRBgNWHz+O6fHxyLdaUWCzId9mQ4Hdjm8rV0YNEp+eO4f/pKWhoHAC1wIABHAczltzJgJ49QqxpgIwA3gJwP+u8LoFgB7AcACfwLnks0EpGJSCv0aDQ5GRgMGAV8+dQ1x2NgxabdEWZjTiq6ZNAYMB0//+G3syM2HQ62HQ66HX6RAeGIjnWrUC9HosPnAASbm50BsMMBiN0BuNKBccjM6NGwN6PTb9/TdybDYYTCbofXygN5kQbDYjKioK0OuRlJoKGAww+Po6X/f1hd7XFzqjUQovLiQFDCFEWTBjxgw8++yzGD9+PF5//XVPh3MZu92OjIyMqxY4rrYvPT3deSutjw98fX2Lfmo0GmRnZyM9PR1nz56F1er8qqVixYqoVasW6tWrh5iYGAQEBFx2rlarxYABA5CUlIR169ahQYMGJXotSMLhcFyxsHGlfXa7HVqtFhqNpmi79PnNbgCQmZl52bW/0nbu3LmL/jyupUOHDli+fHmJr/BxLT169MCqVatw5MgRlC+BFTKlgIGSSTQKzp6F8ZNPgPfew8OpqcguVw6vvvkmmj75pFv7FUKIG0WHA7aCAujsdiirFZkpKUg7cwYFOTmw5OSgIDcXlpwc3BMVBa3djn2HDiH+2DEU5OXBkpeHgoICFOTlYUTTplBWK37Yswcbjx+HxWKBxWqFxWqFcjgwKzYWsFjw7oED+P3MGVjs9qItSKPByqpVAYsF/z51Cr/k5cFKwkLCAiASQHxhvG0ArL3kPTQCsKPwcSyA7Ze83uqCc2LgXIriQl0ALAcAnQ417XacIaFTCvrCraevLz6oUAHQ69Hi2DHkA9BrNNBpNNBrNLg/PByjo6MBnQ59tm+HVquFrnDTa7W4r1o19IqJQQGACZs3Fw1hPb+1jIpC81q1kOtwYN727dDp9f+/GQxoGBWFWtWqIcdqxZ9//QWdwQCtwQCdwQCdXo/qVauiXLlyyLfb8c/p0879hRPZ6oxGBJvNMPn7w64ULA4HdEYjdCYTlBvvMb6dChhyC4kQ7kEScXFxaNq0KYKDr3Rzp3utX78ebdu2RceOHbFs2bIyN/wfcK4gsXbtWsTFxSEuLg5//fUXACAiIgKdOnVCp06d0KFDB4SEhNxQe8ePH0fz5s1htVqxYcMG55cH4rrsdjvS09OvWOg4evQopk6diueffx6TJ0/2dKgAgD/++AOtWrXCG2+8gf/85z8l0mepK2AopToDmAbnzOGfknz7kteNAL4EcDeAcwD6kDx2rTbdWcDIOH4cH/7735i6ahXWkajbtSssL78Mg9wqIoQQN48E7HbAakV2Whrys7JgzcuDNS8PltxcaB0OVA8PB6xW7DlwAOnp6bDm5zu3ggIEG41oWbMmYLFg0caNOJeRAUtBAawWC2w2G6oHBuLh2rUBqxWvr12LtLw8WAu/pbHa7bgnJATPVK8O2Gzo8+efyLZaYXM4YLXbYXU4cH9QEF4sXx4OiwV3/PUXrCTsJKwkbCSeNhrxmtGITKsV5XNyYANgv+Dt/RfOUS+Xzq9y3nsAnoOziFPnCq/PAjAYwDYAja/w+nwA/QCsBtDugv0aADtDQlD/3Lmb/AO5vtupgHGejMAQwnXsdjueeeYZfPrppwgLC8OkSZMwaNCgEpvcMTExEXfffTcCAgKwdetWjxRQ3CU5ORnz5s3DL7/8gvXr18NiscDHxwetW7dGx44d0alTJ9SpU+eWVw45ePAgWrZsicDAQGzYsAEVK1Z08Tu4/QwZMgQzZ85EXFwcOnbs6NFYSKJp06ZITEzEoUOH4OvrWyL9lqoChlJKC+cXZvfBufDAVgD9SB644JihAOqTfEYp1RdAT5J9rtWuyxMNhwMZJ05g2sCBmLJmDdJJdAsPx+Tp01G7Vy/X9SOEEKLUo8MBu8UCW14eNA4HDBoN7AUFOH3qFGwFBbAVFMCanw+bxYLwwECE+fsjNycHOw8cgM1qhc1igb3w5x1VqqCq2YxzaWlYuXOn8/XCzW6zoX10NGqGhuKfM2fwzY4dsBcOo7XZbBjWvDnC3377+gHfJClgiNtNWloazGazp8MoE2w2G5544gnMnz8fQ4cOxZ49e7B+/Xo0atQI06ZNu6H5FYqjoKAAbdq0wd69e7F582bUq1fPrf2VBJJYvXo1Zs6ciSVLlsBmFz7sBwAAIABJREFUs+HOO+9Ep06d0LFjR7Rs2dKlS7Zu2bIF7dq1Q40aNbB27Vr5t1FMubm5aNy4Mc6dO4c9e/aUyC0bV/Ptt9+ib9+++PzzzzFw4MAS6/eqeQVJr9sANAMQd8HzlwG8fMkxcQCaFT7WAUhBYUHmatvdd99NVypo3Jh+zlvJ+UCFCtw2b55L2xdCCCFKCwDb6AU5RElsAO4HMDs6OtpVl0+UMitWrKBGo+H06dM9HUqpl5+fz549exIAJ02aRJJ0OBxcsGABq1SpQgDs27cvjx8/7rYYBg8eTABctGiR2/ooKampqZwyZQpjYmIIgGazmc899xz/+usvt/f966+/Uq/Xs3nz5szJyXF7f2Xd7t27aTQa2bVrVzocDo/EkJ+fz+rVq7N+/fq02Wwl2vfV8gpvvbErAsCJC56fLNx3xWNI2uBcCTH00oaUUoOVUtuUUtvOnj3r0iCz7HbkFD7+Jz3dOeRZCCGEEGUayWUkBwcFBXk6FOEBSUlJ6NOnDxwOB8aMGYPs7GxPh1Rq5ebmonv37liyZAmmTZuGcePGAXAuq9mnTx/Ex8fj1VdfxdKlSxETE4PXX38deXl5Lo3hk08+wezZszF27Fj0KqUjqEli8+bNGDhwICpVqoTRo0fDbDZj7ty5SExMxHvvvYdatWq5PY4OHTpg/vz5+PPPP9G7d++iCUHFralfvz4mT56M5cuX48MPP/RIDDNmzEBCQgImT55cYrdzXdeVqhqe3uBcWfDTC54/BmD6JcfsA1D5gud/Awi7VruuHoFBkju/+YaRWi1ROBLjvpAQ/rVkicv7EUIIIbwZbqMRGOc3d+QVwrvZ7Xa2adOGSikajUYCYJs2bTwdVqmUmZnJVq1aUSnFTz/99JrHJiQksHfv3gTAatWqcdGiRS75Rnrjxo00GAzs2LFjiX+77ApZWVmcPXs2GzVqRAD08/Pj008/zZ07d3o0rlmzZhEAH330Udrtdo/GUto5HA5269aNBoOBu3btKtG+U1NTaTab2bFjxxLt97yr5RXeOgIjEc7V/c6rXLjviscopXQAguCczLNENezbF3/n5+Pdbt1gAPBbaipSe/YEevSATe6LFUIIIYQoM9555x2sWbMGJPHLL7+gatWqWLNmDaZOnerp0EqVtLQ0dOjQARs2bMDXX3+NQYMGXfP4yMhILFy4EKtXr0ZQUBB69+6Ndu3aYc+ePbccQ3JyMh566CFERETgm2++8Z5vl2/Avn37MGzYMERERGDw4MGw2WyYMWMGTp06hZkzZ6Jhw4YejW/w4MGYNGkSvv76a4waNer8l83iFiil8PnnnyMkJAT9+vVDbm5uifX95ptvIj093WtWQilypaqGpzc457Q4CqA6AAOA3QDqXXLMswBmFj7uC2Dh9dp19zclCX/8wVk1a5IAqdWyO8CeFSty17ffurVfIYQQwtNwG43AgMyBcVvasGEDNRoNNRoNH3vsMZLktm3bCIBKKS5fvtzDEZYOp0+fZoMGDWgwGLh06dKbPt9qtXLGjBkMCQmhRqPhkCFDmJKSclNtFBQUsEWLFvTx8Snxb7VvVX5+PufNm8cWLVoQAI1GI/v3788NGzZ4bH6Ea3E4HBw9ejQB8PXXX/d0OKXeypUrCYBPP/10ifSXkJBAg8HAAQMGlEh/V3K1vMLjScDVNgBd4FyJ5G8A/ync9zqABwofmwAsAnAEwBYANa7XZokM9XQ4yNmz+ZvJRANAU+GtJQ9WqsTdCxe6v38hhBDCA26nAsb5TW4huX2kpqaySpUqNJlMDAoK4unTp4tee+ihh6jRaOjr68tt27Z5MErvd/LkSdauXZs+Pj6Mi4srVlvnzp3j8OHDqdVqaTab+cEHH9Bqtd7QucOGDSMAzp8/v1gxlIQjR47wxRdfZFhYGAEwKiqKkydP5tmzZz0d2nXZ7XY+/vjjBMAZM2Z4OpxS74UXXiAAfvfdd27vq1+/fvTx8eGJEyfc3tfVlLoChju2kkw0jm/axH8V/qKpqtUWrVYy9+67yd27SywOIYQQoiRIAUOUVQ6Hgw8++CA1Gg0BcObMmRe9/tdff1Gj0TAgIIAVKlRgQkKCZwL1ckePHmX16tUZEBDAdevWuazdvXv3sn379gTAevXq8bfffrvm8XPmzCEAjhkzplj92u12zpkz56JilqtYrVYuWbKEnTp1IgBqtVr27NmTK1euLHVzSlgsFt5///1USnHBggWeDqdUKygoYGxsLM1ms1tX5dm6dSsBcNy4cW7r40ZIAcMDiYbDbuecQYMYBNAHYJewMJ728yMBbmvXjrsXLy7ReIQQQgh3kQKGKKtmzJhBAPT392eTJk2u+AFy0KBB1Ov1DAwMZJ06dZiamuqBSL1XfHw8IyIiaDabuWXLFpe373A4uGTJElavXp0A2LNnT/7999+XHbd161YajUa2a9fuhkdrXM0vv/xCALzrrruYlZVVrLZI54iSpUuXcvTo0axcuTIBMCIigq+99hpPnjxZ7PY9KTc3ly1btqRer+eKFSs8HU6pdujQIfr5+bF169ZumXjW4XCwdevWLFeuHDMyMlze/s2QAoYHE43E7dt5f3g4pwNk48bk0KHsULhySa+ICO6RQoYQQohSTgoYoizavXs3jUYjq1SpQo1Gc9XVHf755x8aDAZ27dqVBoOBrVq1Yn5+fglH6512797N8uXLs3z58tzt5lHIeXl5nDRpEv38/Gg0Gjlu3Lii4sLp06dZpUoVVqtWzSW3XwwcOJAmk4kajYb333//TX+YPHPmDBcvXszhw4ezfv36VEoVzW3RuXNnLlmypNhFFm+Snp7OBg0a0NfXlxs3bvR0OKXaF198QQB84403XN72jz/+SACcPn26y9u+WVLA8HCi4bDb6fjqKzIkhF/rdHy1VSv+p3lzBhTeWtK7cmXuk+VXhRBClFI3UsAAEHKt7Xrne8smk3jeHrKzs1m7dm2GhIRQKcVRo0Zd8/iRI0dSq9Xy/fffJwD27du31A33d7XNmzfTbDYzIiKC8fHxJdbvyZMn2b9/fwJgpUqV+NVXX7FNmzY0mUzcvn17sdsvKChgcHAwH3vsMU6fPp0AOHz48Guek5SUxAULFnDIkCGsW7cuUfgZwMfHh+3bt+frr7/OtWvXMi8vr9jxeaukpCRGRUUxJCSE+/bt83Q4pZbD4WDfvn2p1Wr5559/uqxdq9XK2rVrs1atWrRYLC5r91ZJAcPDBYwiSUkcVK0aAbCxnx/Xz5jBV1q0YADADwDy4YdJ+QcthBCilLnBAkZC4SpjCQDsAFLgXALdDiDheud72+YVeYVwm0GDBhVNmhgREcHMzMxrHp+cnExfX1/269ePb7/9NgHwxRdfLKFovc/atWsZEBDAGjVq8OjRox6J4c8//2RsbGxRseDLL790Sbs//fQTAXDZsmUkWbTaxtSpU4uOOXHiBOfNm8ennnqKtWrVKorB39+fnTt35ltvvcUNGzawoKDAJTGVFkePHmXFihVZqVIlmS+mGNLT0xkZGcnIyEimp6e7pM2ZM2cSAL///nuXtFdcUsDwokTDYbfz21GjGKYU9QAntm/P5D17mPfSS6S/Pz8D2MzfnxPbt+e2efNoL0PDx4QQQpRNN3MLCYBPAHS54Pm/AMy60fO9ZfOWvEK43vz58wmAHTp0IAAuWrTohs4bN24cAXDXrl0cMmQIAfCjjz5yc7TeJy4ujj4+Pqxdu7bH52+w2+2cO3fuZZOvFsfjjz/OoKCgouKDzWZjp06dqJRiu3btWKNGjaKCRVBQELt168bJkydzy5YtZeq2kFu1Z88eBgcHs2bNmm6ZBPV28eeff1Kr1bJfv37FXko3MzOT4eHhbN68udcsyysFDC9MNM4cOMA+VaoQAFdGRZG7dpEpKZzdvTsb+/kV/eIL12g4qGZNOr79lkxL83TYQgghxGVusoCx90b2efvmbXmFcI0jR44wICCAd999NwMCAti5c+cbTuhTU1MZFBTEBx54gFarld26daNGo+EPP/zg5qi9x5IlS2gwGNigQYMy+eE0Pz+fAQEB7NKlC2fPns3HHnuMVatWLcrbAbBNmzacMmUKd+zY4ZaJFsuCDRs20MfHh40aNfL4ZJGl2cSJE50rXc6de83jMjIy+NFHH111tMarr75KAF41P4kUMLw40dj8zjtkeDip03HtE0+woHCyoeS9ezl38GD2rVqV9+v1zj8urZajIyL4ZqdO3LVwIR23+b2VQgghvMNNFjDiALwCILJw+w+AuBs931s2b80rxK07v0xhcHAwu3btSpPJxCNHjtxUG5MmTSr6IJCdnc3GjRvTx8eHmzdvdlPU3mP+/PnUarVs0qRJqV+JpaCggPv37+f333/Pt956iwMGDGCzZs3o7+9/UbGiXLly7NWrFz/88EOuXr2a1apVY4UKFXjs2DFPvwWvt3z5cup0OrZu3bpMz/3hTjabja1ataK/vz8PHz58xWPWrVvHyMhIAuArr7xy2euJiYn09fVl79693R3uTZEChrcnGikpPPnggzQAvNNk4u5LhypareSGDbSPG8emvr5FvzQraTQcVKsW177+OinVSyGEEB5ykwWMEADTAOwEsAPA1NI0ief5zavzCnFLxowZU5TkA+DEiRNvuo2srCyWL1+e7dq1I+mcG6N69eosV67cFZf2LCs+/fRTKqXYunXr684X4i0cDgeTkpK4Zs0azpo1i8899xy7du3KqKgoajSaiwoVFStWZJs2bRgdHU0fHx/+8MMP/Pvvvy8bnbN//34GBQWxXr16LpuboCz7+uuvCYA9evSQ22tu0fHjx2k2mxkbG3vRnCoFBQUcO3YslVKsUaMG77rrLkZERFw2KujJJ5+kXq+/6WKtu0kBo5QkGsvGj2cFjYa+AL+5xmzGp3bu5OcDB7J35coMAvgOQOp0TG/Zkv/r2pX7li6V0RlCCCFKzA1O4vlV4c+R1zu2NGylIa8QN2758uUEwMGDB7NGjRqMiYm55aVQp06dSgD87bffSJLx8fEMCQlhrVq1mJKS4sqwvcK0adMIgJ07d2ZOTo6nw7mM1Wrlnj17uHDhQk6cOJH9+/dn48aNGRgYeFGRwmQysX79+uzduzdfeeUVfvXVV9yyZUvRLQ65ubn09/fnoEGDrtnfb7/9Rp1Oxw4dOnjFag7e7oMPPiAADhw40GvmXyhtvvvuOwLgSy+9RJLct28fGzZsSAAcNGgQMzMzi45Zvnx50Xn79u2jRqO57ipL1+KuiWilgFGKEo1TO3eyeUAAAXDM3XfTcZ1ffJacHGavWEG+9BJ/KRweBIBVtFo+Xbcufxg3jjll8B5EIYQQ3uMGCxgHAFQCsBuAubQuo3p+Ky15hbi+xMREhoWFsX79+nz55ZcJgL///vstt5eXl8cqVaqwSZMmRR/I/vjjDxqNRt57773Mzc11Veged/6WmZ49e95ywcddHA4Hly1bdtEqIABYuXJltm/fnkOHDuW0adO4YsUKHjt27LrL3n7//ffOuetWrrxu33PmzCn68Cgfyq/v/BwML7zwgqdDKbUGDx5MABwyZAiNRiPDwsK4ZMmSotcLCgpYvnx59uzZs2hfly5dGBQUdEuFVZvNxpEjR7JTp05uKdS5vIABYNAlz7UAJtxqeyWxlaZEoyAri8PuvJPjAbJtW/LMmRs+98SWLfzkscfYs2JF+hf+oj6g15MtWnB5+/ac0Lo15wwaxDVTp/LYhg203WbLNwkhhHC9GyxgjABwEEDBBcupnt+OXu98b9kA3A9gdnR0tKsvo/AAm83Gtm3b0tfXl8uXL6der2f//v2L3e6nn35KABdN4Llw4UIqpdirV6/rflj2dg6Ho6jY079/f68b/r9//3527NiRABgTE8M5c+Zwx44dzCqca+5W9O3bl6GhoTf8Xs/fivTmm2/ecp+3C4fDwaFDhxIA33nnHU+HUyodOnSIvoVTDdx3331MTk6+7Jjnn3+eOp2OycnJ/P333wmA//vf/266r9zcXD744IMEwJEjR7plstqr5RXK+drNU0rNBxAMYFDhNydfAFhL8vlbarAExMbGctu2bZ4O46bwiy+gnnkG64OCYJo8GbGPP35T51uys7Hp00/R8sQJqC1bMHb3bvwvKwsX/qkbAWRXrw5djRr4xm7HUZ0OkTVronqDBoi85x5UuPNOaHQ6l74vIYQQZYtSajvJ2Bs89mOSQ9wdk7uVxrxCXO6NN97A+PHj8dlnn+Hrr7/Gjh07EB8fj/Dw8GK1a7PZULduXZhMJuzatQsajQYA8P7772PMmDEYPXo03n//fVe8hRKXnJyMMWPGYP78+Rg8eDA+/vjjovfnaampqZgwYQI+/vhjBAQE4LXXXsPQoUOh1+uL1W5ubi7Kly+PRx99FLNmzbqhc0iif//+mD9/PhYsWIA+ffoUK4ayzuFw4NFHH8WCBQsQGxuL1q1bo1WrVmjZsiXMZrOnw7tIWloaNm/ejJ07d0IpBX9/f/j7+8PPz++Kj88/12q1bolnwYIFGDJkCPLz82G1WvGvf/0LP/74I5RSFx0XHx+POnXq4J133sGCBQuQmpqK+Ph4mEymG+7r7Nmz6N69OzZt2oT3338fo0aNcvXbAXCNvOJKVY0b3QD0AZAC4B8AzYvTVklspWkExoUcW7fyHoOBRoBzrnPP3Y3Iz8jg4V9/5cq33uLs/v35ZuvWZN++ZNOmfNRkumiIHQBWB8iYGLJTJ37csiXf7tyZ344axc2ff84zBw7IXBtCCCFuahLPsrKV1rxC/L8//viDWq2W/fr141dffUUA/Pjjj6973q+//soaNWqwbdu2/OCDD3j8+PErHvfNN98QAOfPn1+0z+FwcMSIEQTAqVOnuuy9XI3FYuFnn3122XwOt6KgoIDvvvsuAwICqNfrOWHCBK+5PcJisfCDDz6g2WymRqPhkCFDePbsWZe1v2jRolu6tSg/P58tWrSg0Wjk+vXrXRZPWVVQUMBJkyaxVatWNBqNBEClFBs0aMDhw4dz8eLFJb48r81m4969ezl79mwOHDiQtWvXvuzz0o1uJpOJYWFhrFatGuvVq8cmTZqwXbt2fOCBB/jII4/wqaee4ujRo/nVV1/d0L+t1NRUPvLIIwTAJk2a8PDhw0Vz8EyfPv2K57Ro0YIVKlQgAM6bN++mrsXhw4cZHR1Nk8nExYsX39S5N+tqeUVxRmDUBDAXwF4AdeC8r/U5krm31GAJKM3flKTEx6Pvvffi97Q0DL3jDkzZuBEGf3+39JWbkoJ/Nm3CsR07kHDgABxnz2JYSAiQkIDWu3djnc120fGtlMLaqCigcmW8kpICR0AAKletispRUahcty6qxcYitFYt4JIKoBBCiLLjZkZglBWlOa8Qzm/qGzZsCL1ej1WrVuGee+5BZGQkNm7ceM3RBPPnz8eAAQNQvXp1aLVaHDx4EAAQGxuLnj17omfPnqhTpw4A5zfKjRo1Qm5uLg4cOFA0CsBut6N3795YunQpFi9ejAcffNAt79FqteKRRx7B4sWLL9pfsWJF1K5dGzExMRf9rFq16lXf+8qVKzFy5EjEx8ejS5cumDp1KmrWrOmWuG9WXFwcRo8ejYMHD6J9+/aYMmUK7rzzTpf28fDDD2Pt2rVITEyE7iZHJp87dw7NmjVDamoqNm3ahOjoaJfGVlbl5+djy5YtWLt2LdatW4c///wTubnOj5p16tRBq1atikZpREREuKzftLQ0bNq0CRs3bsTGjRuxZcsWZGZmAgBCQ0PRtGlTNGvWDM2aNUPjxo2h0+mQnZ2N7Oxs5OTkFPtxVlYWcnJy8MADD+Czzz5DWFjYFeNctWoVnnjiCSQlJWHChAl4+eWXodPpQBLdunXD77//jq1bt172b+GTTz7B4MGDUatWLRw8ePCGR09t3LgRDzzwAEjixx9/xL333lu8C30dLh+BASAeQPvCxwrAGAD7b7W9kthK+zcl1rw8vtC4MQHw3oAApsfHeySOjBMnuGfxYv4wbhyn9uzJuf/6l3MER/PmvMtgoP6SSmNvgDQYyBo12C0khI9GRvKlJk34Ya9eXDJ2LI8sXUomJ5MykkMIIUotyAgMUYo4HA726NGDer2eW7du5ZAhQ6jRaLhjx45rnvfee+8RAFu3bs20tDSSzhVG3nrrLd5zzz1FuU9MTAzHjh3LzZs3c+nSpQTATz755KK2cnJy2LRpU5pMJv75558uf48Wi4W9evUiAL733ns8ePAglyxZwrfffpsDBgxgs2bNaDabr7oKx/jx4zlv3jwuXbqUXbt2JQBGRUVx2bJlLo/1VsXHx18U29KlS90yIiQrK4s+Pj4cMmTILbdx+PBhhoaGsmbNmmVyJZqSUFBQwI0bN/Ltt99mly5dLlpFJioqigMHDuQXX3zBo0eP3vDfA5vNxj179nDWrFkcMGDARaMrNBoNGzRowGeeeYZz587loUOHSmTEkd1u55QpU2gwGFipUqXLRv3k5eVx9OjRBMBatWpxy5Ytl7Vx+vRphoeHs169epdNGjxx4kQCYKdOnW44pu+//54mk4lRUVE8dOjQrb2xm3S1vKI4BYzAK+yrdavtlcRWVhKNb0eOZH+tlvYKFcgNGzwdzmXsViuTdu/m1i++4Pcvvsh1I0eSL75Ia58+bBUYyOo6HQ0X/Gf5HEACzNXpGKnTsUVgIPtVq8YXGjfmtJ49ufvdd8lNm2g/flwmHBVCCC91swUMAOEAuhVu5W/mXG/ZykpecTuaPn160Qf7zZs3UynFkSNHXvV4u93O5557jgDYq1cv5uXlXfG4kydPcvr06Wzfvj21Wi0BsFKlSgwPD2e5cuWYmZl50fFnzpxhdHQ0Q0NDXfqh4MLixZQpU656nMPh4OnTp7lu3TrOnj2bY8aMYdeuXRkdHU2NRnNRcSMwMJBt2rThkCFDilbuOHXqlMtivhlpaWkcPXo0dTodAwMDOXnyZLeugLJgwQIC4Jo1a4rVzvr162k0GtmyZUuvW7GlNLLZbNy2bRvff/99du/enSEhIf+/GmOVKnz00Uc5e/ZsxsfHFxUezp07x+XLl3P8+PHs0KEDAwpXfgTA0NBQduvWjZMmTeLvv/9+2b/XkrZz507GxMRQKcWXXnqJFouFu3btYr169QiAQ4cOveayxXFxcUWrkpx39uxZBgYGsmrVqvTx8WF6evp145g2bRqVUmzSpAnP3MTCEsXl8gJGadzKVKKxZw8ZFcVjOh1nPfJIqZuHwm618vTevdw+bx6PfPwx+eGHPDdiBB+NjGTroCDW0OloLPxl8n5hgeMQQC3Aylotm/r786GICI5s2JDbRo4kv/mGOb/+yqPr1jHfw79shBDidnQzBQwAD8M5f9ZcAF/CuQpJrxs931u2MpVX3EZ27txJg8HALl26sKCggI0aNWKlSpWuOjdEQUEB+/XrRwAcNmzYDc+2f+7cOc6dO5c9evSgwWAgAPr4+PDxxx/nkiVLij54HD58mGFhYYyKinLJvf03Wry4GofDwYULF7Jy5coEwBYtWvCll17iE088wSZNmjAoKOiiwkatWrU4ePBgfvPNN0xKSip2/Ndis9n48ccfMywsjEopPvXUU1dcacHVevbsyQoVKrhkpYXzxZBHHnnEa+YPKSvsdjv37NnD6dOns3fv3ixfvnzR39Pw8PCLltPVaDRs2LBhiY+uuFnZ2dl86qmnipb/1ev1rFChAn/++ecbOn/MmDEEwKVLl5IkR4wYQY1GU/T3cObMmVc91263F4306NGjxzWLJe4gBYyymGikpnJM9eoEwIE1azKvcChjWeGw23k2Pp7p69aRy5Yx8a23+Erz5hwQHc0OISGsbTDQD+CiwgLH7xf8Z1peKd7l48MHKlTgjt69yTff5KkPPuDvkyfz4PLlzDx50tNvTwghypSbLGDsvnDUBYByAHbf6PnespW5vOI2kJWVxZiYGFasWJFnzpzhtGnTCIALFy684vEZGRns0KEDAfCtt9665Q84OTk5rF+/Pk0mE4ODg4uKGT179uSXX37JuLg4mkwmNmnSpFgfEiwWCx966KFbLl7s3buXbdu2JQA2aNCA69atu+wYh8PB5ORkrlmzhu+++y67du160bfYtWvX5jPPPMNvv/3WpcWF33//nXfeeWfRLTw7d+50WdvXkpmZSaPRyOHDh7uszTfffJMA+Morr7isTXE5h8PB+Ph4zpo1i4888ggfeOABTpo0iatWrSrWcrolLSEhgXXq1CEAarVafvTRRzd8bkFBAe+66y6GhIRwzZo11Ol0fOqpp+hwOFi/fn3GxsZe8bzc3Nyi3yUjRoxwyzKp1yMFjDKaaNitVo5v2ZIAGOvry3/ccA+lN3PY7bSnppL79jHx66/52YAB/G/btnyqdm3+q1w53mkycVtAAAnwi0vm5vAHGKPX88A995CPPsqtjz3GqT17ctFzz3HDzJlM+OMP5hdjpm4hhLid3GQBY+8lzzWX7isNW1nMK8q6AQMGUCnFVatWMTExkQEBAezUqdMVCxNJSUls1KgRtVot58yZU+y+N23aRAD873//y99++43PPvssIyIiCIA6nY7169enUoodOnSgxWK56faLU7xITU3liBEjqNVqGRISwhkzZtBqtd7w+VarlVu2bOH//vc/dunS5aKCRt26dTl06FAuXLjwloafHzlyhD169CAA/h979x1f8/U/cPx1sqfEJmaIvWqXWvWlpWrWpkbt2l97lVKlSlG+qjWCGG2KtkaMtqpG7ZEiJPZMkMiQPe7790ciP1si9+YS5/l4fB6593PP55z3JyQ5933PKFq0qKxfvz5TPylfs2aNALJ3716j1WkwGKRXr14CyPLly41W7+vOYDDIjh07pGPHjvLpp5/K//73P9m9e7dRd5N5nRgMBlm5cqU4OzuLs7OzzJkzR+qmvO/r0qVLmncicdl6AAAgAElEQVQU8vf3F0dHR7GyshJHR8fUqV/ffvutAHLy5MlHyt+9e1dq164tSin55ptvjH5faWWKNTA2As0Ai5etI7OPrNzR+HXcOHEGyaWUnPjhB3OH8+qJipK7Bw7IX3PnyuoBA2TWBx/I0LfeknYFC0pQ9eoiRYvK9JS5qo8ft3LkEKlYUdZVqiS9S5aUz+rVk8WdO8vmSZPk2OrVknTzpogZspKapmmvknQmML4GdgA9Uo5twKy0Xm+KAygLeAPfpXU6S1buV2RFD7ZJnTRpkoiItG/fXmxtbeXChQtPlPX39xd3d3dxcHBI81DttGjRooW4uLjIvXv3RCR5iPahQ4dk7NixUqpUqdS+h729vbRr104WLFggx48ff2Ey4WWTF4mJibJkyRLJlStX6tajxlhgMiEhQQ4dOiQzZ86UJk2aiKOjY+q9lStXTgYNGiTr169/4o1pQkKCzJo1S27fvi3h4eEyevRosbGxEUdHR5k+ffoz1x4xpRYtWkiBAgUkycjTtePj46Vx48ZiZWWV7q1Zs5qkpCTZuHGjVKtWTQDJnTv3Iwt0ApInTx559913ZdCgQfLdd9/Jnj17JCQkxNyhm0xwcHDqz3SdOnXk0qVLIpL8Mzt16lSxtLQUd3d3OXDgQJrqW758uQAyefLk1HMhISFPjC66cOGClChRQmxtbeXnn3826j2llykSGI2ANcBFYCZQ6mXryqwjq3c0zvn4SFtnZ7lvYSEyZ47IKziP61X2YMqK788/y7Zp02RZjx4ytWFDSejTR6R5c5nu5ib5LCxEPfTL1BIkCUQsLGS0o6O8ZW8vTXPnlp4lSsi4WrXku/btRby9RfbulTsHD8p9E88N1TRNM5f0JDCSi9MG+CblaJ2ea59S13LgDnD6sfNNAH/gAjD2BXWMAOqmPN6Ulnazer8iKwkICBAnJyepU6eOJCQkyPbt2wWQqVOnPlH20KFDkitXLsmVK5ccOnTIqHH4+vqKUkrGjRv31Nf9/PykdevWqUmM1FGjTk7SqFEjmTx5suzcufORxQVfNnlx4MABqVq1auobpBftwJIR8fHxcuDAAfnyyy/lvffeEwcHh9R7q1ChggwZMkQ2btwoK1euFEDq1asnefPmFUC6d+8uN2/eNFlszxMWFiY2NjYybNgwk9Vfvnx5cXFxkTNnzpikjVdZQkKCeHl5SdmyZQUQDw8PWbp0qcTFxYnBYJDr16/L9u3bZc6cOfLJJ59IzZo1HxndA0i+fPmkYcOGMnjwYFm8eLHs3bs3NUH4OjAYDBIWFiZ+fn7y+++/y8qVK+WLL76Q/Pnzi7W1tcycOfOp0zf2798vRYoUEUtLS/niiy9eOMXDYDDIyZMnn0jEderUSVxdXSU6OloOHjwouXLlkpw5c8q+ffuMep8v41n9CpX82stTSrkAnYAJwHVgCbBaRBIyVLEJvBH7td+/Dz16ELVxI9PLlmXCX3/hmCePuaPKUhJjYwk6dYpbp08TcukSTfPlg9u3WfjHH+y4eJHAyEiCYmO5bTDgRvIqdQAfkPwRoxOQz9qa/Pb2vJUnD982bQr587MjOBiDiwv5S5UiX5ky5CpZEis7O7Pdp6ZpWno8c7/2p5f9SkTGvOhcOtquB0QCq0SkfMo5SyAAaAzcAI6Q3F+xBGY8VsUnKV8nA9FAbRF550XtvhH9iiwgLi6O2rVrc/nyZXx9fcmVKxcVKlTA0tKSf//9F1tb29Sy27Zto23btuTNm5cdO3ZQokQJo8fTuXNnfvvtNy5evEi+fPmeWmbWrFmMGTOG1q1b06ZNGw4cOMD+/fv5999/EREsLCyoWLEib7/9NsePH+fw4cPMnTuXYcOGvbD9oKAgxo4dy8qVK3Fzc+Prr7+mU6dOKKWMfavPFB8fz9GjR9m9ezd//fUX+/fvJyYm5pEyVapU4fvvv6datTT9WjEJLy8vunXrxj///EOtWrVM0sa1a9eoWbMmdnZ2HDx4kLx585qknVdJbGwsK1eu5KuvvuLy5ctUqFCB8ePH07ZtW6ysrJ57rYhw/fp1zpw588jh5+dHVFRUarn8+fNTrly5R46iRYvi4OCAg4MD1tbWJv8/Hx8fT2BgIDdv3uTWrVuPfH348cNxP1CpUiU8PT2pXLnyM+sPCwtjwIAB/PjjjzRo0AAvLy8KFiyYrhh37drFf/7zH4YPH87ixYvJnz8/27Zto2TJkum+X2N7Vr8iQwkMpVROoCvwMXCL5BEZdYAKItLgpSs2kTemoyHCpu7daeXlRQU7OzZu3Urxhg3NHdUbx5CYSMSVK7jGxEBgIFu3b+fMuXMEBgURFBJCUHg4+Q0G1ioFERFUBE49dL0Cmllbs7lECciblxE3b5Job0+e3LnJkz8/eQsVwqNcOcq+/TbkyQOOjpCJnQ9N07SHpTOBcVxEqjx27l8RqZiB9osCWx5KYNQCpojI+ynPxwGIyOPJi8frsQQ2ikjLZ7zeF+gLULhw4apXr159WjHNzESEU6dO4ePjw8aNGzly5Ai//vorLVu25LPPPmPatGn8+eefNHyof7RixQp69+5NxYoV8fHxeWZyIaPOnz9PmTJlGDhwIPPnz39muenTpzNx4kR69OjBsmXLsLCwIDw8nIMHD7J//3727t3L3r17SUpKAqBQoUK88847qUfFihWxtLRMrS8+Pp5vv/2WqVOnEhsby4gRIxg/fjzOzs4muc/0iI+PZ9u2bbRp0wY3NzcCAwPp06cP3333nVnj+vDDDzl16hRXrlwx6ZvdY8eOUa9ePcqVK8fu3btxcHAwWVvmFBkZyffff8+cOXMIDAykZs2aTJgwgWbNmmFhYZGhug0GA9euXUtNZjyc2IiOjn6ivKWlJQ4ODtjb26cmNdLy/PFzNjY2BAcHP5GUuHnzJnfv3n2iXRsbG9zc3ChQoEDq18cf58+fH0dHxzTdt4iwcuVKBg0ahK2tLcuWLaNVq1bp+r7lyZOHkJAQatSowebNm8nzinz4bfQEhlLqF6AU4AWsEJHAh147mtZOTGZ6YxIYKXZMn06nSZMQYN3UqTSZONHcIWnPEh3N1ePHuXnmDEEXLxJ45Qp3bt+mANA3Z064c4eaR4/iHxdH+EOXdSY5awiQD7C3siKPrS15HB3J4+JC0/LlaVuvHpI7N7tu3SK3uzu5PTzI6eGBjZNTpt+mpmlZV1oSGEqpAcCnQDGSp6A+4AzsF5GuGWi/KI8mMNoCTUSkd8rzj4GaIjLoOdePBxyB70Rk34vafNP6FaYWHx/PzJkzKVeuHB9++OEjIyPSIjw8nD/++INt27axfft2bt68CcBbb71Fv3796N+/P/7+/lSsWJF27dqxevVqIPkNwMyZMxk/fjyNGjVi48aNJn9T37dvX1auXMn58+cpXLjwM8t9/vnnTJkyhd69e/P999+nvslLSEigU6dObNiwgf/+978UKVKE/fv3s2/fPm7dugWAk5MTb7/9Nu+88w7u7u7MmDEDf39/PvjgA+bNm2eS0SUZMWfOHEaOHImfnx/z58/H09OTS5cuUaBAAbPEExoaSt68eRkyZAizZ882eXubNm2iVatWtGrVip9//vmR5NPrLjQ0lAULFjB//nzu3btHw4YNmTBhAu+++67JR0EYDAauXr3KmTNnuHHjBjExMcTExBAdHZ16vOj5g3Px8fHPbStPnjzPTEw8+JozZ06T3HNAQACdO3fm2LFj9OvXj2+++eaFiTCDwcCoUaP45ptvADh16hTly5c3emwv65n9iqfNK0nLAXzwlHO2L1vfQ3XkAH4Hzqd8zf6UMm8BB4AzwL9Ah7TU/SbOVb34119S0c5OFMi6jz4SiY01d0haBsWGhcn1Q4fkqJeX+H33nYinpyTNmCEjqlaVru7u8l7OnPKWvb24WVjIOKVEQCKesjhpNpCvc+YUqVlTQt97T7oXLy4jqlWTmU2ayNLu3eXX8ePl6oYNIv7+knT3riSlYzVyTdPePKRhDQzABSgKrAOKPHTkeNG1aai7KA+tgQG0BZY+9PxjYGFG20mpqznwg4eHh0m+l2+qRYsWpf6Nyp49u/Tv318OHDjwzB0nDAaD+Pr6ysyZM6V+/fpiZWUlgLi4uEjbtm1l2bJlj6ydYDAYpGHDhuLi4pK6vWdiYqIMHDhQAOncubPExcVlyr1eu3ZNbGxspFevXs8tZzAYZMKECQJI//79xWAwSHx8vLRp0+apa14YDAa5fPmyrF69WgYMGJC6swkp6wts2bLFlLf10gwGg5QrV05q1qwpIsnbRlpZWcmQIUPMFtODRQ+NvQ7K8zzY1vfjjz+W06dPZ1q7phIUFCSjR48WJycnAaR58+ZpXnTyVZSQkCARERESFBQkly9fljNnzsixY8fk6tWrmfa743ni4uJk1KhRqbv/+Pr6PrNsTEyMtG3bVgDp0aOHWFhYyPjx4zMx2hd7Vr8iI3+8j6fl3EvUO4uUhbaAscBXTylTEiiR8tgNCARcX1T3m5jAEBGJvH1behQrJhdAxN1dwjw9xWDklZS1V1RSkkhIiMT5+sruefPEe/hw+a5TJ5nasKEMqVRJfBo0EGncWC6XLSuFLS3F/rEkx/9ABMQ3ZcHSPEpJWVtbqefiIm3c3GRfy5YiEybIrSlTZEWfPrJ50iTZv3ixnPPxkTt+fpKoE2aa9sZISwLDlMdTEhi1gB0PPR8HjDNmm29qv8IUoqOjJX/+/FKqVCmZOnWqfPjhh2JnZyeAlChRQqZNmyaXL1+W8PBw2bBhg/Tu3Tt1C1JAKlWqJGPHjpW///77mVuQPtgOc9GiRSKS3IF/sPjliBEjjL7LxIsMGzZMLC0t5dy5c88tZzAYZMyYMQLIp59+mrrI57x589LUTlhYmBw4cEBiX+G/yYcPHxZAFi9enHquV69eYmdnl7rlY2Zr0qSJFC1aNFO3bBURGTt2rFim7IxXqVIlmTVrlly/fj1TY8ioK1euyMCBA8XOzk4sLCykY8eOz30zrRnXzp07JV++fGJrayvz589/4v9wcHCwvPPOOwLI7NmzxWAwSLNmzcTNzS1d2yebmtESGCSPVK8KnAUqA1VSjgbAufTW95T6/YH8KY/zA/5puMb3QULjeccb39HYuVOkQgX5AKSWk5P88/335o5IewVF3bkjV/fvl2OrV0vg2rUiXl5y7bPPZMI770i/MmXkIzc3qefiImVtbWW7i4uIhYX4PGWEByDbQMTFRX7Pl0+qOTjIezlzSqciRWRghQoyqW5duT5lioiXl9xctUoOLFkiATt3SnBAgCS+AllsTdPS5xVMYFgBlwB3wCalr1DOSG3pERhGNnv27Cf+hlhaWkqePHme2E4REGdnZ/noo49k6dKlcuPGjRfWHxoaKnny5JHq1atLYmKihIaGSr169QSQOXPmZMIdPun27dvi6OgoHTp0eGFZg8Egw4YNS73/9Ow28joYMGCA2NnZSVhYWOq5CxcuiKWlpfz3v//N9HiCg4PFyspKRo8eneltiySPXJg/f77UqFFDAFFKybvvvitLly6V0NBQs8SUFufOnZMePXqIlZWVWFtbS69evSQgIMDcYb2R7ty5I82aNRNAmjVrJnfu3BGRR7dJ9fb2Ti3/yy+/CCCbN282V8hPMGYCozvwF3A/5euDYxPQJr31PaX+sIceq4efP6N8jZRkisUzXu8LHAWOFi5c2ATf2teLISFBlnbvLvksLASQ9oUKyaW//zZ3WNrrLClJYm7dkgt//imHPT1l27RpsubTT+Xbjz6S68OHiwweLLsbNZKmuXNLDUdH8bC2luxKiUoZ2SEpIz0e7pgqEFel5FLBgiJVqsjP5cvLRwUKSO9SpWRk9eoyvXFjWdSxo0SvXCmyfbvc3LxZ/Ldvlzt+fhIfFWXu74imvZHMmcAgeUpKIJBA8o4jvVLOf0DyTiQXgQnGbveN/2DESCIiIiRHjhxibW0tNWvWlN9//10GDx4sb7311iNbiT5+ODk5SbVq1WTgwIEyf/588fHxkYCAgKeOwPj000/FwsJCjh07Jjdu3JDy5cuLtbW1rF271gx3/P8eTA85efLkc8vFx8enjrwAZNSoUZk+MsBUYmJixNXVVTp37vzEa926dRN7e3u5fft2psa0ZMkSAeTYsWOZ2u7TBAQEyJQpU6REiRICiK2trbRp00Y2bNjwyoyqOXHihLRr106UUmJvby9Dhw6Va9eumTusN57BYJBvv/1WbG1tJV++fLJw4ULJnTu35MiRQ/bu3ftI2fj4eMmbN6+0bNnSTNE+6Vn9iows4vmRiGx4yWv/IHkkx+MmACtFxPWhsqEikv0Z9eQHdgPdReTgi9rVi239v8igIL7u0IGv9+whCdjYujXNli8HV9cXXqtpxpAUH48KD8ciLIwb587x7/Hj3AsKIuT2be6FhHAvNJQvSpfGJTqaH86eZd6NG4QmJhJmMBCbUsd9krelHQF881DdjkAOS0suly6NZY4c/BAezj9RUbg6O+Pq4oKLqys5c+WiW9Om4OrKlagoEuztcXFzw6VQIWyzZcvsb4emvfbSswtJSvkiJI+e/EMpZQ9Yich900VofLpfYRzTpk3js88+w8LCglq1anH48GESEhJwdnamcePGNG3alPfffx9bW1sCAgLYsWMHPj4+nDp1ioSEBJRSPNyftbS0xN3dHQ8PD0qUKEHu3LmZPHkygwcPpl+/fjRp0oTQ0FB++eUXGjVqZMY7T94G0d3dnTp16rB58+anlklISKBjx45s3LiRuXPncv78eRYtWsS4ceOYPn16pm5/ago//vgjnTp14vfff3/i38Pf35+yZcsycuRIvvrqq0yL6b333uPSpUucP3/+lfn+ighHjx5lzZo1rFu3jjt37uDi4kK7du3o0qUL9erVy/BOHmkVExODv78/Z8+eZfXq1fj4+JAtWzYGDRrE0KFDX5ldLLRk//77Lx07duTs2bO4u7uzbds2SpUq9US5MWPGMGfOHG7cuGGyXZjSw2i7kCiluorIaqXUCJKzwI8QkW+ecll66vcHGohI4IMEhYg88R1WSmUjOXnxpYisT0vduqPxpJtHjzLj44/54tw5XHPk4MqgQRQYMwbrLLp9k5Y1xIaFEXb1KnmtrFDh4fgeO8ZpPz9Cg4MJvXeP0LAwoiMjWVymDISFMdbPj7X37hGalERkSh25gAebW7UBfnmofjugrJUVx4oVAxcXxt+9S0BCAi6Ojrg6O+OSLRvuBQrwcaNG4OLCiTt3MDg44JwnD9ny5SObmxv2OXKgMqkjoWmvgnRuo9qH5BGSOUSkuFKqBLBYRP5j0iCNRCnVHGju4eHR5/z58+YO57V27949ChUqRHR0NLlz5yYyMpJBgwbxwQcfULt2bWxsbJ55bVxcHFu3bmXFihX4+PiQlJREoUKFKFWqFA4ODly/fp3z588TGRlJgQIFWL58OR07dsTGxoZt27ZRuXLlTLzTZ5sxYwbjx4/nn3/+oVatWo+8lpCQQIcOHfjll1+YN28eQ4cOxWAw0L9/f5YsWcJnn33G559/bqbIjeP999/n3LlzXL58+alvwLt06cJvv/3GlStXyJUrl8njuXv3Lvnz52f06NF8+eWXJm/vZSQmJvLnn3+yZs0afvnlFyIjIylYsCCdOnWiS5cuVKxY0SiJl/DwcM6ePZt6+Pn5cfbsWS5fvpyaNMyVKxfDhg1j4MCBuOoPQl9Z0dHRrF69mlatWj0zwRQQEECpUqWYOXMmY8aMyeQIn2TMBEY/EfleKTX5aa+LSIZ+iyqlvgZCRGSmUmosyZ2b0Y+VsQG2AZtFZF5a69YJjOc4eZKkESN4a9cu4qytmTViBC2nT9dvwLQsJyk+noibN4kKCqKggwOEhXHg0CEuXrpEWEgI4WFhhIeH45iUxGQPDwgPp8+JE+wPCyMsMZFwg4FooDpwOKXOysDJx9p5F9jl6grZstE8NJR7gLONDdns7cnm4EDNwoXpU7s2ZMvGmrNnsXRwIFvOnGTLnZtsefKQt3Bh8hYrBk5OYGsLr8gnQJr2LOlMYJwkeQroIRGpnHLulIhUMGWMxqb7FRk3evRovv76a6ytrRERtmzZwvvvv5/ueu7evcuPP/7IqlWrOHr0KJaWljRp0oSPP/6Yt99+m3379tG7d28KFSrEjh07cHd3N8HdvJyoqCiKFStG2bJl2bVrV+obz6clLx4wGAz07t0bT09Ppk6dyqRJk8wVfoZcv36dIkWKMHHiRKZOnfrUMn5+fpQvX57x48fzxRdfmDym77//nv79+3Py5EkqVapk8vYyKjo6mk2bNrFmzRq2b99OYmIi5cqVo0uXLnTu3JkiRYo893oR4e7du48kKB48frAlL4CtrS2lSpWiTJkylClThrJly1KmTBlKliz53ESj9nqpX78+gYGB+Pv7m330kdESGA9VmFtE7r64ZLrrzQl4A4WBq0B7EbmnlKoG9BeR3kqproAnyduoPtBDRB5/D/EI3dF4PjEY8Jk6lVEzZnA2Pp76Li7M/vZbqnXrZu7QNO2VkhAdTeydOzgbDBAezqEDB7gTGEhESAgRoaHcDw8nv7U1HxcpAhER9N69m6v37xMRF0dEQgIRiYm8Z2GBZ2IikLyvZMRjbfQElpM8zM0RsFUKZwsLnCwtcba2poubG0PKliXBwYEhvr44OTjg7OyMk7MzTtmyUaNsWd4qX54Ee3t8b93COXdunHLnxjlvXhzz5MHS1jZTv2da1pfOBMYhEamplDohIpWVUlYk72RW0cRhGpXuV2RMUFAQhQoVIjHld+FPP/1E+/btM1yvn58fXl5eeHl5cfPmTbJly0ZkZCRVq1Zl69at5M6dO8NtGNuCBQsYMmRI6jSK5yUvHkhKSqJnz554eXkxY8YMxo4da4bIM2b69OlMnDiRixcvUqxYsWeW69ChA9u2bePq1atkz/7UmeVG85///IcbN25w7tw5s7+BS6/g4GC8vb1Zs2YN//zzDwB169alS5cutG3blqioqKcmKu7du5dah5OT0yMJigeP3d3dsbS0NNetaZnEy8uLbt268ffff1OvXj2zxmKKBEYAcAX4CdgoIqEZijAT6I5G2iTGxrK0Z08+++kn7orw+3/+QyNPTyhUyNyhaVrWYjBAZCQ3/P2JCAwk4u5d7t+9S0RICAVtbamZNy+G8HAm+vhwPzKSyJgY7sfEEBkbSysXF/o7OREeHk6Ja9eIFCHmoaqnApNIXs3waT+5cy0tGebiwkVbW5qHhOBoZYWTtTWONjY42tkxoFw5Gnh4cNNgwNPfH0cnJ5ycnXHMlg0nV1eqV6xI/sKFiVKK27GxOOTIgWOuXDjkzKmTI2+odCYwZgFhQDdgMPAp4CciE0wYotHoKSTG0a1bN7y8vAD44Ycf6NOnj1HrT0pK4q+//mLVqlUopVi0aBGOjo5GbcNY4uLiKFmyJHnz5mXfvn107NjxucmLB5KSkujWrRtr167l66+/ZuTIkZkYdcaICCVLlqRAgQLs3r37uWVPnTpFxYoVmTx5MlOmTDFZTLdv38bNzY0JEyY8c0TI6+Ly5cusXbuWNWvWcPbs2Sdez5kzZ2qS4uFkRcGCBV+7xI1mPNHR0eTPn5+WLVuyatUqs8Zi9ARGSqU1gI5AK8AP+FFEVr90hSamExjpE3HjBt9368bw/fuxsrDgUIcOlJk+nWwFCpg7NE3TniIxNpaoO3e4f/s2jgYD2S0siA4O5o99+4gMC+N+WBiRERFERUXxXoECvJ0tG1dv32bkwYNExccTFRdHZEICUUlJfOnsTJukJPbev0+9pKQn2toItAa2A00fe80G8HF05D8uLuwERt+7h4OVFQ4pCRIHW1um1aiBR758HIuIYMu1azg6OuLg5JR8ODvTpFYtsuXKRVB0NLejorB3ccHe1RX77Nmxz54dh5w5UfqToFdKOhMYFkAv4D2SdxzbASyVjHRKzED3K17elStXUqdxjB8/nunTp5s5IvNbvnw5vXr1olKlSvj6+r4wefFAYmIiXbp0wdvbm7lz5zJs2LBMiDbj9u3bR926dVmxYgXdu3d/Yfk2bdqwa9curl69iouLi0liWrRoEQMHDuTUqVOUL1/eJG1kNhHh5MmTbN26lVy5cqUmK17FkUjaq+HTTz/F09OTwMBAs65rYpIExkOV5yJ5E4AuIvLK9ih1R+MlXbtG3JgxFPnxR0QpPu/Uid7LlmFlZ2fuyDRNywTxUVFE3b2bfAQHE3XvHu7Zs5NdKW5cu8afR48SHRlJVGQk0VFRREdH06dUKYpbW7P3yhVmnzlDdHw80QkJRCcmEpWYyC85clAuPp7v79+nf8rw8YcFACWAr4HRT7wKNwE3GxtmWVgwLz4eewsL7C0tkw8rK7ZXr46DkxNr7txhV3Aw9nZ22NvaYm9vj729PWPffx9lb8+Bmze5GhGBvaMjdk5O2Dk54ejiQrXKlcHennuxsSRZWWHn6oqdqytWdnZ6baBnSGcCwxGIFZGklOeWgK2IRJsyRmPT/YqXV6RIEa5du0adOnXYu3evucN5JTxYuyAgICDNyYsHHt6pZOHChQwcONCEkRpHr169+OmnnwgKCsLJyemF5U+cOEGVKlWYNm0aEydONElMDRo04M6dO5w5c0aPQtDeWMePH6dq1aosWrSIAQMGmC0OU0whyUbyB3AdgeIkL+LvLSLHMhKoKemORsYcWbmSEUOGsDcigrK2tnw9fjxNJ07UnXlN0zIkKT6emHv3iA4JIfrePaJDQ/HIlQubhAQuXLzIKX9/YiIjiUlJkMRERzOocmUckpLYdPo0Wy5cIDoujpj4eGISEohJSGCnhwfWcXFMuXGDpeHhxIgkH4A1EJ/Sdk9gxWPxZAcezAZuBzy8zZUF4KEU/jlygJ0dvSIiOBQfj52lJXaWlthaWVHCyYnF1aqBnR0z/P25GhuLnY0NthjCKEAAACAASURBVDY22NnZ4Z47Nz1q1wZbW37x8yPKYMDWwQE7BwdsHRzImzcvlcqVAzs7LgQFoWxssHVywtbJCRsnJ+xdXbFxcnrlFnZNZwLjINBIRCJTnjsBO0WktiljNBY9hSRjhgwZwoIFC7Czs+P+/ftYWVmZO6RXhp+fH5cvX6ZZs2bpvjY+Pp527dqxadMmFi9eTL9+/UwQoXFERUWRL18+2rVrx/Lly9N8XYsWLdi/fz9XrlzB2dnZqDHdunWLggULMnnyZCZPfupeBZr2xqhcuTIWFhYcO2a+t/amSGBcBn4lOWlxIIPxZQqdwMg4MRj4ddw4Rs+dy4WEBA5Ur87b33wD77zzynWmNU3THicGA3EREdgBxMZy+/p17t2+Tez9+8Tcv0/s/fsYYmNpVKYMxMby+9GjBNy4QWxMTPIRG4ujUoytVAliYph+9CjHg4OJSUggLjGRuMREilhbs8bNDeLiaH79Oofj4ogVIQ6IA+oADz5vLgOceyzGJiRvswXJ65fceOz1tsDPANbWFEpMJBqwUQpbpbC1sKC9qyvTihQBGxsanT2LVUpixdbKChsrK76sX5/CK1YY/Xub3l1IROStF5171el+RfotWbKEvn37AuDj40PTpo9PQtMyIi4ujjZt2uDj48PSpUvp1auXuUN6qpUrV9KjRw/27NlD3bp103zdkSNHqFGjhkm2eXywkOqZM2coW7asUevWtNfN//73PwYNGsTx48fNtuW0KRIYSs9VfXPFR0ayafBg2m7aBPfuMTNfPnI0akSXOXNwfMbewpqmaW86MRhIjI7G2mCAuDhuXblCVHg4cffvExsZSVxUFM6WllQsWBBiY/l1/34iIiKIi40lLiaG+Ph4PFxcaFGsGMTHM+6PP7gfG0t8QgJx8fHEJSTQIEcO+hcogMTGUv/oUeKSkpIPg4F4g4FtxYtT8tzjaZOMS2cCYz8wWESOpzyvCiwUkVpGD8yEdL8ifby9venQoQMAVapUMesne1lZbGwsrVq1YufOnXh6eqZpfYnM1qBBA27evElAQEC6p2o0bdqUo0ePcuXKFaMuylq3bl3CwsI4deqU0erUtNdVaGgobm5u9OrVi4ULF5olBqMlMJRS80RkmFJqM8k7/D1CRFq8fJimpTsaJhAVhaxZQ53hw/knOhoXoGflynw6axYlGjUyd3SapmlaJklnAqM68CNwi+RFPPMBHV7laahPo/sVabd9+3aaN2+OiGAwGLh8+TJFihQxd1hZVkxMDC1atODPP/9k1apVdO3a1dwhpbp06RLFixfniy++YMKE9G88dODAAWrXrs3s2bMZMWKEUWK6ceMGhQoVMun6Gpr2uunatStbtmwhMDAQe3v7TG//Wf2Kl1m8wCvl62xgzlMO7U3i6Ijq25d99++z93//o2nhwiw8cYKSjRuzsGxZ2LoVnrKDgaZpmvbmEpEjQGlgANAfKPM6JS+UUs2VUj+Eh4ebO5TXwv79+2nTpg2urq4kJSXRvn17nbwwMXt7e3777Tfq169P9+7d+fHHH80dUqoVK1aglKJbt24vdX2tWrVo1KgRX3/9NdHRxln3d/365NWO2rdvb5T6NC0r6N27N+Hh4WzYsMHcoTwiI1NIhorI/Bede5XoT0oyR+DJkywZPpx2p09TJjiYw25u7KlcmU/mzydH8eLmDk/TNE0zgfSMwEgpXxsoCqSu4Cgi5t10Pp10v+LFfH19qV+/PtmzZ+fatWtYWlpy9+5dk22DqT0qKiqKpk2b8s8//7Bz504aNmxo1ngMBgPu7u6ULl2aHTt2vHQ9e/fupV69eunereVZatWqRWxsLCdOnMhwXZqWVYgIJUuWpGDBgvz111+Z3r4xR2A88LQJdT0yUJ+WReR/6y0+++svyty6Bd7ebLO2ZtTWrRTw8KBXyZIcX7vW3CFqmqZpZqSU8iJ5JGcdoHrKkebkh/Z6OH/+PO+//z6Ojo7kzJkTg8HAqFGjdPIiEzk6OrJ161aKFi3KgAEDiI+Pf/FFJrRr1y6uXbtGz549M1RP3bp1adCgAV999RWxsbEZquvq1ascPHhQj77QtMcopfjkk0/YvXs3r9KOW+lOYCilOqWsf+GulNr00PEX/7/znKaBtTW0a8fkK1f4d/16upcpw4/nz1O1Sxda5sgBa9eCmf+QapqmaWZRDXhHRD4VkcEpxxBzB6UZz40bN2jcuDFJSUmMGTOGY8eO4ezsrNcXMANnZ2e+/fZbAgICmDt3rllj8fT0xNXVlVatWmW4rkmTJhEYGJiubVifRk8f0bRn6969O5aWlhn+OTOml1nEswjgDswAxj700n3gXxFJNF54xqWHeppf2NWrrBw2DIv9+xl89y5JefIwp3x5Os+cScHq1c0dnqZpmvaS0rmI58/AEBEJNHFYJqX7FU8XHBxMvXr1uHHjBlu2bKFNmzaEhITw7bffMnjwYHOH98Zq0aIFu3bt4ty5cxQsWDDT2w8PDydfvnz07NmTRYsWZbg+EaFu3bpcvXqVCxcuYGtr+1L11KhRA4PBgP5Z1rSna9myJYcPH+b69etYWVm9+AIjMdoUEhG5KiK7RaSWiPz90HH8VU5eaK8G1yJFGPrLLwwOCoLt2zlWsiRjd+2iaI0atC1YkN3z5iEGg7nD1DRN00wrF+CnlNrx8GhOcweVVnoRz2eLiIigadOmXLp0iU2bNrFx40ZCQkLIly8f/fr1M3d4b7R58+aRmJjIqFGjzNL+Tz/9RGxsbIanjzyglOKzzz7jxo0brFy58qXquHz5MkeOHNGjLzTtOXr16kVQUBA+Pj7mDgV4uREY+0SkjlLqPo9uo6oAEZFsxgzQmPQnJa+my3v28N2oUSw7coR7IpSztWXr+PEUGTAAcuc2d3iapmlaGqRzBEb9p50Xkb+NG5Vp6X7Fo2JjY2natCl79+7ll19+oUCBAlSvXh2DwYCnpyc9evQwd4hvvMmTJzN16lR27drFu+++m6lt16pVi4iICE6fPo1Syih1igi1atUiKCiI8+fPY21tna7rv/rqK8aOHcvly5cpWrSoUWLStKwmMTGRwoULU61aNTZtyrzPGow5AqNOyldnEcn20OH8KicvtFeXe716zDp0iBvBwSz/5BOK2dlRcPJkyJ+fZRUqsLJvXyJu3DB3mJqmaZqRpCQqrgDWKY+PAMfNGpSWIQkJCXTo0IHdu3ezYsUKPvjgA/r164eFhQUeHh507drV3CFqwNixYylatCiDBw8mISEh09o9e/YsBw8epGfPnkZLXsD/j8K4evUqXl5e6b7e29ubGjVq6OSFpj2HlZUVPXr0wMfHh1u3bpk7nJffhUQpVVwpZZvyuIFSaohSytV4oWlvGvscOei5bBmbwsKw/PdfGD2aFefP02PJEvIUKkTbggXZMGoUsWFh5g5V0zRNywClVB9gPfB9yqkCwK/mi0jLCIPBQK9evdi0aRMLFiyga9euLFq0iKNHj5KYmMj06dMzdd609mz29vbMnTuXM2fOsHDhwkxrd8WKFVhaWpokkdW0aVOqVq3K9OnTSUxM+2z2CxcucPz4cT19RNPS4JNPPiEpKemlp2sZU0a2Ud0AJCmlPIAfgEKA3h9TM44KFeDLL9kTHc0/339P34oV2XvrFm1nz2ZQnjzQowfs2EFiBrfO0jRN08xiIPAOEAEgIueBPGaNSHspIsKwYcPw8vJi6tSpDBo0iJs3bzJhwgTs7e2pWLEibdu2NXeY2kNatmxJkyZNmDx5MkFBQSZvLzExkVWrVvHBBx+QL18+o9evlGLSpElcunSJdevWpfk6b29vANq1a2f0mDQtq/Hw8KBBgwYsW7YMg5nXK8xIAsOQsmhna2CBiIwC8hsnLE1LpiwsqNW3L9/6+nIzOpqdM2Yw+IMP4NdfOdWkCW4ODgysUIH9332HIR1Zd03TNM2s4kQkdR9tpZQVj66rpb0mPv/8cxYsWMDw4cNTt0gdNmwYsbGxxMTEMH36dCwsMtLd1IxNKcX8+fOJjY1l9OjRJm9vx44dBAUFGW3xzqdp0aIFlSpV4osvviApKSlN13h7e1OrVi0KFy5ssrg0LSvp3bs3Fy9eZM+ePWaNIyN/URKUUp2A7sCWlHPpWzlH09LBys6OxmPHUunXXyEoCDVvHg0KFGD56dPU+fRT3O3sGPP224T8/Tekc3FaTdM0LVP9rZQaD9grpRoDPwObzRyTlk7z58/n888/p0ePHsyePRulFFu3bmX9+vXY29vz9ttv06xZM3OHqT1FyZIlGTlyJF5eXuzbt8+kbXl6epIrVy6T/l94MAojICAgdWTF8/j7++Pr60uHDh1MFpOmZTVt2rTBxcWFpUuXmjWOjCQwegK1gOkiclkp5Q6kf/UcTXsZdnaUHzoU7+vXuXPzJqv69aNcjhwsPnQI2wYNoFw5DvTpw4U//zR3pJqmadqTxgJ3gVNAP8AHmGjWiLR0WbduHcOGDaN169YsWbIECwsLoqKiGDhwIHnz5iUiIoLp06cbdcFGzbgmTJhAwYIFGTRoUJpHLaRXcHAwmzZtomvXrtjY2JikjQdat25NuXLlmDZt2guHuD9IcujpTZqWdvb29nTt2pX169cTGhpqtjheOoEhIn4iMkRE1qU8vywiXxkvNE1LG2c3Nz5evBifO3cIvHoVp+++g9y5GbR0KSUaNaKGkxNzW7Xi1nG9wL2maZq5KaUsAS8RWSIi7USkbcrj12bonFKquVLqh/DwcHOHYhZ37tzh008/pXbt2qxduzZ1gc6pU6dy9epVYmNjadiwIQ0bNjRzpNrzODo6MmfOHHx9fVm8eLFJ2li3bh0JCQkmnT7ygIWFBRMnTuTs2bNs2LDhuWW9vb2pU6cOBQoUMHlcmpaV9O7dm7i4ONauNd/Sl+pl+wtKqXeAKUARwApQgIhIMaNFZ2R6v/Y3y/VDh/hp2jTW7drF8ZgYFDDCzY2vBw+G5s2hbFnQnwxpmqYZxbP2a39G2X1Aw4fXwXgdvan9iu7du7Nu3Tp8fX0pU6YMAKdOnaJKlSpUqlSJY8eOceDAAd5++20zR6q9iIjQqFEjjh8/TkBAALlz5zZq/VWqVEEpxbFjx4xa77MkJSVRrlw5bG1tOXHixFPXX/Hz86NcuXIsWLCAQYMGZUpcmpaVVK1alaSkJE6cOGHSUXbP6ldkZArJMuAboA5QHaiW8lXTXgmFatZk5JYtHIuO5pyPD1PefZd37O1h3DgCy5fHw8aGYZUr8+fXX5MQHW3ucDVN094kl4D9SqlJSqn/PjjMHZT2Yn///TerVq1i5MiRqckLg8FAv379cHFx4fz583z44Yc6efGaUEqxYMECIiMjGTdunFHr9vX15cSJE5ky+uIBS0tLJk6cyL///sumTZueWsbb2xulFB999FGmxaVpWUnv3r3x9fXluJlGt2ckgREuIttE5I6IhDw4jBaZphlRqaZN+WzXLlpduAA3bhA2eTKlc+Rg8cmTNBo9mtyOjnQsXJjzc+bAvXvmDlfTNC2ru0jyAuAWgPNDh/YKi4+PZ8CAARQtWjR1xxGAJUuWcODAAWrXrk1ERATTpk0zY5RaepUtW5ahQ4eybNkyDh8+bLR6PT09sbGxoXPnzkarMy06duyIh4cHU6dO5fGR5iKCt7c39erVI39+vXmipr2MTp06YW9vz7Jly8zSfkamkMwELIGNQNyD8yLyyi408KYO9dSeLerOHf6YN4/NGzaw9cIFjhoMFLC0xKdMGc4WLUqLwYMp8d575g5T0zTtlZeeKSQPXeMgIq/tELg3rV8xc+ZMxo0bx+bNm/nwww8BuH37NqVLl6ZcuXKcOHGCDz/8kJ9++snMkWrpFRERQalSpShYsCAHDx7E0tIyQ/XFx8dToEAB3n333TTtCmJsnp6efPLJJ4/8X4XkqU4VK1Zk0aJFDBgwINPj0rSsolu3bvz2228EBgbi4OBgkjZMMYWkJsnTRr4E5qQcszNQHwBKqRxKqd+VUudTvmZ/TtlsSqkbSqmFGW1XezM55slDyy+/ZKm/P7fi4ylw8CCMHcu2wEBGbtlCyfffp7StLaOqV2fvggWQmGjukDVN0157SqlaSik/4FzK80pKqUVmDkt7jitXrjB16lRatWr1yBvC//73v0RHR+Ph4UFsbCyff/65GaPUXla2bNmYPXs2R48eZfny5Rmub8uWLQQHB9OjR4+MB/cSunbtStGiRZ8YheHt7Y2FhQVt2rQxS1yallX07t2biIgI1q9fn+ltv/QIDFNRSs0C7onITKXUWCC7iIx5Rtn5QO6U8i9chedN+6REy5gr+/axZf58Nu3axe5796gAHMuRAz74gL0eHlTs2ROXwoXNHaamadorIZ2LeB4C2gKbRKRyyrnTIlLelDEa25vUr2jRogV//vknZ8+epXDK377ff/+d9957j+HDh7No0SI6deqEp6enmSPVXpaIUL9+ffz8/AgICCBHjhwvXVfz5s05duwY165dS92lJrMtWbKEvn37sm3bNpo0aYKIULp0aQoVKsQff/xhlpg0LasQEUqVKkX+/Pn5+++/TdKG0UdgKKXyKqWWKaW2pTwvq5TqlZEgU7QEVqY8Xgm0ekb7VYG8wE4jtKlpTyhapw6Dfv6ZnSEhBF+/zuq5c6FZM2J8fHh/yhRyFylC45w5mde6NWd++w15wZ7jmqZp2v8TkeuPnUoySyDaC/32229s3ryZKVOmpCYvYmJiGDBgACVLliQiIgKDwcDkyZPNHKmWEUopFi5cSGho6CNrnKRXUFAQ27Zto1u3bmZLXkDybjmFChVKHYXh6+tLQEAA7du3N1tMmpZVKKXo1asXe/bsISAgIFPbzsgUkhXADsAt5XkAMCyjAQF5RSQw5XEQyUmKRyilLEiesjLyRZUppfoqpY4qpY7evXvXCOFpb6JsBQtSZtgwWLUKm1u32LFgAcOqV+dGZCTDf/2V8q1a8bWrK3TrRuySJdx8Qz6R0zRNe0nXlVK1AVFKWSulRgJnzR2U9qSoqCiGDBlC+fLlGTbs/7t5M2fO5OLFi3z22WesXLmSPn36ULRoUfMFqhlFxYoVGThwIIsXL37pHQa8vLxISkrK1N1HnsbGxoZx48Zx4MABdu3ahbe3N5aWlnr6iKYZSffu3bG0tMz0xTwzsojnERGprpQ68dDwz5Mi8lYarv0DyPeUlyYAK0XE9aGyoSLyyDoYSqlBgIOIzFJK9QCq6Skkmrlc2bePP5cu5Z27dyl9+DBbg4P5EChjY8N/SpWi0Ycf0qB/fz3dRNO0LC2dU0hyAfOBRoAieTTl0MzazUwpVYzkPoeLiLRNOecILALigd0isuZF9bwJ/YoxY8Ywa9Ys9u7dS506dQC4fPkyZcqU4aOPPsLS0pKff/6Zixcv4ubm9oLatNdBWFgYJUuWxMPDg3379mFhkfbPO0WEcuXK4erqyj///GPCKNMmNjaW4sWLU7x4cW7dukXx4sXZsWOHucPStCyjdevWHD58mOvXr6frd0VamGIRzyilVE5AUhp4GwhPy4Ui0khEyj/l+A24rZTKn1JnfuDOU6qoBQxSSl0heeHQbim7omhapitapw69Vqyg9NatcPs2FbZtY/aHH1IkWzaWnTpFqxkzyFGkCAFvvQWTJhGyaRNxERHmDlvTNC3TKaW+Snn4roh0EZG8IpJHRLqmNXmhlFqulLqjlDr92PkmSil/pdSFlDW0nklELonI49Ne2wDrRaQP0CKt95SVnT59mm+++YaePXumJi8ARowYgZWVFb1792b16tUMGjRIJy+yEFdXV7766isOHDiAl5dXuq49cuQIZ8+eNfvoiwfs7OwYM2YMe/fu5eLFi3r6iKYZ2cyZMzl06JDRkxfPk5ERGFWABUB54DTJi2m2FZF/MxSQUl8DIQ8t4plDREY/p3wP9AgM7RUVFxHBQU9P9vzyCxNiY7E4coS+BgNrgHq5ctHo7bdp9PHHVGjTBgszzhPVNE3LqLSMwFBKnQIqAsdEpMpLtlMPiARWPVj0UyllSfJU1sbADeAI0Ink7d5nPFbFJyJyJ+W69Q+NwBgHbBORk0qptSLS+UWxZOV+xYMFHc+cOYO/vz+5cuUC4I8//qBx48Z8+eWXHDt2jJ07d3Lp0qXU17WswWAw8M4773Dp0iX8/f1xdXV98UXAgAEDWLlyJUFBQWTLls3EUaZNTEwM7u7uhISEcPv27QwtTqppWuYx+ggMETkO1AdqA/2AchlNXqSYCTRWSp0neWjpTAClVDWl1FIj1K9pmcY2WzbqDx3KpN27sTh4EEJC6PD553xSoQJXIiIYuWULb3XoQE17e+jUCZYtI/RfY/wYaZqmvZK2A6FARaVUhFLq/sNf01KBiOwB7j12ugZwIWVkRTzwI9BSRE6JyIePHU8b2QnJiY+CKY+f2T96U9bWWrlyJXv37uWrr75KTU4kJCQwdOhQihcvToMGDdiwYQPDhw/XyYssyMLCgoULF3L37l2mTJmSpmtiYmJYt24dH3300SuTvACwt7dn2bJlzJ07VycvNC0LyMgIjHbAdhG5r5SaCFQBvkhJbLySsvInJdrr6caRI/z5ww8knDpF76tXkaAg8gPO1tbUd3enTt261O3UiWLvvovKxKFZmqZp6ZXGERi2IhKnlPpNRFpmoK2iwJaHRmC0BZqISO+U5x8DNZ81OjNlCux0kkdsLBWRGSlrYCwEYoF9b/IaGCEhIZQuXZoSJUo8sgbCt99+y9ChQ/n111+ZN28evr6+XL58GRcXFzNHrJlK//79Wbp0KSdOnKBChQrPLbtu3To6d+7Mn3/+ScOGDTMpQk3TsipTrIExKSV5UQf4D7AM+C4D9WnaG6dg9ep0X7KE3gcPwq1bJJw4wbjWrSmdPTsbz5+n57JleDRqxMRs2aBtWxLmzOHoqlUkxsaaO3RN07SXcSDlq1kXAhKREBHpLyLFRWRGyrkoEekpIgNelLxQSjVXSv0QHp6mpb9eO+PGjSM0NJTFixenJi/u3r3LZ599xvvvv09YWBi7d+9mxowZOnmRxU2fPh0XFxcGDRrEiz709PT0pGjRojRo0CBzgtM07Y2UkQTGg/3amwFLRGQrYJPxkDTtDaUUNm+9xdCNG9l8+zbB8fGc/vVXFnfuTMu6deHYMU6MHEn17t1xtbenUY4cTGnQgD9mzSL6zrNGRGuapr1SbJRSnYHaSqk2jx8ZqPcmUOih5wVTzpmEiGwWkb5Z8c37wYMHWbJkCUOHDqVixYqp5ydMmEBUVBRTpkxh5MiR1KpViz59+pgxUi0z5MyZky+//JI9e/bw448/PrPctWvX+OOPP+jevXumLuanadqbJyNTSLaQ3DloTPL0kRjgsIhUMl54xpVVh3pqb47Q06fZuWQJ+/76i30XLuAbE4MAuywseLdyZfzKlMEvTx7qdO9Ovoc6npqmaaaWxikkdYAuQHtg02Mvi4h8ksa2ivLoFBIrkhfx/A/JfZMjQGcROZOee0grpVRzoLmHh0ef8+fPm6IJs0hMTKRatWoEBwdz9uxZnJ2dATh+/DjVqlVj+PDhhIWFsWrVKo4fP/7CKQVa1pCUlETNmjUJDAzk3Llzqf8vHvbFF18wadIkLl26hLu7uxmi1DQtq3lWvyIjCQwHoAlwSkTOp2x5WkFEdmYsVNPRCQwtqwm/do2DXl7UvX8fh0OHmLRvH18kJgLgYW1NnSJFqPPOO3QdMQLb8uVBKTNHrGlaVpWWBMZDZXuJyLKXbGcd0ADIBdwGJovIMqXUB8A8knceWS4i01+m/vTIav2KefPmMXz4cNavX89HH30EJO9GUrduXc6fP4+npyfNmjVjzJgxzJypd69/kxw8eJBatWoxatQoZs2a9chrIkKJEiUoVKgQf/31l5ki1DQtqzF6AuN1lNU6Gpr2uPjISE789BP7fv2VfceOsS8oiHgR7gGWuXLxXf78hOTJQ/V336Va+/bkLFHC3CFrmpZFpHEERkMR2fWs6SIistE00ZlGVupX3Lx5k9KlS1O3bl22bt2KSkl4r127li5durB48WLmzZtHbGwsZ86cwcHBwcwRa5mtV69erFq1in///ZcyZcqknt+zZw/169dn5cqVdOvWzYwRapqWlegEBlmro6FpaSEGA7f27aPA+fOwbx9t1q/nl8jI1NeLWVnRqlgx5vTtC9Wrk1ChAtbZs5sxYk3TXldpTGB8LiKTlVKeT3k5zVNIzC0rTiFp3749mzdv5syZMxQrVgyAyMhISpUqhZubG82bN2fy5Mn4+PjQtGlTM0ermcOdO3coVaoU1apVY+fOnalJrp49e7JhwwYCAwNxdHQ0c5SapmUVOoGBTmBoGiRPOzn2888c+eMPjpw6RcGICObdvw9AYSCbrS3VCxWietWqVG/alIqtW2P7Cu3nrmnaqyk9U0iyiqzSr9ixYwdNmjRh2rRpTJw4MfX8hAkT+PLLL/H29ubjjz+mRYsWeHt7mzFSzdwWLlzI4MGD+fnnn2nbti2RkZHky5ePjh07snTpUnOHp2laFqITGGSdjoamGd3t2yQeOsQX33zDET8/jgQHczfld8MQCwvmV6lCQpUqrE5IoHrz5pRp1gxLG73pkKZp/y+NIzD++7zXReQb40ZlWlmhXxETE0OFChWwsrLC19cXW1tbAC5evEjZsmXp0KEDgYGBHD58mLNnz+Lm5mbmiDVzSkxMpGrVqoSGhnL27P+xd+dxUdX7H8dfXxgYYBj2RRRQy11JUyQ1l8qt8try89a9de9ts0zbb9ttd0nLlvvLW5ZWlm22/2yxxbVMMzfUzAWXUAERZWcGZmFgvr8/QC4mmhrDDPB5Ph7nwZnDmTOfcwT8znu+3+/J4JNPPuHGG2/kxx9/5Pzzz/d2eUKIFuRE7QqDN4oRQviY+HgMl13GlMsuA2qGnmSvXcvGhQs5q7AQsrPZRk0ENgAAIABJREFU/t573GSzwfz5mIC+YWGkde7MjX/5Cz0vuww6dQJ/f++ehxDC1x29fUFXoD//vRPJWGCDVyo6A/WGkHi7lD9s5syZZGZmsmLFirrwAuC+++4jMDCQ8847jzvuuIPZs2dLeCEwGAy8/PLLDBkyhKeffprVq1fTpUsXBg0a5O3ShBCthPTAEEKcEndVFXuWLGHjl1+ycd06NmRm8nNFBV8Co4DlRiOPGgz0Tkqid0oK5wwdyjmXXUZ4crK3SxdCNIHTvAvJKmCM1tpa+9gMfK21HurJGhtbc29X7Nmzh5SUFP785z+zYMGCuu1Lly5l9OjRTJ48mTlz5tChQwd++ukn/CWkFrX+8Y9/8NFHH+FyuXjqqad4+OGHvV2SEKKFkSEkNP+GhhC+prK8HLVzJwE7drD8q6946rvv2FpWRnG9vys727ale//+bIqNJSsignMuvpizhg3DzyAdwIRoSU4zwNgNnKO1dtY+NgK/aK27erLGxtac2xVaa0aNGsXGjRvZtWsXbdq0AcDlcnHOOedQVVXFsGHDeOutt0hPT6dPnz5erlj4kry8PLp27UpFRQXZ2dm0a9fO2yUJIVoYGUIihGh0gaGhkJYGaWmMuPFGRlAz/CR30ya2fv01W9eupVN4OGzbxltffMFsgOefJxRICQ2ld3IyL02ahKFvX9w9e+IXHu7dExJCNJV3gA1Kqc9qH18BvOW9ck5PSxhC8tFHH7F8+XJmz55dF15AzSSNu3bt4plnnuFf//oX9913n4QX4jgJCQm88cYbZGZmSnghhGhS0gNDCNEkbIWF7Pz6a7Z+/z1bt2xha1YWRVYr291uAK4CthgM9I6L45wuXTgnLY1eF15I5+HDISDAu8ULIX7X6d6FRCnVFxhS+3CV1nqLZyrznObarigrK6Nbt24kJiaybt26uqEh+fn5dO7cmUGDBpGTk4PFYmHnzp2EhoZ6uWIhhBCtjfTAEEJ4VUhMDKnXX0/q9df/d6PWkJ0Nv/zC8Ndfh82b2Zqfz2eHDqFXriTt2WdZHxAAnTvzUFUVgXFxdO/Th+6DB9N15EiCo6K8d0JCiD9Ea70Z2OztOlqjxx9/nCNHjrBo0aJj5rV45JFHsNls9OjRg8WLF/Pll19KeCGEEMKnSA8MIYTPqcjPZ+e331K5dy/nV1VBRgapS5awxenEXbuPAiaYzcwdOhS6d+d9i4Wz+ven+6hRMnGoEF5wuj0wWoLm2K7YvHkz/fv3Z9KkScyePbtue3p6OmlpaYwfP54FCxZw8cUXs3DhQi9WKoQQojWTSTxpng0NIcR/OcvK2LN8ORk//kjGzz/TzenkL+XllO3eTURlZd1+CX5+9AgPZ9J55zHussuo7tKFwvh44nr0QPn5efEMhGi5WlOAUW8OjFv27t3r7XJOWXV1NQMHDiQ7O5tdu3YREREBgNvtZvDgwezbt4+UlBTWrVtHRkYGiYmJXq5YCCFEayVDSIQQzZ4xPJyUceNIGTfumO1ml4u9q1ax87vvyNi8mYy9e8k4fJjy77+HxYvZDfQEopSii8lEp9hYOnfowNWXXkq3oUPRnTqhZDiKEOIUaa0XAYtSU1Nv8XYtp+O1115j48aNLFiwoC68AFiwYAFr165l0qRJzJkzh1mzZkl4IYQQwidJDwwhRMulNeTmcuSnn/jwww/J2LWLvYcP86vFQk51NV8CfwKWANcqRaeQEDrHxtKpfXs6de/OJVdeSXRqKki4IcTvak09MI5qTu2KI0eO0LVrV1JTU1m2bBlKKQCsVitdu3albdu2HDx4kMTERNavX3/M3BhCCCFEU5MeGEKI1kcpSEwk/uqrufvqq4/5lqO0FHXgAGRnE//DD1y9eDG/Hj7Mjzk5vH/gAPqHH9gydy7RwPsmEy9oXRNuJCfTuUcPOvXrR78xYwhMSKh5HSGE8GH3338/drudl19+uS68AJgxYwZ5eXkMGjSILVu28PXXX0t4IYQQwmdJgCGEaJWCIiKgTx/o04c+l13GnH//u+57TouFfatXc7bTCVlZhCxdSsSGDazNzeXDrCz06tUAFALRERG8GhbGsupqOrRpQ4eOHenQvTsdzj2XniNGoMxmL52hEELU+P7773nvvfd47LHH6Nq1a932vXv38sILLzBmzBgWLlzIXXfdRb9+/bxYqRBCCHFyMoRECCFOg9NiYf+aNWSuW8elERGozEyeW7aMNw8c4EBlJY7a/YKBCkDFxDAtMJBflKJDQkJdwHFWv370uOgikFsUihaiNQ0haU6TeFZVVZGSkkJlZSXbt28nODi47ntjx47lhx9+IDExEYvFQkZGBmYJXYUQQvgAGUIihBCNwBgWRrdLLqHbJZfUbXugdtFuN/k7d3Jg/XoK9+ypmRj0wAEqlixhR24uX+fm4qgNUbsAuwFiYrhdKfIDA/8bcPToQZe0NDoPHgxhYV44SyHEyTSnSTxzcnLYtWsXr7zyyjHhxbfffstXX33FmDFj+Prrr1m4cKGEF0IIIXyeBBhCCNFIlJ8f8b16Ed+r1zHbn6ldtNvNkR07OLBhA/asLDCZ4MABHIsWsa2ggEW5uThrA44RwDIAs5lL3G6qjUYSo6NJSkggsX17evftS9rw4ZCYCBERMg+HEKJBR3vamkymum2VlZXcc889nHXWWXz33XeMHTuWK664wlslCiGEEKdMAgwhhGgiys+PNikptElJOWb7G3PmAOCurq7pwbFhA355eRAUBAcPErVwIb8WF7MjM5O8vXvRwI3vvksaoIFYIDoggKTQUBKjokhs04YRaWlccNFF6MREik0mos4+G+Xn19SnLITwQS+99BJ79uwhLS2NI0eOMHv27GMm9hRCCCF8lc8FGEqpKOAjoANwALhaa13SwH7JwDwgiZo2/KVa6wNNVqgQQjQyP3//BgOOBbNm1a27bDYOb9sGeXngclG5fz/XffQRB/PzOVhayncHDnAoMxP/NWu44IUXKKIm4AgCEgMCaBcSQkJ4ODf07cvogQOpiIrip8JCErp2pU3PnkR36iRBhxAt2OHDh5k6dSr9+vVjw4YNPP/88yQnJ3u7LCGEEOKU+FyAATwErNBaz1RKPVT7+F8N7PcOMENrvUwpFQq4m7JIIYTwhoCQEJLOO6/usRH43wcfPGaf6spKKrOzoaiIgN27mfX55xzMySHnyBFyy8pIz8tj9DffwOefswcYVf/4QBt/f1466ywu796dA6GhvJWbS0K7diR06EBCly4kdO9Om5QUDPXG0wshmodHHnkEh8NBTk4OvXv35u677/Z2SUIIIcQp88UA43Lggtr1t4GV/CbAUEr1AAxa62UAWuvyJqxPCCF8mn9gIMGdOkGnToSfdx53X3ddwztarXTOzOSH1as5nJlJXnY2eYcOkVdQQEJkJOzfz66sLKZaLMc9dTEwOiaG70NDedpiIT4sjNioKOJiY4lt04bLR44k5uyzsZnNuKOjMcXFSc8OIbxsw4YNzJ8/n379+rF582YWLVqEweCLTUEhhBCiYb74v1a81jqvdv0wEN/APl2AUqXUQqAjsBx4SGtd/dsdlVITgAmAdJEUQoj6zGZC+/RhaJ8+J9zlYqCyooIjO3dyeOdO8vbuJe/AAXq3aQPl5Ti2bqWsoIC9Bw9ScOAAFbXPG/D228QAbwB3UXNb2Vh/f+KMRmJNJuZfeCHxycmkO53ssNmITUoirmNHYs8+m7ju3QmOivL46QvRmrjdbu68806io6PZtGkTt99+O2lpad4uSwghhDgtXgkwlFLLgTYNfOvR+g+01loppRvYzwAMAc4FsqmZM+MGatrKx9Bavwa8BpCamtrQsYQQQpxEgMlEYv/+JPbvf9z3LqldjqrIz6dgzx7a+vlBSQmD09N5dsMG8vPzyS8upsBiIb+iAuOaNfDFF3zqdPJMA69ZERJCSFwcL1RVsdhuJ9pkIjo8nOjISGLj4rj9iisgOppsl4uq0FCizzqLsKQk6eUhmoRSaiwwtlOnTt4u5ZT99NNPbNiwgfbt2xMYGMiMGTO8XZIQQghx2rwSYGitR5zoe0qpI0qpBK11nlIqAchvYLeDwM9a6321z/kcGEADAYYQQoimY4qLwxQXV/f43DFjOPdEO2vNE/n5TNi5k/zMTAoOHCD/4EGKjhwhpHt3KCjAnZ5OaUkJmWVlFOXkUKo1EcDtn34KwAPAx7WH8weilKJbUBCr+vaF6GheOnKErKoqoqOjiY6NJTohgbbJyQw8/3yIjKQiIIDg+Hj8AgI8d1FEi6O1XgQsSk1NvcXbtZyqjz/+mPbt25OVlcXHH39MeHi4t0sSQgghTpsvDiH5ErgemFn79YsG9tkIRCilYrXWBcBFQHrTlSiEEOIPU4qQ+HjOio/nrAsvbHCX+2qXo6qcTizZ2eB2Q1ER96xZwyW7d1OUn09xURFFJSUEu1wQGAhZWazcs4dv7Xbs9Y5xLrC5dv0CYBMQBkT6+xMRGMjgqChe6t8fIiN5du9enAEBRERFERkTQ0RcHB06daJX374QGYndaCQoKkp6fgifpXVN59OysjIqKyu55JJL+POf/+zlqoQQQogz44sBxkzgY6XUeCALuBpAKZUKTNRa36y1rlZK3Q+sUDU3Lt8EvO61ioUQQjQJg9FIVOfOdY8HDhrEwJPs/3+1X+3FxRRlZlK0fz/aYoHYWCgp4Y6lS9mXm0tpWRklViulFRUEKwW//gqlpczLzWWvPnb04Tjg09r1RMAKhCtFuL8/YQEB/Dk+nkdSUiAsjLt/+YUQk4mwsDDCIyIIi4wkpVs3evfpgzab2VdaSlhCAmHt2mGUT8SFB5SWlgIQHR2NzWbj5ZdfpqbpJIQQQjQ/PhdgaK2LgOENbE8Hbq73eBlwThOWJoQQopkKjooiMSrquHk8rr/hhpM+bw/gstkoy8mhJDub0kOHCHE6ISICSkt5+IsvKCoupqSsDKvNhsVuJ8TPD7KzqSor4/2sLMq0xlXvmA8AvQELUH8GhUAgTCkejYrinqQkCoODuTEzk9CgIEKDgwkNCcFsMvGn3r1J69EDi78/yzMzMUdGEhodXbPExhLfoQMhcXFgNIK8UW31LLV3ESoqKmLmzJl07NjRyxUJIYQQZ87nAgwhhBDClwSEhBDTtSsxXbse9737J0w44fMMQAGg3W6cFguW3FwseXmEVldDYCCBBQW88913WIqLKSstxWKxYCkvp0tsLJjNOPLzOWS1Ul5SQnl1NeVuN1Yg4ccfSQP2UdMb5Lfeomb85To/Py52uwn198fs70+owYA5MJDXBg6k0zffNMKVEc1BZWUlAJGRkdx7771erkYIIYT4YyTAEEIIITxI+fkRFBFBUEQEcT171m0PBv5x9dUnfF4iNeMj69NuN+6KCrDb6VpQwM87dmAtLKwJOYqLKS8r4/x27SA4mOjsbK7/6SfKbTbKHQ6sDgflTieG2k/kRetQWFgIQK9evQiQyWqFEEI0cxJgCCGEEM2E8vPD32wGs5nguDh61wtEfqsz8J+mK034OH9/f2+XIIQQQvxhMm26EEIIIYQQQgghfJ4EGEIIIYQQQgghhPB5EmAIIYQQQgghhBDC50mAIYQQQgghhBBCCJ+ntNberqHJKKUKgKxGPmwMUNjIxxRyXT1FrqtnyHX1DLmunuGp69peax3rgeP6LGlXNCtyXT1DrqtnyHX1DLmuntGk7YpWFWB4glIqXWud6u06Whq5rp4h19Uz5Lp6hlxXz5Dr6tvk38cz5Lp6hlxXz5Dr6hlyXT2jqa+rDCERQgghhBBCCCGEz5MAQwghhBBCCCGEED5PAow/7jVvF9BCyXX1DLmuniHX1TPkunqGXFffJv8+niHX1TPkunqGXFfPkOvqGU16XWUODCGEEEIIIYQQQvg86YEhhBBCCCGEEEIInycBhhBCCCGEEEIIIXyeBBh/gFLqYqXUbqXUr0qph7xdT0uglEpSSn2vlNqplNqhlLrb2zW1JEopf6XUFqXUV96upaVQSkUopT5VSu1SSmUopQZ6u6aWQCn1z9q/AduVUh8opYK8XVNzpJR6UymVr5TaXm9blFJqmVJqb+3XSG/WKP5L2hWNT9oVniNtCs+QdoVnSLuicfhCu0ICjDOklPIHXgYuAXoA1yileni3qhahCrhPa90DGADcLte1Ud0NZHi7iBbmP8BirXU3oDdyff8wpVQ74C4gVWvdC/AH/urdqpqtt4CLf7PtIWCF1rozsKL2sfAyaVd4jLQrPEfaFJ4h7YpGJu2KRvUWXm5XSIBx5tKAX7XW+7TWlcCHwOVerqnZ01rnaa03165bqfmj3c67VbUMSqlEYAwwz9u1tBRKqXBgKPAGgNa6Umtd6t2qWgwDEKyUMgAhwCEv19Msaa1XAcW/2Xw58Hbt+tvAFU1alDgRaVd4gLQrPEPaFJ4h7QqPknZFI/CFdoUEGGeuHZBT7/FB5D/ERqWU6gCcC6z3biUtxizgQcDt7UJakI5AATC/thvtPKWUydtFNXda61zgeSAbyAPKtNZLvVtVixKvtc6rXT8MxHuzGFFH2hUeJu2KRiVtCs+QdoUHSLvC45q0XSEBhvBJSqlQ4P+Ae7TWFm/X09wppf4E5GutN3m7lhbGAPQF5mitzwUqkO74f1jt2MnLqWnItQVMSqm/e7eqlknX3Etd7qcuWjxpVzQeaVN4lLQrPEDaFU2nKdoVEmCcuVwgqd7jxNpt4g9SSgVQ08hYoLVe6O16WojzgcuUUgeo6ZZ8kVLqPe+W1CIcBA5qrY9+mvcpNQ0P8ceMAPZrrQu01i5gITDIyzW1JEeUUgkAtV/zvVyPqCHtCg+RdkWjkzaF50i7wjOkXeFZTdqukADjzG0EOiulOiqlAqmZCOZLL9fU7CmlFDXj/jK01v/r7XpaCq31w1rrRK11B2p+Vr/TWkvy/AdprQ8DOUqprrWbhgM7vVhSS5ENDFBKhdT+TRiOTGLWmL4Erq9dvx74wou1iP+SdoUHSLui8UmbwnOkXeEx0q7wrCZtVxg8efCWTGtdpZS6A1hCzUy2b2qtd3i5rJbgfOAfwDal1M+12x7RWn/jxZqEOJk7gQW1bzj2ATd6uZ5mT2u9Xin1KbCZmjsIbAFe825VzZNS6gPgAiBGKXUQmAzMBD5WSo0HsoCrvVehOEraFR4j7QrR3Ei7opFJu6Lx+EK7QtUMUxFCCCGEEEIIIYTwXTKERAghhBBCCCGEED5PAgwhhBBCCCGEEEL4PAkwhBBCCCGEEEII4fMkwBBCCCGEEEIIIYTPkwBDCCGEEEIIIYQQPk8CDCFEk1FKRSilbqtdb1t7SyshhBBCiNMm7QohWh+5jaoQoskopToAX2mte3m5FCGEEEI0c9KuEKL1MXi7ACFEqzITOFsp9TOwF+iute6llLoBuAIwAZ2B54FA4B+AE7hUa12slDobeBmIBWzALVrrXU1/GkIIIYTwAdKuEKKVkSEkQoim9BCQqbXuAzzwm+/1Av4H6A/MAGxa63OBtcB1tfu8Btypte4H3A+80iRVCyGEEMIXSbtCiFZGemAIIXzF91prK2BVSpUBi2q3bwPOUUqFAoOAT5RSR59jbPoyhRBCCNEMSLtCiBZIAgwhhK9w1lt313vspuZvlR9QWvspixBCCCHEyUi7QogWSIaQCCGakhUwn8kTtdYWYL9S6ioAVaN3YxYnhBBCiGZF2hVCtDISYAghmozWughYo5TaDjx3Bof4GzBeKbUV2AFc3pj1CSGEEKL5kHaFEK2P3EZVCCGEEEIIIYQQPk96YAghhBBCCCGEEMLnSYAhhBBCCCGEEEIInycBhhBCCCGEEEIIIXyeBBhCCCGEEEIIIYTweRJgCCGEEEIIIYQQwudJgCGEEEIIIYQQQgifJwGGEEIIIYQQQgghfJ4EGEIIIYQQQgghhPB5EmAIIYQQQgghhBDC50mAIYQQQgghhBBCCJ8nAYYQQgghhBBCCCF8nsHbBTSlmJgY3aFDB2+XIYQQQrQ4mzZtKtRax3q7jqYk7QohhBDCM07UrmhVAUaHDh1IT0/3dhlCCCFEi6OUyvJ2DU1N2hVCCCGEZ5yoXSFDSIQQQgghhBBCCOHzJMAQQgghhBBCCCGEz5MAQwghhBBCCCGEED6vVc2BITxIa6ocDhylpTjKynBYrTgsFkL9/WkTGkpVeTkrN2zAUVGB02bDUVGBw2bjnLg4+sfHYy0r47mVK3E4HDicTqrdbkKCgvhTjx4M694dq58fH27fTkhoKMFmMyFmM8FhYXTt3Jk2yclUGgwUO52EREURHBVFQEiIt6+IEEIIIYQQooVKT0/nyy+/ZMSIEQwdOtTb5bQaEmCI05K/Ywfpn3zCxh9+YOPOnZxnt/N4dTU4HAS53VT/Zv+7gP8ALmBkA8d7BOgPOIDpQBAQpBR+gF1rEtLTGQbkARMaeP4cYCKwHehXb7sBCAHmhYdzVVQUm4Fbjxwh3GgkPDiYCJOJiLAwxg8cSI8uXcgD0vPziYiPJyIhgYjERCKSkght0wblJx2VhBBCCCGEaO0qKir48MMPmTNnDps2bQLgySefZMiQITz22GOMHDkSpZSXq2zZJMAQJ1SalUXu8uX0LCiA9HTSFi1iY2UlAArobjRyfvfuMHw4BAUxfcMGDIGBBAUHExQSQlBwMN07doQePQgyGlm1Zw9BZjNBoaEEhYURFBZGRFwcREcTYzRSHRBwfFigNTidnGWxkJOVha2kBHtpKbayMuwWC12io8FkIvHwYV756SfsNhu2igrsdjs2u52zO3YEkwm/Q4eILS/H4nBwuKiI0sOHKXW7Gb1pEz2An4A/N3ANVinFkIgIvggIYJrVSsTRACQ0lAizmQcuuoiEpCR+raxkd3k5kQkJRCUlEZWcTGTHjgSYTB7+VxJCCNEYlFLJwItAMbBHaz3TyyUJIYTwETt27GDu3Lm88847WCwWevbsyezZsxk3bhyffPIJzz77LKNHj6Z///489thjjB07VoIMD1Faa2/X0GRSU1O13O7sBCoq2PLxx6z84gvSf/6ZjYcOsdfloguwG+Dss3nWZMI/OZn+I0fS96qrCE1I8HLRjcDlgrIyynJy2LttW02wceQIpYWFlBYV8fdOnWhTVcWyXbt4cds2Sh0OSp1OSquqKK2uZgvQCXgOeLCBwx8MDqZdTAyvu928X1FBVEgIkaGhRIWHExkZyb1/+hPG+Hgy7XZK/Pxqwo+OHQlr1w4/g+SLQojmQym1SWud6qXXfhP4E5Cvte5Vb/vF1HQE9AfmnSyUUEqNASK11u8ppT7SWv/l915X2hWitSovL+eee+7hu+++o23btrRr167BpW3btgQFBXm7XCHOiNPpZOHChcydO5dVq1YRGBjIVVddxcSJEzn//POPCSicTifvvPMOTz/9NPv37+ecc87h0UcfZdy4cfj7+3vxLJqvE7UrJMBohSrLy/ll4UI2fvstv/z8M68YDKidOxnvdvMm0M7Pj/7x8fTv1Yv+F17IyFtvhagob5ftm2oDkILMTPbv2EHxoUOUHD5McX4+JUVF3N+zJ0EWC2/8/DNv799PsdNJictFsduNg5qhNQbgNmqGwxzlB8QqRV6HDqjoaP5dVsYGh4PI0FAiw8OJjIoioU0b/nHppRAZSZbDgQ4LI6pDB8xt28qwFyFEk/NygDEUKAfeORpgKKX8gT3UjGA8CGwErqEmzHj6N4e4CagGPgU08K7Wev7vva60K0RrtH37dsaNG8fevXsJCAjAaDSitcbpdOJyuY7bPyYm5oQBx9ElKipKPq0WPmPfvn289tprvPnmmxQUFHDWWWcxceJEbrjhBmJjY0/63KqqKj788ENmzJjBrl276Nq1K4888gjXXHMNAQEBTXQGDXO73Wit637XlFI+/XsnAQatvKGxZQtfPvIIT65axS82G5W1m2OU4pcLLiBh8GCy2rcnsF8/Evr08WqprYW9uJhghwNKSsjYvJk9u3ZRcuQIJYWFFBcV4bLZmNmtG5SU8ODPP/NFYSElVVWUaE0VkAxk1R7rYmBJ7bo/EKEUqcHBLO7VCyIjmZaby2Gta8KPyEgioqPp2KEDw4cOhYgIch0OguPjCU9Kwt9o9MblEEI0c94MMGpfvwPwVb0AYyAwRWs9uvbxwwBa69+GF0effz+wQWu9Sin1qda6oZGFKKUmUDstU3Jycr+srKyGdhOixdFaM3/+fG6//XZcLhdaa/7yl79QVFTEgQMH2L9//3EBRmhoKCaTCX9/f6qrq7HZbFit1uOOHRQUVBdmJCcnM2HCBIYMGdJUpyYEVVVVfP3118ydO5clS5bg5+fH2LFjmTRpEiNGjMDvND8crK6u5rPPPmP69Ols3bqVDh068NBDD3HDDTdgbKK2ttvtZsuWLSxdupRly5axZs0aKisrG9z3t6FG/aWh7fW3de7cmc2bNzd6/RJg0DoDDO1243juOYIff5xv/P15PiiI/l260H/wYFKvvJL2gwbJp/XNjHa7qcjPpzw3lzYGA5SUsHL1ajL37aOksJCS4mJKysqI1ponk5KgpISx27ez1m6nRGvctce5APi+dr0LsLd23QxE+PszNjycl3v2hMhI/rl3L9poJCIsjIioKCKio+nRpQtpaWkQGUl2eTnmtm0Ja9cO/8DAJr4iQghf4IMBxp+Bi7XWN9c+/gdwntb6jhM8vxcwBSgEyrXW9//ea7bGdoVoncrLy7ntttt499138ff3JyIigk8//ZQLLrigbh+3283hw4fZv38/+/fvrws1jn7Nzs6muvq/070rpYiKiiI8PJygoCCUUrhcLo4cOUJZWRl/+ctfePbZZ0lOTvbCGYvW4tChQ8ybN4/XX3+dgwcP0rZtW2655RZuvvlmEhMT//DxtdZ8/fXXTJ8+nfXr19OuXTseeOABbrnlFkI8cNfE7Oxsli1bxtKEO3akAAAgAElEQVSlS1mxYgVFRUUA9O7dm4suuoiIiIi6uuovp7qtoe2xsbE8/PDDjX4uEmDQ+hoaRXv3csPgwRjz8/nksstQ8+fLUJBWTrvdlB8+TGlODu7SUtoHB0NpKZ8sXUpeXh4lxcWUlpVRarWSYjRyb0wMlJbSa+dOclwuLPWOdSPwJjV9rQOg7g40oUC4nx8TY2J4rFMnXGYz12VkEG4yEW42Ex4RQXhEBANTUujbpw8uk4ldxcWEt21LeLt2mNu2lfk/hGiGmnuAcZqvNRYY26lTp1v27t37u/sL76murubmm29m3bp1PPzww1x77bUY5P+Y07J9+3auuuoqdu3aBUC/fv347LPPSEpKOq3jVFVVkZube1ywcfTrwYMH694cpaSkcPR368EHH+TBBx/EJBOjtwputxur1UpwcDCBHvpQzO12s2LFCubOncsXX3xBdXU1o0aNYuLEiYwdO9YjfyO01qxYsYLp06fzww8/EBsby3333cekSZMICws74+NaLBZWrlxZF1rs2bMHgLZt2zJy5EhGjhzJiBEjiI+Pb6xTaTISYNC6AozVs2dz7T33kF9dzXPjxnHnxx9LTwvxh1VXVmLJzaU0J4dAm412gYG4i4p4+9tvKSsupqy0lDKLhdLyckZERHCt2UxZcTGpO3ZQVlVFmdZ1w5eeBB4DcqgZDnOUoqYXyHORkUxo25Yso5Fbs7IICw4m3GQiLDSUMLOZK1NTOadbN0r8/Nhw6BBhsbGExccT1qYNYQkJmBMS8PPyWEMhWhMfDDBOawjJmWhN7YrmSGvNhAkTmDdvHh07dmT//v107dqVyZMnc/XVV8vEer/j6JCRO+64A7fbjdPp5MYbb+SVV17xyMSclZWV5OTk8M477zBt2jSuuOIKjEYjH330EYmJiTz77LP89a9/9ekx+76orKyMrKwscnNz8ff3JyQkpG4JDg4+Zv10h0n8HofDQVFR0WktJSUluN01/YWDgoIIDw8nLCyM8PDwU1p+u+/R3j0ARUVFzJ8/n1dffZVff/2V6OhobrrpJiZMmECnTp0a9dxP5scff2TGjBksXryYyMhI7r77bu68806iTuGD5qqqKjZu3MiyZctYtmwZ69ato6qqipCQEIYNG8aoUaMYOXIkPXr0aPa/KxJg0DoaGtWVlTx96aVMXrGCswIC+Gj+fPr+7W/eLkuIOo7SUkpzcghyOomo7RGy+IcfKCsqoqykpC4EubJNG4aFhLA7L4/rfvkFi8uFpaoKi9tNObAAuBb4gZrhML/1GXBFaCjfG43cZrUSFhBAmNGI2WjEHBzMQ+edR/f27dnlcLAsJwdzRATmyEjMUVGYo6M5p08fTPHxVBqNqLAwAjzQzU+IlsQHAwwDNZN4DgdyqZnE81qt9Y7Ges3W0K5orrTW3Hfffbzwwgs8+uijPPnkk3z++edMnjyZbdu20aNHD6ZMmcK4ceMa/U1bS1B/yEhwcDAul4sXX3yRiRMnNsmbohkzZvDYY4/x97//nfHjx3PfffexefNmBg0axH/+8x9SU732p8anaK0pKioiKyuLrKwsDhw4cNx6aWnpKR8vKCjomIDjtyFHQ0t1dfUJwwibzXbC1woJCSE6OrrBJSIiAofDQVlZ2UmX8vLy3z2ngICAujDj4MGDOJ1OBg8ezMSJExk3bpxX75KTnp7OjBkz+PzzzzGbzdx2223ce++9xMXFHbNfZmZm3TwW3333HWVlZSil6NevX10vi0GDBjXZ3BpNRQIMWkFDIy+PI1dfTa8ff2RU+/bMWbOGsHbtvF2VEI2uurISbbVisNmwHDrE9q1bsRQUYCksxFJcjKW0lCs6dOAsg4GNmZk8v3kzFrudMocDq8uFtaqKT0wm+tvtvOVycWMDr/Ez0Bt4BbgdMAJmpTD7+2M2GPi6Vy8SY2JYZLXyeX4+oSEhhJpMhIaGEmo2c/PIkQRHRfGrxUKe3U5odDShMTGExsYSGhdHaHw8Sj79Ey2Il+9C8gE1WWYMcASYrLV+Qyl1KTCLmvmN39Raz2ik15MhJD5uypQpTJ06lbvuuotZs2bVvel2u9383//9H5MnTyYjI4OUlBSmTp3KFVdc0ew/rWwsR4eM7N69G4PBQFRUFAsXLmTQoEFNWsf06dN5/PHH+cc//sG8efN47733ePjhh8nPz+eGG27gqaeeIiEhoUlramput5sjR46cMJzIysqioqLimOeYzWbat29P+/bt6dChQ916UlISWmtsNttxi91ub3D77+1jt9tRShEZGUl0dDQxMTEnDCV+uzRGcFBdXY3Vav3doOPoEhcXx/jx40lJSfnDr92Ytm3bxlNPPcVHH31EUFAQEyZMYNCgQaxYsYJly5axf/9+AJKTk+t6WAwfPpzo6GgvV+5ZEmDQsgOM9S++SOr06fiXl3Nw2jTa3XuvDBkR4hS4ysspPXgQ65EjWPPzsRYUYC0qYnD79pirqkjfsYPFW7ditVqxVlRgtdmw2u280akT0Q4HL2Zn80xhIRW1PUOOzgVSBoQB9wP/buh1AYPJxENa80llJaEGA6EBAZgDA4kMDuaD4cPBZOKjnBwyLBZMoaE1S1gYUdHRjB02DEwm9peWUmkwYIqJITQuDlNsrPQWEV7h7R4Y3tCS2xXN2b///W/uv/9+brzxRubNm9dgD4vq6mo++ugjpk6dyp49ezj33HOZNm0aY8aMabVBRv0hI35+flRUVDBo0CA+/fRTrwUFR0OM6667jjfffJOKigqmT5/OrFmzMBqNPPbYY9xzzz1e++TZ4XBQXl6O0+nE6XTicDhO6evv7VNcXExWVhbZ2dk4nc5jXjMqKuq4cKL+emRkZJP9DB8d6iG9mBrH7t27mTlzJu+++y7V1dWYzWYuvPBCRo4cyahRo+jcuXOr+vvU7AIMpdTFwH+o+dRkntZ65gn2G0fNfdv7a61P2opoiQ0Nl83GE8OHM3PdOl5OSOC25cuhRw9vlyVEq6TdbiqtVsqPHCEqIABVUcG+3bvZl5lJeUkJ5aWllJeVYbNaubdfPygvZ356Oiuysih3OCh3OimvrMTf7WZNXBxUVPDX4mI+cruPeZ0kILt2vf4tdI/qBWyLiACTib9bLOysqsIUEFCzGI30iolh6sCBEBLCKzt3UqY1ISYTIaGhmMxmktu1Y3BqKoSEsCMvD3+TCVN0NCFRUYRERxMUESEBqThOawowpAeG73rttde49dZbueqqq/jggw9+d56Lqqoq3n//faZOncq+ffvo378/06ZNY/To0a3qjUL9ISNRUVEUFxczadIkZs2a5bGJFE/Vk08+yRNPPMH111/PG2+8gb+/P3v37uX+++/nyy+/5Oyzz+b555/n8ssv9/i/mcvlYv369XUTJm7YsKHuTfyZUEoRFBSE0Wg85mtERESD4UT79u0xm82NeEbCF2VnZ3Po0CH69etHQCuez61ZBRhKKX9qxq2OBA5SM271Gq31zt/sZwa+BgKBO1pbgJG1Zg3XXHwxa8vLuaVbN2atXk1ITIy3yxJCNLLqykpshYVU1C5V5eV0jY2FigpWb9hA9sGDVFgsVJSXU1FeToSfH3d06wYVFTy8di3bi4oor6ykwuWioqqKFIOBD00msNnoUV5Oxm9e7xLgm9r1JGr+CNf3Z+ATkwlCQuhTWkqlUoQYDIQYDAQHBDAmIYG7UlIgOJi709MxGo3/HUdrMtGvUycGnXMO1YGBLN+9m5CwMILDwwkODyckMpLohATC4uPRQUFgMEhY0ky0pgDjqJbWrmju3n//ff7+979zySWX8Nlnn53WG2+Xy8U777zDk08+SVZWFgMHDmTatGkMHz68xQcZ9YeMhIWFYbfbmTNnDjfddJO3S6szbdo0Jk+efEyIAbBs2TLuuecedu7cyfDhw5k1axa9evVqtNfVWrNnz566CRO///57rFYrfn5+pKamMnz4cNq0aVMXPvw2iPi9rwaDocX/fAlxpppbgHFKM4crpWYBy4AHgPtbU4Dx7eOPc+2MGVRrzWt33cVf//Mfb5ckhGiGtNuN02rFVliIrbgYW3ExAVVVdIyIAJuNb1evprSkBJvVSoXViq2igs5mM+Pat4eKCm5evpxSux17ZSV2lwuby8XY0FAeNZupttmIzcvDrjWOeq95P/AcNcNsIhqoaQowmZpZF5OBYCBYKYL9/Aj28+OR+Hiub9eOHKW49ddfCQoIIDgwkGCjkSCjkb+lpDDw7LM5XFXFBzt3EhwSQrDJRHBoKEEhIfRPSSGhXTus1dVkFRcTFBb23yUigpCoKPy8/IljcyQBhvCmL774gnHjxjFkyBC++eYbgoODz+g4lZWVzJ8/n+nTp3Pw4EGGDh3KtGnTGDZsWCNX7H1aa9566y1uv/12AgMDsdlsxMfHs3DhQvr37+/t8o4zdepUpkyZwg033MC8efPqQoyqqirmzp3LE088QVlZGRMnTmTatGlnPD9AYWFh3dwDy5YtIzu7ps9jx44d6+YfuOiii4iMjGy0cxNCHK+5BRi/e+92pVRf4FGt9Til1EpOEGAopSYAEwCSk5P7ZWVlNcUpeI7TCQ88wE8vvcR9JhPvfvEFnYYP93ZVQghxUu6qKhylpdiKigioqiLcYMBlsZC+ZQu2sjLsViu22qV3XBznRkdTUlzM8ytX4nA6sTsc2J1O7E4n17Vrx6VhYfxaXMw1O3fiqK7GXl2N3e3GoTUvGgz8zeViDTC4gVo+BcYBS4HRDXx/MTDa358vDQZuqqwkSCmC/PwI8vcnyN+fN7t04ZzoaL6rqOCVnByCAwMxBgQQZDRiDAzk/vPPJyE6mi1FRazKycEYHExQcDDG4GCMISGMPu88TBER5FosHC4vx2gyERQWhjE0lCCzmei2bfELDobAQGhGn8xJgCG8Zfny5YwZM4Y+ffqwfPnyRuli73Q6mTdvHjNmzCAvL4+LLrqIadOmcf755zdCxd5Xf8hIUlISOTk5DBs2jI8//vi4OyD4kqMhRkPzmxQVFTFlyhTmzJlDWFgYU6ZMYdKkSb/bBd/pdLJmzZq6wGLz5s1orYmIiOCiiy6qu8vD2Wef7enTE0LU06ICDKWUH/AdcIPW+sDJAoz6mntDY8/SpSy+6Sbuys2Ff/4T/fTTqBZ2uxwhhGgUWlNts2EtKMBeWlqzlJVhLyvjrNhYogIDOXzoED/+/DMOm+2/i93OVd260T4oiM1ZWby5dSt2pxOH04nD5cLhcvG/Z51FV39/Fubl8fihQzUBituNU2ucWpPu50c3t5v/Be5roLQcIBF4Eniige8XA5HAQ9TcPsMIBCqFUSmMfn7s7tQJQ1AQzxUV8ZXFgtHfH6PBgNFgwGw0Mn/YMDAaWbB/P1tLSjAGBhJY27U5wmxmwujR4IGu4a0pwJA5MHzHTz/9VPfmcuXKlURFRTXq8e12O6+++ipPP/00+fn5jBo1iqlTpzJgwIBGfZ2mVH/ISHJyMllZWdxzzz08++yzzWK8/dE7zJxoktYdO3Zwzz33sHz5crp3784LL7zA6NH/jau11uzYsaPutpSrVq3CZrNhMBgYOHBgXWCRmpqKwWBo6tMTQtRqbgHGSYeQKKXCgUzg6M1/21DT5rvsZCFGcw4wFtx2GxPnzCFIKXa9+y7Rf/ubt0sSQghxIlVVNRO6FhfjtFpxWCw4y8txWq30SEwkoKqKvfv2sSszE4fNhtNux1kboExITSWgqopvtm3jh337cFZW1iwuF5UuF+/264eqrOSFPXv44vBhKqurcVZX43S7CdCaLfHx4HRyY0kJH7pcOIGj/9MnAIeio6GwsNFPuTUFGEc153ZFS7BlyxYuvPBC4uLiWL16NfHx8R57rYqKCubMmcMzzzxDYWEhl156KVOmTCE1NbXZzGFQf8hIcHBw3Z1G5s2bx7XXXuvt8k7L0RDjpptu4vXXXz8uxNBas2jRIu69914yMzP505/+xJVXXsnKlStZvnw5eXl5AHTr1q0usLjgggtkgkzhNWVlZaxYsYIlS5awdOlSSktLSUtLY8CAAQwYMIDzzjuv0QNaX9fcAgwDNZN4DqdmGPRG4Fqt9Y4T7L+SFtoDoyI/nzsHD2b+3r0MCQvj/WXLSExL83ZZQgghmgntdlPlcFBZXo6rooKIkBDwwBs9CTBEU8rIyGDo0KGEhISwevVqkpOTm+R1y8vLmT17Ns899xzFxcUEBQWRkJDwu0tMTIxXbzVZUVHBbbfdxjvvvEO3bt3IzMwkMTGRhQsX0qdPH6/V9UdMnjyZadOmnTDEgJrhIS+++CJPPvkkVquVmJgYRowYURdaJCUleaFy4QlOp5OSkhKKi4vrvv52PTg4mP79+5OWlkb79u29Gj5WV1eTnp7O0qVLWbJkCevWrau7derw4cOJi4tj/fr1bNu2re5ON127dq0LNAYMGECvXr1adC+hZhVgACilLqWm96w/8KbWeoZSahqQrrX+8jf7rqQFBhjVW7dy3oABbHY4eHTwYCYvW4YhKMjbZQkhhBDHaU0Bhgwh8a79+/czePBgqqurWb16NZ07d27yGiwWC++99x779u0jLy/vmKWsrOy4/Q0GA/Hx8bRp0+akQUebNm3OaBiH1hqr1cqhQ4c4dOgQubm5deuHDh0iPT2drKws+vbty6ZNmxg1ahQffPBBs/5EV2vN5MmTefLJJxk/fjyvvfbaCUOiwsJC8vLy6NmzZ6MFSTk5OSxcuJDg4GCSkpLqlvDw8EY5/h9hs9nIzs4mOzubrKwssrKyyM/PZ+zYsYwZM8arYdqpOHz4MHl5eXXBw8lCiaOPKyoqTng8pRSRkZFUVFTgdDoBiI2NJS0tjbS0NM477zz69+/v8d+HgwcP1gUWy5cvp7i4GKUUqampjB49mlGjRjFgwIBj/gaUl5eTnp7OunXrWLt2LevWrSM/Px+AkJAQ+vfvz8CBA+tCDU/2RGtqzS7A8ITmEmBotxs1bx7cfTcLAgNp89hjDH/gAW+XJYQQQpxQawowjmou7YqWJDc3lyFDhlBWVsbKlStJSUn53ee8+uqrrF27lnnz5jXJp5V2u/2YQOPom7HfLgUFBTTUDo+IiMBsNmM2mwkNDSUkJASDwYCfnx9aa1wuF5WVldjtdioqKrBYLJSWluJwOI47VlhYGG3btiUuLo6CggIyMjJ46KGHmD59et1dPJqz+iHGzTffzKuvvurRN+dut5tly5YxZ84cFi1aVPfJeH1ms/mYQKP+kpiYSFJSEiaT6Yxr0FpTXFxcF0zUDymOPi4oKDjmOX5+fphMJqxWKz179uTBBx/kmmuu8ak5T7TWLF++nBdeeIFvv/22wX2MRiNRUVHHLJGRkSd8fHQ9PDwcPz8/XC4X27ZtY8OGDaxfv54NGzaQkZFR93vYqVOnukAjLS2NPn36EPQHPjy22+2sWrWqbljIjh01gwnatm3LqFGjGD16NCNGjCAmJua0rtOBAwdYt25d3bJlyxZcLhcAHTp0YMCAAXWhRp8+fU7rltK+RAIMmkdDw11VxXWdO3PxgQP8fdQoeOcdj3T1FUIIIRqTBBjC0woKChg2bBg5OTl89913p3SrT4vFQlJSEhaLhSlTpjB58uQmqPTUuFwu8vPz6wKN7Oxsli1bxq5du7BYLJSXl2O326mqqjrj11BKYTKZqKqqwt/fn7fffptx48Y14ll4n9aaJ554gunTp3PLLbcwd+7cRg8xCgsLmT9/Pq+++iqZmZnExsYyfvx4xo8fT2BgIAcPHiQnJ6fB5ciRI8cdLzIy8oQhR1JSEgEBAceFE0fXs7Ozj+ttEBwcTPv27euW5OTkY9bbtWuH1pqPP/6YmTNnsn37dpKTk7nvvvsYP378HwpU/iiHw8EHH3zACy+8wLZt24iLi2PSpEn06dPnuEDiTG+PfDIWi4VNmzYdE2rk5uYCNT2nevfuXRdopKWl0bVr1xP+fNWfIHbJkiWsWrUKh8OB0Whk6NChjB49mtGjR9OzZ89GHb7icDjYsmVLXQ+NdevWkZOTA9SEPn379mXAgAGkpaURFxdHSEhIg0tAQIBPzekjAQbNo6Hx9ZQp/GnqVKYNHcrj338PPt7FSwghhAAJMIRnlZWVceGFF5KRkcHixYsZNmzYKT3v+eef54EHHmDIkCGsWbOGlStXMmTIEA9Xe3oKCwuZO3cus2fP5siRIyQkJNS96Wzbtu1xS7t27QgJCcFms2G1WikvL8dqtR6z/tttLpeLiRMn0rNnT2+frkdorXn88ceZMWMGEyZMYM6cOX84xNBas3btWubMmcMnn3yC0+lkyJAhTJo0if/5n//BeIp3AnQ6neTm5tYFGg2FHUVFRSc9RkxMzHHBRP3H0dHRp/zGU2vNN998w8yZM/nxxx+Jjo7mzjvv5I477iA6OvqUjtEYCgoKmDNnDi+//DL5+fmkpKRw7733cs0115zytfWU3NxcNm7cWBdqbNy4EavVCtT0akpNTa0LNXr27MnmzZvrelkcDT969OhR18vi6Hw9TX0O69evrxt6kp6e3mAvrfr8/f3rwgyTyXTCoKP+YjKZiI+P58Ybb2z0c5AAg+bR0LgwMpJfrVb2WSwENPEPuhBCCHGmJMAQnlJRUcHo0aPZsGEDX375JRdffPEpPa+yspKOHTvSrVs3Pv/8c/r27YvT6eTnn3/2ibkfdu/ezaxZs3j77bex2+1ccskl3HvvvQwfPtynPgVtLrTWPPbYYzz11FN/KMQoLy9nwYIFzJkzh61bt2I2m7nuuuuYOHEivXr18kDlNXNW1A82XC5XXTjxR4ecnMyaNWt45plnWLRoESEhIdxyyy3ce++9Hp0Ud8eOHcyaNYt3330Xp9PJpZdeyj//+U+f/rl3u93s3r37mF4aW7duPaZ3VGRkJCNGjKiby8LXJoh1uVxkZGRQWlqKzWY7bqmoqGhw++99X2tNt27dyMjIaPSaT9iu0Fq3mqVfv37al6W/954G9HNjxni7FCGEEOK0UDPJttf/r2+KBRgLvNapU6fGunziBOx2ux45cqT28/PTn3zyyWk9d/78+RrQixcv1lprvXHjRm0wGPSVV16p3W63J8r9XW63W69cuVKPHTtWA9poNOqbb75Zb9++3Sv1tDRut1s/8sgjGtC33nqrrq6uPuXnbtu2Td92223abDZrQPfp00e/+uqr2mq1erBi37B9+3Z93XXXaYPBoA0Gg77++uv1jh07Gu34brdbL1myRI8ePVoDOigoSN966606IyOj0V6jqdntdr127Vr9+uuv67Vr1+qqqipvl9Tk3G63ttvturS01CPHP1G7wuuNgKZcfD3AuKZ9e20GXZqV5e1ShBBCiNPSmgKMo4uvtyuau8rKSn355ZdrQL/11lun9dzq6mrdo0cPfc455xwTVjz33HMa0HPmzGnsck+qsrJSL1iwQPft21cDOiYmRk+ePFkfPny4SetoDdxut3744Yc1oCdOnHjSEMPhcOgFCxbowYMH1wVK1113nV67dq3XQi5vysrK0nfffbcOCQnRgL7sssv0mjVrzvh4drtdz5s3T/fs2VMDuk2bNnr69Om6oKCgEasWLZUEGL7e0MjK0j/6+em3Ro/2diVCCCHEaTuVAAOIOtnye8/3tcWn2xXNXHV1tf7b3/6mAf3SSy+d9vMXLVqkAf3ee+8dd9zRo0froKAgvW3btsYq94RKSkr0s88+qxMTEzWgu3Xrpl977TVts9k8/tqtmdvt1g899JAG9KRJk44LI/bt26f/9a9/6djYWA3os88+Wz/33HO6sLDQSxX7loKCAj158mQdFRWlAT1kyBD91VdfnXKoc/jwYT158uS669u7d2/99ttva4fD4eHKRUsiAYavNzT+n737jq/5+h84/jp3JGJFYsYeIWhrz1JKUSpmaxatttbXz6hdWm3x1ZqltFoxqoPUbEmL2krVnqUIsWciQSLjjvfvjyS+qkHGvblJnOfjcR7J/Xw+57zfIeRz3znnfIYOFTEaRfTsC03TNC0TSmYBIwQ4m/DRBoQCYQmfhzypf0ZrGfq+IhOz2+3Sp08fAWTixImpGuOFF16Q4sWLS1xc3L/OXbt2TQoUKCDPPPOM0woJZ8+elUGDBknOnDkFkMaNG0tQUFCKljRoafNwEcNisciaNWvklVdeEaWUGAwGadu2raxfv17/vTxCZGSkzJgxQ4oVKyaAPPfcc/L999+LxWJJ8vqjR4/KW2+9Je7u7gKIv7+/bN68+amczaKlnS5gZOAbjYjz52WA2SznWrd2dSqapmmaliopWUICBACvPPC6BfB1cvtnlJZR7ysyM7vdLsOGDRNARo0alaoxdu3aJYDMmDHjkdesX7/+/hIDR9q1a5e89tprYjAYxGQySffu3eXAgQMOjaEln91ul5EjRwogXl5eAoiPj4+MHTtWLl686Or0Mo24uDhZtGiRVKxYUQApUaKEzJo1S6KiosRut8vatWuladOmAoiHh4f069dP/v77b1enrWVyuoCRgW80pvr7CyD7vvvO1alomqZpWqqksIBxNDnHMnrLqPcVmZXdbpePP/5YAOnfv3+qf2vbvn178fLyeuLmi8OHDxdAVqxYkao4iaxWqyxfvlzq1q0rgOTJk0dGjRolly5dStO4mmMkfl+1aNFCli9fnuSsHC15bDabrF69+v73er58+aR8+fICSOHChWXixIl6GY7mMI+6r9CPUXUxy717lMmdm9I5c7I1IsLV6WiapmlaqqTkMapKqfXA78D3CYdeBxqIyMvOys+RlFKtgFa+vr69Tp8+7ep0Mj0RYf369YwdO5a9e/fSo0cPFi5cmKpHYJ46dYry5cszevRoJkyY8Nhr4+LiqFevHsHBwRw+fDjFj46MjIxkwYIFzJgxg5CQEEqXLs3gwYPp2bMnOXPmTHHumU1kZCQREREULVrU1alo6UxE2LFjB1OmTFkOFu0AACAASURBVCEsLIx+/frRsWNH3NzcXJ2aloU86r4i5T8ZNIdaNmIEF202hg4c6OpUNE3TNC29dAHyA6uAlQmfd3FpRikgImtEpLenp6erU8nURIRNmzZRv359WrRowY0bN5g/fz4LFixIVfECYNq0abi5uTFgwIAnXuvm5saSJUuwWq28/vrrWK3WZMe5evUqvr6+DBo0iMKFC7NixQpOnTrFgAEDnoriBcBbb71FsWLFaNCgAfPnz+fOnTuuTklLJ0opXnjhBVavXs3OnTvp1q2bLl5o6UYXMFxI7HamLViAn5sbLceOdXU6mqZpmuZUSqnvEj7tLiKDRKSqiFQTkcEicsulyWnp6vfff6dRo0Y0adKE8+fPM2fOHE6dOsVbb72F0WhM1ZjXrl1j0aJFvPnmmxQsWDBZfXx9ffnqq6/YsWPHE2dsPGjWrFncuHGDLVu2sGPHDtq3b5/qvDOjq1evsnLlSho2bMjNmzd55513KFSoEN26dWPDhg3YbDZXp6hpWhalCxguFLNhAzWioxnVpQsGk8nV6Wiapmmas1VXShUG3lJKeSmlvB9srk5Oc77du3fTrFkzGjRowMmTJ/n8888JDg7mrbfeYsmSJTRr1oyDBw+mauxZs2YRFxfH0KFDU9Tv9ddfp0ePHowfP57t27c/8fqoqCi++uor2rVrx4svvpiqXDO7hQsXYrPZCAgI4Pjx4/z555+8+eab/PLLLzRr1oySJUsyevRoTp486epUNU3LYvQeGK7UqhXs3g3nz4OHh6uz0TRN07RUS84eGEqpgUA/oDRwGVAPnBYRKe3EFB0uw91XZGAHDhxg7Nix/PLLL+TLl49Ro0bRr18/7HY7AQEBTJ8+nUuXLgHQokULfv311xSNf/fuXYoXL85LL73E8uXLU5zf3bt3qVatGjExMRw+fBhv70fX07788kv69+/Pjh07qFevXopjZXZ2ux1fX19KlCjBli1b/nEuJiaGNWvW8M0337B+/XpsNht16tThjTfeoFOnTnh5ebkoa03TMhuH74GhlHr7oddGpdSHqR3vaROycSO7goKgf39dvNA0TdOeCiLyuYhUABaISGkRKfVAy1TFCy15jhw5Qrt27ahevTp//PEHn3zyCSEhIfTo0YNPP/2U4sWLM2TIEMqUKcOvv/7K+PHjWbt2LYcPH05RnHnz5hEREcHw4cNTlWeuXLkIDAzk+vXrvP322zzqF3x2u53PPvuMWrVq8fzzz6cqVma3efNmQkJC6N2797/OZcuWjQ4dOvDLL79w6dIlpk6dSmRkJP369cPHx4dOnTqxdu3aFO03omma9qC0LCF5SSn1q1LKRyn1DPAnkMtBeWV5nwwYQGMgvGtXV6eiaZqmaelKRPq5OgfNuU6cOEGnTp2oXLkymzdv5uOPP+bcuXN07tyZ9957jxIlSjB+/HgaNmzIrl272Lp1Ky1atKB///7kzJmTyZMnJzuWxWJh+vTpNGzYkNq1a6c65+rVq/Ppp5/y008/8dVXXyV5TVBQEMHBwQwdOhSlVJLXZHVz587F29ubdu3aPfa6QoUKMXToUI4cOcL+/fvp3bs3mzZt4pVXXqFYsWIMHz6cY8eOpVPWmqZlGUk9WzW5DegEhALngXppGSs9WkZ5Xvv1Y8fEHaRPhQquTkXTNE3THIJHPK89K7eMcl+RkZw6dUq6desmBoNBcubMKWPGjJFbt27J4cOH5fXXXxej0Shms1l69uwpx48fT3KMoUOHisFgkLNnzyYr5rfffiuA/PLLL2nO32azSfPmzcXd3V2OHDnyr/MNGjSQ4sWLi8ViSXOszOjGjRtiNptl8ODBqeofGxsrq1atkjZt2ojJZBJAqlevLrNmzZLQ0FAHZ6tpWmb2qPuKtCwhKQsMAlYkFDC6K6Wyp7Ge8lT44j//IRZ4d9o0V6eiaZqmaZqWZiEhIbz11ltUqFCBFStWMHToUM6ePUuzZs3o1q0blStX5qeffmLQoEGcPXuWBQsWUKFChSTHevfddzEajUxLxn2SiDB58mSeffZZWrRokeavw2Aw8M0335AnTx66dOnCvXv37p/bt28f27dvZ9CgQZie0s3XFy1ahMVioVevXqnq7+bmRtu2bfnpp5+4cuUKM2fOxG63M2DAAHx8fGjfvj1r1qx55BIeTdO0tCwhWQN8ICJ9gIbAaWCvI5JSSjVXSp1USgUrpUYlcX6IUuq4UuqIUmqTUqqEI+Kmh+hbt/jy999pVbAgfg74QatpmqZpmZFSqqBSyj+hFXB1PimhlGqllJp7+/ZtV6fichcvXqRv376UK1eOxYsXM2DAAIKDg6lXrx6tW7emYcOG7Nmzh/Hjx3PhwgWmTZtG0aJFHztmkSJF6N69O/Pnz+fGjRuPvXbdunUcO3aM4cOHO2xJR8GCBfnuu+/466+/GDJkyP3jn332Gbly5eLtt99+TO+sS0QICAigXr16VKxYMc3j5c+fn4EDB3LgwAEOHz7MgAED2LlzJ61bt2bJkiUOyFjTtKwoLQWMWiKyCeK3DReRacDjF8Mlg1LKCHwBtAAqAl2UUg//L3kQqCEilYDlQPIXSrrYsSlTsIswdPRoV6eiaZqmaS6hlOoI7AE6AB2B3Uqp11ybVfKJyBoR6e3p6enqVFwmNDSUgQMH4uvry4IFC+jduzcnTpygcuXKNGnShLZt23Lt2jVmz57N+fPnef/99x/7ZI+HDR8+nNjYWGbNmvXY6yZPnkzRokXp3LlzWr+kf2jatCkjRozg66+/ZsWKFVy8eJGlS5fyzjvv8LT+vW/fvp1Tp06levbF41SqVIlp06Zx6dIlihYtmqonyWia9nRIdQFDRO4kcexU2tIBoBYQLCJnRSQOCATaPBRni4gkzun7E3h8KT+jsNupuXIlF6tWpcH//Z+rs9E0TdM0VxkD1BSRN0SkB/E/+z9wcU5aCnTq1Ikvv/ySHj16cOjQIXx9fWnQoAE9e/bEbDbzww8/cPr0afr370/27ClfYVy+fHnatm3L7NmzuXv3bpLX7N27l61btzJ48GDc3NzS+iX9y/jx46lZsybvvPMOEydOxG63M2jQIIfHySwCAgLw9PSkQ4cOTothNpvx9/fnt99+IzY21mlxNE3LvNIyA8NZigAXH3h9KeHYo7wNrHVqRg5y4/vvsZ86RfYRI1CGjPhHr2mapmnpwiAiD64NCCNj3pNoSdi0aRObN29m3Lhx+Pj4UL9+/X88CvXQoUN07do1zftEjBw5koiICAICApI8P2XKFDw9PZ0yIwDi92tYsmQJNpuNgIAA2rdvT4kSmWbVskPdunWL5cuX061bt1QVpFKiVatWREVFsXXrVqfG0TQtc8rUNwtKqW5ADWDKY67prZTap5Tad/PmzfRLLgmvDRhAi2zZ4LVMM0tW0zRN05xhnVJqvVLqTaXUm8AvZJJfRjztRITRo0fj7e3NhAkTknwUqqP2oqhduzYvvvgi06dPJy4u7h/ngoODWbFiBf369SN37twOiZeUMmXK0LZtW2w221O7dATgu+++IzY21mnFogc1atQIDw8PgoKCnB5L07TMJy1PIVmplGqplHJ0EeQyUOyB10UTjj0cvwnxU1Bbi8gj55iJyFwRqSEiNfLnz+/gVJNv76JF/H7nDs1ffhme0p2rNU3TNA1ARIYDXwOVEtpcERnh2qy05FizZg179uwhLi6OSpUqcfz4cVatWkWdOnWcEm/kyJFcvnyZH3744R/Hp0+fjslkYuDAgU6Jm8hms7Fjxw7y58/PwoUL2bZtm1PjZUSJm3fWrFmTypUrOz2eh4cHTZo0ISgoSD+NRNO0f0lL8eFLoCtwWin1qVLKz0E57QXKKqVKKaXcgM7A6gcvUEpVJf7Gp/VDU1AzrGkffEBu4O3Zs12diqZpmqa5lFJqkoisFJEhCW2VUmqSq/PSHs9ut/P++++TP39+IiMjmTJlyiMfheooL7/8MpUrV2bSpEnY7XYAbty4wcKFC+nRowc+Pj5Ojf/zzz8TEhLC9OnTKVOmDN26dSMsLMypMTOaP//8k7/++itdZl8k8vf359y5cxw/fjzdYmqaljmkZRPPjSLyOlANOAdsVEr9oZTqqZQyp2FcK/B/wHrgBLBURP5SSo1TSrVOuGwKkBNYppQ6pJRa/YjhMoTzO3ey/OJF+tSsSe4nPDpM0zRN054CTZM4pp8tnsH9+OOPHD16FIC6detSv359p8dUSjFy5EhOnjzJ6tXxt3uzZ88mNjaWYcOGOT3+9OnTKVWqFF26dCEwMJDr16/z9ttvP1UzAwICAsiZM6fDn/TyOC1btgTiZ/xomqY9KE3LP5RSeYE3gXeIf7TpTOILGhvSMq6I/Coi5USkjIj8N+HYWBFZnfB5ExEpKCJVElrrx4/oWguHDUMBA7/4wtWpaJqmaZrLKKX6KaWOAn5KqSMPtBDgiKvz0x7NYrEwduxYihUrxs2bNxk5cqTD9rp4kg4dOlCqVCk+/fRT7t69y+zZs2nTpg1+fo6a/Ju03bt3s3PnTgYPHozRaKRatWpMmjSJn3/+mTlz5jg1dkZx+/ZtAgMD6dKlC7ly5Uq3uEWKFKFatWp6HwxN0/4lLXtgrAJ+B7IDrUSktYj8KCIDiJ8doQFERPD+0aP8/vLLFK1Z09XZaJqmaZorLQZaEb80tNUDrbqIdHNlYtrjLVq0iODgYEwmE+XLl6dVq1bpFttkMjFs2DB2797NmDFjCA8PZ8QI52+ZMn36dDw9PenZs+f9Y4MGDaJFixYMGTLk/myUrGzx4sVER0en6/KRRP7+/uzatYvQ0NB0j61pWsaVlhkYASJSUUQ+EZGrAEopdwARqeGQ7LIAmTsXU1QUdT75xNWpaJqmaZpLichtETknIl1E5PwD7Zarc9MeLTY2lnHjxuHn50dISAjDhw/HkM6Pg+/Zsyf58uUjICCA+vXrU7duXafGO3fuHMuXL6d3797/mHlgMBj45ptv8PLyolOnTty7d8+pebhaQEAAVapUoUaN9L+19/f3x263s27dunSPrWlaxpWWnz4Tkji2Kw3jZTlxkZHUfP99llSsCFWrujodTdM0TdMeQSlVUSm1VCk1Rymln3f+gK+//pqLFy+SPXt2ChcuzOuvv57uOXh4eNCoUSNiYmLo0KGD0+PNmjULg8HAgAED/nWuQIECfPfdd5w4cYIZM2Y4PRdX2b9/PwcPHqRXr17ptlzoQdWrV6dQoUJ6GYmmaf+Q4gKGUqqQUqo64KGUqqqUqpbQXiR+OYmWYOnw4ey3WPDs2NHVqWiapmlalqWUWqCUuqGUOvbQ8eZKqZNKqWCl1KgnDNMCmCUi/YAeTks2k4mKiuK///0vNWrU4ODBg7z77ru4u7unex4iwokTJ1BK8eeffzo11p07dwgICKBjx44UK1YsyWuaNGlC8+bNmTlzJtHR0U7Nx1Xmzp2Lh4eHSwpWED/bpWXLlqxbtw6LxeKSHDRNy3hSMwPjZWAqUBSYDkxLaEOA0Y5LLXMTu51pixZRwc2N5mPGuDodTdM0TctQlFIllFJNEj73UEqlZYfAb4DmD41vBL4gvjBREeiSMMviOaVU0EOtAPAd0FkpNQXIm4ZcspTPP/+cGzdukCtXLjw9Pendu7dL8tiwYQPHjh2jWbNm/Pjjj4SEhDgt1rx587h79y7vvvvuY68bOXIkN27cYNGiRU7LxVUiIyNZvHgxHTt2xNPT02V5+Pv7c/v2bXbs2OGyHDRNy1hSXMAQkUUi0gh4U0QaPdBai8hKJ+SYKW2ePp1D0dEM7dIFg8nk6nQ0TdM0LcNQSvUClgNfJxwqCvyU2vFEZDvw8D4atYBgETkrInFAINBGRI6KiP9D7UZC6w+MAh65a6BSqrdSap9Sat/NmzdTm3KmEBERweTJk2nUqBFbt26lX79+5M6d2yW5TJkyBR8fH7788kuMRiPTpk1zShyr1crMmTNp0KDBE/d9aNiwIbVq1WLq1KnYbDan5OMqP/74I5GRkS4rWCVq0qQJbm5uehmJpmn3pWYJSeIu4SWVUkMebg7OL9OaNnkyBZTi9Sy8NlLTNE3TUqk/UA+4AyAip4ECDo5RBLj4wOtLCceSpJQqqZSaC3wLTHnUdSIyV0RqiEiN/PnzOyzZjGjq1KlERESQN29e3NzcGDRokEvyOHDgABs3bmTw4MGULl2aHj16MH/+fG7cuOHwWCtXruTChQsMGfLkW1qlFCNHjuTMmTOsWLHC4bm40ty5c6lYsaLTN0t9kpw5c9KoUSNdwNA07b7ULCHJkfAxJ5AriaYdP86ImzeZ1aED2fLkcXU2mqZpmpbRxCbMigBAKWUCxIX5kPB0lN4i8rqIPPXz1W/cuMGMGTNo3bo1a9as4Y033qBQoUIuyWXKlCnkypWLPn36ADB8+HBiY2OZNWuWQ+OICNOmTcPX1xd/f/9k9WnTpg3lypVj0qRJiLj0W9hhjhw5wp49e1y2eefD/P39OXXqFKdOnXJ1KpqmZQCpWUKSON3zSxH5+OHm4Pwyp+nTedHDg45ffunqTDRN0zQtI9qmlBpN/IbgTYFlwBoHx7gMPLgDY9GEY2mmlGqllJp7+/ZtRwyXIX3yySfExMTg4+NDXFwcQ4cOdUkeISEhLF26lL59+97fi8HPz4927doxe/Zs7t6967BYu3btYs+ePQwePBij0ZisPkajkeHDh3PgwAE2bdrksFxcKSAgAHd3d7p37+7qVADuF5P0LAxN0yBtj1HdqZT6TSn1tlLKy2EZZXLXjhxh8MKFXOnQAfLqPcA0TdM0LQmjgJvAUaAP8CvwvoNj7AXKKqVKKaXcgM7AakcMLCJrRKS3Kzc3dKZLly4xZ84cunbtSmBgIO3bt6dcuXIuyWX69OkYjcZ/LV8ZOXIkERERBAQEOCzWtGnT8PLy4s0330xRv+7du+Pj48OkSZMclour3Lt3j++//55XX32VvBnkPrZkyZI8++yzuoChaRqQhgKGiJQj/mbjGWB/wi7e3Z7QLcv7on9/PrfbuZdBqtaapmmalgF5AAtEpIOIvAYsSDiWKkqpJcAuwE8pdUkp9baIWIH/A9YDJ4ClIvKXA3LP8jMwxo8fj91up3jx4ty+fZuRI0e6JI/Q0FDmz59Pt27dKFLkn9uX1KpVi0aNGjF9+nTi4uIeMULynTlzhlWrVtG3b19y5Mjx5A4PcHd3Z/DgwWzcuJH9+/enORdXWr58OREREfTq1cvVqfyDv78/v//+OxEREa5ORdPuCw8PZ9OmTYSFhbk6ladKWmZgICJ7RGQI8Tt93wKy3nOkUiDq5k2+3LmTNj4++DZp4up0NE3TNC2j2sQ/CxYewMbUDiYiXUTER0TMIlJUROYnHP9VRMqJSBkR+W8ac34wXpadgREcHMz8+fPp1asX33zzDY0aNaJmzZouyeWLL74gOjqaYcOGJXl+5MiRXL58mR9++CHNsT7//HNMJhP/93//l6r+ffr0IXfu3EyePDnNubhSQEAAZcuWpWHDhq5O5R/8/f2xWq389ttvrk5Fe4rFxsayZcsWxowZQ+3atcmXLx9NmjShUKFCvPLKK3z77bfcuXPH1WlmeakuYCilciul3lBKrQX+AK4SX8h4ai0aMIBbIgx939GzYDVN0zQtS8kmIpGJLxI+z+7CfLQEH330EW5ubpQtW5bLly8zYsQIl+Rx7949Zs2aRatWrahYsWKS1zRr1owqVaowadIk7HZ7qmNFREQwf/58OnfuTOHChVM1hqenJ/369WP58uWcOXMm1bm40okTJ9ixY0eG2bzzQXXq1CFv3rysWePorXI07dHsdjuHDh1i6tSpNG/eHC8vLxo3bsykSZMwmUy8//77rFmzhiFDhvDXX3/xxhtvUKBAAdq3b8/SpUu5d++eq7+ErElEUtWAEOAzoG5qx0jvVr16dXEWa2ys+JrNUitHDrHbbE6Lo2mapmkZEbBPkn8PsROo9sDr6sCu5PZ3dQNaAXN9fX0d+UfockePHhWllIwYMUIqVKgglStXFrvd7pJcZs+eLYD8/vvvj71uyZIlAsiqVatSHWvy5MkCyMGDB1M9hojIlStXxM3NTfr165emcVzl3XffFbPZLNevX3d1Kknq3r27eHt7i9VqdXUqWhZ27tw5mTdvnnTu3Fny588vxD8hSypUqCADBgyQn3/+WW7fvv2vfna7Xf744w8ZOHCgFCpUSADJkSOHdO3aVVavXi0xMTEu+Goyt0fdVyhJ5SOflFJKUtvZRWrUqCH79u1zyti3f/iBwd260WroUNpPneqUGJqmaZqWUSml9otIjWReWxMIBK4ACigEdBKRTLWBgDPvK1yhXbt2bN68mS+//JJu3brxww8/0LVr13TPw2q1Uq5cOQoVKsTOnTsfOxvAarXi5+dH/vz52bVrV4pnDlgsFkqXLk25cuUc8hSRXr168f3333P+/HkKFCiQ5vHSS2xsLEWKFKFRo0YsW7bM1ekkaenSpXTq1IkdO3ZQr149V6ejZRHh4eFs2bKFjRs3snHjRk6fPg1AoUKFaNKkyf328D48j2Oz2di+fTuBgYEsX76cW7dukSdPHtq3b0/nzp1p1KgRJpPJWV9SlvGo+4oUFzCUUjNEZLBSag1JPLNdRFqnPk3ncuqNRv36cPkynD4N+htS0zRNe8qkpICRcL0Z8Et4eVJELM7JzHmyUgFj79691KpVi3HjxrFu3TouX75McHCwS26yf/zxRzp37syqVato27btE6+fM2cO//nPf9i6dWuK925YvHgxr7/+OkFBQbRs2TK1Kd936tQpypcvz+jRo5kwYUKax0svgYGBdOnShd9++42mTZu6Op0kRUREkD9/foYNG8Ynn3zi6nS0TCo2NpY//vjjfsFi37592O12cuTIwYsvvkjTpk1p0qQJFStWdMhSKovFwsaNGwkMDGTVqlXcvXuX/Pnz06FDBzp37ky9evUwGNK0LWWW5cgCRnUR2a+USvInhIhsS2WOTuesG40TgYFEdelCjZkzYeBAh4+vaZqmaRldKgoYzwMlgfvvkEXkWyek5nBKqVZAK19f316Jv63L7Jo1a8bBgwf54YcfePnll/n8888ZMGBAuuchItSoUYPIyEhOnDiRrBv76OhoSpYsSbVq1Vi7dm2KY0VFRXH8+HGHvYl49dVX2bx5MxcuXCBXrlwOGdPZXnrpJUJCQggODs7Qb6YaN27MzZs3OXr0qKtT0TKR06dPExQUxLp16/j999+Jjo7GaDRSp06d+zMsatWqhZubm1PziImJYe3atSxZsoSgoCCio6MpWrQonTp1onPnzlSvXj3D7T/jSg4rYDww4CARmfmkYxmJswoYHYoVY8OlS1y5fp3sGW26oAj3QkMJPX2aiCtXiI2MpGTevOT38CDs5k22HTxITFQUsdHRxMbEEBsTQ0tfX3xz5uTvy5eZt38/sXFxxFosxMbFEWOx8IGvL8+6u7Pp6lXGnj2buB74/j+4uWXK8EyOHATdusWky5fvp5L4z3GRnx+lPDxYfvMms69c+d/5hP4/PvMMBdzdCbx5k++uXcNoMGAyGDAZjRgNBgLq1iVntmysvHSJ365ciT9uNGIymTAaDHzSuDFGs5m1ISHsv3YNk8kU38xm3N3c6NeoEZjN7AwJ4Xx4OGZ3d0xmM2Z3d7LnyEHjGjXAbObklSvciY3F5O6O2d0dc7ZsZMuZkxIlSoDZzO179xCTCbOHB6Zs2TB5eGA0m9Pn71XTNC2DSeESku+AMsAhwJZwWEQkU/0WIKvMwNi6dSuNGjVi2rRpbN26lT/++IPz588/9nGiBw4c4Oeff8bT05M8efIk2XLnzp3iGRybN2/mpZdeYu7cuSl6lOfEiRMZM2YMhw4donLlysnqs337dho2bMhXX31Fnz59UpTn4+zZs4fatWszbdo0hgwZ4rBxnSU4OJiyZcsyYcIExowZ4+p0Huuzzz5jyJAhhISEULJkSVeno2VQFouFP/74gzVr1hAUFMTJkycBqFChwv0ZFg0bNiR37twuy/Hu3busWbOGwMBA1q1bh8VioUyZMnTu3JnOnTvz7LPPuiy3jMIZBYwDIlLtoWMHRaRqKnN0OmfcaIRs345vw4YMr12bT//806FjJyUmIgL7zZtkj4oi6uJFgjZuJPTqVUJv3iQ0LIzQ27fp5u1NS+DY1avUun6d6IfG+AZ4g/gd1OonEWM58CqwQSnaiuCu1P+awcCC4sWp5+3NtpgYxl+6hEGpf6wl+rxcOSrkyMGvN28y7eJFAB78Plvg50dJDw+W37jB7IQCh8RfBMCyChUoYDIx/+pVvrp2DasINhGsdjtWEfYXKUIuu53x4eF8ERWFVST+GsAKRJpMGK1W+gFfPfS1eQCJ+wF3Ax5+8FoB4HrC522A1Q+dLw0k7i3eGNjy0PkqwEE3NzCbaRITw2G7HbNSmJTCrBS1PDxYUrw4mEx0vHCBixYLZoMBs9GIyWCgjrc3Hz/zDJhMDDh8mNs2GyajEZPRiNlkokahQvSsVAlMJsb/+Sc2pe4XaMxmM5WKFaNpQv+Ff/6J0WzGZDZjcnPDZDZTrnhxni1dGptSbDt+PP54wjmTuzs+BQvi4+ODFTh//TpGNzdM7u73W05PT7LlyIEYjVgBo7s7BqMxie8iTdOeNiksYJwAKma2vbQelhUKGCJC/fr1OXfuHKtXr6ZGjRp89NFHfPjhh4/tV7t2bfbs2fPE8XPlyvXYIsfD7b///S/Hjx/n3LlzZMuWLdlfR0REBMWLF8ff35/Fixcnq0/btm3ZsWMHFy5cIHt2xz4Ep1GjRpw+fZqzZ886/be6aTVq1CimTp3KhQsXUv0UlvRy+vRpypUrx6xZs1L9yFsta7p16xbr1q1jzZo1rFu3joiICMxmM40aNcLf3x9/f39KlSrl6jSTFB4ezqpVqwgMDGTTpk3YRLeRGgAAIABJREFU7XYaNmzIypUr8fb2dnV6LuPIJSRdgK7Ev/f9/YFTuQC7iLyUlkQfiNMcmAkYgXki8ulD592Bb4nfuTyM+M2/zj1uTGfcaAyqUoUvDx/m3N69FKmR7Jmz8W/W793j4tGjhIaEEHbxImGXLxN2/Tp+2bLxkqcn0deu0W7TJkKjowmNjSXUZiMKGAt8DFwDfB4Y0ksp8plMjC5WjDcrViQ0Z04mBQeTL18+8hUsiGfevGTLkYMq5ctTtFgxoux2gq9fxz1nTrLlzo17zpy458pFrrx5MefMmen38rBbrdji4rDFxmKNjcUSHY0tNpZ8np5gsXD92jUiwsLiz8XGYo2JQdntVC9TBiwW9p84wbWbN7HExWFJuCa7yUTbSpXAamXl3r2cDw3FEheH1WrFarWSP1s2+iWcn7p7NyHh4VhsNqxWKxabjbI5cjC2XDmwWul14ADn793DYrfHX2O3Uyd7dmb4+IDFQv2QEK5YrfcLNBYR2pjNzHNzA4uFPLGx3H7oa+4FzCW+IJTUBNAhwDTgLpBUzTnxe+sqkNQtzBRgGHCK/y1cV8TP/zYCs93deTtbNo4ATe/cwaQUxsQGfFawIK08PdkfF0evy5cxKoXJYIg/bzDwia8vz3t7sycykvFnzmA0GP7RPqhUiYre3uy+dYt5p0/HH0+YmWM0GhlSowbFvLzYe/06q8+ciT+XeN5koledOnjnysWBK1f44/x5DInnTSaMRiOd6tQhe/bsHL10ieNXr2I0meKvMZkwmkw0r1kTk5sbp69e5WJY2P/Om80YjEZqV6qEMhq5eOMG4VFRGIzG+JZQSPItVQqMRkIjIoixWDCYTPf7mtzd8fL2BoOBGIsFUQqDyfSPpjLwtF5NS2EBYxkwUESuOjktp8oKBYxff/2Vli1b8tVXX7Fr1y6WLVvGhQsXyJs37yP7/P3331SoUIEpU6bQu3dvIiIiUtVu376d5ONPJ06cyHvvvZfir2X48OFMnz6d06dPU7p06cdee/r0afz8/Hj//fcZN25cimM9ybp162jRogULFy7kzTffdPj4jhIXF0exYsWoW7cuP/30k6vTSRY/Pz9KlSrFunXrXJ1KpmCz2e5vUjlw4MAMX6RKLhHh5MmT92dZ7Ny5E5vNRv78+WnZsiWtWrWiadOmmWYZV6Lr16+zePFiRo0aRbly5Vi/fn2W+TtLKUcWMEoApYBPgFEPnLoLHBERa1oSTYhhJP49UlPgErAX6CIixx+45j9AJRHpq5TqDLQTkU6PG9fRNxrhISEUK12adqVKMWP9esLOniXs/Hnc7t2jupcXhIUxcfVqLty4QdidO4RGRREWE0Njo5EZVivExpId/jVD4h0gIHduJG9enr9xA6/s2cmXKxf58uQhX758NKhcmfp16mDz8uLk3bvkK1MG7zJlMKXgNxVa1iB2O7a4OCz37mGNicEoQnY3NyQujosXLmBNKN5YY2OxxMSQN0cOiubLhzU2lp2HDmGNi8NmsWCNi8MaF0fZQoWoUKgQ96KiWPHnn/HnbTasFgtWi4Xnixenmo8PoXfu8PWuXfGFGYsFm82GzWbjVV9faufPz/nwcD7Ztw+b3Y7VZsNmt2Oz2ehfpgzPe3lx9NYtxhw/jtVuj78m4eMnxYtTN0cOtoWH8+6FC9gSZt8ktu/y56e22cyqyEj6h4fHHyd+/rlNhO3ZslFFhLkWC33t9n/tMnwKKEt8IWZEEn+eV4gvCo4Fxidx/i6Qk/hC0GdJ/X0kfOwFzHvoXC7gTsLnnYEfHzpfGEhccOUP/PLQ+XLASQCDgZdE2CGCAe63akYj23LnBoOBJnfucNRmw0B8YcmgFM+7uxNYsCAYDDS9coULVisGpVAJ5xvlzMmsokXBYKD5mTPcSuhvUAqlFM28vPiwRAkwGGh59CixIvfPGZTilQIFGFCqFKIU7fbtu3888WOrwoXpXro00TYbvfbuxWAwxMc2GDAoRZsSJWhdsiQRFgvv7d0b3++Ba9qWKUOj4sW5ERPD5MT+SqES+rcrX56aRYpw+e5dAg4d+l//hBzaPvMMz/j4cCEigh+PHLnf9/75SpUolS8fIbdu8cvx4//sbzDQunJlfLy8OHPzJttOnYqP+8D5VypXJm/u3ATfuMG+kJB/jf9y1arkyp6d01ev8telS/ePJ17TpGpVsmXLRvDVq5y5evV/fRM+vlilCkaTieArV7gcGvqv8/UqVwalOHvlCjcjIuKPJ5wzmUxUKV8elOLc1asULFAAj5QU3JMphQWMLcRPWtsDxCYez8gbgT8oq+yBYbfbqVGjBrdv32bDhg34+fnRr18/Pv/888f2Gz16NJMnT+bSpUsUKlQoTfEjIyPvFzMiIiK4d+8ejRs3xpyKJZlXrlyhVKlSvPPOO3zxxRePvbZ///7MmzeP8+fPp+lreBQRoWrVqsTFxXHs2LEMu6/EihUreO211xy2iWl6GDp0KLNnzyYsLIycOXO6LI979+4xePBgfH19adOmDX5+fk/ulE5EhL1797J48WJ+/PFHrl27BkCnTp0IDAx0cXapFxcXx++//36/aHHmTPy86MqVK+Pv70+rVq2oWbNmhv33lhKbN2+mTZs25M+fnw0bNlCmTBlXp5TuHL6ExJmUUnWBj0Tk5YTX7wGIyCcPXLM+4ZpdSikT8RMS8j9uOqqjCxhbfHxocu0aiQ8ITtQYSHwQV3ngllLkNZvJly0bebNn58USJRjcoAHkzcvi4GA8vL3JW7QoeYsXJ2+pUniXLo2bC/9D1rSsIrHAY0so1GQzmzGIEB0ZSVRkJDaLJf6c1YrdYqFogQIYleLmzZvcvHkTu80Wf43Vit1qpaqvL0alOHvxIhevXo0/b7Vis1gQu53m1aqB3c6BU6c4d/06dpvtfjMAHWvWBLudzX/9xdnr17HZbNjtduw2Gx4mE2/VqgU2GysOH+b0jRuISPx5ux3vbNnoX6MG2O3M3b+fkPDw++fsdjtFcuRgSJUqYLfzyb59XLh7F1vieRH8cuVi5DPPgM3GkP37uRodjT1hfBGhep48vOfrCyJ027+fWxZLfF/ALkLjPHkYXbw4iND08GGibbb4/iLYgXZ58vBewYLY7Xaq/v13/P+LCedEhJ6engz38uKu1UqVCxeQhHEFsANDcubk3ezZuWK1UiU09P7xxP9fJ7i7099s5qTNRrV79/51fo5SvA3sEaF2Et8LS4gvHG0GkpomGAS0BH4GknrmwTagAfA90D2J8/uBasAc4D9JnE8snk0GRiZx/irxzxF9VPEsEsgBvAvMeOicIv7PAuIL4PMfOp8b7s/W6gS8nzs3z91+eP5W2qWwgJHpNgJPSmafgbFs2TI6duzIt99+y6FDh5g5cybBwcGP3VvAZrNRsmRJKlWqxC+/PFxqdb133nmHH3744bGPMb116xZFixalc+fOLFiwwGm5JD7h5Oeff6Z164xZm2vevDl//fUX586dw5hJloRu2bKFxo0bJ/spNc4yZcoURoz4369D/Pz8aNOmDW3atKFOnToueRP9999/s3jxYhYvXsyZM2dwc3OjZcuWdO3alT179jBlyhT27t1LDScUsZ0lNDSUX3/9laCgINavX8+dO3dwd3encePGtGrVipYtW1K8eHFXp+kUe/fupUWLFpjNZn777Teee+45V6eUrhw5A2OHiNRXSt3ln+/bFfEbcKV5NxSl1GtAcxF5J+F1d6C2iPzfA9ccS7jmUsLrMwnXhD40Vm+gN0Dx4sWrnz9/Pq3p3fd3ixZUXLeOcmYzfV95hXw+PuT18aFY2bI8W6sW5M2L5M6tp31rmqalI7Hb7ze71YrY7feXKdksFqLv3fvfNTYbIkIODw/MJhOxMTHcuX07/pwIdpsNsdvJ6+mJu5sbUVFRhIaFISJIQnFKRChWqBDuZjPhERFcu3Hjfv/EOOVKlMDdbOZ6aChXHj4vQpWyZTEbjVy8epWL16//63y9Z57BaDBw+uJFLj7UHxGaVqsGIhw9e5aLN2/+o6/JYKBFwvm9p05RrkQJPDs9dsJiqqTiKSQlgLIislEplR0wishdhyfmRJm5gGG1WnnuuecwGAxs27aNUqVK0aZNG77//vvH9tu4cSNNmzYlMDCQTk74PkqrkydPUqFChcc+xvSTTz5h9OjRHDlyxKlvCKxWK2XLlqVw4cLs3LnTaXFS69y5c5QuXZqxY8fy0UcfuTqdZLNYLOTPn59XX32V+fMfLtmmj8jISEqVKkX16tUJCAhg9erV/Pzzz2zZsgWr1UrBggVp1aoVbdq04aWXXsLDw8NpuVy6dInAwEAWL17MwYMHUUrRuHFjunbtSvv27cmTJw8Ad+7coUyZMlSqVImNGzdm6KddnDx5kpUrVxIUFMSuXbsQEQoVKnR/lsVLL7302E2Gs5Ljx4/TrFkzoqKi+PXXX6lbt66rU0o3j7yvEJEM14DXiN/3IvF1d2D2Q9ccA4o+8PoMkO9x41avXl0cbXqbNgLI+JdecvjYmqZpmpZZAPsk+T/nexG/PPRMwuuywKbk9s8ozRn3Fell4cKFAsiKFStkwoQJAsjhw4ef2K979+7i6ekp0dHR6ZBl6rRv317y5Mkjd+7c+de52NhY8fHxkaZNm6ZLLrNmzRJAduzYkS7xUuKDDz4QpZScP3/e1amkWKdOnaRgwYJis9lcEv/TTz8VQHbt2vWP4+Hh4bJ48WLp1KmT5M6dWwDJnj27tGvXTr755hsJDQ11SPzQ0FD5+uuvpWHDhqKUEkBq1aolM2bMkCtXrjyy38yZMwWQtWvXOiQPZ9i5c6cYjUYBpFq1avLhhx/K3r17XfZ3nRGEhISIr6+vZM+eXdavX+/qdNLNo+4r0lJkKAO4J3z+IjAQyJPa8R4auy6w/oHX7wHvPXTNeqBuwucmIJSEGSWPas640bDbbNKtVClRIKvff9/h42uapmlaZpDCAsYhwA04+MCxo8ntn1FaZi1gxMbGSsmSJaV69eoSFRUl+fPnl+bNmz+x3507dyR79uzSu3fvdMgy9Xbv3i2ATJ069V/nFi1aJICsW7cuXXKJioqSfPnySatWrdIlXnJZLBYpXLiwtGjRwtWppMp3330ngOzZsyfdY9+5c0fy5s37xH8zsbGxsn79evnPf/4jRYoUEUAMBoM0aNBApk+fLmfOnElR3MjISFm8eLH4+/uL2WwWQPz8/GTcuHFy+vTpZI0RGxsrpUuXlkqVKonVak1R/PRgtVqlatWqUqRIEblw4YKr08lQrl27JpUrVxaz2SzLli1zdTrpwhkFjEMJhQNf4pf3TgF+Te14D41tAs4Sv1moG3AYeOaha/oDXyV83hlY+qRxnXWjcS8sTKp5eIgnSNhDlVhN0zRNexqksICxO+HjQfnfz/0jye3v6ga0Aub6+vo68o8w3XzxxRf338TPmTNHANmyZcsT+yXO2siIswke1qhRIylcuLDExMTcP2a326Vy5cpSsWJFsdvt6ZbLxx9/LIAcO3Ys3WI+yerVqwWQlStXujqVVAkNDRWDwSBjx45N99gTJ04UQHbv3p3sPna7Xfbu3Svvv/++PPfcc4nbN8mzzz4rY8aMkT179iQ5wyAuLk6CgoKka9eukj17dgGkSJEiMmzYMDlw4ECqvo+XLFkigCxatCjFfZ0t8f+jwMBAV6eSIYWHh0u9evXEYDBIQECAq9NxOmcUMA4kfBwODJAHbkQc0YBXEgojZ4AxCcfGAa0TPs8GLAOCid/FvPSTxnTmb0rO//GHrMydW8TPTyQiwmlxNE3TNC0jSmEBYzIwGvib+CeOrQL+m9z+GaVlxhkYUVFRUqhQIXnhhRfEYrFImTJlpFatWsl6I9SoUSPx9fVN1zf/qbV+/XoBZP78+fePbdq0SQCZN29euuYSGhoq2bNnlzfeeCNd4z5Oq1atpFChQhIXF+fqVFKtfv36UrVq1XSNefv2bfH29pZXXnklTeOcOXNGPvvsM2nYsKEYDAYBpHDhwtK3b19Zu3atbNu2Tfr27St58+YVQLy9vaVPnz6ybdu2NC+lsNlsUr16dSlevHiGWgoWGhoq3t7e8uKLL2aK/2NcJSoqSpo3by6ATJ482dXpOJUzChi7gS7E70VRKuHYsdSOlx7N6Tca27aJmExypEEDsVkszo2laZqmaRlICgsYBuL3wVgGLE/4/LHLQDNiy4wFjMmTJwsg27dvlx9//PH+PhhPcu7cOQFk3Lhx6ZBl2tntdqlatar4+fndf8PXsmVLyZ8/v0vetA0cOFBMJlOGmBZ/6dIlMRgM8t5777k6lTRJ3Ifi0qVL6Rbzv//9r8OXroSGhsqiRYukffv2kiNHjvuzM7Jnzy5dunSRNWvWSGxsrMPiifyvmDdlyhSHjpsWffr0EaPRKEePHnV1KhlebGysdOrUSQAZNWpUli34OKOAURH4HOiS8LoUMDK146VHS48bjWNjxogJZOwLLzg9lqZpmqZlFMktYABG4IfkXJvRW2YrYERERIi3t7c0b95c7Ha7VKtWTcqWLZustfDjx48XQEJCQpyfqIMEBgbeXyZx4sQJAeSjjz5ySS7nzp0To9Eo7777rkviP2jcuHECSHBwsKtTSZNjx44JIF9//XW6xLt9+7Z4eXmJv7+/02JER0dLUFCQLF26VO7eveu0OCIiL7/8snh5ecmtW7ecGic59u3bJ0opGTx4sKtTyTSsVqv06dNHAOndu3eG3NMkrRxewMiMLT1uNOw2m/QsWzb+NxrDhzs9nqZpmqZlBCmcgbEDcEvu9Rm1ZbYCxocffiiA7Nu3TzZu3CiAzJ0794n97Ha7lC1bVho2bOj8JB3IYrFI6dKlpVatWtK7d29xd3eX69evuyyfbt26SY4cOSQsLMxlOdhsNilRooQ0adLEZTk4it1ul5IlS6bbBqmJRbx9+/alSzxnO3TokCilZMSIES7Nw2azSe3ataVgwYISoZfhp4jdbpf33ntPAOnYsaPDZ+q42qPuKwykklKqnlJqg1LqlFLqrFIqRCl1NrXjZRXKYODLPXuolSMHPaZM4diqVa5OSdM0TdMymrPATqXUB0qpIYnN1UllZaGhoUyfPp1XX32V6tWrM2nSJAoVKkT37t2f2PfPP//k9OnTvPHGG+mQqeOYTCaGDx/Onj17mDdvHj169KBAgQIuy2fEiBFERUXx5ZdfuiyHDRs2cP78eXr16uWyHBxFKYW/vz8bN24kOjraqbFu377NtGnTaN26NdWrV3dqrPRSuXJlunXrxsyZM7l48aLL8li0aBG7d+9m8uTJeHp6uiyPzEgpxcSJE5k8eTJLly6lTZs2REVFuTotp0t1AQOYD0wH6gM1gRoJH5962fLkYeXWreQ0GGjbsSO3z593dUqapmmalpGcAYKIvw/J9UDLFJRSrZRSc2/fvu3qVJJt0qRJREZGMm7cOA4cOMCGDRsYPHgw2bJle2LfRYsW4eHhwWuvvZYOmTrWG2+8QYECBbDb7QwePNiluTz33HO88sorfP75505/w/0oc+fOJV++fLRp08Yl8R2tVatWREdHs3nzZqfGmTlzJhEREXz44YdOjZPexo8fj4gwduxYl8SPiIhg5MiRPP/883Tr1s0lOWQFw4cPJyAggN9++41mzZoRHh7u6pScK6lpGclpJDwCLTO19J7quWPOHPnIYBBbs2YiWXBdkqZpmqYlIgVLSBIbkD2lfTJSyyxLSC5fvizZsmWTHj16iIhIp06dJFeuXBIeHv7EvtHR0ZInTx55/fXXnZ2m0yxdulQ+/vhjV6chIiLbtm0TQL744ot0j33t2jUxmUwydOjQdI/tLDExMZIjRw7p27ev02KEh4eLp6entGnTxmkxXGno0KGilJIjR46ke+yBAweKUkoOHDiQ7rGzomXLlonZbJZKlSrJ1atXXZ1Omj3qviItMzC2KKWmKKXqKqWqJba0l1Syjnp9+/LhnDkYfvuNO8OGuTodTdM0TcsQEu4djhP/GFWUUpWVUq6bV5/FTZgwAavVyocffsjZs2dZtmwZffv2JU+ePE/su2bNGiIiIjLd8pEHdejQwWW/YX7YCy+8QJ06dZg6dSpWqzVdY3/zzTdYrdYssXwkkbu7O82aNSMoKCixKOpwM2bM4Pbt23z00UdOGd/VRo8ejaenJ6NGjUrXuEeOHGH27Nn07duXqlWrpmvsrOq1117jl19+ITg4mPr16xMSEuLqlJwiLQWM2sQvG5kITEtoUx2RVJbSuzfHO3bEd8YMlr77rquz0TRN07SMYAbwMhAGICKHgQYuzSiLunXrFvPmzeOdd96hdOnSTJs2DZPJlOzlFIsWLaJIkSI0btzYyZk+HZRSjBw5kpCQEFasWJFuce12O/PmzaNBgwb4+fmlW9z04O/vz6VLlzhy5IjDxw4PD+ezzz6jXbt2VKlSxeHjZwTe3t689957/Prrr2zdujVdYooIAwYMwMvLiwkTJqRLzKdF06ZN2bhxI2FhYdSvX5+//vrLabHsdjsXLlzg0KFDTouRlFQXMESkURJN/3RLgu/8+ZTLlYueM2ZweOlSV6ejaZqmaS4nIg/vGmdzSSJZXEREBBaLhbp163Ljxg0WLFhA9+7dKVy48BP7Xr9+nXXr1tGtWzeMRmM6ZPt0aN26NeXLl2fSpElOmzXwsK1btxIcHJylZl8katmyJQBBQUEOH3vGjBncuXMny86+SDRgwACKFi3KiBEj0uV7MjAwkO3btzNx4kS8vb2dHu9pU7duXbZv347dbqdBgwbs2bMnTePduXOHvXv38v333/PBBx/QqVMnqlSpQs6cOSlRogQdO3Z0UObJk5ankBRUSs1XSq1NeF1RKfW241LLOtxy5mT5jh3kMRho+/rrhJ0+7eqUNE3TNM2VLiqlngdEKWVWSg0DTrg6qaxu1qxZxMbGMiyZy1oXL16MzWbL1MtHMiKDwcDw4cM5ePAgGzduTJeYAQEBeHl58eqrr6ZLvPRUsGBBatWqxZo1axw6bnh4ODNmzODVV1+lUqVKDh07o/Hw8GDcuHHs3buX5cuXOzXW3bt3GTZsGNWrV+ftt/VbR2d57rnn2LlzJ56enjRu3JhNmzY99nqr1crp06cJCgpi+vTp9OnThxdffBEfHx88PT2pVasW3bt3Z+LEiezfv58iRYrQt29f5syZw7x589Lpq4qnUltlSyhcLATGiEhlpZQJOCgizzkyQUeqUaOG7Nu3z2Xx9yxcyAtvvcULXl6su3IFUzJ2/tY0TdO0zEAptV9EaiTz2nzATKAJoIDfgEEiEubEFB3O1fcVyXH27FnKlCnD119/zahRo2jYsCGrkvmI9ypVquDm5pbm395p/xYbG0vp0qWpUKGCU4sYsbGxLFiwgMGDB9O3b19mzpzptFiuNH78eD788EOuXr1KwYIFHTLmBx98wIQJEzhy5AjPPZdh3944jM1mo0qVKsTExHD8+HHMZrNT4owcOZLJkyeza9cu6tSp45QY2v9cuXKFl19+mVOnThEYGMgLL7zAyZMn/9XOnDmDxWK538/b2xs/P79/tTJlyuDu7p4uuT/yviKpnT2T04C9CR8PPnDsUGrHS4+WEXYLX9Czp7QDiRowwNWpaJqmaZrDkIynkACTEj52eNK1maFlhPuKJzlz5owA0rVrVwFk165dyep36NAhAWT27NlOzvDpNWXKFAFk3759Dh87NjZWvvrqKylWrJgAUq9ePbl06ZLD42QUBw4cEEAWLlzokPHCwsIkV65c0qFDB4eMl1kEBQU59d/9iRMnxGw2S8+ePZ0yvpa0sLAwqV27tgD/aGazWSpUqCBt27aVkSNHyoIFC2Tnzp0SGhrq6pRF5NH3FWmZgbEVeBXYICLVlFJ1Em5MGqZqwHSQUX5TIgMGoGbPRr79FtW9u6vT0TRN07Q0S84MDKXUUaASsF9EMu2Ty5RSrYBWvr6+vU5n8GWhiTMwvL29efbZZ9m2bVuy+g0ZMoTZs/+fvfuOj6pKGzj+O1PSeyEBEgglhKaAFEHUpYiNsFIURBAEEeuivKgouOtrR7GBgsqLSlAWRVAElwUUVxSkKQIrRUJJCCGQ3tuU8/4xQ0QMiCSTmSTP9/O5n5m559x7n7mE5Mwzp7xJRkYG4eHhLo6ycSosLKRFixZce+21LKulOdIsFguLFi3iueeeIzU1lT59+vDUU09xzTXXoJSqlWt4Iq01sbGx9O7du1aGQMycOZMXXniBPXv20Llz51qIsH7QWtO/f3/27dvH4cOHCQwMrNVzX3fddWzfvp1ffvml1nrKiAtTXFzM3Llz8fX1JSEhgXbt2hEXF4fJZHJ3aOd0rnZFTVYh+R9gFdBGKbUZWAz8rQbnazTUq69y7PLL6Tt+PDuXLHF3OEIIIURdWQvkAZcqpQqVUkVnPro7uAultV6ttZ4cHBzs7lAuWG5uLo8++ugF1bVarSxZsoTExERJXrhQUFAQ9957LytWrODQoUM1OpfFYuHdd9+lXbt2TJ48mejoaNauXcvmzZsZNGhQg05egGN1l8TERNatW0dFRUWNzpWdnc3cuXO55ZZbGlXyAhz38aWXXiIrK4uXX67dxSVXrlzJl19+ydNPPy3JCzcICAhgxowZTJ06lRtvvJG2bdt6dPLifGqyCslO4C/AFcDdQCetde2vX9QQmc34vv8+6QYDQ8ePJ9OFy9sIIYQQHuQJrXUI8C+tdZDWOvDMR3cH1xCd7mkbExPDjTfeeEHHrFu3jszMTJm8sw48+OCDmM3mi/6waLVaef/992nfvj2TJk0iMjKSNWvWsGXLFq677roGn7g4U2JiIsXFxXz77bc1Os8rr7xCSUkJTz75ZC1FVr/06tWLW265hVdeeYWTJ0/WyjlLS0uZOnUqnTt35r777quVc4rGqyarkNwC+Gqt9wJDgY+VUvW2O2hdi+zQgc+SksgIkRkNAAAgAElEQVSy2RjZty+W0lJ3hySEEEK42hbnY73pbVHfnThxAoB+/fpd8IfZpKQkwsPDueGGG1wZmgCio6MZP348ixYt+lMfFq1WK0lJSbRv356JEycSGhrKF198wbZt27jhhhsaVeLitAEDBuDj41Oj5VSzsrJ44403GDVqFB07dqzF6OqX559/noqKCp5++ulaOd+LL75Iamoqb775Zr391l94jpoMIfm71rpIKXUlMBB4F3irdsJqHC4bM4aF997LxoICpvXp4+5whBBCCFfzUkrdBlyhlBp+9ubu4Boim80GOJZJvBB5eXmsWrWK2267DS8vL1eGJpwefvhhKisrmTt37h/WtdlsfPDBB3Ts2JE77riDoKAgVq1axY4dOxg8eHCjTFyc5ufnx8CBA1m9ejUXO8ffK6+8QmlpKf/4xz9qObr6pW3bttx9990sWLCAgwcP1uhcR44c4cUXX2T06NH85S8eO1WiqEdqksCwOR8HA/+ntf4XIH/p/qQx8+czrXt3vtmzh+L5890djhBCCOFK9wBXASHAkLO2RDfG1WD92Q9yy5Yto6KiQoaP1KH4+HhGjBjB/PnzKSoqqraOzWZjyZIldOzYkXHjxuHn58dnn33Gjz/+yJAhQxp14uJMQ4YM4ejRoxw4cOBPH5uVlcWbb77J6NGj6dChgwuiq1/+/ve/4+vry4wZM2p0nqlTp2IymZg9e3YtRSYau5okMNKVUu8Ao4A1SinvGp6v0Zq1aRNb+vUjYOpU2LbN3eEIIYQQLqG13qS1vhd4VGs94axtorvja8j+zPCRjh07ctllMiq4Lk2fPp2CggIWLFjwm/02m42lS5fSuXNnxo4di7e3NytWrGDnzp0MHTpUEhdnGTx4MACrV6/+08fOnj2bsrKyRt/74rSoqCgefvhhVqxYwdatWy/qHGvWrGHVqlX84x//oHnz5rUcoWisapJwGAmsA67TWucDYcAjNQ1IKRWmlPpSKZXsfAytpk5XpdQWpdRepdQepdSoml7XnUw+PvgvX05xdDT3DRhAxq5d7g5JCCGEqHVKqQHOp3kyhMTzJCcns2XLFsaPHy8fjOtYjx49GDBgAK+99hqVlZXY7XaWLVvGpZdeym233YbRaOSTTz5h165dDB8+HINBvjOsTkxMDF27dv3T82BkZmYyb948brvtNhISElwUXf0zbdo0oqKiePTRR/90b66KigoefPBB2rVrx0MPPeSiCEVjVJNVSEq11p9qrZOdrzO01utrIabHgA1a63hgg/P12UqBcVrrTsD1wOtKqZBauLb7hIeT8uqrJJWWMuKqq6golPnNhBBCNDinB0CfPXxEhpB4gMWLF2MwGBg7dqy7Q2mUpk+fTnp6OlOmTKFLly6MGuX4fu7jjz9mz5493HzzzZK4uACJiYls3ryZ3NzcCz7mpZdeory8nL///e8ujKz+CQgI4Mknn+S7777700mhV199lUOHDvHGG2/IfDqiVnnib8GbgCTn8yQcK5z8htb64BmJkxNAJhBZZxG6SOcRI3j/oYfYUlxMr6go/vPqq+4OSQghhKg1WusnnY9nDx+RISRuZrfbWbx4MYMGDaJZs2buDqdRGjRoEN26deOdd97BarWydOlS9uzZw8iRIyVx8SckJiZit9tZu3btBdU/efIk8+fPZ8yYMbRr187F0dU/kyZNol27djz22GNVkwL/kbS0NJ599lmGDx/Otdde6+IIRWPjib8No7TWGc7nJ4Go81VWSvXCMXno4XOUT1ZK/aCU+iErK6t2I3WBka+9xopHHqHAYmHAtGnM7twZjhxxd1hCCCFEjSml/ud8m7vja8w2btzIsWPHGDdunLtDabSUUixdupTPPvuMn3/+mVtvvRWj0ejusOqdnj170qRJkwvuMfDSSy9RWVkpvS/OwWw28/zzz7Nv3z6SkpL++AAcK+vY7XZelS9jhQu4JYGhlPpKKfVzNdtNZ9bTjsFW5xxwpZRqCnwATNBa26uro7VeoLXuobXuERlZPzppDH/pJfZnZvLsNdcw7MgR6NCBjAceoMi5lrsQQghRTwU6tx7AvUBz53YPILNGutHixYsJDAxk6NDfdXwVdSghIYGhQ4dK4qIGDAYDgwcP5t///jcWi+W8dTMyMnjrrbcYO3Ys8fHxdRRh/TN8+HB69+7NP/7xD0pLS89b9+uvv2bZsmXMmDGDli1b1lGEojFxSwJDa32N1rpzNdvnwClnYuJ0giKzunMopYKAfwEztdYXNzWuB/MNC2Pml1/S9tAhuPVW7p43j3axsbw/cSJ2q9Xd4QkhhBB/mtb6Ka31U0AMcJnWeprWehrQHWhRV3EopVorpd5VSi0/Y5+/UipJKfV/SqkxdRWLJygpKWH58uWMHDkSPz8/d4cjRI0lJiaSn5/P999/f956L730EhaLRXpf/AGlFC+++CLp6enMnTv3nPUsFgt/+9vfaN26NY88UuO1HYSolicOIVkFnF58fDzw+dkVlFJewGfAYq318rPLG5RmzSApiSfee49Wfn5MfP99egYFsWnePHdHJoQQQlysKKDyjNeV/MGQ0dOUUu8ppTKVUj+ftf96pdQvSqlDSqnqJgCvorU+orW+86zdw4HlWuu7gL9eSCz1wYWsHPDpp59SXFwsw0dEgzFo0CDMZvN5h5FkZGTw9ttvM27cONq0aVOH0dVPV199NYmJicyaNYucnJxq67z55pvs27eP119/HR8fnzqOUDQWnpjAmAUMUkolA9c4X6OU6qGUWuisMxK4GrhDKbXLuXV1T7h1o9eECWwuKGDJffeRWVnJVQ88wOLLL4fUVHeHJoQQQvxZi4HtSqn/VUr9L7ANWHSBxy7CsQJZFaWUEZgH3AB0BEYrpToqpS5RSn1x1tbkHOeNAdKczy9sprp65HzLoi5evJhWrVpx5ZVX1mFEQrhOYGAg/fr1O28CY9asWVitVp544ok6jKx+mzVrFkVFRTz33HO/K8vIyODJJ5/kxhtvJDFRFpUSruNxCQytdY7WeqDWOt451CTXuf8HrfUk5/MPtdZmrXXXM7Zd7o3c9ZTBwG3z5nHgxAmeGzCAv+7ZA+3bk3z//ZRkVjvSRgghhPA4WuvngAlAnnOboLV+4QKP/RY4e33EXsAhZ8+KSuAj4Cat9X+11olnbef6g3kcRxIDztM+qm+Tg/9RD4y0tDQ2bNjAuHHjZKUL0aAMGTKEAwcOcOjQod+Vpaen88477zB+/Hhat27thujqp06dOnHHHXcwb948UlJSflM2ffp0KioqeP3118+bMBWipuQvVT3k36QJMzZsIOTgQfTQodwyfz7tmjblw3vukfkxhBBC1Ata651a6znO7acanq45v/aeAEcyovm5KiulwpVSbwPdlFKPO3d/CoxQSr0FrD5P3PVucvDz+fDDD9Fay/AR0eAMHjwYoNpeGLNmzcJmszFz5sy6Dqvee+qppzAYDL+ZN2TTpk188MEHPPzwwzIZqnA5SWDUZ7GxqKVLmf/22zTz8eH2d97hipAQtr37rrsjE0IIITyWs7fnPVrrNqd7fmitS7TWE7TW92qtl5zveKXUEKXUgoKCgroJ2EW01ixevJgrr7xSvoUWDU7r1q3p2LHj7xIYx48fZ8GCBdxxxx20atXKTdHVXzExMTz00EMsWbKEXbt2YbPZeOCBB4iJiWHGjBnuDk80ApLAaACuuPtuthUUsGjSJI6VldF70iTWDRgAx4+7OzQhhBCiLqQDsWe8jnHucwmt9Wqt9eTg4GBXXaJO7NixgwMHDjB+/Pg/rixEPZSYmMjGjRspLCys2vfCCy9gt9ul90UNTJ8+ndDQUKZPn84777zD7t27efXVV/H393d3aKIRkARGA2EwmRj/f//HwfR0Zg8YwIDNmyEhgZ/uvZfS7Gx3hyeEEEK40g4gXinVyrlS2a04VjUT55GUlISPjw+33HKLu0MRwiWGDBmC1Wpl/fr1gGPOl4ULFzJx4kTi4uLcG1w9FhISwhNPPMH69euZNm0aAwYM4Oabb3Z3WKKRkARGAxMQHc3DGzZgPnCA8uuv58a336Z9dDQfTZmCttvdHZ4QQghRI0qppcAWIEEpdVwpdafW2go8AKwD9gPLtNZ7XRhDvR9CUlFRwdKlSxk6dCj1vSeJEOfSu3dvwsLCWL3aMa3NCy+8gNZael/Ugvvuu4+4uDisVitvvPGGTNwp6owkMBqqVq3wWbGCj+bMIdzLi9FvvEH3gAD+t18/UlasAJnsUwghRD2ktR6ttW7qXI0sRmv9rnP/Gq11O+e8Fr9f4692Y6j3Q0j+9a9/kZeXJ8NHRINmMpm44YYbWLNmDSkpKSxcuJA777yTFi1auDu0es/b25vVq1ezevVqOnbs6O5wRCMiCYwG7i9TpvBDfj4Lx4/HbDDwzMaNnLj5ZggP54d+/Xhr9GgOf/21u8MUQgghRB1KSkqiadOmXHPNNe4ORQiXSkxMJDs7m5EjR6KUkokma1Hnzp25/vrr3R2GaGQkgdEIGL28uHPRIrYVF5N16BC9PvoIRo1i1a5d3PfRR7QdOJDWZjP3dOzIp48+ilXmzBBCCCHOqb4PIcnKymLNmjWMGTMGk8nk7nCEcKnrrrsOo9HIjh07mDRpErGxsX98kBDCY0kCo5EJa9MG06hRsGABT+XmcnD9et685RYuiYhgyf793DN7NoYmTaBPH1bdeiub5s/HUlrq7rCFEEIIj1GfhpBorQF+Mz596dKlWK1WGT4iGoXQ0FCuuuoqvLy8ePzxx90djhCihiTt3ogpg4H4QYOIHzSI+wFLaSlHVq7EcOAArF/PtI8/5tDHHxN4//0MiI7m2quv5vrJk2k9YADIRD1CCCFEvZSUlMRll11G586d3R2KEHVi7ty5pKenExMT4+5QhBA1JD0wRBWznx8Jt90GTz8NW7ey/cgRlj/8MKPbt2d3djb3L1vGc9dcA61boydPZuWjj5J39Ki7wxZCCCHqVH0eQvLzzz+zc+dO6X0hGpVLLrlE5moQooGQHhjinEJbtWLE7NmMmD0bbbdz+D//QX/3Hezaxd4lSxhWWoqaPZtWJhPtQkJo17w5d9xwA90GDsTWpg0qNhaDjK0VQgjRwGitVwOre/TocZe7Y/mzFi9ejMlkYvTo0e4ORQghhPjT5NOluCDKYKDtwIEwcCAACaWlbEpKYsMnn7Dv8GEOZmXx3e7dDNy9m26zZrEBGArE+/jQLjycdi1b0q5DB24cPpzIyy+H8HC3vh8hhBCisbFarXz44YfceOONREZGujscIYQQ4k+TBIa4KGY/P/reey997723ap+227Gnp8PhwzT7z3+471//4pe0NPZkZrIyPR3r99+z8913iQQ+8vdnjlK0a9KEdq1bk3DppbTr3ZuO112HKSjIfW9MCCGEaKC++uorMjIyZPiIEEKIeksSGKLWKIMBY2wsxMbSuV8/Xn7qqaoyS2kpKZs307KkBI4exXvtWvy2b+fr1FQWHzkCX30FQCYQGRvLQl9fviwrIyo0lCaRkUQ1a0ZUbCyJiYkYmjbFFhGBMSDATe9UCCFEY6aUGgIMadu2rbtD+VOSkpIIDQ1l8ODB7g5FCCGEuCiSwBB1wuznR/ygQVWvh02dyjDn85JTpzj0zTckb9tGRGgoJCeT/e23/HTyJKfS0ih01vMFSp5/HoAJwEogymymiY8PUQEBtG7ShJeHDoUmTdheWEhlUBBR8fFEdehAYLNmKIPMWSuEEKLm6uMcGBUVFaxcuZKJEyfi7e3t7nCEEEKIiyIJDOF2/lFRdBk1ii6jRlXte8y5AZTn55O5fz95R46ggoPh1CkGf/UVYQcOkJmby6nCQg7m5pKRlQW7d1cd/58zruEDXO3jw7qEBAgO5tH0dDLsdoIDAggODCQ4OJj4Fi0Y1q8fBAezOzMTU0gIwc2aERITg39UlCRAhBBC1FtHjhyhvLxcho8IIYSo1ySBITyeT0gILfr0oUWfPlX7Rt15J6Oqq2y1QlYW87duJXXfPjLT0jh1/DinTp0ixGqF2FgoKOBIdjY7S0rIt9ko0Bo7MAgY9s47gGMC0pQzTmsERpnNLGnWDIKDGZaejs1kIsjXlyB/f/x9fenTujXDu3cHf38+2L0bn4AA/IOC8A8JwS80lOYtW9IsLg7t50e50YhPaKgkRYQQQriU1hqAX375hfbt29OzZ083RySEEEJcPI9LYCilwoCPgTgcnyFHaq3zzlE3CNgHrNRaP1BXMQoPZjJB06a0HzaM9sOGnbPa8jOea7udksxMLDk5oBQUFPDuxo1kZWRQkJNDQV4eBQUFJPj6QtOmUFBAWVoapwoLKcjJodBmo1RrCn/4geHLlmEHxlVzzYeA14BSIABQgB/grxR+RiNTIyKYEhtLnpcXtycn42s24+PlVbWN6NCBfu3akWu3s+i//8XHzw8fX1/Ho78/3Tt2pGWLFpRozcFTp/AJDMQnKAif4GB8goMJCA/HHBAAkjQRQogaqU9zYJxOYJw8eZIpU6aglHJzREIIIcTF87gEBo7e/xu01rOUUqdHEkw/R91ngG/rLDLRICmDgYDoaIiOrto34IzeHtVZW80+bbNBWRmquJgjBw9SkpNDSW4upQUFlOTn0zIwEMLDMeTnM+vLLykpKaGktJSSsjJKy8uJiYyEkBDK8/M5UVREhd1Omc1Gud1OudZ0OHCAflYrGVozrZrrvwtMBH4GeldT/jEwEvjaYGCI3Y6XUngBXgYD3krxbrNm/CU0lI3l5cw8cQIvoxFvkwkvkwkvo5FnunalfWQk2/LzWXLkCF5mM15eXnh5eWE2m5nUuzdRoaH8NyuLTSkpmL28MHt5YXI+3tizJwFBQRzNyeFoVhYmb2/Mzs3k40Pn9u0x+fiQV1pKcWUlJm9vTN7eGL28MHp5ERQaijKZsBsMKJNJeq8IIdymPs6BAXD77be7OwQhhBCiRjwxgXET0M/5PAn4hmoSGEqp7kAUjs+SPeooNiHOSRmNEBCACgig1RnJkLP5AtP/53/OWd4U2HmuQq3pUFFBQXY25QUFlBcWUl5YSFlhIc2Dg8Hbm/isLFbu3El5SQnlpaWOrayMbm3aQEAAMRkZ3Pfjj1RYLFSesYXGx4OfH+rkSbwzM6m02SgpK6PSbqfSbqd8zx4ADhcU8GFREZVaUwlYnKHd9NVXROGYe+TBakJPwdHzZCkws5rybCAceAmYVU15BeAFTAHmAQYcv8CMOHqyZIeEgNHIg6WlLK+owKgUJqUwKkWE0ciWNm3AaOSRkyf5prgYg7PMoBTNvL1Z1rkzGAw8fuQIPxUVYTQYMCiFwWCglb8/r3ftCkYj/9i7l8PFxRiNRsc5DAbiQ0J4rGtXMBh4ZudOMkpLMTiPV0rRITyce7p0AYOB57dto6CyEuU8t1KKzk2aMPqSS0ApXvr+e8pttqoyBXRp2pTBHTqAUsz+9lvsWjvKnN+kdo+NZUB8PFa7nTc2bQJn2enyni1bckXr1pRZLLy3devv7m2f1q25LDaWwrIyPtyx49cC5/FXtWnDJc2bk1NczLKdv//pHJCQQEJUFBn5+Xy6a5fzR1VXld/QoQNtIiJIzc3l8z170I4KVY/DLrmElqGhHMzK4ot9+9B2e9U5tNaM6daNZoGB7Dlxgn8dOFC1H+fj3T16EOnvz7a0NP6dnFxVfnp7+PLLCfH25uujR1l/9GjVfrvdjgae6dMHP6ORVYcP89WxY9jPLNeaeX37YlSKDw8e5D8nTjjKnHXMSrGwd2/Qmnm//MK3mZm/KQ80GlnUrRvY7Tx78CDf5+VVXdeuNVFmMx927Ah2O1OTk9lRXPyb49t4e7OkVSuw2xl79Ch7ysuxO8vtQDcvL5ZGRYHdzqCMDH6xWKrKNNDfbOafAQFgt9O5oIA0u53vo6PplJFRzf8y0RDZnf+fYmJiiImJcXM0QgghRM14YgIjSmt9umV1EkeS4jeUUgbgFWAscM35TqaUmgxMBmjRokXtRipEXVMKg48PQTExBJ2jIRoG3HTzzec8RTtg9nkucTWw4Tzltzm30+xWK9bycscvE5uNSQUFjMzLw1JejqWsDGt5OZaKCpo1awbA7enpXJmW5iivrMRSUYG1ooLALl0AGHHwIG2OHsVqsWCzWrFardhsNkx9+oDWDN63j4i0NGw2W1WZ0hquuAKsVrrs3UtJRgY2ux2rzYbNbsffYICEBLDZCK6ooInW2Oz2qg+CJoMB7HawWCgpLyfvjA+JNq0xl5bC/v1gt7P/+HF+Ki/HDticHxRzTCZISwOtWZ+TwwGbzfEBFceH1IEmE/ds3w5ak1RayrEzPmDagRHA6JUrAXgByD/rnk8ATi96+DhgO6t8CjAAsALVpcZmAFcAxUB1Y+1eAC4DcoD7qyl/E7gESAfuq6Z8EZAAHDnH+T8F2gD7qT651enzz2kJ7IZqexddtWYNzYAfnO/lbMO+/ppIYCvw1Bn7lXO7a8sWQgwGttvtvGa3o3AkwE6Xz/zlF/wMBnZWVPBhZeXvyt/IycFoNLK/qIh1ZWW/KfMxGEBrUIpjubnsLilxlCuFAQg1meDYMVCKgoICsktLHed3Js8qlHLM3WMwYDIa8XYmxpTzHMH+/o7eYQYDzYqKKC0pqUqOGZSiXXAwOJNjvXbtIra8vCpxZjAY6BweXlV+8/btFFRWEnr11dXcRdFQZWVlAdC6dWs3RyKEEELUnDrzW7I6u6hSXwHVfUU9E0jSWoecUTdPax161vEPAH5a65eUUncAPS5kDowePXroH374oWbBCyGEq2iN3WZD2+3YrVZHTwG7HYNSmE2OfHNZaSnabv+1l4LdjsloxMfbG601hQUFVcedLvfx8sLP1xe73U5OTs7vLuvn64u/vz82m42c3NyqWE4L8PfHz88Pi8VCbt7vpyQKCgjA11meX+hc+PiMHiCBgYF4e3tTabFQXFLya5nz0d/fH7PZjMVqpayszHG4c4iQMhjw9fPDaDJhtdmw2mwog6FqQylMZjPKYHD0ylBKhhe5iVLqR611o+oRWR/aFUlJSdxxxx0MGDCADRvOl54WQgghPMe52hVu6YGhtT5nrwml1CmlVFOtdYZSqimQWU21PsBVSqn7cPRK91JKFWutH6umrhBC1A9KYXAmKoxeXtVW8fXxOffhQHBw8DnLDUBkkybnLDcCTc4z/MkMRDVvft7yyPOUe+HoIXS+483nKTdx/j9aMjWhEEIIIUTD5olDSFYB43EMgx8PfH52Ba31mNPPz+iBIckLIYQQQgghhBCigfLEfrazgEFKqWQc81vMAlBK9VBKLXRrZEIIIYRo9JRSQ5RSCwoKCtwdihBCCNGoeFwCQ2udo7UeqLWO11pfo7XOde7/QWs9qZr6iy5k/gshhBBCiNqgtV6ttZ58viFbQgghhKh9HpfAEEIIIYQQQgghhDibW1YhcRelVBaQWsunjQCya/mcQu6rq8h9dQ25r64h99U1XHVfW2qtI11wXo8l7Yp6Re6ra8h9dQ25r64h99U16rRd0agSGK6glPqhsS0bVxfkvrqG3FfXkPvqGnJfXUPuq2eTfx/XkPvqGnJfXUPuq2vIfXWNur6vMoRECCGEEEIIIYQQHk8SGEIIIYQQQgghhPB4ksCouQXuDqCBkvvqGnJfXUPuq2vIfXUNua+eTf59XEPuq2vIfXUNua+uIffVNer0vsocGEIIIYQQQgghhPB40gNDCCGEEEIIIYQQHk8SGDWglLpeKfWLUuqQUuoxd8fTECilYpVS/1FK7VNK7VVKPejumBoSpZRRKfWTUuoLd8fSUCilQpRSy5VSB5RS+5VSfdwdU0OglJrq/B3ws1JqqVLKx90x1UdKqfeUUplKqZ/P2BemlPpSKZXsfAx1Z4ziV9KuqH3SrnAdaVO4hrQrXEPaFbXDE9oVksC4SEopIzAPuAHoCIxWSnV0b1QNghWYprXuCPQG7pf7WqseBPa7O4gGZg6wVmvdHuiC3N8aU0o1B6YAPbTWnQEjcKt7o6q3FgHXn7XvMWCD1joe2OB8LdxM2hUuI+0K15E2hWtIu6KWSbuiVi3Cze0KSWBcvF7AIa31Ea11JfARcJObY6r3tNYZWuudzudFOH5pN3dvVA2DUioGGAwsdHcsDYVSKhi4GngXQGtdqbXOd29UDYYJ8FVKmQA/4ISb46mXtNbfArln7b4JSHI+TwKG1mlQ4lykXeEC0q5wDWlTuIa0K1xK2hW1wBPaFZLAuHjNgbQzXh9H/iDWKqVUHNAN2ObeSBqM14FHAbu7A2lAWgFZwPvObrQLlVL+7g6qvtNapwMvA8eADKBAa73evVE1KFFa6wzn85NAlDuDEVWkXeFi0q6oVdKmcA1pV7iAtCtcrk7bFZLAEB5JKRUArAAe0loXujue+k4plQhkaq1/dHcsDYwJuAx4S2vdDShBuuPXmHPs5E04GnLNAH+l1Fj3RtUwacdSZLIcmWjwpF1Re6RN4VLSrnABaVfUnbpoV0gC4+KlA7FnvI5x7hM1pJQy42hkLNFaf+rueBqIvsBflVIpOLolD1BKfejekBqE48BxrfXpb/OW42h4iJq5Bjiqtc7SWluAT4Er3BxTQ3JKKdUUwPmY6eZ4hIO0K1xE2hW1TtoUriPtCteQdoVr1Wm7QhIYF28HEK+UaqWU8sIxEcwqN8dU7ymlFI5xf/u11q+6O56GQmv9uNY6Rmsdh+Nn9WuttWSea0hrfRJIU0olOHcNBPa5MaSG4hjQWynl5/ydMBCZxKw2rQLGO5+PBz53YyziV9KucAFpV9Q+aVO4jrQrXEbaFa5Vp+0KkytP3pBpra1KqQeAdThmsn1Pa73XzWE1BH2B24H/KqV2OffN0FqvcWNMQpzP34Alzg8cR4AJbo6n3tNab1NKLQd24lhB4CdggXujqp+UUkuBfkCEUuo48K6ORBQAACAASURBVCQwC1imlLoTSAVGui9CcZq0K1xG2hWivpF2RS2TdkXt8YR2hXIMUxFCCCGEEEIIIYTwXDKERAghhBBCCCGEEB5PEhhCCCGEEEIIIYTweJLAEEIIIYQQQgghhMeTBIYQQgghhBBCCCE8niQwhBBCCCGEEEII4fEkgSGEqDNKqRCl1H3O582cS1oJIYQQQvxp0q4QovGRZVSFEHVGKRUHfKG17uzmUIQQQghRz0m7QojGx+TuAIQQjcosoI1SaheQDHTQWndWSt0BDAX8gXjgZcALuB2oAG7UWucqpdoA84BIoBS4S2t9oO7fhhBCCCE8gLQrhGhkZAiJEKIuPQYc1lp3BR45q6wzMBzoCTwHlGqtuwFbgHHOOguAv2mtuwMPA/PrJGohhBBCeCJpVwjRyEgPDCGEp/iP1roIKFJKFQCrnfv/C1yqlAoArgA+UUqdPsa77sMUQgghRD0g7QohGiBJYAghPEXFGc/tZ7y24/hdZQDynd+yCCGEEEKcj7QrhGiAZAiJEKIuFQGBF3Og1roQOKqUugVAOXSpzeCEEEIIUa9Iu0KIRkYSGEKIOqO1zgE2K6V+BmZfxCnGAHcqpXYDe4GbajM+IYQQQtQf0q4QovGRZVSFEEIIIYQQQgjh8aQHhhBCCCGEEEIIITyeJDCEEEIIIYQQQgjh8SSBIYQQQgghhBBCCI8nCQwhhBBCCCGEEEJ4PElgCCGEEEIIIYQQwuNJAkMIIYQQQgghhBAeTxIYQgghhBBCCCGE8HiSwBBCCCGEEEIIIYTHkwSGEEIIIYQQQgghPJ4kMIQQQgghhBBCCOHxJIEhhBBCCCGEEEIIj2dydwB1KSIiQsfFxbk7DCGEEKLB+fHHH7O11pHujqMuSbtCCCGEcI1ztSsaVQIjLi6OH374wd1hCCGEEA2OUirV3THUNWlXCCGEEK5xrnaFDCERQgghhBBCCCGEx5MEhhBCCCGEEEIIITyeJDCEEEIIIf4EpdQQpdSCgoICd4cihBBCNCqNag4MIYQQv6ftduxWK9pmw2QwgM1GcWEhtspK7DYbNosFu8WCt9lMcEAA2GykHjuG3WrFZrVit1qx22yEBgYSFRaG3WZjb3IyWmu0zYbdbkfb7USFhtI8MhKLxcKP+/ah7XZHHbsdu81GXHQ0sZGRlJWVsWXvXrTd7gxQA9AuJobYyEiKSkvZun8/2rn/dL3OcXE0Dw8nr6iIrQcOgNboM46/rE0bosPCyCooYMfBg45zK4Vy3oeeCQlEBAdzMjeX3UePVt0fZXDk+nslJBASEMCJ3Fz2paZWHX9a744dCfD3Jz07m0MnTqAMBpRSVY/d27fHx8eH9KwsjmdlOfafUadLQgIms5mM7Gyy8vMd+41GDAYDymgkoXVrDCYTWbm5FJWVYTCZUEphMJkwGAw0b94clKKguJgKiwWD0eg43mjEaDIRFBwMBoNj8/Or/R+kRkRrvRpY3aNHj7vcHYsQQggHrTWVlZWUlJRQWlpatZ1+HRcXR3x8vLvDFDUkCQwhhDgHbbdTWVxMZXExFUVFVJaU0DQkBGWxkJ6WRsaJE1SWlVVtdouF67t0AYuFLXv3kpyejqWysmozA/f07AkWC0t/+on/ZmRgsViw2mxYrFZCTCae7doVLBae272bn3JzsdntWG02bFrTwsuLtxMSwGrl7l9+YU9JCVa7HavW2LTmUm9vPoyKApuNa9PT2WexYNPaUQ70Mxr51NsbbDbalpeTAtjB8SEfGAEsdz5vAeSddT/uAN53Pm8LWM8qfwB4A6gELq3mfj4OPA8UAH2qKX/eWeckMLCa8jec10gBrq2mfBEwHtgP3FhN+XIc73EnMLia8nXO824Cbqmm/Htn3OuAidWU/xfoDKwAHqymPAVo6YzziWrKs4FwYA7wYjXlFYAX8BQw76wyL2c5wBRg8Vnl4c7zAxAWBjk51VxBCCGEcC+73c7SpUtJS0v7TfKhuoREda/tp7/8qIbRaGTGjBk88cQTeHl51eG7ErVJEhhCCI9kq6igLDeXsvx8ygsLKS8ooKywkNYREQQYDBw/dowf9+2jvKSEspISyktLKS8rY0ynTkQajWw6dIhP9u6lrKKC8spKx2ax8H/t2xMFJB0/zhsZGVTYbFTa7VTY7VRqzX+Dggi3WnmitJTnqvkjWA544/iA+cZZZSbA4ny+AMcH1TOFAvesWAHAp8BKwOw8zqwUcUYjz2ZlgdlMSk4O+ysqMCmFUSlMBgMhdjtUVIDJhI/ZTJC3N0aDAZNzaxEUBF27gslErz17iC0vx2Q0YjQaMRmNdAgPh27dwGhk8o4dFFZWYnB+w280GOgQFQWXXgoGA89s3Uql3f5rudFI+6ZNoWNHMBhYuHUrKFVVbjAaadesGbRpg1lrPtm+HWUwOHoPOB/jmzeHFi0IstlYs3t3Ve8Dg9GIMhho27w5NGtGU4uFb/bvryoHQCnaNG8OERG0Li9nU3KyY7ezd4Q6XR4WxiWlpWxNSam670opUIq2MTEQHEzv4mK2paY6emhoXVUvoUULCAykf34+3x87BvCb8k6tW4OfHzfm5vJdWtpv/m213U6r+Hjw8WH4qVN0Tkv7TQ8TrTVNOnUCLy9GpafT7fjx35Rpu51A57/N2NRUeqWnO3qunO6hYrdj6tULlOL25GR6nTiB3dlzRWuN0hr69gW7nXH799MrIwOtdVXvF2+TCXr3dvRG8fY+x/86IYQQwr1mzpzJrFmzAMffbz8/P/z9/fHz8/vNFhER8ZvX1dU5c5+vry8LFy7kmWeeYfXq1SQlJXHppdV93SI8nTqzcdbQ9ejRQ8tyZ0LUAq2xlZSQm5ZG0alTlOblUZqXR0l+PvHh4cT4+pJ58iTLv/+e0uLiXzPjZWWMa9mSnv7+7Dpxgmk//0ypxUKp1UqpzUaJzcZiHx+uqazkc6uVodVceiNwNbAEGFtN+Y/AZcC7JhMP22z4KIWPweDYjEY+T0igRVAQn+TlsejkSbxNJrzM5qrHl6+6iuCgIL46cYJNGRl4eXnh7e2Nl7c33j4+TOjXD7OfH3syMkjNz8fbzw+ztzdePj6YfXzo1bUrmM2czM+nxGLB7Ov7my04IgLMZrTzQ7sQDYVS6ketdQ93x1GXpF0hhBC154MPPmDcuHFMnjyZOXPm4O3t/esXGbXk888/Z/LkyeTl5fHkk08yffp0TCb5Tv9i7dixA601vXr1qvVzn6tdIQkMIRoBbbdTmp1N4YkTeFVUEG42Y83LY+3GjRTn51Ocn09RYSHFhYX0Dg9nUEQE+Tk5jP/uO4orKiiqrKTYYqHIZmO6lxcPVFaSbLPRrpprzQPuA3YB3c7Y7wP4KcXboaHcEhHBbqV4ICMDP7MZPy8v/L298fP25v7u3enSsiWHy8r4LDkZH19ffPz88PX3x8ffn6u7dSMyOpqcigpSc3PxDQ7GJyjIsQUHE9SkCUZfX8c4fyFEnZEEhhBCiIu1ZcsW+vXrxxVXXMH69esxm80uu1Z2djb3338/y5Yto2fPniQlJdGhQweXXa+h0lpz1VVXkZaWxuHDh2s9EXSudoWkm4TwcNpupyw3l4Ljxyk4cQJTSQltg4KgoIAP1q7lVGYmBQUFFBQWUlBcTA9/f/4WFgYFBbTfu5csq5UC5xwIAPcC853Ph1RzvelGI4PCwjD6+ZGSn0+g2UyYjw8tQ0II8PWldYcOcMklRJvNvLF3LwHBwfgHBeEfHIxfcDAJ7dpBy5Z0Mps5WVmJf0QEvmFhGM8aa9gF+O4877sN8PB5ysOdmxBCCCGEqL9SU1MZOnQosbGxLF++3KXJC4CIiAg+/vhjRowYwX333Ue3bt149tlnmTp1Kkaj0aXXbki+/fZbNm/ezJtvvlmnvVgkgeGBDm3YQGluLpdefjmEhEBg4G9muhf1j7bbKT55ktyjR6nIzqZdYCDk5fHZhg0kp6SQl5dHbn4+ecXFtDAYeDkiAvLz6XPsGD9Yrb+ZLPF64N/O5zOBNEABQUCw0UhYaKjj5yYmhn7FxRh9fAgODCQ4OJigkBAujY+H7t0xBQSwPS2NgIgIAiIjCYyOJiAqCpOPDwCBwO7zvKdAHBMqnosZiLrI+yWEEEIIIRq+4uJi/vrXv1JRUcHGjRsJD6+7r6dGjhzJX/7yF+6++24eeeQRVq5cyfvvvy8rlVygZ599lujoaCZOrG5qc9eRBIaHydy7l07XXIMvkO/cN0Yp1gGhJhOhXl6E+PjQOjiYtwcNgtBQPk1PJ1trQps0ITQqitBmzYiMi6NFp05wetk8USus5eUUpKY6vvnPyWHH1q3s27+fvOxscnNyyMvPx1BRwZw2bSA3l0n797OqqIg8rauSEO2AX5zP5+CY08EMhBoMhJlM+AYHQ9Om0KEDQ5s0oZ9ShAQHExwaSnB4OHFxcY7J+IKD2V5RgV9UFAHR0RiqyXy+/Qfvp2et3BUhhBBCCCH+HLvdztixY/n555/597//Tfv27es8hqioKD777DOWLFnC3/72N7p06cKLL77I/fffj0E+Q53Ttm3b+Oqrr3j55Zfx9fWt02tLAsPDrHntNSqB+bfdBgMGQF4egzZuJCQlhbyiIvJKSsgrK+NYWRl8+ink5fG61fq7rvhdgZ8AlOIag4HDShHp7U2LkBBaRkfTs3Nnbh0+HFq2pCQiAv/mzev8vbqV1lBURHZyMqn79pFz/Dg5J06Qc/IkudnZzOzcGWNeHm/u3MniY8fIraggx2YjX2vMOJYrVMBb/LqspAJClKKF2QxBQRAayqVt2mCuqCA0JISw0FBCIyNp2rw5XHMNhIWxAvCOisI/MrLaCR2n/8HbiK7FWyKEEEIIIURdmTlzJp9//jlz587l2murWyC9biilGDt2LP379+euu+5iypQpfPbZZ7z33nuOLw7F7zz33HOEhYVx99131/m1ZRJPD3NzTAxbMzJIs1gubIUCrSnJyiI3JYX8tDTyTpwg7+RJvMvLuT42FvLyeHb9eg5mZnKqoIDUoiJSKysZBKxyniIGKAJa+vjQMiiIllFRDOjaleGJidCyJVn+/kR07Oh5KybYbJSdPElGcjL56enknzzp2LKzGdq6NWGVlXz988+8v3s3+c7ET25FBblWKz8qRXObjWeAf1Rz6qzAQCIiInjbZmNlSQnhAQGEBQURHhZGeEQE9w0dijEigjSrlUo/P8JatSI4NrbaXhBCCNEY1PdJPJVSLYC5QC5wUGs964+OqQ/tCiGE8ESLFy9m/Pjx3H333bz11lu1vtrIxdJa89577zF16lS01rzyyivcddddHhOfJ9i1axfdunXjmWee4YknnnDZdWQVEjy/oVFZXExEYCCj27fnnf37XXYdbbdTmpqKf3Y2pKby2gcfcDQlhdTMTFLz80kpL2cMjtUkLDhWjzADLcxmWgYG0jIighGXX84NgwZRER3NTykp2KxW7FYrNpsNu9VKfNOmxEZEUFhUxLd79jjKbTbsNhs2m42ecXG0ioggMy+PNbt2Ve0//XhjfDxxBgN7Dh3ila1byS8tJb+sjPyKCvItFpZ6e3NFaSn/BMZU8x63Az2VYomvL3+vrCTEbCbE25swf3/CAwN5atAgolu0YH9FBQdLSwlv3pzwFi0Ib9WK0FatMPv5uez+CyFEQ+TOBIZS6j0gEcjUWnc+Y//1OEbrGYGF50tKKKUGA6Fa6w+VUh9rrUf90XU9vV0hhBCe6Pvvv6d///5ceeWVrF271uWTdl6M1NRU7rzzTjZs2MB1113HwoULiYmJcXdYHmHkyJGsW7eO1NRUQkJCXHYdWYWkHshbu5YbgOG33urS6yiDAf9WraBVK+jZk6k33/y7OtacHEhPx5aczJyPPiI1JYXUkydJzctj9aFDxB88yA0ffMBJoE8115gDTAGOUf1KF+8BrYDDwIRqyj8G4oBCf382lpdXJSBahYQQ4u9PUJ8+0LYtfWw2FmVkEBIZSUh0NCFNmxLSvDnNEhIgNJQxBkO1CY7TOjg3IYQQ9doi4E1g8ekdSikjjlz8IOA4sEMptQpHMuOFs46fCGwFliulJgIf1EHMQgjR6JxecaRFixZ88sknHpm8AGjZsiXr16/n7bff5pFHHqFz587MmTOHcePGNereGPv372f58uU8/vjjLk1enI/0wPAkU6fC229DTg54eA8AXVqKSkuj7NAhNv70EwajEaPJhMFkwmgy0SY2luZRUZRVVrI3NdVRbjZjMBoxmM00j44mJDSUcouFjJycX481mzGYTARHROATGQmylJEQQtQL7h5CopSKA7443QNDKdUH+F+t9XXO148DaK3PTl6cPv5hYLvW+lul1HKt9e+z+456k4HJAC1atOiemppa229FCCEapKKiIvr27cuxY8fYunWrWybtvBiHDx9mwoQJfPfddwwZMoQFCxYQHd04Z6IbP348y5cvJyUlhcjISJdeS3pg1AMpK1cS17+/xycvAJSfHyQk4JuQwPWDB5+zni9wvtasD46eGEIIIUQta45jpenTjgOXn6f+WuB/lVK3ASnnqqS1XgAsAMcXIzUPUwghflVWVkZ5eTmhoaHuDqVWnV5xZN++faxZs6beJC8A2rRpwzfffMOcOXOYMWMGnTp1Yt68eYwaNapR9cY4cuQIS5Ys4cEHH3R58uJ8PGxWxsbr4Lp1tEpJYbEbfxiEEEKIxkpr/bPW+mat9T1a64fPV1cpNUQptaCgoKCuwhNCNAI7duygU6dOxMfHc+DAAXeHU6tmzJjBqlWreP3119264sjFMhgMTJ06lZ9++on4+HhGjx7NyJEjycrKcndodebFF1/EaDQybdo0t8bh1gSGUup6pdQvSqlDSqnHqim/Wim1UyllVUrdfFbZeKVUsnMbX3dRu8YX8+cDcPVdd7k5EiGEEKJBSAdiz3gd49xXY1rr1VrrycHBwbVxOiFEI6e1Zs6cOfTt2xer1YrRaOTaa6/l+PHj7g6tViQlJfHiiy9yzz33cP/997s7nBpp3749mzZt4oUXXmDVqlV06tSJ5ORkd4flcsePH2fRokXceeedNGvWzK2xuC2BccbkWjcAHYHRSqmOZ1U7BtwB/POsY8OAJ3F0Be0FPKmUqtf9rP713Xd09vYm7sor3R2KEEII0RDsAOKVUq2UUl7Arfy6grgQQniEvLw8hg8fzkMPPcT111/Prl27WLt2Lfn5+Vx77bXk5OS4O8Qa2bx5M5MnT2bAgAHMnTu3QQy5MJlMPPbYY2zfvp2srCxWrFjh7pBc7uWXX8Zut/Poo4+6OxS39sDoBRzSWh/RWlcCHwE3nVlBa52itd4D2M869jrgS611rtY6D/gSuL4ugnaFgmPH+DYvj8Ru3dwdihBCCFHvKKWWAluABKXUcaXUnVprK/AAsA7YDyzTWu+tpevJEBIhRI1t27aNbt268cUXX/Dqq6/y+eefExYWRrdu3Vi1ahVHjhwhMTGRkpISd4d6UVJSUhg2bJjbVxyxWq188803fPPNN9TmAhZdunShdevW/Pjjj7V2Tk+UmZnJggULuP3224mLi3N3OG5NYFQ3uVbz2j5WKTVZKfWDUuoHTx2jtP7117ECg2+/3d2hCCGEEPWO1nq01rqp1tqstY7RWr/r3L9Ga91Oa91Ga/1cLV5PhpAIIS6a1ppXX32VK509rzdt2sTUqVN/0zuhX79+LF26lO3btzNixAgqKyvdFe5FKSoq4q9//SuVlZV88cUXhIWF1en1S0tLWblyJePHjycqKor+/fvTv39/rr76ar7//vtau0737t0bfALjtddeo6Kigsce+92MD27R4Cfx1Fov0Fr30Fr3cOdsqeczMCODD/396T1xortDEUIIIcQfkB4YQoiLlZuby0033cS0adNITEzkp59+4vLLq18gadiwYbzzzjusW7eOCRMmYLef3SndM9lsNsaMGcO+ffv45JNPSEhIqJPr5uTksGjRIoYOHUpERATDhg1j9erVJCYm8umnnzJ//nySk5Pp27cvQ4cOZd++fTW+5mWXXcbRo0fJy8urhXfgeXJzc3nzzTcZOXIk7dq1c3c4gHsTGDWZXMtlE3PVOZuNsA0bGDN0KCYfH3dHI4QQQog/ID0whBAXY8uWLXTt2pW1a9cyZ84cPv300z9cLnXSpEk8//zz/POf/2Tq1Km1OgTCVWbMmMHq1auZM2cOgwYNcum1UlJSmDNnDv3796dJkyZMmDCBnTt3MmnSJDZs2MCpU6dISkpi2LBh3HvvvRw+fJhnn32Wr7/+mksuuYQ777yzRpOldu/eHYCdO3fW1lvyKG+88QbFxcXMmDHD3aFUcWcCoyaTa60DrlVKhTon77zWua/e2fvxx8zJyqKgf393hyKEEEIIIYSoZXa7ndmzZ3P11VdjMpnYvHkzU6ZMueAJLR977DGmTp3K3Llzef75510cbc0sWrSIl156iXvvvdclK45ordmzZw9PP/00l112Ga1ateKhhx4iOzubGTNm8OOPP5KamsrcuXMZMGDA7+bd8Pf3Z+bMmRw5coQHH3yQDz/8kPj4eB599FFyc3P/dDyXXXYZQIMcRlJUVMScOXO46aabuOSSS9wdzq+01m7bgBuBg8BhYKZz39PAX53Pe+KY36IEyAH2nnHsROCQc5twIdfr3r279jRPXHmlNoLOOXTI3aEIIYQQFw34QbuxTVGXGzAEWNC2bdvaun1CiAYqKytLDx48WAN6xIgROi8v76LOY7PZ9NixYzWg33nnnVqOsnZ899132mw264EDB+rKyspaO6/VatXffvutnjp1qm7VqpUGtFJK9+3bV7/88ss6OTn5os+dkpKix40bp5VSOiQkRM+aNUuXlpb+qXO0bNlSjxo16v/ZO+/wqKqnAb93S3oDEhJ6CyBdCBCkRmrooQiCgHQVUGwooKDyQ7EjIEWKCCJI771JAiIdpPfeQktCenbvfH9s2I+etpsNeN/nmWez59xzZu7uZvfcuXNmMm1DTuWbb74RQHbu3OkQ/U9aVyjyDIQh2YqqVavK7t27HW3GA1R2c8PLyYktUVGONkVDQ0NDQyPTKIqyR0SqOtqO7CQnris0NDRyDlu3bqVTp05ERkby448/0q9fvyyVEU1JSSEsLIw1a9Ywb9482rVrZ0Nrs8a5c+eoVq0auXLlYseOHWlujUmLhIQENmzYwJIlS1i2bBk3b97EycmJRo0aERYWRsuWLfH397eR9fDvv/8ydOhQVq5cSYECBfj888/p3r07BoMhzbHt2rXj33//5eTJkzazx9HEx8dTrFgxKleuzJo1axxiw5PWFc99Es+czKVdu9ifkEDzmjUdbYqGhoaGhoaGhsZzhslkYsOGDQwdOpSLFy+mPUDDJqiqytdff01ISAjOzs5s376d/v37Z8l5AWA0Gpk/fz41atSgc+fObNq0yUYWZ427d+/SsmVLTCYTy5cvz5Lz4uzZs7z66qv4+fnRqlUrFixYQOPGjZk3bx43b95kxYoV9O7d26bOC4CKFSuyYsUKtmzZQqFChejTpw8VKlRg8eLFaeYdCQoK4tSpUzxPiZ2nTp1KZGQkn3zyiaNNeQTNgeFAVo4ZA0CLN990sCUaGhoaGhoaGhrPAykpKaxdu5Y+ffoQEBBAo0aNGDVqFB06dCAlJcXR5j333Lhxg+bNmzNkyBDatWvH3r17rXkSbIGbmxvLly+nZMmStG7d2uG5F8xmM507d+bo0aNZqjiiqirjx4+nQoUKrFq1im7durF27Vpu3LjBH3/8wSuvvIKnp6eNrX+Ue2VWFy1aBEDbtm2pWbMm4eHhTxxz7/3dt2+f3e3LDpKSkqw5W+rUqeNocx5Bc2A4kLM7dhBoMFCmRQtHm6KhoaGhoWF3FEXJ/TRxtH3pRSujqpHTSE5OZtWqVfTs2RN/f39CQ0OZO3cuTZo0YdGiRcycOZN//vmHTz/91NGmPteEh4fz4osvsnnzZiZOnMiff/6Jl5eXzfXkzp2btWvXkidPHpo2berQrQtDhgxhxYoVjB07loYNG2ZqjjNnztCgQQMGDBhA7dq1OXz4MBMmTKBx48Y4OTnZ2OK0URSFNm3acPDgQaZMmcKFCxeoV68eLVq04ODBg48cf68SiaOdSbZi5syZXLp0Kcd+X2g5MBxFQgLkyUNS9+44T5jgaGs0NDQ0NDSyRHpyYCiKchYQQAEKA3dS//YBLohIMbsbakNy1LpC4z9HYmIi69evZ8GCBSxdupTo6Gi8vLxo3bo17du3p3Hjxri4uFiPf/PNN/nll19YvXo1oaGhDrT8+UNVVUaNGsXw4cMpUaIE8+bN48UXX7S73hMnTlCrVi08PDzYtm0b+fPnt7kOESE2NpZr165x/fr1Bx7PnDnD7Nmz6devH+PHj8/w3KqqMmHCBD7++GMMBgOjR4+mR48eWd5qY2vi4+MZN24cX3/9NdHR0XTt2pURI0ZQpEgR6zGFCxemdu3azJ4924GWZh2TyUTp0qXJkycPO3bscOh78aR1hebAcBCyahVK8+awZg00aeJoczQ0NDQ0NLJERpJ4KooyBVgsIqtSnzcFwkTkDXvaaGty0rpC479BQkICa9euZcGCBSxbtoy7d+/i4+NDWFgY7du3p2HDhjg7Oz9xbHBwMNeuXePAgQPky5cvm61/PomMjKRLly6sX7+eTp068csvv2TLVod77N69m5dffpmiRYsSHh6e7vwTcXFxjzgknvSYkJDwyHhFUfDz86Nx48b8+uuvj5QrTYvTp0/Tq1cvtmzZQmhoKFOmTKFgwYIZmiO7uX37Nl9//TVjx45FROjfvz9Dhw7F19eXsLAwjh07xrFjxxxtZpaYNWsWXbt2ZenSpbRq1cqhtmgODHLWQuO9SpU4c/gwS+7eRXF1dbQ5GhoaGhoaWSKDDoyDIlIhrbacTk5aV2g8v8THx7N69Wrmz5/PNUYbSwAAIABJREFUihUriIuLI3fu3LRp04b27dtTv379dIfZHz16lKpVq1KjRg3WrVuHXq+3s/XPN5s3b+a1117jzp07jB07lt69ezvkjvXGjRtp1qwZ1apVY926dbi5uT3QHxUVxQcffMDx48etjonY2NhH5lEUhTx58hAQEIC/v/9TH319fTP1+bmX62Lw4MEYDAZ++uknunfvnuOiLp7GxYsX+fzzz/ntt9/w8PBg+fLlbNmyhc8++4zo6OhsdWDZElVVKVeuHE5OTuzbtw+dLu1sE6dOncLDw4OAgACb2/OkdUXadWE0bI6oKosOH6ayn99jnReiqijp+MBoaGhoaGg8o1xRFOVTYFbq89eAKw60J0MoitISaBkYGOhoUzSeU2JjY1m1ahXz589n1apVxMfH4+vry2uvvUb79u0JCQlJ9x1vVVVZvnw59erVo0yZMowbN45evXoxatSoHLvHPaciIuzZs4clS5awdOlSDh06ROnSpVmzZg0VK1Z0mF0NGjTgjz/+oEOHDnTo0IHFixdbPx8pKSm0b9+e8PBwateuTfXq1Z/olPDz80tX2dDMcurUKXr16kV4eDhNmzZl8uTJOT7q4nEUKlSIadOm8cEHHxAWFkbnzp354YcfEBH27dtH3bp1HW1ipli0aBHHjh3jzz//TJfzAmDo0KFs3bqVy5cvZ58TSkT+MxIUFCQ5gX8XLhRApnTr9kjfrVOnJMjJSa716yeiqg6wTkNDQ0NDI+MAuyWdv8dAbmAMsA/YC/wE5E7v+JwiOWVdofH8EBERIW3atBEXFxcBxN/fX9566y3ZtGmTpKSkZHg+VVXl3XffFUACAwPl8OHDoqqqdO7cWXQ6nYSHh9vhLJ4vkpKSZO3atdKvXz8pUKCAAKLT6aRevXoyevRouXv3rqNNtDJx4kQBpGvXrmI2m0VVVendu7cA8ttvvznMLrPZLGPGjBFXV1fx9vaWX3/9VdTn5Dpn9+7dYjAYpGXLlgLI6NGjHW1SplBVVSpVqiSlSpUSk8mUrjGJiYni4eEhffv2tYtNT1pXOPzHPzslpyw0RjVpIoBc3rPnkb6vGjcWD5BjIGqvXmJOTnaAhRoaGhoaGhkjPQ4M4PfUx4FpHfssSE5ZV2g8+5jNZhk5cqTodDrx9/eXAQMGyJYtW9J9IfEkRo0aJYC8+uqr4u/vL56enrJ06VKJiYmRwMBAKViwoNy8edNGZ/H8EB0dLX/++ae8+uqr4uXlJYC4ublJmzZtZMaMGTn6NRsxYoQA8v7778s333wjgHzyyScOs+fkyZNSp04dAaRZs2Zy8eJFh9liL+79n/n4+EiXLl0cbU6mWLFiRYYdXatWrRJAVq5caRebNAdGDlpo1PL0lCquro+0J929K/l1OmmYO7fIp5/KSJBORYpIclycA6zU0NDQ0NBIP+l0YBwB8gMHgFypkRhWSWt8TpOcsq7QeLa5ceOGNEm9udWpU6dM39FXVVUiIyNl7969smzZMnnttdcEkGLFiknTpk1l3bp1UrVqVQFkxIgRsmvXLjEajdKqVavn5m54Vrh06ZJMmDBBmjRpIkajUQDx8/OTXr16ybJlyyQ+Pt7RJqYLVVXl7bffFkAURZGOHTuK2WzOdjvMZrP89NNP1qiL33777bn9nJlMJqlXr57o9XopUaKEo83JMKqqSnBwsBQtWlSSM3Dz/I033hB3d3dJSEiwi11PWldoOTCyGbl5kzaxseRp2fKRvnmDBnFFVZk6cCAMH45hzx7mrF5NXIkSzD16FBcfHwdYrKGhoaGhYTMmARuB4sAeLCVU7yGp7Roa/xm2bdtGx44duXHjBpMmTaJv376P3UduNpuJjIzk0qVLT5Xk5OQHximKgtlsZuvWrVy/fp2//vqLfv36MXz4cA4cOMDIkSP5+OOPGTt2LAMHDsyu084RiAhHjhxh6dKlLFmyhF27dgEQGBjIwIEDCQsLo0aNGs9colNFUXjttdeYMGECZrOZkJCQdOczsBUnT56kZ8+ebN26lWbNmjF58mQKFCiQrTZkJ3q9nt9//52SJUty+vRpoqOj8fb2drRZ6WbTpk3s2LGDiRMnZii3zrJlywgNDX2gXHN2kGYVEkVReonItPue64FPReQLextna3JEtvA//oAuXWDHDqhe3dosqkpVDw/izWYOx8WhS02gM+HVV+k/dy4NcuViyZEjeNghw6uGhoaGhkZWyWAVkoki8pa9bbI3OWJdofFMIiL88MMPDB48mCJFijB//nyqVKnCoUOHWL9+/SOOiStXrmAymR6Yw8nJiYIFCz4iUVFR/O9//6NixYps2rQJLy8v5s+fT4cOHfjhhx947733GD16NIMGDaJs2bIEBASwZcsWtm/fTlBQkINekezBbDazfft2axLOU6dOAVC9enXCwsJo3bo1ZcqUeaYqYjzM+fPnCQ4OxtXV1VpadeHChYSFhdldt6qqjB07lqFDh+Lk5MSYMWPo1q2bzV5PESEpKYmkpCQSExMfeHxc28OP1atXp2bNmjax5XF89NFHfPfdd/To0YNff/3VbnpsTf369Tl+/DinT59OtzNix44d1KhRg99//50uXbrYxa4nriseF5ZxvwCzgVVAPqAcsAv4Pq1xOVFyQqjn3w0bSpSvr8hDoVyxa9ZIJ5CpXbs+MmZGnz6iA6nj5SWmHLznTkNDQ0PjvwsZSOL5rAvQEpgcGBhoq5dP4z/E7du3pVWrVgJI27ZtJSoqSk6ePCmdOnUSRVEEEFdXVylVqpTUr19funXrJkOHDpUJEybIsmXLZO/evRIZGfnYcPy9e/eKp6enlC1bVm7dumVtV1VVmjdvLm5ubnLu3DkREVm3bp3kypVLfHx8xM/PTwIDAyUmJibbXofsJDw8XHr27Cl+fn4CiNFolNDQUJk4caJcvnzZ0eY9wI4dO2T58uWZGhsVFSXly5cXb29vOXLkiMTGxkpwcLA4OzvLli1bbGzpg5w4cUJq164tgDRv3lwuXbqUqXnOnDkj9erVk8DAQClUqJD4+fmJl5eXODk5CZZIvUyLk5OTHDlyxMZn/v9cvnzZunVn27ZtdtNjS7Zu3Zqp5KNDhgwRvV7/wPeMrXnSuiLNCIxU70dHYDwQB3QWkW0ZdKDkCBx9p8SUmIifmxttAgP59cSJBzvDwmDrVrh4ER5TWnXhoEHEjB5Nj4oVYe1a8PPLJqs1NDQ0NDTSJiMRGM8Ljl5XaDx77Nq1iw4dOnDp0iW+//572rVrx8iRI5k2bRpGo5GBAwcycOBA/P39M3zX+tSpU9SqVQsXFxe2bdv2SHnK8+fPU65cOUJCQli+fDmKonD69Glat27NkSNHAOjUqROzZs16piMQ7iEibN68mREjRrBlyxa8vb1p1qwZYWFhhIaG4uXl5WgTH0BEGDNmDB9++CFms5nZs2fTqVOndI83mUy0aNGCjRs3smbNGho0aADArVu3qFOnDpcvX6ZZs2b4+PikS5ydndOl12w2W6MuXFxcGDNmDF27ds3UZ+j69evUrl2bW7duWbcmODs7p/mYnmPi4+OpVq0apUuXJiIiwi5bg0SEgIAAa9njAwcO5LjP2cM0a9aMXbt2ce7cOdzd3dM9rly5cvj7+7Np0ya72ZaVCIySwN/AL0A4lv2rbmmNy4ni6AiMLWPHCiALP/zwgfaL4eFyEETSyhC8erWIi4tsKFxYLu3aZUdLNTQ0NDQ0Mgb/oQiMe+LodYXGs4OqqvLzzz+Lk5OTFC5cWNasWSMffvihuLi4iNFolP79+8uVK1cyPf+VK1ekWLFi4uvrK8eOHXvicT/++KMAMnfuXGtbTEyMtGnTxnqXetKkSZm2IyegqqqsW7fOGg2QP39+GTNmTI5OwhkbGyudO3cWQFq3bi1169YVo9EoGzZsSNd4VVXlzTffFECmTp36SP+FCxekcePGUrJkSfHz87MmKX2auLi4SEBAgLzwwgtSo0YNCQ0NlVdffVXefPNNGTx4sHz99dcyceJEqVWrlgDSokWLLEWzREdHS+XKlcXNzU3+/vvvTM/zNH7//XcBZMyYMXaZX0SkWbNmUrx4cdHpdNKtWze76bEFu3fvFkC++uqrDI07ceKE9XWcMmWKDB06NMsVkx7Hk9YV6XFgHAMapP6tAB8Ah9MalxPF0QuNQdWqiREk5qGQqrcrVhQnkFuHD6c5R+yaNZJXUaSYwSBn7BwKpqGhoaGhkV4y6sAA/IEWqZI3I2Nzijh6XfG8kZSUJB9++KFs2rTJ0abYlOjoaOnQoYMA0qRJE/n444/F09NTFEWRbt26yZkzZ7I0/507d6RixYri4eEhu9K4wZWSkiJBQUHi7+8vt2/ftrabzWb57LPPBBCdTiebN2/Okk2OQFVVWbVqldSoUUMAKViwoIwfP95uFRJsxalTp6RixYqiKIp8+eWXYjab5c6dO1K+fHnx9PSUffv2pTnHPcfUxx9/nC6dqqpKXFycXL58WQ4fPizbtm2TlStXyh9//CHjx4+XL7/8UgYNGiR9+vSRV155RRo1aiTVqlWzOkAMBoPV0eHj4yMzZ87MUoWRhIQECQkJEYPBIKtWrcr0PGmhqqo0bdpU3Nzc5OzZs3bR8emnn4pOp5OhQ4cKIHPmzLGLHlvQtm1b8fHxkejo6AyN++677wSQ06dPS9GiRaVOnTp2sS8rDgyvx7SVSmtcThRHLzTKOjtbSqTex51z58QdpFvx4umeZ+dvv0kuRZH8Op0cWbHC1mZqaGhoaGhkmIw4MIAOwHlgBjATOAu0T+/4nCKOXlc8byxbtsx6UdS3b1+JiopytElZZv/+/VKyZEnR6XTSokUL8fX1FUDatGkjhw4dyvL88fHxUrt2bTEajbJ+/fp0jdmzZ4/odDrp27fvI33Tpk0TRVHEYDA8M44kVVVl2bJl1hKxhQsXlkmTJkliYqLddF6+fFnGjBkj7dq1k4ULF2Z6npUrV4qPj4/kypVL1qxZ80DfpUuXpFChQhIQEPBUJ9eSJUtEURRp165dtpVLvd8Bktmyv/cwmUzWCKBZs2bZyMInc+HCBfHw8JBGjRrZpazr4sWLBZCIiAipUaOGeHt7y/nz522uJ6scOnRIABk2bFiGx9auXVsqVaokixYtsuwuyML/wNPItAPjeRJHLjTOhYdbEqSEhT3Q/m2zZgLIvj//zNB8/y5YIP46nfgqSobHamhoaGho2JoMOjAO3B91AfgBB9I7PqeI5sCwLT179hQvLy95//33RafTSYECBWTFM3qjRlVVmTJlijg7O4u3t7fkzZtXAGnQoIHs2LHDJjpSUlKkZcuWoijKA1tC0sMHH3xgvch6mEmTJlkjMaZMmWITW+2B2WyWxYsXS+XKlQWQYsWKydSpUyUpKcku+q5evSo///yz1K1b15psNVeuXAJIx44dJTIyMkO2jxgxQhRFkRdffPGJDorDhw9Lrly5pGTJknLjxo1H+nfv3i1ubm5SvXp1iYuLy/S5OQpVVaV3795239bxMBMmTBBAfv31V5vPfeHCBQHk559/llOnTomHh4fUq1fPLlssskLnzp3F3d1dbmawQMT169dFp9PJ8OHDpW7dulK0aFG7nZvmwHDwQkMdM0aOgET+84+1LTkuTgrp9fKyj0+m5jy+dq0U0uvlA2dnETvtFdPQ0NDQ0EgPGXRgHHzoue7htmdBNAeG7TCZTOLn5yevvvqqiFgqMZQrV04Aee211zK8yHYksbGx0qVLFwHEzc1NAKlevXq68xmkB1VVpXv37gLIhAkTMmVjkSJFpEyZMo+NVHj77bet0TD9+vWT5ORkW5htE8xms8yfP18qVqwogAQGBsr06dPtYuP169dl4sSJ8vLLL4tOpxNAypYtK1988YUcOXJEkpOTZeTIkWI0GsXPz0/mzZuX5px37tyRli1bCiBdu3ZN0/GwdetWcXFxkeDgYImNjbW2X7hwQfLlyyeFCxeWq1evZvlcHcG9bRafpJUH0MaYzWapW7eu+Pj4ZCn3zONQVVV8fX2lZ8+eIiLy22+/CSCjRo2yqZ6scPLkSdHpdDJo0KAMj502bZoAMnv2bAHk+++/t4OFFjQHhqMXGk2aiJQq9UDTnq++EneQZZ9+mulpr+3eLeYSJUTc3SV57dqsWqmhoaGhoZEpMujA+A5YC3RPldXAt+kd72hBK6Nqc+6V8ps8ebI1DD4xMVGGDx8uBoNB8ubNK/PmzbNLyLctOXTokBQqVMh68V+uXDlZvHixze0eNGiQAPLFF19keo6VK1cKICNGjHikLzk5WYKDg62lK+vWrSvXr1/PislZxmQyyZ9//ml1bJUuXVp+//13SUlJsameGzduyOTJk6VBgwZWp0Xp0qVl+PDhT9z2c/DgQesWlnbt2sm1a9eeeFzJkiXFYDDIuHHj0v25WLx4seh0OmnevLmkpKRITEyMVKxYUby8vOTgwYOZPldHMnr0aOt2MUf8Xx8/flxcXFykTZs2NtffpEkTqVSpkohYHBqvvPKKGAyGNHPUZBe9evUSZ2fnTDm+WrVqJYULF5bXX39d3N3d5c6dO3aw0EJWcmAsApoDurSOzeniKAfG3atXpZtOJ3u7dPn/RlUVqV5d7hQvLuasfvFevSrnS5WSUooiyzOxj0lDQ0NDQyOrZCKJZ1vgx1Rpk5GxOUW0CAzb8eGHH4rBYBAnJycpVqyY/O9//5OLFy+KiCWPRFBQkDV3hK3vmNqKYcOGWS94AwICZObMmXYJrf72228FkP79+2f5wqtjx47i7Owsx48ff6Tv7Nmz4u3tLSVKlBBnZ2cpXLiw7N27N0v6MoPJZJI//vhDypQpI4CUKVNGZs+ebdPX9tatWzJt2jRp3Lix6PV6a2THJ598IgcOHEjX65ySkiJff/21ODs7S548eWT27NkPjJs7d664u7tLQEDAY7fupMW9rT3du3eXpk2bil6vl7XP6M3Le9VA2rVr59CtFd98840AMn/+fJvOO3ToUDEYDNYEsrdu3ZKCBQtKqVKlHoiicQTnz58Xg8EgAwYMyPDYuLg4cXV1lR49eoiTk1Om5sgIWXFgNAT+AE4DXwOl0xqTU8VRC43FgwcLIJt++MHadnf9elFBZPx4m+i4deqUVHN3FwPIn++8Y5M5NTQ0NDQ00ksGIzC+SU9bThfNgWEbVFWVkiVLWi9Q75VlvHfHedGiRRIfH2+9OPTx8ZHp06fnmGiM7du3W6MunJyc5Msvv7RbHobp06dbcy7YImHj1atXxcfHR0JCQh77ei5YsMC61aFgwYLi6uqabVUVUlJSZMaMGVKqVCkBpHz58jJv3jybJaq8c+eOTJ8+XZo2bWqtqlG8eHEZPHiw7N27N9OfryNHjkhwcLC1JOqFCxfkww8/FEBq1qyZpVKjw4YNe+bL3a5cuVIMBoPUr1/frolW08O9qjx58+aVW7du2Wzee/83O3futLZt2rRJFEV5bPLc7GTAgAFiNBozlVh0yZIl1u8D4LGOT1uS5S0kgDfwJnAR+BvoARjTO/4Jc4YCx4FTwODH9DsDc1P7dwBFU9uLAgnA/lSZlB59jlpo9CpVSrxAku/b49a+QAFpYDCImsXMvfcTffGi1PX2FgVkSg6vO6yhoaGh8XyRQQfG3se0/Zve8TlFNAeGbThy5IgAUqlSJSlatKioqiqnT5+WTz75RPLnzy+A+Pv7y0cffSSrV6+2OjiaNGni0Oz+J06ckObNm1svKENCQuxaOWXp0qWi1+ulcePGNnWQTJ48+akJDd966y0B5I8//pDatWtby3Xa6855cnKy/Prrr1KiRAnr52LhwoU2cVxERUXJzJkzpUWLFmI0GgWQIkWKyKBBg2T37t02c4qZTCb57rvvxNnZ2eoc6devX5bftzFjxlg/bxMnTrSJrdnJtm3bxNXVVapUqZLh0p32Yv/+/WIwGKSbDa+dzp49+9j36KOPPhJAlixZYjNdGeHq1avi7OwsvXr1ytT47t27i5eXl+TNm1eaN29uY+se5UnrCsXS93QURckDdAG6AldSIzJqAxVEJCTNCR4/px44ATQCLgG7gE4icuS+Y/oBFUXkTUVRXsUSYtpRUZSiwAoRKZ8RnVWrVpXdu3dnxtxMo5pMFHR2pnb+/My7eBGAs+HhBNarx6AaNfh6+3ab6ou/eZN2Zcqw5uZN/uzWjY4zZth0fg0NDQ0NByGCajYjqvqA6BQFg14PIsTHxT3S72Q04uLsjKgqd27fxsvLC0PevDY3T1GUPSJSNY1j3gL6AcWxRHbewxPYJiJdbG6YHXHEuuJ5ZNSoUQwdOhRPT086d+7MpEmTrH0mk4k1a9Ywbdo0li9fjtlspk6dOhQpUoRFixah0+n45ptvePPNN9HpdHa18+rVq2zZssUqR48eBcDFxYUZM2bQoUMHu+mOiIigcePGVKxYkY0bN+Lh4WGzuVVVpV69ehw5coSjR4+S96Hvh8TERIKDg7ly5Qq7du3im2++YdKkSTRt2pTffvsNo9FIfHz8UyUuLi7NY+Lj44mNjeXixYtERUVRokQJOnbsSNWqVVFVFbPZnCU5ePAgq1evJjk5mYIFC9KhQwc6duxItWrVUBTFZq/nPXbt2kXr1q25fv06qqrSvHlzfvnlFwoUKJCp+VauXEmrVq1o0aIFZrOZ1atXs2DBAtq0aWNjy+3DoUOHqFOnDnnz5iUiIuKRz5kjGTZsGCNHjmT16tWEhoZmeT4RwdfXl7Zt2zJlyhRre3JyMi+99BLnz5/n4MGD5MuXL8u6MsKgQYP48ccfOX78OIGBgRkaazabCQgIIDAwkH/++Yf169fTsGFDO1lq4UnrijQdGIqiLAZKA78Dv4nI1fv6dqe1WHnKvC8Bn4tIk9TnQwBEZNR9x6xNPWa7oigG4BqWUmtFeEYcGHtmzaJq167M6NOHbpMnA/B+UBDj9u7l7M6dFKxWzeY6k2Ji+KJ6dT4+fhzv//0PPvkE7PDFrKGhkXMQsxnFbEZNSSH+7l1MSUmYk5MxJyVhSk7G290ddycnEuLiuHDxIuaUFFSzGXNKCuaUFIoFBJDL3Z07d+5w6PRpzCaTpS/1sVqJEvh6enLp+nX+OXbM0m4yYTabUc1mmpUvj5+7O8cuX2bzsWOoZrN1wamazXSrUgVfV1d2nT/P2hMnLLpV1XKcCIOqVcPHaGT92bOsOn3a0ieCqqqoqsoPwcG46/UsOHOGFRcu/H9fqjd+VvXq6EWYcvo0K69ds/SnigFYVrkyqCpfnznD2tu3reNUEbz0ela98AKoKoMuXGBTTIy1T4D8BgOrixQBVaXHlStsi49HwDI/8ILBwOq8eUFVaXXzJnuSk1FJvUUmQlWjkZWeniBCzehojpjNlvGpxzTQ61nq5AQilExM5Px9fQK0A+anvs+5gTsPvffdgempfxsB00P9bwNjgUTAFfjXy4sK0dG2+uhZSacDwxvIBYwCBt/XdVdEbtvcKDujOTBsQ40aNYiKiuL48eMsXLiQtm3bPva4a9euMWPGDKZOncqpU6fw9PTE29ubS5cuUbduXaZOnUrJkiVtZtelS5fYsmULf/31F1u2bOHkyZMAeHh44Ofnx9mzZ6lSpQqLFy+mcOHCNtP7MAcOHKBevXrky5ePiIgIfH19ba7j6NGjVKpUiQ4dOjBr1qxH+o8dO0ZQUBDBwcGsX7+eqVOnMmDAAEymh79x0sbFxQU3Nzer6HQ6EhMTiYmJISoqClVVbXFKj1CgQAHat29Px44dCQ4OtqvDa9q0afTr1498+fIxf/58tm3bxtChQ3FycmL06NF07949Q06T/fv3U7t2bV544QW2bNmCoig0aNCAffv2sWHDBmrXrm23c7EF586do1atWgBs27aNokWLOtagh0hKSqJy5crExcVx6NAhPD09szxno0aNuH37Nnv27Hmg/dixY1SpUoU6deqwevVquzte7xEVFUXBggUJCwt77P94WkRERFC3bl2KFi2Ku7s7Bw8etIvj736etK4wpGPsFBFZ9dBkziKSlFnnRSoFsGxHucclIPhJx4iISVGUaCBPal8xRVH2ATHApyIS8TgliqL0BfoCdv1xeRI3162jJND0vfcAiLl0ial799KhSBG7OC8AnL28+OrQIejVi4Rhw5gZEUHf1atRsukfREPDoagqyXFxJMfFkZKQQEp8PCnx8ehFCPDxAZOJYydOEBsTgyk5mZTERMsFvrMzVYoVg5QUVu/cSUxsrKU/ORlTSgqFvb1pXLIkpKQw5q+/iE1IIMVkIiUlBZPJRBU/PzqWKAFmM/03bybJZMJkNlulSd689ChUiJTkZFrt3IlJVa1iVlW65snDW7lzcycpiVqnTmESwSSCOVU+cnfnHWdnzicnUyEmBjNgxnKxasZygfo2cAio9JiXZTqWC929WMLnHmYBlgvlnVj29j3MWqAx8A/wymP6/8biXd6O5fb6wzRevhzf1PHD7mvXpUqf3bvx0es5YDbza3IyOkVBB+gBRVH46vZt3A0GTsfG8ldsLEpq/73jzIcOodfruXnzJueioy3tqX1OOh3ExIBOh2oyoYqgAHqdDp2i4GowgJcXKAo+d+6QLzWqQUmdw9/ZGV54ARSFQL2exJgY6/yKTkchd3eoUgV0Omr8+y/+d++i6HQogE6no7iXl6VfUWi5dy/V4uOt8ys6HaVz54ZKlUCno/eOHUQnJ1v6UqWcnx9UqACKwuBt20g0mx/orxgQAGXLgqIwKiLCcn739VcuWBBKlcIgwpht28iXuoh0BCISDUQDnRxmhEaO4urVq+zYsYOQkBBOnTpF/fr1n3hsQEAAH3/8MR999BERERFMnTqV+fMt7r2tW7dStmxZhg0bxtChQzEY0rPEfZBz5849EGFx5swZALy9valTpw59+/YlKCiIb7/9ljVr1vDGG28wduxYnJycMnfy6eDMmTOEhobi6elDZ5SDAAAgAElEQVTJ2rVr7eK8AChTpgxDhgxhxIgRvP766zRq1OiB/hdeeIHx48fTo0cPvvzyS4YPH05QUBDr1q17wBnh5uaGu7v7I233xNXVlevXr7N+/XqrXL9+HYCyZcvSrVs36tevj6+vL3q9/omi0+me2v/wcdl1kZiUlMQ777zD5MmTadSoEXPmzCFPnjxUq1aNFi1a0KtXL3r27MncuXOZMmUKhQoVSnPOy5cv06JFC3LlysWyZctwd3cHYPny5dSqVYuWLVuydetWypUrZ+/TyxSRkZE0btyYhIQEwsPDc5zzAsDZ2Zlp06ZRq1YthgwZws8//5zlOYOCgvjxxx9JSkrC2dnZ2v7CCy/w448/8tZbbzFu3DgGDhyYZV3pYc2aNcTFxdG/f/9MjV+yZAkGg4Fz584xefJkuzsvnkZ6IjD2ikiVtNoyrFhR2gOhItI79XlXIFhEBtx3zKHUYy6lPj+NxclxF/AQkVuKogQBS4ByIhLzNJ0OuVNSvTro9ZC6VWRc27a8s3gxu2bMoGq3bvbVrapMevll3goP561y5fh5/350mfhB1/hvI6pKSlwcSXfv4m4woEtJ4da1a0RevUpSXBzJ8fEkJySQnJBASJky6Ewm9h0/ztFz50hOSiI5MZHkpCTMKSkMrFEDUlJYeOAAOy9eJDklxSpOwPjKlSE5mVFHjrDlxg2SzWZSVJVksxlfvZ6VhQtDSgrdL19mU0ICySKkpEpJRWGPTgdmMzWxXEjfTzCWi2eAClgu9O+nIbA+9e9iwLmH+sOAxal/+wE3U//WY/EEdzEYmOruDgYDRe7cwQwYFAW9omBQFLr4+DAsXz5Mej21TpzAoNNZRa8ovJo/Pz2LFSMW6LlvH3qdDoNeb31sU7w4zYsV447JxIjduy3tBoN1kdasdGlqFC3KzcREpu/bZ+0zGI3o9XpCypaldIEC3IiLY/2RI+gNBnR6PXqDAb3BQLXSpcmfNy+34uLYd+aMpd1otD6+ULw4Pj4+RMfFcSEy0tJnNKJ3ckKn15M/Xz5c3N2JT0oiJj7eMr/BgC51DncvL/RGI2YRVEVBbzSi6PUO/QHUsC3picB43tAiMLLO5MmTeeONN6hQoQKenp5s27YtQ+OjoqKYM2cOEydO5ODBgwDkyZOH77777ql3uUWEM2fOPOCwOH/+PAC5cuWibt26hISEUK9ePSpWrIher+fkyZO0atWKU6dOMXbsWN56662snXwaXL9+nVq1anHnzh0iIiIoW7asXfUlJiZSqVIlTCYTBw8exM3N7YF+EaFbt27Mnj2bzZs3U7du3XTNGx8fT0REBOvWrWPdunUcOmT5Bfbz86NRo0ZWyezWipzCpUuXaNeuHTt37mTIkCH873//Q6/XP3CMqqpMmDCBwYMHo9Pp+OGHH+jdu/cTP6exsbHUrVuXkydPsm3bNipWrPhA/7lz53jppZcwGAxs376dggUL2u38MkNMTAwvv/wyR48eZcOGDdSsWdPRJj2Vd999lzFjxhAeHk6dOnWyNNf8+fPp0KEDu3fvJigo6IE+EaF169asXbuWXbt2PfK+2oPu3buzfPlyIiMjH/lcpoWIULJkSWJjYzGZTFy8eBFXV1c7Wfr/ZHgLiaIoAVgiIGYBnYF7/1leWJJmvpBFgzK9hUQeMlpRlL+AD0XkqauI7F5oJJ0/j6FoUfQjR1q2cZhMJJYowToPD1odPpwtNoiqMrhmTb7dsYNmfn60btyYl9u1o2SzZnCfN1Aj5yGpkQRJ0dEkRkeTGBNDHldX3HU6bl+/zqFjx0iMjSUxNpaEuDgS4+NpUrIkAc7OHDx7lsUHDpCYmEhiUpJFkpP5rEwZihgMrLxwgZ/OnCHJZCLJbLaIqrLG358iqsq4qCg+iYsjGUi6z6ZrgD+WO+gjH2NzHOAGvAf89FCfgiVSQAHeUBRmiuAEOCkKTopCLr2eQ8WKgZMTQ2/cYFNsLE56PUa9HqNOh7+rKzOqVQMnJ74/eZLDMTE4GQwYjUaMBgP5vbwYVLs2GI3MOnyYq3FxGJ2crJIvTx5aVqsGRiObjh4lzmTC6OSEwdkZo5MTuXPnpkLp0mA0cuziRVSdDqOLCwYXF4wuLrh7eZHLzw8MBhJMJgwuLuidndFl8EdAQ+N5RXNgaGSGZs2aceTIES5evMjw4cP57LPPMj3X3r17GTJkCOvXr0dEyJ07N++//z49e/YkICCAkydPPrAl5PLlywD4+vpSr149q5QvX/6RO/br1q2jY8eO6PV6FixYQEhISFZOO02io6MJCQnhxIkTbNy4kRo1athV3z22bNlCSEgIH3/8MV9//fUj/Xfv3iUoKIj4+Hj279//2IgQVVU5cOAA69atY/369URERJCcnIyzszO1a9emcePGNGrUiEqVKmVbZIS9+euvv+jYsSPx8fHMmDHjidug7nH27Fl69erF5s2badiwIVOmTHkkMsFsNtO2bVtWrFjB8uXLadas2WPn2r9/P3Xr1qVIkSKEh4eTK1cuW51WlkhMTKR58+aEh4ezdOnSJ9qfk4iNjaVChQo4OTlx4MABXFxcMj3X6dOnCQwMZPLkyfTp0+eR/hs3blChQgX8/PzYtWtXlnSlhaqq5M+fn5dffpk5c+ZkePzhw4cpX748iqIwePBgvvrqKztY+SiZcWC8jiXiuCpw/6/zXSy5MBZl0SADliSeDYDLWJJ4dhaRw/cd0x9LotB7STzbikgHRVH8gNsiYlYUpTgQkXrcU/fPZvdCY3rPnnw4fTr7V6+mUGgoLFgAr7wCixZBNibcEVXl+5YtGbV6NXdEGAEMMxq5XaYMg5OTCQoKompoKOVbt8bZBnu+nntEUOPiuHn+PLE3bhB36xbxUVEk3L1LUW9vinp5EX3zJn9GRBAfG0tCamKqhMRE2hQqRG1vb05HRjJwzx4SUlKIT0khwWQi3mzmOy8vWosQHhtLveTkR1QvBVoBK4CWjzFtI1Af+BNLfLYRcAFcFAUXnY7l+fNTycuLJQkJfBsZibPBgLNej7PBgJPBwE/Vq1MgVy423bjBsosXcXZ2xtnJyfLo7Mwb9erh6e3Nv5GRHImMxNnVFSdXV5zd3HBydaVm5coY3Ny4FhNDTFISTu7uOLm54eTujtHNDS9fXxQnJ0tUkoaGxnNFRh0YiqIUAUqKyAZFUVwBg4jctZ+FtkdzYGSNu3fv4uvrS6NGjVi5ciV///03L730UpbnvXjxIh07dmR7avSrXq8nT548REZGAuDv72+NrqhXrx5lypR5aqTGmDFj+OCDDyhXrhxLly6lWLFiWbbxaSQmJhIaGsq2bdtYsWIFTZo0sau+h+nVqxczZsxg7969j70zvG/fPmrUqEHjxo1ZtmwZiqJw6dIl65aQDRs2cOPGDQAqVKhgdVjUqVPnkaiOZx0R4aeffmLQoEGULFmSRYsWUaZMmXSNVVWVyZMnM2jQIAC+/fZb3njjDatT5/3332f06NH8/PPPaYb9b9q0idDQUF566SXWrl1r14vh9GA2m+nYsSMLFy7k999/p0uXZyc/84YNG2jUqBGDBw9m1KhRaQ94AvecqB07dnwgMfH9rFmzhqZNmzJw4EB++unhW3+2Y+/evQQFBTFjxgy6ZWIHwFdffcUnn3yCwWDg7Nmz2Rbp88R1xeNKk9wvQLu0jsmsAM2wODFOA5+kto0AWqX+7YIld9kpLFuzi9+zCTiMpYTqXqBlevRld7mztvnzSwGdTtTUsk+dfX1lpp+fiJ3KTqWFajbLmS1b5Movv4h8/LHsrl5dfBTFWo7JCFLFzU3CW7YU+eUXSfj7b0myYZlXR6CazXL36lW5vGePHF25Us4tXSqyebPI8uUy9513ZGq3bvJTWJiMbNBABteoIQubNhXp3l2S2raVUF9fqe3lJS+6ukqg0SgBOp2McHISURSJ/P/8eg/IVyACcvahdh2IO8gvHh4ihQvLieLFpYqrq9Ty9JRGuXNLq4AAebVwYQlv2lSkf38516ePDKtTR75s1Eh+aNVKxnfsKNO6d5dzP/0ksnCh3Jg9WzZ9/738/csvsmfWLDm8dKmc3rxZEk6fFrl1S0wxMWKyUw16DQ0NjcdBxsqo9sFy4+J06vOSwMb0js8popVRzRrz588XQJo1ayY+Pj6SkpJi0/mXLVsmefPmFUDKly8vEydOlGPHjqW7VGZiYqJ0795dAGnTpo3czYY1UUpKioSFhQkgs2fPtru+x3Hr1i3x8/OT6tWrP7FU6tixYwWQli1bStmyZa3rHX9/f+nSpYvMnDlTrly5ks2WZx8JCQmyYcMGad++vfXzkdmyoOfOnZOGDRtaS/GePn1aJkyYIIAMHDgw3fPMmTNHAGnXrp3dStymB1VVpW/fvgLI6NGjHWZHVujZs6fo9XrZs2dPluapX7++VK1a9anHvPPOOwLI6tWrs6TraYwcOVIAuXbtWqbGV6lSRfR6vXTq1MnGlj2dJ60rnhaB0UVEZimK8kHql9LDjo8fn+wvyZlk552S5Lt3yePlxWtlyjDpyBF2TJtGjd69GdO2Le8sXJgtNqQHUVXOhoeze+lS9vz9N3tOnuRHk4mKd+/yO9AbqODmRlDhwgRVrUrV0FAqtmmDwd4edFUl9to1oi9fJvrqVWIiI4m5cQNXk4k6BQpAdDRj163j/I0bxMTGEhMfT0xCApWdnfnKxwdiYih5+TJnVJX7c1l3xlIDGMADy5aHezgBbzo7M8bfH3F3p8aFC7gbjXg4O+Ph4oKHqytNS5akzYsvkuziwtR//8XDyws3T0/cvLxw8/amRIkSFCpaFJOTE5FxcbjlyYNrrlw4eXhoSVQ1NDSeazISgaEoyn6gOrBDRCqnth0UkQr2tDENm8oCnwO3sDhTFqQ1RovAyBpdunRh9erVuLu7U716dRYsSPMlzzBRUVF88MEH/PrrrzRt2pQ5c+bg7e2d5rhr167Rtm1btm/fzmeffcbw4cPtvt0hLi6OHj16MH/+fMaOHcvbb79tV31PY/bs2bz22muMGzeOAQMGPNIvInTo0IEVK1ZQt25da5RFhQoVnsvcRqqqsn//fjZs2MCGDRuIiIggMTERo9HIF198weDBg7N03iLCtGnTeP/99zGbzSQlJdGsWTMWL16coXwFo0eP5v3336d///6MGzfOIe/FvZKkQ4cO5csvv8x2/bYgKiqKsmXL4u/vz86dOzEajZmaZ9CgQYwdO5bY2NgnzpGQkEC1atW4efMmBw8exM/PLyumP5Y6deoQHx//SEWU9HDlyhVrfpp//vmH4OCHa27Yj8xUIXFPfbRdoen/EOETJxILtGjfHoDRX3yBF9Bj3DiH2vUwik5H8ZAQioeEYK1eLgJnzlB+wQLeXbSI3SdPMvfYMSYfOwazZnHZaCR/xYqsDwjgjLc3bp6eJMbHkxgfj85spn9QECQlMWP3bnZfvkxSSgqJyckkpaTgrdMxuXRpSErinWPHiIiOJlFVSVRVklSVEjodEUYjJCbSQISdD9n7EpZqBwBTgTOAl06Hl8GAl9FIipsblCoF3t50PXqUFKMRLy8vvHx88PTxIbBECUs1AHd39t68iWvu3HjkzYu7nx9O99VUV4AdT3ndnHh8pYV7GID8GXgfNDQ0NP5jJIlI8r3Fdeq20qdnFX8KiqL8CrQAIuW+EuuKooQCY7Dk250qIo9u6v9/mgLjRCRCUZRlWIrzaNiJlJQUVq5cSUhICEuWLOHTTz+1ix4fHx+mTZtGcHAw/fv3Jzg4mGXLllGqVKknjtm9ezdhYWHcuXOH+fPn0z51LWdPTp06RZs2bTh8+DDfffedQ50XAJ06dWLGjBkMHTqUsLCwR0LGFUVh7ty5mM3mTF/c5XTOnj1rdVhs3LiRW7duAVC+fHnefPNNGjZsSL169fDwyPqlkqIo9O7dmyZNmtC/f3+io6OZPXt2hpMtvvfee1y5coXvv/+eAgUKMGTIkCzblhHGjh3LyJEj6dOnDyNHPi5b2rOBj48PEyZMoE2bNnz33XcMHTo0U/MEBQWRnJzM4cOHefHFFx97jKurK7Nnz6ZatWr07t2bJUuW2NTxFBUVxfbt2xk8eHDaBz+GJUuWAFCpUqVsdV48lceFZdwvWJJmOjxM0xaSnaGeA198UVxA4m7ckPN//y16kA/SCCHKyahms5zauFEWvv++yKBBIvXry+tG4yNbKDxTt1CIokg3vV5yKYoE6HRS1GCQF5ycpKGHh0hwsEjdujK8eHFpFRAgHQoWlK7Fi0ufF16QEcHBIh9+KDJsmMzr0kUmd+0qf77zjqz64gvZOmGCHF+2TOTcOZHbt8WsbZHQ0NDQyDGQsS0k3wJDgWNAIyxFfr5M7/jHzFcXqAIcuq9Nj2WLanEsfucDQFkshYhWPCR5U2U88B2wLT16tS0kmWfjxo0CSM+ePQWQs2fP2l3nli1bxNfXV3x8fGTt2rWPPWb27Nni4uIihQsXln379tndJhGRFStWiLe3t+TOnfuJdjmC06dPi6urq4SFhTnalGzh1q1bMn/+fHnjjTekRIkS1rVt/vz55fXXX5fff//9mdgWYzab5bXXXhNApk+fnm16Z82aJYC0bdvWoVtYbMkrr7wiTk5OcvTo0UyNP3HihAAyderUNI/98ccfBZBJkyZlSteTmDdvngCydevWTI2vXLmyADJnzhyb2pUenrSuSM+i4ASwDugF5Err+Jws2bbQUFX5u0ABmVSunIiIfFi1quhBzm3blj36swnVbJazERFycsMGubhzp9w4dkzuXrkikpwsks79pRoaGhoazwcZdGDosOTBmI8l0qEPqYnFMytA0YccGC8Ba+97PgQYko559MDSp/T3xZLcfHfhwoXt9Go+/7z99tvi4uIiTZo0kVKlSmWb3rNnz0rFihVFp9PJ6NGjrfkwTCaTDB48WACpU6eOXL9+3e62mM1m+fzzzwWQypUrZ4sTJ6N88803AsiiRYscbYrNSUhIkI0bN8rgwYOlatWqoqTmhfP09JRWrVrJ2LFj5ejRo+nOmZKTSEpKkoYNG4per5dVq1bZXd+qVavEYDDIyy+/LAkJCXbXl11cu3ZNcufOLTVr1syUU8ZsNounp6f069cvXcc2atRIXF1dM+0weRw9e/bMdI6h6OhoURRFPDw8JDk52WY2pZdMOzAsY6kO/IglYn8F0CU943KaZJsD49gxy0s7frzI3buy2s1NRpYvnz26NTQ0NDQ0HEAGHRjugP6+53rALb3jnzDnww6M9li2jdx73hX4OY3xk7GkSqqdHp1aBEbmUFVVChcuLM2aNRM3Nzd5++23s1X/3bt3pU2bNgJIjx49JDIyUlq0aCGA9O3bV5KyIcLz9u3b0rx5cwHk9ddfl/j4eLvrzAzJyclSsWJFKVCgQKaTVOYUzGaz7N27V7755htp1KiRuLi4CCAGg0Hq1KkjX3zxhWzbts3myWQdRUxMjFSuXFnc3Nxkx44ddtPz999/i6urq1SuXPmZ/4w8jpkzZwogY8eOzdT4evXqSXBwcLqOvXz5suTJk0eqVKlik+8hVVUlf/788sorr2Rq/HfffWf9XnQEWXJgyP//uPsCMwFzRsblFMmuhUZ4v34SAZatDmPHWl7mf/7JFt0aGhoaGhqOIIMOjH8Aj/ueewB/p3f8E+bMkgMjg7paApMDAwNt/0L+B9i3b58A8sEHHwggy5cvz3YbzGazfPbZZwKIq6ur6PV6GT9+fLbcbT9w4ICUKFFCDAZDtunMCjt27BBFUWTAgAGONiVD3Lx5U9asWSMjR46U1q1bS548eazbQsqXLy/vvvuurFixIluqyziKq1evSrFixcTX11dOnDiR4fHJyckSFRUlV65ckVOnTsmBAwdk+/btsnHjRlm+fLnMmDFDcuXKJYGBgZmucJHTUVVVQkNDxd3dPVNRUu+99564uLik2zG2ePFiAWTw4MEZ1vUw+/fvF0B+/fXXTI2/t5UqOyLSHseT1hVPS+IJgKIoXkAb4FWgBJZ9qtXTGvdf5rPZs7np7My+fPn44fPP6RoURL6ckvREQ0NDQ0PD8biISOy9JyISqyiKrctbXQYK3fe8YGpblhGR5cDyqlWr9rHFfP817iWpS0pKwmg0EhISku026HQ6ateujbu7O3Fxcfj6+lKjRg27V22YM2cOvXv3xtvbmy1btlCzZk276rMF1atXZ8CAAfz888906dIl5yTyu4+YmBj27t3L7t272bVrF7t37+bMmTPW/tKlS9OiRQsaNmxIgwYNyJcvnwOtzT4CAgJYu3YtNWvWpEmTJrRt25b4+HirxMXFPfD8YTGZTGnqKFCgAOvWrcPf3z8bzij7URSFX375hXLlytG3b1/Wrl2boe+JoKAgEhMTOXr0KBUqpF1oKywsjB49evD999/Tq1cvAgMDM237mjVrAAgNDc3w2KtXr3L69GlKly5N3rx5M22DPXhiGVXrAYpyFlgCzBOR7dlilZ3IjnJnUefP41e0KB/WqEFwSAhtvv6aee+9xys/PnNVZzU0NDQ0NNJNBsuobgPeFpG9qc+DsERHvJQF/UWBFZJahSS1sskJoAEWx8UuoLOIHM6sjvt0tQRaBgYG9jl58mRWp/vPUblyZdzd3YmPj8fb25vNmzdnq34RYdy4cbz//vuUKVOGr776iv79+3Pz5k1+++03OnTokPYkGSQlJYWPP/6Y0aNHU7t2bebPn09AQIDN9diLu3fvUrZsWXLlysWePXscWnkkISGB/fv3Wx0Vu3bt4vjx4/eioyhatCjVqlWjatWqVKtWjSpVqqSrdO7zzM6dOwkLCyMmJgY3NzeruLu7P/D8afKkY4sUKYK7u3vaRjzjTJgwgf79+zN9+nS6d++e7nHHjh2jTJkyGRp37do1AgMDad68OXPnzs2cwUBISAhRUVHs378/w2N79uzJ9OnTn1hKOTt44rricWEZ8mCYZJaSauUkyY4tJHPffdeS6XXCBKnr7S1F9HpJeY6S2WhoaGhoaDwOMraFpBqWCiERwFbgFBCU3vGPmW8OcBVIAS4BvVLbm2FxYpwGPsns/E8SLQdGxjl37pwAMmzYMAHkq6++svYlJSXJkCFD5PPPP5dZs2bJ9u3b5caNGzbdYpGYmGitfBIWFiYxMTEiYknWV6tWLQHk008/FbPZbDOd165dk7p16wr8X3v3HR5llTZw+HemZBKSUBKKIfQAQugJUqQrVaUIyIqw6+faQBARXAFXwHVhURQFWVYXsWNZRSTgEg0gTUBKACUBqcLSSwIJpE453x8zCQETkpBMZiY893W918yc85Zn3kBy5plT0OPGjfPIZHilYdmyZRrQr7zySpldMysrS8fHx+t33nlHP/roo7pVq1baaDTmDgUJCwvTAwYM0C+//LKOjY3V58+fL7PYxK3FbrfrLl266MqVK+vTp08X+TibzaYDAwOLPdfPtGnTNKC3bdtW3FC11s4JOE0m000NRcnKytKBgYHaYDDotLS0m7p+aSioXVHgEBKl1Fyt9XhguWtW3usTHwOKl0O5NXy7fDkhSmH292dDSgpzBgzA5O/v6bCEEEIIr6G13q6UagLc7irar7W2luB8wwsoXwmsvNnzitIXExMDkPuNeO/evXPrFi9ezKxZs353TMWKFWnYsCERERHXPDZs2JCwsDAMBkORrn3mzBmGDBnC5s2bmTp1Ki+99FLusTVq1GDNmjWMGTOGGTNmsGfPHj755BOCg4NL9H5/+uknhgwZwsWLF1m8eDEjRowo0fk8aeDAgQwePJiXXnqJoUOHEhERUarnT09PZ9++ffzyyy/s2LGDHTt28PPPP5OVlQVASEgId9xxB/3798/tXVGzZs1SjUGIghgMBhYtWkTLli0ZM2YMX3/9dZGOMxqNtGnThvj4+GJdb+LEibz99ttMmjSJNWvWFHt425o1a7DZbPTr169YxwF89dVXpKWl0b59eypUKO3RnSVX4BASpVS01jpeKdUtv3qt9Xq3RuYG7h5Com02GlksdKhTB4CYo0c5cewYlVyvhRBCiPKqOENIXPvfiXPizdwvU7TWH7shtFInQ0hu3t13383p06e54447WLlyJWfPnsVgMGC324mMjCQwMJDNmzdz9OhRDh06xOHDh695/O23364Zl+/v709ERES+yY06depgMjn/ee3cuZOBAweSnJzMhx9+yAMPPJBvfNo1vOTZZ58lMjKS5cuXU79+/WK/T601Cxcu5Omnn6ZWrVp88803tGrV6uZumhc5efIkTZs2pUOHDsWeCyCHzWbj4MGDJCQksGfPntzHw4cP5w4DCQ4OJjo6+pqhIPXq1XP7HCVCFObVV19l8uTJLFmyhCFDhhTpmPHjx/Puu++SmpqK0Wgs8rXmz5/PuHHjiI2NLfY8Fk888QT/+c9/uHDhQrGGfGmtadGiBYmJiSxatIhHH320WNctTQW1K4oyB8YzWut5hZX5ArfPgbFlC9l33smlWbN45oUXCG/ThteLmW0TQgghfFEx58D4BOfE4LsBu6tYa63HuSs+dyiLubXKk4sXL1KtWjWee+45PvroI3r06MFnn30GOL/xGzZsGF9++WWByQVwfvg9fvz4NUmNnOeHDx8mIyMjd1+TyUS9evVo0KABGzdupFq1asTExNC6detCY121ahXDhg3DaDSyZMmSYk00mpmZyZgxY3j//ffp27cvn376KSEhIUU+3tstWLCAsWPHFtqjRGvN8ePHf5eo2LdvH9nZ2YDzW+1GjRrRokULmjdvTvPmzWnRogUNGzYscs8aIcqSzWajffv2nDx5kr179xbp//bHH3/Mww8/TGJiIpGRkUW+VnZ2Nk2bNiUoKIhdu3YV+f+E1po6derQrl27IvcUybFlyxbuvPNOlFKcPXuWatWqFev40lRQu6LQVUiAh4HrkxX/l0+Z+O9/8TMaqX72LEEIXfoAACAASURBVJ8rhf7qK09HJIQQQnijtkCkLuxbFFGu/Pe//8Vut9O8eXPOnDmTO3xEa82sWbNo3LgxgwcPvuE5TCYT9evXp379+vTq1euaOq01p0+fviapkfPYq1cv3n333SLPpt+rVy+2bdvGgAED6NWrF/Pnz2fUqFGFHnfs2DGGDBlCfHw8U6dOZfr06cX6xtUXjBo1isWLFzN+/Hj69u1LaGgoSUlJv0tUJCQkkJqamntcrVq1aNGiBb17985NWDRt2hR/GWotfIjJZOL999+nbdu2TJgwgQ8//LDQY6KjowGIj48vMIGhtebixYucPXuWs2fPUq9ePerVq8fMmTMZPnw4n332GSNHjixSjHv37uXEiRNMnz69yO8rx9y5czEajbRr186jyYsbudEcGMOBh4D6SqnleaqCgWR3B+aLhv3zn3StU4ee779Pk0GDUA0aeDokIYQQwhslALfhnHjT5+QZQuLpUHxKTEwMYWFhnD7t/LHnJDDi4uLYtWsXixYtKtGHfaUUNWvWpGbNmnTt2rXE8TZq1IiffvqJhx56iNGjR/PLL78wb968Artjr169mgcffBCr1cry5cvp379/iWPwRkajkYULFxIVFUWHDh1IS0vL/ZkCVKlShRYtWjBy5MhrelZUrlzZg1ELUXpatWrFpEmTcpMLffr0yXc/h8NBUlISNpsNPz8/Pv30Uy5cuJCbpMi7nTt3Dqv16lRQAQEBLF++nGHDhvHaa6/x4osvMnTo0CIl/GJjY4HiL596/Phxvv76a+x2e5GHx3jCjebAqAvUB2YBk/NUXQZ+0VoXvjCwl3FnV88T27ZRu3177g8L45vTp0n4+GOa/fGPbrmWEEII4W2KOYRkLdAa2AZk5ZT72gThMoSk6DIzM6lWrRoPPfQQR44c4cyZM+zZswdwLvV36NAhjhw5gp+fn4cj/T273c4LL7zA7Nmz6d69O1999RVVq1bNrdda89prrzFlyhSaNm3KN998Q6NGjTwYcdmYM2cOX3zxBc2aNctNVLRo0YKwsDCZq0KUe5mZmbRp04b09HSefvrpfJMS58+fx263/+5Ys9lM9erVqVGjRr5bSEgIkyZNYv/+/SxbtgyTyUSvXr144403ePbZZwuN7e677+bcuXO5v2OLavLkycyePRutNQcPHsTTSfqbngOjPHFnQ+PfI0Yw6rPPqGs0Ut3fn62pqSgZuyeEEOIWUcwERrmYIFwSGEW3cuVK7r33XpYuXcrw4cMZM2YMc+bMyR1vXdSGuSctXryYxx57jLCwMJYvX06LFi24fPkyjzzyCF9//TXDhg3jvffeIygoyNOhCiHKwObNm+nWrRs2mw2LxVJgQqJGjRp88cUXxMXFcezYMUJDQwtN8iUlJdGrVy8SExNZsmQJ//znP9mxYwdHjhzJXcUpP5cvXyY0NJTx48cze/bsIr+XtLQ0ateujclkolq1aiQmJhb5WHcp9hwYSqkftdadlVKXca61nFuFc6Ktim6I02d9u3o1NQwGjtntvPLII5K8EEIIIQqgtV7v6unZSGu9WilVAfCZiQJkCEnxxcTEEBQUhMlkIisrK7fL9axZswgNDeXxxx/3cISFGzlyJI0aNeL++++nY8eOzJ49m3/+858cOHCA119/nQkTJkjPAyFuIXfeeSenTp3Cz8+PihUr3vD/f0ZGBsuWLePChQvX9OAqSGhoKGvWrKFv374MHjyYWbNmERcXx+zZs5k5c2aBx61duxar1Vrs5VMXL17MxYsXMRgMPPbYY8U6tqwV+Clba93Z9Rista6YZwuW5MW1MpKTWXPuHCalqGU0MuTVVz0dkhBCCOG1lFKPA0uAf7uKwoFlnouoeLTWK7TWT9zoWzBxlcPhYPny5fTt25e1a9disVjo0qULCQkJrFixgnHjxvlMr4X27duzfft2mjZtypgxY7hw4QKrVq1i4sSJkrwQ4hZUrVo1KlWqVOj//6ioKMC5pHNRValShbi4ONq1a8fkyZO58847efPNNzl58mSBx8TGxhIUFESnTp2KfB2Hw8HcuXOpV68eDoeDQYMGFflYTyi0m4BSKkIpZXE9766UGqeUkll48rj43//SEzhvtzOuTx/MFSp4OiQhhBDCm40BOgGpAFrrg0DRlocQPmfbtm2cOXOGQYMGERcXR9euXQkICOCVV14hKCiIsWPHejrEYgkPD2fDhg3Mnz+f+Ph4evTo4emQhBBeLjIyEn9/f+Lj44t1XKVKlfjuu+/o1KkTP/30E9nZ2fztb3/Ld1+tNbGxsdx9993Fmk9o1apV/Prrr1SrVo2wsDDati3SaFCPKco4h68Bu1KqIbAQqA185taofEzNLVtYbjJx0t+fUW+/7elwhBBCCG+XpbXOznmhlDJx7XBVUY7ExMRgNBpp1aoViYmJ9OnThyNHjvD555/z5JNPEhIS4ukQiy0gIICxY8dSu3ZtT4cihPABJpOJVq1aFTuBARAcHMzKlSvp0aMHdrudRYsW8euvv/5uv/3793Ps2LFiDx+ZN28et912G4mJiQwYMACDl0+FUJToHK4VR+4H5mut/wKEuTcs36EdDg4sWYK22aj62GME16nj6ZCEEEIIb7deKfUCEKCU6gV8BazwcEzCTWJiYujWrRvbt28HnMunvvbaa5hMJiZMmODh6IQQomxERUWxa9cuHA5HsY8NDAxkxYoV3HXXXWitefDBB3+3z80sn/rrr7/m9tpIT0/3+uEjULQEhlUpNRx4GPjWVZb/Ati3oD3ffMPt58/TGMgaNcrT4QghhBC+YDJwHtgDPAmsBF70aETFoJTqr5RamJKS4ulQvN6BAwfYt29f7vCRsLAwqlatygcffMDDDz9MzZo1PR2iEEKUiejoaFJTUzl8+PBNHR8QEMDKlSu5/fbb+fnnnxk/fvw19bGxsTRt2pS6desW+ZxvvfUWFosFpRTBwcE+MSSuKAmMR4COwEyt9W9KqfrAJ+4Ny3csW7AAgAYhIViaNfNwNEIIIYR3U0oZgU+01u9qrR/QWg91PfeZISQyiWfRxcTEAHDvvfeyatUqevfuzdy5c7FarTz//PMejk4IIcpOdHQ0wE0NI8lhsVjYsmULFouFefPm5S6VmpaWxvr164s1fOTixYt89NFHDB8+nNWrV9O3b18sFstNx1ZWCk1gaK33aq3Haa0/d73+TWtdKstsKKX6KqX2K6UOKaUm51NvUUr9x1W/VSlVL0/dFFf5fqVUn9KI52Z8vHEjAC9Mm+apEIQQQgifobW2A3WVUkWfYUz4rJiYGFq3bk1ycjJJSUl06tSJt99+mwceeABZhlYIcSuJjIzEz8+vWCuR5KdKlSq88cYbAEyaNImZM2eybt06srOzizV8ZNGiRaSnp3PXXXdx5swZBg4cWKK4yoqpsB2UUp2Al4C6rv0VoLXWDUpyYdc3MAuAXsAJYLtSarnWem+e3R4FLmqtGyqlHgReBf6glIoEHgSaATWB1Uqpxq5GUZk5t3cvh202blOKrk8/XZaXFkIIIXzZEWCTUmo5kJZTqLV+w3MhidJ27tw5Nm/ezPTp04mLiwPgyJEjXL58mSlTpng4OiGEKFt+fn60bNmyRD0wcjz++OPMnTuXc+fO8eKLL9K2bVsCAgLo2rVrkY632WzMnz+fHj16kJiYiMlk4p577ilxXGWh0AQG8B7wLBAPlGaCoB1wSGt9BEAp9QUwEMibwBiIM3kCzvXi/6mci+wOBL7QWmcBvymlDrnOt6UU4yvU60OHAjC6WzeUl8/WKoQQ5ZLWzs3hwG61YrNacdhsuZu22wkMCMCoFBnp6VxOTcVhtzvrHA4cdjthVatiMhq5dOkSScnJV+u1xmGz0bhOHUxGI6fPnuVsUpLz3HZ7bv0dTZpgUIrDx49z6vx5HA5H7rkV0KNVK9CaPYcPc/LChavHOhyYDQb6tmkDDgc/7d/PyaSkq/V2OxX8/BgQFQVas/qXXzh18aLz/FqjHQ4qBwQw2FW/bOdOzqSk5F5fa02N4GAeaN0aHA4+3raNC2lp/KlTJ6p6vuv+YddmAII9HItwkxUrVqC1ZuDAgTzzzDO0bt2aRYsWcc8999CqVStPhyeEEGUuKiqKL7/8Eq01zo+1N8dsNjNr1iyGDh1K586d+fHHH4mIiCjy8qnffPMNx48fZ/78+UyePJlu3bpRpUqVm46nLBUlgZGitY51w7XDgeN5Xp8A2he0j9bappRKAUJd5T9dd2x4fhdRSj0BPAFQp5RXCOly8iT/BgaNGVOq5xVCeD+HzYYtMxN7djbaaqWCxQJ2OxeTkshMS3N+mM7Oxp6djZ/RSO3q1cFm49dDh0hz1dutVuw2G5X8/WlRty7Y7azbtYsraWnYbbbcrWalSnRq2BAcDj7ftIn0zExnnd2O3W7n9qpV6dWoEdjtzFm3jmyrNbfObrfTLiyM+xo0wGa1MmndOhwOBw6HA7vrsXd4OIPq1OFyZiZPb9mSW253OHBozYPh4QwOC+NsejqP7d6N3fXhO+dxbHg494eEcDgtjT8eOIBDaxxaO+uBv1WvzoDgYHanpTH85ElnPTjrtebtKlXo5+fHuowMHkxJyT3OATi0Zqm/P3cbDHxjtTLcas2t067HTcCdOCdneiSfn9UvQAtgETAun/rfgHrAv4C/5lN/HqgKvAW8kk99JmAB3sTZrTAvM5CzVugc4KPr6kOAJNfz14Cl19XXBQa4ns8GVl1X3wwY7Hr+Ktf+YQToADyQ5/hEoNe6dR5PYGit/waglKqgtU73aDA3QSnVH+gvQyBuLCYmhrp169KgQQM2b95M9+7d2b17t/S+EELcsqKjo1m4cCG//fYbDRqUaEADgwcPpn379hw4cACAw4cPM3HiRObMmVNocmTevHk0aNCARo0a8euvv/LUU0+VKJayVJQExlqlVE67KiunUGtdssE7ZURrvRBYCNC2bdtSnSCs/ebNWJs3543Jk/nQ1RtDiFuRw2oFqxWDw0HWlSukJidjzcjAmpnp3DIyqH/bbfgbDJw5c4bDR49izc7GmpmJLTsba1YWd0dGEmg0sufIEbYfPIjNasVms+U+jm7XjgBgzYEDrDtyxFlns2Gz27HZbLzRvj1mrflk/36+P3HCWe5wYLPbnd9Ot2oFNhuvHDnCt0lJ2LV21mtNkFJsrFsXbDbGnDnDt+np2LTGDti0pqZS/FKhAths3JuVRazW5P1lEonzgyHAvfy+K1h7rn6wfABIuK6+J1c/mD4CHL2u/n6gk+v501z9wJvjTzjH4oHzA3jWdfVjleI+kwltMPBOVhZGwKgUBsAI1Dx6lEEJCdiBdWfPYlDqar1SnLfbISMDh93OqcuXr9YbDBiVwu5wgMmE0d+fID8/DAYDBqWc+xkMVAgPh9tuo0JaGi1tNmedax+jwUDVpk2hRg2qp6YyKDExt1wphdFoJLxVK6halYYXLjB+3z4MrjqDwYDBYKBWdDRUqULUuXP848CB3HLlerytXTsIDqbb6dP88/BhjCaT83ijEaUUoe3aQWAg/U+coPaJE1fPbzSiDAaC27UDi4WRx4/T/uzZq+d21Zuio8FkYuyJE9yflIQyGq+5Pq1bg8HAiydPMio19Zpzm81maNIElGLOqVO8lJFxzbn9/Pygbl0wGPjw3Dkys7NRBgPKFbufnx/cdhsYDKy4eBGb3Z5bZzAaMfv5QeXKoBRbrlzBoTVBFSviaUqpjjh7eAYBdZRSrYAntdY+0YLSWq8AVrRt2/ZxT8firdLS0li1ahVPPPEE69evx2az8fPPP9O5c2c6d+7s6fCEEMIj8k7kWdIEhlKKV199le7duwPw8MMP8+abb5Kdnc1bb73lbIPkY/v27WzatIm5c+fy7bfORUYHDBiQ777eqCgJjJxeEW3zlGngrhJe+yRQO8/rWq6y/PY5oZQyAZVwtt2LcqzbVW/WjFFt2vDWrl1M37CB+kUccyREYbTDgTU9newrV8i6fJnstDQqGI1UsljITktjT2Ii2enpZGdkkJ2eTlZGBk1vu42IKlW4ePEiS7ZsISszk+zs7NzH++rXJzo0lKMXLjB7+3asVivZNhtWm41su51n69WjU3Aw8Rcu8OyBA1gdDrLtdqxak+1w8O/QULoZjay8coU/pqSQrTVWnN8ua2Aj0Bn4D841l6+3C2gNfA2Mzaf+INAQ51qKv5vRFxi5fDkBwDrgHzh/eeVuSvHqmTOYzWZ+S0vjp7Q0TAYDJqUwKYWfwQApKWAyYVAKi8mEyWDAaDBgMhio6OcHzZuDyUTTQ4dIS07GZDRiMhoxGo2EVqgAnTuDycSwxESiU1MxGo2YTCZMJhPVgoOhY0cwGnkuIYFzaWm59UaTieqVK0N0NBiNzNu7lytZWRjNZoyu+qohIc4PsUYj3xw+jFVrZ53ZjNFsplKlSlCrFhiN7Dx9GoxGZ52fH0aTiYDAQKhUCYxGkjIzr9b5+WEwXf01bybPZAP5qMzvkyd5heEcS1iQekDcDeob4/z3UZBI4J0b1Lcg/x4QOVq6tputb+HaCtLMtRWkiWsrSEPXVpB6rVvfoBZqNmp0w/qq4fl2RMwV7F1dQ+cCfYDlAFrrn5VS8ke0HImLiyMzM5OBAweydOlSLBYL58+f58MPP/R0aEII4THNmzfHbDYTHx/PAw88UPgBhejWrRvVqlUjKSmJOXPmUK1aNV5//XWys7N555138k1izJs3j+DgYB555BH69etHmzZtirX0qqcVmsDQWrtrMdjtQCPXsqwncU7K+dB1+yzH+VloCzAU+EFrrV2Tfn2mlHoD5ySejYBtborzhp57910WtG3Lq6NG8c7evYUfIHyKdjjIvHSJ9KQkSE8n1GKBtDS2bN1KSnIyaSkpZFy5QmZ6OnWDg+lVrx5kZfFyXByX09PJzMoiy2olMzubrlWq8FjNmjgyM+m+dStZdjuZOZvDwaP+/kwzmUjJyKBydvbvYnkJmA5c4NpsYo7XgYnAOVxjpq4TtmED0RYLKUYjX6Wl4acUZteHe7PBQIrFAtnZGKxWjAYDAWYzZqMRs9GIn8lEcPPmcNtt1EpN5aEDBzCbzfiZzZhdW+22baFaNdpfvMj8Q4cw+/k56ywWzH5+1I2OhsqV6X/xIo1On8bs74/ZYsFksWD296fW7bdDYCBPZmTwYEaGszwgAJO/PyaLhaDKlcHPj5eNRv5uNBb4M5vm2gryvGsrSH7JlbzyS87kNbiQ+sIyv607dbphfZ2IiBvWBwbLdALCN2itj1/XxbVMJ+IW7hUTE0PlypXp0qULo0aNwmQy0aRJk2It8SeEEOWNxWKhefPmJV6JJEdGRgapqak4HA5eeeUVZs+ejcViYebMmWRnZ/Pee+9hzNNuPnXqFF9++SVPPfUUGRkZbNmyhenTp5dKLGWlKKuQ1MD5hWdNrXU/1wogHbXW75Xkwq45LcYC3+Psxfy+1jpRKfUysENrvRxn99JPXJN0JuNMcuDa70ucE37agDFlvQJJjprR0TwaGcl7e/cydft2wu+4wxNhiLysVpIOH+bcoUMkHz9O0okTJJ89izkjgxGNG0N6OrM3bmTf+fOkZ2WRlpVFWnY2t5vNvFO9OqSn0+nECX6xWknHOcYeoB/O3gEAw3BOvJLXUK52458HZAD+Sjk3g4HaKSngcGCwWPAzGAj088PfZMJiNuPv50fjevWgWTMqmM1M3bYNi8WCxWLBz2LB4u9P24YNoXFjQpQiJjERv4AALBUq4BcQgF+FCs45XsLCaGAwcDwlBUtQEH5BQViCg/ELCsr9Jr4VzjH9BWkDrL1BfUtg/g3qb3dtBanj2gpS2bUV5OanOxJCeJHjSqk7Aa2UMgPPAPs8HJMoJTabjW+//Zb77ruPEydOcPDgQQAmT55coknrhBCiPIiOjmbp0qUlnsgTYP369WRlZdGzZ0/mz5/P008/zYwZM7BYLEybNg2r1cpHH32EyfU54O2338Zms/H000/z7bff5k607EuKMoTkQ+ADrs5tdgBnL+ASJTAAtNYrufqZMKdsWp7nmVydf+z6Y2cCM0saQ2mY9O9/c3e3boQtXgySwCg19uxsLh07RtKRIyQfP87lM2foVbcuJCXx+YYN/HjwIEmpqSRfuUJSZiYV7HY2WiyQmsoInJmxvJoAIwD8/dlot/Ozw0Gg0UgFo5FAsxlzQAC4egHc8+uvdHA4CKxQgQoVKhAYFERErVrQoQMEBvLl0aOogAAqVKlChcqV8a9YkeDQUKheHSwWLrjGrxdk9Q3etxl4+Qb1/lyd1K+g42vdoF4IIbzAKJy53nCcvTDjAJkRu5zYtGkTSUlJDBw4kO+/d/41rl27NkNlvjAhhCAqKopFixbxv//9r8RDN2JjY/H392fBggW0bNmSadOm8eGHHzJ16lTMZjNTpkwhOzubzz77DLvdzjvvvEP//v2JiIhg/Pjx1K1b1+dWhSpKAqOq1vpLpdQUyO05Id0886jbuTN1//QnePddeOEFqFHD0yH5DO1wcGrnThK+/56927YxvkoVVEICExMSeDMr65qJEs04JydUwBrgG6UINZkItVi4LTCQ2pUrwz33QGgoE86e5f8MBkLCwgitXZuQOnUIrV8fatYEo5EVhcSV30oEeXUspF6+XxJCiN9TSr2qtZ4E9NBaj/B0PMI9YmJi8PPzo0+fPtxzzz0AvPjii7nfAAohxK0s70SeJU1gfPfdd/To0YPGjRvz9NNPM2fOHCZOnEiLFi2YPHkyFouFCRMmYLVa6dOnDxcuXGD8+PGkpaWxevVqnnjiCZ/rGae0vvHCHEqpdcAQYJXWOkop1QF4VWvdrQziK1Vt27bVO3bscMu59f79zGzaFEPnzrywYYNbruHrkg8fJujoUfz272f5ihW8vnkzCZcvczHPv8H/Va9O7Vat+NZsZvuVK4SGhhJSowahYWGEhIfTrmtXVGgoulIl1A3mQRBCCFG2lFLxWuv8pujJu88enCPR4rXWUWUTmfu4s13hq7TWNGzYkCZNmhATE0NAQAB+fn4kJydjsVg8HZ4QQnhcZmYmQUFBTJo0iZkzb35AwZEjR4iIiGDevHmMGzeO5ORkIiIi6NSpU+7qIgALFixg7NixKKVo0aIFu3fvZtmyZQwePJg1a9Zw110lXZvDPQpqVxQlFT4B52SaEUqpTUA1nMP9RR7q9tvZW6cOKzZu5MmDBwktZLb4ci09nTMbNhD71Vck/PwzCUePsufiRU47HGzG2XvBUaEC2mTiD02b0rxZM5p36kTzfv0IbdwYgPtcW0F8K08ohBDC5TvgIhCklErF+etc5zxqrT2/xmsRKKX6A/0bNrzRujK3poSEBI4cOcKkSZP44IMPsNlsDB8+XJIXQgjh4u/vT7NmzUo8kWdsbCxA7uTIISEhTJkyhUmTJrF+/Xq6dXP2NxgzZgxms5nRo0czadIklFLXTLTsawrtgQHgWsL0dpwNjP1aa6u7A3MHd39TkvDNN7QYPJhpXbvyt/Xr3XYdb3L4hx/YERNDws6dJBw+zGig95kzbNSarjjna4gMCKB5zZo0b9KEPwwbRp277oLwcPCx7kpCCCEKVsQeGBatdZZSKkZr7VuzhuVDemD83owZM5g6dSqnTp2iR48e7N+/n2PHjjknmhZCCAHAn//8Z7799lvOnj1700M4+vfvz759+zh06FBuWUZGBo0bN6ZmzZr89NNP15w7NTWVihUrYrPZqFGjBvfccw+ffPJJid+Lu9x0Dwyl1APAd66VP14EopRSM7TWpbP2SznS/P77uT8sjLc2bmTC//5HpXL8xzp59Wr+b+RIVpw9CziXkWns58elqCgYPZo7GjfmQEgIDbp1w+jn59lghRBCeIstQBSQ6ulAhHvExMTQoUMHkpOT2b9/P+Hh4ZK8EEKI60RHR/PBBx9w4sQJateuXezjMzMz+eGHH3jkkUeuKQ8ICODll1/mz3/+M0uXLmXIkCG5dRUrOjs5btq0ieTkZJ9bfSRHwcskXDVVa31ZKdUZuBvn6iNvuzcs3/XX2bO5pDX/evxxT4fiFqdjYqBvXyr36sXFpCT+1qMHP3/1FWkpKezNymLYli0wdSr+f/gDjXr1kuSFEEKIvPyUUg8BdyqlBl+/eTo4UTInTpxgx44dDBw4kJdfdq6nNXz4cA9HJYQQ3icqyjkN1M0OI9m4cSPp6em5w0fy+tOf/kSzZs2YMmUKVuvvB07knWjZFxUlgZGz4si9wLta6/8C8qm0ANEjR/K3hg25e+tWSEvzdDilQjscrH3zTe6qUoVmgwaRun07hlmz2HDhAtN++IGWQ4diqegTw5aFEEJ41iigC1AZ6H/ddqOpj4QPWL58OQBt27ZlyZIlAAwaNMiTIQkhhFdq1aoVBoOB+Pj4mzr+u+++w2Kx0L1799/VGY1GZs2axcGDB3nvvfeuqdNas2zZMnr27ElwcPBNXdvTipLAOKmU+jfwB2ClUspSxONuWdM++oh2KSmwcKGnQykR7XDw/cyZdKlShbsmTGBfaiovDhiAef9+mDwZVamSp0MUQgjhQ7TWP2qtRwPPa60fuW77s6fjEyUTExND48aN+eabb9BaExwcTPv27T0dlhBCeJ0KFSoQGRl50wmM2NhYunbtSmBgYL719913H507d+all17iypUrueUJCQn89ttvPjt8BIqWiBgGfA/00VpfAkKAv7g1Kl93550c69iRCVOnknnpkqejKT6tYcUKdrdsSd8XX+RYWhrzhw7lyPnzTIiJIaBqVU9HKIQQwgcppXLWarsoQ0jKl5SUFNauXUvPnj157733CAwMpGfPnphMRVnwTgghbj1RUVE3NYTk2LFj7Nu3L9/hIzmUUsyePZuzZ88yd+7c3PKYmBjAOQGoryo0gaG1TtdaL9VaH3S9Pq21jnN/aL7t8JAhvJmWxgejR3s6lCJzswhkoAAAF2RJREFU2Gws/ctfmB0eDgMG0CYtjZinnuJQcjJjv/qKgJAQT4cohBDCt3VzPV4/fESGkPi42NhYrFYrly9fJisriytXrtC7d29PhyWEEF4rOjqaM2fOcOrUqWId99133wHcMIEB0LFjR+6//35mz57N+fPnAWcCo3379oSFhd1c0F5AhoK4SY9nn6VjUBCvfPUV1vR0T4dzQ/bsbL4YN46WQUEMef11Pk5Kwvruu3DgAAMWLJD5LYQQQpQKrfV01+P1w0dkCImPi4mJoWrVqsTExNC6dWsAn50gTgghykJ0dDRAsYeRxMbGUq9ePW6//fZC9/3HP/5Beno6M2bMyJ1o2dfnJpIEhpsog4EXn3uO/9ntLB471tPh5M9mY/PUqTQLDmb4/Plo4NOnnuLny5cxP/YYmM2ejlAIIUQ5opSacKPN0/GJm5Odnc3KlSupV68eqampBAcH07BhQ+rXr+/p0IQQwmu1atUKpVSxhpFkZ2ezZs0a+vbti1Kq0P2bNGnCo48+yttvv507lMSX578ASWC4Vb+pU4kKCOAfixdjz872dDi5sq9c4cycOXD77dw2YwZBRiNfTZjAnitXeGjBAln6VAghhLsEu7a2wGgg3LWNAqLKKgilVAOl1HtKqSV5ygKVUh8ppd5VSo0oq1jKg3Xr1pGamsrBgwfp1asXO3fulOEjQghRiKCgIJo0aVKsHhg//vgjV65cKXT4SF7Tp0/HZDIxZ84cGjVqRJMmTW4mXK8hCQw3UgYD0595hrusVtI++cTT4ZB56RL/evBBGlWuzGPPPQchITSIiWFHWhpD58zBIBNtCSGEcCOt9d+01n8DagFRWuuJWuuJQDRQpyjnUEq9r5Q6p5RKuK68r1Jqv1LqkFJqciFxHNFaP3pd8WBgidb6cWBAkd+UICYmBrPZTEpKCvfccw9paWkyfEQIIYogKiqqWAmM7777DrPZzF133VX4zi41a9bk2WefBZy9L4rSc8ObSQLDzQbMnMm/IyOp+Oab4HB4LI5vp02jQWgoY/7zH2pVqMDYv/8dtm2DAQPAx/8RCyGE8Dk1gLxdE7NdZUXxIdA3b4FSyggsAPoBkcBwpVSkUqqFUurb67bqBZy3FnDc9dxexFhueVprli1bhtlspmPHjpw9exaTyUT37t09HZoQQni96OhoTp06xZkzZ4q0f2xsLF26dCEoKKhY13n++ef54x//yJNPPnkzYXoVSWC4m8EAf/0rWxIT2fTKKx4J4acFCxjy979Tw8+PNa+/zo+XLtH3xRclcSGEEMJTPga2KaVeUkq9BGzFmZgolNZ6A5B8XXE74JCrZ0U28AUwUGu9R2t933XbuQJOfQJnEgNu0D5SSj2hlNqhlNqRM6v7rSw+Pp5Tp06Rnp7OlClTiIuLo2PHjlSUCcCFEKJQORN5FmUejOPHj5OQkFCs4SM5KlWqxMcff0zDhg2Lfay3kQRGGXAMHcqfzGbGzZiBLuteGLt20XzyZB6rUoU1CQncNXEiyiA/diGEEJ6jtZ4JPAJcdG2PaK1nleCU4VztPQHOZER4QTsrpUKVUu8AbZRSU1zFS4EhSqm3gRU3iH2h1rqt1rpttWrVShBy+bBs2TIAIiMjadeuHTt37pThI0IIUUQ5qzYVZRjJ999/DxS+fGp5J59ky4DBz48pI0awMyOD72bMKLPrHlu/niu9exNUpQoLfvmFkIiIMru2EEIIcSNa651a63mubVcZXztJaz1Kax2RkzjRWqe5lnMdrbX+9EbHK6X6K6UWpqSklE3AXmzx4sUA/PWvf+WHH34AkAk8hRCiiCpWrEjjxo2L1AMjNjaWWrVqERkZWQaReS9JYJSRkfPnU8do5O+vvVYmvTDO/Pwzd/XsyR9SUiAuDmrVKvwgIYQQwjedBGrneV3LVeYWWusVWusnKlWq5K5L+ITDhw9z7NgxQkNDGTZsGN9//z2hoaFERZXZgjJCCOHzoqOjC+2BYbVaWb16Nf369fP5SThLShIYZcQvKIhJQ4ey5coV1r75pluvlfK//9G3QwfO2mxM//e/wceXyhFCCCEKsR1opJSqr5TyAx4Elns4pnJvzpw5AIwfPx6j0UhcXBw9e/bEaDR6ODIhhPAdUVFRHD9+nBvNq7RlyxZSU1Nv+eEjIAmMMvXnd96hucnEqfffd9s1Mi9dYmDLluzNzGTpP/5Bu0cecdu1hBBCiLKmlPoc2ALcrpQ6oZR6VGttA8YC3wP7gC+11olujEGGkACff/45JpOJ5557jsTERE6fPi3DR4QQopiKMpFnbGwsJpOJu+++u6zC8lqSwChD/pUr88urrzJy717YvLn0L2Cz8UybNqxPSeGjsWPpPWVK4ccIIYQQPkRrPVxrHaa1Nmuta2mt33OVr9RaN3bNazHTzTHc8kNIVq9ezaVLl+jatSv+/v65k8tJAkMIIYqnTZs2wI0n8oyNjaVTp06ywhMeSmAopUKUUquUUgddj1UK2O9h1z4HlVIP5ylfp5Tar5Ta7doKWtPd66gnn8QRGsrGCRNK98Raw+jRTDp6lA9HjGD4/Pmle34hhBBCALd2D4ykpCSmTJnCoEGDAJg2bRoAcXFxREZGUkvm3BJCiGKpXLkyERERBSYwTp06xc8//yzDR1xMHrruZGCN1voVpdRk1+tJeXdQSoUA04G2gAbilVLLtdYXXbuM0FrvKMugS0VgIO906sSY5cuJ//RTokaMKJXTfvfQQ/T+4gsavPACDWa69YsnIYQQ4pamtV4BrGjbtu3jno6ltDgcDs6fP8/Jkyc5efIkp06duub58ePHOXLkCBkZGbnHhIWF0bVrVzIyMtiwYQOjRo3y4DsQQgjfFR0dzbZt2/Ktk+VTr+WpBMZAoLvr+UfAOq5LYAB9gFVa62QApdQqoC/wedmE6D4jFyzgrytWMPP55/m6FBIYbw0ZwjNLl/Jh1648XIbLtAohhBDC+6Wnp3P8+PECkxMnT57k9OnT2Gy2a45TSlG9enXMZjPnzp0jOzubiIgI/vCHP9CtWzdatmyJUoqNGzeSmZlJnz59PPQOhRDCt0VHR/Pll1+SlJREaGjoNXWxsbHUrFmTFi1aeCg67+KpBEYNrfVp1/MzQI189gkHjud5fcJVluMDpZQd+BqYobXW+V1IKfUE8ARAnTp1Shp3qahYqxbjunTh5Q0bSFy2jGaubpg347MxY3hm6VLuDwtjZFwc3OLL6gghhBDuppTqD/Rv2LChp0Mp1KVLl6hduzZXrly5prxixYqEh4cTHh5Ojx49CA8Pp2bNmrllVapUYdmyZbz++uucOHGCXr16MX36dDp16vS7a8TFxeHn50fXrl3L6m0JIUS5krP89K5du+jZs2duuc1mY9WqVQwePPiWXz41h9sSGEqp1cBt+VT9Ne8LrbVWSuWbfLiBEVrrk0qpYJwJjD8CH+e3o9Z6IbAQoG3btsW9jtuMW7SIOY0bM3P8eD67yQTG9zNn8vC//kW3SpX4bO9ejBZLKUcphBBCiOv50hCS5ORkrly5wujRo3nggQdyExVBQUH57p+ens4777zDq6++yrlz5+jZsyfTp0+nc+fOBV4jLi6OLl26UKFCBXe9DSGEKNdyEhjx8fHXJDC2bt3KpUuXZPhIHm6bxFNr3VNr3TyfLQY4q5QKA3A9nsvnFCeB2nle13KVobXOebwMfAa0c9f7cJfQRo14ql074o8dI+OXX4p9fOoPPzD8xRdp5u9PzC+/4F+5shuiFEIIIUR50KFDB3r06EHjxo3zTV6kp6fz5ptv0qBBAyZOnEiLFi3YuHEjq1atumHy4tSpU+zZs0eGjwghRAmEhIRQv379303kGRsbi9FovCapcavz1DKqy4GcVUUeBmLy2ed7oLdSqoprlZLewPdKKZNSqiqAUsoM3AcklEHMpW7655+TaLEQMHdu8Q789VcqDhvG0rAwvtu6lUpeMjRGCCGEEL4lb+JiwoQJNG/enA0bNrB69eobJi5yrFq1CpDlU4UQoqSioqLYuXPnNWWxsbF07NiRyvJldS5PJTBeAXoppQ4CPV2vUUq1VUotAnBN3vl3YLtre9lVZsGZyPgF2I2zV8a7Zf8WSi6wQQNMTz5J+scfk7x7d5GOObF9O0s6dwajke4bN3Jby5ZujlIIIYQQeZWHZVQzMjKYO3cuERERTJgwgWbNmrF+/XpWr15Nly5dinyeuLg4atSoIZPLCSFECUVHR3P48GEuXboEwNmzZ9m5c6cMH7mORxIYWuskrfXdWutGrqEmya7yHVrrx/Ls977WuqFr+8BVlqa1jtZat9RaN9NaP6O1tnvifZSGrHHjaGK38+LIkYXum3z4MH26dOGxpCSSvvgCIiLKIEIhhBBC5KW1XqG1fqJSpUqeDqXYchIXDRo04Nlnn6Vp06asX7+eNWvWFHsSTofDQVxcHL1798Zg8NR3YkIIUT5ER0cD5PbCyFk+tW/fvh6LyRvJXxsPs0RE0K9JE95LTOTUdV2G8kq/cIH7WrfmUFYW38yZQ2iPHmUYpRBCCCF8WXZ2NvPmzbsmcbFu3Tp++OGHm149ZPfu3Vy4cEGGjwghRCnImcgzJ4ERGxtLjRo1aN26tSfD8jqSwPACk95+Gzvw+uP5T2ZuTU/ngchItl65wufPPUePCRPKNkAhhBBC+KScVeb/8pe/MH78eJo0acLatWv54Ycf6NatW4nOnfPtYK9evUocpxBC3OqqVq1KnTp1iI+Px263ExcXR9++faWH23XkbniBBt27M6JBA97ZuZPz+/ZdW+lwsLxfP1aeP8/bI0Yw+LXXPBOkEEIIIQDfmgPj9OnTgHOG+7Vr17J27Vq6d+9eKueOi4ujdevW1KhRo1TOJ4QQt7qoqCji4+PZvn07ycnJMnwkH5LA8BJT5s8nE/hy/PhrK55/niEbNrD1iSd4YvFij8QmhBBCiKt8aQ4Mq9UKQLVq1Th69CgrVqxg8+bN7N+/n/Pnz2Oz2W7qvFeuXGHTpk0yfEQIIUpRdHQ0Bw8e5D//+Q8Gg0F+x+bD5OkAhFOTe+7hlz59aLZpE1y8CFWqsOD+++mwbBnRY8fS7q23PB2iEEIIIXzMmTNnANi6dStbt27Nd5/KlSsTGhpKaGgoISEhuc9v9HrDhg1YrVZpXAshRCnKmchz4cKFtG/fnpCQEA9H5H0kgeFFms+eDa1akf3mm3x26hRjly3jz/Xr8968eaCUp8MTQgghhI9xOBwAdOrUiY8//pikpKTcLTk5+ZrXSUlJXLhwgf3795OUlERqauoNzx0QEEDnzp3L4m0IIcQtIWciz/T0dBk+UgBJYHiTli35oHVrJs+YQZLW9AwJ4V+7d4NM3CKEEEKIEjCbzTRo0IAGDRoU+Rir1UpycvLvEh05r1u0aIHFYnFj1EIIcWupUaMG4eHhnDx5kn79+nk6HK8kCQwv03z8eM793//RtkIFlu7Zg6ViRU+HJIQQQohbkNlspkaNGjJJpxBClKF27dqxadOm3OEk4lqSwPAydzz8MD+mp9P83nsJrlnT0+EIIYQQ4jpKqf5A/4YNG3o6FCGEEOXMvHnzuHjxoiyfWgC5K16o0+jRVKpTx9NhCCGEECIfvrQKiRBCCN9Su3ZtWrZs6ekwvJYkMIQQQgghhBBCCOH1JIEhhBBCCCGEEEIIrycJDCGEEEIIIYQQQng9SWAIIYQQQgghhBDC6ymttadjKDNKqfPAsVI+bVXgQimfU8h9dRe5r+4h99U95L66h7vua12tdTU3nNdrSbvCp8h9dQ+5r+4h99U95L66R5m2K26pBIY7KKV2aK3bejqO8kbuq3vIfXUPua/uIffVPeS+ejf5+biH3Ff3kPvqHnJf3UPuq3uU9X2VISRCCCGEEEIIIYTwepLAEEIIIYQQQgghhNeTBEbJLfR0AOWU3Ff3kPvqHnJf3UPuq3vIffVu8vNxD7mv7iH31T3kvrqH3Ff3KNP7KnNgCCGEEEIIIYQQwutJDwwhhBBCCCGEEEJ4PUlgCCGEEEIIIYQQwutJAqMElFJ9lVL7lVKHlFKTPR1PeaCUqq2UWquU2quUSlRKPePpmMoTpZRRKbVLKfWtp2MpL5RSlZVSS5RSvyql9imlOno6pvJAKfWs63dAglLqc6WUv6dj8kVKqfeVUueUUgl5ykKUUquUUgddj1U8GaO4StoVpU/aFe4jbQr3kHaFe0i7onR4Q7tCEhg3SSllBBYA/YBIYLhSKtKzUZULNmCi1joS6ACMkftaqp4B9nk6iHJmHvCd1roJ0Aq5vyWmlAoHxgFttdbNASPwoGej8lkfAn2vK5sMrNFaNwLWuF4LD5N2hdtIu8J9pE3hHtKuKGXSrihVH+LhdoUkMG5eO+CQ1vqI1job+AIY6OGYfJ7W+rTWeqfr+WWcv7TDPRtV+aCUqgXcCyzydCzlhVKqEtAVeA9Aa52ttb7k2ajKDRMQoJQyARWAUx6OxydprTcAydcVDwQ+cj3/CBhUpkGJgki7wg2kXeEe0qZwD2lXuJW0K0qBN7QrJIFx88KB43len0D+IJYqpVQ9oA2w1bORlBtzgecBh6cDKUfqA+eBD1zdaBcppQI9HZSv01qfBF4H/gecBlK01nGejapcqaG1Pu16fgao4clgRC5pV7iZtCtKlbQp3EPaFW4g7Qq3K9N2hSQwhFdSSgUBXwPjtdapno7H1yml7gPOaa3jPR1LOWMCooC3tdZtgDSkO36JucZODsTZkKsJBCqlRno2qvJJO9dSl/XURbkn7YrSI20Kt5J2hRtIu6LslEW7QhIYN+8kUDvP61quMlFCSikzzkbGp1rrpZ6Op5zoBAxQSh3F2S35LqXUYs+GVC6cAE5orXO+zVuCs+EhSqYn8JvW+rzW2gosBe70cEzlyVmlVBiA6/Gch+MRTtKucBNpV5Q6aVO4j7Qr3EPaFe5Vpu0KSWDcvO1AI6VUfaWUH86JYJZ7OCafp5RSOMf97dNav+HpeMoLrfUUrXUtrXU9nP9Wf9BaS+a5hLTWZ4DjSqnbXUV3A3s9GFJ58T+gg1Kqgut3wt3IJGalaTnwsOv5w0CMB2MRV0m7wg2kXVH6pE3hPtKucBtpV7hXmbYrTO48eXmmtbYppcYC3+OcyfZ9rXWih8MqDzoBfwT2KKV2u8pe0Fqv9GBMQtzI08Cnrg8cR4BHPByPz9Nab1VKLQF24lxBYBew0LNR+Sal1OdAd6CqUuoEMB14BfhSKfUocAwY5rkIRQ5pV7iNtCuEr5F2RSmTdkXp8YZ2hXIOUxFCCCGEEEIIIYTwXjKERAghhBBCCCGEEF5PEhhCCCGEEEIIIYTwepLAEEIIIYQQQgghhNeTBIYQQgghhBBCCCG8niQwhBBCCCGEEEII4fUkgSGEKDNKqcpKqadcz2u6lrQSQgghhCg2aVcIceuRZVSFEGVGKVUP+FZr3dzDoQghhBDCx0m7Qohbj8nTAQghbimvABFKqd3AQaCp1rq5Uur/gEFAINAIeB3wA/4IZAH3aK2TlVIRwAKgGpAOPK61/rXs34YQQgghvIC0K4S4xcgQEiFEWZoMHNZatwb+cl1dc2AwcAcwE0jXWrcBtgB/cu2zEHhaax0NPAf8q0yiFkIIIYQ3knaFELcY6YEhhPAWa7XWl4HLSqkUYIWrfA/QUikVBNwJfKWUyjnGUvZhCiGEEMIHSLtCiHJIEhhCCG+Rlee5I89rB87fVQbgkutbFiGEEEKIG5F2hRDlkAwhEUKUpctA8M0cqLVOBX5TSj0AoJxalWZwQgghhPAp0q4Q4hYjCQwhRJnRWicBm5RSCcBrN3GKEcCjSqmfgURgYGnGJ4QQQgjfIe0KIW49soyqEEIIIYQQQgghvJ70wBBCCCGEEEIIIYTXkwSGEEIIIYQQQgghvJ4kMIQQQgghhBBCCOH1JIEhhBBCCCGEEEIIrycJDCGEEEIIIYQQQng9SWAIIYQQQgghhBDC60kCQwghhBBCCCGEEF7v/wGbfeQeyX28uwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "------\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABDcAAALICAYAAABrWRshAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxMV//A8c+dJZM9EREkRJHYaq2tilYf1KNVWkVtpX2qWmot7YOiVC0tfpbaqqpauiitavtQ1aq1tVNq3yIICSL7NjP3+/tjJiOJiFiSKOf9ep1XJvece+6ZyWTmnu899xxNRFAURVEURVEURVEURfmnMhR1AxRFURRFURRFURRFUW6HCm4oiqIoiqIoiqIoivKPpoIbiqIoiqIoiqIoiqL8o6nghqIoiqIoiqIoiqIo/2gquKEoiqIoiqIoiqIoyj+aCm4oiqIoiqIoiqIoivKPdlcGNzRN+7emaUc0TTuuadqwXPLf0DTtoKZp+zRN+03TtHJF0U5FURRFURRFURRFUYreXRfc0DTNCMwGWgPVgC6aplXLUWwPUE9EagLLgQ8Kt5WKoiiKoiiKoiiKotwtTEXdgFw0AI6LyEkATdO+BtoBBzMLiMjvWcpvBbrnp+LAwEB54IEH7lxLFUVRFEW5xq5duy6JSImibkdh0DTtaeBpHx+fVypVqlTUzVEURVGUe1pe5xh3Y3AjBDiT5fezQMM8yr8MrM5PxQ888AA7d+68jaYpiqIoinIjmqadLuo2FBYR+RH4sV69eq+ocwxFURRFKVh5nWPcjcGNfNM0rTtQD3gsjzK9gd4AoaGhhdQyRVEURVEURVEURVEKy1035wZwDiib5fcyzm3ZaJrWAngbaCsi6derTETmi0g9EalXosR9MUJWURRFUZRComna05qmzY+Pjy/qpiiKoijKfe1uDG7sAMI1TSuvaZob0Bn4IWsBTdPqAB/hCGzEFEEbFUVRFEVREJEfRaS3n59fUTdFURRFUe5rd91tKSJi0zStH7AGMAILReSApmnvAjtF5AdgMuANLNM0DSBSRNoWWaMVRSlStowMMhISyEhKQk9PJ8DDA6xWThw7RmJcHOnJyVjT0khPTcXXbKZ++fJgtfLD1q0kJCVht1qxZmRgtVoJ8fGhbbVqYLXyf+vXk5SWhm6zYbXZsNntPBgQQI/KlcFmo//69aRbrdh0HV3XsdntPBwQQL/wcDKsVjpv3Yqu69h1HV0EXYSWAQG8ERpKbGoq7f/+27U9Mz1XrBhvlizJiZQUnjt1Ch0QZ54AL/n58WZAADtTUuh64YIjz1lGgEG+vgz09mZNaiovx8YCOPKdr9UoT0/6enryRUoKA5OTIUueANM8POjp5sas9HRGpqZmywNYaLHQwWxmbFoak222a/JXmM20MhoZYLXysd2eLQ9gg8lEQ4OBHlYrS51tzuqQwUBFg4F2djurRK7Z/5Km4W8w0MxuZ3Nu7wWDI2ZfV9fZmyPPBKQ786voOsdy5FuAFMd3CuVEsk3+BOADxDvzS4pwMUd+gLN9AP4iJOTIDwbOOvO9RUjJkV8ROOZsn7uuY82R/yCwz5lv1nX0HPkNgT8MBtJ0HW+u1RxYYzQSqetUcL62a9zcaJ5+3cGPSj5kTigaFhZW1E2556xevZpRo0bxwQcf8K9//auom6MoiqLc5e664AaAiKwCVuXYNjrL4xaF3ihF+QfLSEoi4dw5ki9eJOnyZSoWL447cOzoUQ4eP05acrIjpaaSlprKy7Vr4w38sH8/G06eJMNqJT0jgwybjQyrlYV16uAuwgeHD/NLTAwZuo5N17GJoOs6O8PCwG6n19mzrE9JwS6CHdBFMAERxYuDrvN4fDx7bDbsODqwOuABXHZzAxHCrFYinHmZHVxPIMn52B/IORDcK0t+dSAtR34xINb5+DnAliO/FJAZKR0K13S+ywM9VjvmMJ6Vy2u9NyKCfrt3owMrcsmPvXSJN44eJR7YkEu+X3Iyb549SyywL0eeBvx18SJcvsxlXedklu2ZTsfHQ1IS8brORV1Hy5KvAfFpaaDrZFitpDk7uFnzrXY76Do48wzOzrirjMkEFgsedjsednu2fQEs3t5gsVA8KYliKVe775nt8ChWDCwWysTHU9KZn7WNllKlwGwmLDaWssnJaDmObypbFoxGHoyJISo1NdvrYwAoXx6AOhcukJwlXwMsBoMjX9Ood+4chrTs7w4/gwEqVACgwZkzeOfo9AeZTK76658+TYQ1e/gh1GyGcuUc+RERnLdlf3dVcnODso67LuucOkWsM/iTqZa7O4SEAFDj1CmS9avhCwHqubtDcDAAVU6exJYjOFTb0xNKlsRgt1MhMpKcHvTygsBA3G02Hjh7FoBiZcteU065OVknFC3qttxLRIS3336bPXv20Lx5c4YMGcL48eOxWCxF3TRFURTlLqWJ5Dx1v3fVq1dP1EzmSkGypaWRcPYsbunpeIuQcO4cf+7cSWJsLMnx8STGx5OSnMwTZcpQ28+PvadPM3PPHlIzMkjLyCDVaiXdZmNY6dK08vTkm5gYRkdHYxXBliXN8fTkOZOJ91JSmGi1okO29A2Ojnt34Itc2vkL0BJ4ihxRRKe/gJrAo8CmXPLP4wgC1AV255Jvx9Epri/CHhwdS4PzpxuQ4OkJmkaz1FT+EsHgzDcCvgYDR0uXBqORdjExHLLZHHmahlHTKGU280vlymAw0OPUKU5lZGAyGDBqGiaDgQc8PZlXpw6YTAzev5+YjAxMRiNmoxGTyURFf3/erF8fTCYm7thBkt2O2WTCYDRiNpupGBhIp7p1wWzm0x07sItgtlgwms2Y3dwIDQqiUfXqYDbz2759GN3cMFksmN3dMZrNBJUsSWiZMugGA6ejo135Jnd3TBYL7t7eePr6ohsMYDJhMN2VMWZFuS2apu0SkXpF3Y7CpM4x7qwNGzbQrFkzpk2bxpEjR5g3bx41a9bkiy++oHr16kXdPEVRFKWI5HWOoc6qlXteRlISF/bvJ/rIES6ePs2V6GjKeXjQpGRJUi5eZPjatSSnppKclkZSejqpGRm09vVlSPHinE5I4F8REWSIkOEcJm4ToZvRyFyjkfVWK//KZWh9F+BL4EccAYacTgFzcVy5/zSX/Efi42kFnASOcTU4kJmSbDYwmfA2mfC22Rwde03D7PxZIiQEihWjZVwcpy9fxs1gwM1kwmIy4WYyEfbQQ1C8OK9HR1Pp/HnczGYsFgsWiwV3d3ceePRRKFaMWRcvciw2Fg9vb9y9vfHw8cHD15fAGjXAx4dNBgMGb2/cvL1z7aTvuMHfZv0N8lfeIP/zG+RPu0H+8Bvkv3SD/OZPPnndPANQvmrVPPMVRVGU3E2fPp3ixYvz6quv4uHhwVNPPcXLL79MvXr1mDRpEgMGDMBgUJ+kiqIoylVq5IZyV0qJjMQzJgZiYvjmf//jTGQksbGxXImPJy4xkTCzmXeDgyEpidoHDhBrt5Om66SLYAVqA39oGroIxlzqr4FjyH8CkNsUcA8Df+IIQoTjGFFgxBENNGkaL7i7MyMwkGPAM9HRuBuNWIxGLM4AQs9y5egSHs4pm40phw/j5e6Op6cnnl5eePv48HitWlStVIk4TePQxYv4BAXhExSEX3Aw3sHBmNzdC+BVVRRFKRz308iNLHNuvHLsWM6ZXJRbceLECcLDwxkxYgTvvfeea3tMTAy9evXixx9/pEWLFixatIgQ561ciqIoyv0hr3MMFdxQCs2Fffs4uHYtx3bvJiM6mv4lSsD58zTfsYNDaWkk6TqpOOZAyDovghtcM7FeEBDtfOyJ4zYIE+CmaViAxu7ufFuuHHh50erkSdzMZvw8PfHz9sbPx4eGFSvSrmFDdG9vfjp2DP9SpfAvXRr/kBACKlbEMzBQXRFSFEW5RfdTcCOTOse4cwYOHMjcuXOJiIgg2DnPTCYR4eOPP2bw4MFYLBbmz59Phw4diqiliqIoSmFTt6UoBSctjZ2ffsqOjRs5deIEZ6KjiYqLw261stnfHxITqZiU5Jr4MJMb0N/5+BCOQIanphFiMFDczY2axYrB449DsWJMPXYM3cODwNKlCSpblhLly1OmRg2oXBlMpmtWHMhpTR55Bq5OHqkoiqIoStGKj49n4cKFPP/889cENgA0TaN37940a9aM7t2707FjR3r27MnMmTPx9fUtghYriqIodwsV3FBuyr7vvuPrKVP488ABfgMMCQl0AY7nKGcEx4oLnp7U9/TEX4QgLy9CAgJ4oGxZqtaoAS+8AFWqEOXpmecx++eZqyiKoijKveKTTz4hKSmJQYMG5VmuUqVKbNmyhXHjxjF+/Hg2bNjA4sWLadKkSSG1VFEURbnbqNtSlOtLSIBly/hw5kymHDhAlN2ebdnMXRYLD1WqxBf+/pxyc6Ni1apUfuQRqrRqhWdAQJE1W1EURSla99NtKWrOjTvHZrMRFhZGaGgoGzduZPPmzbzzzjssXLiQcs5llnPzxx9/0L17d06fPs2wYcN45513cHNzK8SWK4qiKIVF3Zai3JBus/HnggV8M28em44e5VhqKvOAbjhGZZwDShuNPBQYyJOPP07HceMICAsDZxlFURRFuR+JyI/Aj/Xq1XulqNvyT/f9999z+vRppk1zrHXVuXNnzp07R8WKFZk6dSoDBw7Mdb9HHnmEv/76i4EDBzJhwgTWrFnDkiVLqFKlSmE2X1EURSliauTGfSrmwAGSly6l/I4dfLt1K53i4tCz5PsCk8qWpc/zz2Nr3x5To0ZF1VRFURTlH+Z+GrmRSZ1j3L4mTZoQFRXFsWPH+PPPP2natCkhISHExMRgtVpp2LAhv/76K97e3tet49tvv6V3796kpqYydepUXnvtNTRNK8RnoSiKohSkvM4x1HIQ94mUS5foX7MmD1oseGoaJatX58Vx4+Dnn2mUmEg5o5Hny5RhSZ8+JF+8SLwIfSIjYfJkFdhQFEVRFKVA7dixgy1btjBgwACMRqNrzo1evXpx7NgxqlSpwrZt2wgKCuKHH364bj3PPfcc+/fvp2nTpvTt25enn36a6Ojo65ZXFEVR7h0quHGv03XSBg4koEQJZu3fz8GMDDw0jSa+vvR4+mk4fJhgm42TNhtfnzlDtzlz8AwMLOpWK4qiKIpyH5k2bRo+Pj785z//ISoqil27duHl5cXYsWNp2bIlM2bMYPjw4aSlpdGuXTs6dOiAruu51hUcHMzq1auZOXMmv/76KzVq1MgzIKIoiqLcG1Rw4x72ba9e4OeH+8yZtNY0RjZpQnpiIpd1nU3x8bz8ww+O5VQVRVEURXHRNC1U07TvNU1bqGnasKJuz73u7NmzLFu2jF69euHr60v//o510tLS0mjVqhUArVq14ujRo6xevZoSJUrw7bffEhQUxN69e3Ot02Aw0L9/f3bt2kVwcDDt2rXj1VdfJTk5udCel6IoilK41Jwb96CfRo/mlfHjuaDrTAGGvPgifPQRqJnDFUVRlEJQlHNuaJq2EGgDxIhI9Szb/w3MwLFa+QIRmZRHHU8BxURkiaZpS0Xk+Rsd9345xygIw4cP54MPPuD48eOEhITg5eWFpmnY7XaOHj1KmTJlmDJlCuPHj8dgMDBy5Eh2797NsmXL0DSNN998k/fff/+69aenpzN69GgmT55MWFgYS5YsoUGDBoX4DBXl/qbrOmlpaaSkpLhSampqtt/zs+3hhx+mf//+GAzq+vz9LK9zDBXcuIfs/fpruvTsyeGMDACeCAjgiz/+IFCNzlAURVEKUREHNx4FkoDPM4MbmqYZgaNAS+AssAPogiPQMTFHFf8B7MByQIDFIvLpjY57r59jFJTk5GTKli3L448/zrfffsuIESOYOHEibm5utG3blmXLlrnKRkREMGjQIFauXEnVqlV54YUXGDduHKmpqYSHh7N+/XqCg4Ove6z169fTo0cPoqKiGD16NMOHD8dsNhfG01SU+8bvv//OwIEDuXLliisokZaWdkt1ubu74+HhgaenJ0ajkcjISJ555hk+++wzfH1973DLlX8KFdxwumdPPKKiyOjUCc8tW7ADtdzd+WrZMqq2aVPULVMURVHuQ0W9WoqmaQ8AP2UJbjQCxohIK+fvwwFEJGdgI3P/ocB2EdmoadpyEelwo2Pes+cYBWzu3Ln07duXTZs20aRJE/z9/UlISEBE2Lp1Kw0bNrxmn//973/079+fU6dO0aFDByIiIti5cycmk4nZs2fTu3fv6x4vLi6O119/nS+//JJ69erx+eefU7Vq1YJ8iopy3zh37hy1a9fG19eXZs2auQITWVPObdf73cPDI9sIDRFhxowZDB06lPDwcL7//nsqqwu49yUV3HC61048Ui5dYmCDBnx46hTuwHu+vjwyejT/GjKkqJumKIqi3MfuwuBGB+DfItLL+fsLQEMR6Xed/asDY4BLQJKIDL1Oud5Ab4DQ0NC6p0+fvrNP5B6n6zrVqlXDx8eH7du38/XXX9O1a1fc3d2pX78+GzduvO6+qampvP/++0yaNAk3NzdatmzJypUrsdvtPProo6xevRpPT8/r7r9s2TL69OlDcnIyEydOZMCAAWqou6LcBpvNRvPmzdm5cyc7d+4ssKDh77//TqdOncjIyGDx4sW0bdu2QI6j3L3UUrD3GN1mY0jduviXKMGCU6d412KBRYsYGR+vAhuKoiiKcptE5G8R6SAir10vsOEsNx8YC+x2U/Na3bSff/6ZI0eOMGjQIDRNY+TIkYBjItE333wzz309PDwYM2YMBw4coEmTJnz33XeEhYURHBzMxo0bCQoKYu3atdfdv2PHjvz999+0aNGCwYMH07x5cyIiIu7k01OU+8rYsWPZuHEjc+fOLdDRUI8//ji7du0iPDycdu3aMXbs2OuunKTcf1Rw4x/mw44d8TWb+b/duzEA7zz2GO8lJUHPnkXdNEVRFEW5W50Dymb5vYxzm1KEpk2bRnBwMB07dmTv3r2cPHkSd3d3qlSpwlNPPZWvOipWrMj//vc/VqxYQWpqKlFRUVStWpWUlBSeeOIJevTocd2OT6lSpfjhhx/45JNP2LlzJzVr1mThwoXcT6Oa72eRkZHs2bOH48ePExMTQ2pqqvrb36Jff/2V8ePH89JLL9GjR48CP15oaCibNm2iR48ejBkzhmeeeYb4+PgCP65y91O3pfxT/PQTtpdfxjsmBivQIyyMj/bswc3bu6hbpiiKoijZ3IW3pZhwTCjaHEdQYwfQVUQO3Klj/qPPMYrA/v37qVmzJhMmTGD48OE0bdqUzZs3A/Dxxx/Tq1evm64zOTmZCRMmMHnyZCwWC7quk5KSQqlSpVi3bl2eV5MjIiJ48cUX2bBhA23atOHjjz+mVKlSt/z8lLuXzWZjwoQJjBs3DpvNli3PZDLh4+ODj48Pvr6+2X7md1tgYCDFihUromdX+M6fP0/t2rUJDAxk+/bteHl5FdqxRYTZs2czePBgKlSowIoVK6hWrVqhHV8pGmrODad/4onH7i+/5OX//Icf09MpA6yuU4f6X32lVkBRFEVR7lpFvFrKV0AzIBCIBt4RkU80TXsSmI5jhZSFIjL+Dh3vaeDpsLCwV44dO3Ynqrwv9OrViy+//JIzZ86gaRqBgYGYzWaKFStGREQE7u7ut1z3kSNH6NevH7/++it+fn7Ex8djMBgYPXo077zzznX303WdmTNnMnz4cLy8vJg3bx4dOtxwLlnlH+To0aP06NGDbdu20bVrVzp06EBiYiKJiYkkJCRc8zjnz8yUV/9J0zQ6d+7MqFGj7vnJau12Oy1btmTr1q3s2LGDBx98sEjasXHjRjp27EhKSgqff/45zz77bJG0QykcKrjh9E8KbpzdsYMuLVqwOSEBgHdKlmTMhg2gghqKoijKXa6oR24UhX/SOUZRi4mJITQ0lBdffJF58+bRs2dPPv/8cwDGjx/PiBEjAPjiiy8YOXIkw4cPz3MFlNyICMuXL2fw4MGcO3cOo9GI3W6nevXq/P777wQGBl5330OHDtGjRw927txJ165dmTVr1n11Jf5eJCLMmzePoUOHYrFYmDt3Ls8///wt1ZU5Iii3wEdCQgL79u1j7ty5pKSk3PNBjrFjxzJmzBgWLlzISy+9dMv16LpOXFwcV65cITY2ltjYWOLi4oiLiyMhIcGVWrVqxZNPPplrHWfPnuW5555j+/btjBw5kjFjxmA0Gm+5TcrdK89zDBG5b1LdunXlbmePj5cOISGigQASajTK79OmFXWzFEVRFCXfgJ1yF3zvF0YCngbmh4WF3amX7543duxYAeTQoUNit9vFYrGI0WgUT09PuXz5sqtc8eLFBef5UFBQkHz99dc3fazExER58803xWg0itFoFEDMZrMsXrw4z/0yMjJk7NixYjKZJDg4WH7++eebPvb9IDExUQ4ePChr1qyRBQsWyNSpU+XMmTNF3axsoqKipHXr1gLIE088IWfPni3wY8bExMh///tf8fLyEk3TpEuXLnLw4MECP25hWrdunWiaJi+88ILouu7avn//fmnatKnUqFFDwsPDJTQ0VEqVKiUBAQHi4+MjHh4e4ubmJkajUTRNc/2P5ze99NJL121Tamqq/Oc//xFAWrduLbGxsYXxUiiFLK9zDDVy426h6zBkCMyaRaDNhl3TmNGrFz3mzy/qlimKoijKTVEjN5TrSU9Pp1y5cjz00EOsWrWKiRMnMmLECDRNo3///syYMQOAH374gXbt2tGoUSN8fHxYu3YtIkLZsmX56KOPaN269U0d98CBA/Tr14/169e7tjVr1oz//e9/eS4Zu2vXLnr06MHBgwd57bXXmDx5Mt73yXxn6enpnD17ljNnzlw3Xbly5Zr9LBYLffv2ZdiwYQQFBRVBy69atmwZr732GqmpqUyePJm+ffuiaVqhHf/ixYtMnTqVWbNm3VMjOaKjo6lduzb+/v7s2LHD9T+ROcdNYmIimqZhMBgwGAwYjUZMJhNmsxk3Nzfc3NywWCy4u7vj7u6Op6cnHh4eeHl54e3tjbe3N76+vnh7e+Pn54e/vz9ms5k+ffpw5coVqlevzp9//pnr/6KI8NFHHzFgwABCQ0P5/vvvqV69emG/REoBUiM37vKRG9OeeUZ8QTaBiLu7nB86VOxWa1E3S1EURVFuCfkcuQEE5JXyU0dRJ9TIjZuyaNEiAWTNmjUiIlKiRAkBRNM0OXXqlKtc1apVBXBd7Y6IiJDGjRu7rt6GhYXJpk2bburYuq7LF1984TomIJ6envLjjz/muV9qaqoMGTJENE2TChUqyObNm2/uSd+FbDabREZGypYtW+Trr7+WyZMny4ABA+TZZ5+VevXqScmSJXO9ah4QECC1atWSNm3aSJ8+fWTChAmyePFi2bBhg5w8eVKOHTsmL730khgMBvHy8pK3335brly5UujP78qVK9K9e3cBpH79+nL48OFCb0NWOUdydO3aVQ4dOlSkbbpVdrtdWrZsKe7u7rJv375seQ0bNhRA+vfvXyDHTk1NlXr16gkgPj4+8tdff1237ObNm6VUqVLi5eUl33zzTYG0RykaeZ1jFPlJQWGmuy24sXzoUCnhHI5lBJn58MMi6elF3SxFURRFuS03Edw4BZx0/rQDl4DLzsen8lPH3ZLutnOMu5Gu61KrVi158MEHRdd1+fHHHx3nQEajPP/8865yR48eFUAqVap0TR1///231KlTx9XZrlGjhuzdu/em2nHlyhV5+eWXs3Xa27VrJ9YbXFjasGGDlC9fXjRNk7feekvS0tJu6rh3iz179kiFChWuCVz4+PhItWrVpFWrVtKrVy8ZO3asLFy4UNauXSuHDx+WpKSkfB/j0KFD0qlTJwHE399fJkyYcFP7347ffvtNypYtK0ajUcaMGSMZGRmFctz8uBeCHO+9954AMn/+/GzbM283q1KlSoG3oX///gKIwWCQjz/++Lrlzp07J40aNRJA/vvf/4rNZivwtv1T2Gw2SUlJkbi4OLl8+XK2W4vudiq4cZedeNg3b5bKZrPjSgXIkyVKyOUTJ4q6WYqiKIpyR+Q3uJGZgI+BJ7P83hr46GbqKOp0t5xj3M3WrVsngKszkjk6A5CdO3e6yrVq1UoAWb58+XXr2rZtm1SpUsW1f4MGDeTo0aM31Z5ffvlFSpcu7arD19f3hqNBEhISpHfv3gJI9erVZc+ePTd1zKL25ZdfioeHh4SEhMjs2bNl1apVsn//fomLiyuQ4+3Zs0fatGnjmjdlxowZBRYUSk1NlcGDB7sCY9u2bSuQ49wJMTEx8tZbb4mnp+c/KsixYcMGMRgM0qVLl2yd4R07doimaeLu7p5t3pyCtHTpUjGZTALICy+8cN1yaWlp8uqrr7rmXCms9hWEb775Rvr37y+9e/eWF198Ubp27SodOnSQtm3bSqtWreTxxx+Xxo0bS/369aVmzZpSpUoVqVChgpQpU0ZKlCghfn5+4uHh4Zp/KGsqXry4tGzZUt566y356quv5MiRI2K324v6Kecqr3MMNedGIYrZsYOg11+HHTuoA5g8Pfn6xx+p+K9/FVmbFEVRFOVOu9k5NzRN2y8iNW607W6kloLNv3bt2vHHH38QGRnJ2bNnqVSpEkajkUcffZR169YBjnv2fX198fX1JTY29oZ1/vbbb/Tq1YuIiAjAMY/G4sWLKVOmTL7alJSUxLBhw5g9e7ZrW8+ePVm4cCEGg+G6+61atYpevXpx8eJFxowZw3//+19MJlO+jlkUbDYbw4YNY+rUqTRp0oTly5dTsmTJQjv+n3/+yYgRI1i/fj1ly5Zl9OjRvPjii3fsNduzZw/du3fn4MGDvP7663zwwQd5zqWyZMkSXnvtNdLS0lxzQWTOAeHp6Ymnpyc+Pj74+Pjg7++Pv78/xYoVo0SJEgQGBlKyZElKlixJqVKlCAwMzPO9kpeLFy8yZcoUZs2aRVpaGl26dGHUqFFUvgtXR7x48SK1a9fGy8uLXbt24ePjA0BaWholS5YkISGBVatW3fR8OLfjxIkTNGzYkMuXL1OlShW2bduGr69vrmUXLFjA66+/TkhICCtWrKBWrVqF1s47Yf78+bz66hmXirIAACAASURBVKv4+Pjg6enpmrckcw6TG/2eV56IcPDgQfbs2cP+/fuxWq0AeHt7U7t2berUqUOdOnV46KGHqFatGmazuUhfCzXnRhFfVbly6pQ8VaKEaCDzQKRiRZE//iiStiiKoihKQePmR26sAUYCDzjT28Cam6mjqJMauZG3Y8eOiaZpMnLkSBEReeKJJ1xXDFetWuUqN2DAAAFk1KhRN1X/d9995xqFoWmatGnT5qau0G7cuFHKlCnjalNgYOANR2VcvnxZOnfuLIA0bNiwyOd1uJ5Lly5JixYtBJC+fftKehHdAq3ruqxdu1YaNGjgmjflyy+/vK2rwzabTSZMmCBms1lKly59w1VtUlNTpXnz5q5bGipUqCClS5eWgIAA8fLycq3iATe3ggfO26ssFov4+/vLgAEDbnibU1ZZR3IYDAbp1q3bXfV+stvt8u9//1ssFss1/xeZc+G89tprRdK29PR0efjhhwUQb29v2bVr13XLbt26VYKDg8XDw0O++uqrQmzl7fnyyy9F0zR58sknC/z/Nz09Xfbs2SOffPKJ9OvXTxo3bixeXl6u97mbm5s89NBD0qtXL5k9e7b8+eefkpycXKBtyimvc4wiPxkozFTYJx7piYnySuXKYsz8otQ0+XHYsEJtg6IoiqIUtlsIbgQAM4A9wG5gOv+QCUUzkwpu5K1fv35iNpslKipKEhMTxWAwiNFodM2/kcnb21vMZvNNdQyzWrRokWsJWYPBIM8//7wkJibma9+UlBQZOnRotg7roEGDbrjf119/LQEBAeLh4SGTJk0qsuBBbvbu3Svly5cXNzc3+eSTT+54/UlJSbJq1SoZOXKktG3bVho2bHjDAIOu67Jy5UqpUaOGa96UlStX3vQ9/8ePH5dHHnlEAOnUqdMNg1m//PKLeHt7CyDlypWTOXPmyPz582X79u25/s3sdrtER0fLnj175Oeff5bFixfL1KlTZcSIEfLaa69J586dpXXr1tK4cWOpVauWhIeHS0hIiJidt55bLBYZNGjQPRHkmDRpkgAyZ86cbNsnTpwogISHhxdRy67KvCXJYDBc086szp8/L02aNBFAhgwZcsufNYVl5cqVYjQa5bHHHpOUlJQiaYPNZpPDhw/LV199JW+++aa0aNFCAgICXJ+TBoNBqlatKt26dZMpU6bIunXrCnQZXhXcKOwTD7td7O+8I36ZM3GDTHn66cI5tqIoiqIUsfwGN4DFzp8D81P+bkyo1VJu6MqVK+Ll5SU9evQQEZE+ffq4Too//fRTV7kFCxYIIM8999xtH3PGjBni6+srgJhMJnnllVfyHXTYvn27hIaGutpYpkwZOX78eJ77REVFyTPPPCOAVKtWTdavX3/bz+F2ff311+Lp6SnBwcGydevWW67HarXK5s2bZeLEidKpUyepXbu2lChRwtWJzy098sgjEh0dnWe9drtdvvrqKwkPD3fNm7J27dobBjl0XZf58+eLl5eX+Pn5yRdffJHnPna7Xbp27eoa1dOxY0cpV65criMvfH19JTQ0VBo0aCAdOnSQ4cOHy5IlS+TQoUP5HmGSnp4uAwYMEIvFcseCHN27d5cjR47ke/87adOmTWI0GqVjx47ZXuddu3aJpmlisVjk4sWLRdK2nL777jvXPBydO3e+7t8sPT1dXn/9dQHkX//6l1y6dKmQW5o/v/76q1gsFqlfv74kJCQUdXOy0XVdTp8+Ld9//72MHj1ann766Wyj3wCpUKFCgQR7/5HBDeDfwBHgODAsl3wLsNSZvw144EZ1FkZwY9nrr4vV11cEpKemyYBatcSamlrgx1UURVGUu8VNBDcOAsHAX0Ax/oFLwWYmNXLj+iZPniyA7N69W+x2u2sSxdKlS2c78c3scJ47d+6OHNdut8u7774rHh4eruHUb7zxRr46mWlpaTJixAjRnKvaaZomY8eOveF+P/74ozzwwAOuSQ4vXLhwJ57KTbHZbPLWW2+5ggznz5+/4T52u1327dsns2bNkhdffFEaNmwopUuXdnXQcyZN08RoNIrRaBSDwXBNXmawYOjQoTcMClitVlmwYIGULVtWAGnWrJls2bIl17Lnz593TVDavHlziYyMzLPuPXv2uJb+LVasmOuWGECaNm0qo0ePls6dO8sjjzwi5cuXFz8/P1fnOLdkNpulWLFiUrFiRWnSpIl0795dxo0bJ99//72cOXMm27Ezgxxubm63HOSIjo6WN998Uzw9PcVkMsmgQYMK9Ip4TpcuXZIyZcpIxYoVs006m56eLv7+/gLIypUrC609+XHy5EnX3zw8PDzPpYg//fRTsVgsEh4eLseOHSvEVt7Yn3/+KV5eXlK9evUCCb5ERETI0qVLZcSIEdKrVy85e/bsHak3JiZG1qxZI5MmTZIBAwbckTpz+scFNwAjcAKoALg5T3qq5SjTF5jnfNwZWHqjegvyxOO3KVOkrPMevQEg0qGDSD6HQSqKoijKveQmghsDgENAOleXhM1MJ/NTx92SVHAjd1arVUJDQ+Wxxx4TEZHZs2e7OoqTJk1yldu+fbsA8tBDD93xNthsNhkyZIirk+nh4SHTpk3L17579+51BStwzhNxo2BBcnKyvP3222I2m8XPz09mz55daEtQXr582TWfyWuvvXbdq6YfffSRPPbYY1KuXDlX8Odmk8FgEC8vLwkJCZG6devKM888I23atLkm2FG8ePEb3qoi4ggozZgxQ4KCggSQp556Ktv8Dt99950EBgaKu7u7TJ8+/YZBk6FDh7oCLVWqVHHNpREcHCwbN27Mc1+r1Sr79u2TRYsWyVtvvSXPPvus1K1bV8qUKSPe3t7XPMesycPDQ3r27Omah+BOBDkuXLggvXv3FoPBIMWLF5fZs2cX+O0UdrtdnnrqKXFzc7tmHotHH31UAOnVq1eBtuFWpaenu2498fLyku3bt1+37ObNm6V48eISGBgof9wlcyLu3btX/P39JSwsTKKiom56f7vdLocPH5bPPvtMhg4dKm3atJGaNWtKqVKlxN3dPdf3rcVikXXr1hXAs7nzCiS4AXwHPAUYbrWOPOpuRJaJxIDhwPAcZdYAjZyPTcAlcKz+cr1UECcef3/1ldTM8iZp6usrZ/L4B1IURVGUe11+gxty9Tt97s2UvxuTCm7kbunSpQLI999/LyIiwcHBrg5H1iuqjRo1EkA2bNhQYG1JT0+X3r17u67MN2vWLF9Dpq1Wq4waNcrVUTYYDDJz5swb7nf48GHX5JX16tWTHTt23ImncV379u2TChUqiNlslvnz51+33HvvvXfDwIWmaeLh4SGlSpWSGjVqSOvWraVfv34ye/Zs2bx5c54TCF6+fFnatm3rer0yU35uVRFxzOMxYcIE18iAjh07Ss+ePV3BrwMHDuS5/+nTp6VChQquDpuPj49r5M77779/w+PnV0pKivzxxx8yZ84c6devn7Ru3Vpq1KjhChaZTCbp0aNHtiBH//79swU5Bg8efFNBir1790qzZs0EHEsRr1279o49n5wyR1x9+OGH2bZ/8MEHAkjFihUL7NhZxcfHy9ChQyUkJERq166d50iMnDJHMGmaluf/7NGjRyUsLEzc3d3zXIK6MBw5ckSCgoKkTJkyEhERkWsZq9Uqe/bskY8++kj69+8vrVq1kmrVqkmJEiVc76/rBTCCgoKkRo0a8tRTT8ngwYPl008/ldGjR4umaaJpmkyZMqWQn/HNy+sc45aXgtU0rQXwEvAwsAz4VESO3FJl19bdAfi3iPRy/v4C0FBE+mUp87ezzFnn7yecZS5dr947vRSsXrw4pthYBHAHqnp4UNzDg1IeHixu0AAsFqafOMHBxEQsZrNj2R03N4L9/en36KNgsfD9oUNcTEvD4uGBxd0dNw8PSgQG0qRBA/Dz40JGBpbAQHxDQjC6ud2xtiuKUkREEF1Ht9vRbTZE1xG7Hd1ux+LmhgHISE8nLSUFPUue6DoB/v4YgMTERJKSklz1iK4juk7Z0qXRRLh0+TLxCQmIiOsYAJUfeAB0nbPnz3MlPt7xRaDriAhGoEZYGIhwPDKS2Ph4V57oOm4mE3UrVQIR9h8/TqyzftF1dF3Hy2Lh4apVQdfZdugQVxITr+4vgr+nJ42rVgURft+3j/jk5Gz5Qb6+NK1SBUT4aedOktLSsrWvbEAAjzqXxlu6dStpGRnZ8sOCgng0PBxE+GTzZux2e7Yvu+qlS9O0YkXsdjtzN2265suwXtmyNClfntSMDOZu2XJNftMHHqBRaChxqanM3bo1a6ccEaFVWBj1g4OJTkxk3s6d1+Q/W7kydUqVIjIujvm7dzvOMrKU6VatGtUDAzl6+TIL9u27emzn2+aV6tWpEhDAXzExLDpwwLU9c/9BtWpR3teXrefPs+To0WzHBni7Th1CvLz4/dw5vj5+3LX/2Mceo/S8eXf8bX6zS8HeC4p6ufm71SOPPEJ0dDRHjx5ly5YtPPbYYwC88cYbTJ06FYBLly4RFBREqVKliIqKKvA2xcTE0KhRI06ePElAQAAbNmygevXqN9zv8OHDPPnkk5w6dQqAmjVrsmHDBvz9/a+7j4iwdOlSBg8eTHR0NH369GH8+PF57nMrli9fzosvvoivry/ffvstjRo1yrXczJkzGThwIAD+/v6ULl2akJAQypcvT5UqVahVqxZ169a9pfbFxcWxa9cuGjdujLu7O1FRUbzwwguuZX4BDAYDb7zxBu+///4Nl0+Ni4tj6tSpTJs2jdTUVEaMGMGoUaNwy+N8ePr06QwdOhS73Y63tzdJSUkAPPvssyxZsiTP5WHvFF3Xeffdd5kyZQrJycmYTCa6dOnCnDlz8Pb2JiMjg6FDh/LRRx+RkZGBxWKhb9++fPDBB/laGldE+P777xk6dCgnT57k6aefZurUqYSHh9+x57B161aaNm1K27ZtWb58OZqmAbBv3z7q1KmDyWTizJkzBAUF3bFjZqXrOp988gnTp0/n0KFDjk6rpiEieHl5sWXLlnwv5frDDz/QoUMHrFYrzz33HN98802u771Lly7Rtm1btm7dyuTJk3njjTdcz7uwnD59mqZNm5KWlsamTZuuWRK4bt267N27F915XpeTwWDAbDa7ljbOutyrpmnYbDZsNhtWqxWbzYbdbsdut6PrOr6+vkRFRaHrOu3atWPFihWF/vzzK69zjFsObmSp3A/ogmPZtjPAx8ASEbHeRp13LLihaVpvoDdAaGho3dOnT99qs66xo0YNGvz9NwANvLzwNJtJt9kIMBj4KTQU0tN54dw5fk1LI12EDBHSgcrA3846HgH+zFFvAxyTiADUAvY5H/sAfkYjLX18WPjgg+Dnx+ATJ0gzGvHz9cXPzw//YsWoFhbGY40agZ8fhy9fxqtkSfxCQvAJDka7xXW4lYKV2QnVrVbMBgPY7aQkJpKemordakW3WrFbrWgilCpeHOx2os6fJykxEbvVit1mQ7fZcDMYqBIaCrrO30ePEp+Q4PjgslrRbTZ83N1pEB4Ous76v/4iLjHR0cm227HbbJT09aVZlSpgt7N82zYSnB1su82GruuUDwjg35Urg64ze+NGUtLT0Z2dW13XqREURFtn/e/8/jtW5wdmZnqkdGnaV6yIzWZj4IYNju2ZHWQRWgcH81xoKInp6by2dSu6iCM587uGhPBccDAxqan8Z+9ex76ZZUToGxLCs8WLczI5mZ5HjmTPB0aVKsXTvr78lZxMj8hIRx44ygHTAwNp5enJpuRkel686NquO/9GS/z8aObmxk+pqbyUmOjY7txfB37x8OBhTWOJ1corVuvVfZ0/9wI1gA9xjMXP6SRQHpiA4wM1p4tAIDACmJhLfhqOyYj6A7Ny5JmBDOfjF4HPcuQHAJedj5/DMTQvq1Ag89PzCWBtjvwHyftz7eEs22pkKZupJfCL8/EDWY6VqT3wrfNxcSA2R35PYJHzsRuQ8wvodRyvSQaO1yinYThe08s4XuOcxuN43SNw/I1ymonjdd8P1Mwl/1PgRYOBrSI0cX7valnSVyYT7Y1GftN1nnauL581f4W7Oy3MZn6w2XghNdWVD6BpGj97e9PQZOKrjAz6p6RkzwfW+/tTzWzmk7Q0RjpP9jVgQ3g44YcP59Li23M/BTc0TXsaeDosLOyVY8eOFXVz7irbtm3j4YcfZsaMGQwYMIC6deuye/duDAYDp06dIjQ0FIAePXqwePFiZs6cSf/+/Qulbbqu85///IfPPvsMg8HA9OnT83Vsu93OhAkTeOeddxARTCYTixYtolu3bnnuFx8fz+jRo5k1axaBgYFMnTqVbt263XbnwW63M2rUKCZOnEijRo1Yvnw5wcHBuZYdPXo048aNAxyv+Wef5fwmuHlxcXGsXLmSZcuW8csvv2C1WilTpgxjxoyhZ8+emEwmTpw4Qbdu3di2bZtrPz8/P5YuXUqrVq1ueIxLly5x+fLlazp6OdvRokULdu3ahcFgcHX+KleuzLfffsuDDz5428/1Zum6zrhx45g8eTLJyckYjUa6dOnC3Llz70iQIz09nenTp/Pee++Rnp7OgAEDGDVqFH5+frfV7tjYWOrUqYPRaGT37t2uQFdGRgalSpXiypUrfPfddzz77LO3dZzcbN68mXfeeYdNmzZhdX4XlitXjldeeYUhQ4YwevRoJk+ejNFoZNGiRXTv3j1f9UZGRtKgQQOio6OpUKECO3bsICAg4Jpyqamp9OzZk2XLltG3b19mzJiRr7/FnXDhwgWaNm3KxYsXWb9+PbVr186Wv2DBAl555ZVbqlvTNFcyGAyuZDQaMRqNiAiJiYnkjAuEhoZSs2ZNmjVrRvv27SlfPrczoMJXYMENTdOKA92BF4Ao4AugCVBDRJrdRr2NgDEi0sr5+3AAEZmYpcwaZ5k/NU0zAReAEpLHEyqIqyp1PDzYm5aGEVg/cyZN8vHFqFutGGw2SE8nNjqalPh40hMTSU9OJiMlBTcRqgUFQXw8y9au5ez588THxRGfkEB8UhKV3dz4b8mSEB/Pw3//zYmMDOJFXCfzXYAvnY99gUTnYw3HCJNXLBZmFCuGuLlR9fx53IxG3I1GLM7UuUwZeoWHk2Yy0Wf3btydI04sbm64Wyw0r1yZR6tUIUXT+GLvXtwslmxfzvUrVKBqSAhxycn8tHcv5PjifjgsjLBSpbiUmMgv+/dnf3E0jcaVKlGuRAnOx8by6/79ro63ruvY7XZaV61KqL8/xy9c4Ednfmaeruu8UKsWZb292RsVxfIDB7Ll2XWdobVrE+zhwfrISL44etS1PTNNr1WLILOZbyMjWRQZmS3PLsL3Vavip2nMi4rik5gY7CKupIuwNzQUN11nzOXLLExKcuQBdhE0IMbHB+x2eqelschux46j4wuO2fQyO20duNqZy5S1g9mKq53BTNWAA87HuXUwGwJbnY9r4uiIZdWCq53W8jg6clk9y9VObyBXO8OZenC10+yFo4NpyJJ6m838n6cnVk0jOD4eDTBomiNf03jd25vhxYoRJ0L9qCg0wKhprjIDAgN5JTCQ83Y7T588eXV/ZxoUEkLHoCAi0tN5+ehRx4d4ZhmDgcHly9OyZEmOJCfz34MHHR/umR/2msbgypV5OCiI/XFxTD582LU98+egGjWoHhjI3suX+ThLvsFgQNM0+teuTYWAAHbGxPDNkSOu7Zl19GvQgFK+vmw/d441J09m+6LRNI3XGjXC39OTbWfOsOX06WvyezVujIfFwraICPacPevY7szTNI0XmzbFaDSy/dQpDp8/j8FodOUZjUaeb9wYNI0dJ05w+tKlq/saDFjMZp6sXx80jV0nTnAhLu7q8Y1GPNzdebRmTdA09p44QWxS0tW2GQx4eXhQt0oVMBjYf/IkSamp2er39vSkWsWKoGkcioggLSMjW76Plxfly5YFTeNYZCQ2uz37/l5eBJcqBZpGxNmz6CKOfGcZb29vigcEgKZx7sIFgKv5BgOenp74+voiwOUrV67Jd3d3x8PDA12EpORkcB438/huFgtmNzcExwmeK98ZMDaaTBiMRseICOdn3v0cTL6fghuZ1MiNa3Xu3JnVq1dz9uxZ4uPjKVu2LJqm0bVrV5YsWQI4OoCenp4YDAaSkpJueDX/Tlu2bBndunXDarXSqlUrfvrpp3x1Zk6ePEmLFi1cozgaNWrEunXrcHd3z3O/PXv20KdPH7Zt28Zjjz3GnDlzqFat2i21/cqVK3Tr1o3Vq1fzyiuv8OGHH2KxXBu+1XWd9u3bs3LlSgD69OnDnDlzbumY4AjUZAY01qxZg9VqJTQ0lE6dOlGvXj2mTZvGtm3bqFy5MuPHj6d9+/ZomsbevXt54YUX+Pvvq+HtWrVq8csvv9zWCIClS5fSs2dP0tPTXVf3vb29mTVrFj179rzleu8UXdcZP34877//vivI0blzZ+bNm+cKcgwZMoT58+ffUpDjwoULjBw5koULFxIYGMi4cePo1asXRqPxptsqIjzzzDOsXr2aLVu2UL9+fVde8+bNWbduHT179mTRokU3Xff1nDlzhtGjR7NixQri4+MBR/Crffv2vPvuu5QpUyZb+aVLl9KtWzfsdjsDBw5k+vTp+TqOzWajZcuWrF+/Hg8PD3777bdcRzjpus6wYcOYPHkybdq04auvvsLb2/v2n2geYmNjadasGSdPnmTt2rXXtGvt2rU88cQTADz55JO0b98eT09PvLy88PLyyvbYx8cHb29v3N3db+rzVNd1tm3bxooVK5g3bx6JiYnXlDGZTJQoUYJq1arRpEkT2rZtS+3atQv9c7tAghuapq3AMQhhMbBIRM5nydt5Oyc1zmDFUaA5cA7YAXQVkQNZyryOI4jymqZpnYH2ItIpr3oL4sRj5+efU9/5wWkE1k2fzqPO4X6FSXSdtLg44s+eRUtMpKTJBPHxLF+zhrhLl4iLjSUhPp7UtDQaFC9Ox9BQbKmpdF+/nnSbjXSbjTSrlXS7nS7+/vTz8yMuOZmakZGk6zppzlEn6cB7OK4qRwLlcmnLNGAQjinwc4uTLwBexjE65eFc8pcCnYBfcVzNzWkV0BpYgeNqbk6bcETYluC4mmvE0bHO/LnF25uabm4ssloZkZzs6Dzj6EQbNY1fy5alnLs7n8bH82FsrGu70WDAqGmsrFGDYu7ufHbhAktjYq7mOdPiRo2wuLnxRUQEv0ZHX80zGjEbjcx4/HEwGll2/Di7Y2JcUVOjwYCnxcLQxx4Do5GfjhzheGwsRqPREV01mfD19KRro0ZgNPLb4cNcSEjAaDI5ktGIr7c3LR56CAwGth07RkJaGobMfJMJXx8falWuDEYjByMiSLfZMJrNGIxGDEYj3j4+hJYpAwYDZ6KjEU3D4Oy0Gd3ccPfwwM/fH4xGEpOTHXlmMwaTCc1gwOjmhtFsviagpSjK/eVWghuappUEMs+kt4tIzJ1vWcFRwY3szpw5Q/ny5Rk4cCBTp06lffv2rFixAnB08DOvSr7//vsMGzaMXr168fHHHxdJW8+dO0ejRo04c+YMJUqUYPPmzVSqVOmG+4kIEyZMYNSoUYgIbm5ufPHFF3To0CHP/XRdZ8GCBQwbNozExESGDBnCqFGj8PLyynebDxw4QLt27YiMjOTDDz/k1VdfzbVcbGws9evX5+TJkwB06tSJpUuX5vs4mRISEvjhhx/45ptvWLNmDRkZGYSGhtKxY0c6depE/fr1XRe6RISVK1cyYsQIDh06RL169Zg0aRLNmzcHYMuWLXTt2pXIyEhX/b1792bu3Lk31UnKyMigbdu2rFmzxrXNYDDw8ssvM2fOnDwDAyLCjh07XCNNSpcuneftLneCrutMnDiRSZMmkZSU5Ljo8PzzzJs3Dx8fn1yDHK+//jrvv/9+voIcu3fvZtCgQWzatImaNWsyffp0Hn/88Ztq4/Tp0xk8eDDTpk1j0KBBru0zZsxg0KBBPPDAA5w4ceK2O7Pp6elMnjyZBQsWkDmq3mw28+ijjzJmzBiaNGmS5/4HDhzgkUceISEhgSZNmvD777/ne4TF22+/zYQJE9A0jSlTpvDGG2/kWm7OnDn079+f2rVr89NPP1G6dOmbe5L5lJiYSIsWLdi7dy+rVq1y/Z9k2rZtG40bN8ZutwOQkpKCh4dHgbQlq759+7r+Jzt37kxsbCwHDhzgwoULrlE14PifCwgIIDw8nEaNGvHUU0/RrFmzAg145HmOcb3JOG6UgMdvdd981v8kjgDHCeBt57Z3gbbOx+445vo4DmwHKtyozoKa7KtNyZLiBaKBNAaR338vkOPcDXS7XeypqSLx8WKNipIz27fLid9/v5rWrZMru3eLHD8u6QcPyrFff82e1q6VuF27RI4elZS//pIjP/98Na1eLUdWr5aEnTtFDh2S5L175divv8rJDRskYvNmObN9u5zbtUvSIiJEYmIkPSpKrkRESMLZs5IUHS0ply9LemKi2NPTRfK5FrmiKIpy53HzE4p2wjEw7TPgcxyrpXS4mTqKOqkJRbN76623xGAwyKlTpyQ9PV1MJpNomiYtWrTIVi4oKEg0TZP4+PgiaqmD3W6X559/XnAuYfrRRx/le9/IyMhsK6rUq/f/7J15WFTVG8e/584GDAz7JrhD7qaSuWuumaam4pJpaVSGZWqaGv5yKzXXTMvM1NLMxKWy1Fyzcl8wzQ13TEWUfYfZ3t8fA1fAAWaGWVDP53nOM8O995zzzjAD53zvuzxjUvnV+/fv04gRIwgAVatWjX755RfS6/Xl9tuyZQsplUoKCAiggwcPlnrd0aNHycXFpZhd5pCenk7r1q2j3r17i0kKq1atSu+//z4dPXq0XFu1Wi19++23YonXLl26FKtasWPHDvL09BTtk8lk9MMPP5hk2/79+8nV1bVYssTmzZs/VI61JAkJCTR37lx66qmnHkqg6u/vEjzbIQAAIABJREFUT2FhYdSnTx965513aM6cOfT999/T/v376cqVK5STk2OSbeWh0+lo1qxZov0SiYQGDx4sfgfy8/Pp3XffLZZ41NQSxnq9njZu3CiWVe7bty9du3bNJLuOHz9OMpmM+vTpU+x3e+7cORIEgWQyWYXLNG/atInCwsLEajOMMWrYsCGtXLmy3Oo3JcnIyKDQ0FCxAo45ZZd37Nghvr99+vQpde5t27aRUqmkatWq0blz58yyzxRycnKoY8eOJJFIxKTLRTl37hzJZDLxc1qjRg2r21AW3377rfi7mjx5snj81q1btHTpUurXr5+YiLXo9wkAubu7U9OmTSnTBtVDy1pjOHwxYM9mq4XHye+/JyVAnzVpQhqASCIhnQ2zF3M4HA6HU5mxQNw4A8CvyM++AM6YM4ajGxc3HpCZmUkeHh4UHh5ORA8qFgCgXbt2idft3LmTAIhlYisDa9euFaup9O7d2+QNl16vFyt6oKCiyoQJE0zqf+DAAWrYsCEBoBdffJGuX79u9DqdTkdTpkwhANSiRQu6fft2qWMuWbKkWLWSgIAAkyrDZGRk0A8//EB9+vQhhUJBACg4OJjGjRtHR44cMXsDSkSUm5tLn332Gfn4+BAA6t+/P128eFE8v2bNGnEuAOTl5UWXLl0q9T149dVXi22ivL29aceOHaXOr9Vqafv27dS3b1/xd9uuXTv67rvvaNeuXbRq1SqaMWMGvfnmm2LFk6KiS8m5nn76aerRowe99dZbNHPmTFq9ejXt3r2bLly4QBkZGSa/LzqdjmbPni1Wc5FIJDRo0KBiIseoUaPETbiTkxMtXLjQpLFzcnJo1qxZpFQqSS6X06RJk8oUEFNTU6lGjRpUrVo1Sk5OFo9rNBry9vYmABQdHW3S3BcvXqR33nmH/vjjD9Lr9XTmzBnq3bt3sQ1wYGAgTZw40az3yxg6nY5eeukl8f0pS+wrya1btygwMJAAUGhoaKkVgGJiYiggIIDc3d1p3759FbK3KGq1mnr27EmMMVq3bt1D569fvy6+Z4XC65gxY6w2v6nExMSQUqkkANS5c+dS/wakpqbS999/T8OGDaMGDRqQq6srSaVSm9jExQ07LDzSX3iByMODaNUq+gsgN4D2zZ9vs/k4HA6Hw6msWCBunC3xs1DymD0bDCmMNgL4ylQPEi5uPOCLL74gAHTo0CEiIlKpVGLpyqJ3hBs1akQA6MyZM44y1ShxcXHipicgIKBUsaEkOp2O+vfvL3ohACAfHx/au3dvuX3VajUtWLCAlEolOTs706xZsygvL088n5qaSj179iQAFBERUexcSRvCw8MJBaVICzd98fHxpc6dkZFB69evp5deekkUGYKCgmjs2LF0+PBhiwQNY6Snp9O0adPI1dWVBEGgiIgI+u+//8TzU6dOFe8SA6D69esX23CePXu2mOggkUjoo48+KtW+Gzdu0EcffURBQUEEgPz8/GjixIkUGxtrkr1ZWVl06dIl2rdvH61Zs4ZmzZpFkZGR1KtXL2rWrBn5+fkZFUCqVKlCMTExJr8vOp2OPv3002Iix8CBAyktLY2IDCJHZGQkSSQSURjYb6KX+J07d0TRzd/fn1auXElarbbYNXq9nvr160dSqZSOHDlS7Fy3bt0IAA0ZMsSk+ZKSkqhmzZrFfkeFz5VKJQ0YMMDk998cCssbM8boyy+/NLmfRqOhtm3biqLazZs3jV538+ZNatCgAUmlUvruu+8qbK9WqxUFi+XLlz90/u7du6Jnz5w5c+jZZ58lAKXaZ2tSUlJE77SqVavS/fv3Tepnrb8dJeHihj0WHqdOkR6g62PH0qZx44gBJAFo77x5tpuTw+FwOJxKiAXixnwAu2Ao5jMcwO8A5pkzRpGxVgO4D+BciePdAVyCIZx1cjljjAfQruD5r6bMy8UNAzqdjkJDQ6l58+ak1+vp+++/Fzc3a9euFa+Li4sjAFS7dm0HWls6Re8IS6VSWrNmjUn9cnJyqFWrVqRQKKhdu3bia3/uuecoNTW13P63bt0SxYk6derQ3r176fz58xQaGkpSqZSWLVtWajhIamoqhYSEiB4GEomEGGOiyFSUzMxM+vHHH6lv377i3eEqVarQmDFj6NChQzbblBAZwnHGjh1LcrmcFAoFjR8/npKSksTzhe97YXvxxRfp3XffLXasa9eu4ua/KHl5eRQdHU1du3YlxhgJgkA9evSgLVu2mOS5Yi55eXl0/fp1+vvvv2n9+vU0b948qlq1KgUHB5sVJkFk+MzNnTtXFDkEQaABAwaIn5vk5GTq3Lmz+B60aNGi3DCcQo4fP06tW7cmANS0aVP6+++/xXNLly4lADS/xE3ZwuNVq1Y16fOg0WioVatWxTyGCptcLqfXX3+9WFiStdmxY4coKg4fPtysvoXhYQqFgo4ePWr0mrS0NPH9nzZtmkkhZMbQ6/X0xhtvEACaZ2SfmJqaKop4EydOJL1eT3K5nLy8vCyaz1rodDp64YUXCAA5OzuX+j7ZA5uIGzAUTegJQLB0DHs3Wy88JoWEkAdjlBoXR5vef58YQAJAu+fMsem8HA6Hw+FUJswVNwxd0A/AooLW19z+RcZpD6BZUXEDhpzS1wDUgqFa8JkC74xGALaVaH4F7csC0eWQKfNyccPAb7/9RgBo/fr1RETiXdzAwEBSq9XidS+++GKx6yor33zzjXj3ecCAASZt8hITEykkJIS8vb1py5YtYs4JmUxGs2fPNmneHTt2UK1atcQNl5+fX7ENaUmOHz8uuo63adNG9JZZsWLFQ9deuHBB9GYIDAyk9957jw4ePGhTQcMYcXFxNHz4cBIEgVQqFc2cOVOMz8/OzqY6deo8tEn29fU1ukE+d+4cjR07VgyhqF69Os2cObOYZ4i9OHXqFDk7O1Pbtm0tElR0Oh3NmzdP/B0KgkDh4eGiyBETEyN+NgRBoNdee82kefR6Pf3444/i53HAgAH0888/k1wup549exb7/cfGxop5NkwRUOLi4qhKlSri76lq1aq0YMECUqvVFBMTQ2+++aaY/yUsLIxWrlxZahhIRbh+/Tp5eXmJIk5pHk7GmDt3rvielvZ3KT8/n4YPH04A6NVXXzX796vX6+n9998nAPS///3vofPZ2dkUEBBAAGjkyJFERLRr1y5CQThXZWDq1Kni+2TM68Qe2Erc6AJD6ddrAD4FUMfSsezVbL3wOLV+PQGg6c89R0REmydMEAWOfZ9+atO5ORwOh8OpLFjguTHXlGNmjFejhLjRCsCuIj9/COBDE8aRANhaxvm3AJwEcLJatWo2eCcfPTp16kRBQUHipqZws7NgwQLxmtzcXJJIJOTu7u5AS03n8uXL5OvrK27aTNnsXblyhXx8fKh27dp0//59mjNnjnhXuWrVqnTixIlyx8jJyaFp06ZR7969y5zzyy+/FO+WT5w4UUyWOWrUqIeu/eeff8jX15f8/f1p7969dhc0jHHu3DnRW8PPz4+WLFkibkpPnTpF7u7uJJVKi32GiAzeJytXrqSWLVuK4tGAAQNo9+7dDn9dGzZsIAD01ltvWXyHX6fT0YIFC4qJHO3ataOTJ08SEdHq1avF0AVnZ2daunSpSeNmZ2fTjBkzRLEhODi4mOeMRqMRP+/liY937twp5k2iVCqNJsYkMng+LF26lOrXr0+AIeHke++9RxcuXDDxHTGNnJwcatKkiejBFBcXZ3LfzZs3i2Lm9OnTjV6j1+tp5syZBIA6duxokkdWITNmzCAANHr06Ic+FxqNRkwEO2jQIPF4oRD8119/mTyPrdm6dasY9hYREWH3+W0ibtCDf+zuAN4GcAvAYQAjAMgqOq4tmj3uqrwUGEjuAKUWfJF++uAD8gMoDiDaudPm83M4HA6H42gsEDdOGTn2rzljlOhbUtwIB7CyyM/DAHxRTv8VBTdx2poyJ/fcIDpz5owYI05E1KZNGwJALi4uxZIZTpgwQdyIPypotVrRJVsmk9GGDRvK7XP48GFycnKili1bUk5ODqWnpxfbCPbp04dyc3MttqlohReZTEZbt26lXr16EQBq27btQ9cfPXqUPDw8qGrVqnT58mWL57UVR44coQ4dOhBgqAqxdu1ao/khjh49Sm+88Ya4sa9Xrx4tXLjQ5DwA9uLDDz8kALRs2bIKjaPX62nhwoXFcnxUq1aNvvrqK9JoNDRq1ChxQx4cHEwHDhwwadxbt27R+PHjH8oPUvg5L7rBLsm9e/fohRdeKBaC0rBhQ5Mruvz11180ePBgUfDr0KEDbdiwwaqhQ4WJZ2UyGe00Yw8WExNDzs7OBIBefvnlUq9bu3YtyWQyql+/vkkCymeffSaGzJQU33Q6HdWrV48A0PPPP1/snEqlIoVCYbFIZiuuXr0qhs+EhYWZ5SVTUWwmbgDwBjCm4K7FrwAGAVgK4M+KjGurZo+Fx+noaEMsVtHM3z/9RMQYJQP019y5NreBw+FwOBxHYqq4ASASwFkA2QD+LdJuAFhnyhiljFshccPMuXoBWBESEmKbN/MRYsSIEeTi4kLJycmUnJwsbnw++OCDYtepVCqSSqU2yYFga5YuXSomvRw2bFi5G44tW7YQY4z69u0rbtT3798v3hl3cnKyaPObnp4uemj4+flRXFwcffTRRwQYkoGW3GQWlk6tXbu2WXey7Y1er6edO3dS06ZNxQ3z1q1bKSkpiRYvXixWlXFxcaHXX3+dDh8+XOk2fYVotVrq2bMnSaVS+vPPP60y5t69e6lZs2aioODs7EwRERF09epVeu6558TjrVu3NqkccUmWL18ufoaMeb+kpKRQnz59xO+2l5cXubu7U61atYp5f5jKvXv3aM6cOWKySn9/f4qKirLaZ7Ro1SBTQ8KIDAk9C7+jzz77bKmizb59+8jd3Z0CAgLK9MZauXKlGFpSciydTkfNmzcnANSqVati5y5duiT+PisjOTk51LhxY4u8ZCqCTcQNAD8DuACDa2dgiXNmx9rao9nrrkq/KlWoniCQruiX/JdfqHpBiMqOGTPsYgeHw+FwOI7ADHHDvUCI+BFA9SLNy5T+ZYxbUtywKCzFxLm4uEFECQkJJJfLKTIykoiIXnnlFQIM1RKKliwtTDDau3dvR5laYc6fPy/G9desWbPcxJGFd2zHjh0rHtPpdDRx4kTxjntoaKjJVSROnDgh5tdo27YtaTQa2rx5s7jpL+nB8Pvvv5OTkxPVr1+/zKoplQmdTkfR0dEUGhoqhmQUbjRXrFhRZlnTykRaWhrVrVuXfHx86MaNG1Yb9+7duzR48GCxug1jjFq3bk2rVq0SQxsEQaA33njDJG8KIkP4lUQiIalU+lBVjoyMDBowYID4e/D09KQlS5ZQ8+bNydXVlc6dO1eh11NYrvfFF18kxhgxxqhnz560bdu2h7x3zOXAgQNi0ty+ffuaLIbl5uaKITTBwcGlhp+cP3+eqlevTi4uLvTrr78+dH7Dhg3EGKPu3bsb9W7o0qULAaBGjRo9JCiNHDmSANDKlStNstlRDB06VPSS+f33320+n63EjR5GjiksHc8ezV7ixt19+ygXIProo2LHf4mKEnNwbC8ljovD4XA4nEcdR9/kMCJuSAFcB1ATDxKKNrDmnE96WMq0adMIAMXGxpJOpyO5XE4oSLpXlMJEiI4qaWgt1Go1derUiQBDJYjS8gwUMmbMGAJAixcvLnb87t274l1bxhi9+uqrZW5Gly1bJm4wCz1izp49SxKJhARBEPMxFLJlyxaSyWTUtGlTSkxMtPDVOg61Wk3ffPMNTZ48udKVDDaVS5cukbu7Oz399NOUlZVl1bF1Oh3Nnz9fTEJZ6HUxcOBAMaeGUqksN/GjTqcjf39/AlCsMlBWVhYNHTpUFOFUKhV99tlnpNfradiwYQSAfv75Z6u+pri4OJoyZYpoT/Xq1Wn27NlmV58pSnx8vPge1alTR0xcWx46nY569OhBAMjNza1UAfLu3bsUFhZGgiDQF198IR7ftm0bSaVSateundEEqv369SMAVKtWLaPf+6CgIGKM2TXkw1KKesl88sknNp3LVuKGsfjYh45VpmbXhUf//qR2c6PsEgmgtkZFkVAocEydaj97OBwOh8OxE44UNwq8QO4C0AC4DSCi4HgPAJdhSIQ+xYrzPfGeG8ePHycfHx/q0aMHERF98skn4kbr33//Fa8rzMnRuHFjR5lqdebPny+KDW+++Wapd4W1Wi317duXGGP0008/PXT+p59+EhNHurq6UnR09EPXDBkyRLw7WiimpKWliaVDi5baJTJ4yUgkEmrVqpVZSQ851uf3338XS7vaKozm77//pubNm4sbTIVCQaGhoeLns3r16nT48GGjfXv37k0AqF+/fkRkKHEbEREhJo1UKpU0Z84c0bNg4cKFBIBm2NAbPT8/n6Kjo6ljx47i537SpEkWv39qtVrMA6RSqej8+fMm9x07dqxow969e41ek5WVJea8GT9+PO3bt4+cnJwoLCzMqKdRYfnZwMBAo7l3UlJSCAA99dRTpr9IB1PUS6ZPnz42S+xrVXEDQACAMAAXATSFodxaMwDPAYg1dzx7NnuKG5lHj1JNgP5nJKHTbx99RAJATgBptmyxm00cDofD4dgDR3tuOKI9iZ4bCQkJ4gI9ICBATExYWI6zS5cuxa5v3749AaDdu3c7wlyb8c8//5CHh4coTIwZM4ZycnIeui47O5tatGhBTk5OdOTIkYfO63Q6evPNN8XNadOmTenWrVuUnp5OdevWJcBQCvX69evi9YW5CsaPH19srK+//poYY9SxY0eT71JzbMu8efMIAM2aNcum8yQmJtKwYcPETWbh57Lwefv27enevXvi9YX5IAIDAykvL49GjRolJvp0dnamadOmFduk7tq1iwRBoP79+9utKs3FixfFULeS3k/m8u6774ohc5s3bza537Jly8SQmdI8YbRarTg+Y4zq169v1GOqsBysl5dXqSFWs2fPJgAUFRVlso2Vgbt371JgYCABoJCQEJuEkFlb3HgNwH4AmQWPhe1XAP3MHc+ezd4Lj/5BQeQGUPLVqw+d2z59Om0GiBgjKseVkcPhcDicRwlLxA0Ycm10KXjuDMDN3DEc0Z5Ezw21Wk0LFy4klUpFMpmMPvjgA3EBu3XrVnETtW/fPrFPamoqMcbIz8/PUWbblNzcXBo4cKC4KZRIJNSjR4+H8izcv3+fateuTT4+PnTVyPqQyFCFoDDWXxAEMbygVatWxZKwdu3alQBQ586di/VftGgRAaCePXsaFVk4jkGv19Mrr7xCjDGjuRmsjU6no8WLF1NQUJD4nSz04hAEgSIjI+nq1askkUhIIpHQ66+/LubwcHJyokmTJj2U7+Ly5cvk4eFBjRo1srtoptPp6KWXXiJBEGjHjh0VGmvNmjXiezF58mST++3evVv8jr///vtGr9Hr9fT555/Tc889R3fu3Hno/McffyyGuRQVmUpSmDzX2BiVHY1GQ+3btycnJyeLEtuWh63CUvpb2tdRzd7ixr9bthAAmtKmjfELtm8nHUDdAPrlww/tahuHw+FwOLbCXHEDwJsATgC4VvBzKIB95ozh6PakeG7s2rVL9CLo3r37QzHohefq1atXzH389ddfJwA0b948e5tsV9RqNUVFRYmeHChIFFjUW+XSpUvk7e1NoaGhZebBWL16tViScty4ccXOFZbTrVGjhnj3XK/X08yZMwkAhYeHP5LVaB53cnJyKCwsjNzc3MwKi6gohw8fplatWhUr3Vq0FYafyOVyGjt2rNH8D+np6VSvXj3y9vYWvYfsTWZmJj399NOkUqnowoULFRrr1KlTYmLeadOmmdwvNjZW9ITp2bOnWd4rS5YsET1iyqoskp+fT4IgkK+vr8ljV0ZsFQ5nbc+NoQWP4wG8X7KZO549myMWHgOCg8kVoKRS6olf+PprEgBiAP30CNV753A4HA6nNCwQN07DkOjznyLHzpozhqPak+K5ce3aNerTpw8BoNq1a9Nvv/32UOx7bGysuFlav369eFyn05GTkxMpFAq7ubFXBn788UeqXbu2+J74+/vTggULSKfT0aFDh0ihUFDr1q3L9K7QaDQP3bldt26dGGqQkpJCRAZhY+LEiYSCJK6mVsjg2J9bt26Rv78/hYSEiL8/e5GSkkIjRowoFrKCglwSb7/9dqmJK3U6HfXq1YskEgn98ccfdrW5JDdv3iQ/Pz+Ly88WJSUlhSQSCXl6eprVLzk5mYKDgwkANWjQwGjOjJKsWbNGFJDKE2Y2bNhAAOiVV14xy64nBWuLGyMLHqcZa+aOZ8/mCHHj7M8/EwNoUQmXwaLs/OSTBwJHiVrwHA6Hw+E8alggbhwrePyn4FEK4F9zxnB0e1w9N7KysmjKlCmkUCjEpIKlbYAKSxr6+PgU21wXlkItWTnlSeH06dPUrl078a65k5MTRURE0Jo1a4gxRuHh4SaLPjExMSQIAkkkEjp79iwRGTae77zzDgGgyMjIJ0pAelQ5dOgQyWQy6tatm0OEKJ1OR19++SU1aNCAhg8fXm740pQpUwgALV261E4Wls3hw4dJLpdThw4dKuyh1LlzZwJQaqLQ0tBoNGKlIz8/vzLDL3755RdijJFUKqXjx4+XO3ZhEtWjR4+aZVNZ6PV60uv1pNPpSKvVklarJY1GQxqNpsLldu2NrcJSfC3t66jmqIXHsS5dSKdUEpXherh7zhxR4NhcIikUh8PhcDiPEhaIG/MARAGIBdAVwM8AZpkzhqPa4+q5odfr6ccffxTvTg4dOpRu375d6vWZmZni5v2zzz4rdi4gIIAYY5ScnGxrsys1KSkp9Nprr4l5DQRBED07SiYENUZSUpKYf2Pjxo1EZNhgDR8+nADQhAkTbFaJg2N9ChN5mvK7dyTR0dEEgCIiIirV5+v7778nlFOlyBROnjxJAKhly5YW9R88eLAYalKYVLko+/btI0EQSBCEYnmISkOv15OTkxM5OzsXe12JiYnUvn17ksvlJJPJSCaTkVQqJalUKuZNEQRBTHpqLPyotKZUKmnPnj0WvX5HUNYagxnOmw9j7DKAOADRAH4iolSLBrIjzzzzDJ08edL+E1+4ADRsCM2ECZDNm1fqZXs+/RQvfPgh3gOwKDoaGDjQfjZyOBwOh2MlGGMxRPSMGdcLACIAdAPAAOwCsJIsXaQ4AIetMWzAmTNnMHr0aBw4cADNmjXDkiVL0KZNmzL7REZGYvny5XByckJiYiJcXV0BAPv370enTp3Qpk0bHDx40B7mV3p0Oh0WLFiAhQsXIjExUTweERGBlStXltqnRo0auH37NqKiojBr1iyo1WoMHToUmzZtwvTp0zF16lQwxuz1MjhWYPTo0fjiiy+wdu1aDBs2zNHmPMTp06fRpk0bNGnSBH/88QcUCoWjTSpGVFQU5syZg8WLF2PMmDEWjxMQEID79+8jIyND/NtlDjNmzMD06dMhkUiwadMm9O3bFwBw4sQJtG7dGjqdDj///DP69OlT7lhHjhxB69at0bFjR/zxxx8AgNu3b6Nbt264ceMGIiMjoVAoxO+6sUdzz61evRpKpRKnT5+GRCIx+/XbmzLXGKWpHqY0AM8CWATgOoBtKMjHUVmbI11GN7dpQ0GMUeLFi2Vel/zTT0QSCRFAx994w07WcTgcDodjPWC+54YSgKTIzxIALuaM4ej2OISlJCUlUWRkJAmCQD4+PrRixQqT3JVTU1PFGP5JkyYVO9e0aVMCYPSOJodo+/btYmUUFOTRmDZt2kPve2EZ3Z49exKRoTrLiy++SABowYIFjjCdYwXUajV17NiRFAoFHTt2zNHmFOP+/ftUvXp1CgoKsknFC2tgrQoqU6dOFb2fLGXdunViBZZ58+bRhQsXSC6XEwBas2aNyeMMGTKkWN6iK1euUPXq1cnNzY3++usvi+0ri0LvHHPsdCRlrTGs8g8dgA+AtQB01hjPVs2RC4/zv/5KDKDJprg8HT5MXxZkLX7Rz490PCkUh8PhcB4hLBA3jgJwLfKzK4DD5ozh6PYoixsajYa+/PJL8vT0JIlEQu+9955JiQ51Oh1FRUWJlRYEQaD4+Hjx/K1btwgAVa9e3YbWPx6cOXOGVCpVsQSPgwcPpvv379O7775LACg0NJR0Oh1lZmZSp06dCAB99dVXjjadU0ESExOpRo0aVKVKlWLfH0eiVqvFUp4nTpxwtDllYo0KKjk5OSSRSMjLy6tCthw+fFgMOyv8u7hkyRKzxvD29iZBECgnJ4fOnDlD/v7+5O3tTSdPnqyQbWWh0+koLCyMqlWrZlJyVEdjE3EDgArAawB+B3AZwFwAYZaOZ4/m6IXHy9WrkxKg+yZ88e6dO0dBBepfiFRK6bdu2cFCDofD4XAqjgXixmlTjlXGhkc858aff/5JjRs3JgDUqVMnMUlleWzfvp28vb3F7P9SqZRef/31Ytf07duXANDq1attYfpjx71796hGjRpivD0AMXZepVJRRkYGpaamUuvWrUkQhEfmLiunfM6cOUMuLi7UsmXLUhP22pPIyEgCQOvWrXO0KSZx8+ZN8vf3r1AFlULvqIpWg7l58yZ5eXkRAJoxY4ZZfa9du0YAqH79+nTkyBHy8PCgoKCgCpe9NYW9e/cSAFq0aJHN56oothI3bgD4DEArS8ewd3O0uHFh2zZiAE169lmTrtfk5lIHd3cCQG4And2yxcYWcjgcDodTcSwQNw4BaFbk5zAAR8wZw9HN0WsMc/nvv/9o0KBBBICqVatGmzdvNikp361btygsLEz0MOjbty999dVXBKCYW31+fj5JpVJyc3Oz5ct47IiNjSUvLy966qmnaP78+RQUFESurq4UGxtLiYmJ1KxZM5LJZLR582ZHm8qxMps3byYANGLECIcm7ly+fDkBoA8esQqOhV4TllZQOXAD80iBAAAgAElEQVTgAAGg1q1bV9iW/Px8iwSJSZMmEQAaPnw4KZVKCgkJoRs3blTYHlPp2rUreXl5UVpamt3mtARbiRvM0r6OapVh4TGkwHsj7coVk/uMa9aMANBLAFGRuvEcDofD4VRGLBA3mgO4BuAAgIMArlZ2b9CSrTKsMUwhNzeXPv74Y3J2diYnJyeaPn06ZWdnl9tPo9FQRESEGFNep04dOnfuHBERPf/881SzZs1iG7KoqCgCQOPGjbPZa3lcOXDgACkUCmrbtq3oIh4fH08NGjQghUJB27dvd7CFHFtRmPvh888/d8j8f//9N0mlUurevfsjVx6UyJD3AhWooOLj40OCIFB6eroNrCufWrVqiWFpjRo1snuuk5iYGAJAUVFRdp3XXKwqbgBYXPD4G4BfSzZzx7NnqwwLj2t79tBxxojMTFizd/Jk0jFGBNDViAgbWcfhcDgcTsUxV9wwdIEMQMOCJjO3v6NbZVhjmMJbb71FACg8PJzi4uJM6rN69WpSKpViwsui4RCJiYkkkUgeSiTq4eFBEonkkYjfroxs2LCBANDAgQPpxo0bFBISQkqlssIu85zKjU6noz59+pBEIqG9e/fade6bN2+Sr68vhYaGUmpqql3ntiYffvghAaDFixeb3bfQc6Lk3zN7kJycLHrEtWzZ0qS8R7Zg8ODB5OzsXGnyvxjD2uJGWMFjB2PN3PHs2SrNwmPoUCJnZ9InJJjX78wZOuDkRAygTh4ePNEoh8PhcColFoobrQEMAfBqYTN3DEe2SrPGKIdu3bpR8+bNTbr27NmzFBoaKiYLHTlyJGlKrD2+/vprAkCnTp0Sj23atIkA0AsvvGBV25805s2bRwDI2dmZ3N3d6fDhw442iWMHMjIyqEGDBuTl5UXXrl2zy5zZ2dnUtGlTUqlUdLGcyo6VnYpUUElNTSXGGHl5edk9NCg8PJwAUJUqVSgzM9Oucxfl6tWrJJVKaeTIkQ6zoTzKWmMIMBMiiil42oSI/iraADQxd7wnEfrf//BWbi6ievc2r2Pjxmh48SJqSqX4Iy0NNZyckHTpkm2M5HA4HA7HTjDGvgewAEBbGEJUmgMwXsO+ksEY68UYW5Genu5oU0xGIpGUeT4rKwt9+vRBo0aNcOXKFTz77LO4desWli9fDqlUWuza6OhohISEoEmTB0vAqKgoAMDSpUutb/wTxIQJEzB27Fh4enpi//79aNWqlaNN4tgBNzc3bN26FUSEPn36IDMz06bzEREiIiJw+vRprF+/HnXr1rXpfLZGEAR8//33aNSoEQYPHoyLFy+a3NfDwwMtWrRASkoK/vzzT9sZWQQiwsyZM7F582YAhr+prq6udpnbGLVr18bIkSOxcuVKXL582WF2WExpqkd5DcApI8f+sXQ8e7TKdFdlWK1a5AxQwr//mt1Xp9FQD19fAkAuAB3/9lvrG8jhcDgcjoXA/JwbF/EI5vIq2irTGqMsunXrRi3LKEs/e/ZsksvlBIB8fX1p586dpV6bkJBAgiDQlClTxGPnz58Xs/1zrINOp3O0CRwHsGfPHhIEgfr27WvTz8CcOXMIAM2ZM8dmczgCSyuo7Ny5kwBQmzZtbGidAZ1OR2PHjhUrIzk7O1eK73tCQgIplUoKDw93tClGKWuNYbbnBmPsZcbYbwBqMsZ+LdL2A0ixgt7yRPC/r75CPoB5I0aY3VeQSrH9/n181K4dcgCMGDECWLXK6jZyOBwOh2MnzgEIcLQRTzJ//vknAgMDERUVBSLCtGnTcP/+fTz//POl9tmyZQv0ej0GDRokHhs9ejQAYO7cuTa3+UlBEMxernMeA7p06YKFCxfi559/xscff2zVsYkIarUaW7duRVRUFAYPHoxJkyZZdQ5HU61aNfzyyy+4c+cO+vfvD7VabVK/bt26wd3dHYcPH0ZKiu22tlqtFhEREVi8eDF69eoFIkK7du0qxffd398f48ePx+bNm3H8+HFHm2MWzCB+mNGBseoAagKYA2BykVOZAP4lIq31zLMuzzzzDJ08edLRZoi8Vrs2Nl2/jutnziCgcWOLxtjx0Ud4dvZs+Oj1SHrtNfh89511jeRwOBwOx0wYYzFEZHJYScENkiYAjgPILzxORGbGbzqOyrbGKI1u3bohMzMTR44cAQAkJCSgf//+OHz4MACge/fuiI6OhkqlKnesDh06IDExEefPnwdjDFlZWXB3d4eXlxcSExNt+jo4nCcBIsKIESOwZs0azJo1C76+vsjLy0Nubm6FHwv3gE2bNsXBgwfh4uLi4FdrG3744QcMHToUb775Jr7++mswxsrtM3bsWHz++ef48MMPMXv2bKvblJ+fjyFDhuCnn37C9OnTcfz4cezYsQObNm1CeHi41eezhIyMDISEhKBhw4bYt2+fSe+bvShrjWG2uPEoU9kWHlf37UPdLl0wplkzLIyJKb9DaVy6hPjmzVErMxNNlUocSEqC1MnJeoZyOBwOh2MGFogbHYwdJ0M+L5vDGKsFYAoAdyIKLzimBLAMgBrAn0T0Q1ljVLY1Rml069YNWVlZOHjwIMaMGYNly5ZBr9ejZs2a2Lx5M5o1a2bSOPHx8QgODsa0adMwbdo0AEBkZCSWL1+OTz75BFOmTLHly+Bwnhjy8vLQqVMnUZAsikwmg7OzM5ycnCx6VCqVGDJkCHx9fR3wyuzHlClTMHv2bCxevBhjxowp9/qEhAQEBgbC09MTycnJVt3YZ2dno2/fvtizZw8WL16M0aNHw83NDXl5eUhPT3dovo2SLFmyBGPGjMHOnTvL9OKzN1YVNxhjB4moLWMsE4ZyNeIpAERE5Uv9DqIyLjzWtmuH506cQLUbN4DAQIvHyUpIQPPq1RGrVsOfMZw6eRJVTFygcDgcDucRR68HtFqoMzKQlpgIdVYWNLm5yMvIgCYvDzV8fKCSyRB/9y7OxMZCk58PdU4Ouj3zDFQvv2x1c8wVNwr6VAcQSkR7GWMuACREVG4mPcbYagAvArhPRA2LHO8O4HMAEgAriehTE8baXETcGAYgjYh+Y4xFE9GgsvpWxjWGMbp164a4uDjcu3cPGRkZcHZ2xsKFCxEZGWnWOJ9//jnGjh2Lixcvom7dutDr9XBzc4NWq0Vubm6lcK3mcB4XtFot4uLiiokTTk5O5SYH5hjQ6/UIDw/H1q1bsW3bNrzwwgvl9mnWrBn++ecf7NmzB126dLGKHampqejZsyeOHTuGVatWYfjw4Th27BhatmyJxo0b48yZM1aZx1rk5+ejXr16UKlUOHXqVKX5u17WGkNq7GBZEFHbgke3ihrGAV797jugTh1g7lxg8WKLx3ENCMD57GwMqlkTm2/fRq2wMOxevBjtTVAnORwO55FHrwfUaiAnBwn//YfctDTkpKcjPzMTuVlZcJdK0bBKFSA3F5sPHEB2VhbycnOhzs+HOj8fIR4e6BMSAqjVmLhnDzRaLdRqNTRaLTRaLVp5eeGtGjWQk5eHQceOQavXG5pOB61ej54eHpjs54fbubnoce0atETQE0FX0F5xccHHKhVO5+Whe0oK9AB0MNwh0BNhpEyGuXI5fler0U+jQWGxe33B4/sA5gkCVuj1eBvF7ywAwIcAZsMQLzrdyNszD8AHAOYCWFLk+HYAPWwgbpgLY+xNAG8B8AJQG0AQgOUAOpvQ/TsAXwBYW2Q8CYAvAXQFcBvACcbYrzAIHXNK9H+diO4bGTcYwNmC5zpTX0tl5+zZs0hISABjDK+++iq++eYbyOVys8eJjo5G48aNxcoKy5cvR05ODl5++eVKswDmcB4XpFIpQkJCHG3GI4sgCFi7di3atWuHwYMH4+jRo6hXr16ZfaZMmYLw8HBMnz7dKuJGQkICnn/+ecTGxmLTpk3o168fAGD16tUAgFdeeaXCc1gbhUKBjz/+GEOHDsWGDRswZMgQR5tULhaHpTDGagO4TUT5jLHnADQGsJaI0qxon1WprHdVLvbrhw+2bsU3J08isGnTCo83r0cPTP79d3gBSFq8GOACB4fDMYI6KwtZ9+8jJzkZuWlpqO3rCyE3F+cvXsSNmzeRl5WFvJwc5GVnQ5Ofj8hnnwVyc/FjTAz+uXMH+Wq1oWk0kBLhmyZNAI0GE8+exam0NGgKNv8aIqgYw96aNQGtFi/evImLajW0hZt/AL6M4V93d0CvR730dNwigh4PNvf+AP6TSAAiuOv1KOk66AOgMMJfiod3okEw7HABQMDD4kAIgCsFz405nzYGcAZAGgBPI+fbAjhQMEadIuMUtgGMYb1MhpMA2qvVEAqOCwAExvC2QoE5rq44qNViYEaGeFwCQMIYxnt6ItLbG3/m5WFMQgIkjD1ogoBJVauid0AA/kxPx7ybNyERBMgkEkgkEsgEAeMaNEDzgAAcSknB+mvXIJVKIZdKMaZ9ewQvXGjkFVUMC8JSTgN4FsAxImpacOwsETUysX8NANsKPTcYY60ATCei5wt+/hAAiKiksFFynJKeG6lEtI0xtoGIBpfVt7KuMUoil8uh1Wpx7do11KxZ06Ix/vvvP1SvXh2zZs0Sy74GBwcjPj4eCQkJ8PPzs6bJHA6HYxVu3bqF5s2bQ6lU4vjx4/D29i71Wq1WCw8PD+Tk5ODu3bvw9/e3eN6bN2+iS5cuiI+Pxy+//IKuXbuK5wICAnDv3j3ExcWhevXqFs9hK/R6PZo1a4aMjAzExsZaJIZbG5vk3ChYiDwDoAaAHQC2AmhARD0stLNwXC8A0QXjxgEYSESpJa5pAuArACoY1rCziCi6vLEr68Lj+v79eKpTJ7zz9NP4/PRpq4y559NPofroI7TQapEzaBBcNmywyrgcDqcM9HogLw95SUm4GxeH7KQkZCYlISc9HdlpaXgmOBhVnJxw8epVbDt9WkzslZefj7z8fLwTEoIGLi749cYNrLh2DWqdDvlaLTR6PdR6PVZUqYJmMhnm3b+P5Wlp0ALFBII/lEo0Zgyv5+TgR52umDhAAC7DcEu8HYCDRsxPh+GPamM8uF1dlML/FiEArpU4xwrmAgy3u++UOC8HkF8Qs1qTCLfxYHPPAPgwhltKJSAIaJKdjdt6vbixlzCGmlIp/g4OBiQSdLl9G/f1esgKNvYyxlBfqcQ3DRsCUileO3cOmXo95FIppBIJZFIpnvb1xdiwMEAux8zjx6EXBMjkcjg5OUGuUOCpKlXwfNOmgFyOLf/8A5lCAYWLCxRKJRSurqhSpQqq16wJvVyOhPR0OKlUcPLwgNzVlec4MoIF4sYxImrBGPuHiJoyxqQwlJw3Kdu2EXEjHEB3Inqj4OdhAFoQ0bul9PcGMAsGT4+VRDSnIOfGFwDyABw0lnODMfYWDB4nqFatWtjNmzdNfckOQyaTQa/XQ6ez3BllwYIF+OCDD3Dp0iVs2rQJn3/+ORITE9GiRQscPXrUitZyOByOdTl69Ciee+45tGzZErt37y5zsz5y5EisWLECkydPxpw5ZWrjpRIbG4uuXbsiKysLO3bsQKtWrcRzV69eRWhoKAIDAxEfH2/R+PZg165d6N69O5YsWSJWxHIkthI3ThFRM8bYBwDyiGhp4aKkgsbOA5BCRJ8yxiYD8CSiSSWueQqG/B5XGGNVAMQAqFee10hlFTcAIOKpp/DDlSu4duIEgp4xK0y5dG7ehLpZM1RLSYG/kxOO3b0LJw8P64zN4TgYvVaLnKQkZNy5g8x795CZmAhPQUBtlQp5KSlYu28fcrKzkZ2ZieycHOTm5aG9ry/6+vsjPjkZkTExyNNoDAKCTge1Toeh7u4Y6+6Ok5mZ6HfvHrREhgZAR4R3pVLMkkqxUaPBKwXiQaFwAABjAXwGYD6AiUZsng5gGgwhBMaC/5cAGA0gEgZ//JJEAxjIGCKJsBIodvdfAoO40Vwuxwd5eViXnw9pwZ1/GWOQCgJ21ayJakolPk1MxPb0dMgEAXKJBDKJBHKpFN+3bg0XpRJr4+JwMiUFCrkccoUCCoUCzs7O+KB7d0ChwMGbNxGfnQ0XlQrObm5wcnODUqVCk6ZNAaUSWXo9BBcXOHl4QKgECj/H/lggbsyDwTHmVRi+BqMAXCAik7JSVlTcqAiMsV4AeoWEhLx55cqVcq93NNYQN5o0aYL//vsP2dnZUKvVEAQB7du3x5YtW+Dl5WVFazkcDsf6mFpBpVB88PDwQHJystkhd6dOncLzzz8PiUSC3bt3o3GJ6pgff/wxpk6dilGjRuHLL7+0+PXYGiJC586dce7cOVy7dg1ubo7NTmErceMYgMUwZBfvRUQ3GGPniibzsnDcSwCeI6K7jLFAGDKU1ymnzxkA4URU5qqiMosb1//8E3U6dkRk48ZYYsVkMuqsLLT280NMbi68GMPkF15A+KRJqNm+vdXm4DyZ5KWlIeX6daTHxyMtPh4ZiYlQaLV4rlo1ICsLy/buxd2UFGTn5CAnNxc5eXmopVBgeq1aQF4eusfEIEmthlqvR36BZ0JTmQw/qVSARgPv1FTkweCaVeiB0BTAiYLnxlJohQE4CSAehjCEkrQH8BeA0wVjlaQ/gM2CgINE6EQECR4IBxLGMNrJCTPd3fG3VovhqamQCgLkBU0mCBgfHIyBwcE4lpODuXFxUMhkUMhkcJLLoVAo8FqTJmhWowYuZWVh940bcHZxgdLdHS5ubnBRqRD29NPwCgxEFmPIYgyufn5w8fGBIDU7PRKH41AsEDcEABEAusGg2e2CwYPCpEWKtcJSKkJlXmMUpSLixsGDBzFq1CicPWvw7XJxccGrr76KefPmOXyxy+FwOOZgagWVBg0a4MKFC9i+fTt69DA9QOHvv/9Gr1694OnpiT179iA0NPSha+rWrYtLly7h8OHDxTw6KiMnTpzAs88+i2nTpmH69OkOtcVW4kZ9AG8DOEJEPzLGasIQQjLXclMBxlgaEXkUPGcwxLuW6m7AGHsWwBoYQmL0Rs4/Mi6jb9Spg3WXL1vXe6OA1596Ct8WuaO0UhAQERiI3/39cdrHB+ETJiC0SPwX59FCnZVlEBpu30Ydd3cgPR1/Hz2K81euID0tDZmZmcjKygI0GnzeuDGQk4P3T5/GibQ05Gq1UOt0yNPr4QrglI8PoNEgLDUVl3Q66PBAYHADUBgj5gogu4QdbgAyCp47Acgvcd4bQFLBcxkALR7kJBAANGQM/zg7AxIJArOyoAMgZQxyxiBjDM8plfimRg1AoUDHS5cglUigkEjgLJfDWS5Hh+BgRDRtCrVCgXmnTsFFqYTS1RWu7u5w9fBA3aeeQp0GDaCVyxGfkwNVYCBcAwJ4WAGHY2XMETcKkn+uJSKLs6kZETekMERidYYhSuoEgCFEdN7SOcqY+7H23CAiLF26FHPnzi3mNv3JJ58gKirKqiUSORwOx14UraBSr149MMbAGIMgCMWeJycnIy4uDkqlEo0aNTJ6nbF+Bw4cQI0aNbBnzx4EBwc/NH9SUhJ8fX3h4uKCjIyMR6LyzYABA/D777/j2rVrFcpBUlFsIm5UBMbYXgABRk5NAbCmqJjBGEslImP521Do2QHgNSIqN8izst9ViTt4ED906ID3IiLgtmKF1ce/8fffiJ49G3+dPIlvZTIEJCWhjVaLwwXnJQD8BAENPDyw6e234TF0KFBOJmFO2eSlpSHpyhWk3LyJlNu3kXr3LjpXqwaVRoM9MTH4/cIFZGZlISsvD5l5echRq7GhVi346XSY+N9/2JiRATUR1ETQFIRH3JXJoCIq9rsrSuE3+ik8SJBo7HxVPEiwWCgwKAFkODkBEgla5ObiGhFkBcKCgjEEy+XYX7cu4OSEt27cQLxWC2e5HEonJzgrFKjl44MPOnYElEpEx8ZCI5fDzdMTbt7eUPn6wjc4GNXr1wc8PAAuKHA4jy0WeG4cBNCJiNQWzPUjgOdgyCt7D8A0IlrFGOsBg4epBMBqIppl7tgmzv9YihtpaWkYP348fvzxR+Tm5oIxhhYtWiA5ORne3t44cuSInSzmcDgc25CdnY3JkycjPj4eRAQigl6vF58TETQaDfbu3Qu9Xo/27dtDLpcXO1/y+sKfg4KCsGzZMvj6+hqde9WqVXjjjTfQs2dPbNu2zc6v3DIuX76M+vXrIzIyEkuXLnWYHbby3GgDQwh5dRiS0zMY8mDUstDOwnFNCkthjKlgEDZmE9FmU8au7OIGAOCtt4A1a4CrV4GqVW0+3c0DB7Bx7lzsP3YM51JTkaDTGZIUwnAnvRWAOEFAPZUK7Rs3Rr/Ro9E4PNzmdtmLrIQEJF+5gsQbN5B86xbSEhLwrK8vaspkOBUbi29OnkRmTg6y8vKQlZ+PbI0Gs3x90UkqxbLERMxMT4caEIUHHYAfYQhvGArgoexzMGTffQFALwDG/pQdB9CcMfQjwjYUhETAkDdBBuCcnx/8XFzwQVoa9ubmwkkqhbNUCmeZDC4KBaI7d4agUmHz7du4kp0Ndw8PqLy8oPLxgVdAANp26AB4eEDt4gKpSsVDHjgcjtWxQNxYC6AegF9RxCmMiBbZwDyb8EisMVC+uBETE4OxY8fi0KFDICIoFAoMHDgQixYtQkpKCurUqYNFixZh3Lhxdracw+FwHMOwYcOwbt06TJo0CZ9+aixrmvm0a9cOBw8exMaNGzFgwACrjGkP3n77baxatQqxsbGoXbu2Q2ywlbgRC2AcDMk8xf+QRJRs0YAPxp0PILlIQlEvIppY4ho5gN8B/EZEi00d+5FYeMTFYUvt2rj8zDP48Ngxh5iQdPo0fP78E9i/H2137sQJtRpFb6WpAKT7+QH16mGVmxuCW7aEQqmEIJFAEAT4enqiTs2agCDg1OXL0BNBkEohCAIEqRRenp4IDgiAHsC127chyGTieSaRQKVSwcPTE9r0dPxz7BhS7txBemIi0pKSkJ6WhjBPT3Ty9UV8QgImHDqEnALRIVejQa5Wi1fd3DDG1RUHMzLQPzkZauBBUkgYMtUthKHczigjr38CDAkhZwH4n5HzcwBMFgR8CmCmXg8pIHo2yBnDN4GB6OrtjR+ys7E6KQkucjlcnZzg6uwMlVKJMe3bo1r16jiflYWrOTnwDAyEV1AQvGrUgFetWjzpK4fDeeSxQNyYZuw4Ec2wnlW24XHw3CAirF69Gh9//DEKw3f9/f0xfvx4jBs3DtICEbww+d2tW7eMullzOBzO48ipU6cQFhYGd3d3JCUliX8TLSU3NxcqlQp6vR6pqalQqVRWstT23L17FyEhIejTpw/Wr1/vEBtsllCUiFpUyDLj43oD2AigGoCbMOTxSGGMPQPgbSJ6gzE2FMC3AIrGzg4nojLrqD4S4gaA0Y0bY9nZszi5fj2avvyyo80BAMSfOoWf5szBvoMHocjMxAatFsjPhwQPyj8WUh2GGr6AwZ2nJHUBXET5SSFvwlAPuCQdAfxRcE1zI+cHAdggkeBvxtBdq4UMD/I2yBnDOE9PjA0Kwim9HpNu34ZSoYCrkxNUSiXcXV0x4Jln0KxBAyQIAs6kpMA7KAi+tWrBt25duPj4lPk+cTgcDsd8caNIPxciyrGFTbbmUVljFBU3srKyEBUVhdWrVyM72+Aw06RJE8yfPx9dunR5qG/Dhg3h6emJAwcO2NtsDofDcSi1a9fG9evX8csvv6BPnz4VGuu3335D79690aRJE/zzzz9WstB+FCZjjYmJQbNmzew+v63EjU9h2Jv+hCJ5A4nolEUD2oFHZeGReuMG6tSujdpKJQ6lplbasAF9QgK+HjcOZ86cgU6nAwHQE+FpT0+MqVcPIMLrhw5BrdM9iEUD0NLLC2NCQ6HX6TDg6FFDKU293vBIhE7e3hhTsybyJBK8dfYsXF1c4OriApVKBTeVCi0bNECLZs2gVioRm5YGj6pV4VWzJq8qweFwOJUECzw3WgFYBcCViKoxxp4GMJKIjDnYVSoeVc+NTp064Y8//oBer4dUKkXv3r3x2WefoVq1akb7nT9/Hg0bNsTSpUvx7rtWr6jL4XA4lZolS5ZgzJgxaNWqFQ4fNpb1znQGDhyITZs2Yf78+ZgwYYKVLLQf6enpqFWrFsLCwrB79267z28rcWO/kcNERJ0sGtAOPCriBgCsefNNDF+5EquGD8fr337raHM4HA6HwzEZC8SNYwDCAfxKRE0LjlW4vLw9eVTWGIIgoHDt5+npidGjRyMqKgoKhaLMflOnTsWsWbNw584dBAQYywnP4XA4jy+pqanw9fWFTqfDtWvXUKuWZWkmdTodPDw8kJWVhatXrzosb0VFWbRoEcaPH489e/YY9fSzJWWtMQRLByWijkZapRU2HjVeXb4cbVUqTFqzBmnXrzvaHA6Hw+FwbAoR3SpxyLRapRyzKBQ2tmzZguTkZMyYMaNcYYOIEB0djQ4dOnBhg8PhPJF4enqid+/eAIBly5ZZPM6xY8eQlZWFKlWqPLLCBgCMGjUK1apVw+TJk6HXl0xS4DgsFjcYY/6MsVWMsd8Lfq7PGIuwnmlPNkwiwbLVq/EZAHcrZeXlcDgcDqeScosx1hoAMcZkjLEJMKRnqvQwxnoxxlakp6c72hSz6NevHxgzlhnrYc6cOYPLly9j0KBBNraKw+FwKi+jR48GAKxYsQJqtdmVywEAGzduBAD079/fanY5AicnJ8ycORMxMTHYvNmkwqV2wWJxA8B3AHYBqFLw82UAYytqEOcBjfr3x9AxY8BWrgQ5qHIKh8PhcDh24G0A7wAIAnAHQJOCnys9RPQbEb3l7u7uaFNsRnR0NCQSySO/GOdwOJyK0KFDBwQGBiIzMxM///yzRWNs2rQJABAeHm5N0xzC0KFD0bBhQ0yZMgUajcbR5gComLjhQ0QbUVAsg4gKK21yrMmMGVitUqFz167QWagQcjgcDodTGWGMzS142pGIXiEifyLyI6KhFS0tz7EOhSEpnTt3hg+vGMbhcJ5gBEHAO+8YdPdFixaZ3fiQZuEAACAASURBVP/SpUuIj4+Hs7MzWrdubW3z7I5EIsGcOXNw9epVrFy50tHmAKiYuJFdULaVAIAx1hLAo+WT+SigUsF52DDsz8zEitdec7Q1HA6Hw+FYkx7MEBvxoaMNsZRHNSzFVE6ePIkbN27wkBQOh8MBMHz4cDDGcPz4ccTGxprVt9Dbo1u3bpA+JhUee/bsiXbt2mHGjBnIyspytDkVEjfeB/ArgNqMsUMA1gIYbRWrOMUY/Pnn6OjhgajoaNw/f97R5nA4HA6HYy12AkgF0JgxlsEYyyz66GjjTOFxD0vZuHEjZDIZ+vbt62hTOBwOx+EEBQWhc+fOAICvvvrKrL4//PADADxWYjFjDHPnzsW9e/ewePFiR5tToWoppwB0ANAawEgADYjoX2sZxnkAEwR8+f33yCbCpJdecrQ5HA6Hw+FYi/8RkQeA7USkIiK3oo+ONu5Jh4iwceNGdOvWDZ6eno42h8PhcCoFhaEpq1atQm5urkl97t27h3PnzkEQBDz//PO2NM/utGrVCi+99BLmzZuHxMREh9pSkWopAwA4E9F5AC8BiGaMNbOaZZxi1HvxRbzfogXWXL2KKxs2ONocDofD4XCswZGCx0fCS+NJ4+jRo/jvv/8eq7uMHA6HU1F69uwJT09PZGdni9VPyuO3334DADRt2hReXl62NM8hzJ49G9nZ2Zg9e7ZD7ahIWMpHRJTJGGsLoDOAVQDM883hmMX/fvkFB3x9ETpnDqDVOtocDofD4XAqipwxNgRAa8ZYv5LN0cY96URHR0Mul6N3796ONoXD4XAqDTKZDBEREQCAJUuWmNRnQ8HN6cdVLK5Xrx5GjBiBZcuWIS4uzmF2VETcKKyM0hPAN0S0HYC84iZxSsM1IABtvvoK+PdfpM2f72hzOBwOh8OpKG8DaAfAA0CvEu1FB9plMo9rQlG9Xo9NmzbhhRdewOOaT4TD4XAs5Y033gAAnDp1CqdPny7z2uzsbPz1118AgF69etncNkcxffp0CIKAqVOnOsyGiogbdxhjXwMYBGAHY0xRwfE4ptCvH76pXx+1oqJwt5wvEofD4XA4lRkiOkhEkQAmEtGIEu11R9tnCo9rQtGDBw8iPj7+sb3LyOFwOBWhTp06aNmyJRhjWL58eZnX7t69G1qtFlWqVEGdOnXsZKH9CQ4OxnvvvYd169bh338dk4qzImLEQAC7ADxPRGnA/9m77/gqq/uB459z90hys0lImDJkioooDlygICC4raM4ClpHW6tVaW2pm1b8aWudFUWqIpUiQ9yA0AIKuFhlDwkkZN2su8f5/XEvFDGElZtLku/79TqvPPd5nvs83xxC8s035zmHTOA3jRKVODilOO/ZZ/EA98nkokIIIZoxpdQF8U23PJZyfJk+fTp2u71F/5VRCCGOxe23347WmqlTp1JbW3vQ82bMmAHAFVdcQWz185brwQcfxOVyMX58clZ4P5bVUrxa65la603x18Va608aLzRxMF2HDOGBc87h7R07+PyZZ5IdjhBCCHG0zo1/PPCRlGbzWEpLFA6HmTFjBsOHDyclJSXZ4QghxHHpyiuvxOFw4PP5ePvtt+s9JxwO75tMdNSoUU0ZXlJkZGQwfvx4Pvjgg32P4jQlpbVu8psmS//+/fXKlSuTHUaj8FVW0qtNG+wGA99WVmJ2OpMdkhBCCAGAUuorrXX/ZMfRlJpLjrH3r4YN5X/z589n8ODBvPvuu1x55ZVNFZoQQjQ748aNY/LkyfTs2ZNVq1b9aGTG4sWLOffcc7Hb7VRVVWGxtPwpKn0+H127dqWwsJBly5Y1+miVhnIMmSOjmbJnZvLX8ePZEgyy/P77kx2OEEIIccSUUr9uqDVhHJ2VUpOVUjMa2tdaTJ8+HafTySWXXJLsUIQQ4rg2duxYotEoa9asYfny5T86PmvWLAAuvvjiVlHYALDb7Tz88MNkZGTQ1JNtS3GjGRvxyCNsGzKEs954A4qKkh2OEEIIcaRS460/8HOgIN5uB045nAsopV5TSpUqpdYcsH+oUmqDUmqzUurBhq6htd6qtb71UPtag1AoxL/+9S8uvfRSHA5HssMRQojjWv/+/enVqxcGg+FHE4tqrXn33XcBuOyyy5IRXtLccsstfPjhh6SnpzfpfaW40czlv/wyRCIsHzMm2aEIIYQQR0Rr/bDW+mGgEDhFa32v1vpe4FSg/WFeZgowdP8dSikj8DwwDOgJ/EQp1VMp1Ucp9f4BLbfRPqEWYP78+VRWVsoqKUIIcRiUUvtGb7z99tu43e59x9atW0dRURFKKYYNG5bEKJtesiZOleJGc9epE9NGjuT0BQv45Mknkx2NEEIIcTTaAMH9Xgfj+w5Ja70YqDxg9wBgc3z0RRB4BxiltV6ttR5xQCttjE+gpfjnP/9JWloaQ4cOPfTJQgghuOGGGzCbzQSDQaZOnbpv/+zZswE45ZRTyMnJSVZ4rYoUN1qAy199la5mM3dNmECgpibZ4QghhBBHaiqwXCn1R6XUH4EviY3IOFoFwM79XhfF99VLKZWllHoJOFkpNf5g++p53zil1Eql1MqysrJjCPf4EAwGee+99xg9ejRWqzXZ4QghRLOQlZXF5Zdfjslk4oUXXtg3YfPeR1KuuOKKZIbXqkhxowWwpqXxt4cfZlMoxFOXX57scIQQQogjorV+HLgZcMfbzVrrJhuOqLWu0FrfrrU+Ye9969tXz/teAR4Gvm4JE8V98sknVFVVySMpQghxhG699VbC4TAbN25k8eLF7N69m2+//RaAESNkZfOmIsWNFuKi8eO5sqCAx+fPZ9u//53scIQQQogjorX+Wmv9l3j75hgvtwtot9/rwvg+0YDp06eTkZHB4MGDkx2KEEI0KxdeeCHt27fHZDLx0ksvMXfuXADy8/Pp3bt3kqNrPaS40YI8M3Mm+Uqx9YEHkh2KEEIIkUwrgK5KqU5KKQtwLTAnETfSWs/VWo9zuVyJuHyT8fv9zJ49m8suu6zVLFcohBCNxWAw7Bu9MWPGDF599VWUUowePTppk2u2RqZkByAaT+GAAWx64gmM48fD+++DDIESQogWRUejhLxeAjU1BGprCdTWkudyYQyH2b1zJzt37iTg9RLweGIffT5Gn3QSxlCI/6xdy1dbtxLw+wkEAgQCAX51zjlkN/PJqJVS04DzgGylVBEwQWs9WSl1F/AxYARe01qvTdD9RwIju3TpkojLN5kPP/yQ2tpaeSRFCCGO0k033cQf//hHwuEwK1euBODSSy9NclSti9o74Ulr0L9/f733C63FCgYJn3QSr5WVcePGjdgzM5MdkRBCtAg6GiVYW4u/qgpfdTX+mhr81dW0TUsjzWSirKSEFatW4fd4CPh8sY9+PyO7daPAbmfV9u288913+OOFBX8wiD8Y5LETT6STycScnTt5avt2AuEw/mgUfySCPxplUXo6nUIh/s/j4b5IhAN/ahcDecAfgEfribsWSAF+DTyz334DsDovj57FxY3eV0qpr7TW/Rv9wsex5pJj7P0L4oH537XXXsv8+fMpLi7GZJK/fQkhxNEYNmwYCxcuJBAIYLPZcLvd2Gy2ZIfVojSUY8hPr5bGYmH5nXdy2913UzR6NI8sXpzsiIQQotGFvF58lZX4qqqwRaO4zGaCNTWs/PZbfDU1+Gpr8dXV4auro1+bNvTNyqKyooJnFy3C5/PhCwTwxwsMPy0o4CKXi42Vldy8di2+cHhfYcEXjfJXm42rolH+7fdzbj2xzAJGEXsOYng9x7sQW6bjv8AkwArYlMJqMGBTilqTCVwujMEgFqORVKsVm8mEzWzGarFgPeMMyMxkQHk5D+3cidVqjTWbDavNRso554DLxfXl5ZxRUYHV4cDqdO5r9p49weHg4VCIhwwGrKmpWNPSMEmy1ShawsgNj8fD3LlzufHGG6WwIYQQx+DWW2/lo48+wmAwcNFFF0lho4nJT7AW6My77uK6SZP407//zY2ffkrXIUOSHZIQojWIRPCUl+OtqMBbWYk3PsLBCXTPyQGvlxkLF1JdVYXX48Hr8eDzeumVns5V7dqB18sNCxZQGwjgCwbxhkJ4w2GudDr5rcNBwOslu7wcHxDZ77YPAk8SG6FwVj1hPQb0jR9/FLABdqVizWDg4lAI8vIwAw6zmUy7HZvZjN1qxWaxUNi7N3TqROdQiCfWrcNmt2Oz27E7ndgcDk7t2xcKCxkYDrOspAR7WhrWlBRsaWlYU1PJysuDtDSutli4xmg8aPcNp/7iyF5nx9vBdI+3g0lt4Jg4elrrucDc/v37j012LEdr3rx5eL1eeSRFCCGO0aWXXkp2djbl5eXySEoSSHGjhZo0axbvn3wyd//kJ3xYWooyyNyxQrR6kQh1e/ZQU1KCJ16A8FRVofx+BnbsCB4Pc5ctY+uuXXg9HjweD16fj1yTiQe7dQOPhztWrGB1TU2s8BCJ4IlE6G8wMNNggECAk4AtB9x2JP+byfFuoOSA4zcajVzlcoHDwdqyMrRSOEymWKHB4SCroAD69MFis/Gz5cux2+3YbbbYR4eD/t26Qa9euCwWPlq/Hnta2v+ay0V227bQpg3tbTaiVutBvx92Aj5toPsKgfENHM8AzmjguEwn1jK1hJEb06dPJy8vj0GDBiU7FCGEaNYsFgtjxozh2Wef5ZJLLkl2OK2OzLnRgv3l8sv51XvvMeO++7jiqaeSHY4Q4jCFvF7q9uyhtqSEurIy6ioqOK1DB5TXy4rvvmPVpk3U1dTgqavD4/EQ9Pt56uSToa6OSatWMa+4GE8oRF0ohCcSwQmsM5kgEGAUP14yohOwNb49BPgsvq0AJ3Cq2cznhYXgdPKzPXvYGgrhsFhwWq04bTZ65uRw39lng8PB62vX4gUcKSk4UlOxp6RQUFDAqf36gd3O1ooKzKmpODIysGdmYktPxyDD4FscmXPj+HXgnBu1tbXk5ubys5/9jOeeey6ZoQkhRIvg8/nYsGED/fr1S3YoLZLMudFK3fn22yzLyyNv6lT44x/B6Ux2SEK0ONFIBE9pKfZwGJPPx54dO1i/bh21lZXUVVVR63ZTV1PDzT17kh6J8PG6dby1bh11Ph+1gQB1wSC1oRCLc3LI9Pn4Q1UVj0YiP7qPB3AAbwF/2W+/EUhTij8XF6NSUvDX1RGJRsmy22mfnk6KzUZWSgpcdBGkpHDb999zic+HIzUVZ1oaTpeL9OxsOO00cDqZ5vdjSEnBkZWFNS3tR6McXj1Ef9x8iOOdD9mjQoimNHfuXPx+vzySIoQQjcRut0thI0mOu+KGUioTmA50BLYDV2ut3Qc5Nw1YB8zSWt/VVDE2FyabjXfmzYOzz4ZHH4WJE5MdkhDHhWg4jKe0lJrdu6ktLaWmtJTOaWlkGwx8v20bc5Yto7amhtqaGmrq6qj1eLi/Uyd6KcXH33/PPdu3UxMOUxuNUgto4EtgADAXqO/B+4tmzybdamWn2cx//H5SjEZSzGZSLRbapqURPfNMyM7m/IoKLOXlpKSmkhovPqRmZGCOTxr5u2CQXxsMpOTk4MzNxZKS8oMCxEPxdjCHGiCZfWRdKUSr19wfS5k+fToFBQWceeaZyQ5FCCGEOCbHXXGD2Nxw87XWE5VSD8ZfP3CQcx8FZDmQhpx1FjXXXceEP/+ZcWefTY8RI5IdkRBHT2uiXi+lW7ZQU1xMdUkJNaWl1JSX0yM9nRMdDvbs3s1T8+dT4/FQ7fFQ7fNR4/dzf0YGo7Xmy8pKBnq9P1pO8x3gGmATsXkhIPYNMk0pUg0Gbo5GoW1b0jMy6O31kmq3k+p0kpaaSmpqKgXnnAPt2jEsGGR+ZSUpWVmkZmeTkpNDal4eaXl5YLXyM+BnDXyK58fbweQcbd8JIRKiOU8oWlVVxUcffcSdd96JQebmEkII0cwdj8WNUcB58e03gM+pp7ihlDoVaAN8BLSq53qPlP+3v2XKtGl8d+ONzK+okMlFRfKEw1BdzdbVq6natYuqkhKq9uyhurycLk4n52RmEigv57aPP6bK46HK56M6GKQ6FOI2i4UHgkFKw2Hy67n0E8Qme/QCLwJpBgMuk4k0sxmX1Yq5XTvo3p32JhMPrV9PWloaaenppGZkkJqZGZsTolMnzrZY2KM1aQUF9T6WcTrwzwY+xYJ4E0KI493s2bMJBoPySIoQQogW4XgsbrTRWhfHt0uIFTB+QCllAJ4GbgAGN3QxpdQ4YBxA+/btGzfSZiK3Vy+euOYa7njnHYbl5nL72LEM//3vMTscyQ5NNDdaQ00NO9eupXzHDty7d+MuKcFdWkqOUowqLISqKn7+ySfsrK6myuejKhikOhxmmFK8Eg4D0BvwHXDpscA5gDktjUUeT6woYbHQLi2NXnY7nbt1g1NOIdPp5IU1a0jLzMSVnU1aTg6uNm0o7NIFOnakU2oqHrP5oJ9CPvBIA5+iFcg9pk4SQrQmzfmxlOnTp9OhQwcGDBiQ7FCEEEKIY5aU4oZS6jMgr55Dv9v/hdZaK6XqW87lDuADrXXR3lm/D0Zr/QrwCsRmMj+6iJu/cW+8QUVZGS8uXMhlEyfy0HPP8egvfwm33gqdZYq/VkVr6oqLqdi2DXdREe5du6gsLsbo8zG6Y0dwu5k4fz7f7t6N2+ul0ufDHQrRHZgXjUIkwjBg7QGXvRAYZTSCy8UGr5dqpUi32eiemorL6WRAhw4QnzdiysaNWF0u0tu0IT0vD1dBAVkdOkDbthiMRrY1EL4F+HmCukYIIY5Uc30spaKigk8//ZR77rmHQ+VSQgghRHOQlOKG1vqgoy2UUnuUUvla62KlVD5QWs9pA4FzlFJ3ACmARSlVp7V+MEEhN3tGi4WHPvuMB/1+Pnz8cXovXQoTJ/LZE0/wp8xMxv70p4x+9FEsKSnJDlUcAW95OZXbtlGxbRvVu3czqLAQKip4b/FilmzYQEV1NRW1tVR6vRjDYRalpIDbzU/CYd4/4FqdgNEARiNfGY2s0poMi4Vsh4OuTic927SBIUMgI4M/ff89IbudjPx8MgoKyGjXjswOHaBNG1CKBYeI++qE9IYQQojD9d577xEOh+WRFCGEEC2G2rvO+fFCKfUUULHfhKKZWuv7Gzj/JqD/4ayW0lzWoG8yRUXM/M1v+PW777IjEiFbKW469VTGPvYY3S6+ONnRtSo6GqV6505S/X6MlZWs/fprln/1FRWlpVRUVFBRVUVlbS1vnXACVreb32/fzqTaWvz7XUMBIWJLg94GvAlkGo1kmc1k2e3kp6by5rBhkJnJB3v2UBKNkpGbS0ZeHhnxkROFPXtCSgrIX/GEEMegoTXoW6rmkmPsHaUxePBgtm3bxqZNm2TkhhBCiGajoRzjeJxzYyLwT6XUrcAO4n/kVUr1B27XWje00IA4EoWFXD5tGqPeeINP//xn/v7iizy7ciVvDx3K94MGYRw3Dn355Si7PdmRNjvBmhpK16+nbMsWynfsoLyoiPKSEq7t0IEcn4/3v/uOp9eto9znozwUojwaJQxsI7YG8lxik2NC7D9plsFAltlMXWEh1s6dOa1NG+6uriYzM5Os3Fwy27Qhq6AAzjsPcnJ4IT2dl53Og8Z3qOVAhRBCtGwLFizgwQcflMKGEEKIFuO4G7mRSM3lryrJVLJqFRuff55B8+cT3rKFk41GLuzTh7F//CO9Ro1KdnjJoTWe0lLKNm4kIxjE5fOxY9063lm4kNKyMsrcbspqaij3evlrWhoDa2uZ7vFwbT2X+g9wVnY2c6xWnqqtJcfpJNvlIjsjg+ycHMZcfDFZnTpRbjJRa7WS3aULKXl5ssKNEKJZaU0jN/abUHTspk2bkh3OIe1fzPjuu+/o27dvEqMRQgghjkxDOYYUN0T9olHKZ8/m7l/9ipnff08QGJiSwrhrruHqiRNxZGcnO8JjEqmro+i77yjbsoXSbdsoKyqidPduzs3MZIDRyMZt27hh5UpKAwHKIhG88fdNBW4kVqQ4B7ADuUYjOVYrOU4nE049ldN79GC7ycSnJSVk5+eT06ED2R07kn3CCWR27oyhgZU8hBCiJWhNxY29mkuOsbe4ceKJJ7Ju3ToZuSGEEKJZaW6PpYjjgcFA9mWXMe2yyyhfv56p99/PKx9/zM2TJ1MwbRpDxowhdPPNmE87Lalh6miUupISKrZupWL7dlyhEF1sNgIlJUycM4eKysrYpJp1dVT4fIyx27nL76fE46FjPdebaDQyoG1bnC4XWQ4HPfLyyMnIIDc3l5y8PM466yzo04fTMzKoc7lw5ta/aGhHYkubCiGEEMeja665RgobQgghWhQpbohDyj7xRH49Zw73RKMsfeklBi5bBq+/zvgXX2SRw8GVgwbhTEnBYDSS6XRy7emng8HAvNWrKfN4MBgMGIxGDAYD2S4XF/XrBwYD89esoTYQwGAwYDSbY8fT0zmtRw9Qio/+/W+Kd+6korSU8vJyKqqqOMlq5a70dKiooNP69eyORAjuF+ttwEvEvrAfAVKBLJOJLKuVbIcDV9eucMYZ5GZm8urmzeQUFJDbqRM5nTuTe+KJpOTlgcFAAfBhA31ijjchhBCiOZJVUoQQQrQ08liKODpuN1PuvpunZ8xgTSCwb3dPYG18+yxg6QFvOx34Ir7dF1h9wPHBwKfx7U7A9vi2mdikmpe7XDzfpw9kZXHvpk2YnU6ysrLIys0lKz+fbj170uPUUyEri3BaGiabrVE+XSGEEIdPHks5fu0drdGa8j8hhBAthzyWIhpfRgY3vfkmY6ZOpXrnTiLBIJFQCEP8GNEo/yopwe/zEQ2HiUYiRMNhLCYT5OdDNMq7W7fi8/mIhMP7zkm126F9e4hGmVdSgj0vj6zOnUnNz//RpJpPHyJE+eIWQghxOJRSnYHfAS6t9ZXxfaOB4UAaMFlr/UkSQxRCCCHEIcjvf+KYKIOB9A4d6j2WV1DQ4Hu79+7d4PGeRx2VEEKI1kIp9RowAijVWvfeb/9Q4C+AEXhVaz3xYNfQWm8FblVKzdhv3yxgllIqA5gESHFDCCGEOI5JcUMIIYQQzdkU4G/EFrQCQCllBJ4HhgBFwAql1BxihY4nD3j/LVrr0gau/1D8WkIIIYQ4jklxQwghhBDNltZ6sVKq4wG7BwCb4yMyUEq9A4zSWj9JbJTHIanY5BQTgQ+11l8f5JxxwDiA9u3bH1X8QgghhGgchkOfIoQQQgjRrBQAO/d7XRTfVy+lVJZS6iXgZKXU+Pjuu4nNc32lUur2+t6ntX5Fa91fa90/JyenkUIXQgghxNGQkRtCCCGEaNW01hXA7Qfs+yvw10O9Vyk1EhjZpUuXBEUnhBBCiMPRqoobX331VblSakcjXzYbKG/ka4oY6dvEkH5NHOnbxJG+TYxE9Wv9M003nV1Au/1eF8b3NTqt9VxgrlLqsuaUY+xdErYVk+8piSN9mxjSr4kjfZsYTZ5jtKrihta60ceMKqVWHmydXXFspG8TQ/o1caRvE0f6NjFacL+uALoqpToRK2pcC1yXyBtKjtG8SN8mjvRtYki/Jo70bWIko19lzg0hhBBCNFtKqWnAMqC7UqpIKXWr1joM3AV8DPwX+KfWem0y4xRCCCFEYrWqkRtCCCGEaFm01j85yP4PgA+aOBwhhBBCJImM3Dh2ryQ7gBZM+jYxpF8TR/o2caRvE0P69fgm/z6JI32bONK3iSH9mjjSt4nR5P2qtNZNfU8hhBBCCCGEEEKIRiMjN4QQQgghhBBCCNGsSXHjGCilhiqlNiilNiulHkx2PC2BUqqdUmqhUmqdUmqtUuqXyY6ppVFKGZVS3yil3k92LC2JUipdKTVDKbVeKfVfpdTAZMfUEiil7ol/L1ijlJqmlLIlO6bmSin1mlKqVCm1Zr99mUqpT5VSm+IfM5IZo/gfyTESQ/KMxJIcIzEkx0gMyTEaz/GSY0hx4ygppYzA88AwoCfwE6VUz+RG1SKEgXu11j2BM4A7pV8b3S+JrR4gGtdfgI+01icCJyF9fMyUUgXAL4D+WuvegJHYkp7i6EwBhh6w70Fgvta6KzA//lokmeQYCSV5RmJJjpEYkmM0MskxGt0UjoMcQ4obR28AsFlrvVVrHQTeAUYlOaZmT2tdrLX+Or5dS+ybd0Fyo2o5lFKFwHDg1WTH0pIopVzAIGAygNY6qLWuSm5ULYYJsCulTIAD2J3keJotrfVioPKA3aOAN+LbbwCjmzQocTCSYySI5BmJIzlGYkiOkVCSYzSS4yXHkOLG0SsAdu73ugj54diolFIdgZOBL5MbSYvyLHA/EE12IC1MJ6AMeD0+HPdVpZQz2UE1d1rrXcAk4HugGKjWWn+S3KhanDZa6+L4dgnQJpnBiH0kx2gCkmc0OskxEkNyjASQHKNJNHmOIcUNcVxSSqUA/wJ+pbWuSXY8LYFSagRQqrX+KtmxtEAm4BTgRa31yYAHGd5/zOLPZo4ilti1BZxKqRuSG1XLpWPLp8kSaqJVkDyjcUmOkVCSYySA5BhNq6lyDCluHL1dQLv9XhfG94ljpJQyE0s43tJaz0x2PC3IWcClSqntxIY4X6CUejO5IbUYRUCR1nrvX/9mEEtExLEZDGzTWpdprUPATODMJMfU0uxRSuUDxD+WJjkeESM5RgJJnpEQkmMkjuQYiSE5RuI1eY4hxY2jtwLoqpTqpJSyEJuAZk6SY2r2lFKK2DOF/9Va/1+y42lJtNbjtdaFWuuOxL5eF2itpULdCLTWJcBOpVT3+K4LgXVJDKml+B44QynliH9vuBCZRK2xzQHGxLfHALOTGIv4H8kxEkTyjMSQHCNxJMdIGMkxEq/JcwxTom/QUmmtw0qpu4CPic2u+5rWem2Sw2oJzgJuBFYrpb6N7/ut1vqDJMYkxOG4G3gr/ovIVuDmJMfT7Gmtv1RKzQC+JrbCwTfAK8mNqvlSSk0DzgOylVJFwARgCfJDyQAAIABJREFUIvBPpdStwA7g6uRFKPaSHCOhJM8QzZHkGI1McozGdbzkGCr2+IsQQgghhBBCCCFE8ySPpQghhBBCCCGEEKJZk+KGEEIIIYQQQgghmjUpbgghhBBCCCGEEKJZk+KGEEIIIYQQQgghmjUpbgghhBBCCCGEEKJZk+KGEKLJKaXSlVJ3xLfbxpfiEkIIIYQ4JpJjCNF6yVKwQogmp5TqCLyvte6d5FCEEEII0YJIjiFE62VKdgBCiFZpInCCUupbYBPQQ2vdWyl1EzAacAJdgUmABbgRCACXaK0rlVInAM8DOYAXGKu1Xt/0n4YQQgghjjOSYwjRSsljKUKIZHgQ2KK17gf85oBjvYHLgdOAxwGv1vpkYBnw0/g5rwB3a61PBe4DXmiSqIUQQghxvJMcQ4hWSkZuCCGONwu11rVArVKqGpgb378a6KuUSgHOBN5VSu19j7XpwxRCCCFEMyM5hhAtmBQ3hBDHm8B+29H9XkeJfc8yAFXxv8gIIYQQQhwuyTGEaMHksRQhRDLUAqlH80atdQ2wTSl1FYCKOakxgxNCCCFEsyU5hhCtlBQ3hBBNTmtdASxRSq0BnjqKS1wP3KqU+g5YC4xqzPiEEEII0TxJjiFE6yVLwQohhBBCCCGEEKJZk5EbQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNZMyQ6gKWVnZ+uOHTsmOwwhhBCiRfvqq6/KtdY5yY6jKUmOIYQQQiReQzlGqypudOzYkZUrVyY7DCGEEKJFU0rtSHYMTU1yDCGEECLxGsox5LEUIYQQQgghhBBCNGtS3BBCCCGEOEpKqZFKqVeqq6uTHYoQQgjRqklxQwghhBDiKGmt52qtx7lcrmSHIoQQQrRqrWrODdEArSESIRIM4q+rIxIMEgmFiAQChINBMlNTsRgM1FRVsae0lEgwSDh+jsFopGufPtjy8yElBZRK9mcjhBBCCCFEk9Jas3PnTtq1a4eSfFiIJifFjRbOvXUrn/zlL5yxaxcdVq7kk8pKrq6tJQxE9mufABcC7wI/qec6XwIDgOnAuHqOrwF6AS8YDEzQmgyTiQyLhXSbjQyHg79dcAHZ+fksr6vju+pqMnJyyGjThoyCAtILCujYpw+G9HQwGhPRDUIIIYQQQiTUhAkTePTRRxkwYAD33Xcfl112GSaT/LolRFOR/20tTDQc5ptp0/hwyhQ+XLGCL2priQL/Z7dzz/DhFJrN3PTf/2I0GDAajRiNRkxGIx1POQVycuhXWcmfNmyIHTOZMJlMGE0mOvTvDxkZnF9ezj+2bcNkNseOm81EwmE6dOoEPh8nfvMNV373HVV1dbg9Htx+P9tqajC+/z5UV/NeOMzEeuL2AnaleMhi4a1IhAyzmUybjeyUFLJdLp677DJUdjYrqqtxG41kd+hAVseOZHfpgiMnB2WQJ6yEEEIIIURyvPzyyzz66KMMHTqUTZs2cfXVV9OpUyfuuecebrnlFpxOZ7JDFKLFU1rrZMfQZPr3769b4jJtFZs2UTp7Nj1WraL6ww/JLi8nAvR3OBh66qkMu+EGBowZg9FqTW6gWuMrL6d861aqiopw796Nu7iYqtJSxvTqBW43b37xBR9v3ozb46HS66U8ECAcibA1GgXgGuCfB1y2A7C9bVvIzmZCTQ3rw2GyXS6yMjLIzsmhQ8eOjLroIsjOplRrbPn5pLZtKwURIYRIEKXUV1rr/smOoym11BxDCHFoc+bM4bLLLmPo0KHMnj0bpRSzZ8/mqaee4osvviAjI4M77riDu+66i7y8vGSHK0Sz1lCOIcWNZigaDrPyH//gw6lT+WjlSpbX1XE2sCgzEy6+mI8KCjjlppvI7dUr2aE2nnAY3G6+X72anevXU15URPnu3ZSXlmL0ermvc2eoqOCOL79kgdtNeShEpdZo4GTg6/hlBgAriA1ZylSKTLOZczMyeGnAAMjM5KmtWwlarWRlZ5OZl0dWfj7tu3ena79+kJkpc4oIIcRhkOKGEKK1+OKLL7jgggvo3bs3Cxcu/NEIjaVLlzJp0iRmzZqF2Wzmxhtv5N5776VHjx5JiliI5k2KG3HNOfGo3roV17Jl8OGHXPHuu8wMBlHAAKeTof37M3zMGE776U9lzor9RIJBqnbswFdcTKHJBBUV/Oujj9j+/fdUVFRQWVVFRW0tXY1GnsjIgIoKuhUVsemA/xNXADPi2wVA1GAg02wm02ol0+FgeOfOjDvjDMjI4KU1a0jNzCSjTRvS8/LIKCgg74QTyOjUCWy2pu4CIYRIitZU3FBKjQRGdunSZeymTZuSHY4Qoglt2rSJM888E5fLxdKlS8nNzT3ouRs3buSZZ55hypQp+P1+RowYwX333cegQYNk8lEhjoAUN+KaU3EjEgyyYupUPvzHP/joq6/42uNhD5CZnc2Hffrg7tGDi+6+m+wTT0x2qC2Ov7oa97ZtVGzfTuXOnaSGQpycng4VFfzuvfcoc7uprK2l0uOhwu9nlNnMI5EIQa+X+h78uQ94CqixWOgWDpMen2w1w24n3eHgul69GHHyydTZ7byzcSMZubmkt2lDRn4+rvx88k44AWfbtmA2N3FPCCHE0WlNxY29mlOOIYQ4dnv27OHMM8+kpqaGZcuW0aVLl8N6X1lZGS+88AJ/+9vfKC8vp3///tx3331cccUVMvmoEIdBihtxzSLx2LqVf91+O7d99hkVWqOA01NSGHbaadwxfjzZF14IMlfEcUkHApRt3hybT6SoiKqSEtx79tAtJYVTUlOp3rOH33z8cWyyVa+XKr8fdzDIfVYrt/v9bIhEqK9U9SJwO7DKYuGicJg0oxGX2YzLaiXNbufek07irG7d+B54d8sW0jIycGVl4crOJi03l559++IqLCSSkoIhNVXmGhFCJJwUN4QQLVldXR3nn38+a9euZeHChZx++ulHfA2fz8fUqVN5+umn2bRpEx07dtw3+WhKSkoCohaiZZDiRtzxnHhs+vRTfH/7G33nzaPYYOCBwkKGDR/ORb/4BVlduyY7PJFoWhOuqqJ4wwbcRUW4d+3CXVJCTUUFp+fm0t1mY+v33/Onf/+bGq+Xap+Par+fmmCQp9PSuCgQ4KOaGobVc+mPgIuBmcBVQJpSpBoMpJpMpJpM/L1PH/rk57PU5+PtXbtIdTpJTU0lNS2N1PR0Rg8aRHpeHntCIcqCQVJzc0nNzyc1Px+z3d6k3SSEaB6kuCGEaKnC4TCjRo3io48+Yvbs2YwYMeKYrheNRpk7dy5PPfUUS5YsIT09nZ///Ofcfffd5OfnN1LUQrQcUtyIOx4Tj/++/z6P330307Zv50KDgU9+8Qv4zW+gbdtkhyaamWg4TF1JCdW7dlFTUkJ1SQnVe/ZwWn4+2VqzZsMGpi9fTnVNDbVeL7U+H7V+P8+1a0e3cJh/FBfzq8pKarUmtN91NwDdgEnAbw64pxXYmplJ2/R0XgkEeKOmBqfZTIrVitNmI8Vu55mLLsLmcrG4tJS1bjcpLhfOtDRSMjJwZmRw5hlnoFJTqdUalZKCIzsbgwzLFKJZk+KGEKIl0lozduxYJk+ezMsvv8y4ceMa9frLli3j6aefZubMmZjNZq6//nruvfdeerWkRQKEOEYN5RjyG0SSrJk5k0d/9Sve3bkTO/Dr/v25d/Jk6Ns32aGJZspgMpFWWEhaYWG9x3vH28HcGG8AgZoaaouLqd2zh0KnE/x+Rq1fT/s1a6itqoq1mhpq6+pI79sXfD4s69Zh9/moDQYp9njwRCLURSL8dds28PmYDrxwwD3NQDC+fTfwRnzbATiVosBs5ptu3cDh4OHSUlZ4vTgtFhxWKw67nbbp6fzuggvA6WTuli2UBYM4UlNxulw40tLIbtOGk/r1A4eDCr8fY2oqzpwczA7H0XSxEEIIIVqxRx55hMmTJ/PQQw81emEDYODAgcyYMYPNmzfz7LPP8tprr/H6669zySWXcO2115KdnU16evoPms1mkwlJhYiTkRtN7dtv4dFH+b+ZM5kA3D1wIPdMnkyOLAclWrJoFG95OTUlJdSVlVFXXo6nshJ/TQ0Xdu0KdXV8vGIFq7Zupa6uDo/HQ53XizkS4blevcDr5f61a1lQWYk3HMYTieCNRikAvo1/DzsXWHzAbfdfBrg/8FV82wTYgfMtFmbn54PDwZXFxZREIjjMZuxmM3aLhdPz8rinf3+w23nq228JGY3YHY5Yczrp1qEDA/v1A7ud5du2YXY6saWmYktLw+ZykZadjTMrC6xWWUJYtCoyckMI0dJMnjyZn/3sZ9x000289tprTVJQKC8v58UXX+S5556jrKys3nMsFsuPCh6H21wuF9FoFJ/Ph8/nw+/3/+DjofYd7Hh6ejp/+ctfyMvLS3gfidZHHkuJS2biseKNN3j0gQe4Ys8exrhceO+4A/+tt5J5wglJiUeIFiMaBb8f965d1JSW4nW78brdeKqqsITDnNG+PXi9/HPxYnaVleGpq8Pr9eLz++los/HLLl3A5+OWL75ge10dvnA41iIRzrVYeMVuB6+XXK+XA9OKG4Gp8W0bEDjg+M+JjVaJACnxc2wGw742Ljube9q3p85s5ur167GZTNgsln1tVPfuXHziidRozUvffovVZsNqs2Gz27E6HPTv3p2unTrhiUb5ZudOrE4ntpQUrCkp2FJTyc7Lw5GZSdRsBqtVHvcRTUaKG0KIluSDDz7g0ksvZciQIcyZMwfzQVawe+utt7jnnnsYMWIEzz77LGlpaY1y/0AgwNatW6murqaqquqgrb7jfr+/UWI4kNFoxG63Y7fbsdlsP9hevXo1hYWFLFiwgIKCgoTcX7ReUtyIS0biseyVV3j0oYf4sKyMDKWYOHIk4954A9LTmzQOIcSx0dEowbo6fG433spKfFVV2LWmbWoq+Hx8/O9/46urw+/x4Pd68Xu99MjM5NyCAkIeDw99+in+QCDWgkH8wSCX5uRwfXY2lbW1DF29Gl84jD8a3dd+azZzTyTClkiE+haY+xtwJ7AKOKme468DNwFLgLOJPQZkBaxKYVWKV3NyGJaezrJwmF+WlGA1GrEYjbGPJhMP9+nDSW3a8FVNDa9t2YLFYsFqsez7eNMZZ1CQk8MGt5sl33+P1WbDsl8755RTSHG5KKmtZbfbjcXhiDWnE4vDQZuCAow2G2GDAWW1YrRYEvOPJ5pccy9uKKXaA38FKoGNWuuJh3qPFDeESAytNeFw+KAFhURbsWIF5513HieeeCKLFi066Eomn3/+ORdccAF7f7cyGAwMHjyYl156iU6dOjVlyD/g9/sbLIoYjcYfFSfqK1gcuN3QsrVLlixh2LBh5ObmsmDBAtq3b9+En7Fo6aS4Edekicfixdx1/fU8X1REtlLce9FF3PHqqwedD0EIIQ5Gh8N43W4CNTUEamsJ1NURqK0lx+kk02aj1u3mi2++IRAvqgS8Xvw+H4M6dqRrWho7SkqYsnw5/kCAQCBAIBgkEAxyZ5cunJySwoqSEv6wbh3BSIRAOEwwGiUQifD3Nm0YYDAwq7qasW43Qa0J8L8RKiuIPe7zCnBbPXH/FzgR+D/g3nqO7wQKgUeACYABsBArwliUYmtuLmk2G3+uq+ONujrMSmE2GGLNaGRh//4YLBZe3rWLzyoqMJtMmI1GzCYTKVYrz55/PpjN/HPzZtZUVmI2m7FYLJgtFlxOJ7cOGgRmM59v3kxxbS0miwWz1YrZYiEtLY1zTj4ZTCbWFRXhDYcxW62YbDbMNhvO1FQK2rUDs5lqrxdMJswOR+y4w9Hql1xOZnFDKfUaMAIo1Vr33m//UOAvgBF4taGChVJqOJChtX5TKTVda33Noe4rxQ0hGl9VVRVXXXUVK1as4De/+Q2//OUvm3SZ1C1btjBw4ECcTifLli076GMWGzZsoE+fPoTDYd5//31WrVrFpEmTqKioAKBfv34899xznH322U0We7J9+eWXXHzxxaSnp7Nw4cKkFnhEy9IsixuHSkKUUlZiI8JPBSqAa7TW2xu6ZqITDx2NsvCZZzj1vfdwLVnC3PR0Npx9Nre/+iopbdok7L5CCNGUdDRK2O/HGA5jCIfxuN2Ul5QQqKsj6PUS8vkI+nz07dABu1Js3bGDNVu2EPT7Yy0QIOj3c8Mpp+AAFm/YwKLNmwkGg7EWChEMhfi/AQOwRiJMXb+eOUVFhCKRfS0cibCwZ08IhXh4506mu92EtCYUjRLSGhuwJTUVQiGu9/l4+4CfdW2BXfHt4cAHB3yO3YH18e365nM5Fdj70+QU4JsDjp8PLLBYwGymv9/P9mgUk1KYAJNSXOR08krbtmAyMWT7dqqiUUwGA6Z48WZIdjbju3UDk4nrv/mGMMSOG40YjUbOLyjgxh490AYDv166FJPRiMlkih03mTirY0eGdO9OEHj+yy8xmUwYTabYOWYzp3TqRL8TTgCnE0aPPqqvg4YkubgxCKgDpu4tbiiljMBGYAhQRKw29xNiOcaTB1ziFmJPk80ANPAPrfXrh7qvFDeEaFzbtm1j+PDhbN68mbPPPpuFCxeSk5PDb3/7W26//XZsNltC719WVsaZZ56J2+1myZIldO/evd7zysvL6dSpE3V1dbz00kvcdtv/yv0zZszggQceYOvWrQC0a9eOxx57jJ/+9KcJjf148fXXXzNkyBAcDgcLFiyga9euyQ5JNJFp06Yxb948pkyZ0uAon6PR7IobB0tCtNbr9jvnDqCv1vp2pdS1wGWH+stKohIPHY3yycSJPDpxIktqa3kqLY37HnkExo4FWZVBCCGSTkejRIJBQh4PQY+HSCBAZkoKhELs3rWLmqoqwn4/oUCAkN+PGTi5c2cIhfhi1SrK3G7CgQChYJBQMEi6xcLwXr0gHObtZcsoqaoiFAoRCgaJRCK0T0nh5vjxR5csYY/HQzgcJhQOE45E6Jeezj1dukAoxI3Ll1MZDMaKNtEo4WiUwWlp/CEvD8Jh+q9fT100SkRrwvF2g83Gkw4H4VCIzKoqIkA43qLElm3+M1AFZNTTH48Avwdo0wZKShq9v5P9WIpSqiPw/n7FjYHAH7XWF8dfjwfQWh9Y2Nj7/vuA5VrrxUqpGVrrKw9y3jhgHED79u1P3bFjR2N/KkK0SsuWLWPUqFGEw2Hee+89zj33XL744gt+97vfsWDBAgoLC/nDH/7ATTfdlJDHVbxeLxdccAHfffcdCxYsYODAgfWe5/f76dSpEyUlJdx///386U9/qve8FStWcOedd7JixQoAXC4Xv/rVr3jooYca/Re/4813333H4MGDMZvNzJ8/nx6yiEKLFwwGyczMxOv1sm3bNjp06NCo128wx9BaH3cNGAh8vN/r8cD4A875GBgY3zYB5cSLNQdrp556qm5U27frWX376gFOpwZ0odGon7/mGu1zuxv3PkIIIcRhikYiOhIIaO3z6WhNjXZv367LN27UJatX66KVK/WOpUu1+5tvtN64MdYSAFipk5tHdATW7Pf6SmKjQPe+vhH4WwPv701s5MZLwKTDuWej5xhCtFLvvPOOtlqt+oQTTtDr16//0fH58+frM844QwO6S5cu+q233tKRSKTR7h8KhfTIkSO1wWDQ77333kHPi0QiumfPnhrQV1111WFde+fOnfrSSy/VRqNRA9pisegxY8Zodwv/3WHNmjW6TZs2Ojc3V69evTrZ4YgEu/baazWgf/7znyfk+g3lGEkvZNQb1GEkIcAaoHC/11uA7Iau29iJR9Rs1sSGrOqx3btrf01No15fCCGEaI6ae3HjCO81EnilS5cujduJQrQy0WhUP/744xrQZ599ti4rK2vw3Dlz5ui+fftqQPfp00fPmjVLR6PRY47htttu04B+/vnnGzx3yJAhGtCnn376Ed/H4/HoO+64Q9vtdg1og8GgBw8erDdv3ny0oR/31q9fr9u2bauzsrL0119/nexwRIKsXr1aAzojI6NRi477ayjHaPEznimlximlViqlVh5sfeijVTdpEntXuP77hg20dbl4//e/b9R7CCGEEOKY7QLa7fe6kP9Nu3JMtNZztdbjXC5XY1xOiFYpGAxyyy238Lvf/Y7rrruOzz77jOzs7IOer5Ri5MiRfPPNN0ybNg2/38/o0aM544wz+Oyzz/YWHo/YE088wcsvv8z48eO54447DnreuHHj+PTTT+nYsSP/+c9/jvg+DoeD559/nrq6OiZNmkRmZiafffYZXbp04aSTTuLzzz8/qviPZ927d2fx4sU4nU4uuOCCfY/oiJbl0ksvBeDNN9/EkITJ1Y/X4sbhJCH7zlFKmQAXsYlFf0Br/YrWur/Wun9OTk6jBpn6i1/g3rGDNipW4qjUmpGPPcZVNhu8916j3ksIIYQQR20F0FUp1UkpZQGuBeY0xoWVUiOVUq9UV1c3xuWEaHXcbjdDhw5lypQpTJgwgTfffBOr1XpY7zUYDFx77bWsW7eOV199leLiYoYMGcIFF1zA0qVLjyiOKVOm8NBDD3HjjTfy+OOPH/S8J598kr///e9kZGSwevXqY5ozw2AwcO+991JWVsbMmTPp0qULq1at4vzzz6ddu3a8/voh5zI+7pSWljJ9+nQWLVrEzp07iUaj+46dcMIJLFq0iIyMDAYPHsyyZcuSGKlobE8//TTbtm3jrLPO4pJLLklKDMfrhKImYhOKXkisiLECuE5rvXa/c+4E+uj/TSh6udb66oaum6gJRWuKirigWze+8vkAeBb4JTAnM5PQLbdwxVNPNfo9hRBCiONVkldLmQacB2QDe4AJWuvJSqlLiP2INgKvaa0P/tvLUZDVUoQ4clu2bGH48OFs27aNyZMnc8MNNxzT9QKBAC+//DKPP/44paWlDB8+nMcee4x+/fo1+L6PP/6YESNGcN555zFv3jwsFku9502bNo3rrrsOm83Gpk2bKCwsPKZ46/P1119z55138sUXXwCQlpbGL37xCyZMmHBcTj5aUlLC5MmTmTdvHmvWrKG2tvZH5yilMJvNWK1W7HY7drudkpISwuEw5557Lr1796agoICCggI6dOhA586dycvLS8pf/sXRqampIScnh2g0yp49e8jMzEzYvZrdaikA9SUhSqlHiD1jM0cpZQP+AZwMVALXaq23NnTNRCYetbt3M7JHDy6tqeHXBgPRaBQn4AfaGgw8c/fdXP3sswm5txBCCHE8SfZqKU1JKTUSGNmlS5exmzZtSnY4QjQbS5YsYfTo0USjUWbNmsU555zTaNf2eDz89a9/5c9//jNVVVVcffXVPPLII/Uu5/r1118zaNAgunbtyqJFi0hLS6v3mv/5z38499xzUUqxfPlyTjnllEaLtz67d+/mzjvvZO7cuUQiEQCMRuMPigQOh4PU1FRcLhcZGRlkZmaSk5NDbm4ueXl5FBQU0K5dO9q1a3fQgs2R8Pv9rFu3jtdff50FCxawdetW/H7/vuMWi4WsrCy6dOlC165dKSsro6KigqqqKmpqavB4PPj9foLxlcUOxWAwYDKZsNls2O12bDYbxviS6HubyWT6wfbBmtls3vdx/7a3YBSNRolEIkQiEaLR6L7Xe7cbeq21JhKJoLXed8xgMJCZmUl2dvYP/j0KCwvp0KEDqampx/zvcTwZMmQIn332GQ8//DB/+MMfEnqvZlncSIRE/1VF19Sghg+HpUt5ITOTO8vLf3A832DgmTvu4JrnnktYDEIIIUSytabixl4yckOIwzdt2jRuvvlm2rdvz7x58+jatWtC7lNVVcWkSZN49tln8fl8jBkzhgkTJuxbmnLbtm0MHDgQq9XKsmXLaNu2bb3X2bJlCz179iQUCjFr1qx98wo0Bb/fzwMPPMCiRYuoq6vD4/Hg8/kIBAKEQqHDKhLstbc4YrFY9hVHotEowWAwtlx5KLTvmvv/In80vy+efvrpLF26tMHRF5s3b2bYsGHs2LGDsWPH4nK5KCkpobS0lMrKStxuN7W1tfuKInsLCPqHkzof9Rwryba3eGO1WrHZbDgcDlJSUuotVrVt25a2bdtyzjnnNEqhqjF9/vnnnH/++RQUFFBUVJTw+0lxI65JEo+6OhaeeSaXrF7NmB49mPLf/xIArEAAOB9YkJcHkybB9dcnNhYhhBAiCaS4IYSoj9aaxx9/nN///vcMGjSImTNnkpWVlfD7lpaW8uSTT/Liiy8SjUa57bbbuP3227niiisoLS1lyZIl9OjRo973VlZW0rFjR2pra3nuuee46667Eh7vkQoGgxQXF1NUVMSuXbsoLi5mz549+0ZOuN1uqqur9xUK9i+OKKX2/ZJtNBoxGAyEQqF9BY/9f1c0Go24XC4KCgro2bMnmZmZpKSk7GtpaWmkpqbyyCOPsG7dOk4++WRWrlzZYIGjvLycIUOGsG7dOv71r38xYsSIY+6PcDiM3+/f1wKBAMFgkEAgUG8zGAw/GAVy4Ov9P+5/bG/b+5799/n9foqKiigqKqK4uHhf0aa8vJzKykqqqqqora2lrq4On8+H3+8nFAr9qM8PlJ6ezs6dO/l/9s47LKprfdvPnkbvHVGDCtgLIGKPiiF2sccW/UwsiS3GeKxHjSXR2AKWeI4tJ2oSu7FhjBKDEhN7b6igIiIiInUYZp7vD4b9A0GkDEWz7+taFzO7rPXuYcpaz36Lubl5qV8nQ6DT6eDs7Iz4+Hj8/fffaNq0aZmPWegc41VlVN7GVl416JNjY9nWyooygP/98EO2sbLKrmUN8IGjIwnwC4BOgsAfRo4sF5skJCQkJCTKC1RwKdgMYAjpAAAgAElEQVTybJBKwUpIFAm1Ws0PP/yQADh48GBmZGQU6bzPPvuMPj4+PH36dKltuH//Pj/++GPK5XICoJGREcPDwwu12dXVlQA4adKkUo9fGbl16xanTJnCxo0b09jYmADEZmVlxbZt23LZsmVMSEgocp9arZaNGzcmANavX58ajabQ4xMSEujr60ulUsldu3aV9pLeeLRaLR89esS//vqLO3fu5MqVKzljxgy2b99eLH1cWZg8eTIBsHv37uU2ZmFzjAqfFJRnKy9xgyRT4uL4rrU1ZQB/GD2a2ydN4mKlkgSYamfH7lZWFPRfHI6CwE0jRpSbbRISEhISEmVJUcUNALaFtaL0UVlaec4xJCTeNBISEti2bVsC4Ny5c6nT6V57jlarFc/JaT4+Prx27Vqp7bl9+zbHjBnDAwcOFDp+gwYNCIBBQUGlHrMycfbsWXbp0oUmJiZ5Xl8bGxu2a9eOwcHBTExMLNUYWq2Wfn5+BEAvL6/XChzPnz9n8+bNKZfL+dNPP5Vq7LeZpk2bEgCHDRtW0abw0aNHlMvlNDY2Znp6ermNK4kbFTTxSI2PZztrawoA/54zh0xPJzt3ZiBAAWD/qlXZQb8fAOvK5eR//1uuNkpISEhISBiaYogb9wDc1f/VAniK7LLuWgD3itJHZWmSuPHPJjIykg0bNuTx48cr2pRKx+3bt+np6UmVSsUtW7YU6ZykpCS6u7sTAGvWrMnQ0FDWqlVLXIS3bt2a0dHRZWp3p06dREHlbeDJkyf85JNPaGdnJ76OZmZmDAgI4KpVq5iUlGTwMbVaLVu1akUArFGjBtVqdaHHv3jxgm3atKFMJuP//vc/g9vzNpCRkUFbW1sC4Lp16yrUFh8fHwLg2rVry3VcSdyowIlHanw8v/Pyog4gN20iSYbOn09L/ZeKnSBwz7RpDLSz4ziABJhgY8N57dsz8d69crdXQkJCQkKitBQ3LAXAfwF0zvW8E4C1xemjopoUliKRnp5OK30IsoWFBbVabUWbVGkIDw+nnZ0d7ezsCg3/yM2tW7doaWlJAAwICMjzeu7bt49ubm4EQEEQGBgYyLi4OIPb/cknnxAAq1Wr9lqPg8qMRqPhkiVLWLNmTVHQkMvlbNWqFQ8ePFhuduSEU1SvXv21d/hTUlLYvn17CoLA9evXl5OFbxaRkZFUKBSUyWQ8f/58hdiwfft20SunvJHEjQoUN0iSaWlkx468DnCzPseGJj2dffRfzgA4vlYt8sED8v332SeXe5iDILBPlSo8umRJxdguISEhISFRTEogblwuyrbK3N6Wu7sSxScnt0BO69evX0WbVCnYvHkzVSoVPT09efv27SKdExoaSqVSSQAcN27cK4/bunUrHRwcCIAymYy9e/c2mOfB4sWLCYDW1tZl4s1QHuzfv58tWrQQc4sAoIeHB1esWFFhYk2OJ0yVKlWYnJxc6LFpaWkMDAwkAK5Zs6acLHyz2LFjBwHQ3Ny83N+nGo2GFhYWFAShyJ9tQyKJG5Vh4pGWxiEuLhQArssVIxW+ahXtBYHrANLSkgwNZcLt25zTti0bGhtTmevH8rxcTjZqxL9HjWJCBbyRJCQkJCQkikIJxI3DAGYCeEffZgA4XJw+KrpJ4sY/k2HDhonztIULF1IQBALg7t27K9q0CkOn03HOnDkEwLZt2xY5EWVwcDAFQaAgCPzuu++KdM7q1atFrxm5XM5hw4aVKvY/5260kZERo6KiStxPRXD9+nX26dOHZmZm4nvS3t6eY8eOZXx8fEWbR5Ls2bMnAdDJyem1C/L09HR27dqVAPjtt9+Wk4VvFpMmTSIA1q5du1zHHTJkCAFwRCE5I2NjY7lt27YyGV8SNyrJxCPt2TMG2tsTAP87dOj/7dBqyeHDSUGgN8DODg5Mz5XE57fFiznK3Z10cCABOud8YQkCe7m68tevvqqAq5GQkJCQkCiYEogbtgC+BXAewDkAK96UhKJSWMo/lzVr1oiLyE6dOlGn03HWrFmiN8GxY8cq2sRyJyMjg4MHDyYADh069LU5FnIYNWpUdmVBlYpHjx4t1pharZYLFy6kqakpAVCpVHL8+PHF9lCIiIigTCajXC7n33//XaxzK4qkpCROnjyZzs7O4nvR2NiY3bt354ULFyravALp37+/KLy8TvhSq9Xs1asXAXDx4sXlZOGbRYsWLQiAAwcOLJfxrl+/TkEQaGlp+coQvJMnT9LV1ZWWlpbFqrJTVCRxo5KIGySZnpjI9/UCx9pBg/LsU//1F11ksuyYTYCnv/8+fwcJCVwSGMhGL3l1OANkgwbknDlMf/CgnK5GQkJCQkIiP8VIKPqD/u+EohxfmVtlmGNIlB+nTp0SvTSsra0ZGxsr7nN0dBQXmX/88UcFWlm+3L59m61btyYAzp8/v8gVUdq0aSO+jnfv3i3x+FqtllOmTKGRkZH4+s+aNatIOVDu3r0rnlfZS5FqtVquXbuWdevWFd+DMpmMvr6+3L59e0WbVySGDh1KALS1tX2tV0lmZqYoiAwdOpSbN29mZGRkkd5fFUVsbCz//PNPXrhwgbdu3WJMTAwTExOZmZlp8LHUarUYorVq1SqD9/8yOYl99+zZk2+fTqfjypUrqVQqWbNmTV68eLFMbJDEjUo28Uh//pydHRzYFmDW6tV59mk1Gn5Sv372FxXA4N69C+3r6JIl7OPmxlHGxiTARH0lFjtBYJCLC0PnzaP2DU6EJCEhISHx5lEMceMaAFcAFwHYQCoFK/EGEB8fn6eE5vbt23njxg3279+fU6ZM4dKlS0UPAnNzc0ZERFS0yWVKTEwMR40aRYVCQVNTU27durVI5yUmJrJ69epiPojX5WEoKmq1mmPGjKFCoRBzEixdurRQO3JCW5YvX16qsR8/fsyJEyfmEbsMxfHjx9muXTsxJwkAvvPOO1ywYAEzMjIMPl5Z8/HHHxMAraysXvt6aTQafvrppzQ3N88TctO1a1fOnz+fv/32W4XlR3n06BH37dvHOXPmsFu3bnR1dc2Tg+flplAoaGVlRRcXF9aqVYsNGzZk8+bN2aFDB3bv3p0DBgzgiBEjOG7cOE6dOpVffvkllyxZwjVr1vD7779nZGRkPhuioqKoVCopk8nK1Oto5cqVBMBmzZrl25eamiqGq3Tp0oXPnj0rMzsKm2MI2fv/Gfj6+vLMmTMVbQYAQP3iBTT9+8M8NBRZISFQjB2bZ/8vM2agz8KF0ACI6tgR1UNDAZms8E6fP8ed+fPRd/VqXE1PR6Z+swLATEdHzB45EimtW0Ph5wdja+uyuCwJCQkJCQkIgnCWpG8RjhsPYAyAGgBiAAi5dpNkjTIy0eBUpjmGRNmh0+ng7u6O+/fvQyaTYcCAAfjggw8waNAgkER6ejqysrIgk8mg0+lgbm4OADh69Cj8/Pwq2HrD8uzZM3z99dcICQmBVqvFyJEjMXPmTDg7O7/23Js3b6Jp06ZITk7Ge++9h0OHDkH2unluMUlLS8PIkSPx448/QqfTwdbWFkuWLMHw4cPFY7KysuDu7o6HDx9i3LhxCA4OLtWY06ZNw9dff4369esjLCwM9vb2JepHp9PhyJEj2LFjByIiInD37l1kZGQAAKytrdG7d2/MnTsXVapUKZW9Fc348eMREhICCwsLXLlyBdWqVSv0eK1Wi6tXr+LUqVNiu379OgBAEATUq1cPzZs3h7+/P/z9/VG7dm2Dvq8ePXqEs2fP5mmxsbHi+F5eXvDx8YGPjw88PT2hVquRlpaG1NTUPH8L2vaqv5mZmXlsMDIywuzZszF58mQolUpx+y+//IIePXrAzMwMDx8+hLWB13qpqamws7NDVlYWHj16BEdHR3Hf3bt30atXL1y6dAlz5szBzJkzDf55zk2hc4xXqR6vawB2AegCQFbSPsq7Vbq7KhkZTO7Uia0AruzbN9/uB3//zRUWFiRAVqvGpJs3i9X98eBg9q9alY6CwO/1ZWYn5ZSBAmgFsJZCwXetrXk+KIhcsYKJhw8z/Q3NDC0hISEhUTlA8XNurCnO8ZWxVbo5hkSZ8N577xEAzczM6OLiwunTp1MQBHp7ezM6OppJSUncvXu3mHcip8lkMg4ePJi//fbbG3mXPTfJycmcP38+LS0tKQgCBw8ezDt37hT5/IMHD4peFePHjy9DS7NJTExkjx49xBAOZ2dn7tixgyTZpEkTAmDXrl1LPU5WVhZdXV1Zr149GhkZ0dvbm4m5cugVxoMHD7ho0SK2b9+eDg4Ooq05zdbWloGBgTx58mSp7axsTJ48WfxMlSQsKTExkYcPH+acOXP4/vvv09raWnzdLC0t2bFjR86aNYsHDhzg06dPi9SnTqfjw4cPuXfvXv773/9mly5d8uQ1EQSBderU4eDBg7l8+XL+8ccffPHiRbFtLwoajYZJSUmMjY3llStX2KdPHwJg48aNefbs2TzHTp06lQBYs2ZNg5ekzql2M3369DzbDx06RBsbG1pbW/PAgQMGHfNVFDbHKI24EQBgC4A7AL4G4FXSvsqrVcaJhzo5mT30H5YCQ1C0WjIwkEMAGgElTx6alESuWMEd777LVpaWdJfLaaEPfQHA3/TiR48clymA1oJAD6WS7a2tGTN4MBkSwvjQUKoN5DYoISEhIfF2Ulxx401ukBKK/mOYOXNmdl40CwsCYMuWLQmAgwYNYlpaWr7jc5JkNmzYkMbGxuLCyMzMjN26dePq1atLlWOivMnIyGBwcLCYU6R79+68dOlSsfpYvny5WBFl7dq1ZWRpwcTExLBDhw55Fr45i0RDLAQPHTpEANyxYwcPHDhApVJJf3//fItejUbDffv2cdiwYfTy8hJzfeQ0IyMjenp6cujQody7d2+Z5GmobEyfPp0AaGJiwlu3bpWqL61Wyxs3bnDTpk0cPXo0GzduTJk+pyH0IVBDhw7l6tWree7cOWo0Gj548IB79uzhrFmz2LlzZzo5OeURJuvVq8ehQ4fy22+/5YkTJwwWQlVSdu3aRWdnZ8rlcv7rX//K8/2Tk8OmT58+Bhvv5MmTojCYg1ar5ZdffklBENioUaMCw2XKijIRN/h/P+pWAEYDeAAgAsBwAMrS9lsWrTKKG2S2wNHTxYUAuCIoqMBjFnXqREH/IZveooVBx0968ICa0FBy0SKubdaMLczNWf0l8SNBL3545xI/bASBnkolO1hbUzt8OLloEa+sXs2Yl1RECQkJCYl/Fv8kcSOnVdY5hoRh2Lt3r7jwBEAbGxvKZDIuXbr0lYkNtVotzc3NKZPJGB4eThcXF1pYWHDAgAF0d3cXF09eXl6cOHEiQ0NDS1XGtKzIysripk2bxPwY7777bonyiOTkWFCpVAwLCzO8oUUkMjKS/v7+BMCqVasWu6rKq+jfvz/t7OzECjE7d+6kXC5ns2bNOHv2bLZt25Z2dnZ5vDIEQaC9vT3btWvHhQsXvnHlZw3JvHnzxESwV65cMWjfycnJDAsL41dffcUePXqIAh2QXUI4t5BRv359fvjhhwwODubJkyeZkpJiUFsMxbNnzzhixAhRsDl+/DjJbPEsR5wpbQ6ZHHK8VnI8hxITE9mtWzcC4ODBg5mammqQcYpKmYkbAOwATABwBsAvAPoDCAHwe2n6LatWmScemamp7KVPQLO2gBAVkjyxZg1N9R++lhYW5eZBkRQdTYaGkgsXcmGjRmyuFz/M9eKHoBc+CLBKbuVZn9jU28iIbNOGHDKEW/v04Y7Jk3n3+HEp0amEhITEW4okbki8TURGRlKhUFAQBFHUsLGx4ZEjR1577vfff08A9PX15c2bN+ni4kInJydeu3aNN27c4IoVKxgYGCiKJiYmJuzcuTODg4N5+/btcri6V6PT6bhr1y7WrVuXAOjj48PDhw8Xu0qFVqtlq1atRFGosizgExISDOa6/+zZMxoZGXHkyJHcsWMHhwwZQg8PDzH8JqcZGxuzdu3aHDFiBA8cOGAwYeVtYfHixaIAdv78+TIbR6fT8d69e/zxxx85ZcoUhoSEMCIiotwX6YbgyJEjolg6evRoJiUl8cGDB1SpVBQE4bWhTDqdjteuXXvl5zrHq6ZTp04kyUuXLrFWrVpUKBQMCQmpkKo1ZRWWshvZWc6nAXB5aV+lnNRU9olHZmoqP6lRgzcBcsYMsgD1PvHePXrpsySvMDUlS+m6ZQhSY2LIsDAyOJgL/f3Zyd6eDY2N6SqT0QygXS7xw+yljMFKgHVkMrJGDbJFC07y8uLMVq24dexYXvnlF2qKWB9dQkJCQqLyUJJ5AAAnAF31zbG451d0q+xzDImSkZ6eTltbW7EyRU48e3FyTHh4eBAADx06xGvXrtHR0ZEuLi553O9TU1N58OBBjhs3TjweAGvVqsUxY8Zw06ZNvHr1KrOyssriMvNx9OhR+vn5iZ4l27dvL9EiJjExkdWqVSMAenp6vpGLx5eJiori5s2bOXHiRAYGBtLT0zNP9ZzcXhmOjo6iOPTee+/9I0JMSsuKFSuy1whKZZlW/nibSElJ4aRJkyiTyejm5sb9+/eLYVImJiavzDUSGRnJjh07EgA3bNiQb39cXBzlcjmNjIyYkpLCrVu30tTUlC4uLjxx4kRZX9YrKStxo11Jz62o9kZMPDIzyaFDqQM4zNyc2z77jLoCVOVNzZtn//vkckYWUt6q0pCaSp46xR+GD+dn3t7s4exMHxMTVpXL6SeTkXI5mSsMJnfzAkhLS7JaNbY1N2cPZ2d+5u3NtYMGMWLtWqa+pj62hISEhET5UlxxA0A/ANEAvgfwPwD3APQpTh8V3d6IOYZEsWncuDEBiG7eXl5exXZTv3TpEgHQwcGBJHn58mXa2dnRzc3tlTk3IiMjGRISwi5duuQpf2lubs62bdty8uTJ/Pnnn3n37l2D3jn9+++/GRAQQAB0c3PjunXrSuxdcO3aNTE/yfvvv2/wBIdlRVZWFs+dO8eVK1dyxIgRbNWqFatXr04zM7N8iT5zQhlkMhmVSiXbtm3LTz75hEeOHMlzvTklNPv161duAtWbzHfffZcdBq9QVOgi+k3j1KlTrFevHgFw4MCB/Pzzz0VhNvf7Ua1Wc8GCBTQ2NqaFhQWrVKnC+vXr5/suadasWfYN9RUrOHHiRAJgq1at+OjRo/K+tDyUac6NN6m9SROPpzt3sqE++VQrS0ue/v77/Adt2MDV+i/Z4R4e5W+koVGref7HH7lpxAhO8fNjnypV2MzMjCPMzEhra6pzxcTlbvUBUiZjqrExXWQyNjAyYqCdHUfVqcOl3bvz4urVZFxcRV+dhISExD+GEogbF3N7awBwAHCxOH1UdHuT5hgSRWPYsGFiKEGOwFHSnBhdu3YlAM6ePZskef78edrY2LB69eqvDdPIysri1atXuWnTJn766af08/OjSqUS50F2dnZ8//33OWvWLP7yyy+MjY0ttn3Xrl1jr169CID29vZctmxZqfJ/HDhwQAzJmDRpUon7KUsuXrzIBQsWsH///vTx8aGzs3O+5J45TaFQ0NbWlnXq1GHnzp05ZcoUbtu2jY8ePeLVq1cJgMuWLSt0vG+++YYAOHTo0DdG6KlINmzYQEEQKJfLKzRHy5uGWq3mnDlzqFQqaW9vz/r16xPITgBMkuHh4aI3UZ8+fRgTE8P169cTAI8ePSr2s2fPHlEYyUlSOn78+GJ5H0VHRxv8+khJ3HhjJx5ZajX/M3gwHfUCxtCaNfn08uU8x1zbt482+v21VSomPXhQQdaWD1qNhpFHj3L7pEmc264dh7i7M6RmTdLTkzesrWmkzwGS+wcpUB8ScypXHpBaCgVbWliwf9Wq/LV/f3LDBqpPnJC8QCQkJCQMQAnEjcsvPZe9vK2ytzdtjiFROGvWrBFDCxQKBeVyealyACQnJ1OpVFKpVIqVFs6cOUMrKyvWqFGDD4o5f1Or1Txz5gzXrFnD//f//h8bNGiQpyKEm5sbg4KCuHDhQh45cuSVJUmjoqI4bNgwymQyWlhYcM6cOUxKSirxdZLk0qVLxYoo69atK1VfZcGpU6dYu3btfAKGkZERnZ2d6e3tzX79+nH+/Pk8cuTIaz11pkyZQoVCwbgi3EibO3cuAXDUqFEVkqvgTWPz5s0UBIEymYyhoaEVbc4bxZUrV0TPixzRLifUrFq1aty3b594bHp6Ou3t7UUBRKvV0srKigDo6OhIExMTbt68uchjJycns379+lQqlWUicEjixhs+8Ui6f5//ataM7gCTTUzIefPIXCV/0hMT2czMjNDntDhVCX9Iypu4K1cYOn8+l3TrxrBu3cjAQIa5u9NZnwckd/jLGL34sSrHvRCgCUBHQWBtlYq76tUjhwxh5Lhx3DpuHC/v2kVNJcxmLiEhIVFZKIG48Q2AwwCG6dshAIuL00dFNUilYMuMuLg4fvfdd+VeLjUiIkIMP8gJR1mwYEGp+81Z2Hbp0kXcdurUKVpYWNDDw6PUrt4pKSkMDw/nsmXL+MEHH7BWrVp5Fu8eHh4cOHAgly9fzrCwME6YMIEqlYpGRkacNGkS4w1wgyeneoORkRHDw8NL3Z8huXDhAhs1aiS+Hg0aNGBwcDDPnj1b4lARjUZDZ2dncVH4OnQ6Hf/1r38RACdOnCgJHEVgx44dosCxdu1aKQlrMcjKyuKyZcuo1OdrzAmNKkiwmzFjBgVBYGRkpPg5FgSBNWvW5MWLF4s85unTp8VQOl9f3zKpAFVWOTd2AegCQFbSPsq7vaniRg4ZV6+SvXpRDTDAyIhbx47Nk4/ji6ZNCYCdAHLJkgq09M1AnZzMi9u3MyYkhJw1i2EdOrCtpSW9lEo6CAJN9F4gIXrxY9xLCr9cLybts7YmGzTgjgYNOLRGDc5q04bfjxzJvzdtkjxBJCQk/pEUV9zIPgW9ACzTt6Dinl/R7U2fY1RGevToIf7m+vj48Ouvv2ZkZGSZjnn//n2xNGSTJk1obW1Nf3//1y6oNBoNly9fLpZjfBUODg4EwEuXLonbTpw4QTMzM9auXZuPHz82yHXk8OzZM/76669csGABe/bsySpVquTJFTFixAjev3+/1ONs3bqV9vb2BEBbW9tKUxGFJG/evCnesYY+b8rrKkgUlQMHDhAAd+/eXeRzdDodx48fTwCcMWOGQex429m7d28ezyRbW1u2atWKs2fP5o0bNyraPJLZuXTmzJnD9u3b09nZmcbGxjQ3N6eNjQ2dnJxYtWpVenh4sEGDBvTz82O7du3YpUsXDhgwgB999BEnTZrEOXPmcPny5dy0aRP37NnD8PBwXrlyhXFxcSUSdSIjI/nee+8RAE1NTcXPfUGlnGNiYqhQKDh48GDxde7UqROfPXtW5PGCg4PF/9Nnn31WbHuLSlmJGwEAtgC4A+BrAF4l7au82tsy8Yj++Wc20Wdlbm5unsdT48Q331CjUJAATzRvLpVbNQTJyWREBM/OnMkvmjZlnypV2NzcnDUVCtoKAiOUSlIQ2KWAGE0APAGQRkYcb2REd4WCvqam7OrkxDH16nFxly5M376djIwkpfhLCQmJt4QSeG4sKsq2ytzeljlGZeHXX38lAH7xxRf85ptv8ixOmzRpwgULFuSpNmIIoqKixFwWbdq0YWBgIE1MTF47TkxMDF1cXET7VCoVGzduzPnz5+cLBzl8+LDoRZGb48eP08TEhPXq1eOTJ08Mel0vc/z4cVpaWlKlUtHZ2Zk+Pj7s378/FyxYwKNHjxbrTmtoaCirVq0q3uXt3LlzpamIEhUVxdatW4v/F3d3d/72228GHaNv3760t7enupjV/XQ6HT/++GMC4Pz58w1q09vKlStXOGrUKNavXz9fdRqlUkl3d3f279+fmzdvLvP34MWLFzl79my2a9eOzs7OeYSXnO8AJycn2tnZ0dLSkiYmJlSpVJTL5QUmpS1Oc3R0fG2SVbVazYULF4oJQ0NCQqjRaBgUFCT2s3DhwnyCSffu3cX9ffv2LXJuGK1Wy549e4r/i71795b4tS0KZRqWAsAKwGgADwBEABgOQFnafsuivU0Tjyy1mhuGD6ez/sM02N2dL65fz94ZE8MrDg4UALrJ5Yw5e7Zijf2HkBwTw4i1a7lh+HBOb9GCA6tX57vW1kz09CRdXNhDLqeigC+pZL1niE8ubxBnmYy1VSq+a2VF9ulDTpzIgyNHcs/06bx24ADVlWTiICEhIVEQJRA3zhWw7VJx+qjo9jbNMSoajUbDunXrsmbNmszIyBC3R0VFcenSpWzevLn4G9qwYUPOmzeP13PmQCUkPDxcdN1u0qSJWK1h5cqVhZ7366+/ivHs77//PoOCgkQPhpzm4ODA3r17iwvrpnpP202bNuXp67fffqOxsTEbNWrEhISEUl3PqwgLCxOv09HRsdAEmnZ2dqxXrx67d+/O6dOnc/fu3WJJyb///pteXl7i8a1atSqz5IHF5dGjRwwICBAXkW5ubmWy2EpISKBKpeKECRNKdH5WVpZ4l3zpm1D5sJIRFxfH4OBgdurUiS4uLvkEBktLSzZt2pRffPEFz5ZiLXT+/HnOmjWL7777Lp2cnAoUMt555x326NGDwcHBjImJKVK/arWaMTExvHz5MsPCwrhr1y6uW7eOS5cu5axZszhx4kQOHz6cffv2ZadOndi2bVs2aNAgj/hQkDfHyZMnxSSivXv35sOHD/Psb9++vdiHt7e3mEvo0KFD4veBvb19kV+fuLg4sdyzi4tLsfMHlYQyEzcA2AGYAOAMgF8A9AcQAuD30vRbVu1tnHi8iInh9BYt2EIQqDU2JmfPpi45mVqNhp31ro8qgAfnzq1oUyX0aDUaRkdE8MDcuQzp1YscN47s2ZNjHB1ZU6GgnSDQWB8SI9MLHwTo8tLEQwBoC5A2NmT16hxkbc2OtrYcWqMGp7dowf8OGcKIlSvJ2FjJK0RCQqJcKaq4AWAMgMsAUgFcygbbRAUAACAASURBVNXuAdhclD4qS3sb5xgVRUhICAFwz549rzzm/v37XLFiBVu2bCn+LtarV49z5szhlStXijyWTqfjmjVrxAWLi4sLb926RTMzMwYEBBR65zInh4YgCPkWp/Hx8Zw7dy4bNWqUJ95doVCIySxNTU3z5XoIDQ2lSqWij4/PK5OAlpQtW7ZQJpNREASuWbNG3J6VlcUzZ84wODiYw4cPZ4sWLVi1alWampq+9i6zubk5Bw4cyO+//5737t0zqL3FJSEhgd26dcuTL+XHH38ss/FyyrteuHChxH1oNBr27t2bALh69WoDWvfPQ6vVMiIighMnTqS3t3eeEsoAKJfL6ebmxh49enDt2rUFfr7Onj3LmTNnsm3btnR0dCxQyHB3d2fPnj0ZEhJSZCHDkISHh9POzo4AaGFhwQMHDpDMDkEbNWoUAbBq1ar85ZdfCjxfq9WKYoS5uTnlcrnodZHz2XF3dy+S10ZucTcwMLDcqgCVibgBYDeAawCmAXB5aV+xY21znWsL4AiA2/q/NgUc0xjAnwCu6idB/YvS99s88dDeuUP268enABsqFPxh9GhqNRou6dZNrB7yha9vRZspUUw0qanktWvknj384YMPOL5RI/Z2dWUrS0vWVqnoo1CQFhakUkmrgiYducQRB71XiIMgsKZCQR9TU35StSo5dCg5dSp/+PBDHpw7l7dCQ7PHlZCQkCghxRA3rAC8A+BHANVzNduinF+Z2ts8xyhPnj59ShsbGwYEBBQ52eLDhw8ZHBzMNm3aiJPzOnXqcNasWbx06dIr+8nIyBBDAwDQxMSEcXFxbNmyJa2srF6Zi0Kr1TIwMJBAdpnYoiTOPHr0KPv27UtHR8c8v9NGRkbs0aMHDxw4IC4M9u/fT6VSST8/v1JXLsnhq6++Ehd4+/fvL9a5kZGRXL58eZ58HTnVUF6edwiCQHt7e7Zv356LFy8udZLUopCUlMR+/fqJC1FbW9tyqdLi6+vLxo0bl7oftVotlgp+2ZtHonQkJSVx3bp1DAoKYrVq1cTyxDnNzMyMderUKVDIMDIyYo0aNRgUFMRVq1aVqMRyWaHVavnRRx+Jn8EGDRqI1zBp0iSxItOrePLkiVjiOue7zM3NjQDE92LuaioFMXPmTPEz/9VXXxny8l5LWYkbnQvYZlTS/nL1sRjAVP3jqSg4DtcTgIf+sSuAWADWr+v7nzDxuLFlC331CWP8zMwYsXYtT61bRzOAVQBqq1UjXxOnJfHmknjvHk+tW8cfRo/m3HbtuLhpU7JzZ9LXl41VKtrpE6XK9V/crrnEj5dL6ArIDpWhpSXp4sIGKhX9zc3Z1dGRH3l6cnabNjz6+efk0aPU3rsn5XeRkJAQKc1Njje1/RPmGOXBJ598QrlcXizvi9w8evSIq1at4rvvvisuVjw9PTljxgyeP39eFDoePXokhrfIZDLKZDL+9ddfXLRoEQHwf//7X4H9x8XFiTkmqlWrVqIKI4mJiZw/f34+cUChULBu3bqcPn06N27cSIVCwRYtWrx2ofI6xowZIwoxZ86cKbatPXv2FG11cXHJE+IRFxfHHTt2cOrUqezatSs9PT3zhbrk5BIZPXo0f//9d4Pd3U1NTeWHH34oJoC1tLTkt99+a5C+X8fly5cJgCtWrDBIf+np6QwICKBMJuNPP/1kkD4lCubixYucNm0a/f39aW1tnUfI6NWrF1evXl2ksr6VgYMHD4qfN0EQOG/evCKf+8cff1AQBBoZGXHz5s0EskPoMjIyWKVKFQYEBBR4nlqtZqtWrUTvs9fl/ygLykrcKCg+Nt+2EvR7M8cTBIALgJtFOOdijthRWPunTDy0Gg2///hjuup/1AdUq8b4P/5grK8vCfAnvfARVclKdEmUP6nR0WREBLl5M7967z1+Ur8+e7m6srWlJesZGXGYqSlpbc1UlSpP+dyc5qsXRmJyCSIqgBYAnQSBk62sSG9vxrZqxQHVqnF8o0b8KjCQP4wezeMhIUy4dEkKmZGQeAuRxA2JknDp0iXKZDKOGzfOIP09fvyYa9asYYcOHUSho1atWpw0aRJdXFxoYmJCMzMzAuDatWt56dIlqlQq9urVq0Bvj+PHj4t3Ozt37lzqRfq6desIgHXr1uUHH3xAZ2fnfHeVBUFg7dq1S7TY0ul04l1Ya2vrYlUwSU9P57Bhw0ThwMbGhhs2bCjy+VFRUZw/fz7btGlDW1vbPNclk8no4uLCLl26cM2aNcUOv1Gr1Rw9erQY7mNmZsaFCxeWm0s8SX7++edUKBQGTf6akpLC1q1bUy6XFxqS9U/kzp07/OKLLzh06FDOnz+f27Zt48WLFytN8tryJjMzk1999ZVYkSX3d5yfn1+Rc/YsXrw4z2fz999/J0kuWLCAAPKJzJGRkWJOIQ8PD4OHzhUVg4obAJwB+AC4DqAJAG99exfAjeL2V0D/z3M9FnI/f8XxfnpbXluS9p828Uh5/Jj/bt2aA2Uy0tiYuunTeXfVKnbTZxgWAAa5uDC5ErlZSVRutBoNo0+d4tGlS7lu2DAeHTqU/PhjPggIoL+5OeuoVHSTy2mj9xD5UC9+HCxAGAHAAfr9e3OJIo6CwBoKBZuYmPCnevXIvn15bcAAzm7blt8NHMi9M2fy/M8/M7GCY3slJCRezZsubgCoC2AbgDUA+hTlnH/aHMPQ6HQ6tmvXjra2tmWSTPPJkyf8z3/+w44dO1Iul9Pd3Z2enp4EwOHDh1OtVrNRo0Z0dHQscMG6ePFiMRTDkNUtatSoQQBistGkpCQuWbKEvr6++TwgzM3N6e3tzbFjx/K3334rdDGv0Wjo7e0tupsXNbxFq9Vy8uTJYtUYMzMzLlq0qNTXqVaruW3bNg4YMIA1atTIk4ck59p8fHw4efJkMcFhDmFhYVyyZAk1Gg0///xz0TZjY2POmDGjXEUNMnth6eTkxKCgIIP3nZSURD8/P6pUKh46dMjg/b9J6HQ6HjlyhN27d6cgCJTL5XlCo3JatWrVGBAQwE8//ZTffvstQ0NDeffu3Xz5bN4WIiIixIShQUFBYgLPu3fvit9pSqWyyF5FOSW3c3tqxMfH09jYmCNHjhS3bd26VQzrGTRoULl/7nJjaHHjQwBhAJL1f3PaLwB6FbGP3wBcKaD1eFnMAJBYSD8uek8P/0KOGYnshKdnqlWrVlavcaVGFxVFDhzIOzlfAnI5W1tY0DTHDRLgtKZNpTvoEmWGOj6eF7dv597p07mqXz9Ob9GCIzw8eKBpU7JFC4a6ubFqLlEkJ2xmql78mPsKcWQ+QMpkXCyT0RzZ+USqy+VsYGTElhYWPNWyJTlsGE8NGsQl3bpx69ixDF+5klHh4VLFGQmJMqQk4gayc20E6B+bALAobh/6czcAeALgykvb39fPGSKhD38tpI/PAbTWP/6lKONK4kbp2LlzJwFw1apVZT5WUlIShwwZQiC7MgpJzpgxg0D+JKZarVac/BsZGRm8lOi5c+cIgM7OzgXuP3XqFDt37lxgjgtBEGhra8sWLVpw6tSpPH36tHh9OQkDGzVqVGBFhZfRarX86quvaKoPbVapVPziiy/KdAFz+fJlTp06lX5+frS0tMwXolO9enX26dNHzAWQI2qoVCpOnDixSNdVFuzbt48Ayqzc5bNnz9i4cWMaGxszLCysTMaozKSkpHDNmjWsW7euGCoxY8YMcRGfkpLC8+fP86effuKXX37JQYMGsWnTpvneQ0ZGRqxXrx579erFqVOncuPGjTx58qRY8aeykpaWxnv37vHPP//k7t27uWbNGs6ZM4ejR49mp06dKAgC3dzcXunds3jxYlGEqFOnzmurGGm1Wu7atSufGDRixAiamJgwISFBzE0kl8uL5cFVVhQ2xxCy9xcfQRB6k9xZopML7/cmgHdJxgqC4ILsyiteBRxnCeB3AAtJ7ihK376+vjxz5oxB7X2TSPjrL/y8fDl+P3kSv8fEIF7/v1cAaA5gl0qF1PHjUf2bbyrUTgmJHHQvXkD24AEenjuHI8eO4dGDB4iLj8fT58+RkJKCfzs6oiWApY8eYWFyMjJIZALQIvuX7WcA/QAM0D9+mV8BdJTL8TGJn3U6GAsCTGQymMnlsFAqsdvbG67OztiZlIQLaWlwdHKCk5sbXD08UKVBA1T384PM2LjcXg8JiTcFQRDOkvQtxvEfI/tmhC3JmoIgeAD4jmSHEozdBkAKgP+RrK/fJgdwC0BHAA8BnAbwAQA5gK9e6uL/6f/OBpAGoAXJlq8b958+xygNGRkZqFOnDiwsLHDu3DkoFIoyG0un02Hx4sWYNm0abG1tERMTgwsXLqBly5YYOnQoNm7cKB777Nkz+Pr64t69e3B1dcXp06fh6upqcJvef/99HD58GAsXLsS0adMKPObPP/9Ely5doFKpMHHiRFy5cgVnzpxBdHQ0MjIyxONkMpk4yff09MT+/fvh4eFR6Pjr16/H5MmT8fz5c8jlcgwbNgyrV6+GSqUy6HW+juTkZGzbtg379u3DmTNnEBsbC51Ol+eYkSNHIiQkpNxty02fPn0QHh6Ohw8fQqlUlskY8fHxePfddxEdHY0jR46gefPmZTJOZeLevXtYtWoV1q9fj+fPn6NJkyaYMGEC+vfvD+MizLVI4smTJ7h58yZu3ryJW7duiX/v3LmDrKws8VhbW1t4eXnB09MTnp6esLa2homJCUxMTGBsbCw+ftVzY2NjyGSyIl9bVlYW4uPj8fjxY7HFxcXleZ7TkpKSCuzD3t4eTk5O6NSpE/7973/DwsLileM9efIEnTt3xtmzZyGTyTBjxgx8+eWXRbYXAC5fvoyGDRvCyckJcXFxsLa2xokTJ1CvXr1i9VMWFDbHKLa4IQjCYJKbBUH4HNnrhzyQXFYyM8X+vwGQQPJrQRCmInuiM+WlY1QADgHYR3JFUfuWJh7/B3U6XNu3D2GbNyMoJQVmR49io0aDScie6QXY2mJg795oN2IEqjZrVtHmSkgUG11mJvD4MWQPHuBSRASORUQg7vFjxCUk4FlyMp6np2OzmxvcMjMx/tEjbE5Lg5qEBkAWsr/cHgBwA+AL4GwBY6QCMAXQGtkrJSUAI0GAsSDAUi7HtXr1AAsLfPn4MW5mZsLawgJ2NjZwcHSEa7Vq6N21K+DiggwbG6js7SErwwm9hER5UgJx4wKyw0z/ItlEv+0yyQYlHP8dAPtziRvNAcwhGah/Pg0ASL4sbLzcjxzALpI9XrF/JLJFGVSrVs0nOjq6JOb+41m4cCFmzJiBo0ePon379nn2ZWRkFGlh8ypI4vjx49i4cSOOHz+OBw8eQKfTQalU4saNG3B2dkbjxo2hVqtx6dIlWFlZAcgWEzp06ID09HR06NABoaGhZSa6JCUlwd7eHjKZDImJiTA1NS3wuKtXryIwMBApKSnYt28fWrduDQB4+vQpdu7ciZ9//hm///47Xp7bKxQKuLq6onHjxujYsSP69esHR0dH7N27F6NHj8bjx48hCAKCgoKwceNGWFpalsl1FhedTocOHTrgzz//hL+/P44fP45t27ahb9++FWbT06dP4erqinHjxmHp0qVlOlZsbCzatGmDJ0+e4NixY/Dx8SnT8SoCkggLC0NwcDB++eUXyGQy9O7dG+PHj0eLFi0gCIJBxtFoNIiKisonety8eROxsbEl6tPIyKhQAQTIFhkeP36M+Pj4fJ9LALCwsICzs3Oe5uTklG+bo6NjiYS0jRs3YsyYMVCr1ahevToOHTqEOnXqFOncM2fOwN/fH1qtFr6+vggPDy/Vd7EhMbS4MYrkWkEQZhe0n+TcEtiYu387ZMe5VgMQDaAfyWeCIPgCGE3yI0EQBgPYiOxSsDkMI3mhsL4lcaMQdDrc+fFHDBgxAmfUanGzDEDSO+/AvEMHXK5ZEzYBAXBr2rTi7JSQKE+ePwcePsSl8HBcOH8ecTExiH/yBE+fP8eL1FTs8PQEXrzA0MhIHE1NRQYpCiQyAOn6bqoAePRS13JkiygA4ADgKbKTDMmR7U3lJAiIsrcHjI3RJSEBsSTMlEqYq1SwMDZGXUdHzOnQAbCxwY6oKAiWlnB65x041KwJp9q1YenmJoklEhVGCcSNv0g2EwThPMkmgiAokJ2kvGEJx38HecWNPgDeJ/mR/vkQAM1Iji3k/OkAzACsIXnidWNKc4ySERMTAy8vLwQGBmLnzrwOwX369MHOnTthZ2eHLl26YPr06fDyyufMm4/Tp09j/fr1OHr0KO7duwetVgsg26uhatWqaNu2LWbMmAFPT0+MGzcOK1euxLFjx9CuXTsAQEhICCZMmACSmDlzJubNm2f4C3+JGTNmYOHChejZsyd27979yuPu37+P9957D9HR0fj555/RvXt3AMChQ4fQrVs3aLVaLFiwAIMGDcK2bdtw9OhRXL58GXFxceLrAAAqlQqZmZkAgPbt2+OHH34oE6+U0vDgwQO4u7tj8uTJWLBgARo3boz09HRcu3atwjw3QkJCMH78eFy8eBENG5bo66lY3L9/H23atEFycjKOHTuGRo0alfmY5UFqaiq2bNmC4OBgXL16FXZ2dhg1ahTGjBkDNze3crclOTkZGRkZSE9PR3p6ep7HxX2e81in0+URKl4WLZycnGBmZlbm15eSkoLu3bsjLCwMgiBg9OjRWLlyZaGeJyEhIZg4caLoOVXRouLLFDrHeFW8yusaAIeSnltRTYqHLRoXt29nbX1cIwAOMTIiraz4rv55LaWSH3l5ccsnnzDm7NmKNldConKj0TDu8mWe3bKFB+bM4aYRI7i4c2cuatuW/Phjsk8fjqpShf7m5mxgZMQaCgVdZDLWlclIU1NSqaRdAflGrPT5SKhPxvryfgeAFARSLqc1QDOA1oJAZ5mM1eVyDrSwIL29yVat2MPBgb1dXTmsVi2Ob9yYs9u04b6PPiI3bSL37mXEmjW8cegQE+7ckUr+ShQJFDPnBrLLwE8HcAPZoSO7ASwoTh8v9fcOcuXcANAHwLpcz4cAWFnS/l8aqxuA/9SqVassXsq3nsGDB9PIyIh37tzJsz2n1KZKpRLjxwHQ1taWgwYNypPF/+rVq5w4cSLr1q2bJ1GlIAh0dXVl3759uW/fvnz5I44cOUIAnDBhAsns2PO+ffuKCfkOHDhQ9i+AHq1WSzs7OwLg1atXCz02Pj6eTZs2pUwm4/r16/nf//5XzMnxqhK2ZPZrOmvWLLZp04aOjo708/PjrVu3DH0pBmPGjBmUyWS8p08gfvDgQQJgcHBwhdnk7e1Nb2/vch0zMjKSrq6uFASBLVq04JIlS/J9Xt4U7t27x8mTJ9PGxoYA2LhxY27YsIFpaWkVbdpbz549e8TqUA4ODjx16lS+Y7RaLXv27Cl+B+7evZvu7u5s2bJlBVj8agqbY5Tmx/wWskPWRwCwKWk/5dkkcaN47Jk+nY6CwOEAKZfzr/btuaRLF3Z3dqaVfuIQAJC1apFDhnDzhx/yzObNzJQSNUpIlAlajYbxN27w8q5dPL92Lfnzz+Tq1VzRqRMneXtzhKcne1epwvdsbTnW2Zls1Ij08KCHXE4HQaAlQBOASoCNcokjLwsjAFhfvy/9FfvbAaRCwRiViuYAbQWBLjIZ35HLWVup5DxnZ7J5cz5o2ZLdnZz4QbVq/NjLi5O8vTmnbVuemjCB3LCBSVu3MmzFCl7cuZMPzpxhegWVFZMwLCUQN2QAPgawHcAO/WOhOH281N/L4kZzAIdzPZ8GYFpJ+y+oSXOM4hMREUEAnD59er59OVn/oa/YUbVqVdrY2IjlDoHskqK5n+dM2rt168Yff/yRmZmZrxw7MTGRbm5u9PLyYlpaGpOSkujh4UEAdHR0fG0SvrIgJ1Fl7dq1X3tscnIyO3bsmCcBp6GTnVYkGRkZdHBwYI8ePcRtOp2O7du3p52dHZ8/f17uNl28eLHCxJUHDx7wyy+/ZJMmTcT/eaNGjTh37lxevny5wNLFlQWdTsdjx46xZ8+elMlklMvl7Nu3L8PDwyu13W8jarVaFC8AcMCAAWJi3ri4ODERsYuLi5jAdfny5QQgJiyuDBQ2xyhxQlEAEATBD9m5+noCuAbgJ5KbS9xhGSO5jJYM3ZIlkP373+iVno5QAPO7d8eE7dtxcft2aP7+G82io5EcEQGr+HgQgDEAX0tL+Ht5oW/v3vAbPBioUqWCr0JCQqJAdDo8vXMH8bdvIyEqCgkxMXgWG4vqRkZo7+CAjIQEjPn1VySnpSFFrUZKZibSsrLQxcQE8ywscCc1FU0TEqAhkYXsUBsdsn8UdgI4AuC9AoYdAOBHZCd6HVDA/rEAQmQybBEEfKTVQg5AKQhQ6v8utLHBh/b22J+RgXlPn8JEoYCpUglTlQpmxsb4zNsbjd3dcSklBcdiY2FhZQUrOztYOTjA2tkZ9Zo0gWmVKoC1NSCF7xicEoSlmAHIIKnVP5cDMCKZVsLx30HesBQFsm/KdAAQg+w0OQNJXn1VH8UYqxuAbrVq1fr49u3bpe3uH4NOp4O/vz9iYmJw8+ZNmJubi/s2b96MIUOGAAA6duyI6tWrIzw8HPfv30d6enqB/QmCAFdXVwQEBMDf3x/u7u5wd3dH9erVYWRklO/4Dz/8EFu2bEFERAQUCgXatGmD1NRUtGrVCmFhYWWa1LQwvL29cf78eWzevBmDBg0q9NihQ4fihx9+AJB9PRs2bChWksPKTM574MiRIwgICBC3nzt3Dj4+Ppg2bRoWLlxYrjZNmjQJK1euRGxsLOzs7Mp17Nzcu3cPu3fvxq5duxAREQGS8PDwQK9evRAUFISmTZtWivdBWlqaGHpy5coV2NnZYeTIkRgzZgyqVq1a0eb9o/njjz8QFBSEZ8+ewdLSElOmTMG8efOgVqsRGBiIgwcPiu+hpKQkuLm5oWfPnuL3TUVj0JwbrxjAHsAyAINIykvdYRkhiRulICsLX/j6YvnFi9ACcBQE/HfaNHRfsABAdoLS+3/+iVPbtuFUeDj+un0bZ1NSsBTZi5T7zs74XC6Hf5MmaNapE3wGDICJrW1FXpGEhEQ5kPXiBR5fv45n0dF49vAhEmJj8Tw+Hk3t7dHQ3By3o6OxOCICKRkZSMnIQFpmJtI0Gky0s0N/Y2PsfPYMY589g4YUBRQtgEUyGSYA+LdOh4Ki4YMBjAMwBsB3BezfDGCQvm3VbxOQ7T4gB3BMpUJLpRKfZWbih6wsKAUBqpwmk+GwhwfcLCzw7dOnOPz8OUxUKpioVDDVJxhb1LEjjC0tcSw2FpFJSTCztISFjQ3MbW1haW8PX39/wMICmcbGUFhavnX5UUogbpxCdhnYFP1zcwC/kmxRgrF/BPAuAHsAcQBmk1wvCEJnACuQ/S/eQHJBcfsuDGmOUTy+//57DBs2DD/88AMGDx4sbtfpdLC2tkZycjIsLS1BEsnJyeJ+S0tL1K1bF82bN0f9+vXx+++/47fffsPjx4/xqjmtq6urKHa4u7uDJObPn49Zs2bBzc0NY8aMgU6nw+TJk/FNBVeMi46Ohru7OywsLJCYmFjgIlWn0yEgIABhYWGws7ND9+7dsXHjRgwZMgTr168vswoe5Ym/vz+eP3+O69ev50sqOXjwYOzcuRO3b98ut/wMGo0GVapUQZs2bbBjR5GKNJYLjx8/xt69e7Fr1y4cO3YMWVlZqFKlCoKCgtCrVy+0bt263IQ6jUaDe/fu4datW/jjjz+wbt06JCYmolGjRpgwYQIGDBgAExOTcrFF4vXodDp89NFH2LRpU7bHgyDg66+/xpQpU/IdO378eHz33XeIjo6Gi4tLBViblzIRN/SlWIOQfdOtJrLjY7eRLKioQKVAmniUnmd372JQs2YIffoUANDZzAwHIiKAApIqqV+8QNa5czC7dAkR+/Zh8O+/456+DJMCQCNTU/yna1d4d+8OjY8PFJ6eECqB0iwhIfHmkZWWhufR0UiIjsbzmBh4WVvDWqvFlevX8eu5c0hOSkJKaipS0tKQmp6OWTVrwkMux7p797D+0SOotVqotVpk6nRQkzhkbY16AEa/eIHNGg20yBZVdPp2G9k/fM0BnCrAniQAlgAaArhcwP6cX14PAJG5tssAqACkK5WAXI7majWukZALAhQAFIIAO7kcl6tWBZRKDIiNxW2NBiqZDCq5HEYKBdxMTbGhWTPAyAhfXr+OeI1GzORuamKCqo6OGNS6NWBmBlhZAV27GuA/kJeSVEsh2fh12yojkudG8UlOToanpyfeeecdnDx5Ms8CPifBZw5yuRy+vr7o3r07PvroIzg6Or6y3/3792PZsmWIiIiAWp8cXaVSwcnJCfb29nj27JlYLcXb2xt16tTBli1boFAosG3bNgQFBZXdRReDHI+MsWPHIiQkJM8+tVoNb29vXLt2DTVq1MClS5dgamqKBQsWYNasWejcuTO2b9/+yoorbwKnT5+Gn58fQkJCMHZs/py/UVFR8PLywqBBg7Bhw4ZysWnv3r3o2bMn9u3bh65l8J1pCBITE7F//37s2rULhw8fRnp6uih+9erVCwEBAaWudpGVlYX79+/j1q1buH37dp4WFRUlJq2Vy+UICgrC+PHj0apVK4NVPZEwPBcuXMDnn3+OL7/8Ei1bFlz1/Pbt2/Dy8sKsWbMwd26paocYhLISN+4B2INsQePPUthXbkjihuG4GRqKfkFBGJ6RgYkAzlStihtdumDwmjWFnhd35Qr++vFHnAoLw6nr17FRrUb19HSsBDBHEODv4AD/Bg3g/957aDpgAKyqVSuX65GQkJAoCZkpKXgRE4OkmBgkPXqE548fIyUxEV1r14YsPR0H//4b56KikJaWhtS0NKRnZCArKwsbGjcGMjIw7coVnExMRIZWi0y9uKIEcNHZGdBo0O7pU1zIyoKWFMUVUwAJCgWg08FVp8PLReyM8X+VeswAqU1/5gAAIABJREFUvBzXYQHgRc4TQQD02dANSQnEjZMAxpE8p3/ug+yEn80NblwZIc0xis7UqVOxaNEi/PXXX/Dz8xO3P3nyBC4uLmKGfmNjY5w5cwb16tUr9hiHDh3CsmXLcPLkSTGUxczMDG3btkW/fv2waNEiXL9+HXZ2dvjrr79Qs2ZNw1ycAcjMzIS1tTUyMzPx6NEjUdBJSEhA/fr18fjxY/j7++PEiROQy//PYXrt2rUYM2YMmjdvjn379sH2DfWQHTZsGHbu3ImYmJhXlqWdPHkyli1bhosXL6JBgxJVjC4WQUFB+PPPP/Hw4cMKC1kqDqmpqTh8+DB27dqFffv24cWLFzA3N0eXLl3Qq1cvdOrUCRYWFgWeq9Pp8PDhwwIFjLt370Kj0YjHmpubw8PDI1+rXbv2G/v+kyiYrl274vTp07h//36BoX7lSVmJGwINEdNSjkgTjzLg6FFg3Di0uH4dfyJ7Iv2Blxe+CQ2F9TvvvP58rRa4dg3HNm3C5n378Nf9+7imv9uiAPDcywtmLVrgjLMz5A0bokHPnlBUkhrLEhISEpUJXVYW0p4+RcbTp7BXKoHUVJw5cwZPHj9GWlISUl+8QGpyMqzkcgyqUwdISwPkcqAMylyWQNxoCuAnZFdNFgA4A+hfmb1Bc5A8N4pHZGQk6tWrhw8++ACbNm3Ks69Fixb488/s+2Wmpqa4dOmSQUSHI0eOYOnSpfjjjz/y5Oxo2rQpTpw4UWFlRQtj9erV+PTTT9GqVSuEh4fjzp07aNKkCZKTk9G7d+9Xhkbs3LkTAwcOhIeHBw4fPowqb1jOs/j4eFStWhUfffRRHg+el0lMTETNmjXRrFkzHDp06P+zd99xVZftA8c/N3tvEREBFQeCe+eqnKllZcOWZZZlWq7SyuepfmW2zMyGDUtLy540LVeae+QeKQoqIohskSWbw7l/f3A0MydyOIDX+/U6LzjfcX+v8xUPF9e5h9lj8vf3Z+zYsRYftlQexcXFbNiwgcWLF/Prr7+SlpaGvb09vXv3ZtCgQQD/KGTExMRQWFh4/nxHR0dCQkIuWcTw8/OTXhk3iTVr1tCnTx/mzp3L448/btFYKrS4oZSaobUeq5Raxt89a8/TWt9VvjDNT4ob5hO/fTvj77uPZUlJFFOWmXZxcWHLihXQvft1tZV18iS7fvyR49u28ZzWsHMnfdPT+YOyTyzburnRsXFjevTqxcBRo6CS18MWQghxZddb3DCdYws0MT09qrUuudLxVY3kGNfm7rvvZt26dRw7duwfY7f//PNPunbtCpQVNqKiogg0Q+/NjRs3MmPGDFq1asUbb7xR4e1XpODgYE6ePMnMmTN58cUXKS4uZty4cUyfPv2K523YsIFBgwbh6enJH3/8QZMmTa54fFXy7rvv8sorrxAZGUloaOgVj/3www958cUX/zXpaEX7+OOPGTt2LBEREYSHh5vtOpWhtLSUbdu2nZ+Q9OTJk0DZ8K2GDRv+o3DRuHFjGjVqhL+/f5WYoFRYltaa8PBw7O3t2bt3r0WLWhVd3Girtd6rlOpxqf1a603liLFSSOJhfkaDgY/uuYePVq7E3mgkBqBWLWZ16MDwn37C7oLZ0K+Z1sRt2cL2hQvZuXUrO6Kj2Z+XRxdgPYC/Py86OVErJISOffvSbsgQXPz8KvR1CSGEuHblLG7cQtkSruf7fGutv6/g0MxGcoyrO/fJ37vvvsukSZP+sc/e3p7i4mLs7OyIj4+ndu3aFoqy6ti1axcdO3Y8/3zGjBmMGTPmms7dt28f/fr1Q2vNypUrad++vbnCrDAGg+H8H9hr16696vGFhYXnhz/s2bPHbH+At2rVCltbW3bv3m2W9i1Fa01UVBROTk7Uq1fvH0OchLiUL7/8kmeffZbNmzfTrVs3i8VxxRzjcmvEXu0BjLmWbVXpIWvQV66Sbdu07t5dLzq3Bjvo/rVq6WN//HHDbRdmZ+uEZcu0njlTGx56SIfa2v697j3o5g4O+qtu3bSePVvriAhtKCqqgFckhBDiWnCFNegv9QDmAduAz4FPTI+Z19OGpR7AncBXISEhFXsTa5ji4mLdrFkz3bBhQ11YWPiPfU2bNtWAVkrp1NRUC0VYNQ0ePFjb2dnpRYsWXfe5x44d08HBwdrZ2Vn/UQG5l7ktWbJEA3rJkiXXfM78+fM1oOfPn2+WmPbv368B/dlnn5mlfSGqk7y8PO3p6akHDx5s0TiulGPcyJwb+7TWbS7atl9r3bpcDVYC+VTFMnLT0vhvv37M2b+fbNO2hjY2/Pzqq7SpwBl3048eZddPP7Fz/Xp2Hj7MvQUFjMjPJxFoCrT38KBj06a079aNdvfeS70OHWR1FiGEMINyzLkRBTTT5U1KqgDJMa7sk08+4YUXXuDXX389P84foE+fPqxZswYoGzLSo8clOwaLckpOTqZfv35ERUUxf/58HnjgAUuHdFm9evU6P+fDtU7aaTQaad++PWfOnOHIkSM3vBrIxcaOHcusWbNITk6WCTKFACZNmsS0adM4ceIEQUFBFonhSjnGdf9lp5R6yDTfRn2l1NILHhuAjBsNVtQ8Lr6+fLRvH1las3jiRMLt7Yk1GPB5801wdmZ1nz5kHD9+9YauwqdJE/q//jr/t2kTq9LTGZGbC0ePUjp9OkPDw8kpLmbajh0M/uADgjp35n+enjBgAAnjxrHstddIOXiwAl6tEEKIcjhE2SSiogZKT0/ntddeo3fv3tx1V9nUbEajkR49epwvbNx6661S2DCDOnXqsGnTJjp16sSQIUP47LPPLB3SJUVFRbFu3TpGjhx5XauRWFlZ8cEHH3Dy5MkrTkBaHsXFxfzwww8MGjRIChtCmIwaNQqlVJV9LynPnBtBQH3gHeDlC3adBQ5qrQ0VF17Fkk9Vqo78Y8dweu01jIsX41xSQhHQxsmJ9954g54vvWS26xZmZXHgl1/Ys3o1g4CAyEi+iozkGdP/g7pWVrSvXZt2YWE8O2IE3rffDt7eZotHCCFqonL03NgAtAJ2AUXntusqPEn5xSTHuLxRo0bx5ZdfcuDAAcLCwjAajXTq1On8HAbW1tYUFRXJmH8zKigo4MEHH2TZsmW89tprvPHGG1VqlYvRo0cze/ZsTp06Ra1ata77/P79+7N9+3ZiYmIqrBCxZMkS7r33XlauXMkdd9xRIW0KURM88MADrFmzhoSEBJydnSv9+mZZCrY6ksSj6jEaDHzywANMW7qUhNJSALyV4o0+fRi9dClUwvJseamp/PXLL+xes4Y9f/3F7sREoktKOAN4Ap97e7PB0ZH2zZvTrmdP2t5/P+5mmMFdCCFqinIUN6rdJOXnyFKwV3bw4EFat27NqFGjmDlzJqWlpbRu3ZqIiAiUUmitmTVrFs8++6ylQ63xDAYDI0aMYM6cOYwcOZJPPvmkShSUcnJyqFu3LoMHD/7X8sDXKiIigpYtWzJ+/HimTZtWIXENGjSI3bt3Ex8ff129SYSo6c6tbmWp9+6KXi1lq9a6q1LqLP9cClYBWmvtVv5QzUuKG1Xbvh9/ZMKoUWzOyuJJ4GsrK442bszWDh0Y9s03WFXiL5azCQm4HjsGe/bwwQ8/MCsykljD352SWtnbs+/ee1EdOnDC35/at96Ks69vpcUnhBBVWTlXSwkCGmmt1yqlnABrrfVZ80RY8STH+DetNT179uTAgQNER0fj6upKeHg4x44dw9PTk8zMTOrWrUtCQoKlQ71paK155ZVXeO+99xg1alSFD+Uoj08//ZTnn3+e3bt3067ddb1t/MOTTz7JDz/8wNGjRwkODr6hmFJTU6lbty4TJkzgvffeu6G2hKhptNa0b9+e/Px8Dh8+XOm9wKTnhokkHtVDfno6vPUWTgsXcm9yMksoWxewnYsL44YP575p0yq10HHOmWPH2LNwIXs2buRsXBzvFhRAYiKdKOtH3djOjla1a9OqWTO69O5Nt0cfBVnKTghxEypHz42ngRGAl9a6oVKqEfCF1rqn2YKsYJJj/NvixYsZPHgwn332GcOGDSM0NJSTJ0/SokULDprmuYqMjCQ0NNTCkd58xo0bx4wZM1i7di09e1ruv5nWmtDQUDw8PNixY8cNtZWQkEDjxo255557+OGHH26orenTpzNhwgT5+RTiMubNm8fQoUNZvXo1ffr0qdRrm6W4oZRqCCRorYuUUrcCLYDvtdZZ5Y7UzCTxqH7it2/nrSee4NfoaNJNP6v2QEqXLnj897/Qt69lA0xOZtVXX7Fz40b+OnqUv06fJs5g4F7gFwA/Px6zsiIgMJDWnTrRql8/Qnr2tEhxRgghKks5iht/AR2AnedWXVNKRWitm5srxoomOcY/FRYWEhoaiqurK5s3byYsLIykpCR69erFvn37yMjIYMCAASxfvtzSod6UCgoKaNWqFUVFRURERODq6mqRONauXUvv3r2ZN28ejz766A23N3nyZKZOncqePXto27ZtudrQWtOiRQucnZ1vuOAiRE1VVFREUFAQbdq0YeXKlZV67QpdLeUCvwClSqkQ4CugHvDjDbQnxL8Edu7M10ePctpoJHLFCh4KDCTMygqPP/+Efv1obWVF/1q1+POLLywTYJ069Hv9dV7fsIElSUnElpSQGRvLRz/9BB99REHPnkRkZDBtxw4enDGDJv364WZry7TgYHjuOQxffMHu776jIEMWGhJC3NSKtNbF554opWz459BXUc1Mnz6duLg43nzzTRo3bkxSUhL33HMPQUFBZGRkYGNjw88//2zpMG9ajo6OzJkzh/j4eF5++eWrn2Amn376KbVq1eL++++vkPYmTpyIj48PL730EuX9AHf//v0cOnSIJ554okJiEqImsre3Z+TIkfz+++8cPXrU0uH8TWtdrgewz/T1JeB50/f7y9teZTzatm2rRQ2xe7cuGDhQu5YlvxrQrqAH+/vrAwsXWjq6fynMztb7FyzQ3w4bpl9o2VIvDwvT2s1NHzLFbg06zN5ePxIcrD8YMEDHfP+91qdPWzpsIYQoF2CPvr6c4n3gVeAI0BtYArx9PW1Y6gHcCXwVEhJSsTexGktISNDOzs66f//+2tPTUwP60Ucf1StXrjz/O3vKlCmWDlNorcePH68BvX79+kq/dmxsrLaystKTJ0+u0HZnzpypAb1y5cpynT969Ghtb2+vMzIyKjQuIWqalJQUbWdnp0eNGlWp171SjnEjw1J2AjOAycCdWutYpdQhrXV4uRqsBNJltGbaOGMG77z1FpszMigE+gG/e3qS1bcvZ55+moa3327pEC9Na7IPHmTdDz/w144d/HXsGPvT00koLWUF0B/Y4u3NFCA8KIjwli0J79GDZnfcIZOXCiGqtHIMS7EChgN9KJugfDUwW5c3SbEAyTH+9thjj/Hzzz9ja2tLXl4eI0aMYOrUqTRt2pT09HRq1apFWlqapcMUQH5+Pq1atcJgMHDw4EFcXFwq7dovv/wy06ZNIzY2lnr16lVYu8XFxYSFheHg4MBff/11XSvCFBUV4e/vT58+fViwYEGFxSRETfX444/zyy+/kJCQgIeHR6Vc84o5xuWqHld7AM2AmcBDpuf1gUnlba8yHtJzo+b77dVX9aE2bbS2tdUvmD4d8lVKjwwL04l791o6vGty+sgRnb9ihdYffKB/79VLt3Vy0o4X9FBRoCMCArS+6y69Z9gw/ePo0frgokW66OxZS4cuhBBa6+vruQFYAz9c6/FV9SE5Rplt27ZpQNva2mpAjx07VhuNRn3fffed/z22atUqS4cpLrBlyxatlNKjR4+utGvm5+drLy8vPXjwYLO0v3DhQg3ob7755rrOW7RokfyMCnEd9u7dqwH94YcfVto1r5RjyGopomYyGvl90iRe+/xz9ufnU2raXNfKir+GDsXn1VehUSOLhng9SouLid2yhUNr13Jo925e9PTEISqKCZGRTDf9H7YBGtvbE+7ry/dPPol9q1ZkBwXhEhaGtZ2dZV+AEOKmUo6eG1uB2/UF825UN5JjgNFopGXLlhw6dAgom9xxypQpzJ8/n8ceewyAdu3asXv3bkuGKS7h3OopGzdupEePHma/3pw5c3jyySfZsGEDt956a4W3r7Wmc+fOnDp1iujoaJycnK7pvDvvvJP9+/dz8uTJ6+rxIcTNrFu3biQkJHD8+PFK+X9jrtVSugBvAEGU/V2lAK21blDOOM1OEo+bk6GwkK+HDWPWkiWcLCoi27S9t7U1tp6ePDdyJP1fe61armBSlJPDsTVrOLRxI4f27SMiJoaUrCx2FRUBMARYCjRzciK8Th3CmzaldZcu9Hz4YahXD6xuZE5hIYS4tHIUN74HQil7y8o7t11rPd0M4ZmF5Bjwf//3f7zxxhsATJ06lVdeeYVTp04RHh5Obm4uWmvi4+MJCAiwbKDiX/Lz82nRogVaaw4ePIizs7PZrqXLejpRXFxMREQESimzXGfLli10796dt99+m1dfffWqx6ekpBAQEMDEiROZOnWqWWISoiZatGgR999/P0uWLOHuu+82+/XMVdw4AowD9sL5D8bRWp8pV4OVQBIPgcEA8+bBt9/itXUrmabNNkC4gwMjBwxgxNy5UIljTs0iNxeiovj1++/ZvG0bh0+e5FBmJklGI62BfQCOjjzp6EiBiwtNGzSgaYsWNO3alcY9e+Lo5WXhFyCEqM7KUdx4/VLbtdb/V3FRmdfNnmOsWbOGPn36APDRRx8xduxYjEYjvXv3ZsuWLZSUlPDEE08wZ84cC0cqLmfz5s306NGDF154gY8//ths19m+fTu33HILs2bN4tlnnzXbdQDuvvtu1q9fT0xMDLVq1brisdOmTeOll17iyJEjNGnSxKxxCVGTGAwGGjZsSIMGDdiwYYPZr2eu4sZOrXXHG4qskt3siYf4t53ffMPHb77J2lOnOK01bYE9QKG/P+Pc3Bj70Uc06dfP0mFWmIyYGE7v2EGT/Hw4coRHfvqJ7WlpxBkM59dcvBNYWr8+NG3KG5mZ+DdsSNOOHWl6++3UCg1FSW8PIcRVXG9x44LznLTW+eaIydxu5hwjOjqaJk2aoLU+PxQFYMaMGYwbNw6lFI6OjmRnZ2NTDXtJ3kxeeOEFPvnkEzZt2kT37t3Nco1HHnmE5cuXk5iYaPYJTI8cOUJ4eDjPPfccM2fOvOxxWmuaN2+Om5sb27ZtM2tMQtREH3zwARMnTuTAgQO0aNHCrNcyV3HjXcomAVsMFJ3brrXeV64G/27XC/gfEAzEAQ9orTMvc6wbEAn8qrUefbW2b+bEQ1xd2uHDZH7yCU02beLzI0cYZdruCtzi7c0zw4cz6O23q+XwlaspyMggesMGjmzdildGBr1KSiiKjMT7wIG/+4cDnkrxSr16vNSzJ4ZGjfg9P5+m3btTv1s3bBwcLBa/EKJqKUfPjc7AN4CL1jpQKdUSeEZr/ZzZgqwgSqk7gTtDQkKejo6OtnQ4lU5rjb+/PykpKXTp0oWtW7cCEBkZSZs2bXB2diYjI4PPP/+ckSNHWjhacTV5eXm0aNECpRQHDx685rkqrlVKSgqBgYE899xzzJgxo0LbvpyRI0cye/ZsIiMjaXSZ+dZ2795Nhw4d+PLLLxkxYkSlxCVETZKZmUlAQABDhgzhm2++Meu1zFXcuFSfE621vqF1N5VS7wMZWut3lVIvA55a60mXOfZjoJbpeCluiApjKCzkp3HjmL1gAbuzszn3MeInVlaMDgsjtm9fvMeMwa2Gjxs2Ggwk7N7NkY0bidq9myNHj9JbKe49c4bolBQam46zBRra2dHI05OxXbtye8+eFNSrR6qHB/U6dJAJTYW4yZSjuLETuA9YqrVubdpWpZeXv9jNmmM8//zzfPrpp9ja2pKQkICvry/FxcV06tSJ2NhYsrKyCAoKIi4uztKhimu0ceNGbrvtNsaOHctHH31UoW2/9dZbvPbaaxw9epTGjRtf/YQKkJKSQkhICHfccQcLFy685DGjRo3i22+/JSUlBXd390qJS4iaZuTIkcyZM4dTp05ddRjYjTDLUrDmegBHgTqm7+sARy9zXFvgJ+AJ4NNraVuWaRPltfeHH/TQBg10nq+v1qDbmZazq2NlpYc1aqQjfvnF0iFWusKUFL1j9mw996mn9KSOHfU9dero5g4Oeqmdndag15nukR3opnZ2eqCvrx7Xpo0+9vrrWv/xhy46ckQbioos/TKEEGbAdSwFW3Y4O01f91+w7cD1tGHpx82YYxw4cOD88q4LFy48v33y5Mka0N7e3hrQu3btsmCUojxGjRqllVJ6y5YtFdZmcXGx9vf313379q2wNq/VG2+8oQG9ffv2f+0rKCjQnp6e+uGHH670uISoSSIjIzWgp0yZYtbrXCnHuJGeG7WBqYC/1voOpVQzoLPW+ob6oSilsrTWHqbvFZB57vkFx1gB64FHgV5AOy09N0Rlycjgk0ce4Yv16zlaXHx+Nl0PILN1axg4kMInnsChQZVdOMi8jEZITiZx2zZ+X76c6CNHOJ6QwPGMDI4XFrIB6AB8DzwFNLCzo5GHByF16xLSqBEPP/AAnm3aQGAgyDJsQlRL5ei5sQiYDnwKdATGUPa7fYiZQqxwN1uOYTQa8fHxITMzk759+7Jq1SoAtm3bRrdu3WjXrh27du3i9ttvZ926dRaOVlyv3Nxcmjdvjq2tLX/99VeFDE9ZuHAhDzzwAMuWLWPgwIEVEOW1y83NJSQkhEaNGrF58+Z/rNByLq4//viD3r17V2pcQtQ0ffv25dChQ8TFxWFra2uWa5hrWMrvwBxgsta6pVLKhrJPXJpfw7lrAb9L7JoMfHdhMUMplam19rzo/NGAk9b6faXUE1yhuKGUGgGMAAgMDGx78uTJa3uBQlwDo8HAwgkTmPPDDxiys1lrMABgb3q0cnNjcM+eDJs5s8YPYbkW2mhEJyVhFRPD3rVrWbhmDccTEog+c4bjhYXkA0mUddn6wMqK2dbWNPTwoH7t2tQPCqJ+aCh33Xcfto0bg6fnVa4mhLCUchQ3fICPKfvAQgF/AGN0FV6B7WI3W3Fj6NChzJs3DycnJ1JTU3FxcSE3N5dWrVphMBhISUnBYDCQlpaGl6zAVS2tX7+enj17MmHCBKZNm3bD7fXo0YNTp04RHR2NtQU+vPjyyy959tln+fXXXxk0aND57f379+fQoUPExsZaJC4hapKVK1cyYMAAfvzxRx566CGzXMNcxY3dWuv2Sqn9+u/xsX9prVvdQKwopY4Ct2qtk5VSdYCNWusmFx3zA9ANMAIugB3wudb65Su1fbMlHsICsrIonDWLnlOnciA39x+TcQ6wtWV5794YhwzBeP/9MgHnRbTRSMqBA/jl5KBiYli0bBk/7d5NbEYGsYWFZGqNLVBA2UzGL9rZsc7amvoeHtT396d+gwaEhIfT7/77ITgYHB0t+4KEuIlda3FDKfWe1nqSUup+rfWlB8NXEzdTjrFjxw46d+4MlM3P0KNHDwCeeeYZvv76a3r27MnatWsZP348H374oSVDFTfoueee44svvmDr1q3ccsst5W7n4MGDtGzZkmnTpjFhwoQKjPDaGQwGmjdvjtaaiIgIbG1tSUpKol69erzyyivnV/kRQpSf0WgkNDQUDw8Pdu7caZZrmKu4sREYDKzRWrdRSnUC3tNa9yh3pGXtfgCc0X9PKOqltZ54heOfQIaliCoqfvt2vnzxRZbv28eg4mLeNBpZDtwF+FtZ0T0ggGEjR9LzxRdr5CosFSn75EkS9+yhmVIQG8tnS5eyMiqK2Oxs4oqLKaBsiaVY0/FDHRyItrGhgbc39QMCqB8SQrO2bel8550QEAByv4Uwm+sobkQALYC9Wus25o/MfG6WHKO0tBQPDw9yc3N55JFHmD9/PgArVqxg4MCBjBgxgq+//ho3NzcyMjKwkuXDq7WzZ8/SvHlzHBwc2L9/P47l/ODgmWeeYd68eSQkJFi0J8/SpUsZNGgQs2bN4tlnn+X9999n0qRJHDt27LIrqQghrs+nn37K888/z/bt2+nUqVOFt2+u4kYb4BMgHDhE2aol92mtD5Y3UFO73sDPQCBwkrKlYDOUUu2AZ7XWT110/BNIcUNUF/v28ft//8sLf/xBrMFwfr4Oa2Cury+PDh6M8amnsGpTrXP8SqeNRlIPHeLMwYOEmYofr//yC1vj4ojNzSXedK+7AlsArK3pa2tLvp0dgZ6e1KtTh8CgIFq1a8ctffuWzfchs6ULUW7XUdz4AHiasl6Y+ZQNSdHnvmqt3cwa6N9xNKBsaKy71vo+0zZn4HOgmLJepD9cqY2bJce4++67+e233/D09CQlJQU7OzvOnDlDWFgYtWvXBso+pf/pp5948MEHLRytqAjr1q2jV69evPTSS7z//vvXff65JSIffvhhvv76azNEeO201vTo0YOjR49y/PhxOnTogLe39/kljIUQN+7s2bMEBATQv39/FixYUOHtm6W4YWrYBmhCWRJyVGtdUu7GKsHNkniI6sFoMLBu2jTmzJrF5oQENhmNNAT6UzZbbhMHB/qGhzP05ZcJHzzYwtFWb4aCAk7t3k1hTAyhRiPExjJq4UIiU1OJz8vjlMFACfAwcO6vlyClcLOzI9DNjcBatQgMCKB7p0506dULAgMx+PpiI0NfhLik6yhu2Guti5RSv2mtB13t+Mu08S0wEEjTFywdq5TqR9k8HtbAbK31u9fQ1qILihuPAVla62VKqf9pra/4l/rNkGOc+yMXygoYzZuXTbM2dOhQFixYwLRp0xg7diyhoaFERkZaMlRRwZ555hlmz57Nn3/+ed2fxH700UeMHz+e/fv306rVDY1erxA7d+6kU6dODBw4kOXLlzN79myGDx9u6bCEqFHGjx/PV199RVJSEm5uFfs5hbl6btwPrNJan1VK/QdoA0zRWu8rf6jmdTP/kcnwAAAgAElEQVQkHqIaMxjgf/9jwn/+w3cnT3Lmgv+b9kBu/frYdO1KdOfONBw+HCs7O8vFWsMYS0pIiYig9NQp6hUVYYiNZcKCBcSnpnIyO5v4wkLOaM0k4F0gB/AE/K2tCXRyItDTk0A/P+7u2pXOXbtSUrs2aXZ2+LVogbX8O4mb0HUUN/aZhrbO01o/Vs5rdQdyge/PFTeUUtbAMaA3kADsBh6irNDxzkVNPKm1TjOdd2Fx4xXgd631X0qpH7XWD18pjpqeYxQXF+Pu7k5hYSHjxo1j+vTpAPz+++/079+fyZMn88UXX5CRkcHhw4cJDQ21cMSiIuXk5BAeHo6zszP79+/H4RrnDTMajTRu3Jg6deqwZcsWM0d57R588EF+/vlnHB0dSUlJqfA/voS42aWlpaG1Pt+jryKZq7hxUGvdQinVFXgLmAa8prXuWP5QzaumJx6iZslNSeGniRP5ddUqzmRlsd1gAK1xoyyL91WK1t7e3Hn77Tz83nt4BAdbOOKaLS8tDcPJk7hnZpJ15AjTFy0iPimJ+DNniM/N5ZTBwIfAaOAwZeP1rAE/KyvqOjoS4O7O2E6d6NahA5keHhzIz6duWBh1W7fGqVYti742ISradRQ3DlG2rPxbwEsX79daL77G6wUDyy8obnQG3tBa9zU9f8XU3sWFjYvbubjnRqbWerlS6qerLUtb03OM22+/nQ0bNuDv78+pU6ewsrI6/wevq6srd999N1OnTuWee+5h8eJr+mcT1cwff/xB3759mTRpEu++e9WOUMDfxa+qNkwpJiaG0NBQhgwZwvfff2/pcIQQ18FcxY39WuvWSql3gAit9Y8XrpxSFdX0xEPUcEYjrFnDyDFjWHfiBCdLSig27fIDkl1doWlT3nV25p5Jk2jSr58lo73pGA0GDMnJ2J0+zenISH5ZsYLEU6dISE0lMSODxLw8pllZcUdBAauBC/91PJSirp0dX7dsSeewMKIdHVmflUXdhg2pGxqKf/Pm1GrSBCszrRcuREW7juJGV+AR4AFg6UW7tdb6yWu8XjD/LG7cB/Q7N0+XqVDR8QrLxnsDb1PW02O21vod05wbnwKFwNZLzblxsyw3/9tvv3H33XejlCIuLo7AwEDg75U0Vq9ezYABA1BKkZmZiZOTk4UjFuby9NNP8+2337J9+3Y6dOhw1eMHDBjA/v37iYuLw66K9WTcv38/QUFBslSxENWMuYoby4FEyhKBNpSt0LhLa92yvIGamxQ3RE0TtXw586ZOxTchgbGZmUTl5tLMtM8OCLa1pVtwMM+OGUO7kSNBZq23vNxcMiMj2b9lC4nR0STExpKYnExiejpTvb0JzchgdnIyT1/03mwN7PfxoXlgIKusrVmUnU0dX1/q+PvjFxREnZAQ2t56K3aBgSDLDAsLu9bixgXHD9daf3MD1wvmBoobFaGm5hj5+fl4eHhQUlLCO++8w8svvwzA5s2b6dGjB+PGjWPTpk3s27eP9957j4kTL7vAnagBsrOzCQ8Px83Njb17915xeMrx48dp3Lgxr7/+Oq+//nolRimEqMnMVdxwouzDxwitdbRSqg7QXGv9R/lDNa+amngIcU5uQgJzx49n+fr17M/I4LTWaOAx4Hul2OnlxVtWVvTt3p37//Mf/KrAxF7i3wyFhaRERJB48CCJR4+SHBdHclISE+rXxzMjgy8iIvi/xETSjEaMF5yXRtmyVe85ODDXaKSOkxN13N3x8/Ghjp8fY+6/H9t69Ui3t8fa3x+PoCCUFLyEGVxHz43btdbrlVL3Xmp/ZQ9LKQ+l1J3AnSEhIU9HR0dXdPMW1759e/bs2UPjxo05cuQISikKCgpo2bIlpaWlPPnkk/znP/+hefPmHDx4QwvmiWpi1apV3HHHHbzyyitMnTr1ssdNmDCBmTNnEh8fT506dSoxQiFETWa21VKqGyluiJuNobCQlW+9RejhwzSKiGBMbCwzL5qoNMDGhrldutD10UfhvvvAw8NyAYvrUlpczOkjR0iOjCT52DH6+ftjlZbGgk2b+OXwYZJzckgpKCDZYMBIWfc6BTwJzAFsAV8rK3zt7Ql2dWVx375QuzYrzpwh3doa38BAfBs0wLdRI3ybNsVeJlwT1+g6ihv/p7V+XSk15xK7b2RYig1lE4r2pKyX6W7gYa314Wt8CdetJuYYc+fOZdiwYVhbW5Oamoq3tzcAEydO5IMPPuDHH3/ksccew8rKiqSkJHx8fCwcsagsw4cPZ+7cuezYsYP27dv/a39eXh4BAQH069fPLEtBCiFuXlLcMKmJiYcQ1+vwb7+x6KOP2HjgAJHZ2aRrzV6gFXAPsBoIsrWlbd26DBg4kEGvv46TJKzVmjYayU1OxjU3F5KT2bR+PfsOHuR0Whqp6emkZWdjU1zMEnd3SE2lT2Ehay5qozFw1MMDfH0Zc/YsCUpR29MTXx8ffP38aNykSdkSkbVqkWNvj0tAgMwRchO73mEpN3itBcCtgA+QCryutf5GKdUfmEHZqK5vtdZvm+n6NbLnRnZ2Nt7e3pSWlvLtt98ybNgwAPbs2UPHjh0ZPnw4a9euJTY2lrlz5/L4449bOGJRmbKysggPD8fDw4O9e/dib2//j/1ff/01I0aMYOvWrXTp0sVCUQohaiIpbphIcUOIfzMaDFjt3w+LF/PC3Ln8mJpKhmk4yzl5jo44hYTwnYcHbrfcwoD//Ac7FxeLxSzMSGtyU1JIjYoi7fhx0uLiSI2Px76ggMfr1oXUVIZt3syuzEzSios5Y/pZuR1YZ2qiEXAC8FIKH1tbfBwc6OPvz3+7dgUfH76MjsbB05NadeviExSET/36+DZujEudOqCUxV66qDjX0XNj/JX2a62nV1xU5lXTcozQ0FCOHDlC+/bt2bVrF1C2HGy7du04c+YMgwYNYtasWdx2222sX7/ewtEKS1i5ciUDBgxg8uTJTJky5fx2rTWtWrXCysqKffv2oeR9XQhRgaS4YVLTEg8hzMVoMLD5009ZMncucXFx/AaQnY0HkG06xg0IcXSkb7NmTH3nHbjtNrCxsVjMwjIMhYWkHztGcVISgVZWkJ7O10uXkpCUxOmMDNKzs0nPzaWzrS1v29hAejrOJSXkX9TOcGC2rS3a25u2WVl4Ojjg7eKCj7s7Pl5e3NaiBbd17Eipuzu7U1PxCgzEKzgYj6AgbGQC1SrnOoob52YZbAK05+8VU+6kbJLyR80UYoWpiT03ZsyYwbhx47C1tSUrK+v86idvvvkmr7/+OtOnT2fChAk4OTmRnp5+xUklRc02bNgw5s2bx86dO2nbti0AW7ZsoXv37syePZvhw4dbOEIhRE0jxQ0TKW4IcQMMBlZPncqSn35ie2wsJwoLyaVsAss00yFBSuFqZ0dLPz96dO3KwPHj8W/TxoJBiypHa7JPnSL9+HHSY2NJP3WK9MRE6tva0t3dncKUFIasWkV6fj7phYWkl5SQoTX/Ad6k7Get9kVNugNve3szKjiYVBcXxsbG4uXmhpeHB97e3nj5+tKlXTsahodT7OJClrU1nvXrYyvLVZpNOVZL2QwM0FqfNT13BVZorbubK8aKVlNyjLS0NPz8/NBas3TpUu68804ADh8+TOvWrRk8eDBr1qzhzJkzrFq1ir59+1o4YmFJmZmZhIWF4ePjw549e7Czs+PBBx9kzZo1JCQkyLLAQogKJ8UNk5qSeAhRVeRnZBA7Zw5hBw9SvHcvvocPn+/ZcU5HYEedOhhCQni1qIi+999Pj9Gj5dN2cc1Ki4sxnDmDfV4eBUlJbNy4kYyUFDLS0sg4c4aMzEzu8vGhp709xxISGBgVRYbBQKbW51eTmQM8AewAOpu2uQIe1tZ42NryUaNG9Kxfnyil+PLkSTzd3fHw8sLD2xuPWrXo0qkTPsHBFDo6UuLsjIufn6w0cwXlKG4cBVporYtMz+2Bg1rrJuaKsaLUtJ4bQUFBxMfH06dPH1avXg1AaWkpXbp0ISYmhi5duvDbb78xZMgQmShSALBs2TLuuusuXnvtNUaMGEFwcDBjx47lgw8+sHRoQogaSIobJlLcEML8jAYD22fPZuW8eeyMiqK7wcBrhYWsLymh5wXHuQABdnZMbNmSYU88AXfdBQEBFopa1ERGg4HshAQyYmPx1hqPkhKSYmJYsnHj+aJIZk4OWXl5vFqnDh2MRn5PSmLI6dPkXNTWJqA78CPwCGUzVLorhae1NR52dsxv2ZKmdeuytbCQ31JScHNzw93DA3cvL9y8vOjTvTvOfn5kW1lRZGeHe716NXr1mXIUNyYDDwBLTJvuBv5njqVbzaUm5Bj//e9/mTJlCo6OjuTk5GBjGmp4bhjKxIkTef/99/Hx8SE1NRUrKfAJk6FDh7JgwQLuuusulixZwvHjx2nQoIGlwxJC1EBS3DCpCYmHENVVblwcv0yZwoYNG9iflMTJwkJygAnAB8DnwBjAx8qKRi4utA8Joc+993LbmDEyeamodIaiInISEsg6dYqsxEQaubnhWlxMZGQkK3fuJCsri6ycnLLiSH4+s+rVI7CggFmJiUzIyaHgovbigXrAFOC/pm12lBVI3Gxs2NOsGR5eXvyYk8MfWVm4u7jg5uqKu7s7bp6ePNW/P1bu7pzIzSVHa1x9fXHz88O1Th3s3dyqXC+S8qyWopRqA3QzPd2std5f8ZGZT3XPMeLj4wkKCgL4xwoXMTExNG/enFtvvZVNmzZRUFDAvn37aNWqlSXDFVVMRkYGYWFhpKSkMHDgQJYtW2bpkIQQNZQUN0yqe+IhRE1jNBgwbN+O3bp1zP/lFyZHRZFSWkrxBcd8DTzl4MDnDg78z2ikZXAwXW+7jV6jR+MVEmKp0IW4opL8fHISE8lOTCQnNZUwHx9s8/LYd+AA2yMiyM7KIjs7m+zcXHLy8pgbGopdbi5To6P5Mj2dHKORHNOwGhugGFDAk5QNsbmQF3DGywtcXZmUl8eWwkJc7e1xdXDAzcmJAE9P3uzdG1xdWXnyJGeMRlw9PXHz8aFDx464dO1a4a+/MpeCtbSaMCxFa03t2rU5ffr0P4abaK3p2bMne/fupVmzZuzYsYPx48fz4YcfWjhiURUtW7aMIUOGsGLFCm699VZLhyOEqKGkuGEixQ0hqoeM48f5ffp01q1dy1RHR/xSUhh4+jQrLnq/sgGOeHnRsEEDFjk7c6ZuXfo88wz1u1ebOQiFuCxtNJKbksLZpCT8nZzg7FkO/vUXx2NiOJuZydmsLHJycqCoiFfDw+HsWd7es4eNKSmcLSribEkJZ0tL8QX2aA1GI7cBGy+4RqSnJ6EZGRUe+81U3DinOucYo0aN4vPPP8fd3Z3MzMzzS3d+9dVXPPPMMzz++ON89913NGjQgJiYGAtHK6qywsJCWT1HCGFWUtwwqc6JhxACsuLiWPvJJ2xZt46DcXHE5+YSbW2NVXExjYDjpuOsADelCLSzY3///lh16kRSeDh+ffpgJcvVipuR1lBQQHpcHJmJiZxNS+NsejodGjfG8Y47KvxyUtyoPiIjIwkLCzv/fWhoKAAJCQmEhYXRokULdu7cidFo5MSJEwQGBloyXCGEEDe5K+UYkuULIaoNj+Bg7vvwQ+67eEdxMfO//poV//sf+44c4VhWFsklJZwoKsJqyRJYsoTmQAbgDNS2sSHYxYUuISG8OXo0dO8O9etX+usRotIoBU5O+DRrhk+zZpaORlQRWmtuueUWAJ5//vnzhQ2tNSNHjqSkpITU1FRKSkr48MMPpbAhhBCiSpOeG0KImstohEOHYO1aRn7+OdsSE0koKiJba0oxzVVgOtQV0ICPtTVBzs6E1q1L3x49uOeFF6BJE6hiEzYKUZXdTD03qvOcGw899BA//fQTvr6+pKamnt++YMECHn74Yfr168eqVato27Ytkj8JIYSoCmRYiokUN4QQ52QcP07CihW0SE2FiAharVnDqeJicrTGYDomBIgGjIAH4GFtTT1HR5rUqUObli3p++ijNLrzTil8CHGRm6m4cU51yzF27NhB586dUUoRHx9PgGkp7tOnT9OsWTMCAgI4ePAgtra2pKSk4OHhYeGIhRBCCBmWIoQQ/+IVEoLXmDHnn/91wb6chAT+nDMHu+hoyM0lLSoK+6NHSSkt5VRuLtuio5kTHU23RYvYDMTa2dHVYMDfwYH6Xl40bdCA1p060W3oUHxMY9mFEKKqKC0tpWfPngC88cYb5wsbAC+88ALZ2dlYW1tjNBr57rvvpLAhhBCiWpCeG0IIcR3y09PZ8d13bF+1itYFBfTPz2f1iRPclZ39jyVsAYYC3ynFShsbni4tpY69PUGenjQNDqZlx470GjYMr+bNLfEyhDAr6blRtfXr14/Vq1cTHBxMbGzs+e1Lly5l0KBBtG/fnt27d9O3b19WrVplwUiFEEKIf5JhKSbVKfEQQlQ/hsJCIpcvZ9fSpRw8cID77O3pnpfHlydP8kJe3r+KH1OAyUrxsbU17xmN1La3J9jdncZBQbTq0IEBTz2FW3i4DHsR1Y4UN6quVatWcccdd2BlZcXp06fx8vICICsri7CwMJycnDh+/Diurq6kp6djZ2dn4YiFEEKIv8mwFCGEqAQ2Dg60uO8+Wtz3z/VcnjE9jAYDUStWsGvZMg7u28d9rq6QkUHaiRNk5OeTXFDAXwUFkJICO3fy2yefcBfwvJUVC7TGy8aGOk5OBHl5ERIczNhhw3Dr2hWCgqQAIoSFXDChqKVDuSZDhgwBYObMmecLGwAvvfQSycnJuLi4AGW9OKSwIYQQojqRnhtCCFFFGA0GYjZsYOfixRzYs4fJPj54JCXxbHQ08wsKKKBsctNzEgF/oAewHXBWCi9ra2o7OBDo6cn8Rx7BJjyctIAAvDp2xMbBwRIvS9yEpOdG1WVnZ0dpaSmlpaXnt61bt45evXoREhLC8ePHeeKJJ5gzZ44FoxRCCCEurVoNS1FKeQH/A4KBOOABrXXmJY4LBGYD9ShbwbG/1jruSm1Xl8RDCCEuJz89nQO//krExo2M8PWFEyd47s8/WZ6ZSVZpKfnAuT9Zzr27BwMnKeuq50TZqi8NHB3Z0KMHBAbyS24uNvXqEd6zJ/W7d8fKRjr1iRsjxY2q6+LiRl5eHs2bN6ewsJDk5GT8/PxITEzESnqDCSGEqIKqW3HjfSBDa/2uUuplwFNrPekSx20E3tZar1FKuQBGrXX+ldquLomHEELcCENhITGrV9MkOxuiopi0eDGbExNJLSwk02gkT2tsgTzT8e5AzgXnWwOBSnGidm3w9OSJjAxKHBwI8venUdOmNO3UibCBA3Hz96/01yaqByluVF0XFzfGjRvHjBkzsLOzo6SkhIiICMJklSchhBBVVHUrbhwFbtVaJyul6gAbtdZNLjqmGfCV1rrr9bRdXRIPIYQwO6MREhLg8GHmzJvH/sOHOZWWRvLZs5wuKqI2sM3GBoqKsNUaw0Wn1wLSlAI7O4KKi7GyssLH3h5fZ2fqeHpya1gYjw4aBCEhZNWujUc1mY9AVAwpblRdFxY3duzYwS233IKvry+pqam8+uqrvP3225YOUQghhLis6lbcyNJae5i+V0DmuecXHHM38BRQDNQH1gIva61LL9HeCGAEQGBgYNuTJ0+a+RUIIUTNkp+eTuTKlUT++SfHo6KIS0ggSGvecnGBjAw8kpLIg38UQJoCUaZttqZtNoA9ZXODDHZ15fMmTcj38mJMbCz1/P0JbtSIhm3aENqzJ16NGlXuixQVSoobVde54kZ+fj6tW7cmOTmZrKwsmjRpwpEjRywdnhBCCHFFVW61FKXUWsDvErsmX/hEa62VUpeqvtgA3YDWQDxlc3Q8AXxz8YFa66+Ar6As8bihwIUQ4ibk5ONDu6FDaTd06CX3Z5m+Gg0GUg4e5NjmzTinpYG1NYUnTtB39WrS8/PJKC4mx2jkrNak5uTA7t0coWzyJI4dg40bz7fZH1hhY8M+GxvuKCrCxdoaD1tbPB0cqOXqyhOtW9P3llvI8vQkqrSU+rfcgm+zZjJfiKh01W21lHMfak2ZMoWoqCisra2xsbFh/fr1Fo5MCCGEuDEWyQK11r0ut08plaqUqnPBsJS0SxyWAPyltT5hOudXoBOXKG4IIYSoHFY2Nvi3aYN/mzbnt7kAqy53gtFIsxMnWPfbb5w4cIDYmBgSU1NJzsriXmdnsLYmNT2ds4WFnDEYOGEwQEEBZGbiHh9P399+YwHw3IUxUNZTZKq9PeO9vFiuFG9lZ+Pt6EgtNzf8vL0JqFePe/r2JaBdOwz+/lj5+EhRRJSb1noZsKxdu3ZPWzqW6/Huu+/i5uZGTk4On3/+Of4yh44QQohqripmc0uBx4F3TV9/u8QxuwEPpVQtrfVp4Hag6vcFFUII8TcrKxxCQrh9wgRuv8whdwAXzhSdk5DAia1b8SsshLNn6bx3L49v3UpadjZnCgrILi4mp7QUXysryMhgZ1ERuwDy8iA9HU6cgN27sV68mOeA0cCXgKLsF6Id4KAUi3x8uNXHh28KC1mYk4OXszM+np7UrlULv7p1uf/OO3Fr0gRjYCBWbm5mvElCVDyj0YiDgwM5OTl07tyZkSNHWjokIYQQ4oZVxTk3vIGfgUDKVi98QGudoZRqBzyrtX7KdFxv4EPKctK9wAitdfGV2q4u42GFEEJUHKPBQPrRo8T8+SfxERHEnzjBg35+BBYUMD8igk9jY8kpKSG3tJR8o5FCrVljbU1no5EBWrPyEm3uBdoAtwEbKesxcm5OEXuliPLzw8fdnTeys9lcUIC7gwMeLi54ubnh4+PDpMGDsfLzI14prPz88GveHBsHh0q7J+Ymc25UXdbW1hiNRpRSODg4kJaWhouLi6XDEkIIIa5JtZpQ1JyqS+IhhBCiajAaDGTFxRG3axcJhw+THBdHSmIiLzVqhNPZs7y7Zw+/JCdz9lxxRGuKtOaMjQ0ORiMtjUYOXqLdc795GwInLthuBTgBZ52dwcGBQbm5RBmNOFtb42Jnh4udHfVcXfmqZ0/w8GB+XBxnbW3x9vPDJyAA3/r18WvWDJ9GjcDKyty357KkuFF1lc3VXmbx4sXcc889FoxGCCGEuD5VbkJRIYQQojqwsrHBKyQEr5AQ2lxi/8umx+UcAAqzskg9dIikyEhSYmLISE6Gxo3hzBme3rSJP5OSyCks5GxxMbkGA7Zag4MDFBVxrKiIE0BpSQkUFgJgl57OV7NnAzAKyLnomk5Anun7WkA2fw+5sVOKZra2bAwKAicn8t3dcdq0qZx3R1RngwYNksKGEEKIGkWKG0IIIYQZOXh4ENS1K0Fdu/5r35UKI1C2nO45RoOBjNhYsk+cAEdHSEvj6z/+IObkSTIzM8nKySEnPx9vpSAwEPLyaHrkCPHFxRQajRQDeVqTWlwMMTFgNFKsFE4V+WJFtbFo0SJLhyCEEEJUKCluCCGEENWAlY0NPo0alQ05MXngvvuueM6Wq7TpYTRWQGSiOrKRFYKEEELUMJYbkCuEEEIIy7LgvBxViVKqgVLqG6XUoittE0IIIUTVJVmNEEIIIaotpdS3Sqk0pdShi7b3U0odVUodV0pdcQSQ1vqE1nr41bYJIYQQouqSPolCCCGEqM7mAp8C35/boJSyBj4DegMJwG6l1FLAGnjnovOf1FqnVU6oQgghhDAXKW4IIYQQotrSWm9WSgVftLkDcFxrfQJAKfUTMEhr/Q4wsHIjFEIIIURluKmKG3v37k1XSp2s4GZ9gPQKblOUkXtrHnJfzUfurfnIvTUPc93XIDO0eT3qAqcueJ4AdLzcwUopb+BtoLVS6hWt9TuX2naJ80YAI0xPc5VSRyvsFZQx28+9UsoczVYn8p5iPnJvzUPuq/nIvTWPSs8xbqrihta6VkW3qZTao7VuV9HtCrm35iL31Xzk3pqP3FvzkPtaRmt9Bnj2atsucd5XwFfmikv+fcxH7q35yL01D7mv5iP31jwscV9lQlEhhBBC1DSJQL0LngeYtgkhhBCihpLihhBCCCFqmt1AI6VUfaWUHTAEWGrhmIQQQghhRlLcuHFm644q5N6aidxX85F7az5yb82j2t9XpdQCYDvQRCmVoJQarrU2AKOB1UAU8LPW+rAl4yynav/vU4XJvTUfubfmIffVfOTemkel31elta7sawohhBBCCCGEEEJUGOm5IYQQQgghhBBCiGpNihtCCCGEEEIIIYSo1qS4cQOUUv2UUkeVUseVUi9bOp6aQClVTym1QSkVqZQ6rJQaY+mYahqllLVSar9SarmlY6lJlFIeSqlFSqkjSqkopVRnS8dUEyilxpneCw4ppRYopRwsHVN1pZT6VimVppQ6dME2L6XUGqVUtOmrpyVjFH+THMM8JM8wL8kxzENyDPOQHKPiVJUcQ4ob5aSUsgY+A+4AmgEPKaWaWTaqGsEATNBaNwM6AaPkvla4MZRNsCcq1sfAKq11U6Alco9vmFKqLvAC0E5rHQ5YU7bqhSifuUC/i7a9DKzTWjcC1pmeCwuTHMOsJM8wL8kxzENyjAomOUaFm0sVyDGkuFF+HYDjWusTWuti4CdgkIVjqva01sla632m789S9uZd17JR1RxKqQBgADDb0rHUJEopd6A78A2A1rpYa51l2ahqDBvAUSllAzgBSRaOp9rSWm8GMi7aPAj4zvT9d8DdlRqUuBzJMcxE8gzzkRzDPCTHMCvJMSpIVckxpLhRfnWBUxc8T0B+OVYopVQw0BrYadlIapQZwETAaOlAapj6wGlgjqk77myllLOlg6rutNaJwDQgHkgGsrXWf1g2qhqnttY62fR9ClDbksGI8yTHqASSZ1Q4yTHMQ3IMM5Aco1JUeo4hxQ1RJSmlXIBfgLFa6xxLx1MTKKUGAmla672WjqUGsgHaALO01q2BPKR7/w0zjc0cRFli5w84K+WlmwcAACAASURBVKUetWxUNZcuWxte1ocXNwXJMyqW5BhmJTmGGUiOUbkqK8eQ4kb5JQL1LngeYNombpBSypayhOMHrfViS8dTg3QB7lJKxVHWxfl2pdR8y4ZUYyQACVrrc5/+LaIsERE3phcQq7U+rbUuARYDt1g4ppomVSlVB8D0Nc3C8YgykmOYkeQZZiE5hvlIjmEekmOYX6XnGFLcKL/d8P/s3XlcVGX7+PHPYRgYlmEHAREX3MMtMdsezcjdTM2nTFMzK6uvrZbtWpal6aOVS1lmVpZZapm7j6al2VO5hrnkjgiyrwMDs9y/P8D5iaKCAgN4vV+v++Us59znOgOM97nOvdBM07TGmqa5UTwBzY9OjqnW0zRNo3hM4QGl1Axnx1OXKKVeUkpFKKUaUfz7+pNSSjLUlUApdQY4pWlai5KXYoH9TgyprogHbtQ0zbPkuyEWmUStsv0IjCx5PBJY4cRYxP8nbYwqIu2MqiFtjKojbYwqI22MqlftbQzXqj5AXaWUsmqaNhZYT/HsuguUUn87Oay64BZgOBCnadqektdeVkqtcWJMQpTHE8BXJRcix4BRTo6n1lNK/a5p2lJgF8UrHOwGPnZuVLWXpmmLgduAIE3TEoCJwBTgW03TRgMngXucF6E4S9oYVUraGaI2kjZGJZM2RuWqKW0MrXj4ixBCCCGEEEIIIUTtJMNShBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIUe00TfPTNO3xksfhJUtxCSGEEEJcFWljCHHtkqVghRDVTtO0RsAqpVS0k0MRQgghRB0ibQwhrl2uzg5ACHFNmgJEaZq2BzgMtFJKRWua9gAwAPACmgHTATdgOFAI9FFKZWiaFgXMAYKBfOBhpdTB6j8NIYQQQtQw0sYQ4holw1KEEM7wInBUKdUeeP6896KBQUAnYDKQr5TqAPwGjCjZ5mPgCaVUR+A5YG61RC2EEEKImk7aGEJco6TnhhCiptmslMoFcjVNywZWlrweB7TVNM0buBn4TtO0s/u4V3+YQgghhKhlpI0hRB0myQ0hRE1TeM5j+znP7RR/Z7kAWSV3ZIQQQgghykvaGELUYTIsRQjhDLmA8Up2VErlAMc1Tfs3gFasXWUGJ4QQQohaS9oYQlyjJLkhhKh2Sql04FdN0/YB066gimHAaE3T9gJ/A3dVZnxCCCGEqJ2kjSHEtUuWghVCCCGEEEIIIUStJj03hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUau5OjuA6hQUFKQaNWrk7DCEEEKIOm3nzp1pSqlgZ8dRnaSNIYQQQlS9S7UxrqnkRqNGjdixY4ezwxBCCCHqNE3TTjo7huombQwhhBCi6l2qjSHDUoQQQgghhBBCCFGr1cjkhqZpCzRNS9E0bd9F3tc0TftA07Qjmqb9pWna9dUdoxBCCCGEEEIIIWqGGpncABYCvS7xfm+gWUl5BPiwGmISQgghhBBCCCFEDVQj59xQSv2iaVqjS2xyF/CFUkoB/9M0zU/TtDClVFK1BCiuiLWggLyUFPIzMopLVhb5WVlEh4XhrRSHjx7l17/+Ij8vjwKTCRedDm8fH+7u0oWA0FCSioo4bTJhDArCOzgY75AQvEND0bm5OfvUhBBCCCGuabm5uXz11Vd4e3vToEEDIiMjqV+/Pm7SThNCVJMamdwoh/rAqXOeJ5S8JsmNamK3Wvlr2TI2LVrE7UAHg4E/EhMZ//ff5FutxcVmI99u51uDgS5FRSyzWhlSRl3/AzoDW4HRZbzf5csvCQAWA+PKeD/e3Z0GPj7MsduZZzLhrddjdHPD290db4OBD++4A09/f35KSSEuK4vAevUIql+foMhIgpo0oWH79mheXqBplfb5CCGEuDZomnYncGfTpk2dHYoQTvPHH39w3333cezYsVKva5pGaGgokZGRjoTH2X/PPg4JCUGTNpgQohLU1uRGuWma9gjFQ1eIjIx0cjS1mFLk7t3L19OmsemXX9h8+jRpSgGwLDCQDqGhuCiFAgI9PGjg5oanuzueBgOBMTEQGcn1+fnMPH4cTy8vPI3G4uLjQ4sOHaBePe622bjdYsHTzw8Pf39sVit5KSnUMxjAbGbg4cM0O3CAvKys4pKTQ25uLgFt20JREUFxcTQ9epTcwkJyCgtJzMsjz2rFdelSMJn4vrCQ2eedlg6wABgMvKjXs95qJcjDg2CjkSBfX+qHhPDCwIEQHMwBkwmr0UhQVBSBzZrh5uVVvT8DIYQQNY5SaiWwMiYm5mFnxyJEdbPZbLz77rtMmDCB8PBwfvrpJ8LDwzl16hTx8fHEx8c7HsfFxbF69WoKCgpK1eHu7k5ERESZiY+z/xqNRiedoRCiNtFUyQVqTVMyLGWVUiq6jPfmAVuUUotLnh8CbrvcsJSYmBgly7SVX9KePWyaNw//I0fo+88/ZMbHEwSE63TENmpE7B13cPtDD1E/JsbZoZaLJT+f3KQk0o8dI+34cdJOnSI3JYWhUVGQlsasX37hvydOkGoykVZYSJrViq9SnCjZvzew7pz6fIAYDw82tW0LwcFMT04mTaejXr16hNSvT0hkJJGtWtHihhsgKAhc63wuUQghANA0badSqnb851BJpI1RO9jtdiZMmEB+fj5PPvkkjRo1cnZItdbp06cZPnw4mzdv5t///jfz5s3D39//kvsopcjIyCiV9Dj38alTpzh9+jR2u73Ufu3atWPFihU0bNiwKk9JCFELXKqNUVuTG32BsUAfikc0fKCUuuFydUrD4zKyslg9fTrrfvyRTYcOcaCoCIC79Hp+6N8fYmM52bIlkV27ornU1LloK5fNbEaXnQ2pqez89VeO//MPqYmJpKWkkJaejq/NxqTwcEhJofuBA/xcWFjcE6REV2ALgKZxi05HposL9Tw9CTEaCfHz48YWLRjWvTuEhLAzIwPfhg0JadECY3j4NfMZCyHqHkluiJrIarXy4IMP8uWXX+Li4oKmadx7772MHz+edu3aOTu8WmXFihU8+OCDmM1mZs2axahRoyptaInVaiUpKcmR7Dh+/DhTp07Fy8uL9evXEx19waWBEOIaUuuSG5qmLQZuA4KAZGAioAdQSn2kFX97zqZ4RZV8YJRS6rItCml4lFaQkcGv8+dzaONG/i8rC3bupJvdzh/AvwIDie3cmdihQ2l3zz3o9Hpnh1srKLudrJMnSTl4kJSjR9Hn5nKjry+kpDB+xQqOpaaSnJtLSkEBKVYrfZTiq5J9fYDckscGIESnY1RICK936IAKCuLlQ4cIDAoiJDyckMhIQho3pmGbNgQ2bw4Gg3NOWAghyiDJDVHTFBUVMWzYMJYuXcpbb73FiBEjeO+99/j444/Jy8ujZ8+ejB8/nm7dusn8D5dQUFDAuHHj+PDDD7n++uv5+uuvadGiRZUfNy4ujp49e1JQUMCqVau45ZZbqvyYQoiaqdYlN6rKNd/wsFrZ/913LP/0Uzbt3Mn2rCyKKL6QTr/xRjx79CChTRtCevXCzdvb2dFeE+wFBbhkZKDOnGH92rWkxMeTkphIcnIyyRkZdPX0ZLSbG3nJyQSdPk3hefu/DEwGMoxGOpvNhBgMBHt5EeLnR0hgIHfecAOdO3XC7OfHkYICgps3J7BpU1wlGSKEqEKS3BA1idlsZvDgwaxevZr//Oc/PPvss473MjMz+eijj3j//fdJTk4mJiaG8ePHM2jQIHQ6nROjrnni4uIYMmQI+/fvZ9y4cUyePBl3d/dqO/6JEyfo0aMHp06d4rvvvqNfv37VdmwhRM0hyY0S13TDY9s2GDSImampPAu09/AgtnVrYvv351+PPIJ3aKizIxSXoex28pKSHL1CUk6cIMrNjWi9npQTJ3h6wwZSzvYKKSoi1W5nNvAY8BdwtsOtBvhrGsF6PdOiorizRQtOGAx8Eh9PUHAwwWFhBEdEENyoEc2vvx7vhg3B09Np5y2EqH0kuSFqCpPJxIABA9i4cSNz587lscceK3M7s9nMl19+ybRp0zh8+DBRUVGMGzeOBx54AA8Pj2qOumZRSjFnzhyee+45/Pz8+OKLL+jRo4dTYklJSaFPnz7s2bOH+fPn88ADDzglDiGE80hyo8S12vBY99ZbZE6axH2NG5P54ovYbr6ZoGroQiicy261YktNRZ+VRebRo2z86SdSEhJISU4mNT2dtOxsngoO5haLhU0JCfTMysJ2Xh1rKJ5IdbW7O/9ntRLs7k6QpyfBPj4E+/nxZGwsDZs357SmcaKoiMCGDQls3JiAqCh0sq69ENcsSW6ImiAnJ4e+ffuyfft2FixYwMiRIy+7j81mY8WKFUydOpU//viD4OBgnnzySR5//HECAgKqIeqaJTU1lQcffJBVq1bRp08fPvvsM0JCQpwaU25uLoMGDWLjxo28++67PP/8806NRwhRvSS5UeJabHh89+yzDJs5k/aenvx25Ai6sDBnhyRqKLvVSvapU6T+8w9px4+TGh/PzcHBBJvN/O+vv5j7xx+k5uSQlp9PamEhqTYbvwFtgbnA/51Tlwb4aRp/RkYSFRrKCquV5ZmZBPr5ERgQQGBICIGhodzZoweGsDBMnp64hoTg7uPjlHMXQlQuSW4IZ8vIyKBnz57s2bOHr776invuuadC+yul2Lp1K++++y6rV6/Gy8uLhx56iGeeeeaaWbFj48aNjBgxgvT0dKZNm8YTTzxRY+YjKSwsZOTIkSxZsoRx48bx7rvv4iITsQtxTZDkRolrreGxYNQoHl64kJuMRlbFxeF3jfxnLKqPMpnQ0tNJPHCAuB07SE9MJD05mfS0NNIyMpjcrBm+ubnMPnCAaUlJpNtsmM7ZPwcwAs8D0wEvIEinI9DNjUAPD9becQe64GBWp6dz2GwmIDgY/3r1CAgPJzAykpYxMeDvD9JLRIgaRZIbwplSUlLo3r07Bw8eZOnSpdx5551XVV9cXBzTp0/n66+/RinFfffdx/PPP0/btm0rKeKapaioiFdffZVp06bRqlUrFi9eXCNXk7Hb7Tz11FPMnj2b4cOH8+mnn6KXCfBFDbBq1Sp+++03nn/+efz8/JwdTp0jyY0S11LDY+aAATy7YgU9AgNZvn8/Xk7uQijEWeasLDKOHiXt+HHaBASgZWSwZft2tsfFkZaRQXpWFum5uZjMZjbXqwcZGQzLyODr8+oJAlJLHg/X6fgZCNDrCTAYCPDyomlQEFN69oSAANYlJmJycyMgLIyAiAj8GzQgoFGj4rlmashdKCHqktqe3NA0LRL4AMgA/lFKTbncPtdSG6MmO336NLGxscTHx7NixQq6d+9eaXWfOnWq1AorvXr14oUXXqBr1641pkfD1Tp8+DD33XcfO3fuZMyYMcyYMQPPGjzvllKKyZMn89prr9GnTx++/fZbvLy8nB2WuAYdPnyYV155hTVr1mAyFd/K0zSNLl26MHv2bFnCuBJJcqPENdHwUAreeIPX3niDA/Xr89X+/dLVX9R6Z4fMZJ48SUZ8PBmnT1OUmUm/Ro0gI4MPt2zhj5MnycjLIyM/n4zCQsKUYiNAURE3Af87r84bgN91OvDzo39BAUmAn8GAv6cnft7edIyMZMxtt4G/P6uPHcPV1xe/0FD8IyLwi4jAv1Ej9NKAEqJMzkxuaJq2AOgHpCilos95vRfwPqAD5l8qYaFpWl/AXym1SNO0JUqpey933GuijVHDnThxgtjYWFJSUli9ejVdunSpkuNkZmby4Ycf8v7775OSkkKnTp0YP348AwcOrLUrrCil+Pzzzxk7dixubm7Mnz+fQYMGOTuscvv444957LHHuOGGG1i9evU1OT+KqH75+fm89dZbLFy4kKSkJAAMBgM9e/akffv2fPjhh6SkpADQtGlTJk+eXOEhcgDZ2dls3bqVX375BRcXFzp27EjHjh1p3LhxnUmsVoQkN0rU9YaH3Wrl1COP0PCzz1APPID9o4/QVeMSXULUOEpBQQFJBw6Qevw4GQkJZCQmkpGcjK/dzr8bNoTMTJ7etIl/MjLIKiggs6iITKuVLsC3djsAoUDyeVUPARZ7eoK/PzdmZKDX6/EzGPD19MTX25vbmzXj7htvRPn48O2BA/gGBeFbrx6+oaH4hocT0LAhHkFB0nNE1ElOTm50AfKAL84mNzRN0wH/AN2BBOBP4D6KEx3vnFfFg4ANWAoo4Eul1GeXO25db2PUdP/88w+xsbHk5eWxfv16brjhhio/ptls5osvvmDatGkcOXKEJk2a0KFDB+rVq0e9evUICQm54LG3t3eNuxjJysriscce45tvvqFr164sWrSIiIiICtVht9sZNmwY3377LS4uLnh6euLj40NQUBD16tUjIiKCxo0b07x5c6677jqaN2+Oq6trpZ7H8uXLGTp0KFFRUaxfv77C5yDqvoKCArKyskqV3NxcGjduTJs2bTAYDJetw263s3jxYqZNm8Zff/2FUgoXFxc6dOjA+PHjL0herF27lvHjx7Nv3z4A/Pz8GDt2LBMnTrzo30BOTg5bt25ly5YtbNmyhV27dmG323Fzc0MphcViAcDf35/rr7/ekezo2LEjTZo0qXHfMZVNkhsl6nLDw2o283CbNqw6coS4hx8m9KOPQCZWEuLqmM2QmcnBXbvISEgg68wZMpOTyUxLo4nBQJ+QEFRGBv9ev56M/HyyCgvJtljIttkYBUxTinyK5xI530vA2zodmUYjHfPy8NPr8XV3x7ckQTI0Opqe7dqR4+7Ot//8g09AAD6BgfgEB+MTEkJk8+b41K8PRiPU0juFou5y9rAUTdMaAavOSW7cBLyulOpZ8vwlAKXU+YmNs/s/B/yhlPpF07SlSqnBlztmXW5j1HT79u3jjjvuwGaz8d///pf27dtX6/HPrrDyySefcPLkSZKTk8nIyChzWw8PjzKTHmW9FhAQUOWTZG7fvp2hQ4eSkJDApEmTeOGFFyrc++T333+nd+/eZGZmVmg/FxcXDAYD3t7e+Pv7ExISQnh4OI0aNSIqKopWrVrRpk0bfH19y13nli1buOuuu/D19WX9+vW0atWqQjFdraysLLZv346/vz/h4eGEhYXhVoPmBbNYLCQlJZGQkEBCQgJnzpzhlltuoWPHjs4OrVwKCwsdSYnMzMwLEhWXK4WFhRetW6fT0bp1azp06OAo7du3d/z+7dmzh1deeYVNmzY56omIiGD06NG8+OKLl02MHD16lCeeeIINGzZgs9nQ6/XcddddzJo1Cy8vL7Zt28bmzZvZsmULO3fudCQzbrzxRm677Ta6detG586dcXFxYd++fezcudNR/vrrL0fCw8/Pj+uvv75U0iMqKuqi3yX5+fmsWrUKk8nk2EbTtAseV/Q9FxcX9Hp9pQ4NPEuSGyXqasOjMCeHYa1asSwxkddvu40JmzahSWJDCOdSCvLzsWVkcGj3brLPnCE7JYXs1FSy09Np5+dHZ19f0s+c4amffiI7P59ss5msoiKyLRZecXPjEbOZv5WirFGanwAPUXz7uRvg4+KCr6srPno9Pu7uTIiO5l9NmnDEbufzY8fw8fHBx8/PkSTp3LEjQQ0akO/qSp6mYQwLw+DnJ98dolLUwOTGYKCXUuqhkufDgc5KqbEX2T8aeB1IA/KUUs9dZLtHgEcAIiMjO548ebJyT0Rc1q5du+jRowdubm5s2rSp2i9mL8ZisZCamkpycjLJycmkpKSU+Tg5OZnU1FRstvMXYy++2AoODiYoKAhvb2+8vb3x8vK64N+yXrvYv2fvFNtsNiZPnsykSZOIjIzk66+/5sYbb6zQOdrtdh599FE++eQTx2sNGzYkJCSE5ORkMjMzyc/PL/PcgFJ3ly91PaJpGj4+Prz22muMGzfusnHt2bOHXr16YbFYWLNmDZ07d67AWVXc2aTawoUL+eGHHy64gA4ODiY8PJz69esTHh7uKOc+Dw4OvuohTWazmdOnTzsSF+eWs6+fOXOmzM/6pptuYuzYsQwePLhGJWMA0tLS+Pzzz/nkk084dOjQJbfV6/X4+/vj5+fnKOc/P794enpy+PBhdu3axe7du9m9ezdnzpxx1Onr60tBQQFFRUUAeHl50b9/fyZPnkzjxo0rfD75+fmMGzeOhQsXYjabL4j/bDLjtttu46abbsLDw+OydRYVFZWZ8Dgbs6+vLx06dKBjx460atWK+Ph4tm3bxp49ey6aiK0sVZFrkORGibqY3DClpDCodWs2pKczc8AAnv7+e2eHJISoLHY71sxMzhw9Ss6ZM2SfOUNOaio56el0DAmhibs7x0+eZPbWreTk5ZGTn0+O2Uy22cw7QUF0tdlYk55Ov/x8zv+m3wTcDiyheIgNgCvgrWkYXVxY2bAh7YKD2VBUxEdnzmD08MDo5VVcjEbG3H47gaGhHM3P52h2NsagIHxCQvAODsY7JAT/iAhcytG9U9RNtT25cSXqYhujpvvtt9/o3bs3vr6+bNq0iaZNm5ZrvxUrVmC32xk4cGAVR1g+drudjIyMMhMfKSkppKWlYTKZMJlM5OXlXfC4Itzd3fHy8sLFxYW0tDSGDh3K3LlzK9Q7Aop7y/To0cMxzwDAs88+y3/+858LtjWbzezevZs9e/awf/9+jh49SkJCAqmpqWRnZ2M2my96AaTT6dA0DavVCkBAQADTpk3jwQcfvGR8R48epWfPniQlJbFs2TJ69epVofMrj7///pvPP/+cRYsWkZSUREBAAEOHDmXQoEGYzWYSExNJTEzk9OnTpR4nJydfcL46nY7Q0NBLJkB0Ot0lkxdpaWkXxOjr60tERMRFi5+fH8uWLWPOnDkcPnyY0NBQxowZwyOPPEJ4eHilf2bldXYp5nnz5rF06VKKioq45ZZb6N27NwEBARdNVBgMhqsekmG325k2bRqzZ88mISGhzG3CwsJK9fC4/vrradSo0UWPnZeXx6+//sqWLVvYvHkzO3bswGazodPp0Ol0jiRE/fr1mTBhAg8//PBVn0dRURF///03P//8M99++y1xcXHk5eWV2kbTNAIDA+nQoQPBwcG4urqi0+lwdXVFr9ej0+kcPTDO9sg4+7urlMJut1/w/OxjpRSurq7MnDnzqs6jLJLcKFHnGh5ZWbwcHc3U06f5ZNQoHlywwNkRCSFqILvVSn5aGjmJieQkJZGTnEyLgAB87XYOHz7Mhp07yc3JITc3l9y8PHJNJt5o1oxIm41vT5xgUnw8uVYruXY7uUphBY4BjYEpFA+xOV8yEKLX845Ox1yLBW+dDqNej7dej7e7O9917Yq7ry8/JiezIzOz+K6kjw/ePj4Y/f0ZGBsL3t6cNpko1OvxCgrCKygIz6AgXCp5nLaofDUwuVGhYSkVPNadwJ1NmzZ9+PDhw1dbnSinLVu20K9fP8LCwti0aRORkZHl2u+tt97itddeAyAwMJCXXnqJZ555psqHf1QVu91OQUHBBQmPspIg575mMpno0aMHQ4YMufxBzvP8888zffp0x3MfHx/WrVvHTTfddMXnkZKSwo4dO/jrr784ePAgJ06cIDExkfT0dHJycrBarXh6epKfnw9AaGgoc+bMueSkp8nJyfTq1Yt9+/axcOFChg0bdsXxnZWens4333zDwoUL2bFjB66urvTp04cHHniAvn37lqvXg9VqJTk5uczEx9nHiYmJl72jHhQUdMnERf369fH29i7XedntdjZs2MCsWbNYu3YtOp2OwYMHM3bsWG6++eZqm8PhxIkTzJ07l8WLF5OQkIC7uztNmzalXr162Gw27HY7Pj4+jh4ZgYGBBAYGEhISQkhICGFhYYSFheHj41PhmLdt28aECRPYunWrI5kWFRXFY489xlNPPYXJZGLPnj2lengcOHDA0TPJz8+P9u3bOxIegYGBbNu2jS1btvDnn39itVpxdXXlhhtuoFu3bo6eGV5eXvz222889dRT7NixA6UUXl5ejBo1iqlTp1Z4taKUlBQWLFjAqlWriIuLIycnx/Geh4cHkZGRNGnSBD8/P44ePcrevXsvOVznXO7u7nh6euLh4VGqlPWah4cHRqORt99+u0Lxl4ckN0rUqeRGSgr07EnBvn1sf/llYt94w9kRCSGuAcpupzAnB7fCQlxMJpKOHePoP/+Qm5ZGbmYmeVlZ5OXkMKZdO9zNZpbv2cOqI0fIKygg12wmr6iIPIuFnfXr42Iy8WRaGrMtllI9SzyBs/ci7we+Oi+GSE3jZGAgeHnxdG4uvxUW4qXX4+Xmhpe7O438/Jhy223g7c3iI0dItljwMhqLi68v9UJDubFTp+LkSU4OLl5eeAYG4hkUhL4c3T/F5dXA5IYrxROKxgKnKR7RNVQp9XdlHbNOtTFquHXr1jFw4ECaNGnCxo0bCQsLK9d+L730ElOmTMHDw4Obb76ZzZs3Y7fb8fT0ZMyYMUyZMqXGdcmvSY4fP063bt04d/jV7bffztq1a6v0c7Pb7cTGxrJlyxaCgoJo1aoVW7duBaBRo0Z8+umn3H777WXum52dzYABA9iyZQszZszgmWeeqfDxLRYL69atY+HChaxcuRKLxUL79u0ZOXIkQ4cOJSQk5KrO72IKCgpISkpyJDusVqsjcREeHl6uyS+heHWfXbt2ERcXx8GDBzl+/Lijp8fZC9+zd+r1ej2aplFQUEBubi52ux0vLy8iIyNp3LgxRqMRT09Px1Anb2/v4mGvJcXX1xc/Pz/c3d0dvUqSkpJISkoiNTWV9PR0ieDBzAAAIABJREFUsrKyyMnJIS8vj/z8fAoLC7FYLI67/pVF0zRHLwQ3Nzfc3d0xGAx4enri7e2N0WjEx8cHFxcXNm/eTHZ2NlA8SefgwYOZNGkSoaGhlzxGQUEB+/btK5Xw+OuvvxzDTVxdXenUqZNjzoybb775kksVnzlzhqeffprly5djsVjQ6XR0796d2bNnExUVVeY+CQkJLFiwgDVr1vD333+X6p3h5eVF69at6dOnD6NGjaJhw4YX7G+xWDhy5Ag5OTkUFBQ4Sn5+fqnnV/KaTqcrs0fR1ZLkRom60vCI/+03nu/Rg3lWK34//AA9ezo7JCGEuGLKbqcgI4O85GTyUlIoyMjgutBQyMvjt507+ef4cUy5ueTl5mLKy8PNZuOVNm3AZOLNHTv4NSUFk8VSXKxWIlxc2OThAXl53GK1sv2843UC/ih53B7Ye857rkAvV1dWhoSApyd3JieTphSeJckTTzc3bgoL46kbbgBPT/6zZw92V1c8vb3xMhrxNBpp2rAh17dpA56e/HXqFO4+Pnj6++Ph749nQAAGP7863/vEyaulLAZuA4Io7kQ0USn1qaZpfYD3KF4hZYFSanIlHU96blSjH374gXvuuYfrrruODRs2EBwcXK79nnjiCWbPno2XlxdxcXE0btyYrKwsxo4dy7fffovFYsHV1ZXBgwczZ84cWUr0PG+++SYTJ050dEHX6XTMmTOHMWPGVFsM9913H9988w1Go5EVK1bw0ksv8fvvvwPQunVrvvjiizInxjSbzQwbNozly5fzwgsv8M4775Trrv7evXv5/PPP+eqrr0hJSSE4OJj777+fkSNH0q5du0o/vyuRlZXFzp07L5q4uNiQH03TcHd3d6zeY7FYsFqtWK1W7Ha7o5dEVV0nnk06nB1yZLVacXFxITw8nOuuu45mzZoRGhpKeHg4kZGRjqLT6UhJSSEpKckxbOts0iQjI4PMzExycnIcyROTyURBQQFms5mioiIsFovj3M6l1+vp2rUrkyZNuqoeSFDcM+fQoUOkpqYSExNT7t4z59fx1ltv8cEHHzgm6m3dujXTp0+nVatWzJ8/n3Xr1nHgwAFHbyYAo9FIdHQ0ffv2ZdSoUU4dWlSVJLlRoi4kN/5Zv547+vYl22bjp/nz6Th6tLNDEkKIGqsoLw9TaiqmtLTikpGBq8VC29BQMJlYsXUrZ1JTMeXlkW8ykZ+fTyMPDx6JigKTidHbtnHKZCLfYikuNhuxbm7McXOD/Hz8zGayzzvmKODsIEE9YD3v/bHALIOBQg8PorKz8dDp8NTp8HB1xcPVlZGRkTzQvDm5rq48v3cvHgYDnh4eGAwGPDw8uK11a2JatsQEbDh0CIO3Nx5GIx4+Pnj4+NCgUSP8Q0OxublhBgz+/uj0+qr9oM/j7J4bzlAX2hg13eLFixk+fDgxMTGsXbsWf3//cu03atQoFi5ciK+vL/v377+gwV9UVMSrr77K3LlzMZlMaJrG7bffzrx58y56t/RakZiYSGxsLAcPHnS8FhkZyS+//FLmXeCqNm7cOGbMmIG7uzvbtm1Dp9MxYsQIxzKbnTp1YtGiRTRv3rzUfjabjf/7v/9j3rx5PPjgg8ybN6/MZThTUlL4+uuvWbhwIXv37kWv19O/f39GjhxJr1690F/Fd6nVaiXn7BDQ3Nwyhwzl5+c77nqfe0e8sLCQ9PR0EhISyp24MBqNBAcHExYWRqNGjWjZsiXR0dF07Nix3ElBKJ4/Yd26dXzwwQesX78egM6dO9OtWzciIiLIy8sjNze31LCnoqIixzLA4eHhREREEBkZScOGDdm/fz/z5s3jm2++oaCggJiYGMaMGcOQIUOuKBFwpYqKijhz5gxZWVlER0fX2KFpy5Yt46WXXqKs5Lmvry9t27blzjvvZNSoUQQFBTkhwup3yTbG2Qk/roXSsWNHVZvt/uYbFaJpKljT1K6vv3Z2OEIIcc2zWSwqLzlZJe/bp45v3ar2/fCDOrlypVK//KLsa9eq5S+8oL56/HH1yYgR6oO771ZTevdWG+6/X6nx41X+o4+q0c2bq/saNlQDwsJUj8BA9S8fH/VJw4ZKtW6tEhs0UCEuLsoIyhUUJWV68Vo86uA5r51bPip5f8c5r+lB+YCq5+KilgcHK9WqldrZsqU6etttVfK5ADtUDfh/vzpLbW9j1HSffvqp0jRNde3aVeXk5JR7v8GDBytABQYGqtTU1Etua7PZ1HvvvaeCg4MdfzsdOnRQ27dvv9rwa6X3339fubq6lvp+GT16tLLZbE6Na/r06QpQOp1OrVmzRiml1JYtW1RUVJQjzttuu00lJCSU2s9ut6sJEyYoQPXv31/l5+crpZQqLCxUy5YtU/3793ecb0xMjJo9e7ZKS0u7bDw2m02tX79eDR8+XDVq1Ei5ubkpnU6nXFxclKZpZX5PX2nRNE0ZDAYVHBysWrdurWJjY9Xo0aPVtGnT1Nq1a1VKSkrlf+DnOHnypHrxxRdVYGCgAlTr1q3V3LlzVW5u7iX3y87OVnPnzlXt2rVTgPLy8lKPPPKI2rlzZ5XGW5fs27dP9ezZU3Xr1k299957KjMz09khOc2l2hjSc6OW+GP+fHo8/DBGnY6NK1fSondvZ4ckhBCiGlnNZgoyM3G1WPAAzFlZHDxwgIKcHApycjDn5VGQl0eH8HCaGI0knTnDl7/9RkF+PmazmYKS8lCTJnTy8mLXmTPU8/Oj/o8/Vnqs11LPDRmWUvVmz57NE088QY8ePfj+++/LPcFenz59WLt2LaGhoRw6dAgfH59yH3PZsmWMHz+eY8eOAdC4cWPeffddBg8efEXnUJtkZGTQvXt3du3a5XjN09OTH374ge7duzsxsv/vq6++Yvjw4QB89tlnjBw5EoAff/yRxx57jMTERDRNo1+/fixcuLDUMKM5c+bwxBNPcMstt9C+fXsWL15Meno6YWFhDB8+nJEjR9K6deuLHttut7Nq1Sq+/vprtm/fzunTpx3DHFxcXAgJCcHLy8sxh8XZ+R7OnffBYDDg7u5e5qSMZ5f3PXduC6PR6FgytiYoKChgyZIlzJo1i127duHr68uoUaN4/PHHadasmWO7HTt2MG/ePBYvXozJZKJ9+/aMGTOGoUOHVujvUYhzSc+N2n5XZcMGFW8wqDs8PNSJbducHY0QQghxSUjPDVFJpk6dqgB11113KbPZXK59bDab6tq1qwJUgwYNlMlkuuLjb9++XV1//fWOO+fBwcFq5syZTu+9UFU+++wz5ebm5uglAKhOnTpd9s68M2zcuNHR0+Ltt98u9d7ChQsdvQtcXFzUsGHDSv0eLFmyROn1euXu7q6GDBmi1q5dqywWS5nHsVgs6ttvv1V33323Cg8PL9Ubw8XFRTVs2FANGzZMrVmzps7+XlyM3W5Xv/76q7rvvvscP4vevXuradOmqY4dOypAeXh4qAcffFD9/vvvym63OztkUQdcqo3h9MZAdZba2PD435QpyqrXK9W2rVJnzjg7HCGEEOKyJLkhrtavv/6q+vfvrwA1ZMgQVVRUVK79bDabiomJUYBq2rSpKiwsrJR4jh07prp37+64sPXy8lLPPvtspdXvbLm5uerWW28tNQTCxcVFTZ061dmhXdLu3buVwWBQgBo7duwF78+cOVMZjUYFKFdXV/X44487fpeOHz9eZtd+s9msvvjiC9W/f38VGhpaKpmh0+lUkyZN1AMPPKA2bdp0zSUzLiUxMVG9/vrrKjQ0VAGqTZs2avbs2SorK8vZoYk6RpIbtbTh8fnDDysdqGmRkUplZDg7HCGEEKJcrqXkBnAn8HHTpk0r6+O7ZtlsNrVy5UrHRXZAQICaNGmSslqt5drfYrGo6OhoBajo6OiL3om/GpmZmWrYsGFKr9cXz2ej16uhQ4eq9PT0Sj9WdVm6dKny8PBwJDQAFRISovbv3+/s0Mrl5MmTytfXVwFq0KBBF7xvs9nUhAkTHEkQd3d39corrzgSEyaTSc2fP1/17t271HwrZ3++zZs3V4888ojaJr2ny6WwsFAdPnxYemlUMpvNptasWaM2bNhQJd9ttcml2hgy50YNNWvwYJ5ctoxYf39+2L8f78ussyyEEELUFOWdc0PTtEuut6mUyqi8qKpWbWpj1DRFRUUsXryYadOm8ffffxMZGcmzzz7L6NGjy716QlFREdHR0Rw+fJiYmBh+//33Kl39oKioiFdeeYUPP/zQscJKt27d6Nq1K1FRUbRo0YKWLVtW6+oPFVVUVMRdd93FunXrSr0+ePBglixZUmNXjyhLVlYWrVu3JikpiZtvvpmtW7deEL/VamXcuHF8+OGHWCwWvLy8MBgMpKenO7Zxc3MjKiqK2NhYRo4cSUzMNTF1kKiB7HY769atY9GiRWzbtq3U3C4Afn5+REVFcdNNN9GvXz9iY2PLXAGoLpKlYEvUlobHzAEDeHbFCgaEhbF4/34Mfn7ODkkIIYQotwokN45TfIdUAyKBzJLHfkC8UqpxlQZaiWpLG6MmycvL45NPPmHGjBkkJCQQHR3NCy+8wL333luhJTfz8/Np1aoV8fHxdO3alZ9++qnaLsztdjuzZs1i8uTJpKamXvC+pmno9Xo8PDwwGo34+/s7lueMjIykUaNGNG/enJYtWxJaDTeyrFYrx44dY9u2bTz11FPk5eWh1+uxWCy4u7uzaNGiWjtpqtlspn379hw6dIgWLVqwZ88eDAbDBdsVFBTw6KOPsnjxYlxcXGjevDndu3dn1KhRREdHOyFy57Db7aSlpREUFFSrElllyc/P5+TJkyQkJJCYmEhSUhIpKSmkpaWRnp5OVlYW2dnZ5OXlOZbYLSoqwmq1YrfbMRgM1K9fn7Zt29KtWzcGDhxIREREtZ6D3W5n/fr1jmRGQkJCqYlqIyMj6dKlC5qmsWPHDk6cOIHJZCpVh6+vL02bNqVz587069eP7t2718mEhyQ3StSGhoclL48Qo5Ebg4JYeeoUrmV8KQshhBA1WUVXS9E07RPge6XUmpLnvYEBSqkxVRVjZZHVUiouJSWFWbNmMWfOHDIzM+nSpQsvvPACvXv3RtO0CtWVk5NDixYtOHPmDL1792bNmjWX3efw4cMYDAYaNGhwpadQph07drBr1y6OHz/OqVOnSEpKIjU1lYyMDPLy8igoKMBisXCptrerqyvu7u4YjUb8/PwIDAwkODgYHx8ffH198fX1xd/fH39/fwIDAwkMDCQgIACbzUZ8fDxHjhy54PhZWVmYTCbMZnOpO78AOp0Om83Gddddxy+//FJqVZHayG6306VLF3799VfCwsLYt29ftZxTUVERM2bMYN68ecTHx+Pq6oqXlxf+/v6EhIRQv359mjRpQvPmzbnuuuto06ZNlfbqsdvtHD58mD179vD3339z9OhR4uPjOXPmjOP3saioCACDwcC9997L9OnTCQoKqrKYrsbff//N+PHj2b9/f6nkhMViueB3+mI0TcPV1RW9Xo/BYMDDwwNvb28MBgOJiYmkp6eXqsvV1ZXQ0FBat27Nv/71LwYMGFCpyS+73c5///tfvvzyS7Zt28apU6dKJTMaNGhA165dGTFiBN26dSszAZWfn8+qVatYu3YtO3bs4Pjx42UmPJo0aULnzp3p27cvPXr0wM3NrdLOwxkkuVGiNiQ3+P57jg4ahH3+fJqNHu3saIQQQogKu4LkRpxSqs3lXqvJakUbw8mOHTvG9OnT+eyzzygsLOSuu+7ihRde4MYbb7yi+tLS0mjZsiXp6ekMHjyY77777rL7mEwmmjRp4rj7Wd13Z6G4x8qBAwc4dOgQR48e5dSpU5w+fZqUlBQyMjLIyckhPz+fwsLCSyZCKkLTNHQ6nePCTq/Xk5KSgqZpvPjii7z99tuVcpyaYvDgwSxbtgxfX1/27t1Lw4YNq+Q4a9eu5c033+SPP/7AZrOhaRoNGzbEYrGQnZ1NQUEBNputzH01TcNgMODt7U1AQAChoaFERETQpEkTWrRoQbt27WjZsuUFd96LiorYv38/e/fuZf/+/Rw9epSEhASSk5PJzMzEZDJhtVrLPKZOp8PDwwNfX19CQkLw9fXlf//7H2azGU3TiImJYcaMGdx6662V/llVlN1uZ+bMmbz//vucOnUKKE44nF1S9+xSuWcTgf7+/gQFBREcHExoaChhYWFERETQoEEDQkJCytU7Zc+ePaxYsYJt27Zx4MABkpOTS32WLi4uBAUF0bx5c8dwkFtvvbVcddvtdjZv3sznn3/OL7/8UmYy49Zbb2XkyJHExsZecW+a/Px81qxZw5o1axwJj7y8vFLb+Pj4OBIeffr0oVevXrUq4SHJjRK1ouExeDBs3QqnT0Md7EYkhBCi7ruC5MZ6YCuwqOSlYUAXpVTPqoivKtSKNoaT7N69m6lTp/Ldd9+h0+kYMWIEzz33HC1btrziOhMTE2ndujXZ2dk88MADfPbZZ+Xab9q0aYwfPx6DwUDbtm35+eefyxy64Gxr167l1VdfZdeuXWW+r9PpHHeh9Xo9rq6u6HQ6NE1D0zSUUthsNiwWi6P7/dku+Gfb/gEBAaxfv77OzivxxBNPMHv2bAwGA7/99hvt27evlHqPHz/OK6+8wsqVKx0XjcHBwdx///1MmDABv/OGk1utVg4fPkxcXBwHDhzg2LFjnDp1ijNnzpCenk5ubi6FhYUX7YGg0+kwGAxomnbJZImrqyuenp6O3iIRERFERUXRsmVL2rVrR3R0dJm/63a7nTlz5jB16lROnz4NQGhoKM888wzPPfdctQ9ZOXToEOPGjWPDhg1YLBY0TaNDhw68+eab9OnTp1pjATh58iTff/89W7ZsIS4ujtOnT1NYWOh4X9M0fH19iYqKolOnTvTq1YuePXvi5ubGli1b+OKLL/j555+Jj48vlcyIiIjg1ltv5f7776dnz55V+jmbzWZWr17N2rVr+eOPP8pMeLi4uODi4oJOp7vg++VsQsnd3d3R68XDwwNPT088PT0xGo2ORNPZ4uvri5+fHz17Vv5/45LcKFHTGx7Z8fE83LgxL99zD+0XL3Z2OEIIIcQVuYLkRgAwEehC8RwcvwCTZELR2kspxU8//cTUqVP573//i9Fo5NFHH+Xpp58mPDz8quo+efIk0dHR5OXlMXbsWGbNmlWu/XJzc2ncuDExMTGMGTOGQYMG8eCDDzJ//vwKD4epCnl5eUyYMIGFCxeSmZkJQEREBPfffz9t27alVatWtGzZslKSMVartU6OxT/fO++8w8svv4yrqytr1qyhe/fuV1SP2Wzm3XffZf78+Y5eBO7u7nTv3p3JkyfTtm3bq47VbDYTFxfHvn37+Oeffzh69KijR09mZiZ2ux1/f39CQ0OJjIykSZMmtG7dmvbt29OiRYtK+Xn+/vvvjBs3ju3bt6OUws3Njbvuuov33nvvqv9uL+Xs3DUzZ87k5MmTABiNRoYOHcrbb79d44ZLZWRksGLFCjZu3Mju3buJj4+/YDiIi4tLqWRG/fr1HcmMXr16OX2eE7PZzNq1a1mzZg27d+/GZDJRWFhIUVGRY8iPxWLBZrNhs9mw2+2lkqPlVRW5hku2MS62jEpdLDV9KdgFo0YpQP1v/nxnhyKEEEJcMcq5FCzwZcm/T5Vn+5pYkKVgS7FarWrJkiWqY8eOClChoaFqypQpKisrq1LqP3jwoGPZ0vHjx1do37fffru4nfW//ymllHr11VcVoObMmVMpsV2prVu3qptvvtmxDKtOp1M9evRQe/fudWpcdcWCBQuUpmlK0zS1aNGiCu27fPlyFRMT4/jZaJqm2rZtqxYtWuRYSrYuyszMVA8//LDy9PR0LIvbtm1btW7duko9zpEjR9SAAQOUm5tbqeP88MMPlXqc6lBQUKCWL1+uxowZo66//nrVuHFjNWTIELVy5co697tis9lUZmamOnbsmPrzzz/Vxo0b1dKlS9WCBQvUe++9p9544w31/PPPq6effrpKjn+pNobTGwXVWWp6ciPW319Fuboqex37AxBCCHFtqUByYz8QDuwF/IGAc0t56qgppaa3Mapafn6++vDDD1VUVJQCVLNmzdTHH3+sCgoKKu0Yu3fvVu7u7gpQb775ZoX2zc7OVv7+/qpv376O12w2m+rXr59ydXVVP//8c6XFWR6FhYXqtddeU8HBwY6Lunr16qk33nhDFRYWVmss14I1a9YonU6nADV9+vRLbvvPP/+owYMHl7qwDw0NVS+++KLKzc2tpohrjvnz56tGjRo5PovAwED12muvKYvFckX12Ww2NXfuXNWkSRNHnd7e3mr06NEqNTW1kqMXdZHTkhvAcqAv4FKVxylvqckNj9M7dyoN1IR//cvZoQghhBBXpQLJjSeBA0AhcAw4fk45Vp46akqpyW2MqpaSkqIiIyMVoDp16qSWLl2qrFZrpR5j+/btSq/XK0DNnDmzwvtPmjRJAerPP/8s9XpWVpZq3ry5CgkJUfHx8ZUV7kXt2rVL3X777Y4LbRcXF/Wvf/1Lbd++vcqPfa37888/HcmxZ599ttR7JpNJvfzyyyosLMxxwe3h4aEGDRqk9u/f76SIa5a4uDh1++23O3qxuLq6qv79+6tjx46Va/8TJ06ou+++2/EzAFR0dLRasmRJFUcu6hpnJjfuAL4CjgJTgBZVebzLlZrc8JjRv78C1ME1a5wdihBCCHFVypvcOFuADyuyfU0sNbmNUdUeffRRpdPp1Nq1a5Xdbq/0+jdt2uRIBsybN6/C+2dmZio/Pz/Vv3//Mt/fv3+/MhqNqlOnTpXa0+Qsi8WipkyZosLDwx0XdQEBAer5559XJpOp0o8nLu7YsWPKaDQqQA0ZMkR98803qn379krTNMewk44dO6rvvvvO2aHWWCaTST399NPKx8fH8fvcsmVLtXTp0gu2tdls6pNPPlFNmzZ1bOvp6alGjBihkpKSnBC9qAucPiwF8AUeBU4B24FRgL46jn1uqckNj/mRkWqwn5+zwxBCCCGuWkWTG3Wh1OQ2RlXau3evcnFxUU8++WSV1L9y5Url4uJyRfMlnDVx4kQFqF27dl10mx9++EEB6oEHHqi0BM2BAwdU3759HT1ONE1TnTp1Uhs3bqyU+sWVSU1NVSEhIY6LbUDVr19fvfbaa5JsqqCvv/5aNW/e3PE5+vr6queee04dOXJE3XvvvcpgMJRKgFzp37AQ57pUG6PKV0vRNC0QuB8YDiRS3JPjVqCNUuq2Kj34eWrsTOYHD0KrVjBjBjzzjLOjEUIIIa5KRVdLqQtqbBujCimluOOOO9izZw+HDx+u1BUNrFYrEydO5J133kHTNJYuXcrAgQMrXE9GRgaNGzfmjjvuYNmyZZfcduLEiUyaNIlZs2YxduzYK4rbbrfz0UcfMW3aNE6cOAGAj48P999/P2+//Ta+vr5XVK+oXGazmX79+hEUFMTkyZOJiopydki12uHDh3nqqafYsGFDqaVqPTw8GDhwINOmTavS1VbEteVSbYwqXQNK07TvgRbAl8CdSqmkkreWaJp2bbUALuHQBx/QWNNwGzLE2aEIIYQQogI0TbsTuLNp06bODqXarVixgp9++onZs2dXWmIjLy+Pp59+mkWLFlFYWIirqyurVq2iZ8+eV1TfjBkzyMnJ4fXXX7/sthMnTmT37t0888wztG3bli5dupT7OHa7nREjRrB06VIKCwsBaNu2LW+88QYDBgy4othrm+zsbF5//XViYmLo378/RqPR2SFdlMFgYOPGjc4Oo85o1qwZa9asoaioiNdff53NmzfzyCOPMHLkSKcveSquLVXac0PTtG5Kqc1VdoAKqol3VZTdTlN3d9r6+/N9SoqzwxFCCCGu2pX03NA0rR7QqeTpH0qpWvWfYk1sY1SlwsJCrrvuOgwGA3v27MHV9erulyUmJvLYY4+xevVqbDYbBoOBUaNGMX36dDw9Pa+ozrS0NBo3bkyfPn1YsmRJufbJzs6mc+fOZGRksHPnTho0aFCu/V588UWmTp2Kp6cn99xzD1OnTiUkJOSK4q6t3nnnHV5++WWgOHnQp08f7rnnHvr164eXl5eToxNC1BWXamNUaSqtJiU2aqrfFyzgmNVK/379nB2KEEII4RSapt0D/AH8G7gH+F3TtMHOjUpcyvvvv8/Ro0eZOXPmVSU29u3bxy233EJERAQ//vgjRqORN998E5PJRM+ePXnzzTevuO7p06djMpmYOHFiuffx9fXlhx9+wGw2M3DgQAoKCi67j91u54MPPkCv15Oens5nn312zSU2LBYLc+bMITY2lm3btvHwww+zfft2hgwZQkhICPfeey/Lly8v1+cphBBXSvoJOdlXH3yAOzCoHN0lhRBCiDrqFaCTUmqkUmoEcAPwmpNjEheRnJzMW2+9Rb9+/ejevfsV1fHTTz9x3XXX0aZNG7Zv305YWBjz588nKSmJ3NxcAgMDGTBgAFOmTOE///lPhetPSUlh9uzZ3HfffbRu3bpC+7Zs2ZJFixaxc+dOHn30US7Xy/n111+noKCAESNGYDAYKhxrXbBs2TJOnz7NM888wy233MIHH3xAQkICmzdvZuTIkWzevJm7776bkJAQhg0bxooVKxzDd4QQotJcbKZRZxagF3AIOAK8WMb7DwCpwJ6S8lB56q1pM5kXmUwqWNPU4Pr1nR2KEEIIUWmo+FKwcec9dzn/tZpealoboyo99NBDSq/Xq0OHDlV43y+//FI1aNDAsYJCixYt1Jo1a9TBgwdVz549HUu+6nQ6x3Oj0ahsNluFjvPcc88pFxcXdfDgwQrHeNbrr7+uAPX+++9fdBubzaa8vLyUq6vrNb3Sxo033qiaNWt20Z+TxWJRGzduVA8//LAKCAhQgPLx8VEjRoxQq1atUoWFhdUcsRCitrpUG6NKe25omrZc07S+mqaV+ziapumAOUCJnrksAAAgAElEQVRvoDVwn6ZpZaXclyil2peU+ZUUcrXa8t57pCrFsOHDnR2KEEII4UzrNE1b///YO+/wqKqtD79nanojhF4iHZReBYNKR5rAFQFRES6Iil5BinIpVgQBP0QURSxcRcEIgoKgXi5NkC4dAgESQhohbVImk5lZ3x8ziZQQEshkEjjv8+xnzpy1z16/GUKyzzprr60oytOKojwNrAd+cbMmlQI4ePAgy5YtY/z48dSvX79I19jtdt59912CgoIYMWIEFy5coF27dhw8eJDp06czfvx4GjZsyKZNm/Dz82Pq1KlkZmayceNGHnvsMUwmE2+//XaRNcbHx7N48WKGDx9OgwYNbvWjMn36dPr378+ECRPYsmVLgX1mz55NZmYmQ4cOveXaIOWdP//8kz///JMXX3zxhsUjdTodXbp04dNPPyU+Pp6NGzcyaNAg1q1bR58+fahcuTKjRo1i06ZN5ObmlvInUFFRuVNwdUHRrsBIoD3wPfCFiJy6yTUdgFki0sP5/lUAEZl9RZ+ngdYiUqx9uspasS954gl2rl1L64sXMfr5uVvOLZF47BjHf/uNrLQ07q9dmwCdjr8iIth58iRms5mcvJaTw8RmzQjWall18iQ/nz+PxWol12bLf13RsCFBisIb586xLiUFBTBoNBh1OgxaLavbtcPLy4tPo6PZk5qK0WDAw2DAw8MDLy8vpvXqBZ6e7LhwgdisLLz8/PDy98e3QgV8KlSgUdOm4O2N3c8PjcHg7q9ORUVF5Y7lFguKDsSxVTzAdhFZU/LKXEdZm2O4AhHhwQcf5Pjx45w+fZqAgIBC+5vNZqZMmcLSpUvJzs5Go9HQo0cP5s+fz4cffsjy5cvJyMgAoEmTJrzzzjv069fvqjEyMjIIDAzEYDBgMpmKtPPCyy+/zKJFizhx4gT16tW79Q8MpKen065dO5KSkti/fz81a9bMt9ntdvz9/cnOziY1NRUfH5/b8lVeGTp0KL/88gsxMTHF/g4sFgu//fYbK1eu5Mcff8xfkjRo0CAee+wxOnfufNvFalVUVO4sCp1j3CiloyQb4A88C1wAduIIeOhv0Hcw8NkV70cAH17T52kgDjgMhAM1CvE9BtgH7KtZs2bJ5MKUBBkZIt7eIqNHu1tJoWSnpMj2Dz+U+X37yplHHxW5/355x99ffEAUZ0ppXgsHEZDB15zPa1ud9u43sJ902h+4gT3Tab/3BnZxtnsKsClX2KtdcU4LYgCpCCJ+fiIVKshDBoPU0mqlgV4vzTw8pL2PjwytVEmkTx+RoUPl9Vat5OWWLWVW587y/oAB8vnIkfLf118X2bpV5OhRSTl1Smy5ue7+p1NRUVFxGxR/Wcqcopwry+1uWJby/fffCyBLliwptN/ly5dlyJAhotPpBBC9Xi9PPvmkbN26VcLCwkSj0eSff/TRR+X8+fOFjjdy5EgBZOrUqTfVePHiRTEajTJy5MhifbbCOHnypPj5+UnLli0lKysr//zcuXMFkMcff7zEfJU3Lly4IDqdTiZMmHDbY2VnZ8uPP/4oQ4cOFW9vbwEkJCRExo0bJ4cPHy4BtSoqKncChc0xXJq5AaAoSgXgCRxBiljgGxxPZu4TkQcL6D8Y6Ckio53vRwDt5IosDeeYGSKSoyjKWGCIiDx8My1l6anKuldeYdP8+by7fj2+vXu7TYfdauXUxo38uXo1LbKzaZ6czKqjRxkXF0e6CNYr+s4EZgELNRpeF6GiTkctX19qBgfjaTQyoU0bQitVYldCAttjYzF6eODh4YGHtzcenp70at8ev6AgotPTScjKwtPPD6OfH54BAXgFBhJQtSoaDw+45qmMJSODrMRE/DQaNNnZnIuI4GJ0NJlpaWSkpZGdkUFOVhajWraErCy+2bOHQxcvYs7JwZyTQ05uLlq7nc+bNwezmXGHDrE/PR2z1Uq2zUaOCD7AcT8/yM2lfmYm50WwAXanBi8g84rja2t9+wOpzmMjYHEeK4AWqA8c8/YGg4H66enkAB4aDZ5aLV46HZ0qVGBuy5bg68ukw4cxeHkREBBAYIUKBFaqRMPGjWnSpg0EB2MNCEB3lxYsU1FRKR8UN3NDUZQDItLymnOHRaRpyasrWRRF6Qv0rVu37j9Pnz7tbjkuw2w206hRI/z8/Dhw4ABarfa6PpGRkYwdO5bNmzcjInh7e/Pcc89Rs2ZN3nvvPaKjowEICQlh/PjxTJ06tUhP5c1mM35+fmi1WkwmU6HXjB8/niVLlnDq1CnuueeeW//A1/Dzzz/Tr18/hg8fzvLly1EUhYCAAEwmE8nJyfj7+5eYr/LEa6+9xpw5czhz5gyhoaElNm52djYbNmxg5cqV/Pzzz3h4eBAXF4fRaCwxHyoqKuWTwuYYrl6WsgZoAPwH+FJE4q6w7StIVFGWpVzTXwski8hN/6qUpeBG30qVOHj5MtFmM5pSSLezZGSQPncuwcePc+DoUR45fZpUux3zFX2GAiuAn4HHgQpaLdU9PakbEkLTRo0YPGIEtfr3h7vwxtqSno4hIwOSkti9YwexUVGkXrpEWkoKaSkpVFAUXqhTB9LTGbZjBxczM8nMzSXLZsNss9FIp2O9jw9YLASYTGTBVcGTe4BI57FSgP8mwFHADHhe0U+DI3jSR6PhB19fEnU6WqWm4qEoeGq1eOh0eOv1PF69OmPvvZckvZ65J07g5++Pf0AA/kFBBFWuTNPmzanZqBH2ChWw+/mpwRMVFZXboqjBDUVRxgHPcfWvQQBf4A8RecJFEkucsjTHcAXvvPMO06ZNY/PmzTz00ENX2axWK2FhYezatQuAihUr8vLLL3Pq1ClWrVqVv/1ny5YtmTt3Ll26dCm2/+eff56PPvqIf/3rX7z//vsF9omJiaFOnTo89dRTfPrpp8X2cTPefPNNZsyYwfvvv49Go+Gll15i0KBBhIeHl7iv8kBWVhY1a9YkLCyM1atXu8zPL7/8Qu/evfnpp5/o06ePy/yoqKiUD9wZ3OgtIhuuOWcUkRvu/aQoig6IALoAF4G9wDAROXZFnyp5gRJFUR4FpohI+5vpKSsTj6RTp6jSsCH/atOG9/bscamv9JgYXnzwQVZERtIK2AVE4Yg4BSgKlY1GQgMDaRwayqABA2g5YgRUruxSTSpXY7dasaamYkhLg6Qkft6wgeS4OFKSkkhNTibNZKK5jw9PVqlCRkoKfXbvJjM3l2xn4MRst9NPr+cjo5FTFgtNzeb8wEne/+7eOKrz/QZ0L0DD48C3wErnMVwdPJmi0/GGlxfrRBiXmYlRUTBqtXhptXjqdLxWty69a9dmb3Y2n0dH4+Plha+vryOIEhhIj44dqVqnDqkaDWlaLRXq1cMrOLhIa6dVVFTKH8UIbvgDgcBsYOoVJpOIJLtKnysoK3MMVxAbG0v9+vXp3r17gTexY8aMYenSpVSvXp0xY8awfv169uzZg4hgNBoZPHgwCxYsICQk5JY1WCwW/Pz8EBFMJhOGAmpnPffcc3z22WecPn2aWrVq3bKvG2G32xk0aBA//fQTXl5eZGZmcunSJYKCgkrcV3lg6dKljBkzhq1btxIWFuYyPxaLhZCQEAYMGMCXX37pMj8qKirlg8LmGK5OGXgL2HDNuV1AywL6AiAiVkVRXgA24biv+lxEjimK8gaO9TXrgBcVRekHWIFkHDU4yg3fz5qFFRg+caLLfMQeOMDYXr3YkJiIHcfT/odatYIvv6RW48aY1ZvKMoNGp8MQHAzBwVCnDn3atbthXx9gSyFjNQCujRyaU1OxJyZCVhbtoqNZuXkzqUlJpKWkkJ6eTlp6On0rVwY/P+rExhJ29ChZziU7ZueyncrO5UKXsrK4bLc7gic2W37myb6DB+l98CCrgSUF6Prgiy8YD7wGfHyNTQF+0Gh4VK9nss3GJ1YrekXBkNc0GtbUrk0Tf38+SU1ldXIyXgYDXkYj3h4e+Hh7M6NLFwIqVmRvcjJnMjLwDwrCv3Jl/CtVIqBGDao2aoTmLi30pqJSlhGRNCANR/KgShnltddeIzc3l/fee+86W3x8PMuWLcNgMJCbm8uMGTMAqFatGq+88kqhO2gUB4PBwPjx45k3bx4vvvgiS5Zc/dcmKiqKzz77jNGjR7sksAGg0WhYvnw59evXJz4+nq5du961gQ0RYeHChbRo0YIHHnjApb4MBgP9+/dn7dq1WCyWAgNbKioqKuCizA1FUSoD1YCvgWH8nWnvBywRkYYl7rQIlJWnKg/4+5Ock8PRrCyUkg4ynDgBY8dSZ/t2zuLIzpjcrRtT1q8vleUvKncfdqsVMjLQpKSQGBnJof37SUtMJDUpifTUVNJTUxlRpw51dDp+PnWKzyIiyLRYyLJY8gMoy4ODaa0ovJqczBKzmVxnzRMrjgyUP4E2QFfgvwVoOAPUwbEt0+4C7Gk4fvm0xVFdWMPfWSkGIM3fH3Q6Bmdmsjc3Nz+oYtRqCdLr+b1VK/D05I3z5zmTnY2Xhwfenp54e3tTOSiI53r0AF9f/oiJwazV4lexIj4hIfhXrkxAzZp4BQVdV0tGReVO5lZ2SynvlJU5Rkmzd+9e2rZty+TJk5kzZ8519k6dOvHHH38AoCgKHTp0YP78+bRvf9OE2mJjtVrx8/MjNzeXtLS0q7ZeHTNmDF999RWRkZFUr169xH1fSVBQECkpKdx7773s3r37rtwC9vfff6dbt258+eWXPPXUUy7399NPP9GvXz82btxIjx49XO5PRUWl7FLqy1IURXkKRzZFaxz3EnmYcNTecN3CvEIoCxMPW2Qkz9Wty719+jD+p59KbNw/lixh3Msv847ZTB9gQ2Agcf37M+qLL0rMh4qKu7FbraRHR5MSE0NKTAypcXGkJSbySP36GLKy2LB3L9tPnyYjM5OM7GwyzWaycnJYd++9aHJyeOn0aX5PSyPHbsciQq5zD504Pz+wWmmXlcVBEez8vaxHC/mFdSsBiddo0vN3AdlA/i4sm4cnkOU8DsIRaNFc0WorCif8/ECno2laGiki+Vkreq2Wll5efNmoERiNDD1+nBxFwUOvx8NoxNNopGW1aoxq2xa8vPjk4EF0np74+Pvj7e+PT1AQtUJDCW3YEHx9ydLp8AgKUgOdKi5HDW7cGYgInTp1IjIykoiICPyu2bZ+x44dPPDAA2g0GkSEyMjIEi0qWRAzZ87kjTfeYMSIESxfvhyAs2fP0qBBA5599lkWLVrkUv9ffPEFzzzzDK1ateLAgQMMGzaM//znPyhKQRWz7lz69u3Lnj17iI6OLpUin2azmZCQEIYMGcLSpUtd7k9FRaXs4s6aG4NE5AeXOSgmZWLi8c47MG0anDsHtWvf9nBrpkzhlQULOGt13H497evLFytWgFpwSUWl5LBYIDWV6BMnSIyKIi0xkfRLlzClpKC1WBjeuDFkZDB/yxbOXL5MltlMtsVCtsVCRZ2Oz+vUAbOZnidOEJWTkx9YyRWhtqKwy8cHbDYqZWSQClcFV6oD0U4ZGv6uo5JHbeCc87igqXUj4DiOAMy1008FeBj4XacjHgi1WtHiCOhoFQUd8LiHBx8EBxMpQu+EBAwaDXqNBoNGg0Gr5clq1RgdGso5q5VpJ0/iYTTiYTA4Xo1G+jZuTIcGDYjNyeGXM2fw8vV1ND8/PP38aNioEcHVq2PR6zHrdHgFB6sFbe8AbiW4oShKLaCeiPyuKIonoBMRk2sUljxlYo5Rwnz77bcMGzaMzz77jFGjRl1nr1GjBjExMQB06dKF33//3eWa7HY7fn5+mM1mkpOT8fPz45lnnmHFihWcPXuWqlWrutR/pUqVuHTpEhcvXmTZsmVMnz6d+fPnM2HCBJf6LUucPn2a+vXrM3PmTGbNmlVqfocPH86mTZuIj48v0i47KioqdyalXnNDUZQnRORroLaiKNf9theRBa7wW+YR4a9ly2h2//0otxnYsC9ZQu3nn+eC3VH1oKWnJx8tWkS7AiYfKioqt4nBACEh1AwJoWYh3W5WRWfjTewJhRnNZuIjIzElJGBKTCTj8mVMyckE6/VQpQpkZjJvwwYyMjLIys4m22wm22ymdUAA1KiBPSODLnv2kGOzYclrdjstvbwgIAC72UxAYiJW5xbQVhEsQHpODiQkkGS1csZuR7g6wBKSns7oEyc4gKMo7bXE79pFBxy7MI0twD4BmA8sAF69xqYAc4BJWi2z7XZmiVxV6FYDfOntzaOeniwwm1mQlYVOUdAqCnpFQafR8GXNmrT292dZSgpfJyWh12oxaLUYdDqMej3vtW5N9aAg1l28yJaEBIzOwIzRaMTDw4MxDz+Ml58ff8XHcy41FS9fXzx9ffF0BmcaN22Kxtsbs0aDxscHg1rb5ZZQFOWfwBgcCU51cMT1luAoLq7iBrKyspg8eTItWrTg6aefvs6+aNEiYmJi0Ov1WK3W/CwKV6PRaJg+fTpTp05l9OjRvPPOOyxfvpzx48e7PLDxzTffkJiYSNeuXalSpQqvvfYaBw8eZNKkSTRr1uyWdoEpjyxatAiDwcCzzz5bqn4HDx7MihUr2Lp1613zXauoqBQPV4U9vZ2v6izvCg6Hh9Pi7Fm+7NSJW1mdaLda+ah/f57bvh2NyURtoE5AAJ+uWkW9bt1KWK2KikqZwsODkCZNCGnS5IZdJj733I0vBwp7ploViCvE3g7H9sVXYrdasWdlQVYWvS5dYv/Ro2SnpZGVmkpWejpZJhMtK1WCgAC6xcTw+p49mM1mzDk5jmax8GitWuDvT/uLF+keEYHFbsditWKx28m122lSsaLjsycnUyk1FasINmdNFhugtdkgO5uEnByS7Parsl4ESDx9GnDsFrSlgM/1YnQ01YEPKLieS/916wgFnqXgei6ZgBeOmjBHr7FpAJuigKLQym7nsPNcXoDGC0jy9QWNhocyMzlmszkCN84ATbBWy4GaNUGn4x+xsZyxWNBqNOicS5ZqGI2saNYM9HpePHmS2Jwc9DodBp0OvU5HaEAA09q1A6OR+fv3Y7LbMRqNGAwGjB4e1K5UiT4dO8LQMlHL83kcZXF2A4jIaUVRbn1rDZXb5r333iMmJoYVK1ag1WqvslksFqZMmYKiKOTm5tK7d2+XBxauZNKkScyePZsffvgBRVEwGAxMmTKlVPwCfP7554Aj0PLll1/Svn17hgwZwr59+6hdAlm5ZZnU1FQ+//xzHn/8cSqX8u56PXv2xNvbm/DwcDW4oaKiUiCuXpZSUUQuucxBMXF3yuiUdu1YsGcPcSdPEtygQZGvM6emMiksjM+OHMEMfKAojB8wAJYsgdvYVk1FRUXlbsJqNpOVlERWcjKZSUlkpqbSsFIlDLm5nIqI4HhkJOasLLIyMsjJzsZsNvNcixZ4iPDDoUP8ER1NjsWCxWJxBGCsVr5p0QKN1cobJ06wJTmZXLudXJsNq92OAuy95x6wWhkWE8NOsxk75AdoPBWF8/7+YLfT1mTi+BXBGTuOpwQpWi2IUMVuJ/6az3NlPRfvK47z8MNR4wUcS5Is19grAomKAnY7JU1xl6UoirJbRNopinJQRFo4t4U/ICJNS1yci3D3HKMkiYmJoX79+vTp04dVq1ZdZ3/66af56quvMBqNWCwW4uPjb2ub11th0aJFvPjiiwC88sorBe7kUpKEh4fzj3/8g86dO7Nly5arbKdPn6ZNmzbUrl2bnTt33tEFRhcsWMDEiRPZv38/LVvecPNDlzFkyBC2bNlCbGzsdUE3FRWVuwN31tyIAM4DK4HVIpLiMmdFwJ0TD7vVSm0PD5pWqMDPCYUmn+eTfv48Yzt3Jjw6GiuOXR2erF+f97duxaeUo+UqKioqKmULq9mMzmoFs5nYc+fITE0l22QiJz2dnMxMPIDWtWpBTg5r//iD5NRULDk5mLOzseTkUNXLi+GtWsHUqSWu7RaCG3Nx1ON9EhgPPAccF5FpJS6uaHoaA7OAy8B/RST8ZtfcScGNJ554gvDwcE6ePHldJkJMTAw1a9bEYDCQk5PDgAEDWLNmjVt05gVXjhw5wr333utSX3n1RSIjI7nnnnuus//yyy/07t2bWbNmMXPmTJdqcRc2m426detSo0YNtm3b5hYN33//PY899hhbtmyhc+fObtGgoqLiXkq95kYeIlJfUZS2wOPANEVRjgPfOetx3FVsX7yYCzYbcx577Oado6NhzBismzaxEkfq8qQOHXhj82a10J6KioqKCsDffw98fKgaHFxo3/6DBpWCottiKjAKOIKjPMsG4LNbGUhRlM+BPkCiiNx7xfmewEIcJVs+E5F3CxmmF7BIRLYrirIOuGlw407hzz//5JtvvmHatGkFLrEYNGgQIoKiKGg0Gr5w065sx48fx2Jx5CNNnDiRTZs2uczXunXriImJ4f777y8wsAHQq1cvHn30URYsWMD48eMJCgpymR53sW7dOs6fP8/8+fPdpqFXr154enoSHh6uBjdUVFSuw6WZG1c5UpRgHDXjhouIW/LI3PlU5fkmTfjq+HESEhLwLiR1M/nMGbrXr8+3ItSrUIF9Tz5Jy7lz1a0bVVRUVFTKDbeQueENmEXE5nyvBYwicu1qm6KMFQZkAMvzghvO8SKAbkAMsBcYiiPQMfuaIZ5xvs7EsdrnfhHpeDO/d0Lmht1up0OHDly4cIGIiAh8rimQu3nzZrp06UJQUBDJyckMGTKE7777zi1ahwwZwoYNG/D09CQpKYlz585Rq1Ytl/iqXbs2UVFRnDp1ivr169+w35EjR2jWrBmvvvoqb7/9tku0uJMHH3yQ8+fPExkZ6dYlIYMGDWLXrl3ExMSg0WjcpkNFRcU9FDbHcOlvBEVR/BRFeUpRlF+AnTjq1bV1pc8ySU4O8y5eZHPPnoUGNgAevO8+9ouw5uGHISmJ1gsWqIENFRUVFZU7nf/iKCOShyeF18C9ISKyDUi+5nRb4IyInBURC/Ad0F9EjohIn2taorM9jyOjJOlGvhRFGaMoyj5FUfZdulRmSozdMt988w179uxh9uzZ1wU2wLFcBRw7qWi1Wj799NPSlgg4ggjff/89L730EgsXLkREePLJJ13ia+PGjURFRdG2bdtCAxsA9913H4899hgLFy7kTvh5uJK//vqLrVu3Mn78eLfXuhg8eDBxcXHs2rXLrTpUVFTKHq4Odx4CmgNviEh9EZkiIvtd7LPs8csveKal0dZZ+OpGvP7ggxwxm2np6cnk/xZUt19FRUVFReWOxENEMvLeOI9LsipjNeDCFe9jnOcKRFGU2oqifAosB25YqVJEPhWR1iLSumLFiiUm1h1kZGQwdepU2rRpw4gRI66zL1iwgLi4OEJDQzGbzQwbNgw/Pz83KIXXX38dX19fJkyYwNChQ6lWrRrbtm0jIiKixH298MILACxbtqxI/WfOnEl2djZz584tcS3uZOHChXh7ezNq1Ch3S+GRRx7BaDQSHn7XrBZTUVEpIq4ObtwjIi+LyF0dWp0yZQof+vhAIdu1Hlu7lte3bsUD+O/x46UnTkVFRUVFxf1kKoqSv/WCoiitgGx3iRGR8yIyRkSGi8iOwvoqitJXUZRP09LSCutW5pkzZw6xsbH83//933Wp/haLhWnTpqHVaomLi0On07FkyRK36Pzrr7/44YcfePnll/PrWixevBigxLM3Nm/eTGRkJC1btixywdJGjRoxbNgwFi9eTHz8tXsclU8SEhJYsWIFTz/9NAEBAe6Wg5+fHz169CA8PBy7C3Z7UlFRKb+4JLihKMr/OQ/XKYpyXXOFz7JKekwMH0REcCo0FG60vMRup9/AgQiwYvJkAu7wPdJVVFRUVFSu4V/A94qibFcUZQeOXdZeKMHxLwI1rnhf3XnuthGRn0RkjL+/f0kM5xaioqKYN28eQ4cO5f7777/OPnLkSMxmMy1atMBsNjNy5Ei3bXc6a9YsAgIC+Ne//pV/rn///tSqVYvdu3dz9OjREvM1btw4oOhZG3nMnDkTi8XC7NnXlnMpn3zyySdYLJb8rXfLAoMGDSImJoa9e/e6W4qKikoZwlWZG/9xvs4D5hfQ7hpWz5qFGRhe2B+EYcNYa7fz7wYNeHTOnFLTpqKioqKiUhYQkb1AQ2Ac8CzQqISXse4F6imKEqooigHHLm4l8rDlTsjcmDx5MoqiMKeAOUhUVBTffvstfn5+HD58GL1ez6JFi9ygEvbv38/atWuZOHHidRkEefU/Sip7Y8eOHURERNC0aVOaN29erGvr1q3LU089xZIlS4iJiSkRPe4iJyeHjz76iN69e9+05khp0rdvX/R6vbo0RaVMkpuby+XLl90t467EJcGNKyYkzUVk65UNRw2Ou4Zv1qyhjk5Hu2eeKdB+9MMPsaxcyb3BwbypLkdRUVFRUbl7aQM0BVoCQxVFuaW7VEVRvgV2AQ0URYlRFGWUiFhxZIJsAk4Aq0TkWEmILu+ZG9u3b2fVqlVMnjyZGjVqXGfP2/q1Q4cOWCwWxo4di9FodINSR0ZEUFBQgRkE3bt3p169ehw8eLBEnuaPHTsWgM8+u6UdiZk+fToiUu53TVm1ahUJCQlXZcqUBQIDA+natSvh4eGU1s6PKio3wmw2s23bNt566y26d+9OYGAgwcHBtGnThrfffptjx46pP6elhEu3glUU5YCItLzm3EERaeEyp4VQ2tu0xf31F9VbtGBap068sX37dfb0mBgq1ahBBSDm0CFo2rTUtKmoqKioqLiKW9gK9j9AHeAvwOY8LSJSdvLgb0J53ArWbrfTpk0bEhMTOXXq1HVLTTZt2kTPnj2pV68eUVFRKIqCyWRCr9eXutY9e/bQrl07Zs+ezdSpUwvss337dsLCwmjSpMltLU/ZvXs37du3p3Hjxhw7dusxsHHjxrFs2TIiIiKoXQ6XHIsIrVq1Iicnh6NHj6IoirslXcXnn3/OqFGj2L9/Py1btrz5BUyfebkAACAASURBVCoqJYTJZGLXrl1s27aNbdu2sXv3biwWC+DYNSksLIxKlSqxfv16du/eDTgyugYMGMCAAQNo376923cdKs8UOscQkRJvOPaO/wlIwZH2mdf+B/zXFT6L0lq1aiWlyYkpU6QPyIn16wu0t/byEkD+3alTqepSUVFRUVFxJcA+Kd684QTOBy7lrQF9gU/r1q1bcl9gKbFs2TIB5Ouvvy7QHhISIoAMHjxYAHnllVdKWeHf9OzZU4KDg8VkMhXar3HjxgLI9u3bb9nXfffdJ4Ds2LHjlscQEblw4YIYjUZ55plnbmscd7Ft2zYB5JNPPnG3lAJJSkoSrVYrr776qrulqNzhXL58WdauXSsTJ06UNm3aiFarFUC0Wq20bdtWXnnlFVm3bp1cvnz5umsvXrwoH3/8sfTo0UP0er0AEhISIqNHj5aff/5ZsrOz3fCJyjeFzTFckrmhKEotIBSYjWOP+DxMwGFxpIeWOqX+VKVNG7DbYf/1y4bnPvIIUzZsoLHBwLGcnNLTpKKioqKi4mJuIXPje+BFEYlzoSyXUt4yN0wmE/Xq1SM0NJSdO3de91R+9uzZvPbaa3Tv3p3Nmzej1+sxmUxuedq4c+dOOnbsyNy5c5k0aVKhfffu3Uvbtm2pV6/eLW0Ne+DAAVq1akX9+vU5derUrUrO56WXXmLx4sWcPHmSunXr3vZ4pcngwYP53//+x4ULF9xWQPZmdO/enXPnzhEREVHmMktUyi9xcXFs3749PzPjyJEjABiNRtq1a0dYWBhhYWF06NABHx+fIo+blpbGL7/8wo8//siGDRswmUx4e3vTq1cvBgwYQO/evQkMDHTVx7pjKPXMjbLaSjNzI2HnTokCkfnzr7NF/PabaEAMIJdOniw1TSoqKioqKqUBxc/c+B+ObM9NXJHxWZwx3N1KOzv0dpk6daoAsnv37uts2dnZYjQaRafTybBhwwSQadOmuUGlg65du0pISIhkZGQUqX/z5s0FkF9//bXYvlq0aCGAbN68udjXFkRcXJx4enrKE088USLjlRbnzp0TjUYjU6dOdbeUQvnkk08EkEOHDrlbiko5xW63y7lz5+Srr76SUaNGSb169QQQQLy9vaV79+7y1ltvybZt20o0y8JsNsvGjRvl2WeflSpVqgggOp1OunbtKh9++KFER0eXmK87jcLmGC75Aw/scL6agPQrmglId4XPorTSnHjMCAsTLcilI0euNths8mNQkBhAvh43rtT0qKioqKiolBa3ENzoXFArzhjuapTDZSmRkZFiMBhkxIgRBdrzlqG8/PLLotVqxdvbW2w2WymrdLB161YBZMGCBUW+5siRIwJI7dq1i+Ur77o6deoUV2ahvPLKK6Ioihw/frxEx3Ulr7zyimi12jJ/g5WQkCAajUamT5/ubikq5YjExET59ttv5ZlnnpEaNWrkBzMCAwOlX79+Mm/ePNmzZ49YLJZS0WOz2eTPP/+UqVOnSsOGDfP1tG7dWt588005cuSI2O32UtFSHihsjuHSgqJljdJKGRW7nfoeHtT08eG/yclXG595Br74AkuPHhg2bnS5FhUVFRUVldKmuMtSnNfUAuqJyO+KongBWhExuUZhyVOelqUMGjSIjRs3EhERQbVq1a6yRUZGUq9ePQICAujevTsrV67krbfeYtq0aTccLy0tjY4dO5Keno6fnx/+/v5XvRZ0rqBXDw+P65YWPPTQQ5w8eZKzZ8/i6elZ5M/Yvn17du/ezY8//kj//v2LdE3btm3Zu3cvmzZtonv37kX2dTMuXbpEaGgojzzyCCtXriyxcV1FRkYG1atXp2fPnnz33XfulnNTHn74YeLj4zmu7jqocgPMZjN//PEHv/32G7/99hsHDhwAICAggC5duvDQQw/lFyPWaFyymWixOHnyJGvXruXHH3/kzz//BKBOnToMGDCAMWPGlKltmd2B25al4Kh8bnQePwi8CAS40mdhrbQyN3Y7C3Qte/rpq87/PneutAJJ8fMTyckpFS0qKioqKiqlDcXP3PgnsBeIdL6vhxsLkN9KKy/LUv73v/8JIG+++WaB9mbNmgkgX331lWg0GvH19b1p1saHH34ogAwZMkQGDhwoXbp0kTZt2kiDBg2kcuXK4uUsoH6zptPppEKFChIaGirNmzeXDh06CCAffPBBsT9nRESEAFKtWrUi9T9x4oQAUqtWrWL7KgqvvfaaAHL48GGXjF+SLF68WADZtWuXu6UUiTy9x44dc7eUckdsbKzbsrJcid1ul8OHD8v8+fOlR48e4unpmf87JiwsTN588035888/xWq1ulvqTYmNjZUlS5ZIz549Ra/Xi4+Pj6y/wWYVdwuFzTFcvRXsX0BroDawAVgLNBGR3i5zWgil9VTlpebN+eTQIRKiovCvWROArKQkQipWJAvY/fnntBk50uU6VFRUVFRU3MEtFBT9C2gL7BbndvGKohwRkftcpbGkKS+ZG48++ii7d+8mMjLyukyIn3/+mb59+9K4cWMaNmzI6tWrmTdvHhMnTrzheCJC06ZNMRqNFPb5c3NzMZlMpKWlkZ6env965XFBr/7+/qxcuRIPD49if9awsDC2b9/Ot99+y+OPP15o344dO7Jz507WrVtH3759i+3rZiQnJxMaGkqXLl1YvXp1iY9fUtjtdho1akRAQED+FpZlnbi4OKpVq8asWbOYMWOGW7VYrVb++9//0qJFC0JCQtyqpSBEhMOHD7N69WrWrFnDkSNHmDRpEnPnznW3tNsmLi6O33//PT87Iz4+HoCGDRvSvXt3unXrRufOnfH19XWz0lsnJiaGfv36cejQId5//33Gjx9/VxbSdWfmxgHn6yRgvPP4oCt9FtZK46mKLSdHqmk0MuiaJwUP+Pk51q+2aOFyDSoqKioqKu6E4mdu7JYr5giADsfuam7PyCiC9nJVc6N79+7Svn37Am3BwcECyB9//CEajUYCAgJuus57x44dAsjSpUtdIfe2OH/+vCiKIpUqVSq035kzZwSQGjVquFTPrFmzBJD9+/e71M/tsGHDBgFkxYoV7pZSLB544AG577773C1DZs+enZ+J1KpVK5k2bZps375dcnNz3abJZrPJH3/8IRMnTpTQ0FABRKPRSFhYmDz00EOi1Wrl6NGjbtN3q2RmZsovv/wiEyZMyN++GZAKFSrI448/LsuWLSvzNWNuhYyMDBkwYIAAMm7cuFKrC1KWKGyO4eo/+LuBocBRINR57qgrfRbWSiVldONGiQc5vXhx/qnFQ4Y4ClTpdK73r6KioqKi4mZuIbgxF3gNOAl0A9YAbxdnDHe38rIs5UbBjbwb7379+skjjzwigCy+Yi5zI4YPHy5+fn5F3smktOnatasA8tlnn92wT1hYmAASHh7uUi2pqakSGBgojzzyiEv93A7du3eXqlWrlrsbpoULFwogJ924C2FiYqL4+vpK165d5a233pJOnTqJVqsVQPz9/WXgwIHy6aeflsoNt8VikV9//VWeffZZqVy5sgCi1+ulV69esnTpUklISBARkUuXLklgYKA89NBDZb5gpc1mk/3798u7774rDz/8sBgMBgHEYDDIww8/LO+++67s37//jlxmcy02m02mTJkigHTr1k1SUlLcLalUcWdwozHwATDU+T4UmOJKn4W1Upl4jBgh4u8v4twqKDcyUowgOpALe/a43r+KioqKioqbuYXghgZH3Y3vgXDnsVKcMdzdynNwIzMzUwwGg+j1ejl9+rQoiiIVKlS46ViXLl0Sg8EgL7zwgqvk3jaxsbGFfp6oqCgBpEqVKqWi55133imz9SyOHTsmgLz99tvullJsLly44Hbtzz//vGi1Wjlx4kT+uZSUFAkPD5fRo0dL9erV87MLGjduLBMmTJBff/21xLYXzczMlDVr1siIESMkICAgfyvTwYMHy4oVKyQ1NbXA6z766CMB5LvvvisRHa7AZrNJr1698r+/++67TyZMmCAbN26UzMxMd8tzG59//rno9Xpp2LChnDlzxt1ySg23BTfKWnP1xCPz0iXprdXKtisj8vfcI+tB/jNypEt9q6ioqKiolBWKE9wAtMA3Re1fVlt5Dm7kpThPnz5dunXrdtNMhzzee+89Acp8SnufPn0EkEWLFl1n69KliwDyzTfflIoWk8kkFStWlG7dupWKv+IwduxY8fDwkEuXLrlbyi3Rvn17aeGm5d8nT54UrVYrzz333A372O12OXr0qMyfP1+6deuWn3ng6ekpvXv3lg8++EAiIiKKlUGRkpIiX3/9tQwcODC/cG9gYKA89dRTsnbtWsnKyrrpGFarVVq2bCnVqlUTk8lUZN+lyccffyyAzJgxQ2JjY90tp0yxZcsWCQoKkgoVKsi2bdvcLadUcGfmRkfgNyACOAucA8660mdhzdUTj+9efFEA2Tx/voiI7Bg4UGwg8uCDLvWroqKioqJSlriFzI0dgKE415SVVt5rbpw8eTI/s+HcuXOiKIqEhITcdBybzSZ16tSRBx54wJVyS4SkpCTRaDTi7+9/1Y1jTExMkT9vSTJv3jwBytSNyOXLl8XT01NGjx7tbim3TN736o4n2P379xdfX9/85R5FISMjQ9avXy/jx4+XevXq5Wcl3HPPPTJu3DhZu3atpKenX3ddfHy8fPLJJ9KjRw/R6/UCSNWqVeW5556T33///ZaWFO3cuVMAmTx5crGvdTVRUVHi6+srXbp0KfNLZ9zF6dOnpUGDBqLX6+Wrr75ytxyX487gxkmgFxACVMhrrvRZWHN1cKNvpUpSTaMRW26u7HBGGLtotflLVFRUVFRUVO4GbiG4sRzHVrDTgQl5rThjuLuV18yNJk2aCCBr166Vzp07CyBff/31Tcf59ddfSzXj4XYZPHiwADJnzpz8cz169BBAPv/881LVkpmZKZUrV5bOnTuXmZu1d999t9xsVXsjzp07d92/cWmwZcsWAeSdd965rXEiIyPlo48+kn79+om3t3d+nYyHHnpI5syZI/Pnz5dOnTqJoiiOWn516sikSZNk165dJVJnYuTIkaLT6a5aVuNu7Ha79OzZU7y8vOTs2bPullOmSU5Ozs9Ee/XVV+/o2iNuLSjqyvGL21w58UiKiBAdyCutW0uOySR+zujr/95/32U+VVRUVFRUyiK3ENyYWVArzhjubuUxuBEeHp6/fj0yMrJYtScGDhwowcHBYjabXSm3xEhNTRWtVis+Pj5is9kkISFBFEWR4OBgt+j54IMPBJDff//dLf6vxGKxSPXq1aVLly7ulnLbtG7dWtq2bVtq/mw2m7Ru3VqqV69epCUgRSUnJ0c2b94skydPlqZNm+ZndTRr1kxmzZolhw8fLvHAWEJCggQEBEjXrl3LTNDtq6++EkAWLlzobinlAovFImPGjBFABg4ceMfWI3FncONd4D2gA9Ayr7nSZ2HNlROPJcOGCSAHVqyQbkFBAsg/GzRwmT8VFRUVFZWySnGDG3kN8LqV68pCKy/BjW7dukn79u3FZrNJYGCgKIoiERERcv/99xd5x5CLFy+KVquVSZMmlYLikuOJJ54QQGbOnJlfh2PJkiVu0ZKdnS3Vq1eXDh06uP1GcuXKlQLIunXr3KqjJMjLQDl//nyp+Pvmm28EkOXLl7vUz8WLF0vlMy1atEgA+f77713u62bExcVJYGCgdOzY8Y7OQihp7Ha7LFiwQBRFkVatWsnFixfdLanEKWyOoTjsrkFRlP8VcFpE5GGXOS2E1q1by759+1wydnijRnx/8SK9HnuMkcuWUUOr5bzZjEanc4k/FRUVFRWVsoqiKPtFpHUx+ncAlgE+IlJTUZRmwFgRec5lIksYV84xSpLu3buTkZHBgw8+yOzZsxk4cCBvvfUWjRs3pkaNGkRHR990jDfeeIOZM2dy5swZ6tSpUwqqS4bMzEwCAgLQ6XRYLBb8/f1JTk52m55PPvmEZ599lg0bNtCrVy+36bj//vtJTEwkIiICjUbjNh0lwZkzZ6hXrx4LFizg5Zdfdqkvs9lMgwYNqFChAvv27Sv33x2A1WqldevWJCcnc+LECby9vd2mZdCgQaxfv55Dhw7RoEEDt+kor/z0008MHTqUgIAAfvrpJ1q0aOFuSSVGYXMMl/4vFJGHCmhuCWy4lKgoBp88ycrnn+fiF1/gCWzdvFkNbKioqKioqBSN/wN6AJcBROQQEOZWRUVEUZS+iqJ8mpaW5m4pRcZms/Hee+9hMBj4z3/+w5NPPgnARx99dNNrrVYrS5cupXv37uUqsAHg7e3NyJEjMZvN2O12Zs2a5VY9I0eOpHbt2syYMQNXPmwsjD179rBr1y5eeumlO+LmvG7dujRv3pzw8HCX+/rggw+Ijo5m3rx5d8R3B6DT6Vi8eDEXLlzg7bffdpuO8PBwVq9ezeuvv64GNm6Rvn378scff6DRaOjUqRM//vijuyWVCi79n6goSiVFUZYpivKL831jRVFGudKnOzj6/vukA6xaxTS7nYz58wkNKxdzMhUVFRUVlTKBiFy45pTNLUKKiYj8JCJj/P393S2lyERERGC1Wpk+fTqnT59m3759hIaG0qdPn5teu2HDBmJiYnj22WdLQWnJs2jRIoxGI4GBgYwfP96tWgwGAzNmzGDfvn2sW7fOLRoWLlyIn58fTz/9tFv8u4LBgwezc+dOLl686DIfSUlJvP322/Tp04eHH76zntt27NiRJ598knnz5hEREVHq/i9fvszzzz9Pq1atmDhxYqn7v5No1qwZe/bs4d5772XgwIG89957bguklhauDjN+CWwCqjrfRwD/crHPUmfokiXcp9HwyNmzWNu0QTNhgrslqaioqKiolCcuKIpyPyCKougVRXkFOOFuUXciGRkZpKamUrFiRf7973/z1FNPAbB06dIiXf/xxx9TtWpV+vbt60qZLsNoNHLu3DkiIiJQFMXdchgxYgR169ZlxowZ2O32UvUdGxvLqlWrGDVqFL6+vqXq25UMHjwYgNWrV7vMxxtvvEFmZiZz5851mQ93MmfOHDw9PXnxxRdL/Wb4X//6F8nJySxbtgydmgV/21SuXJktW7bwj3/8g8mTJzN69GgsFou7ZbkMV//EBIvIKkVRXgUQEauiKOXiSUxRORweztGcHAAuAeZ16/BxrySXIHY71pwcrNnZaO12DBoNNrOZ+NhYbLm5V/UNDAjA18eH3NxcEpKS4JrJQ2BAAN5eXlgsFpJSUq52pCgE+vvj6emJxWolLSMDjU6HRq9Hq9Oh0enw8PZGZzBgB0SjQaPVotwh6YAqKioqdynPAguBasBF4FfgebcqukM5cuQIAF999RV79+7l0KFD1KtXjy5dutz02rNnz7Jp0yZmzJhRrm86qlSp4m4J+eh0OmbOnMmIESP44Ycf+Mc//lFqvj/66CNsNhsvvPBCqfksDRo0aMC9995LeHi4S7JzIiIi+Pjjjxk9ejSNGjUq8fHLApUrV+b111/n5ZdfZu3atQwYMKBU/K5fv56vv/6aGTNm0KxZs1LxeTfg6enJt99+S4MGDXjzzTc5e/YsP/zwA0FBQS7zmZubS3x8PDVq1HCZj4JwdUHRLcAg4DcRaakoSntgjoh0LsK1PXFMdLTAZyLy7jV2I7AcaIVjje4QETlf2JiuKPY1qU0b5jnHXD9rFr1nzizR8a9F7HasGRnozWYwmTj611+kJiRgSkoiIzUVU0oKtby86FK1KphMvLRhA6mZmZiys8nIycFis9EvMJAJISFYLRZanjxJrt2OVST/9VlPT/5tMJCSm0vVjAysgPUKDW8B04BooFYBGt/HkZ5zHGhSgP0zYBSwG2hfgH0l8BjwO9CtAPsGoBfwI/Co85yCIw1JC2w2GOio0/Gd3c5YsxmtouTbNIrCb8HB3OvhwdfZ2cxKTUULaBUlv/1Uty41PD35OjmZJYmJaDUaxxjO1+9atCDQw4MVcXH8EBfnsF/RPu3UCaPBwKpz59gSH+84r9Wi1WrRa7W8+/DDoNWy9swZ/kpIQKvVotPp0Gq1eBmNPB8WBlotv0VEcDY52RHU0WjQ6nT4enkxsF070GrZERFBosmEVqfLb77e3nRq1gw0Gg6dO0dGTg6aPLtej4+PDw3uuQe0Ws7FxmKx2dDq9Y4Akk6Hl5cXIZUqgUbD5bQ00GjQ6PVotFq0BgN6oxGjlxdoNNgBRQ0sqaioFEBRC4oqijJHRKYoivIPEfm+NLS5ivJSUNRgMGCz2bDZbDRp0oTjx4+zfft2OnXqdNNrX331VebOnUtUVBTVq1cvBbV3Bzabjfvuuw9wBJ+0Wq3LfWZnZ1OzZk06derEmjVrXO6vtHn99dd5/fXXiY2NpXLlyiU69sCBA/ntt984ffp0iY9dlrBarbRo0QKTycTx48fx8vJyqb+0tDSaNGlCQEAABw4cwGAwuNTf3co333zDM888Q61atfj555+pX7/+LY+VlZXF2bNnOXPmDJGRkURGRuYfR0VF4e3tTWpqaolnyRU2x3B12H0CsA6ooyjKH0BFYPDNLlIURQssxnFvGwPsVRRlnYgcv6LbKCBFROoqivI4MAcYUtIfoDDsVisfOicyw2rVuj6wIUKOyYQpPp6MxEQykpLIuHwZrdlMm+rVwWTi+61biYqLIyMjA1NGBhlZWdQyGHitVi0wmRh48CAnsrIw2Wxk2Gxk4Lix/8npohsQf42uIUAXAIOBdVYroij46nR463QYdToUvR4CA9HqdNRJSECv1aJz3njrdToa1qoFDRrgCYzfvRudXo9ep0Ov16PT6QirVw/q1aOCzcanBw+i0Wiu+qFtGxoK1apRJTOTpfv3X/eddKpXDypXJjQtjU/++uu677VVw4YQHEyDy5f58NAh7HY7NpsNu92O3WajQePGEBhIw4QEXj982HE+r48I1Zo2BV9f6sTGMvL4cYddJL9PQPPm4OFBpQsXaHfmDDa7/e8mgr5yZdDr0ZnNGHU6bHY7uU7fNrsdnNkolxMSOHX5MjaR/GYXQXJywG7nUHo632dlYQOHHUcA5t2DB8Fm40e7nS+v+eyBwPPOScYnwA/X2GsAA53Hb+J4tHkljYFjzuPngJ3X2NsBfzqP+wNHrrF3BX5zHrcBzl1jfxTIS/KsBCThCCxpnZ/tCa2WZR4eoNFQKSODXOd5DY7A0jOenrwTGIhVUagXF5d/Pu/1n87AW7oID0ZGOmxX2MdWqcJTlSqRYLUy9OTJv+3ONrZWLfpXqUJ0djYvHTuGRqP5267RMLZuXR6sUoUzGRm8eeRIvl3JszduTKuQEE6mpbH46NH8n+28fv9s1owGwcEcu3yZFSdO/G1z9hvZsiU1AwM5nJjI+lOnUPL8O+1PtmlDRT8/DsXGsu3sWRRFcfRx2oe1a4eflxeHL15kX1SUIysp73qNhsFt2+JhNHL4wgVOxMbmn1ec1/dv1w6tTsfR6GjOXbqUP67iDLB1b90aNBqOR0cTn5KSb1M0Ggx6PR3uuw8UhVPR0SSbTPnjarRajEYjTevXB0UhMiYGU3Z2vk1RFDw8PKhbuzYoClGxsZgtlr+1aTR4enhQrUoVUBRiExPJtVqvsnt4eBBcoQIoCknJydhErtJnNBrx9fMDRSEtPR2Bq+x6gwEPT09QFLLNZoCrxs8LAAqQF9LPs6m4ld6KokwFXgXKdXCjvLFjxw6OHz9O48aNixTYyMnJYdmyZfTt21cNbJQwWq2WWbNmMWTIEL777juGDx/ucp8rVqwgKSmJl156yeW+3MHgwYOZNWsWa9asYdy4cSU27o4dO1izZg1vvvnmHR3YgL+Li3bu3Jl3332XN954w6X+Jk2aRFxcHKtXr1YDGy5k+PDh1K5dm0cffZR27drxww8/FFo3Jjk5+brARd5xXFzcVX0DAgKoW7cubdq04fHHH6du3brY7fZSCdjm4dLMDQBFUXRAAxz3QKdEJPcml+RtCTdLRHo43+cta5l9RZ9Nzj67nD7igYpSyAcq6acq3zduzGMnTqAFOvn5kWm1kmG1EgT84eUFGRl0s1r5/Zrr7uXvm8r7gV3OY2/AR6Oho6cnP9StC76+PB8dzSW7HR9PT3y9vPDx9qZJzZoM69QJfH3ZdPo0Gm9vfIOD8Q0OxqdiRQKrVcOvalVQfzGUbUSwW63YLBZsubnYLBbsubn4enmBzUZqcjJZGRnYrFbsubnYcnPRALWrVAGbjXPR0aSnpzuutVqxW60YtVqa16kDdjt7jx0jNT3d8YQuNxe7zYa/pydhDRuC3c4v+/aRkpGB3WZzBG6sVqr4+9OzcWOw2Vi+axdpmZl/B45sNuoGBTGgUSOw23lv61YyLZb8wJPNZqNlSAiP1a8PdjsTt2wh1xlwygtAda5cmaGhoeRarYzeseNvmzMw1L9yZYZVr44pJ4fh+/djs9sRyO/zdJUqDAsJId5s5rFjxxxLk5zX2kWYUKkSQwICOJ2dzeBz5xznId/+ToUKDPL2Zn9WFoMSEx1jO+0CfOrnRx+9nv/l5DDYZLrKZgd+NBjoqtGwxmrlMavV4Z+/b5Z3AB1xFBsaWcA/+SGgKbAIeLEA+1kgFJgNvFaA/RIQ7LTNLsBuBozAeODDa2w6IO+X79PAV9fYA4G8DREH8XcQK4+aQJTzuDt/B8HyaAIcdR5f+Xstj/ZXnLvvir55dOPvYF3tK3zlMZC/g30VrtCax1OQHyw0AteuJn0ex3dicdqvZSowW1G4DFR2/hlRnA3gDa2WKXo9USL8P3v3HR5VtT18/LtnJskkISRAwBAChN4JSBFQEASkKNVYEFGxIF4V9V71CldFBZRXRUQRBSmK/EAQkC5wRQVRQWmXKib00EJIJW3K2e8fmUSIoc9kMsn6PM95Zubsc/ZZcwjJnjW7NHYNRTy//N2AAIYHBLDXMLg5M/Nv5ZODgxlktbLFbueO9PS8cqUKq1mRYgAAIABJREFUjvksNJQ7rFY22Gzc7xqud3757EqVuDUwkNXZ2fzDtXRlft0KmB8RQSurlcXnzvHy2bN/Xd9Vx5Jq1WhgtfJ/aWm8dV75spgYam/eXMQduT5X0XPjXeBxoByQ5QpL5z9qrcu7PTgP8ZWeG35+fhiGQd26dfnzzz/57bffaNOmzWXP++qrrxg0aBCrV6+mR48exRBp2WIYBi1btiQ7O5u9e/d6bNhPZmYms2bNYuzYsURERLB9+/YSMfeIu2mtady4MZGRkaxbt85tdbZr146EhATi4uI83pOhpBg8eDCLFi1iz549Hlshad26dXTr1o0XXniBd9991yPXEBc6dOgQd955J3/++SeTJk2iadOmRSYxUgpNIVC1alXq1q1LnTp1qFOnzgXPPTnM5XyXamN4eljK3cBqrXWGUuoV4EZgrNZ622XOiwV6aq0fc70eAtyktX76vGN2u45JcL0+4DomqVBdw4BhADVq1Gh15EjhJvO1y6pQgeDUVAAa+vlRKyyMcgEBRJYvzwfdukG5ciw8dIiTNhvlypenXFgY5cLCCI+IyGtIhISQbLfjFxZGcOXKsnSsED5KGwbaMFBaowCnw4HDZsNwOtGuxJDhdBIcGIjZZCInK4vMzEwMh6PgXMPppHLFilhMJtLS0khNTc1L3LiOMQyD2tWqYTaZSExKIuns2bxyp7OgjmZ162ICjp48SeLZswX1aq3BMGjXpAlozf7DhznlOl8bBlprzMCtzZuD1uyIj+dUcnJBmdYaq58fXZs1A635ee9eEl3xaVeCqrzVSg/X+f/duZMzaWkF5VprwoOD6eUqX7J1K8nnzl1QXi00lN5Nm4LWzNm0ifScnAuuX6dSJXo3bgzApxs3km23XxB/kxtuoFeDBqA1723YgMP1vvO31pGR9KhbF6fTybgNGy4o01rTsUYNuteqRZbNxriNG/P2A7jKb4+O5rYaNUjOzubtTZv+KievwTugTh06RkZyIiOD/7d16191u455oF492kVEcDAtjXe3by8oy/8b/ETDhrQKD2dPcjITd+/+W/k/GzemWYUK/H7mDB/98UfB/vzH15o2pX758qw/fZqpcXEF5+Zf/93mzakRFMS3J04w8/Dhgvc26ZZbqDZ/vtv/T1xFciNAa52rlFqqte7n9kCKkS8lN5yu/x8xMTHsKKIHZVE6d+7M0aNHiY+PLzXLXpY0S5YsYcCAAcycOZOhQ4tKkV+7M2fOMHnyZD7++GPOnj1L+/bt+eijj2jVqpVbr1OSvPrqq7z11lucOnWKypUrX3d98+fP57777mPWrFmlanWZyzlx4gQNGjTg1ltvZcWKFW6vPzMzk2bNmmGxWPjf//5HYGCg268hipaWlsZ9993H6tWrC/aZzWZq1qx5QdIiP4lRu3btEpHUu2Qbo3ADz50bsNP1eAvwA3AHsPkKzoslb56N/NdDgMmFjtkNRJ33+gB5E5hetN5WrVppd/vs3nu1yfXl7T+aNnV7/UIIIYSvAbboK2snbHM9fnklx5fEDegDTKtbt677bqAHWSyW/A5neseOHVd0zt69ezWgx48f7+HoyjbDMHSrVq10dHS0zs3NdUudcXFxevjw4dpqtWpA9+3bV2/cuNEtdZd0O3bs0ICeNm3addeVk5Ojo6OjdUxMjHY4HG6Izre89957GtDLli1ze93PPvusBvT69evdXre4PLvdrhcvXqxXr16t4+Pjtc1m83ZIl3WpNoanU+/5K6PcAXymtV4JXMlYiePkTS+QL8q1r8hjXMNSQsmbWLRYPfbVV2xftIhQYMru3bQMDCQrKemy5wkhhBACf6XU/UAHpdTAwpu3g7sSWuvlWuthoaGh3g7limhXb5/WrVtf8WoEn376KX5+fjzyyCOeDK3MU0rx5ptvcvjwYWbNmnVddW3evJnY2Fjq16/PzJkzeeCBB9i3bx9Lly7l5ptvdlPEJVvz5s2pU6cOCxcuvO66Jk+ezOHDh3nvvfeKdf6AkmLEiBE0btyYZ599luzsbLfV+/PPP/Phhx/y1FNP0alTJ7fVK66cxWJhwIAB9OjRgzp16uDn5+ftkK6Lp5Mbx5VSU8mb43KVa4WTK7nm70A9pVQtpZQ/cB95E5Oebxl5w6whr6fH9zr/L3Yxaz5wICfOnKFlYCDHcnKw1K4NO3d6IxQhhBDClwwHOgJh5PWAOH+704txlVpOZ973TrNnz76i47Oysvjiiy+IjY11S9d+cWm9evWiXbt2jB07lhzX5MhXyjAMVqxYQadOnWjXrh3r1q1j5MiRHDlyhM8++4yGDRt6KOqSSSlFbGws33//PcnJhWdqunJnz55l7Nix9OrVi27durkxQt/h5+fH5MmTOXToEO+8845b6szJyeHRRx+levXqvP12UTOJCXH1PJ3cuAdYA/TQWqcCFYEXL3eS1toBPO06dx+wQGu9Ryn1plKqr+uwGUAlpVQ8eauyvOyJN3ClgsLD2ZaVxdHHHsM/I4MdMTFMHzLEmyEJIYQQJZrWeqPW+kngJa310EKbdBPwoEaNGl3RcfPnzyctLY3hw4d7OCIBeR/Ix4wZQ0JCAp999tkVnZObm8vMmTNp2rQpffr04ciRI0ycOJGjR48ybty4Ur+qx6XExsbicDhYtqzwd6RXbuzYsaSnp7vtQ72v6tKlC/feey/jx4/n0KHC6+ldvTfeeIP9+/fz2WefERIS4oYIhSiG1VJKkmKb7GvhQmrdfTeHgUE1azInPl4mCxVCCFFmXMWEordprb+/2BAUrXXhhXtKLF+ZUDR/ZYwrbf+1bduWzMxMdu/eXSpX1SiJtNZ07tyZP//8kwMHDlx0Ar/U1FSmTp3KpEmTOHnyJC1atODFF1/k7rvv9vmu5e6itaZWrVo0bdr0mibDjI+Pp3Hjxjz88MNMmzbNAxH6loSEBBo2bEjXrl1ZunTpNdezbds22rZty4MPPsjMmTPdGKEoCy7VxpDprj0hNpbv16+nslLMO3KEhkFBpB4+7O2ohBBCiJLmVtdj4SEpMiylBNi6dSu///47w4cPl8RGMcrvvXHq1Ck++eSTv5UfO3aMf/3rX1SvXp2XX36Zpk2bsnbtWrZt28b9998viY3z5A9NWbt2LWlpaVd9/siRI/H39+eNN97wQHS+Jyoqitdee41ly5axatWqa6rDZrMxdOhQqlSpwoQJE9wcoSjrJLnhIbU6dSIhPZ2O5csTZ7dTrVYttlzn5FBCCCFEaaK1Hu16LDwkRYallABTp04lMDCQITLMtth16tSJbt26MX78eM6dOwfAzp07GTJkCLVr12bSpEn069eP7du3s3btWrp37y4JqIuIjY3FbrezfPnyqzrvl19+YeHChbz00ktUrVrVQ9H5nueee46GDRsyYsSIq54XBuD//b//x86dO/nkk0+oUKGCByIUZZkMSykG/7n5Zj745Rf2AjXfeQdevOy0I0IIIYTPuophKf+8VLnW+n33ReVZpW1YSlpaGtWqVePee+9lxowZxRGaKGTTpk20b9+eoUOHcuLECdasWUNwcDDDhg3jueeeo0aNGt4O0ScYhkHNmjVp1aoVS5YsuaJztNZ06NCBI0eOEBcXR3BwsIej9C3fffcd3bt3Z8yYMbzyyitXfN6ePXto2bIlAwcO5KuvvvJghKI0k2EpXjbu559JW7GCmgEBpL70Eo9Vr47hcHg7LCGEEMLbQlxba+BJoJprGw7c6MW4yrw5c+aQmZnJk08+6e1Qyqx27drRu3dvZs2axf/+9z/eeustjh07xvvvvy+JjatgMpm46667WL16NRkZGVd0zsKFC9m0aRNjxoyRxEYRunXrRmxsLG+99RZHjhy5onOcTiePPPIIoaGhfPTRRx6OUJRV0nOjOJ06xQO1a/N/2dlEmc1s3rKFyBYtvBePEEII4QFX2nPjvOM3AHdorTNcr0OAlVrrTp6K0d283sa4QlfSc0NrTfPmzQkICMAX3lNpdvLkSX7++Wf69OlDQECAt8PxWRs3bqRjx47MmzeP++6775LH5ubm0rhxY4KCgtixYwdms7mYovQtR48epVGjRvTs2ZNFixZd9vgJEybwwgsvMHfuXAYNGlQMEYrSSnpulBQREcxOT6d35cokOJ3UbtmSNePGeTsqIYQQwttuAGznvba59hULpVRtpdQMpdTC8/YFK6W+UEp9ppQaXFyxlAS//PILu3fvluVfS4CqVasSGxsriY3r1KFDB6pWrcrChQsve+yUKVM4ePAg7733niQ2LqFGjRr85z//YfHixaxdu/aSx8bFxfHKK6/Qt2/fyyaXhLgektwoZiaLhZWJibzTuzc2oOcrrzC+SxdvhyWEEEJ402zgN6XU60qp14HNwOdXcqJSaqZSKlEptbvQ/p5Kqf1KqXil1MuXqkNrfVBr/Wih3QOBhVrrx4G+V/pGSoNPPvmE8uXLy7erotQwmUwMHDiQVatWkZmZedHjkpOTGTNmDLfffjs9evQoxgh907/+9S/q1avHM888Q25ubpHHGIbBY489RkBAAJ988olMfCs8SpIbXvLiypX89MknhAHNf/wROnUCm+1ypwkhhBCljtZ6HDAUSHFtQ7XWb1/h6Z8DPc/foZQyAx8DvYDGwCClVGOlVDOl1IpCW5WL1BsFHHM9d17dO/JdSUlJfP311zz44IMy14AoVWJjY8nOzubbb7+96DHjxo0jNTWVd999txgj810BAQF8+OGH/Pnnn0ycOLHIYz799FM2bNjA+++/T2RkZDFHKMoaSW540c3Dh5OSkkLvevUwfvqJ/iEhHNqwwdthCSGEEMVOa71Naz3JtW2/ivM2AMmFdrcF4l09MmzAV0A/rfUurfWdhbbEi1SdQF6CA8pQe+nzzz/HZrPxxBNPeDsUIdyqY8eOVK5c+aJDUw4ePMjkyZMZOnQozZs3L+bofFfPnj3p378/Y8aM4dixYxeUHTlyhH//+990796doUOHeilCUZaUmT/WJVZYGPzxB0s7dmSpzUb9W29l4b/+5e2ohBBCCF9Wjb96XUBeoqLaxQ5WSlVSSn0KtFRKjXTtXgzcpZT6BFh+kfOGKaW2KKW2nDlzxk2he49hGEydOpVbbrmFpk2bejscIdzKbDYzcOBAVqxYQXZ29t/KR40ahcVi4c033/RCdL5t4sSJGIbBv877DKO1ZtiwYWitmTZtmgxHEcVCkhslgcnEgA0bmDpkCAZw9/vv079qVeL++19vRyaEEEKUelrrs1rr4VrrOvnDYbTWmVrroVrrJ7XW/3eR86ZprVtrrVtXrly5eIP2gHXr1hEfHy/Lv4pSKzY2lszMTNasWXPB/k2bNjF//nxeeOEFqlW7aB5UXER0dDSjRo3i66+/5rvvvgPgiy++YO3atYwfP57o6GjvBijKDFkKtoTZuXAhne+5hxStCQIyq1aFBx7A8fLLWCpW9HZ4QgghxGVd7VKwbrheNLBCa93U9bo98LrWuofr9UiAq5jH42qu3QfoU7du3cfj4uLcXb3bXWop2LvuuosNGzaQkJAgq3OIUslutxMREUGvXr2YM2cOkPd/oWPHjsTHxxMfH0+5cuW8HKVvysnJoWnTpvj5+bF69WpatGhB06ZNWb9+PSaTfJ8u3EeWgvUhzWNjSTYM5j/7LOOiouD0aU69+y7WSpVoHBDA1MGDMRwOb4cphBBClGS/A/WUUrWUUv7AfcAyT1xIa71caz0sNDTUE9UXmxMnTrB06VKGDh0qiQ1Ravn5+dG/f3+WL19esLrHN998w88//8yYMWMksXEdrFYrkyZN4o8//uCmm24iJyeHGTNmSGJDFCv5aSuh7vngA547dgwyM0l48kmizGb22WwMnzuXAD8/OoeFsWPaNG+HKYQQQniVUmoe8CvQQCmVoJR6VGvtAJ4G1gD7gAVa6z0eun4fpdS0tLQ0T1RfbKZPn47T6WTYsGHeDkUIj4qNjSU9PZ3vvvsOm83Gv//9b5o0aSITXrrBHXfcQZ8+fTh9+jRvvvkm9evX93ZIooyRYSk+5MS2bbw2aBCL4+JI0Zr5wD0hIWxu354q//kPtTp18naIQgghRLEPSykJfKWNUdSwFIfDQa1atWjcuPHf5iIQorSx2WxUqVKFAQMG0LJlS5599llWrlxJ7969vR1aqXD69GkWL17M448/jsVi8XY4ohSSYSmlROSNNzJ9/36SDYPts2dzT8+eYLNx/9q11L71VqqZzYzq0IFzp055O1QhhBBC+IhVq1aRkJDA8OHDvR2KEB7n7+9Pv379WLJkCW+88QZdu3alV69e3g6r1Ljhhht48sknJbEhvEKSGz6qxZAh8O23kJXFW089RcvAQE4aBm//+ivlq1alc3AwTJ8OhuHtUIUQQohSqzQMS/n000+JjIykT58+3g5FiGIRGxtLamoqKSkpvPfee7JMqRClhCQ3fJ3JxL2TJ7MtK4uslBRev/VWqpvNOLKy4PHHsfn7c2d4OBs++sjbkQohhBCljq9PKHro0CFWr14tXchFmdK9e3fCw8MZOnQoLVq08HY4Qgg3keRGKWINC2P0jz9yxOFg45Ej8PDDfOXvz8qzZ7l1xAhClaJDSAhPNWvGvg8+gPR0b4cshBBC+DRf77kxbdo0lFI89thj3g5FiGJjtVrZt28fn376qbdDEUK4kSQ3SqsaNWDWLB7MymLjJ5/QvWJFbMCv584xZfdufnj+eQgN5W2LhRoWC10rVODf7dqx7t13sZ075+3ohRBCCJ/gyz03bDYbM2bMoE+fPkRFRXk7HCGKVXh4OH5+ft4OQwjhRpLcKANuHj6ctWfPkq01GSdPsvill7jvscegQweO+ftz0unk+9RU3tm8mW4vvURASAjbrFaoV485LVsyrnt3ts2di+FwePutCCGEEMJNFi9ezJkzZ3jyySe9HYoQQghx3WQpWAHAqZ07+faDD9jw00/sOn6cTQEBWNLTqW8YxLmOUUAIUDMggB39+mHq2JFzt95KuWbNvBi5EEKIkkaWgi25zl8KtnPnzhw9epT4+HhMJvm+SwghRMl3qTaGzBwlAIho3pyhM2cytND+b9euZcUnn7Dx99/Zc+YMCTYbB3JzMS1YAAsWUAs4C1iBYKWoYDbTJCSEb7p0gRo1WJCWRmidOjTp2ZPImBhMMlmZEEKIUkQp1QfoU7duXW+HclX27dvH+vXrGT9+vCQ2hBBClArSc0NcPcOA33+HNWt4cOpUfjtzhhSHg3NakwuEkpfwAAgAbOedagGamEzsqFoVKlbk7lOnCAoJoWa1atRv0oSG7dvTuHdvgsLDi/tdCSGEcBPpuVFy5ffcePbZZ5kyZQoJCQlUqVLFy1EJIYQQV+ZSbQxJbgi3M2w2TIcOwd69TJo1iz8OHODYmTOcOneOJJuNBkqxxmQCux1VxM9fbeCAUhhmM6EOB/5KYVWKYLOZYLOZflWq8Hrz5uSUL8/IffuoVLEiVSIiiKhZk6r16lGnTRsqNmgA0ktECCG8QpIbJVd+ciMsLIxevXoxd+5cL0ckhBBCXDkZliKKlcnfHxo0gAYNeHbAgEsem5aQwJ5Vq/hj0ybi9+/n8PHjxJhMYLWSk55OwIkT5GpNptacNgycdjtBR4/y+tGjHAM+KKLOrsB3wBagHXk/5P5AgFIEmkz8IzSUl6tVY6fTyTMJCQT6+REcEEBwQADlgoK4v3lzbmncmASnk3XHjhEWHk5oRAQVIyMJq16diAYN8A8LA+nGK4QQwkelpqYyfPhwb4chhBBCuI0kN4RXlY+Kov2wYbQfNuxvZUFAUlEnORxw4gTVDx1i8apVJCYkcObUKc6cPUtKejo9QkOhXDn8ExOJPniQLMMgR2uytCbN6eRYcjKkpLBTazYUUb3as4dbgIXA80WUjwTeAt4G/gOYyVt2yOR6PtVqZXBgIB/ZbIzPzsaiFH5K4Wcy4WcyMbVmTdpXqsS81FRmJyZitViw+vtj9fMjMCCAUR06EFWlCj+fOcOmkycJDAoiIDAQa1AQ1uBgerVvT1BYGAkZGSRlZxNcqRKBYWEEVahAUHg4/uXKydwmQghRTHx1zo3GjRvTsWNHb4chhBBCuI18AhK+x2KBGjWw1qjBgFtvvehhzYH4S1TzAHC/w0Hq4cOcPXSI1OPHST5+nEYVKoDFwh0HD5L8yy+cy8wk49w5MnNyyMzN5fZq1cBqpc6JEzQ8cYJcw8CmNQ6tsWuN1TXk5kxuLmcNAwMwAO3aTuzfD8BSYHURccXu3UsUMPYi5buApsAgYGMR5aeBKuT1WvnNtU+5NhNg8/cHk4muNhubDaMgMWNSCitwIjwcTCb6paayzeHADJiVwuyaMHZz7dpgNvNgQgL7cnOxmExYTCbMSlE1IIB5MTFgNjPijz84mpOD2WTC7DqmZkgIb7dpAxYLb2zfTpLNhsViwWI2Y7FYqFWxIsPatgWLhalbt5LpdOLn54fZbMZssVCjcmV6tWwJZjOLtm7FqTVmPz8s/v74+fsTGR5Oi4YNwWzm1z/+wOTnV1Bu8fenYqVKREZGYphMJCQmYrJYsAQEYPLzw+LnR1D58liDgjBMJhyGgcVqlUSR8BjD4SjYTOT9QTYcDtJTU/P2O50Fj+WsVsoFBeGw2TiWkPBXudOJYbdzQ4UKVCxfnqzMTP44cADD6UQbBg67HcPppE5EBBEVKpCans7WffswDAOHw8HNMTGU79vX27fCp2mtlwPLW7du/bi3Y7kaw4cPLxiiIoQQQpQGMueGEF5iO3eO9OPHyTh9mozERDKSkjiXksLNNWtSzjDYvGsXm+LiyM7KIjcnh1ybjdzcXEa3bk15rfli717WHDuGzeEg1+HA7nRidzpZ2aQJVqeTlw4dYk1aGg7DwOFKvmitORgRAYbBgLNn2Wi3FyRfDK3xA5KCg8EwaJWTw26tC5IymrxVcc65GsORWnOy0HsKAHJcz0OAc4XKg8/bZwVyC5VX5K/JaP0AR6HyqsAJ13OTK6bz1QYOuJ4X1WRvBux0xRBSRPlNwCYgDqhfRPntwBpgM3nJo8LuB/5PKVZoTVEfF58CPjKZmGMYPFREnK8qxWizmSmGwbOG8bfy900mnjabGe90MtpVfr6ZZjODLRZG2e28X6hcAYv9/OhlNjPCbuczp/Nv5//k709rk4mhNhtfFVH/bn9/6phM3G2zsbKI8lP+/pQ3mehls/FjEdfPsloB6Jiby++F/vb4A+kBAQDcaLOx97xyTd7PTrK/PwANbDYOFbp2GJDoSkRFORycLlReGThhNgMQ7nSSel7dAFHAEddQs3KGQVah82sD8a6ffT+t//az2RDY53pe1M9mc+B/XPxnrx3wKxf/2esG/Je8hGZR37UPBBa5ttgiyocCM4FpwBPn7V8O3OmBdoDMuVFy5Sc0UlJSCAsL83I0QgghxNWROTeEKIH8y5UjvEEDwhs0KLL8Jtd2MQ+5tot5x7VdzDeXiW/rZcpPFHptOBw4slwfCW02Dpw4QXZ6OrbsbGxZWdizs/FTCqKiwG5n3Y4dpKWlYc/NzdtsNipardCwITgcTNuwgbSsLJwOB06nE6fdTnRYGDRpAk4no3/8kSybDcPpxGEYOJ1OmlaoAI0agdPJYz/+iN0wMAwDp2FgaE2HihWhdm38HQ76bt6M4Ur45D/2qFQJatSgQm4uXXbtQgOGYeQ9ak2vSpUgIoIq2dm0iY9Hu87LL29XsSKEhxOZmUmThATAlRhyHdO0QgWoUIHIc+eoe/p0wQfg/PLosDAoX54bzp0j6uzZv31ArhIWBkFB3HDuHDekpxfszz+uQmgoBAZSJSOD8HPn/qrf9RgSEgIBAVTMyCAsq/DHd7CGhICfH+Hp6YTl5Pyt3K98ebBYCE9LIzS3cGoKTK65aCqnphJm+2udpPxeQ1SoAEBESgqVbLYLzrUqBa5VkqolJZFot19QHmYyQZUqoBQ1ExPJdjgKEj8KuMFshqpVQSnqnTqFv90OShUcU9NigWrVQCkaJyRw6rzkjgIa+vtD9eoAxBw5QorTmdfjyVVHy8DAvHKlaBMfT5ZhXFDeoVw5qFEDlKLdvn04XfXml3cJDYXoaPy1puPu3X+Vucp7hYdDdDSV7HZu37XrgjKlFAMiIqBmTaJzc+l/frlru7t6dahZkxaZmdzvKjcBJpMJpRSD6tSB6tXpmJ7OE7t2Fexvfsstf/t3FGWDJDaEEEKUNtJzQwghhBBuJT03Sq78nhtlqf0nhBCi9LhUG0OWexBCCCGEEEIIIYRPk+SGEEIIIcQ1Ukr1UUpNS0tL83YoQgghRJkmyQ0hhBBCiGuktV6utR4WGhrq7VCEEEKIMk2SG0IIIYQQQgghhPBpZWpCUaXUGeCIm6sNB5LcXKfII/fWM+S+eo7cW8+Re+sZnrqvNbXWlT1Qb4klbQyfI/fWc+TeeobcV8+Re+sZxd7GKFPJDU9QSm0pazPCFxe5t54h99Vz5N56jtxbz5D7WrLJv4/nyL31HLm3niH31XPk3nqGN+6rDEsRQgghhBBCCCGET5PkhhBCCCGEEEIIIXyaJDeu3zRvB1CKyb31DLmvniP31nPk3nqG3NeSTf59PEfurefIvfUMua+eI/fWM4r9vsqcG0IIIYQQQgghhPBp0nNDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpkty4Dkqpnkqp/UqpeKXUy96OpzRQSlVXSv2glNqrlNqjlHrW2zGVNkops1Jqu1JqhbdjKU2UUmFKqYVKqT+UUvuUUu29HVNpoJR63vW7YLdSap5SyurtmHyVUmqmUipRKbX7vH0VlVL/VUrFuR4reDNG8RdpY3iGtDM8S9oYniFtDM+QNob7lJQ2hiQ3rpFSygx8DPQCGgODlFKNvRtVqeAA/qW1bgy0A56S++p2zwL7vB1EKTQJWK21bgjEIPf4uimlqgEjgNZa66aAGbjwJTPlAAAgAElEQVTPu1H5tM+BnoX2vQys01rXA9a5XgsvkzaGR0k7w7OkjeEZ0sZwM2ljuN3nlIA2hiQ3rl1bIF5rfVBrbQO+Avp5OSafp7U+qbXe5nqeQd4v72rejar0UEpFAXcA070dS2milAoFOgEzALTWNq11qnejKjUsQKBSygIEASe8HI/P0lpvAJIL7e4HfOF6/gXQv1iDEhcjbQwPkXaG50gbwzOkjeFR0sZwk5LSxpDkxrWrBhw773UC8sfRrZRS0UBLYLN3IylVPgBeAgxvB1LK1ALOALNc3XGnK6WCvR2Ur9NaHwfeA44CJ4E0rfVa70ZV6tygtT7pen4KuMGbwYgC0sYoBtLOcDtpY3iGtDE8QNoYxaLY2xiS3BAlklKqHLAIeE5rne7teEoDpdSdQKLWequ3YymFLMCNwCda65ZAJtK9/7q5xmb2I69hFwkEK6Ue8G5UpZfOWxte1ocXZYK0M9xL2hgeJW0MD5A2RvEqrjaGJDeu3XGg+nmvo1z7xHVSSvmR1+D4P631Ym/HU4rcDPRVSh0mr4vzbUqpOd4NqdRIABK01vnf/i0kryEirk834JDW+ozW2g4sBjp4OabS5rRSqiqA6zHRy/GIPNLG8CBpZ3iEtDE8R9oYniFtDM8r9jaGJDeu3e9APaVULaWUP3kT0Czzckw+TymlyBtTuE9r/b634ylNtNYjtdZRWuto8n5ev9daS4baDbTWp4BjSqkGrl1dgb1eDKm0OAq0U0oFuX43dEUmUXO3ZcBDrucPAUu9GIv4i7QxPETaGZ4hbQzPkTaGx0gbw/OKvY1h8fQFSiuttUMp9TSwhrzZdWdqrfd4OazS4GZgCLBLKbXDtW+U1nqVF2MS4ko8A/yf64PIQWCol+PxeVrrzUqphcA28lY42A5M825UvkspNQ/oDIQrpRKA0cB4YIFS6lHgCHCP9yIU+aSN4VHSzhC+SNoYbiZtDPcqKW0MlTf8RQghhBBCCCGEEMI3ybAUIYQQQgghhBBC+DRJbgghhBBCCCGEEMKnSXJDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpktwQQgghhBBCCCGET5PkhhCi2CmlwpRS/3A9j3QtxSWEEEIIcV2kjSFE2SVLwQohip1SKhpYobVu6uVQhBBCCFGKSBtDiLLL4u0AhBBl0nigjlJqBxAHNNJaN1VKPQz0B4KBesB7gD8wBMgFemutk5VSdYCPgcpAFvC41vqP4n8bQgghhChhpI0hRBklw1KEEN7wMnBAa90CeLFQWVNgINAGGAdkaa1bAr8CD7qOmQY8o7VuBbwATCmWqIUQQghR0kkbQ4gySnpuCCFKmh+01hlAhlIqDVju2r8LaK6UKgd0AL5WSuWfE1D8YQohhBDCx0gbQ4hSTJIbQoiSJve858Z5rw3yfmeZgFTXNzJCCCGEEFdK2hhClGIyLEUI4Q0ZQMi1nKi1TgcOKaXuBlB5YtwZnBBCCCF8lrQxhCijJLkhhCh2WuuzwM9Kqd3Au9dQxWDgUaXU/4A9QD93xieEEEII3yRtDCHKLlkKVgghhBBCCCGEED5Nem4IIYQQQgghhBDCp0lyQwghhBBCCCGEED5NkhtCCCGEEEIIIYTwaZLcEEIIIYQQQgghhE+T5IYQQgghhBBCCCF8miQ3hBBCCCGEEEII4dMkuSGEEEIIIYQQQgifJskNIYQQQgghhBBC+DRJbgghhBBCCCGEEMKnSXJDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpFm8HUJzCw8N1dHS0t8MQQgghSrWtW7cmaa0rezuO4iRtDCGEEMLzLtXGKFPJjejoaLZs2eLtMIQQQohSTSl1xNsxFDdpYwghhBCed6k2hgxLEUIIIYQQQgghhE+T5IYQQgghhBBCCCF8miQ3hBBCCCGukVKqj1JqWlpamrdDEUIIIcq0MjXnhs+YMiXv8R//8G4cQgghhLgkrfVyYHnr1q0f93YsQojSx+l08u6775KRkcGYMWMwmeS76csxDIPU1FTOnj1LcnIyycnJpKamkpqaSlpaGunp6WRkZJCRkYHdbmfkyJE0bdrU22ELN/BqckMp1ROYBJiB6Vrr8YXKOwEfAM2B+7TWC88rcwK7XC+Paq37Fk/UHmYYnHz1VZ5MTubNKlVoHhvr7YiEEEIIIYQQxez48eMMHjyY9evXA5CZmcnEiRNRSnk5suL36quvsnDhQnJycsjNzcVms2G323E4HDgcDpxOJ4ZhoLW+6rrnzZvHU089xaRJkyR55OO8ltxQSpmBj4HuQALwu1JqmdZ673mHHQUeBl4ooopsrXULjwdazE6vX8/+5GQ2Ak8+8gg/9e+PySIdbIQQQgghhCgrVq1axUMPPUR2djZffPEF27dv54MPPqBSpUq8+uqr3g6vWI0bN46xY8eilMJsNmM2m7FYLPj5+REcHIy/vz9Wq7VgCwoKIigoiODgYMqVK0e5cuUoX748oaGhhIaGEhYWRlhYGBUrVuTgwYMMGzaMyZMns2jRItasWUOzZs28/ZbFNfLmp+a2QLzW+iCAUuoroB9QkNzQWh92lRneCNAbvvrwQ54D3uzShdd++IFZjz3Go59/7u2whBBCCCGEEB5ms9kYNWoUEyZMICYmhvnz59OgQQMeeOABUlJSeO2116hYsSJPPfWUt0MtFkuXLuWVV17BarVy4MABIiMj3Vr/TTfdxF133cWAAQNYtWoVMTEx0ovDDaZOncq6deuYPn065cuXL7brevNfrBpw7LzXCa59V8qqlNqilNqklOp/sYOUUsNcx205c+bMtcZabL7/9Vfq+Pnxyn//S8fy5Xlp9myS9u/3dlhCCCGEEEIIDzp48CC33HILEyZM4KmnnmLTpk00aNAAAJPJxPTp0+nXrx9PP/00c+fO9XK0nrdv3z5iY2MxmUx8//33bktspKSkMGfOHO6++24iIiJ4/PHH+fjjj1mxYgXBwcFMnjyZqKgodu3adfnKRJFGjhzJokWLcDgcxXpdX05H1dRatwbuBz5QStUp6iCt9TStdWutdevKlSsXb4RXyZGTw4+nT3NbnToos5kpn39OutaMGTjQ26EJIYQQQgghPGT+/Pm0bNmSuLg4Fi9ezOTJk7FarRccY7FY+Oqrr+jcuTMPPfQQq1at8lK0npeamspNN92Ew+Fg+vTptG/f/rrqO3LkCB9++CFdu3alcuXKDBkyhI0bN9KhQwcWLFhA/fr1WbNmDXv37qV3796cPHmSmJgYnnnmGQyjzAwicIupU6eSkpJCnz59qFixYrFe25vJjeNA9fNeR7n2XRGt9XHX40HgR6ClO4Pzhu3z55MO3Hb77QA0HTCAr/v35/W9e+Hnn70bnBBCCCGEEMKtsrKyGDZsGPfddx9NmjRhx44dDBgw4KLHW61Wli5dSkxMDHfddRc//fRTMUZbPAzDoGXLlmRkZPDcc88xdOjQq65Da8327dsZPXo0LVq0IDo6mmeffZaTJ0/y4osv8uuvv3L8+HEWL15MXFwcDz/8MFOmTKFRo0bceOONzJ8/X3pxXKNXXnkFpRTTp08v9mt7M7nxO1BPKVVLKeUP3Acsu5ITlVIVlFIBrufhwM2cN1eHr/r+q68A6PL4X6vJ9f/ySypUr45j+HAcOTneCk0IIYQQQgjhRnv27KFt27ZMnz6dkSNHsn79emrWrHnZ88qXL8+3335LzZo1ufPOO9mxY0cxRFt8br/9dg4fPkzXrl2ZOHHiFZ9nt9v57rvveOaZZ4iOjubGG29kzJgxlCtXjnfffZc///yTvXv38vbbb9OuXbuCOTWioqKYNm0ae/fu5Y477mDs2LE8+eSTvPLKK/Ts2VN6cVyFWbNmkZSURI8ePQgPDy/266trWS7HbRdXqjd5S72agZla63FKqTeBLVrrZUqpNsA3QAUgBziltW6ilOoATAUM8hI0H2itZ1zueq1bt9Zbtmzx1Nu5buldu7LlwAFuO3z4gv2pc+bQecgQHuzbl38uXeqd4IQQQogrpJTa6ho6WmaU9DaGEKLk0FozY8YMRowYQUhICHPmzKF79+5XXc+xY8e4+eabyc3NZePGjdSrV88D0Rav559/ng8++IBatWoRHx9/2Uk909PTWb16NUuXLmXlypWkpaVhtVq5/fbb6devH3feeSdVqlS5qhi2bt3KqFGjWLt2LVFRUQwYMICZM2eSmZlJ1apVZUWVS4iIiCAxMZGEhAS3T/6a71JtDK8mN4pbiW542GxQoQI8+ih8+OEFRdow6FO1KusTE9n3229EtWnjpSCFEEKIy/P15IZSqgbwIZAM/Km1Hn+5c0p0G0MIUWKkp6fzxBNP8NVXX9GtWze+/PJLIiIirrm+/fv307FjR4KCgti4cSNRUVFujLZ4zZgxg8cee4yQkBASEhIuusrG8ePHWbZsGUuXLuX777/HbrcTHh7OnXfeSf/+/enevTtBQUHXHc8PP/zAyJEj2bx5M/Xr1yc4OJjt27ejlJIVVYowb9487r//frp27cp3333nsetcqo0h/xolxM65cxmTlcXZ1n//d1ImEx99/TVO4LlLjMETQgghyjql1EylVKJSaneh/T2VUvuVUvFKqZcvU00zYKHW+hFKwZxeQoiSYcuWLbRs2ZKvv/6acePGsWbNmutKbAA0aNCA1atXk5yczO23305SUpKboi1ev/76K8OGDcNisbB58+a/JTYOHz7MuHHjaNu2LVFRUfzjH/8gPj6eESNGsGHDBk6dOsWsWbPo16+fWxIbAF26dOHXX3/lm2++wWKxsH37durWrUtAQIDMxVGEF154AYCZM2d6LQZJbpQQS2bPZjRg6tixyPJanTrxSrduLDp+nG/ffLN4gxNCCCF8x+dAz/N3KKXMwMdAL6AxMEgp1Vgp1UwptaLQVgXYBDyqlPoeWF3M8QshShmtNRMnTqRDhw7Y7XbWr1/PqFGj3Pat/4033sjy5cs5dOgQvXv3JiMjwy31FpcTJ05w2223YRgGixYtolGjRgVlTqeTCRMm0KhRo4KJKseNG8fu3buJi4vjvffeo2PHjpjNZo/EppSif//+7Ny5k88//xybzUZOTg6VKlWSuTjO880333DixAk6depEjRo1vBaHDEspITqHhZFhs7E1K+uix+SmpxNTuTL1LRaWJSVBYGAxRiiEEEJcGW8PS1FKRQMrtNZNXa/bA69rrXu4Xo8E0Fq/fZHzXwB+01pvUEot1FrHXuS4YcAwgBo1arQ6cuSIu9+KEMLHJSUlMXToUFasWEH//v2ZMWOGx5bHXL58OQMGDKBz586sXLmSgIAAj1zHnWw2G9WrVycxMZG33nqLkSNHFpTt3buXRx55hM2bN9O3b18+/PDDK5pw1ZNyc3OZOnUqY8eO5cyZM5jNZpxOZ5mfi6NmzZocPXqU+Ph46tSp49FrybCUEi4rKYlf09K4rUmTSx4XUL48386cyaKsLHi7yPaYEEIIIf6uGnDsvNcJrn0XsxoYoZT6FDh8sYO01tO01q211q0rV67slkCFEKXHhg0baNGiBWvXruWjjz5i8eLF15TY+Oabb5g2bdplj+vTpw+zZs1i3bp13H///TgcjmsJu1i1b9+exMRE7rvvvoLEht1uZ9y4cbRs2ZL4+Hjmzp3LkiVLvJ7YAAgICGDEiBEcOHCAN954g0DXl81luRfHqlWrOHr0KO3atfN4YuNyJLlRAvwycyY24LY+fS57bK3Bg/EbPJj08eM5XgrXtRZCCCG8TWu9W2sdq7UerrV+4VLHKqX6KKWmpaWlFVd4QogSzul08uabb9KlSxeCgoLYtGkTTz/9NEqpq6rHMAwGDBjAwIEDeeKJJ3jjjTcue86QIUOYNGkSixcv5oknnqAk99IfPHgw27ZtIyYmhnnz5gGwY8cO2rZtyyuvvEL//v3Zu3cvgwYNuup752khISG89tprHDp0iH/+85/4+fmhtWby5MlERkaWqbk4nnnmGcC7c23kk+RGCXBk/XpCgFsee+yKjjfeeYf2TicP9++PLmOZQSGEEOIaHAeqn/c6yrXvummtl2uth4WGhrqjOiGEjztx4gTdunVj9OjRDB48mK1bt9Ky5dXPS7x//36qVq3KkiVLiIiIIDAwkNdff50pU6Zc9twRI0YwevRoZs6cyYsvvlgiExzvvPMOc+fOpXLlymzatInc3Fxee+012rRpw8mTJ1m0aBHz58+/6mVci1t4eDgTJkwgPj6ehx56CIDTp08TExNDWUh6r1u3joMHD9KqVasL5krx1s+czLlRErRvj0MpLL/8csWnTLn3Xp5asIB5zzzDfYWWjhVCeI/hcGDk5GBxODCysjgSH09Oejq5586Rm5lJblYWNwQG0qBKFWyZmSzYsIHcnBxsOTnYcnOx5ebS6oYbuC0qiuS0NMZt3Ijd4cDhdOJwOHAYBndERnJXtWocSkvjxe3bcRoGDsPA6doerlqVQZUrsyU1lWfj43FqjVNrDNfjC+HhPFC+PN+mpfF8YiIGeX+E8h/HhIUxODiY2efOMSo1FQ0Fm6E1U0JCuMvfnwlZWbyVnV2wP/+vyTyrld4WCyNzc/nIbi+4N/nla/39udlsZpjNxpdO5wVlAFstFpqYTMTa7Swr4m/UUZOJCJOJ251Ofiii3G6xANDB4eC3QmVmINc16Vhzp5O9hcoDgExXeQOnk4OFykOAZFf90Q7H3z4dhwMn/fwAiLTbSQLO/66pOhDvGgN9Q24u6eeVKaC+UuywWkEpKmdlkXXe+Qq40WRifXBwXnl6OnYo+DZLAZ0sFpaEhIBSVElOLtivXMf19PdnVoUKJGtN88REvqlWjTZHj/7tHl6vEjjnhgX4E+hKXlLjd+B+rfUeN1yrD9Cnbt26j8fFxV1vdUIUC4fDgdlsLnHfhvsqp9PJpk2bWLp0KbNmzSIrK4spU6YUfNi9Wh999BHPPfcchmFw1113sWDBAvbt20fLli2x2+3Mnz+fe+6555J1aK0ZMWIEkydP/ttcFt62atUq7rjjDgICAoiPj+fEiRM88sgj7NmzhwcffJCJEyd6bF4ST9u3bx+9e/fm8OHDDB06tET0ZvCk+vXrExcXx//+9z+aN29esH/ixIksWLCAdevWuW31mnyXamNY3HolcfXS0+H337Fc5S+cJ778klkrVvD8xx/T64UXCPXirLRCFBdHTg7pCQnkJCcTGRQEGRls/v13EhISyExNJTMjg6xz5whRimFNmkBWFq/99BOHU1PJttnIttnIdTqp7ufHzFq1wG6n6x9/cNJux6E1DsPAATQ0m1kbFgZOJ1HJyaS7Pvg7yfsQ3gTYajaD1lgMA2ehOBsC+1zPaxfxPloBW4AkYEgR5Z2A24CjwPtFlCfGxXEXeZ/UFhVRHp6czCBgP1BUynRbQgIPKMUxrYnjwg/PAMdTUiA9nWSnkyRX7zB1XnlmdjY4ndjsduxaF5SZlMp7bjaDvz9WhwOra7zv+ef7BwVBQADh584Rlp19wfUVYA0PBz8/aqakUPW88nz+VauCxUK9pCTis7NdJ6uC44yoKEwmE43PnCExv9xVt59SEB0NQLNTp8jJyQH++oahnMkE1fO+4G908iQOm+2Ca1c0mSAqCrSm3smTmFzJm/wUSzWzGapWBSD65Eks5yVvtNZUs1igUiUAqiQmYjaMgnO11lSyWCAkJC+WnByUK2mUf4zVZAJXcgWlwJW0yr9GrmGAzYbhdJJ53v78+pNsNkhJweb6t808e5bSRik1D+gMhCulEoDRWusZSqmngTXk5bhmuiOxAXk9N4DlrVu3ftwd9QnhaceOHePWW2+lWrVqLFiwgKqu31ni6mRmZvLf//6XpUuXsmLFCpKSkrBYLHTr1o2JEyfSsGHDq67TZrPRs2dPfvjhB/z8/Jg9ezaDBw8GoEmTJqxfv56OHTsyaNAgKlWqRNeuXS9al1KKSZMmkZKSwqhRo6hYsSJPPPHENb9fd9m/fz/9+vVDKcXKlSv58MMPmTBhApGRkaxcuZLevXsXSxxHjhzhvffe44cffqBv376MHTvWLavXNGrUiFmzZtGlSxe++OILXnrppWv6WfAFGzduJC4ujpiYmAsSGwCLFy8mJyfH7YmNy5GeG1727Rtv8NrrrzP/yy+p/cADV3XultmzafvQQzwTE8OkHTs8FKEQF+FwQHIyJ/bsIX73blJPnSI9KYn01FTOpafzQosWmLKymLplCz8mJJCdm0uW3U62w4HT6eSXWrUgN5e7ExL4OTcXm9Z5CQbAD0ixWMAwqG0YHCp0aQuQ3x+gIpBSqNwK5H+kLQdkFioPgYJvzEOg4NtxRd5YvTpKsddqBbOZqMxMslzXNCuFGWgTEMA3kZFgsdD6yBEMpbCYTPgphZ/ZTMcKFRjToAFYLNy1bRtmsxk/sxk/iyWvPCqKB5s3x6YUY377DT8/P/z9/fG3WvH396dVnTq0b9SIHGDl7t0EBAbiFxCAn9WKv9VKdI0aRFWrhg04lJiIf1AQfoGB+AcF4R8cTFBYGP7lyv31IViIYubtnhveUBLbGEIUlpSURMeOHTl+/DhOp5OwsDAWLVpEu3btvB2aTzh16hTLly9n2bJlfPfdd+Tk5BAaGsodd9xB37596dmzJ9c6RG3btm107dqV1NRUoqOj+fnnn4mMjPzbcatWreLOO+/EbDbz66+/0rr1pX/V2u12Bg4cyMqVK5k3bx733nvvNcXnDunp6VSvXp309HRefPFFlixZQlxcHMOGDeOdd9655nt3pTZv3syECRNYt24dya7ejfnKlSvHmDFjeO655677OoZhYLFYMJlMNGvWjE2bNvnEyjVXq3Hjxuzbt4/ff//9gp/DxMREIiIiGD16NKNHj3b7dS/VxpDkhpf9q3VrPt66lZSzZwm8hu5XTzdrxqHdu1n222+Y27TxQITCpxkGWadOcWTbNk7Hx5N4+DBnT58mOSmJh+rWJQpYtHs3s+PiOJebS6bdTrbTSbbTydKKFWmkNU+mpvKlzYaDvJ4L+b0X/gTqAe2BTUVcOgUIA2KAnUWUOwGT2czNTifbyPsq1ULeN+shJhMHo6LA35+HExPZZbMRYDYTYLEQYDZzQ1AQX3ToAFYr7//5J8dzcwkKDCQoOJig4GAiwsO5t0sXCA5m24kTGIGBhFSuTMgNN1C+WjWCwsMxyQd/ITymLCU3ZFiK8BXp6el07dqV3bt3s3btWsLCwujfvz/Hjh3j448/5vHHpfNRYVpr9u7dy9KlS1m2bBmbN28GIDo6mr59+9KvXz86duyIn2s44rV68803ef3119Fa8+ijjzJt2rRL9iKYPXs2Dz30EAEBAezatYt69epdsv7s7Gx69OjBpk2bWLZsGT179ryueK+FYRjUr1+fAwcO0Lx5c3bt2kXNmjWZPn36JXugXO81Fy5cyKeffsqmTZvIdvXm9PPzo0WLFjz66KMMHjyYp556ijlz5mAYBpUqVWLSpEkFPWauVaVKlTh37hw2m41//vOfTJgwwR1vqcT47bffuOmmm2jSpAm7d+++oGz69Ok8/vjj7Nixg5iYGLdf+5JtDK11mdlatWqlS5qWgYG6c1jYNZ+fe/q0NqpU0bptW60dDjdGJrzFnp2tj23apFPWrNF6yRJ9+O239ds9eugX27TRj9Wvr2OrVdO3V6yoVzVsqHWzZnpOlSo60mTSFZXS5UAHgDaD/hS0Bv0kF0yZULB94SofXGi/cp2/zmLROjBQP+/vrysppSNNJl3bYtGN/f11q8BAfaRtW6179tRftG6th9arp0fExOhRHTrot3v00B/fc4/OnTVL66VLdfzcuXr7vHn68E8/6bRjx7TTbvf2LRZCeBiwRZeAv/vFuZXENoYQ+bKzs3WXLl20xWLRK1asKNh/9uxZ3aNHDw3oJ554Qufk5HgxypLBbrfrH374QT///PO6Tp06Be2jNm3a6DFjxuidO3dqwzDccq2MjAzdqlUrDWir1aqXL19+xedO+P/snXd8FMX7xz97/dJJIyEhgUDokBAIvdfQpEoEpEkRkS6gCCJN+IIg0ouIKKAIoQgCShGR3gQEkQ6RhBBCer1c+fz+SLIS0pNL0d++X695JTczO/Ps3t7dzLNPWbaMAGhpacmwsLA8+8fExNDX15darZZnzpwpitiFolOnTuJ5CoLACRMmMD4+3uzzJCcnc9myZfT19aVCoRDfPysrKwYEBPDgwYPZHhcZGcnu3btTEAQCYMWKFXnkyJFCy9G0aVMC4MiRIwmAhw8fLvRYZZF69eoRAE+fPp2lrVu3bqxcubLZPievktsao9QXAyVZytrC48XduxQAzmvXLlP9BB8fVlcq2cDCgqu8vcnevRkWGMhp/v5c0rUrt4wYwZ/mz+f1XbsY/+gR+c03fAzw8LhxpXMiEiIZiomzGzbw7qpV5Jo1DH/vPY6tU4dveHiws4MDm1hZsbZazcV2dqSzM49otaJC4mUlw8h05cP6HJQTkwBSELhWEKgGaAXQPl0JUUWh4B4PD7JpU/7k58d+bm4cWa0ap/n7c2GnTlw/cCDDNmwgjx1j5C+/MPjsWSZHR5f25ZOQkPiPICk3JCTKDnq9nj179iQAbtu2LUu7wWDgjBkzCIBNmzbl06dPS0HK0iUuLo67du3im2++yXLlyhEA1Wo1u3btyvXr1zM0NNTsc544cYKWlpYEwNq1azMyMrLAY2S8b/b29oyNjc2zf3h4OL29vWlnZ8fr168XRuxCMW7cOHH96u3tzVOnTpl1/LCwME6dOpWVK1cWlRMA6OzszMGDBxfoXIODg9miRQtxjBo1avDSpUsFlum9994jAK5fv5516tShs7Mznz17VuBxyiJXr14lAFarVi1LW1xcHFUqFSdPnlxs80vKjTK68Ng9bVqaxmvdOrEuMSKCwksb2L7pG9x9OWxwh6S3+6a/1qfPN0UAACAASURBVAC0BegsCKwkl3NLhQpkkyY86+/PwIoVOc3fn5uGDuXFr76SNrPZoE9O5uNTp3hq9WpeWriQXL6cxunTOdzbmz1dXNjKxoY+Gg29FAqO0GhIW1uGqVRZFBMA2Cr9vbmeTZsA8A1BILVaXrGyoku6QsJHo2FLGxt2d3bmvjZtyAkTGDplCte8/jq/nziRJ5Yt4639+xn96JFkASEhIVFm+f+k3ADQA8DGqlWrmuvySUiYDaPRyKFDhxIAV61alWvfXbt20dLSkq6urqXyZL+kCQ0N5dq1axkQEECVSkUAdHBw4NChQ7l79+5isSrIYPLkyeKacMqUKUUaK8MywM3NjTqdLs/+jx8/ppubG11cXHj//v0izZ0fpkyZIp7rhAkTmJSUZJZxr1+/zkGDBtHJyemf9bUg0MvLi9OmTcuXNUtu3LhxQ7ROAMBGjRoV6HqdOnWKAPjGG2/wxo0bVKvV7NKlS7FZM5QkGdZGx48fz9K2c+dOAuDJkyeLbX5JucGyqdz4tVcv9pPLqUtIEOvmtm1LAJzVogVJ0hgfT96/z+gff+T3EydyVb9+/KhlS46tXZtveHjwYP36ZNOm3OjsnEm5oQWoALgofYM9KwflyDKAtLDgFzY2rKVSsX25chzu7c2FnTpx34wZjP/jD9JoLK1LVCB08fF8fOoUz37xBffNmMED775LLlhATp7MCTVqsKeLC9vY2bG+VsuqCgW7qtWknR2p1VKbzbWpnH7tmE2bHGBbmYy0s6O+fPksiokhXl7c0aULuXAhdevX8+CcObz63XeMuH1bUkpISEj85/n/pNzIKGVtjSEhYTKZOGnSJALg3Llz83XMjRs3WKVKFSqVSm7YsKGYJSwd7t27x7feekt0WfD29ubUqVP522+/UV/Ma7TIyEjWqFFDdCcxlwVDr169xCfpxnys22/dukUHBwdWrlyZW7Zs4Q8//MCTJ0/y+vXrfPz4MWNiYvI1Tm5ERkaya9eu4tp5+/btRRrPaDTywIED7Ny5M62srMRxFQoF69evz+XLlzM5OblIc2THyZMn6eXlJc7XsWNHhoeH50teQRBE64bVq1cTAFesWGF2GUuSmzdvEgC9vLyybR84cCAdHR1pKMZwCbmtMaSAoqVJrVqApydw+LBYVV+txrXUVMQ+eQIbd/cCDTezeXMsPHsWv37+OVpPnPhPQ3pQyftnz+LPkyfx1/XrePjkCZ5ERWGprS38k5PxbnQ01hmNePVuOACgO4B3BAHfkbCTy+GkVsPdxgaVXF3x8eDBsKtRAzcfP8bDp09h1OvTisEAk8GAAY0bA0Yjfrl5E/eePYPRYBCLHMD4pk0BoxHfXbuGO8+fw2gywZCeTUNpNOKTatWAmBgMvXIFV+PjkWgwINlkQgoJWwCPlErAYICtySRmv8jg5YwYGgC6l9rkAKoKAm7b2ABaLRpGRcEgk8FWpUI5CwvYW1ujSeXKGN2lC+DqinPR0ahQpw5cfX3TslBISEhISOTI/6eAohmUuTWGxP97FixYgI8++ggTJ07E8uXLIQgCfvzxR3z++ec4f/48GjdujOPHj2c5Ljo6GgMHDsRPP/2EUaNGYdWqVf+JTA9//fUXPvnkE3z33XdQqVQYPXo0xowZgxo1akAQXk06bn7279+P/v37Q6fToVGjRjhx4oRZ02S2bNkSp0+fhr+/Py5evJhn/0uXLqFTp06IiYnJtl0QBNja2sLOzk78m1Feff1q3dWrVzFmzBi8ePECAPD999+jf//+hT63H3/8EQMHDkR8fDwAwMLCAk2aNMHYsWPRu3dvs6RwzYu9e/di7NixePbsGWQyGfr27YvNmzfDKpd9gaOjIxITE5GcnAySeO2113DkyBFcunQpS+rUfwtNmjTBhQsXcOjQIXTp0iVTW2pqKpydndG3b198+eWXxSaDFFC0DD5Vib9/n6EAuWTJP5XR0TQCPOnmVqgxEyMiWEmhYE2VirpCmtJFP3rEE8uXc1W/fhxfrx4jAwLIBg041tKSNunWIHiphKZbNtTPwTIkw/KhWh7tFbNpk73U7op/Al1qAFoD9JbLyYoVyerVOaBcObaxs2NPFxcOrVKFk+rX59oePcgNG8h9+3hj61Y+PnWq0NdFQkJCQiL/IJ+WG0jL5pxjyc8YpV0guaUUGwkJCTx8+HCRnyD/f2TNmjUEwDfffJM7duxgy5YtqVar/7FAlcsJgLNnz872+JfjcDRp0qRYYk6UFNeuXWO/fv0oCAItLS05derUIrssFASj0chhw4aJbhPz588vtnnq1KlDAAwICMjXMYmJibx//z6vXLnC48ePc/fu3fzyyy+5bNkyzp49mxMmTOCQIUP42muvsVWrVvTx8aGnpydtbW2zXde/XDIsY/JrNZQdycnJYiBSQRDYu3dvXrx4sdDjmYMNGzaI569QKPjOO+/kaPHTrFkzAmBUVBRJ8vnz53RxcWGtWrWYmJhYkmKbhbt37xIAPT09s23/+eefCYD79+8vVjlyW2NIlhulxHfjx2Pg6tW49u238BkwIK3y/feBJUuAhQuBGTMKNe6Ps2fjx/nzsXTuXFjNnm1Gif/BZDDgwYkT+OPnn9HXzg54+hTfPXiAi+HhkMnlkMtkkCsUEGQyLGzfHpDL8cOdO/grMhJyhQJyuRxyhQIqpRLvtGkDyOU4fucOQmJjIVcqxT4OLi5o37UrUKECYG8PlIBWVkJCQkKi6OTXckMQhEdIWwgLADyQlkVaQFom6b9JVi5WQc1IWVpj/FeYNWsWPvnkEzRr1gybNm1CzZo1S1ukfwXbt2/Hm2++CTs7OyQkJMBgMAAA7Ozs0LFjR3zwwQfw8vJChQoVkJKSgnPnzqFx48bZjhUUFIRhw4bB2toau3fvRrNmzUryVIrEpUuXsGDBAuzfvx82NjYYP348Jk2aBEdHxxKTISQkBC1atEBwcDDKlSuHY8eOwc/Pr9jmMxgMqFq1KoKDgzF48GB88803xTaX0WhEfHw8YmJiEBsbi5iYGLHMmzcPDx8+RN++fREUFFSo8Xfu3Ilhw4YhOTkZ7u7uOHz4MOrUqWPmsygcJpMJCxcuxMKFC5GcnAyNRoNp06Zhzpw5maxIpk+fjk8//RSbN2/G8OHDAQBHjx5Fp06d8M4772Dt2rWldQqFIsM6aN++fejZs2eW9rFjx+Kbb75BREQEtFptsckhWW6UQcuNkdWr0xag4aXAP3WUSjYHyKL6i/XqRVpYkI8fF1FKCQkJCQmJgoMCxtwA8AWAri+97gJgQ0HGKO1SltYY/xVq1qzJKlWq0N7eniqVivPmzctXwMT/j+j1eq5ZsyZTbACkB8gcPHgwb968meWYI0eOEACtra1zfYp88+ZNVq1alUqlkuvXry/zARFPnTolpre1t7fnvHnzGF0KQfS3bt0qWi+0b9++xO7dxMREMcimOTNW6HQ63rhxg0FBQVy0aBHHjBnD7t2709/fn15eXnRwcKBGo6FMJiMA1q1bt1DzxMfHs1WrVqK1xtSpU812DuZGr9dzwoQJVCqV4mfp5cC9p0+fJgAGBgZmOm5aelKJffv2lbTIhebx48di4NrsMBqNdHV1Zd++fYtdltzWGKW6EAAQAOAOgPsAPsimvRWA3wEYAPR7pW0ogHvpZWh+5itLC48qCgV7uriIr8PTg7PUVquLPnhwMM+r1ZwumchKSEhISJQChVBu3MhPXVkuZWmN8V/g9u3bBMCVK1cyPDycgYGB4obpwoULpS1emSA5OZlLlixh7dq1xQ0l0k3lhw4dyocPH+Y5xvjx4wmAjRs3zrVfVFQUu3TpQgAcOXIkU1JSzHUaZsFkMvHYsWNs06YNgbQUoIsXL2ZcXFyJy2I0GsUAn3K5PM8sNcVBREQEbWxsCIALFy7MsZ9Op+Mff/zBHTt28JNPPuHo0aPZrVs3NmzYkJUrV6a9vX0mhUVORS6X08LCgs7OzqxWrRq7d+9eqOCeX3/9teg+VblyZd69e7col6HESExM5KBBg8Tr5OTkxF27dolBRb29vTP11+l09PPzo729PUNCQkpJ6oLRNj3pxY4dO7JtP3/+PAFw69atxS5LbmuMUnNLEQRBDuAugI4AQgBcAjCA5K2X+lQCYANgKoD9JIPS6+0BXAbQEGkfqisAGpCMzm3OsmIyGnzmDCq1aIHPe/fGxD17AAATfHyw6o8/sLJvX4wvpPnWyyzp1g3vHzqE/TNnoseCBUUeT0JCQkIif9BkgslohEmvh8lggDH9r1alglwQkJKUhPi4OJjSAy+bDAaYjEa4OjhAIZMhKioKERERaWMYjWJ77cqVoZDJEBIWhqfPn8OUMU96aVGnDmQA7v79N/5+9kxsp8kEmkzo2qABYDLh93v38Pj5c5iMRnTy94fNG2+Y/RoUNKCoIAg/AzgFYFt61SAArUh2NrtwxURZWWP8V1i8eDE++OAD/P3336hYsSIA4MCBA3jnnXcQFhaGiRMnYv78+bC0tCxlSUuWhIQEfPbZZ9i+fTvu3buXoQiEs7MzYmJiULFiRZw7dw5OTk75HrNWrVr466+/MHfuXMzOxaXZaDTi448/xieffILGjRtj9+7dcHNzK/I5FQWSOHz4MBYsWIBz586hQoUKmD59OkaNGmXWYJ35wWAwYMuWLZg5cyaeP38OFxcX/Pbbb/D29i5ROTIIDg5GjRo1kJKSgg0bNmD06NGZ2o8ePYqAgACYTKZsj5fL5dBoNLCysoKdnR0cHR3h6uoKd3d3eHl5oWrVqqhVqxYqVqxY5ICeUVFR6Nq1Ky5cuACZTIaZM2di3rx5RRqzNHjx4gWGDBmCn376CSSxbds2TJw4UQwq+jJ3795F/fr10aRJExw9erREgqIWlpCQEHh4eKB8+fIICwvLts+MGTOwdOlSPH/+HOXKlcOSJUvw66+/4ttvv4WdnZ1Z5cltjVGayo2mAOZkLFwEQZgBACQXZdN3C4AfX1JuDADQhuTb6a83APiV5He5zVlWFh5bRo7E8C+/xB+7d6Nunz4AAFe5HM9NJuiSk6HQaIo8hz4pCfXt7ZFgMODPp09h6exc5DElJCQkAAAk9Ckp0CclpZXkZBhSUqASBNhbWQEGA/66cwd6nQ6GlBQYUlNhSE2Fs7U1qrq4wJSaisPnz6fV6/Xi35rly8PP3R0pSUnY9NtvMBgMae0GAwwGA1p7eKClmxuiExLwv7NnYTQaYTAaxb+vV6qEduXLIyQ2Fu9fuQKDyQRjejEYjRjv4YFO9va4FRuLsbdvw2AywUTCmF4Wubqio4UFziUk4K3QULHeSMII4Bs7O7RVKHAwORlD4uPF+ozyi1yO5iYTviExNJvLdg2AD4A1AMZl0/4AgBeAxQA+yKY9HIAzgFkAPsmmPQmAFsBEACtfaZMjzQQSAN4C8FX6/7fs7VEzMjLbt7koFEK5YQ/gY6RZbBLAbwDmkYwyu3BmRhCEHgB6VK1addS9e/dKW5z/DE2bNoVer8er67bY2FjMmDED69atQ+XKlbFhwwZ07NixlKQsGaKiovDpp5/i+++/x6NHj8R6T09PBAYGok+fPnjttdegVqtx+vRpeHh45DpeSkoKmjVrBg8PD+zZswcxMTFwc3ODTqfDhQsX4O/vn+vxe/bswdChQ2FpaYmgoCC0aNHCLOdZEEwmE3744QcsWLAAv//+Ozw9PfHBBx9g2LBh0JhhHZ1foqKisHz5cuzatQv37t0TFQW9e/dGUFBQqW9Yb968CT8/PxgMBuzatQt9+/YFkJY5pl69ejAajejbty88PT1RuXJleHt7o2bNmnBzcysx2detW4dJkyYhNTUV1atXx88//wxPT88Smbu4+PPPP1GvXj0oFAr4+Pjg0qVLiIyMhL29faZ+mzdvxogRI7B48WJMnz69lKTNm4CAAPz888/4+uuvMWTIkGz71KhRAxUrVsTRo0cBAB4eHggNDYVOp4NCoTCrPLmtMcw7U8FwA/DkpdchALKPZpS/Y7NVHQuCMBrAaAB5ftmXFJ1jYvC1tTVqpwdiCT59Gs9MJvhptWZRbACA0sIC65YuRavx47GgZ08sOnfOLONKSEiYF5PBAF1cHFLj46FPSoKjlRWg0+FJcDBePH8OXWIiUpOToU9JgcxoRNuaNQG9HieuXkVweDj0Oh1SdTqkpqbCRqHACF9fIDUV6y5cwL0XL5Cq10Ov1yPVYEBFjQbzatYEUlMx7upV3ElIgN5ohN5kgt5kgp9Gg/WuroBej7bBwbiv18NAQp9eAuRyfC8IgMEANwARr5zLIPzz2L0BgORX2scAWJf+f/dsrsVUAH5IS9s8Ppv2uQBaCgIS5XKsMBigQNqmXSEIkAPwDQlBOxsbpJC4EB4OhUwGuSCktQsCkqKjAYUCQmoqAECtUEAuCJAJAuQyGdTlywPOzrCKj0ddvT4tOPJLxaFuXcDJCe7R0Rhw+3ZafUYQZbkcFfz8AAcH+L54gbl37kAuk0Eml0OW3u7asCFgZ4dWz55h1YMHkMvlae3pfRwbNQKsrNAjLAweT5780yaXQxAE2Pj7AxoNBj99imbPnmVpV9WvDyiVmPD0KV6Pjk6rl8kgk8kgUyiAOnUAmQxznj3DpMRECDIZKletWrAb1swIgrCV5GAAg0lOzPOAMgjJAwAONGzYcFRpy/JfISwsDOfPn8eCbCxPbW1tsXbtWgwYMAAjR45Ep06dMHToUHz22WdZNg7/dlJTUxEQEIATJ04ASEvNWbVqVQwcOBBTpkyBra0tQkND0bx5c5hMJhw9ejTPta7JZEK9evVw7949XL16FR4eHrh8+TL27NmDrl27okOHDggPD89VQdCnTx/UqFEDvXr1Qtu2bbFy5UqMGTOmRNKpGo1GBAUFYcGCBbh58yaqVKmCL7/8EoMHD4ZSqSz2+YG0jeuyZctw+PBhPHv2TKyvWLEiunfvjmnTpqFy5bIRC7lOnTr45Zdf0Lp1a/Tv3x/Hjx+Hj48PGjduDIPBgI0bN2LUqNL56nr+/Dk6d+6Ma9euQS6XY9GiRfjgg+xU+/8+ateujU8//RTvvfceHjx4ACAtleyIESMy9Rs+fDh++uknzJw5E+3atUPDhmUvg/rz589x5MgRODk55ajYuH37Nu7cuYPx49NWbzExMXjy5Alq1KhhdsVGXpSmcqNEILkRwEYgzXKjlMUBSLieP48hXbsCcjkAIHrZMtQEMHngQLNO1XLcOAxbsQJLz5/H0B9/RI3u2W0nJCT+H2IyQZ+YiITISOji4pASF4eU+HikxMWhhqsrNCQePX6MG3fvIiUpCSmJidAlJyMlORlv1a8PS5MJx/76Cz/dvYuU1FSk6HRISU2FTq/HNz4+0BoMWPPoEbaHhUFnNCLVZILOZEKqyYRHjo4QUlMxLj4eGwwG8Wk6AFgBiE//fzqAHa+I7Qrgafr/nwH48ZV2bwAjdu8GBAH7AJwjoRQEqNKLr0YDmEyASoX4xEQk6fVQyGTQKhSwkctRzs4OqFYNUCrhL5ejsl4PhVwOpUIBpUKBeuXLA35+gFKJmZcvI8VkglKphFKlgkKpRPUKFYB69QCFAluvXAHkcrFNoVajoosLUKUKZAoFLty5A6VaDcVLxd7BAXBygrVMhoiEBCg0GijUashVKig0GshVKkChgDuAlFze3qpIC+SUEzUB/JpLe10AO3Np9wGwOpf2euklt/Hr5tJeK73kRPX0khNV0ktOeKSXMkIDQRAqAHhLEIRvkJYpReTfYLkhYX5++OEHAECvXr1y7NOyZUtcv34d8+fPx+LFi3H48GGsXr0a/fr1K5FNdnHzxx9/oHXr1qJVxbvvvouJEydmcrWIjIxEp06dEBUVhRMnTqB69dy+GdIUG40aNcK9e/fQtGlT2Nvb4+DBg6hUqRIOHjyId955B+vWrUP79u1x5syZXMeqVasWLl68iEGDBmHs2LG4fPky1qxZU2xWEwaDAd9++y0WLlyIO3fuoGbNmti2bRsCAwNLZPN06NAhrF69GqdPn0Z8fNovtVwuR926dTFgwACMHz8eVlZWxS5HYWjRogX27t2LXr16oWPHjrC3t0d8fDymTp1aaoqNzz77DO+//z4MBgPq1q2LI0eOwMXFpVRkKS6mTJmCoKAgnEt/wHzkyJEsyg1BELBhwwacP38eAwYMwNWrV8vcfTRixAiQzFbZnMG+ffsAQMygsmLFCgDAoEGDil/AV5DcUkqYJydP4lCbNnh92TLYT5mSVunkBMTEADqd2dOdRvz1F75u0AAT/P2h+vVX4D/wgy/x34MmE5Kjo5EUGQkLEhYk4iMicP3GDSTFxiI5Ph7JCQlITkhA28qVUcnSEveePMHXly4hOSUlreh0SNbpMLNKFdRVKnE8LAzvP3yIZKMxrZhMSDaZcEypREO9HpsAZPeT/ifSNpYrAEzKpj0YaRvDRYKAT0hoBAFqQYBGJoNaJsP56tVhY2GBDZGRCIqKglqhgEouh1qphFqpxJdt2kCu1WLv33/j0osXUKtUUKvVUKnVsNBqMaZDB0CtxsW//0ZYQgKUGg3UFhZQabWwsLZGg7p1AZUKodHRSAWgsrBIK5aWUFlZQWtrKypOJSRKiwKkgp0A4B2keeSEIrNygyS9iklEs1MW1hj/FQICAvDgwQPcvXs3X4qKa9euYcSIEfj999/Rs2dPrFmzptRjQRSFJUuWYMaMGTCZTBg+fDi+/PLLLNchPj4eHTp0wPXr1/Hzzz+jdevWANIsG8LDwxEaGoqQkBCEhISI/x86dAjR0dEQBAEk8frrr6Nhw4bi0/I5c+Zg+/btuHv3Lj755BN8+OGHecpqMpkwZ84czJ8/H40aNcKePXuyXHuS0Ov1SEpKQnJyMpKSkgpcjh8/jkePHsHHxwezZs1Cnz59itVtIjU1FZs2bcJXX32F69evQ6/XAwC0Wi0aNWqEt99+G4GBgaXudlIQvvrqK7z11lsAgLZt2+KXX34pcRlCQkLQuXNn3Lp1C0qlEsuWLROf9v8XSUpKgpOTE5KSkuDu7o4nT55k2+/UqVNo06YNhg4dis2bN5ewlDkTFRUFJycn2NnZITIXF9bGjRuDJC5evAgAqFmzJm7fvo3Y2FjY2NiYXa4ixdwQBGEPgC8BHCaZfcSZwgmlQFpA0fZIW9BcAjCQ5J/Z9N2CzMoNe6QFEc1IFP070gKK5vqEpywsPNYPGoR3vv0Wd48cgXfHjnh07Bh+6dgRwxs1guzCheKZdONG4O23wa+/hpCDOZGERG7QZIIuPh6Jz59DkZICW5kM+thYnDp3DglRUUiIiUFifDwS4+PR2MUFTR0cEBUVhQ9//RVJKSlI1OmQlJqKJL0e79rbo79Gg9uxsWgZFoYkEkkvzbUZwHAA5wE0zUaW7wH0B3AMaemWtAA0ggCtTAatTIZNHh5o6eiIM6mp+CQkBFqlElqVClq1Glq1GpOaNIGXiwtuxsbiWHAwNBoNNBYWUFtYQGNhgfb+/rCxt8ezxESExsVBY2UFjbU1NDY2UNvYoJyLC+QWFkAJm9lJSPybKETMjXUk3ylOmYqbsrDG+C8QGxsLJycnTJo0CUuWLMn3cQaDAcuXL8fs2bOhUqmwZMkSjBo16l+1+UxNTUWHDh1w6tQpqFQq7Ny5U3wSCgA6nQ5Pnz7Fw4cPMWnSJNy6dQvdunWDWq0WFRlhYWEwGo2ZxlWpVFAqlUhMTISlpSXefvttREREYOvWrdizZw+cnJzQqVMnJCcno3Xr1jh37pwY78TPz+9VMbNl7969GDJkCJRKJSpUqJBFOfGqTPlBpVLBwsICFhYW8PLywrRp09CjR49is8x5/vw5li1bhj179uDBgwdisFYHBwe0a9cOkydPRtOm2a1M/h28+eab2L59OwDAysoKDx48gHMJxuRbsGAB5syZA6PRiIYNG+Lw4cNwdHQssflLi+PHj6NDhw4A0j7DKpUq236zZ8/G/PnzsWPHDgQGBpakiDnSr18/7N69GytXrsxRCRUaGgp3d3dRIZqamgqNRgN3d3f8/fffxSJXUZUbHZC212gCYBeAr0jeMZNgXQF8jjS36c0kPxEEYR7S0rvsFwTBH8BeAOWQZoX8jGTt9GPfApChUv6E5FdZZ8hMWVh4BHp44OzTp/g7NRWCTIZBlSrh2+BgBE2Zgr7LlhXPpCYTjtWpg+n37uH7Q4fg/R8PvCUBwGgE4uMRevcuYsLCEBcejriICMRFRqK8UolWbm5AQgLmHD6M6Ph4JCQlISElBQkpKWhvbY0p5crBFB8Pj/v3kWAyIQFpARMB4D0AS5HmPpGdLnY2gLkyGcK1WvgkJ8NCJoOFXA5LhQIWSiXGVq6M16tUQbhMhrl//gkLjQYWFhawtLSEhaUl2vv4oFbVqoglcfHvv6G1sfmn2NmhvLs7LBwcQI0GgkolWSNJSJRBCqrc+DcjBRQ1L9999x0GDhyIM2fOoFmzZgU+/v79+xg9ejROnDiB1q1bY+PGjahWrVoxSGperl69inbt2iEmJgZVq1bFmTNnoNVqsXLlSuzevRshISGIiHg10lHaJtXd3R3u7u5wc3PL9v958+Zh9erVcHZ2xqNHj2BhYQG9Xg9/f388f/4cf/31F/R6PRo2bIjg4GDY29sjKioKtra2ePbsWb5dTW7duoW5c+fCaDSKSolXi1arzbHt1X4l4W5y7do1LF26FEePHsXz588BpLkKeHh4oHfv3pg8eXKZidlXFObPn4/Zs2fDyckJb775JpYvXw4HBwc8fvy42N0gHj16hE6dOuH+/ftQq9VYs2ZNFveM/BAfH48bN25Ap9NBp9MhJSWlUP+/WieXy/HZZ58Va2BcFxcXhIeHo1WrVjh58mS2fQwGA1q1aoVbt27h2rVrqFSpUrHJkx9iY2Nhb28Pa2trxMTE5Nhv7dq1ePfdd3Hr1i3UrFkT69atw9ixjaGXSQAAIABJREFUYzFhwgTRPcXc5LrGyClH7KsFgC3S4sE9AXAWaQoPZX6PLwultHPQG/V6OgkCB3t5iXV2gkAVQKNeX6xzX92xg+r0XNT+lpb8rGdPhly6VKxzShQcg07HuOBg8sED8soVXlq/nj98+CG3jhnDNYGBXNS5MzcEBJDjxpFDhnBc5cpsV64cG1pYsJpSSVeZjL3lchIgAXpkk4u8T3obAboAtBMEusnlrK5SsYGFBRdUqkR260YGBnJ09eqc4OPDD5s148JOnbiib1+enjGD3LmTxgMHeHLlSl7Zto13fvqJTy5eZNTDh0xNSCBNptK+lBISEqUIcslB/18tpb3G+K/Qv39/li9fnkajsdBjmEwmbtq0iba2tlSr1Vy0aBFTU1PNKKV5WbRoEQVBIACOHDmSSUlJXLp0KR0dHQmArVu35ujRozl37ly2aNGCAPjBBx8wNjY2z7Hnz59PALS1tWVkZGSmtkuXLlEmk3HMmDEkSaPRyNdee40AKJPJCIAtW7YslnMuTYxGIz/++GPa2NiIayOFQkFfX18uXbqUiYmJpS1iJhITEzl69Gi+8cYbTElJKfDxO3bsIABqtVqGhYWRJIcNG0YArFixIkNDQ4v0ecuNGTNmiPdSixYt8nXPZseTJ0/o6emZZU2bUxEEgRqNhnZ2dixfvjw9PDxYrVo11q1bl/7+/mzRogXbt2/Pbt260c3NjZ6enoyLizPz2f/D9OnTRdm++OKLHPs9fPiQ1tbWbN68OfXFvDfMizfeeIMAuGTJklz7dezYkdWqVaMpfe2fHuOST548KTbZcltj5Fex4YC07HKXAewHEAhgFdLiXJT6giK/pbQXHn8EBREAvxoxgiR5Zfv2tB8tW9sSmf/v8+e5pGtX+mm1BMBqAE0tW5Jr1zIpOLhEZPivYzIamRQZSYaGkn/+yb+2b+ePH3/MrWPGcFW/fpzXrh3nNm1KDh9O9u7N9ytWpK9WS0+5nLbpX3rVXlI+tM7mC9sPIO3tSU9PDrS1ZXNra3ZxcmJgxYocVb06V7VtS86ZQ372GYPGjOHOSZN4eP58nlm/njf27GHYxYvkixdkSoqkhJCQkCgWJOWGRGFITk6mlZUVR48ebZbxnj59yj59+hAAfX19eeXKFbOMay6Sk5PZvHlzAqBarWZQUBDXrl3LChUqEAA7duzICxcukExT2Lz33nsEwNmzZ+dr/LVr14qb2uAc1nlTpkwhAP72229i3dKlS0VlCwAuXry46CdbBtDr9Zw2bRq16etguVzO9u3bMygoqNg290Xl3r17rFevnvh+9O/fv0CyXrx4kTKZjHK5nJcvX87U1r179ywKAYVCQa1Wy3LlyrFChQr09vZmgwYN2LZtW/bp04ejRo3ihx9+yM8//5zff/89T58+zeDg4Cwb8Vu3btHDw4MAqNFo+O233xb6GkRERLBmzZq0trbmd999xxMnTvDs2bO8cuUK//zzT96/f58hISGMiIhgXFwcU1NTxY12fjhz5gwFQeDYsWMLLWNeXLhwIdM1zm3jvz19fzhnzpxikycv4uPjKZfLaWVllev9Fh0dTYVCwenTp5NMUxwqFAo6OjoyNja22BSFRVJuIM0t5BaAGQBcX2n7Vy1eSnvh8fXAgQTAx2fOkCR7u7oSAA989FGJy3Ln8GH+MmwYWaMGdQCdAHZ2cOCWESMYIyk60jCZmBQezocnT/LiV1/x4Jw5/HrUKC7r0YOG6dPJESO4rl49NrO2ZnWViuVlMqoAKgGa0pUTw7NRTrgKAunuTtapwzkeHuxRvjyHeHlxgo8PP27dmhv79ye3bCH37eMfX37JK9u28d6xY3x24waTIiNpKqM/wBISEhIZFGZ9AKA80rIEdwfgXNDjS7uU9hrjv8DBgwcJgIcOHRLrzPH0MigoiC4uLpTL5Zw+fXqZeDJ/+fJl2traEgC9vb25cuVKVqpUiQDYvHlz/vrrr5n6L1y4kAA4bty4fG3cvv/+ewKgUqnkzZs3c+yXkJDASpUqsUaNGkxOThbrT506RY1GI65dfv/998KfbCmj0+k4btw4qtVq8ZoMHz68TNwHubF//37a2tqyXLlyPHz4MJcsWVKgeyAkJER8D4OCgrLt8/HHH7Nr165s3rw569aty0qVKtHZ2ZnW1tZUq9WUy+X5tpbIUBhpNBpRGdO+ffsiXee4uDj6+/tTrVZn+UyYk0mTJhEAT5w4USzjG41GCoJAJycnAmDlypVz7T9kyBDKZDKePn26WOTJiyFDhhAA582bl2u/bdu2EQDPnTtHktyzZw8BcNCgQZw1axadnJwKba2TG0VVbrTNq8+/pZT6wqNnT76oVEl8WQ6gJi0afOlhMjHm1CnOaNqUlRQKAqAKYC9XV15etIgs41/8BcGg0/HZjRu8uXcvk376idy5k7/PmMF57dpxfL16HODpyY729vTVavnUxYVUqzk3hy/vCIWCdHXlmgoV2K5cOb7u7s7RNWrw/caNuahzZxrWriV37ODtTZt4YfNm3j1yhM9v3WLqf+h6SkhISOREQZUbSIsTHAzgawDfAHgEoF9BxijtUuprjP8AI0eOpLW1tWh6/8477xAAu3btmmnjXRiioqI4YsQIAmCVKlV46tQpc4hcKBYsWJBp81ejRg0CYIMGDXj48OEsG9f169eLG4b8PLU/duyY+LQ+P5ujn3/+mQD40SsP2yIiIujs7Cw+cX706FGBzrO0SUxM5IgRI6hUKkXrmLFjxxb5XsoNvV7PW7duFWkMg8HAmTNnplnr+vlluu4Z1jsLFizIdYykpCTRrWnhwoVFkodMszK6e/cuT5w4wW3btnHp0qWcNm0ahw0bxp49e7JVq1b08fGhl5cXXVxc6Obmxj179hR5znbt2lEul3P//v1FPofcSExMZJUqVejl5cWEhIRimcPJyYlqtZpt27YlANEdLDvi4uLo5eVFT09PRkdHF4s8OZGcnEyFQkELC4s8v2/69etHV1dXsV+7du0IgBcuXKCjoyNfe+21YpGxyG4p/5VSqgsPg4G0tSVHjUp7feoUowEeKUOLIZPRyPObNnGiry9dZTKeBkhLS/7ZtSv3z5rFlGLQvJmDhPBw3j92jKfWrOGuKVO4ql8/Pn73XfKtt3jM35/1tVq6yGSUvaScuJBuWfFl+mtbgFUUCjaxsmJ3Z2f+/frr5LRpvDppEjcPH84DH33Ec198wfvHjzMmOFiynpCQkJDIhUIoN66/bK0BwAnA9YKMUdpFUm4UDYPBQGdnZwYGBop15cqVE3+3LSwsuGPHjiLPc/z4cXp5eVGhUHD16tUFMl8vKsnJyWzWrJloPeDl5UUArFWrFnfv3p2tLF988QUFQWC3bt3yFTfk0qVLVCgUFASBBw4cyLdsgwcPpkKh4I0bNzLVG41G0b1AEAT+9NNP+R6ztIiNjeXAgQOpSH9op9VqOXXq1GKLYZCamsrVq1fTx8dHjC9RpUoVPnjwoMBjRUREsGPHjgTAESNGZFHEGI1GvvnmmwTAjRs3ZjuG0WhkzZo1CYCDBw8u1DmVNnq9nr169SIAbt26tUTm/PXXXwmAkyZNKpbxW7ZsSQAMCQkR473kZily4cIFKhQKBgYGluj31KhRowiAH374Ya79kpOTaWlpmUlJo9VqaWVlxY0bNxarJYyk3CgDC4/ft21jV4C3ly1Lq+jSJe3ynzxZajLlhkGno+n4cXL0aE5JN2mzEwS+5e3No4sXU1+MWm+SNKWmks+eMf7MGR6eP5+bhw/nwk6dOMHHh6+7u/OXunVJb2/+8pLJ5Mtlj0xGVqjAc9Wrs6uTE0dUq8aZzZtzVb9+3DFxIiP27CGvX2fKo0fUxccX67lISEhI/H+jEMqNG6+8lr1aV9aLpNwoGqdPnyYAUYFx//59AmCTJk04ZcoU0dKhadOmRX6SGRMTw27duokbyMIEaSwoFy9eFDc0Ga4CXl5e3Lp1Kw0GQ5b+ycnJHDlyJAGwU6dOTEpKynOO+/fvi64XX3/9dYHki4iIoKOjIxs3bpxFHpPJRHt7e3GN9fHHHxdo7JIiMjKSffv2FV0pLC0t+dFHHxVLPI3U1FSuWrWK9erVExUaAOjq6sp69eoRSAvKmhGLID9cuHCBFStWpFqtzjXoZGpqKrt06UKZTMa9e/dmae/SpYv4Wfk3YjQaxYCnK1asKNG5x44dS0EQeCY9hIA5mTFjBgFw/fr1PHv2rHiP5ua2k+GOtmXLFrPLkx06nY5KpZIajSbPz82BAwcIQFR4ZpxT165dWatWLfr6+habUkZSbpSBhcfi9C+asD/+IElWFASOkMuz7zx+PB/37VvsGVTyS2pCAg/NncvBXl60Tv/yrimX0zR2LHn6NGk00mQ0MiE8nGHXr/PukSMM/ekn8tdfqd+3j9+OG8cNgwbx0+7dObtVK0728+P+jh3JwEBGdujAljY29NVqWUWhoJMgUAPw03TLijuvKC1sAVZXqRhUqxYZGMino0bxfwEB/HrUKP68cCGv79rF8Js3y8y1k5CQkPj/SCGUG58C+BnAsPRyGMCSgoxR2kVSbhSN9957j0qlUvTPfvvttwmAmzdvJpm2ca9atapo9bBq1aoizWcwGPjhhx+Km8CMLBLFwdy5czMF6HR3d+eGDRtytMR49OgRGzRoQACcOXNmtsqPVwkLC6OlpSUBcFnGg7QCkuE/v3LlymzHz7CEAMB27dqVejaHDMLCwtitWzdRyWBjY8NFixaZXamRodCoW7duFoXGuHHjGBISIvb97rvvxMCl7u7uWSxiXsZkMnH9+vVUqVT09PTMEvgzOxISEti4cWOq1WqefOlBaUbsCA8PjzLz/hQEk8nEyZMnEyidgJpxcXH09PRk9erV86VQLAgXL14kAPbt25fkP+9VixYtcjzGYDCwTZs2tLS05L1798wqT3aMGzeOADh16tQ8+44YMYI2NjbU6XQkKQZvzlDIfPPNN8UmZ1FjbuwB0A2ALK++Zb2U5sKjs4MDa6nVJMlD8+YRAHu5uGTteOUKwwGqAXopFIwuY/6NSZGRDJo6lev9/EiNhiaAdQQhk8sHAL6TrpzQZ2NVYQlwjpUV6e3NeB8ftrG1ZY/y5TnQ05Nv16zJqQ0b8sSwYeTq1dTt2MEz69fz4cmTTIyIKO3Tl5CQkJDIBwVVbqQdgj4APksvvQt6fGkVAD0AbKxatao5L+H/K0wmE6tUqcKAgACxrkKFCpTJZJw1a1amYJaLFi0SN9m1atUqcrrBnTt30sLCgm5ubrx48WKRxnqVpKQk1qlT558HNLa2XL58ea4xHw4fPkx7e3va2trmO85AbGysaFnxwQcfFFpek8nEgIAAWllZZZtdJSg961/Gxt7V1ZWhoaGFnq+oBAcHs0OHDqLiyN7enp9//rlZ50hNTeXKlSuzKDQqVKjA8ePH8+nTpzkem5iYKLqYCILAMWPGZFG4JCUlcejQoQTAgIAAvnjxIt+yvXjxgjVq1KCtrS2vX78uZsexsbFhTExMoc+5NFmwYAEBcPz48SXqivEyR44cIQC+//77Zh3XZDJRJpOxSpUqYp23tzcB5HrfPnnyhOXKlWPDhg1FRUJxoNfrqVarqVar81SMGQwGOjk5ccCAAWKdnZ0d1Wo1O3XqRFdX12KVtajKjQ4AtgN4AOB/AKrndUxZLaWl3NDFx9MC4Li6dUmSbe3sCICXsjEZ/MLNjYkA26Rr3y0BXilC+qRiJS6OMRs2cFL9+pzZvDn/FxDANYGB/Obtt3l56VLy2DHywgX+dfAgQy5dYuyTJzQU440uISEhIVE2KITlxuL81JXlIlluFJ4//viDALhhwwaSae4FGZvVjM2kr68vV61axcjISIaHh4uWDRkKkKJw7do1enp6Uq1WF9idIyd27NghKmEyZIzPxQ3WaDSKFh716tXL91NanU5HNzc30cWmqDx69IgWFhbs1q1btpvLjCwKGVkfVCpVpuw2JcH9+/fF+AUA6OzsLN475kCn03HFihWFUmhkx/79+2llZSXKmqFEe/DgAX19fUVXn/xY6LxKcHAw3dzcaG9vT0EQqFQqeefOnQKPUxbIUM68+eabpZ6ad+TIkZTJZGZXeGYEFc0gLCyMSqWScrmcDx8+zPG43bt3F1l5mRcZwWrHjRuXZ9/ffvuNAPj999+TJO/evUsArF+/PoG8A94WFbO4pQCwBTAGwBMAZwEMB6DM7/FloZTWwuN0+od19/TpNOr1VKW7V2Tpt24dAbC5VkuSnNqwYdqPIsAtZvjBkpCQkJCQKAkKodz4PZu6PwoyRmkXSblReObNm0dBEETXkAx3EUdHR7Zu3Zpr1qyhn58fgbSMF2+88QaPHDnCTZs2ifErKlasmGvK07yIiIgQsxhMnjy50Cb9Dx48oI+Pj7ghbtiwYZ4xQiIjI8U4CUOGDMl36kyj0chq1aoRAHv27FkoebNj+fLlmeKfvDpnRsraXr16iVYTr2ZaKQ5u3rzJRo0aZVI2fGumB4A6nY6ff/4569Spk0WhMWHChAIrNLIbPyNAJgC2bduWtra2tLOz48GDB4s09o8//iiOu3PnziKNVVp8++23FASBPXr0yFfg3OImJiaGbm5urF27tllj8mQo5cLDw8W6rVu3EgDd3NxyVeqMHj2agiDw+PHjZpMnA4PBQI1GQ6VSmS+LiylTplClUoluhBnxgVq1akWNRsOIYra2L7JyA4ADgIkALgPYDyAQwCoAv+bn+LJSSmvhcWL4cDYH+OLePQZNnUoAfMPDI0u/aumpqi5+9ZVYt2vKFCoAWgE0jh5dglJLSEhISEgUjvwqNwC8A+AGgEQAf7xUHgHYlp8xykqRlBuFx8/Pj82aNRNfZ8TWAMDly5eL9VevXuX48ePFLCoeHh6cMWOGmIFEEASOGjWq0E99U1NTOX78eAJghw4dGBkZma/joqOjeeDAATEIIgDK5XLxqWZuXLlyhZUqVaJSqeS6desKZIqfsdHPzWe/MBgMBvr7+9PJySlbN4nQ0FAqlUrKZDJu375djC3Rtm3bQiuFkpOTGRoayhs3bvDkyZPct28ft2zZws8//5xz584VLRwA0NPTs8hpRsk0hcPy5cuzKDTc3Nw4ceLEYonDcvToUTHoq1wu57Zt24o0XnR0NK2trYn0WDQNGzZkXFycmaQtGQ4ePEiFQsFWrVqZPc5FUchQGplTcZeR4nfdunWZ6rt27UoAHDp0aI7HJiQksHr16qxatarZFUAZCuXR+dhrmkwmenl5sWvXrmKdq6srZTIZVSpVvsYoKkV1S9kL4BaAGQBcX2krsE9taZZSW3i0aUP6+ZEkv69WjS4Ab+7bl6nLkf/9L83sUqPJcvjtw4d53sqKBBjh4yNl95CQkJCQKNMUQLlhC6ASgO8AeL5U7PNzfFkqknKjcDx+/JgAuGTJEpJpm1xBEOjg4EAA/Ouvv7Ick5yczB07drBTp04UBIGCINDHx0e04nBwcOCpU6cKLdPmzZupUqno5eWVbSDI8PBwBgUFccKECfT19c0ULBQAq1WrxqioqDzn+fLLL6lWq+nu7s7z588XSMaAgAACYJ06dYrFhP/atWtUKBQcNmxYtu07d+4Ur3V4eLiY1tbJyYktW7ZkgwYNWLt2bVapUoXu7u50dnamnZ0draysxCfEMpksy7XLrQiCQAsLC1pbW9PKyooWFhbUarXUaDRUq9VUqVRUKpVUKBSUy+WUy+WUyWTiPLnNlaHQePbsmdmvZQYvXrxg586dCUC8XhkWMIWJT6DX68U0vZMmTeKBAwcol8vZoUOHYo13YE5OnTpFjUZDPz+/MhknJCNF8tWrV80y3uXLlwmAffr0yVSv1+tFpW1ubl4HDx4kAK5evdos8pBp1lgWFhZUKBS5xgPK4Pr16wT+SUUcERFBACxfvjwB8NatW2aTLSeKqtzomk2dOq/jymIpjYVHamwsE5RK8r33SKORVChIB4cs/Sqlp626vmtX9gMlJtJYuzZdAToKAh8X4UdbQkJCQkKiOPm3PfwwR5GUG4VjxYoVBMC7d++SJD///HMCYNWqVenh4ZGnJcPjx485d+5c0VVCmW4FC4C9e/cu9Cbv3LlzdHV1paWlJTdu3Mjt27fz7bffZs2aNcXxtVot27dvzx49eogb5wkTJuQ59stpXjt06MDnz58XSLbBgweLFgzFmREjI3Xl0aNHs20fNGgQAbBz5840Go3s27dvFmWEXC6nSqWihYUFbWxs6ODgQFdXVzEjhY+PD5s0acJ27doxICCAfn5+LF++fKb3MeNaZ7hxlCtXjg4ODnRycqKzszNdXFxYoUIFuru708PDg56envTy8mLVqlVZrVo11qhRg7Vr12bdunXp6+tLPz8/NmzYkE2aNOGkSZOKVaGRwaVLl+jp6UmVSsUNGzbQZDLxwoULYuwSKysr/vjjjwUas2nTpgSQ6Qn6V199lWYh/sYbpR63Ii+uXr1KW1tbVq9evcCfgZIiMjKSLi4u9PX1NYu1REZQUS8vryxtV65coSAI1Gq1ortHdse3bduWTk5OOfYpKF988QWRHuskP2TEBsr43HzwwQfiPdylSxezyJQXRVVuZOcHm6Xu31BKY+FxfOlSKgGe/vRTXpw9m6cA8hUtePT27dQAbGRpmed4gzJ+vAEemjevuMSWkJCQkJAoNJJyQyK/tG3blrVr1xZfZ7gfWFtbc9SoUfkex2g08tixYxwwYABVKpW4KVapVNy6dWu+xzGZTHzw4AG/+uor9u/fX3QheHnx/r///Y9nz56lTqcTFQ0KhYJ79+7Nc/zCpHl9mYw0mU5OTvmOzVFYkpKS6O3tTS8vr2znMhqNouVAxpNknU6X70210Wjkvn372KtXL3GT//K1btGiBVeuXJlrINZ/A1988QVVKhU9PDyyBKg0Go0cM2aMqBzr2LFjvlwzMu67mjVrZrne/0u3Bp8wYUKpZRzJi7t379LZ2Znu7u7ZZuYpS+zdu5cAOH/+fLOM5+zsnCmo6MtkuIfk9nty6dIlAihyIOUMWrRoQQC5BjR9GV9fXzZv3lx8XaVKFfFze+TIEbPIlBeFUm4AcAHQAMBfAOoD8EsvbQDczum4slxKY+Exs3lzygHGhoSwgYUFATD03LnMndzdqQMYmU+TxFX9+lFIv4nmtm1bDFJLSEhISEgUHkm5IZEfXrx4QblczpkzZ5JM2+jJ5XLRPDsoKKhQ40ZFRXHlypV0dHQUF91OTk7cu3dvlo2gyWTirVu3uH79eg4cOFDMPAKkZWvp0aMH/f39CYCvvfaaGM8gPj6etWrVEl0z8rMxKEya15dZuHChqPgp7oB9GZw4cYIAOH369Gzbnzx5ImZ7uH37dp7jXb16lW+//Ta9vLwyxblQKpWsXbs233//fT5+/Njcp1EqJCUl8a233hKVFrm9Zzdu3KC7u7topZJdMNcMMtKlOjo6ZqsIMZlMohJs4cKFZjkXc/LkyRN6enrS0dExW7ezskhgYCCVSmW2bmoFpXXr1gSQY0yXjPTRub13AwYMoFarNUsq5gyrqvzw6NEjAuCnn35K8h83QpVKxTp16pSYMq2wyo2hAE4AiE//m1H2A+iT03FluZTGwqOplRWbWFlRn5xMOcDygpCp/eKCBXwCkC1bFmjcsxs2UIu0TCoRHTqkubxISEhISEiUAQqj3EBarI0O6f9rAVgXdIzSLJJyo+Bs2bKFAHj58mWSaelTAbBevXqUy+V5ZhnJD7t37xYDLgJguXLl+PHHH3PFihXs27dvJosBFxcXBgYGcs2aNbx586aoCDGZTFyxYgXlcjlr1arFgwcP0sbGhgDYqFGjPLMpFDbN68ts2LCBAKjRaEp88z9y5EjK5XL+/vvv2bZ/++23ogLpVTeZZ8+ecc6cOaxfv34mKxhBEFixYkUOGTKEp0+fLonTKFEePnwoZviZNWtWvi10pk2bJip9mjdvniUOxa5du8T7ICQkJMdxjEaj6Da0adOmIp2LOYmIiGDNmjVpbW0tfu7/DTx//pyOjo709/cvsivYrFmzCIBr1qzJtj0yMpJqtZoymSzHDFAPHz6kUqkscvrna9euia5l+SHDbTDjO2zZsmXiZ7ok77OiuqX0zavPv6WU9MIjLjSUcoAfNmvGNf37EwDH1qmTqU95mYwKgLp0X9OCEH7zJoPs7UmAeg8PRj94YC7RJSQkJCQkCk1BlRsARgG4BOBB+mtvAMcLMkZpF0m5UXB69uxJd3d38Wlfq1atCKQFyXzZ7NkczJo1K5OlAABWqlSJQ4YM4aZNm3jv3r08nzoeP36clpaW4vHjx4/Pc97IyEgxE0JB0ry+TFBQEAVBoEKh4PXr1wt8fFGJioqii4sL/fz8ctzYBQYGipukTZs2sX379rS1tc10ve3t7dmlSxdu3769WGOFlDaHDh1iuXLlCm2h8+DBA9HUX6VSiYEbL126JAZJfdW9JTt0Oh07d+5MmUzGH374ocBymJu4uDj6+/tTrVbz119/LW1xCkyG8nXx4sVFGuf3338XYwLlRFBQEAHQ2dk5RzevyZMnUyaTFcmaJMOyKD+Zncg0q5M6L+1lM9JeOzg45CsYqbkorOXGm+l/3wMw5dWS03FluZT0wuPgnDkEwGOffsq66drqsJd+lDalpwzrYG9f+EmMRrJjR7YEaAHw0tdfm0FyCQkJCQmJwlMI5cY1ACoAV1+qu1GQMcxZANQCsBPAOgD98nOMpNwoGImJidRqtRw3bpxYp9FoaG1tTUEQOK8Y4oqF/h975x0eZZU18N+dnkoCaRACGAi9J3REitJBUPwsu2BB0FVw1bU3wFWkrBR11VVEgVVWpQSUqhARXGQhQUIJvQYIhEASQiaZdr4/ZjIGDKSQQvT9Pc99ZuY9t5yZJJN7z3vKyZPSqlUrbxjEihUrSjV+7Nixl3keTJ8+/Zqs1a+iAAAgAElEQVQGkaSkpDKXeS3g+++/91b82LBhQ6nHlxcFHgMF7uhX4nQ6vWEVBc3Hx0c6duwoU6ZMKXFZ3epITk6OrFq1Sp555hlp166dANKmTRs5ePDgdc37+uuvi95TcKBdu3bekrslPYiKuMOnOnbsKBaLRX788cfr0ud6sFqt0rt3b9Hr9TeEoaUsuFwuGT58uJjN5hKFYF1rHp1OJzfddNM1+40YMUIAGTFiRJHyc+fOSY0aNWTQoEFl1qVu3bqi0+lKlCcnPT1ddDqdN9dHQRghIBMmTCizDmWhrMaNRzyPE4pqVxt3I7fK3ngcHTNGpur1knPihOhA6ur1l8lrKSUK5GRi4nWv9aKnxrsO5OORI697Pg0NDQ0NjbJSBuPGFs/jds+jAUguzRyF5poLnAV2XXG9P7APOAi8UMwcfwNu9jxfXpJ1NeNG6ShI0rdu3ToR+TW3Q4Erf0nuTJeVmTNnehM4lmRTnpub6z20BgUFydatW70Hjz/96U9F5j2YO3dumcu8FjBhwgRvCdP4+PgyzVFeuFwuuf3228XHx0cOXcVT+Pjx49K9e3cZP358pZSDrCpsNpv89NNPMmnSJOnRo4e3sovJZJKePXvKW2+9VW7JXlNTU6VFixZeg1FZklqmp6dLkyZNJCgoSJKTk8tFr9Jgt9tl2LBhAsj8+fMrff3y5PTp0xIcHCxdu3YtdTLgwoSHh4vJZLpmH6fTKWFhYdfMPzRt2jQBZP369aXWITc3VwBp0qRJifoXVOIpCCf697//7T576nSVUnGoMNcblhJaXJ+ytuI2GoAZ+NIj3wI08FxvAFg9d3p+AT4syXqVvvFo316kZ0+RqVNlD8i6//s/r+hdzz/FwWFh5bZc/IsvisHz5Te6ceNym1dDQ0NDQ6M0lMG4MQ14CdgL3AYsBd4szRyF5uqBOwH6rkLX9MAhINrjIbLD453RCvj2ihbmaf8EpgM/lWRdzbhROkaNGiXBwcHe8opDhw71hjXUqlXrug4OJeG///2v9074bbfddtU7l/v27fMmOG3Tpo330OpyueSNN94QpZTExsbK8ePHRcR9h3rMmDFuz9wylHkVcYcT3HzzzV7vh4SEhDK/z/IkNTVVAgIC5NZbb71hq3BUBC6XS5KTk2XmzJkyaNAg8ff393rvxMbGynPPPSdr1qyp0Oo1H374oUybNq3M448ePSp16tSROnXqVGrOFqfTKQ94PNVnz55daetWJPPnzxdAZs2aVeY5evbsKYCcOnXqmv327NkjOp1OzGZzkd5PVqtV6tWrJ3FxcaUu/VtQhvtqyYKvZOjQoRIVFeX92+/cuXOx4TUVxfUaN/YDa4HRQHBx/UvarrbRuKLPYwWGC+Ae4Ev51bixq7RrVubGI/PIEVkMkvXSSyKNG7s/6oJfSqdTOuv17mSg1+HWVBQH162TYM/diA2NGolUYvyThoaGhoaGSJmMGzrceTe+BhZ5nqvSzHHFfJftE4AuwJpCr18EXizBPHpg2TXkY4FtwLZ69epV0Kf5+8Nut0twcLCMGjXKey0wMFAsFotERETIPffcUyl6pKenS/369QWQqKgoOXPmzGXyL7/8UgwGg/um0VUS9y1fvlwCAgIkLCxMvvzyy+sq8yriLpFZq1YtAaRRo0Y3XDjH+++/L4B89tlnVa1KhXLkyBGZM2eO3Hvvvd6754DExMTIX/7yF1m0aNEN97Mpjp07d0pQUJA0bty4UqrtuFwuefrpp6skbKEicblcMmjQIPHx8Slz6NFrr70m8GsJ5WtRUCWpVatWRcoLjC0LFy4slQ6dOnUSQE6cOFFs35ycHLFYLJflGSr4bqwKb6Br7TGUW35tlFIdPcaFYcAe4D8i8u9iB157zi7ARBHp53n9IoCIvFWozxpPn81KKQOQBoTizqj+rYi0LM2acXFxsm3btutRu8Qsff557pg2jTWTJzPqpZd4LjiYp8+fdwunT4fnniOlb1+arVlT7mvnZWYyr1UrHklNhZo1yV63jsC2bct9HQ0NjRsIlwscDlx5eWSePYstNxdHfj52qxVbbi61/PwI8fMj9+JFknbtwmG3Y8/L8z62iorippAQzp47x9odO7Dn5+N0OHDa7dgdDvo0akSzkBAOpKXx1S+/4HQ6cTgc3sc/NWtG6+Bgtp46xfw9e3C4XDidTlwiOF0unmrWjNaBgaxKTWXe4cM4XS5cIrg8j5ObNKGFnx+fp6Yy7+RJt6xQ+7RRIxqazcw6eZIvMjJwuU3GuACXCCsbNKCO0cirp0+zJDsbF27jfcHj9qgo/JXi0bNnWW21/hoUDijgeHg4iHDX+fNsstvd83vkJiC1Zk0Q4dbsbJKcTgr+c4oI/kqR6u8PQNylS+x1ubw/FgGCgVQfHwAa5+VxotD/XQHCgWMmEwC1bTYyCskAooDDBgOIUMPp5FKhH7sADYH9Oh0AFpcLe6Gx4HZP2KUUAHoR7/sGWKnXM8DhKPGvWUlRSiWKSFwp+vsBeSLi9LzWA2YRyS3j+g0otE9QSo0A+ovIw57XI4FOIjLuGuNfAvyAD0RkU3FrVuYeo7qzfv16+vTpw5IlSxg+fDi7d++mZcuWxMbGkpiYyKeffsoDDzxQKbq4XC6GDBnCypUrsVgsfPfdd3Tv3p0nn3yS2bNno9Pp+Pjjj3nooYeuOkdKSgq33347Bw4coEaNGixYsIAhQ4aUWpf58+fz0EMP4XQ6+dOf/sT8+fPRef62bxRcLhc9evQgJSWFlJQUwsLCqlqlcuHcuXOsX7+edevWsW7dOg4dOgRAREQEffr04dZbb6VPnz5ERUVVsabXx6ZNm7jtttto1aoV69evx9/zv6simDx5Mi+//DLjx49n9uzZKM//od8DqamptGjRgnbt2rF+/fpS/53u2LGDtm3bcvvttxMfH19s/7i4OBITE3nllVf4+9//fpnM5XLRvn17srOzSUlJwWw2l0gHHx8fLBYLFy5cKLbv0qVLueOOO1i3bh29e/dm9erVDBgwgJCQENLT00u0XnlyzT3G1aweRTUgBJgPOEsz7ipzjQDmFHo9Enjvij67gLqFXh/y6NAAuARsBzbgiYu9yjpVcldlXKtW4uuplALIxFtuERERp90uWy0WEb1eJCurYpV44AF5CsQIsuyllyp2LQ2NSsRpt8ul9HTJOHBATm7bJgfXrZO933wjsnWryKZNkvj++7Ji4kRZ9Mwz8sW4cTL3wQfli4ceEnnnHZFp02TOsGEyoUcPebFLF3kmLk6eaNNG3ujYUWTMGJEHHpCnmzaVu6Ki5I46dWRoeLgMCAmRx6KiRHr3FunRQwYHB0tHPz+J9fGRNhaLtDSb5Z6AALeXVsOG0tJolHp6vdTV66WOTicROp0MNplEQkJEataUEKUkECQAxM+TDPg2nU7EYpF8g0GMIAYQvafpQHqDiFJyjMvO5d7WG0RAfr6KfJhHvuwq8lEe+dyryJ/wyKddRT7RI3/hKvJ3PfJHryL/j0d+z1Xk33vkQ68i3+X5fPqBKM9npiv0GaYrJWIwSB+lxOj5XjR5mhlEzGYRi0VuUUp8QHw8PxdfkCAQ8fMT8feX7jqdBIAEgtTwtEilRIKDRYKDpateL7WUklpKSYhSEqqUNNXrRcLCRMLCpLPRKBGe34naOp3U0emko9EoEhkpUreudDSZJEqvl/qe1kCvl74Wi0h0tEh0tHQwm6WRwSAxBoPEGI0SYzTKCH9/kSZNRJo2lVizWZqaTNLMZJLmJpO0MJtldFCQSKtWIq1aSazFIq0tFmljsUhbi0V2tG1bIX+jlN5z42fAv9Brf+C/pZnjivkacLnnRrF7jutYawjwUaNGjcr/g/ydMn78eLFYLJKTkyMiIvfff78Acu+995bIVbsi+Pvf/+4NNSjw5ggICChxdZILFy7I66+/XqYyr06nU0aOHCmA6PX6G94rYvfu3WIymeTee++talXKzJkzZ+Tbb7+VZ555Rtq2bev9XxIYGChDhw6V2bNny+7du3+X4TfLli0TvV4vffv2lfz8/ApZo8DD589//nOpwyWqC3PmzBFA3n///VKPLUgq2qBBgxL1z8rKEh8fH1FKSWIRuRrXrl0rgMyYMaNE8/38888ClDgZ6ciRIyU4ONhb5aggB9H1hEpdD9faYxTruaGUCgSG4/bcaIg7DvYrEUm85sBiKMldFKXULk+fVM/rQ0An4CLuTVCGUioWiAdaiEj2tdaszLsqLSwWovz92Z+ZyVGnk+zTp/GPiGDiLbcw6ccfeb9jR/6yZUuF6/HRn//MXz7/HBfwSvfu/H3jxgpfU+PGx+VwYMvJIefMGS6lp5Obmcml8+dpGhaGvwgHDh1iy+7d5F68iDU3F2tuLnlWK4+2bEmEycSylBTiDx0i32Yj3+Eg327H5nQyv0kTInQ63jp2jEUZGdhFsLtcOEVwuFwkRUQQJML9GRmstNlw4r7r7sS9q8ixWMDloqvNxv/49eQK7rvrTs/zesCJK96TrpA8DLjSjmwC8j3Pg4CsK+S+4L0j7os7qU9hgoAC27YZsBXSC9wnqcM6HShFgNNJvkdW0NopxX99fUEpQnJycCqF8uitA24xmfi6Zk1cQIOzZ9EDOqXQK4UOGBQQwNt16pDpctH7yBF0SnnleqW4IzSUp+vX55TdzkMpKeh1Ogw6nbuPTsdd9epxd3Q0x/LymLRzJ3qlMBgMGPR6dDodw2Ni6HnTTRy7eJE5u3a5xxuN6PV69AYDA5s3p2W9ehzPymJVSgoGo9E93mTCYDTSrUUL6oaHcyo7mx3HjrnHGo2YzGb0RiPNGjYkKDiY8zk5nL5wAYPZ7B5rMqE3mwkLD8fk60uew4EDMFgsGCwWdAYDOoMBjepFGTw3fhGRtsVdK8V8Dbjcc6NYb9HrRfPcKBkiQv369Wnfvr33jmV4eDjnz5+ne/funD9/nh07dlSJbgsWLGDUqFEABAQEcOLECWrUqFGha54/f57OnTtz4MABatWqxU8//USTJk0qdM3yYNKkSUycOJEVK1YwcODAqlbnmpw7d47ExEQSExPZtm0b27Zt48QJ9y7CZDLRtWtXr2dGXFwchj/A/5y5c+cyevRo7rvvPmbMmIHVaiU3N7fU7Wrjjhw5wqBBg1iyZAlGo7Gq326FICL069ePzZs3s2vXLurXr1+q8REREVy4cIH8/PziOwOrVq1i4MCBREREcPr06d/I+/Xrx9atWzl06BDBwcHXnGvkyJH8+9//ZtmyZQwdOvSafe12O+Hh4QwZMoR58+YhIhgMBkQEh8NRJd5l19pjlMS4cQS38eArEdlcjkqVOSxFrlBaKfUD8IyIXHNXUVkbj7SdO6ndujUTevRg0o8/0sRoZK/NhsvhwN9oxA5kpafjGxJS4boAbP30U3o+9BC5uA9lY/z8eLdTJ7JbtmRLnTrc8vjjmCrQLU3DjcvhwJWbiyEnh7zTp9memEh2ejpZ6elczMwkJzubruHhdAgK4kBqKlP/9z9y8/LIdzjIs9vJdzh4NDycEQEBfJeRwV9TU7G7XG4DgggOEd708eFho5H3rVaeKTAeeJoA7wDjgPHAe0XoOA8Y5WkLipCvAAbijk9bVoT8f0AHoC/wHZcf7hVwRK+nrsHAcLud71wu78FerxR64FRoKAajkQczM9mYn49BKQw6HXqlsOh0bGnZEgwGnjt+nKRLlzDq9Rh0OkwGAzVMJuZ26wYmE7P27uXwpUsYDQbMZjMmo5GQwEDG9ewJJhPL9uwh027H5OOD0WTCZLFQMziY7nFxYDaTcuoULoMBS0AA5oAALP7+WGrUwD8kBAwGuMHchDU0bjTKYNz4CRgvIkme17G4PSu6lHH9Blxu3DDgziHWBzgJbAXuE5HdZZm/KDTjRslITEwkLi7OG3py6tQpIiMjad26NSkpKTz55JNMmzat0vVavnw5I0aMwG63Y7FYyMvLIyYmhm3bthEYGFgha/7www8MHDgQq9XKzTffzPfff4/JE6J2o5Ofn0/79u25ePEiu3fvJiAgoKpVAuDChQskJSV5jRjbtm3j6NGjXnnjxo2JjY0lLi6O2NhYOnTogK+vb9UpXIVMmTKFF198sVRjdDodfn5++Pr6XrNFRUXxyiuv4OMJyfy9cuzYMVq2bEmXLl1Ys2ZNqUJvevfuTUJCAqmpqURGRpZozIABA1i9ejWzZs3ir3/962WyHTt20K5dO5599lmmTp16zXlq165Neno6NputWOPElWGE8+fP5/777ycmJob9+/eXSO/y5lp7jJKYJqOvNCaUE1uBGKXUTbg3GvcA913RZzlwP7AZt0vpehERpVQocF5EnEqpaCAGOFwBOpaJTXPnAnDw+HEARt92GwAvdO2KFRjTpEmlGTYAOjz4ICduvpn/69iR3VlZBOfmwvr1fL1+PQ8DvPACvkBtg4GmwcG8OGwY3caOhfbt/xCHuJy0NDIOHiTj+HF88vJoFhgI58/z9vLlZGZlkX3xItmXLpFjtdIlIICnw8Pdhog9e7A6neSLkO9y4QAG6/XMM5k4YLfT3G73GhUK/oD6A6uA/+LeYV/JCNzZ9HYAnxQhb3DhAiOA47hLCuiuaFl2OxiNBJpMBNrtGJTCqBRGnQ6TTkd0nToQGsqt2dnsSUvDZDBgNhgwGQxYjEZi27eH2rV55Nw56qemYrFY8PH1dcfl+frSuVs3CA3lnZwcns/Jwa9mTXcLCcG3Zk38w8LAZGJtMZ/50mLknxYjL27b+2Qx8tuLkTcrRq6hoVHuPAl8rZQ6hdsWGgHcXZaJlFILgZ5AiFIqFXf5+k+UUuOANbiThM4tL8OGUmoIMKRRo0blMd3vnvj4eHQ6nTcnxdtvvw1Ap06dSE5Opn///t6+drudn376ibZt2xIUFFRhOr344otMmTIFnU7HP//5T8aOHUvv3r3ZuHEjkZGRbNy4kbblnLts0qRJTJo0CYAJEyYwceLEcp2/ojGbzcyZM4du3brxyiuvMHv27ErXITs7+zJDRmJiIgcPHvTKo6Oj6dixI4899hhxcXG0b9++wj1xqhPPP/88TZo04fTp08UaKwqa0Wj8XeXOuF7q16/P1KlTefzxx73eMCWlR48eJCQksGTJEsaPH1+iMZ9//jlhYWHeXCaFDRNt2rRh1KhRzJ49m8cff5x69eoVOUd2djZpaWk0b968RF4XS5cuxcfHh379+gHwyiuvAPDaa6+VSOfK5qqeG0qpWSLypFLqG349m3kRkWv7sJRkcaUGArP4daPxplLqddxxNMuVUhbcN5DbAeeBe0TksFLqTuB1wI77pvQEEfmmuPUq666KjBnDvv/8hy+AD3NyOH7hAjqDgcCAAAS4ePFi1XtKpKWxe84c/jFvHsknT3I0L49McSffewf3nf1JwAygrslEi7AwunXowMC//IUYj7GmssnLzCT78GHCXC44e5ala9Zw7PhxzmdkkJmVRebFi9TW65larx7k5HDzrl2cstmwulzki2ATIUYpkvR6cLkwegwShbmJX61kRX11Nwd24w5JsODxOvA0AzDYaOSLoCDO6fV0SE/HpNNh1ukw6fVYDAbujohgfOPGpCnFC3v24Ofj426+vgTUqEGPFi2Ia9WKHL2epDNnCAwNxa9WLQLCwwmsUwdLUJDmoq+hoXHDU1rPDc8YI1Dgj79PROzlr1nFoXlulIyWLVsSGhpKQkICAA0aNOD48eOMHTuWBQsWcP78eW9CvP79+7PGk3hdr9fj7+9PWFgY9evXp3nz5rRv357u3bsTHR1dpgOXw+Hg1ltvZcOGDfj6+vLDDz/QoUMHr/zZZ5/lH//4Bzqdjo8++qhUB5erYbPZuPXWW9m4cSM+Pj6sXLmSnj17Xve8VcW4ceN4//332bx5M506daqwdXJycti+fftloSX79u3zyuvVq0dcXJy3xcbGUrNmzQrTR0OjAJfLRZ8+fUhKSmL37t3UrVu3RON27txJ69atS5xUtIAxY8YwZ84cnnzySWbOnHmZ7MSJE8TExHD33Xczb968IsdPnz6d5557rsjkpFciItSrV4/Y2Fji4+M5fPgwDRs2RClVZSEpUMawFKVUrIgkKqVuKUouIhvKUcdKodI2HjEx0LAhrFkDrVpBcjKf9O7NwwkJPNG2LbO3b694HcrIge++IzwpicDERCYmJDDz3Dkucrl1ax3Qu2ZN3vP1JdFioWXTpthsNqxWKw6bjckdOoDVyttJSWw+c4Y8hwObw0G+04kJ+K5RI7DZuOvIEZLy8rwhFQ4RApTikL8/OJ3E5OZytFA+BgAfoCB1vl+h5wUEAAWJVwI9cgNgBExK0cZoZH2dOmCx0PPECWxK4WcyuZvZTMfISP7arRsEBvLBzp34BQURFBZGrchIatatS+2mTQlq0MAdmqChoaGhUSRlNG50xZ2+xvsFKyLzy1m1cqeQ58aYAwcOVLU6NzQHDhygcePGXpfqnJwcAgICiImJQURo0qQJ3377LQBnz54lIiICf39/YmNjOX78OOnp6Vy6dAlXoYpEAEopfHx8qFmzJlFRUcTExNCmTRu6dOlCbGxskaEeqampdOjQgbS0NKKjo9m2bVuRceqLFy/mnnvuweFwMHr0aObMmXNd779Lly5kZGQQExPDzz//XO0P4NnZ2bRo0YKgoCASExOvO6zGbrdz8OBBdu3adVk7ePCg9+ceGRn5G0NGaGhoebwdDY0ycejQIVq1akWvXr349ttvS2RsLchdERUVdVnoVHHYbDZq1KiBw+EgIyPjN2FzL7zwAtOmTSMpKalIj7OCyitnzpwpttrRtm3b6NChgzeM8OGHH+aTTz6hZcuW7Ny5s8Q6lzfXVS0F+GtJrlWHFhsbKxXN8c2b5X6QeTExcgxE/vlPEatVxGiUDUaj2K3WCtehvHHa7bL1s8/kjT59ZHBYmOTfdJOIr680v0rVAvG0RkXIVIFcKWmKuyKEEcTiqUpQWymRoCCRWrXkVpNJog0GaWE2S0c/P+kdFCSj69UTGTlSZNw4+degQTJz2DCZN2aMrJg4Uf736adyYvNmkUuXqvoj09DQ0PhDQ+mrpSzAHbH3PvCup71TmjmqulXGHqO6M336dAHk6NGjIiIyefJkAeSxxx4TQN555x1v39tvv10A+fDDD38zz5kzZ2TRokXywgsvyJAhQ6RFixZSq1YtMRqNRe5LjEajhIaGSuvWrWXYsGHy1FNPiclkEkCGDx9ebDWH/fv3S3BwsADStm1bsZZhLzdv3jzR6/UCyMiRI39XFSSWL18ugLzxxhslHuN0OuXQoUOybNkyefPNN+Xee++V1q1be38ugOh0OmncuLEMHz5cJkyYIN98802VVNLR0CgJM2fOFEDmz59f4jERERFiMplKvdYbb7zh/f66kgsXLkjNmjWlb9++RY41mUxSq1atEq3z8ssvi06nk3PnzklmZqb3O/bdd98ttc7lybX2GCVJKJokIu2vuLZdRNoVb1e5sagMz43PHn6YBz/5hFpKkS1CXn4+J0aOpP5XX8GLL8LkyRW6fmViy8lh4wcfsGPTJnx8ffELCMA3IIARt94Kfn4cy84mz2gkIDQU/4gI/MPCtJAKDQ0NjT8AZUgomgI0l+I2JTcwWlhK8XTr1g2r1UpSUhLgDlHZvXs3U6dO5fnnn2f//v3ExMRw8eJFgoKCCAgIIDMzs1Rr5OXlsWXLFrZs2cKOHTs4ePAgqampnD9/nry8PG8/pRTTp0/nb3/7W4nn7dq1K9u3byc4OJgtW7YQExNT7DiXy8UDDzzAggUL0Ov1zJ0711uR5ffE3XffTXx8PMnJyZdVexERTp8+/RtPjN27d5Ob+6v/bb169WjZsuVlrWnTpr/7hJQavx+cTic9evQgJSWFPXv2EBERUeyYPn36sH79ek6cOFHicBZwf6+EhoZy4cIFjhw58ptKLbNmzeKpp55izZo19O3b13t9w4YN9OzZk+HDh7NkyZJi1ykcRjhjxgz+9re/oZQiLy+vSpMflzUs5V7cCT67A4XrhwYALhEpKh/iDU1lbDzub9iQbw8f5jwQ6+vLD4cOEVy7Nu2VYovD8YdI0KmhoaGh8cemDMaNr4EnROS39e1ucLSwlJKRlpZGnTp1mDRpEq+++ioOhwOz2Uzt2rWJjY1l586dHDp0CKUUo0aNYsGCBUyePLnU1RyuhcvlIiUlhc2bN9O9e3eaNm1a6jkK4t0NBgMLFy5kxIgRV+1bXcu8loW0tDSaNWtG8+bNue+++7wGjF27dnHhwgVvv/Dw8N8YMZo3b15hFWk0NCqTvXv30rZtWwYOHMjixYuLDU95/fXXmTBhAjNnzmT06NGcOXPG286ePfub5+np6fTv35+3336br776ivvuu4/OnTuzefPlBU3z8/Np1qwZgYGBJCYmotfrAbcR8quvvmLt2rXcVkwOxcJhhI8//jjR0dHenB5VVSWlgDKFpQD1cWcb3wzcUqi1BwxXG3cjt4p2GXU5nVJXr5cGHrfDeWPGyL316gkgf+/Tp0LX1tDQ0NDQuFGg9GEpCcAF3NVMlhe00sxR1U0LS7k2//rXvwSQ5ORkERGZM2eOADJmzBjx9/eXRx99VERE8vLyxGAwiK+v7w0bujF37lzR6XQCyNNPP11kn4SEBPHx8RFAevToIfn5+ZWsZeXzySefeENKgoKCpHv37vLoo4/Ke++9JwkJCXL27NmqVlFDo8KZOnWqALJw4UJJT0+X3bt3y/r162XhwoUya9Yseemll2T06NEyePBgadWqlTcEiyJC6gCpVauWNGvWTHr27Cl9+/YVQO69916x2WwSHR0tgPz888+/0WPhwoXu8+i8ed5roaGhYjAYxOVyFfs+pk2b5g0j/Oqrr7z6vPrqq+X6eZWFa+0xqnwzUJmtojce+7/7TgDx8+SSyDhwQHQgASBOu71C19bQ0NDQ0PKZvxUAACAASURBVLhRKINx45aiWmnmqOqmGTeuzYABAyQ6Otq7qe7cubMA8sUXXwgg8fHxIiIybtw4AeS5556rSnWLZfv27eLv7y+AdO/eXeyF9nkTJ04UpZQopWTixIlVqGXl4nK5ZOvWrZKamlqiw5OGxu8Ru90uHTp0uKqxQq/XS+3ataVt27bSr18/UUpJYGCgTJ8+XebNmyerV6+W7du3y8mTJ8Vms/1m/ilTpnjzbaxfv14AadSo0W/6OZ1OiYuLk6ioKMnNzZWMjAwBpE2bNiV6H127dpV27dqJiEiXLl28+TYyMjKu7wMqB661x7hqAgSl1CYR6a6UurJYhnI7fIjmP3YFaWvW0AA4CnT19+fhHj1wAROHDtVyTWhoaGhoaFwFEdmglKoPxIjI90opX9xVtjV+B2RnZ7Nu3TrGjx/vddNOSkqiZs2aJCcnYzAY6NWrF06nkzlz5mAymXjjjTeqWOtr07ZtW06ePElcXBybNm2ibt26bNmyhVGjRvHjjz/+Lsq8lhalFHFxpSqSpKHxu8NgMLBkyRI+++wzAgMDCQ8PJzw8nLCwMMLDwwkODr6shGrt2rXJyMjgmWeeKdH8zz//PL6+vjzxxBPk5eURGxtLYmIiixYtuixMTqfTMX36dHr16sW7776LzWYD4K677ip2jbS0NDZv3szEiRPZsmULmzdvRilFZGTkDV/h6aonbhHp7nkMqDx1qjc3nzjBER8fvrVaCXviCW6ePJlgpXh62bKqVk1DQ0NDQ+OGRSk1BhgL1AQaApHAh8ANn9+rUM6NqlblhmXVqlXYbDaGDRsGwMqVK7HZbPTp04c1a9bQtWtXAgMDefXVV8nLy2Ps2LEYjcYq1rp4AgMD2bt3L3fffTeLFi2iQYMGAL+bMq8aGhplo27durzyyisl6tuiRQvWrVvHiRMniIqKKtGY8ePHY7FYeOSRR+jUqRNKKR599NHf5ADq2bMngwcPZvLkyURGRgLw2GOPFTv/8uXLERGGDx/Om2++iY+PD1arlaFDh5ZIv6qk2OyWSqmGSimz53lPpdQTSqmgileteiEuF65168DhYLDZTMekJPYCS558sqpV09DQ0NDQuNF5HOgGZAOIyAEgrEo1KiEi8o2IjK1Ro0ZVq3LDEh8fT1hYGF26dAHgnXfeAeChhx5i+/bt9OvXDxFh1qxZGAwGZs2aVZXqlgqdTsfXX3/NzJkz8fHxYeTIkezdu1czbGhoaJSIW265BYDFixeXatyYMWOYP38+W7duJSgoiIyMDKZMmfKbflOmTCE7O5u9e/cSFhZGcHBwsXPHx8cTHR1NYGAgixYtIijIffR/9tlnS6VjVVCS0h2LAadSqhHwERAFfFGhWlVDdi9bRvC5c4Tb7SyKisKxejU3hYbSc8aMqlZNQ0NDQ0PjRidfRGwFL5RSBi4PidWopuTn57NixQqGDh3qzdi/adMm/Pz8SE9PB6B///7MmDGDnJwcRowYUS3Lfz755JPk5uYyf/78y1zONTQ0NK7FnXfeCcC6detKPfbPf/4zX375JdnZ2QBMmjQJh8NxWZ8WLVrQt29fXC4XHTp0KHbOgjDCYcOG8d577wFw7tw5atasyU033VRqHSubknz7ukTEAQwH3hWRZ4HaFatW9SPh88/JBs4Cf09NJRA4O2FCFWuloaGhoaFRLdiglHoJ8FFK3QZ8DXxTxTpplAMJCQlcvHjRG5Kybds2Ll26RNeuXVmzZg2hoaG0bduWN998E51OxwcffFDFGmtoaGhUHs2bN0ev15OcnFym8XfeeSfLli1Dr9eTl5fH6NGjf9OnINeR1Wotdr6CMMJ+/frx8ccf06VLF+x2e7GlY28USmLcsCul7gXuB771XLvxAyErmfX//S8KsADJeXkE6XSEPf54VauloaGhoaFRHXgBSAd2Ao8AK4GSBSxXMUqpIUqpj7KysqpalRuS+Ph4/P396dPHnT7l7bffBmDcuHGsWbOGvn378tlnn3HhwgUGDBjgdX/W0NDQ+KMQFhbG6dOnyzx+0KBBfPut+5g+f/589uzZc5l869at6PV61q9fz9atW685V3x8PKGhoaSkpJCVleVNRPq3v/2tzPpVJiUxbjwIdAHeFJEjSqmbgAUVq1b1wmmz8f3p0whu4wbAu08/XZUqaWhoaGhoVAuUUnpggYh8LCJ3icgIz/NqEZai5dy4Oi6Xi2XLljFgwAAsFvcOae3atRiNRmrXrs25c+fo378/L7/8MkopPvrooyrWWENDQ6PyadGiBXa7nWPHjpV5jv79+/O458Z6XFycd64zZ86QkZFBq1atCA0N5dlnn+Vq/14LhxG+++67dOnShd27d+Pn51eikJYbgWKNGyKyR0SeEJGFntdHRGRqxatWffjlq6/I8TzPBKL0eu6cPr0qVdLQ0NDQ0KgWiIgTqK+UMlW1Lhrly5YtW0hLS2P48OEAHDt2jPPnz9O+fXu+++47ABwOB2lpafTo0YM6depUpboaGhoaVUJZk4peyXvvvUdQUBBWq5UuXbpw8OBBb96M++67jwkTJrBhwwZWrlxZ5PiCMMLatWtz6NAhhg4dyqVLl+jWrdt16VWZlKRaSjel1HdKqf1KqcNKqSNKqcOVoVx1IWjXLhoDBbuyD197rSrV0dDQ0NDQqG4cBn5SSr2qlHq6oFW1UhrXR3x8PEajkYEDBwIwdar73tjDDz/M6tWradeuHZMmTQLQvDY0NDT+sBQkFV2/fv11zzV37lwA0tPT6dGjBwsXLgTgkUceYezYscTExPDcc8/9JvEo/BpGuGHDBurXr09SUhLgLj1bXShJWMonwAygO9ABiPM8anho+P337AMuAG/XqsVAzbihoaGhoaFRGg7hzuulAwIKNY1qioiwdOlSevXqRUHIzvLly9HpdNxxxx1s3ryZZs2acfToUWJjY2ncuHEVa6yhoaFRNTRr1uy6kooWZvjw4cTExOBwOMjLy+PQoUOEhIQQGBiI0WhkypQp7Nmzh3nz5l02riCMsHPnzmzcuJHx48ezbt26ywzU1YGSGDeyRGSViJwVkYyCVuGaVRPsubm8m5jIOcAXeHrRoqpWSUNDQ0NDo1ohIpNEZBIwveC55/UNj5ZQtGhSUlI4cOCANyQlMzOTkydP0rRpU3788UccDgc//fQToHltaGhoaISHh19XUtHCfP7558CvVVKysrL43//+B7iNH126dOG1117j0qVL3jEFYYRWqxV/f39uu+02bxhhdSpvXRJNE5RS05VSXZRS7QtahWtWTdjy6ac8AYQCM0JDoWfPKtZIQ0NDQ0OjeuHZY+wB9npet1FKvV/FapUILaFo0SxduhSAoUOHAjBjxgzAHfe9Zs0afH19OXbsGM2aNaN9e21bqaGh8cemRYsWOBwOjhw5ct1zdejQga5du3L+/HkAQkNDufXWW9m4cSNKKaZPn86pU6eYOXOmd8zSpUsxGAz8/PPPjB49mg8//BBwhxFWJ0pi3OiEOxRlMvC2p/2jIpWqTrw39dfcql0mT65CTTQ0NDQ0NKots4B+QAaAiOwAelSpRhrXRXx8PJ07d/YmCf3yyy8BeOKJJ1i9ejVGoxGAf/7zn1Wmo4aGhsaNQk/PDfLrTSpaQMF3LsDPP/9MnTp16N+/P99//z3dunVj+PDhTJ06lbNnz3rDCKOionC5XDzxxBPeMMIHHnigXPSpLEpSLaVXEa13eSyulOqvlNqnlDqolHqhCLlZKfWlR75FKdWgkOxFz/V9Sql+5aFPWfjmxAkAmhiNdKlmli0NDQ0NDY0bBRE5ccUlZ5UoonHdnDhxgm3btjFs2DAAbDYbBw4coH79+pw+fZqjR4+SlZVFgwYN6NWrVxVrq6GhoVH1FCQVTUhIKPe5P/30UzZs2EDDhg0ZPHgwK1as4K233sJqtfL666+TkpLCwYMHOXPmDMOGDSMoKMgbRmgwGMpdn4qkJNVSwpVSnyilVnleN1dKjb7ehT117f8JDACaA/cqpZpf0W00cEFEGgEzgakFOgD3AC2A/sD7nvkqlUvp6eR6nv9n/vzKXl5DQ0NDQ+P3wgmlVFdAlFJGpdQzQEpVK6VRNpYtWwbgNW589NFHiAjDhw9nzZo13n6FXaI1NDQ0/sg0adIEvV7Pzp07y2W+d955BwCdTsfkyZMJDg4mISGBli1bMnz4cHbt2sXYsWP517/+xbRp0wDIzc3lqaeeYtasWYA7jLC6URJTzGfAp8DLntf7gS9xV1G5HjoCB0XkMIBS6j/A7cCeQn1uByZ6ni8C3lPuzCi3A/8RkXzgiFLqoGe+zdepU6kY3dxtiwkE2t5zT2UuraGhoVHtEZcLl8OBOJ0Y9HpwucjLzcVhs+FyOHA5nbgcDvQ6HTX8/cHlIj09HbvNhjiduDzjLSYT4bVqgcvF4WPHsNtsuJxO9/xOJ4F+ftQLDweXi1/27sVht3vl4nIRWqMGDSMjweVi4y+/4PJcd7lciNNJVGgojSMjcdjtrE1M9I4TEVxOJ03q1KFpnTpY8/L49kq5y0W7evVoVqcO2bm5LN227Tfybg0b0iwigvTsbBYnJV0mExH6Nm5Mk7AwUi9c4KtffvHKC9odLVrQqGZNDp47x1fJyZfJRIRRbdrQoEYNktPS+HrPnstkT/XsSeiNEVL5KDAbiAROAmuBx6tUI40yEx8fT7NmzWjSpAkAn332GQDPPvssI0eOBCAiIsJr/NDQ0NDQcH8vlldS0QIj87hx43jnnXd49NFHmTt3LuvWrWPgwIHcfffdvPPOO1gsFubNm4fFYqFFixZ0796d0aPdfgx//etfy0WXyqQkxo0QEflKKfUigIg4lFLl4SoaCRR2QU3Fnd+jyD6edbOAWp7rP18xNrKoRZRSY4GxAPXq1SsHtX/l1awslgIPtW1brvNqaGhUAC4XOJ24bDZyL17EabP92ux2Anx88DObyc/N5XhqKk67/bJWPzSUmv7+ZGVlsWP/fvd1hwOn3Y7DbicuOprwwEBOnzvHxt27cXoO506HA6fDQb/mzakTGMiB06dZs2sXTqcTp9Pp7uN0MqpNG2r7+ZGYmsqylJRf5Z5D9nOxsYSZzaw7dozFhw7hcrlwemQul4sZsbEEGwwsPnaMr44dwyXilovgEuE/bdrgqxQfHT/Ol2lp3usFbWPz5uhEeOvkSRadP+++DrhEMCvFtvr1weXiqbNnWXbpklfuFCFEp2NHzZrgcnFfdjar7HZcIgjgAqKVItlkApeL2xwO1nvGFtAOSPI8vxnYdsWP7mbgx0LP910hHwisKCQ/dYX8buA/nuc9gItXyB8GPi4kv5IncbsO5gGDipC/CrwOZAL/V4R8GtAMSAMeKEL+gUd+AvhLEfJ/A01w10r9WxHypqtW0Qh3Js6Xi5Df/MMPNMB95+BNQBVqIw8frlLjhlJqqog8D/QSkT9VmSIa5cb58+f54YcfeO655wB3ecEdO3YQGhpKrVq12LBhAwBvvvlmVaqpoaGhccPRokULTp48yeHDh4mOji7zPE6nk4MHDxIZGcnMmTP55JNPmDdvHtOmTSMkJIQ1a9YwZMgQxo0bx9ChQ1m2bBl5eXk89dRT2O12Dh48SP369fH39y/Hd1c5lMS4cUkpVQsQAKVUZ6Da1DsTkY+AjwDi4uKkPOdulptL24AAvkpO5o2zZ/ELCyvP6TU0KgYRHHl52C5dwpGXh91qxW61opxOwoOCwG7n0OHDXMzKwp6XhyM/H3t+Pv5GI+1vugkcDr7fto0LWVnY8/Nx2O3YbTbqBAQwoGlTcDj418aNZF665JY5HDgcDprXrMl9jRuDw8EzGzaQk5+Pw+n0th4hIYytXx8cDgZv3ozd6cThOcA7XC7uqlmTv4aGYrXZ6LhvH04RHCLex/F+fjzj48NZm40mmZnu64ADd+D+W8BzwGEgpoiP5X3cB8s9QFF5+xcAfwZ2ALcUIY/H7VKWhPswfSXfA3U88vFFyHutXk1tYDvwd0DvaTrP48N79xJmNHLAZmOR1YpOKbfM85hns4HJxJmLF0nOzLxcrhTO9HQwmbDn5ZHvcKBTCr1Oh0GnQymFBAaCXk9gTg517HZ0Op17DqWwGAzQti3odMQcPEj3jAy3zNMnyGyGrl1Bp6NnSgqhFy6gCslD/PygSxdQinuSk+mcne2WeVpEQAB07Ag6HU/88gtncnLQ6fXoPLpFBgVBbCwoxcTERLLy871jlVJEhYRAq1agFO8lJpLndLrX1+tRSlEvNBSaNgWl+E9SEi5Aecbq9HrqhoZCdDQoxffbt6N0OvdYzxqRYWFQty4+Lhc/79vnHlvQRylqh4VBWBghDgc7jx1Dea4XzBFaqxYEB3OTw8GhM2d+Ha/TofR6goOCwN+fVg4HpzIzf5V55AEBAWCx0M3pJDM31zu+oJl9fMBoZIDL5X7vV8h1ej3odNyDO57zBmOgJ+fWi8DXVa2MxvWzYsUKnE6ntwTskiVLcDgc9O/fn5UrV+J0OvHz8+PBBx+sYk01NDQ0bix69erF2rVrWbx4Mc8++2yZ51m8eDEul4t+/fqh0+mYMmUK48eP57777mPt2rX4+/uzcuVK7rjjDpYtW0ZAQAB+fn7cddddl4URVkeUyLXP+56yr+8CLYFduKuejhCR5OtaWKkuwEQR6ed5XeAZ8lahPms8fTYrpQy4b3yFAi8U7lu437XWjIuLk23brrwneH389MEHdH/sMSb27MmECkgAo1F9cNps6BwOlM1GzvnzXEhPJz8nh/ycHGy5ueRfukTcTTdhcLnYc+AAKUeOYMvLI99qJd9qxZafz+MdO6JzOPgmOZmfjh7FZrdjt9uxORzgdPKvjh3BZmNWSgrfnzmD3enE5nRidzrxV4rV0dFgt/NYaiqrLl3C5nJhE8EuQqRS7NbrweHgVmDdFfq3xn1wB7cL1f+ukHcDNnmet+Dy+DFwlzlY7Xlej8vdsvTACJ2O//j4gMFAo4sXycFtXTUohUEp7goM5K3atcFgoNOBAyjP4duo06HX6bgzPJzHoqOxKcU9SUkY9Hr34Vyvx6DTMaRBA+5o1Igcl4uX/vc/93W9Hr3BgEGvp29MDDdHR5Npt/Pxtm3oDQb0Hrler6dH06a0iIriQl4eK3budF8v1GIbNyYqIoJMq5XEQ4fQG41umdGIwWgkpkEDgoODuZiXx/GzZ71yncGA3mQiPDwcHz8/8mw2Llqt6E0mdx+jEZ3RiMXPD53RiHgOpBoa1RmlVKKIxJWg33RgDOAP5OJ2KJGCRxEJrFBFywGl1BBgSKNGjcYcOHCgqtWpcu688062bNnC8ePH0el09O7dm4SEBHbu3MmIESPYt28fb775Ji+99FJVq6qhoaFxQ3HgwAEaN25M//79WbVqVZnn6devH2vXruWXX36hTZs2ANSuXZu0tDT27NlDs2bNAMjPz+fuu+9m2bJlvPXWW7zwwgvExsaSlJTEiRMnqFu3brm8r/LmWnuMYo0bngkMuL1iFbBPROzloJQBd/6OPrjja7cC94nI7kJ9HgdaicijSql7gDtE5P+UUi2AL3Dn2aiD+5wWIyLXDJepCOMGwP9FRbEiNZUDiYnU0Wq133A4rFayTpwgMzWVcKMRfyDt5Em2JCeTe/Ei1pwcrJcuYc3N5d5mzYg0Gtly+DCfJidjzc/HarORa7Nhtdv5uEEDokWYn5bGK+npWF0urCLk4fYOOAI0wF03uSj38HQgBHgJtyfBlVgBC/BX3K7qZsCoFCal8FGKI/Xrg9HIaxcusOLiRUx6PUadDqNeT02Tia87dQKjkdlHjpCUmYnRYMBkNGIyGgn19+flHj3AaGThnj0cz8nB6DmYG41GQoOCGNG5MxiNrN+7l6z8fIxmMwaTCaPZTM3gYNo1bw5GI3tTU3EARosFo48PBrMZv4AAaoWHg8FATl4eerMZg8WC3mRCV80yLWtoaFwfpTBumEUkXym1TERurwzdKoqK2mNUJ6xWKyEhITzwwAPeEq++vr4YDAZOnz6Nv78/er0em82GTjPiamhoaPwGo9FIREQEJ05cWUCs5NSoUQO73U5ubq732sqVKxk0aBCtW7dmx44d3ut2u51vv/2WQYMGYTAYMJvNBAcHc/bs2et6HxXJtfYYxZ44lFJ3AatFZLdS6hWgvVLqDRFJKm7stfDk0BgHrMF9Y3euZ43XgW0ishx30tIFnoSh5/F41Hr6fYX75rEDeLw4w0ZFMmXBApb16sWchx/mtaTr+lg0isCem+s1TtQEaopw7vhx4jdsIDMjg8zMTDKzs8m8eJG/1K5NN52O/546xd3Hj5PpdJJTaK4VuOPztwBFpTGLW7GCSIOBEwYDS/Pz8dHp8NHr8dHr8TUYsFssEBJCZI0a9Pbzw8dsxtfHB4vZjNlsJrB7dwgOZuDZs4SdOoXZx8fdLBZMPj4EdOwI/v6My87mntxczH5+mPz8MPv7u1tEBFgszDYama3UVT+T1z3tahSX/ufeYuTF1Xpu2qHDNeXVL0JPQ0OjitiMOxIsu6oV0bh+vvvuO3Jzc73uzJs2bcJqtTJ48GAeeeQRAG655RbNsKGhoaFxFcLDw0lLSyvz+EOHDpGdnU337t0vuz5w4ECaN29OcnIy69ato0+fPoDbmFLwnb1o0SJvGGF1pSS3U18Vka+VUt1xe1n8A/dN5SuTf5YaEVkJrLzi2muFnucBd11l7Ju4c6NVOdE9e7Jl1Chaz58P27dDu3ZVrVK1Iuv4cfYnJLB/yxYa22x0uHSJg8nJ9Ny7l0yXi0uF+r6DO19BGm4/ZnDnJAhSiiC9njt1OmjQgNCYGG4zGAgKCCCoRg2CgoMJqlWL1p06Qb163OJ0kpiRgU+NGvgEBXmbX0gIWCyMAEZcQ+c+nnY12nra1ajjaRoaGhp/cExKqfuArkqpO64UisiSKtBJo4zEx8cTFBTELbe4MxO9/fbbADz22GMMGTIEgKlTp1aZfhoaGho3Oi1btuTkyZMcPHiQRo0alXr8u+++C+CtTFWYhQsX0qZNGx544IEiPUMKPO4KEkJXR0pi3CjwiBgEfCwiK5RSb1SgTtWStrNnw8qVnH/iCYI3bNBi5q8gPzubQz/8gDp2jGZWK/kpKdy2ZAn7c3I44/q1bsJTQIfoaCKjo+nvcFCjsHEiJISObdpAy5Y09vPjuN1OUFQU/hERv/m8Y4C519AniKKTRmpoaGhoVCqPAn/C/bU85AqZAJpxo5rgcDhYvnw5gwcPxmg0ApCQkIDZbCYhIQGn04mPjw+xsbFVrKmGhobGjUuvXr1Ys2YNixcv5vnnny/1+G+++QalFPfff/9vZK1bt6Znz5788MMPfPLJJ96SrwVs2bKFgIAAWrZsWWb9q5qSGDdOKqX+BdwGTFVKmXHfLNcoTFAQvzz8MLdMmcKCV19l6B+wxJnL4SBz925qnj0L+/fz4qefsv3oUfZnZXHM4cCFu0zil4A5PJwaBgODGzWiccOGNGnblsZduxLdowcEBuIDzLnGWiYgqjLelIaGhoZGhSEim4BNSqltIvJJVeujUXZ++uknMjIyGDbMHfS5b98+srKy6N69O++99x4Ad9xxB+oaIZcaGhoaf3TuvPNOXnjhBRISEkpt3LDb7Rw5coR69ephNpuL7LNw4UIiIyN5+umnefDBB71hggVhhIMGFVX0vvpQEuPG/wH9gX+ISKZSqjZQ9to0v2NaTphA5IwZPDN9Ov1ffBFTNawNXBqs58/z5XPP8c2qVezPyOBgfj7tgP965Jt1Oi6azXSqU4eRDRrQuGVL2tx8MwwYADVq8E1VKq+hoaGhUeUopXqLyHrgghaWUr1ZunQpZrOZfv36Ab+Gn9SuXRur1QpQ7TfNGhoaGhVNo0aNMBgM7Nq1q9RjFy5ciIgwYMCAq/aJiIjgnnvu4YsvvuCVV15h8uTJwK9hhE899VTZFL9BKFG1lN8LlZHJfOWkSQyaOJHZd9zBE4sXV+haVcbRo/DBB9wxaxZLbTYaGAy0Dgmhcd26tG3Thj+NHAmNG0NEBGh3aDQ0NDT+cJSiWsokEZmglPq0CLGIyEMVoF6F8EeqliIiZGVlcerUKU6ePMmpU6d4+eWXad++PcuXLwfcRo309HR8fX3JyclBREhPTyckJKSKtdfQ0NC4sYmKiiLt/9u7++ioyrPf499rEiQCSkBBICCRF+MDCHIK1pdVVECrpyKPgCgtiopYKCot1jcerT6lKj1QRCrahSIgVgUMKvh4HEoVcJ1qEZXKm2h5DxDAIChBgiHX+SMTRCQYwuzZM8Pvs9asmdmzZ88vt65w5Zq977uwkG++OboFSiuW3j54udfD2bt3L3Xr1gVg165dZGVlkZ2dzd69e9m7d+8xZU+EY1otRY7OFQ88wKXjx/PQK6/Qf/Vq6rdsGXakuCgrLWXe6NE8OX48EwoLycnI4O6f/ITbe/Tg4l//WnOMiIjIUXP3B2P3N4WdRcrt2bOHzZs3H7hVNC8OfV5xNkYFM2PcuHEAbNu2jcLCQnJycti0aRP16tWjZcuWamyIiFRBu3btKCgo4NNPP+XMM8+s8vsWLVpE7dq1j9jYAMjKyuLOO+/k0UcfZeDAgdx///0HLiNMdWpuxJlFIvxp4kQ69unDnF/9igHRaNiRjsmuDRuY+pvfMGHOHD795hsamvHJz39OzqhRnNdMs16IiEj1mdnwI73u7mMTleV4sX37dt55551Kmxc7d+783ntOPPFEcnJyaNKkCZ07d6ZJkyYHnlc8bty4MbVq1QJgzJgxAOzcuRMzY+fOnSm9tKCISCJ17dqVN998k/z8fO67774qvWflypUUFxdzySWXVGn/P/zhD0yYMIGXXnqJkpISAAYPHlztzMlCzY0AnN27N59eey0t8vPh00/LL9FINcuW8dVjj9H82WfZBZxXpw7P33ILfUaNoubJJ4edTkREjud1ZAAAFhdJREFU0sNJsfs8oDMwO/a8B7AoUSHMrAXwX0Bdd+8T21YbeBLYB8x3978mKk+QBg8ezKxZ5VOZZGZm0rhxY5o0aUJeXh5du3Y90LA4uIFRt27do5oIND92WW5xcTFt27Zl+fLlB+biEBGRI+vduzd333038+fPr3JzY/z48QCHXSXlcCKRCGPHjuWWW24hPz+fjIwM+vXrV+3MyUJzbgSlsBBat2bDBRdweoqcvfHNnj289sADLJ45k1EbN0LNmkzo2JHzhg7lR/37hx1PRERSRFXn3Dho/4XAz9z9q9jzk4D/cfcuVXjvs8CVwDZ3b3fQ9suBx4EM4Bl3H1WFY718UHPjemCnu88xs+nufu2R3psqc2789Kc/pbCwkLlz59KgQYMDM+XHy549e6hTpw6RSIT9+/dzzTXXEI1G+fzzzw8sESsiIkdWo0YNGjZsyKZNm6q0f25uLhs2bKCkpOSoftc2a9aMgoIC2rdvz7/+9a/qxk2oI9UYmighKI0a8Wbv3rSYO5f5sWtQk1Xhxx8zsls3ck86iWvGjmXGli189fvfQ0EBQ999V40NEREJ2mmUnyFRYV9sW1VMoXxVtwPMLAOYAFwBtAH6mVkbMzvbzF4/5NawkuM2BTbGHu+vYpaUUKtWLU477bS4NzYAJkyYgLuzf/9+OnfuzHvvvUf37t3V2BAROQqNGjVi69atVdq3pKSEDRs2cMYZZxz179qpU6dSs2ZN7r333urETDpqbgToorFjycnIYPiIEZSVloYd57vc4d13mXPRRZzeoQO/e+stzq5Xj9n3389nxcWc9MADoIm/REQkMZ4DFpnZQ2b2EPBPypsWP8jdFwI7Dtl8LvBvd1/j7vuAl4Ce7r7U3a885LatkkMXUN7gANVLVTZt2rQDj++55x42btyoS1JERI5S+/bt2b9/P6tWrfrBfadOnYq7c+WVVx7153Tt2pW9e/emxSUpoH+sA3Vi/fo8+stf8tHXXzNtyJCw4wDw9Y4dPHvTTfzfVq3gggu44MMPGXrOOax6803e/PxzeowcScYJJ4QdU0REjiPu/jBwE/BF7HaTuz96DIfM4duzLqC8UZFT2c5mdoqZ/QXoaGYVFzjPAnqb2VPAnEred6uZLTazxdu3bz+GuOmhrKyM5cuXA9C2bVs2bNgAoOaGiMhRqpgYtGIOoyOpaCrfcccdgWZKBWpuBOy6xx/n3Nq1GfHssxRvq+zLoeCVfPkl951/Pk1PPZWBU6bwQlERPPUUp2zZwmMffcSZKjxERCRE7v6huz8eu32U4M8ucvfB7t6yoqni7sXufpO7D6lsMlF3n+jundy9U4MGDRIZOSk9//zzlJWVAfDEE08QjUY566yzaN68ecjJRERSS+/evQGYP3/+D+77wQcfcPLJJ9OyZcuAUyU/NTcCFsnMZOzo0RSVlfHub38bSobibdu4qkULRr33Hpc0acL8ceN4bscOGDwY6tQJJZOIiEiANgEHr1feNLYt7sysh5lN3LVrVxCHTyl/+tOfAMjJyeHHP/4xCxYs0FkbIiLVcMYZZ5CZmXngbLjKLFmyhK+//przzjsvQcmSm5obCXDhkCFsvOoquufnQxVnvI2bXbt4o0sX5hUVMXngQF4uKOCiYcOwACYRExERSRLvA63N7AwzOwG4jm+XmY0rd5/j7rfWrVs3iMOnlKVLlwLlZ20sXLiQvXv3qrkhIlJNjRs3ZuvWrRxpddM///nPAAwcODBRsZKa/sJNkAaPPQalpSwdOjRhn+nbtkHXrlyzZg0rxo3jxmeeSdhni4iIJIKZvQi8C+SZWYGZDXT3UuA2IAqsBGa4+5G//qr+56fUmRtHKpKPxeTJk3F3srKy6NmzJ9FolJo1a3LRRRcF8nkiIumuYlLRlStXVrrP3LlziUQiBy5jOd6puZEoLVrw9MUX0+G11/jwr4e9dDeuNi1ezI+bN+fdZcvgtdfIGzYs8M8UERFJNHfv5+6N3b2Guzd190mx7W+4+5mxeTQeDvDzdeYGcNdddwEwfPhwzIxoNEqXLl2oVatWyMlERFJT165dAZg1a9ZhXy8uLqagoIBWrVqRkZGRyGhJS82NBOo7cSKnmHHnbbfhsQm3grBm/nx+cv75fLJ3L9+MGQNXXBHYZ4mIiBzPUu3MDQAzi9uxCgsL6d+/P0VFRQCMHDmSjRs3smLFCl2SIiJyDHr16gXAggULDvv6pEmTAOjZs2fCMiW7zLADHE/qNm/Of/fty9Dp05l9//30fOSRuH/Gitmz6X711ZS489bUqXS64Ya4f4aIiIiUc/c5wJxOnToNCjtLvH355Zd8/PHHLF++nFWrVrFu3To2bdrEtm3b2LFjB7t37z6wOgpAu3btiEQiRKNRQEvAiogci9zcXGrUqFHppKIvvPACALfffnsiYyW1UJobZlYfmA7kAuuAvu7+xWH2GwDcH3v6B3efGts+H2gMfB177TJ3D2+d1aNw65QpPPHKK9w1ZgxXjBjBCXFcreTfr75Kl169qGHGgvx82l19ddyOLSIiIumhrKyMJUuW8PHHH7Nq1SrWrl1LQUEBhYWFfPHFF+zevZuSkpJK5+cws++81qhRIy677LIDq6VEo1FycnJo27ZtQn4eEZF01bhxYzZt2oS7f+esO3dnyZIlZGdn06xZsyMc4fgS1pkb9wJ/d/dRZnZv7Pk9B+8Qa4A8CHQCHPjAzGYf1AT5hbsvTmToeMjMymLMiBHc+NBDrBo5krP/+Mf4HPidd8i94QZ+XqcOd7zyCq26dYvPcUVERKRSZtYD6NGqVauwo1TJokWL2LVrFx07dvzea5FIhKysLLKzs6lfvz6NGzemWbNmtGzZkoYNG/LGG28we/Zs3J1IJELfvn159NFHyc3NPXCM0tJS5s2bR69eveJ6+YuIyPGoffv2bNiwgRUrVnynYbxo0SJKSkro3r17iOmST1jNjZ7AxbHHU4H5HNLcAH4K/M3ddwCY2d+Ay4EXExMxOFc88ABrFy6k9tNPwz33QP36x3S8t/74R8566CGaNG/O+HnzoGnTOCUVERGRI0m1y1L27NkDwHXXXUeLFi3Iy8ujXbt2tGnThqysrO/tv379ekaMGMGDDz5IWVkZkUiEfv368cgjj9C8efPv7b9o0SJ27typS1JEROKga9euvP766+Tn53+nufHEE08AMGhQSvzTkzBhNTdOc/ctsceFwGmH2ScH2HjQ84LYtgqTzWw/kE/5JSuHPXfSzG4FbgU4/fTTjzV3XFgkQu1x4yjt0IF/DhnChdOnV/tYs+6+m+tGj6ZPdjYvLFwIDRvGMamIiIikm0gkwosvHvm7orVr13LfffcxY8aMA2dq9O/fn4cffviI9VQ0GiUSiejbRBGROOjduzfDhw9n4cKF39k+b948MjIy6NGjR0jJklNgq6WY2TwzW3aY23emc401JY520fVfuPvZwE9it+sr29HdJ7p7J3fv1KBBg6P+OQJz9tn8/pxzuHjGDD6NTbx1tJ679VauGT2aTnXq8OSSJWpsiIiIyBFVNo9GhdWrV3PttdfSsmVLpk+fjplx/fXXs3btWqZNm/aDXxRFo1HOPfdc6h/jWakiIlL+5fyhk4ru2rWLwsJC8vLyiES0+OnBAhsNd+/u7u0Oc3sN2GpmjQFi94ebDHQTcPDsKE1j23D3ivuvgBeAc4P6OYL0qylTyALuuemmo37vhL59GfD001xSrx5zP/uM7MOcGioiIiLBSsWlYA/ns88+o0+fPrRu3ZoZM2ZgZgwYMIB169bx3HPPVens16KiIhYtWqRLUkRE4qhJkyZs27btQHN64sSJwLdLxcq3wmr1zAYGxB4PAF47zD5R4DIzq2dm9YDLgKiZZZrZqQBmVgO4EliWgMxx16h9e+679FJe3bKF+ePGVfl9JSNH8peZM+nZqBGvr1lDnUaNAkwpIiIilXH3Oe5+a926dcOOUi2rVq3i6quv5swzzyQ/P59IJMKNN97I+vXrmTJlylHNwj9v3jzcXc0NEZE4at++PWVlZSxbVv4n7/TYlAZDhw4NM1ZSCqu5MQq41Mw+A7rHnmNmnczsGYDYRKIjgfdjt9/HttWkvMnxMbCE8rM5nk78jxAfv3npJZplZDB8xAjKSkuPuK+XlfHN3XdT83e/461evZi5ejVZ2dkJSioiIiLpYuXKlVx11VWcddZZvPrqq2RkZHDzzTezbt06Jk+eTNNqTE4ejUapV68enTt3DiCxiMjxqWIOo1mzZuHuLF26lPr169NIX3B/TyjNDXcvcvdu7t46dvnKjtj2xe5+y0H7PevurWK3ybFtxe7+I3dv7+5t3X2Yu+8P4+eIhxPr12fUL3/JN19/zZbYrLeHU1Zaym0dOnDt6NGUDhpEg5kzqVGrVgKTioiISDooKyujTZs2zJkzh4yMDAYOHMj69euZNGlStZoaUD6XRzQapXv37mRmhjVfvYhI+qm4/GTBggUsWLCAffv20aVLl5BTJSfNQJIE+o0fz0edO5MzejQUF3/v9dK9e7kxL48nly2jZefOZPzlL6DJY0REREKXanNulMbOEs3IyGDQoEFs2LCBZ555hpycnB9455EtW7aMzZs365IUEZE4a9q0KTVq1GDlypU89dRTAAwePDjkVMlJfyEnAcvIIPOxx9i1eTPzhgz5zmslX35J3xYtmLZmDSO7deP/vPcepsaGiIhIUkjVOTfGjRtHr169KCgoYPXq1XzxxReUlZVV+3jR2Mpvam6IiMRfxaSib7/9NpmZmVx66aVhR0pKOm8wWVx4IcNzc3lp2jQ+veMOcjp1guJiBuTl8UphIY/36sUd+flhpxQREZE0cPvtt39vWyQSoV69epxyyinUr1+/yvcnnXQS0WiUtm3bVvuyFhERqVyHDh1Yv34927dvp3379loCthJqbiSR/5o8mecvuYT7+/Vj8uLF8LOf8eutW7n85pu5cdKksOOJiIhImvjkk08oKipix44dld5v3ryZZcuWUVRUxO7duys9VmZmJqWlpQwfPjyBP4GIyPGjW7duzJ49G4A+ffqEnCZ5qbmRRFpcfDHDOndm9PvvUyc3lz8XF3Pe9Omcd801YUcTERGRNJKXl3dU++/bt48dO3Z8rwlS8Xj37t1allBEJCC9e/dm2LBhAAw5ZBoD+ZaaG0lmxMyZjM7N5YmdO7lryhROV2NDREREQnbCCSfQqFEjLT0oIhKCnJwcTjzxRLKzszn11FPDjpO01NxIMtnNm7N01iwsEuH0nj3DjiMiIiJHYGY9gB6tWrUKO4qIiKSxf/zjH9SpUyfsGElNzY0k1O7qq8OOICIiIlXg7nOAOZ06dRoUdhYREUlf55xzTtgRkp6mWRURERERERGRlKbmhoiIiIiIiIikNDU3RERERERERCSlqbkhIiIiIiIiIinN3D3sDAljZtuB9XE+7KnA53E+ppTT2AZD4xocjW1wNLbBCGpcm7t7gwCOm7RUY6QcjW1wNLbB0LgGR2MbjITXGMdVcyMIZrbY3TuFnSMdaWyDoXENjsY2OBrbYGhck5v++wRHYxscjW0wNK7B0dgGI4xx1WUpIiIiIiIiIpLS1NwQERERERERkZSm5saxmxh2gDSmsQ2GxjU4GtvgaGyDoXFNbvrvExyNbXA0tsHQuAZHYxuMhI+r5twQERERERERkZSmMzdEREREREREJKWpuXEMzOxyM1tlZv82s3vDzpMOzKyZmb1tZivMbLmZDQs7U7oxswwz+8jMXg87Szoxs2wze9nMPjGzlWZ2ftiZ0oGZ/Sb2u2CZmb1oZllhZ0pVZvasmW0zs2UHbatvZn8zs89i9/XCzCjfUo0RDNUZwVKNEQzVGMFQjRE/yVJjqLlRTWaWAUwArgDaAP3MrE24qdJCKXCnu7cBzgOGalzjbhiwMuwQaehx4E13PwvogMb4mJlZDnAH0Mnd2wEZwHXhpkppU4DLD9l2L/B3d28N/D32XEKmGiNQqjOCpRojGKox4kw1RtxNIQlqDDU3qu9c4N/uvsbd9wEvAT1DzpTy3H2Lu38Ye/wV5b+8c8JNlT7MrCnwM+CZsLOkEzOrC3QBJgG4+z533xluqrSRCZxoZplALWBzyHlSlrsvBHYcsrknMDX2eCrwnwkNJZVRjREQ1RnBUY0RDNUYgVKNESfJUmOouVF9OcDGg54XoH8c48rMcoGOwD/DTZJWxgF3A2VhB0kzZwDbgcmx03GfMbPaYYdKde6+CRgDbAC2ALvcfW64qdLOae6+Jfa4EDgtzDBygGqMBFCdEXeqMYKhGiMAqjESIuE1hpobkpTMrA6QD/za3b8MO086MLMrgW3u/kHYWdJQJvC/gKfcvSNQjE7vP2axazN7Ul7YNQFqm1n/cFOlLy9fPk1LqMlxQXVGfKnGCJRqjACoxkisRNUYam5U3yag2UHPm8a2yTEysxqUFxx/dfdZYedJIxcCV5nZOspPce5qZs+HGyltFAAF7l7x7d/LlBcicmy6A2vdfbu7fwPMAi4IOVO62WpmjQFi99tCziPlVGMESHVGIFRjBEc1RjBUYwQv4TWGmhvV9z7Q2szOMLMTKJ+AZnbImVKemRnl1xSudPexYedJJ+5+n7s3dfdcyv9/fcvd1aGOA3cvBDaaWV5sUzdgRYiR0sUG4DwzqxX73dANTaIWb7OBAbHHA4DXQswi31KNERDVGcFQjREc1RiBUY0RvITXGJlBf0C6cvdSM7sNiFI+u+6z7r485Fjp4ELgemCpmS2JbRvh7m+EmEmkKm4H/hr7Q2QNcFPIeVKeu//TzF4GPqR8hYOPgInhpkpdZvYicDFwqpkVAA8Co4AZZjYQWA/0DS+hVFCNESjVGZKKVGPEmWqM+EqWGsPKL38REREREREREUlNuixFRERERERERFKamhsiIiIiIiIiktLU3BARERERERGRlKbmhoiIiIiIiIikNDU3RERERERERCSlqbkhIglnZtlm9qvY4yaxpbhEREREjolqDJHjl5aCFZGEM7Nc4HV3bxdyFBEREUkjqjFEjl+ZYQcQkePSKKClmS0BPgP+w93bmdmNwH8CtYHWwBjgBOB6oAT43+6+w8xaAhOABsAeYJC7f5L4H0NERESSjGoMkeOULksRkTDcC6x293OAuw55rR3QC+gMPAzscfeOwLvADbF9JgK3u/uPgN8CTyYktYiIiCQ71RgixymduSEiyeZtd/8K+MrMdgFzYtuXAu3NrA5wATDTzCreUzPxMUVERCTFqMYQSWNqbohIsik56HHZQc/LKP+dFQF2xr6REREREakq1RgiaUyXpYhIGL4CTqrOG939S2CtmV0DYOU6xDOciIiIpCzVGCLHKTU3RCTh3L0I+H9mtgwYXY1D/AIYaGb/ApYDPeOZT0RERFKTagyR45eWghURERERERGRlKYzN0REREREREQkpam5ISIiIiIiIiIpTc0NEREREREREUlpam6IiIiIiIiISEpTc0NEREREREREUpqaGyIiIiIiIiKS0tTcEBEREREREZGUpuaGiIiIiIiIiKS0/w8xg2nKQCrfjAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "eps=1e-4\n", "op=model.getParameters()\n", @@ -1592,10 +1629,50 @@ " axes[ip,1].set_yscale('log')\n", " \n", " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "plot_sensitivities('x', eps)\n", - "print('------')\n", + " plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAALICAYAAACJhQBYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd1hUxxoG8Pdsp4sIIiCgFLtir7EmGo16NfYeSzQaSxITY9cba6xJbLG3GBKDiS3FRI29Y4nBXlFEQUSQuuye9/4B7hUBXZBlUef3PPMAp8yZQ9E535n5RiIJQRAEQRAEQRAEQRCEwkxh7QYIgiAIgiAIgiAIgiA8jwhgCIIgCIIgCIIgCIJQ6IkAhiAIgiAIgiAIgiAIhZ4IYAiCIAiCIAiCIAiCUOiJAIYgCIIgCIIgCIIgCIWeytoNKEjFihWjr6+vtZshCIIgCK+c0NDQ+yRdrd2OgiT6FYIgCIJgGTn1K16rAIavry9OnDhh7WYIgiAIwitHkqSb1m5DQZEkqQ2ANv7+/qJfIQiCIAgWkFO/QkwhEQRBEARByAWS20gOdHJysnZTBEEQBOG1IgIYgiAIgiAIgiAIgiAUeiKAIQiCIAiCIAiCIAhCofda5cAQBEEQ8gdl2VRkgwGywQClQgGVUgnZYEBSYmLmY4xG2Op00Go0SNPrERsbm2k/ZRlFHB1hq9UiJTkZ96KjQRIgTR+Lu7jA1sYGiYmJiIyKAknTuQBQ0t0dtjY2iIuPx51799L3ZxwDAH5eXrDRahHz8CEioqKeuiEi0McHOq0W0Q8e4E50dPq1nzikQunSUKtUiIyOxt2YmCzfk8oBAVAqlYiIikJ0bCwgSZn2VylTBpIk4fa9e3gQF5e+MeMYhSShYkAAIEkIj4xE3KNH6bsV6e8ZVCoVypYuDUgSbkVGIiE5+f/7JQlajQalSpYEANy+dw/JKSmAJEHKKFqNBl4eHunXVCoBH5+8/eAFwcKio6Ph4uIChUK8YxMEQRCyEgEMQRBeG0a9HkoSSEtDUnw8kh49QlpyMgypqTCkpkLW6+Hn4QEYDLh24waio6Nh0Oth0OuRlpoKJYkmFSoAaWnYf/YsbkVFpe9PS4PRaIS9SoVu1aoBRiN+PHECN2NiYDQaYTQYYDAa4W5riw+qVAGMRsw7dgw3Hz6EUZZhMBphNBoR4OCAUeXKAUYjPj5xArcTE2EkIcsyjCRqOjpiop8fYDSi85kziNbrYZRlyCSMJN50dMQUDw/AaES9ixfxyGhMPx+AkURnOztMK1IENBpR8s4dMGOfDEAmMVinwxc6HRKMRnjEx4OP92WU8QoFJkgS7hiN8Mzm+zsbwKcALgMom83+bwEMAvAPgBrZ7N8AoDuAIwCaZLN/K4A2AHYDaJvN/r8BNAbwW0Y9TzsBoDqATRnteNoFAGUArMu4j6dFAPAAsAzA5Gz2xwNwADAfwNxs9j8OhkzJqONJdgASMj4fDSD4qf3uACIzPh8CYPtT+wMAXMr4vCeAvU/trwYg9PEXRYsC2QRgBPM9mcRTyD/nzp1DUFAQ3nzzTaxfvx4uLi7WbpIgCIJQyIgAhiAIL4SyDH1CAlLj45H66BEctVpoAcTdv4/r169Dn5SE1MREpCYlQZ+cjHp+fiiiVuPijRvYFxYGfUoKUlNToU9NRWpqKj6sUgXFVCrsvnoVGy9eRJrBAL3BkP7RaMTyihXhIklYGx6OFRERSDMaoZdlpMky0kic8PCAvcGAybGxWJCUBD2JNAB6pD9AGpE+d+5jZH2ItAWQmPH5eGR9iCwO4G7G57MBbHtqvx+AbqtXA0h/WN/z1P5qAD7YuRNQKrFFr8cZWYZKkqAEoJQk1NVqgfv3AaUSFyIjcdNggFKSoJAkKCUJfiTw4AGgUCDNYIAsy1AqFNBkHGNrZwe4uQEKBXyjopBKpp+rUEChUKB0iRJAQAAkpRItDh6EQpKgyNgnSRKqlCwJ+PtDLcvof/hw+r4njqnr6wv4+cEhLQ2Tjh6FlLHv8ccGfn6Ary9ck5Mx6/hx09t/hVIJSZJQLzAQ8PREyYQELDx9GlLGuY9LzXLlAHd3lImLw8p//03fnvEWVpIkBJUvDxQrhqoPHmD9hQum7Y+PK1ehAlCkCOpFR+OHK1cyjUCQJAmlK1UCHBzwVlQUNl2/nuV32SMoCLCxQds7d1A6PBwZF4CUMUrCOSgI0GrRJSICQRERWc7XVa8OqFR47+ZNNIiMzLSPsgzUqQMAGHT1KlpkjPB4TKlQADVrAgA+unwZHWJiTCNHAECrUgHVqwMARp07h56xsf8foQLAXqsFqlUDSIw7exbvx8WBQPoxAIra2gJBQenX1GiytF3IHZLbAGyrUaPG+9Zuy6tkyZIlAIBdu3ahWrVq2LhxI2rXrm3lVgmCIAiFiUTy+Ue9ImrUqEGx3JnwqpINBqTExkKRmgqdLCP14UOcCwtD0sOHSI6PR1J8PJITElDVwwOBRYogKjoaqw8eREpKClJSUpCckoKU1FT09vVFPUdHhEVFYeQ//yDFYEgvRiNSZBnfFCmC5pKEPx89QtukJKQ+1Y6/ALwJYCOALtm08zCAOgBWAeifzf6zSiUqarVYSmJiSgo0CgXUkgS1JEGjUODPgACUsLPDugcPsCY6GmqlEhqlEmqVCmqlEivr1YO9nR1+uX0bu+/ehUathlqlgkajgVqtxthmzaDUaLD7+nWci46GSq2GWq2GSq2GRqtFt4YNAZUKJ8PDcTc+HmqNBiqNBiqtFja2tqhRqRKgVuNWdDSS0tKg1umgzNiv0engWrw4oFIhKTUVVCigytiv1GhMD+OC8CqSJCmUZHaDa15Zol+RfxITE+Hh4YE2bdrgo48+QqdOnRAREYE5c+Zg2LBhpkCiIAiC8HrIqV8hRmAIQgExpKYiMSoKSEyEk1IJJCTg4OHDePTgARJiY5EYF4eE+HiUdXJCM3d3GBISMOzPP5Gcmoqk1FQk6/VISktDpyJF8IGDAx4mJKDSzZtIkmUkkUjJuM40AGORPlKgWjbt+BpAIIBopA9VBwANAB0AnSShUVQU6rm4gAAepqRAp1KhiE4HnVoNnVoNp0qVgJIl4ZucjI8uXoRWq/1/0ekQWL06UKIE6iUk4OfwcGhsbKC1tYXWxgYaW1tUKFcOKFIEnQ0GNE9NhcbWFloHB2gcHKCxs4My4+3wIGQ/zP+x3hklJ+0zSk6aZpScZPe9e1LJ5+y3fc5+QRAE4f9++OEHxMfH4+bNmzhz5gxCQ0Px3nvvYcSIEThw4ABWrFgBR0dHazdTEARBsDIRwBCEnJBIuHsXD2/fRnxkJOKjohAXFQWbtDQ09PIC4uLw9Z9/4mZ0NBKTkpCQnIyE1FRU0enwRfHiQEICal6+jBtpaUh4IsDQDcD3GZ+/jf/Pe39sAIBmkgSljQ1+Tk6GjUIBG6UStkolbNVqUKsFSpWCjUaD5kolbHU62Oh0sLW1ha2tLd4oWxaoUAHFVSpsvnABNo6OsHVygo2jI2wcHeHh4wO4uaGcRoNkhQIaBwcoVFn/KaiI9FwEOQkEMPMZ+70ySk7sM4ogCIIgLF26FO7u7jhw4AAOHDiAH374AUuXLkWDBg0wduxYnD59GiEhIahcubK1myoIgiBYkQhgCK8uWcbDGzdw9+JF3L9+Hfdv3ULc/ftAcjL6lC0LxMdj/v79OHrnDuKTkxGXkoJ4vR6ekoQ/tFrg0SO8Kcs4+lS1dZA+DQIAVgO4CsBeoYCdUgl7pRK+zs5AkSKApycakagpSbC3tYW9vT3s7OxQoVQpoHZtwM4O269ehdbJCXbOzrB3dYVdsWJwdHcHnJ0hSRLuPeP2tABWPmO/DsB/nrFfkXGMIAiCIFhTaGgojh8/Djc3N9SpUwe9e/fGqFGjULlyZcycORM7d+5E9+7dUbt2bSxatAj9+vWzdpMFQRAEKxEBDOGlQFlGwt27uH/lCu5fv44axYpBionBHwcOYN+//+J+bCzux8XhfmIikvV6HLe3Bx48wGBZxg9P1eUGoA8A2NjgHxInjUY4qtVw0mrhZm8P/6JFgWbNAEdHjLxxA7EkHF1c4OTiAkc3N7iVLAlUrgw4OuKUvT0kpTLHds95zn01erFviyAIgpBPJEnyBvANgAcALpF81iAzIR8tXboUWq0WUVFRmDdvHnr06IFWrVph4MCBGDZsGN544w2EhIRgwoQJ6N+/Pw4cOICFCxfC1lZM1hMEQXjdiCSegtXJBgMiQkNx5eBBXD55ElcuXcJkb2/YxsbimwsX8OXdu7gvy9A/cU4C0pcdHIn03mYxhQLF1GoUs7GBq709fmjdGgpXV+yJjcUdWUYxLy8U8/ZGEU9POHl6wsXHR2TiFwRByEfWTOIpSdIqAK0BRJGs+MT2t5Ge+kcJYMWzghKSJL0DwJnkd5Ik/UgyuzzEmYh+xYuLi4uDp6cnXFxckJKSgvDwcGi1WgDpq+isWbMGn3zyCVJSUjB58mQ8evQI06ZNQ6VKlRASEoLAwEAr34EgCIJgCSKJp2BVssGAiBMncPngQVw5dQrtHB3hducO1p04gUEREab8EEB6QskBUVEI9PSEj6cn3razQ7GiReFarBiKubujmIcHVG++CXh4YIaTE+a4uOS4ukPjgrg5QRAEwdrWAFgIYN3jDZIkKQEsAvAWgNsAjkuStBXpwYwZT53fD+lpf0IkSeoHYH0BtFkAsGHDBiQmJiIpKQnjxo0zBS+A9GWS+/btixYtWmDIkCEYPXo0atasiSVLlmD8+PGoUaMGVq5ciU6dOlnxDgRBEISCJEZgCPlGNhhw+/hxXD5wAGWNRnjev4/Dx45hwLFjuJqammm5zd9UKrQMDMSJYsUQnJiIgMBA+AcFIaB+fXjVrGlaiUIQBEF4OVh7GVVJknwBbH88AkOSpLoAJpNskfH1GAAg+XTw4vH5nwI4RnKfJEkhJDvmcNxAAAMBwNvbu/rNmzfz+1ZeGyRRpUoVREVF4f79+7hx4wa8vLJP/0wSGzduxNChQxEXF4dhw4bhwIEDOHbsGIYNG4Y5c+ZAI/oOgiAIrwwxAkPIXyRw8iRur1mDD0NCcCU2NlOQYhmA97VaFC1ZEgHOzmjp5ZUepKha1RSkgEqFGgCs1tsVBEEQXmWeAG498fVtALWfcfwfACZLktQdwI2cDiK5TJKkSABtNBpN9fxo6Ovq8OHDOHv2LOzt7dGuXbscgxdA+miMLl26oGnTphg+fDjmzZuHSpUqoVu3bliwYAGOHj2KjRs3wsfHpwDvQBAEQShoIoAh5Mq5rVsRPHs2Sl26hH5RUbBTKnFVpUKAszNaeXkhoEwZ+FetiipvvQVUrIgyCgU2W7vRgiAIgvAcJP8FkO2oi2yO3QZgW40aNd63bKtebd9++y10Oh0SEhIwdOhQs85xdXVFcHAwunbtisGDB2Pjxo1o3749du7ciWrVquG7775Dy5YtLdxyQRAEwVpEAEN4rqu7d+PHmTPxw/79OJuSAgWAD7y80G/FCji3b49/ixa1dhMFQRAE4WkRAEo+8bVXxrYXJklSGwBt/P3986O611JMTAx+/PFHODk5wc/PD40a5W5drv/85z9o2LAhPv30U6xatQqlS5eGQqFAq1atMHbsWPz3v/+FSiW6uYIgCK+a7DMfCq+9+//8A8ybB9SqhWHNmmHcX3/BUa3Ggk6dEPHPP1h06xbQvz8ggheCIAhC4XQcQIAkSaUkSdIA6Apgq5XbJGRYu3Yt9Ho9oqOj8eGHH0KSpFzX4ezsjJUrV2LHjh0wGAy4evUqKlSogOnTp+Ott97C3bt3LdByQRAEwZpEAEMwiQoLw+KuXdHQyQnuVaogYuRIQJYxa+RI3Dx0CAfi4zF040a4V6pk7aYKgiAIgokkScEADgMoI0nSbUmS+pM0ABgKYAeA8wA2kgzLj+uR3EZyoJOTU35U99ohiW+//Raurq5wcHBAz549TfuuXLkCvV7/jLOzat68Of79918MGTIEYWFhcHV1xaFDh1C1alXs3bs3v5svCIIgWJEYW/e6e/gQYQsW4OOvvsKuBw8gAyiv1WJys2bQTJsG1K6NitZuoyAIgiA8A8luOWz/DcBv+X09MYXkxfz999+4fPkyVCoVBg8eDAcHBwDA6dOnUa1aNQQEBGD27Nlo06aN2SMzHBwcsHDhQnTu3Bn9+/dHdHQ0kpOT0aRJE0ybNg2ff/45FDksuS4IwosxGo2m5ZATExPN+vxZ+2VZxoQJE/Duu+9a+9aEQkgso/oaSrh7F1unToX7yZNoeuIE7qSlobFajc61aqHryJGo2L69tZsoCIIgvGSsvYyqNYh+Rd507twZ27dvR3JyMs6fP4+yZcsCAD744AOsW7cOPj4+uHDhApo2bYq5c+ciKCgoV/UnJSVh0qRJmDdvHrRaLZKTk/HOO+9g7dq1cHFxscQtCcJrafTo0fjqq6+Qmpr6/IOfIEkS7OzsYGtrm+nj489v3LiBc+fOYfbs2fjkk0/yNMVMePnl1K8QAYzXhD4hAb9OmYIfgoOx7dYtJAPobmODDYMHA127gtWrQxJvJgRBEIQ8EgEMwRx3796Fl5cXbGxsUKdOHfz1118AgEePHsHDwwMdO3bEsmXLsGzZMkyaNAkPHjxA3759MXXqVJQoUSJX1zp27Bj69euHsLAwKBQKuLu748cff0SDBg0scWuC8Fr59ddf0bp1a7Rt2xY1atTIEoTILjDx+KNOp3tmUCI5ORm9e/dGSEgIBg8ejG+++UYk5X0N5divIPnalOrVq/O1dPcuWzo5EQBdJYlDKlbk/oULaUxLs3bLBEEQhFcEgBMsBP/XF0QB0AbAMn9///z69r02pk2bRgAEwM2bN5u2L126lAB4+PBh07YHDx5w5MiRVKvVtLOz45QpU5iUlJSr66WkpHD8+PFUKBRUqVRUKBScNm0ajUZjvt2TILxuoqOjWbx4cVaqVIkpKSkWuYbRaOSoUaMIgK1atWJ8fLxFriMUXjn1K8QIjFfduXPAO+9g9507uNOvH7rOnw+VTmftVgmCIAivGDECQ3geo9EIPz8/xMfHw8HBAdeuXYNSqXz8kglGoxGnT5/O8mb26tWrGDVqFH7++WeULFkSM2bMQLdu3XKV0+LQoUPo3r07wsPDQRLNmjXDhg0bULx48fy+TUF4pZFE586dsWXLFhw/fhxVqlSx6PWWLl2KDz/8EJUqVcL27dvh6elp0esJhUdO/QoxZ+AVtmvWLHxdvTqQnIymBw6g55IlInghCIIgCIJV7NixAzdv3kRsbCwGDx4MpVIJADhx4gROnTqFQYMGZTus3M/PD5s2bcLevXvh6uqKnj17om7dujh48KDZ165Xrx7++ecf9OrVCwCwe/duVKhQAbt27cqfmxOE10RwcDBCQkLwxRdfWDx4AQCDBg3C9u3bceXKFdSuXRtnzpyx+DWFwq1QjsCQJOltAF8DUAJYQXLmU/sbAvgKQGUAXUmGmFPv6/SmZFXfvhi0Zg3KabU4/s8/0AYGWrtJgiAIwivsdRqB8cQqJO9fvnzZ2s15abRt2xY7d+6ELMu4desWXF1dAQADBgxAcHAw7ty5g+ctTSvLMr777juMGTMGd+7cQefOnTFz5kyUKlXK7Hb8+OOPeP/995GYmAhZljF+/HhMmjRJzLF/RcXExGDAgAH4888/4ejoCEdHRzg5OZk+Pvn58/bZ29u/1gklb9++jUqVKqF8+fLYt2+fKQhZEM6cOYN33nkHcXFx2LhxI1q2bFlg1xas46VJ4ilJkhLAJQBvAbgN4DiAbiTPPXGMLwBHAJ8C2CoCGP8nGwwY37AhZhw+jOYuLth48iScvL2t3SxBEAThFfc6BTAeex36FfklPDwcvr6+UKvV6Nq1K9auXQsAiIuLg4eHB7p164YVK1aYXV9iYiLmzJmDWbNmwWAw4KOPPsLYsWOfGwB5sj3du3c3jeKoW7cufvrpJzE8/RVz6NAhdOnSBVFRUXjvvfcgyzLi4+MRFxeX5eOjR4+eW59CoYCDg4MpoOHi4oI+ffqgd+/eBfowbw2yLKNFixY4fPgwzpw5Az8/vwJvQ0REBFq3bo2zZ89i0aJFGDRoUIG3QSg4OfUrCmOouRaAKySvAYAkST8A+A8AUwCD5I2MfbI1GlhYMSkJPcuWRfCtWxhUrhwWnDgBta2ttZslCIIgCMJrbsWKFSAJvV6PoUOHmrZv2LABSUlJuX4QsbOzw6RJkzBgwACMGzcOs2bNwurVq/HFF19gwIABzx1N4e3tjb1792L27NkYP348jhw5gvLlyyM4OBitWrXK0z2+Lh48eIDz58/j/PnzcHV1Rdu2bQvdqARZljF37lyMGTMG3t7e2LNnD7y9veHu7p5joEGWZTx69CjHAEd2265cuYJ+/fph3rx5mDlzJlq1alXovhf5ZcmSJdi5cye+/fZbqwQvAMDT0xP79u1D165d8cEHH+DatWuYMWNGrvLhCC+/wjgCoyOAt0kOyPi6F4DaJIdmc+waANvFCAwAUVFA27ZYdPQoklu3xsgtW8SyqIIgCEKBeZ1GYIgpJLmTlpYGb29vPHr0CBUqVMDRo0cBpCcDDAoKglKpRGho6As9+IWGhuKTTz7Bvn37UKFCBcydOxctWrQw69wTJ06gY8eOuHnzJgDgk08+wcyZM6FWq/PcnpcdSURERJgCFU+WqKioTMe+/fbbWLp0KbwLyYjfmJgYvPfee9i+fTs6dOiAHj16YOTIkbh+/TpUKhVKliwJX19f+Pj4wNfXN9PnXl5euZpKRBIhISEYO3Ysrly5gkaNGmHWrFmoVauWBe+w4F26dAlBQUFo1KgRfvvtN6sHaQwGA4YPH44lS5agY8eOWLduHWxsbKzaJiH/vUxTSPI1gCFJ0kAAAwHA29u7+uP/nF4l57dtw63330fz+HhgwwagfXtrN0kQBEF4zZgTwJAkqeiz9pN8kL+tsqxX+sVIPvrll1/w7rvvAgDWrl2L3r17AwCOHDmCunXr4ttvv82XoeAksXnzZnz22We4evUqWrZsiTlz5qB8+fLPPTcxMRHDhg3D6tWrAQBVqlTB5s2b4evr+8LtKswMBgOuXbuWJUhx4cKFTFMq7O3t4ebmBnt7eyiVSiQnJyM2NhYqlQoxMTFQqVSYOXMmBg8ebNW34UeOHEHnzp1x9+5d/Pe//8X58+exfv16BAYGYsiQIbh37x5u3LiBmzdv4saNG7hz506m8xUKBby8vHIMcJQsWRIajSbLddPS0rB8+XJMnjwZ0dHR6NSpE6ZPnw5/f/+CunWLMRgMaNCgAS5fvoyzZ8/Cw8PD2k0CkP73Pm/ePHz22WeoXbs2tm7dasqrI2SVlpaG2NhYuLm5WbspZnuZAhh1AUwm2SLj6zEAQHJGNseuwWs+AmPX7NnoMGoUXJVKnNu/H+q6da3dJEEQBOE1ZGYA4zoAApAAeAOIzfi8CIBwkuZnYiwEXsV+hSW0aNEC+/fvh52dHW7dugVdxopoffv2RUhICO7cuQMHB4d8u15qaioWLlyIKVOmICEhAYMGDcLkyZPNerjZvHkzevfujUePHsHGxgYbNmxA+1fgxVBycjIuXryYJVBx+fJl6PV603H29vawtbWFJElISkrKkhfi8QgGHx8f+Pj44NChQ7h8+TJcXFwQExODBg0aYOXKlQgs4OTxjx9mR48eDS8vL7z33ntYsGAB4uLiMHr0aIwbN870e/ek1NRU3Lp1K1NQ48nPIyIiIMv/n7EuSRI8PDxMQY3SpUujT58+pkDFo0ePMHfuXMyZMwepqakYNGgQJkyY8FIv1zt16lRMmDABP/74Izp37mzt5mSxadMm9OzZEx4eHvjtt99QpkwZazfJKkgiJiYG165dy7bcunULsixj4MCBWLRo0UuRtDjHfgXJQlWQnpfjGoBSADQAzgCokMOxawB0NLfu6tWr81Wyok8fqgBW1Gp548ABazdHEARBeI0BOEHz/69fDqDVE1+3BLDU3PMLS3nV+hWWcOXKFQKgJEkcM2aMaXtsbCxtbGw4cOBAi107OjqaQ4cOpVKppKurK/fv32/WeREREaxfvz6RHmzj+++/z5SUFIu109KOHz9OOzs70/0AoFarpVqtzrQNADUaDf39/fnmm29ywIABnDJlCtevX899+/YxPDycBoMhU92pqamcP38+nZycKEkSNRoNtVotZ86cybS0tAK5v5iYGLZp04YA2Lx5czZp0oQAWLduXZ49e/aF6tbr9bx27Rp3797N1atXc9KkSezTpw8bN25MX19fKpVKqlQqDhkyhHfv3jWdFxkZycGDB1OpVNLe3p6TJ0/mo0ePXvRWC1xoaChVKhW7detWYNeMiYnh999/z4cPH5p9zpEjR+jq6kpnZ2fu2bPHgq2zrpSUFF68eJG///47Fy1axJEjR7J9+/asUqUKHRwcsvw9Fy9enHXr1mWPHj04YcIEDh48mADYpk0bJiYmWvt2niunfoXV//PPtlFAK6SvRHIVwLiMbV8AaJvxeU2kr1CSCCAGQJg59b4qHQ3ZYOCYunXT/6F2ceHDmzet3SRBEAThNZfLAMZZc7YV9vKq9CssadSoUZQkiQqFgjef6K988803BMDQ0FCLt+Hs2bMMDAykWq3msmXLzDrHaDRy1qxZVCqVBEB/f39evnzZwi3Nf/fu3cv0YKPVahkYGMi3336bgwYN4owZM/j999/z0KFDjIiIoNFozNN17t+/z+HDh5se6AGwatWqPH36dD7fUWZHjhyhj48PVSoV27ZtSxsbGzo4OHDhwoV5vpfceDJQYWdnx0mTJjE+Pt60/+LFi+zQoYPpYXLx4sXU6/UWb1d+SE5OZvny5enh4cGYmBiLXkuWZe7bt489e/akVqslAFauXJkRERFm13H16lWWLVuWarWa69evt2BrLS8qKoobNmzglClT2LdvXzZq1IglS5akJEmZAhQ6nY7lypVjy5YtOWjQIE6dOpWrV6/m77//ztDQUJ45c4bHjh3j/v37uXPnTu7YsYNffPEFJUlinTp1GB0dbe1bfaaXKoBhqfJKdDSSkih37MgBAAeWK0f9SxA9EwRBEF59udf2ZcAAACAASURBVAxg7AAwHoBvRhkHYIe55xeW8kr0KywoJSWFLi4u1Gg0bNeunWm7LMusUKECa9SoUWBtefDgAVu0aEEAHDp0qNkPkadPn6a3tzcBUK1Wc+3atRZuaf6Ji4ujq6srAbBXr168d+8eZVl+4XrT0tL422+/sUePHuzSpQvPnTtn2nfhwgXTaAiFQkGlUslx48bl+wgWWZY5f/58qtVqlihRgmXKlCEAtm3blrdu3crXa5nj4sWL7NSpEwHQ1dWVCxYsYGpqqmn/4cOH+cYbbxAAAwMDGRISki8/C0saOXIkAfCPP/6w2DXu37/PefPmsWzZsgRAR0dHDhkyhKtWraK9vT29vb0z/X49z4MHD9i4cWMC4BdffFHov8c5qVGjhilIoVaraWtrS0dHRxYpUoTOzs50cnKinZ0dNRpNllEX5hQnJycqFAq6uLhw9erVvH//vrVvOVs59SsKXQ4MS3rZ56pGhYXhYY8eCPznHxi//BKKkSPFSiOCIAhCoZCbVUgyknlOAtAQ6R2qfQC+4EuSxFOsQmKe4OBgdO/eHQDw119/4c033wQAHDx4EA0aNMDy5csxYMCAAmuPwWDA559/jnnz5qFp06bYuHEjXFxcnntecnIyhgwZgjVr1gDAS7HqwZ07d1CjRg1ERkaiW7du+P7771+oPpI4deoU1q9fj+DgYNy7dw/Ozs4wGo1ISkrChx9+iEmTJsHZ2RkAsGvXLgwfPhznzp0DAPj6+uL7779H3XzI1RYbG4u+fftiy5Yt8PPzw/Xr1+Hm5oaFCxfi3XffteoKGceOHcOoUaOwd+9e+Pn5Ydq0aejUqRMUCgVI4tdff8Xo0aMRFhaGOnXqYNasWXjjjTes1t6c7N27F02aNMEHH3yAxYsX52vdJLFv3z4sW7YMISEh0Ov1qFOnDgYOHIjOnTvDzs4OAHDy5Em0atUKer0e27ZtQ/369c2qX6/XY8CAAVi/fj369OmDZcuWZZt4tbD66aef0LlzZzg4OCAoKAi2trbQarXQaDTQarWm8qyvc9oHAP/++y+OHTuGPXv2IDw83HTd0qVLo1atWqhZsyZq1aqFqlWrmn4W1vLS5MCwZHmZ35SEbdlCX5WKFSSJhp9+snZzBEEQBCETmDECA8D6jI8jnnfsy1Be5n5FQWjYsCG1Wi3LlCmT6U1or1696ODgYLWcAGvWrKFGo2Hp0qX577//mn3eli1baGtrSwAsUaIEw8LCLNjKvDt79qxp5EWTJk1e6C10eHg4Z8yYwfLly5veBrdv354///wzU1JSeO/ePQ4cOJCSJNHFxYWLFi0y5b4wGAxcvnw5ixQpYnrz269fPyYkJOS5PUePHqWvry8VCgWLFi1KABw4cCBjY2PzXGd+k2WZv/32GytVqkQArF69Onfu3GnabzAYuHLlSnp6epryERSm36W4uDj6+PjQ39//hX5WT4uOjuacOXNMo2WcnJw4dOhQnjlzJsdzrl69yoCAAOp0Ov7yyy9mX0uWZU6ePNn0N1CYfj+e5ejRo6ZRFRs3brT49Y4cOUI3NzdqNBrWr1+fJUuWNP2tKhQKVq5cmQMGDODSpUt56tSpAp/+lFO/wur/+RdkeVk7GjtnzaITwOIKBY+tWWPt5giCIAhCFmYGMM4B8EB6gm5nAEWfLM87v7CVl7VfURDCwsJMHeEFCxaYtsfExFCr1XLw4MFWbF36kH53d3fa29tz69atZp9379491qpVy9TBnz17doHkWjDXzp07aW9vT0mS8vwAGhcXx1WrVrFJkyamOff16tXjkiVLcsyFcPr0adPQ/YoVK2Z6YI+Pj+fIkSOpUCgIgEWKFMnV95xMfyD96quvqFKpTEGkMmXKcO/evc89NyUlhRs2bODEiRO5fPly7tixg+fPn7d4EkODwcB169aZpiC1aNGCp06dMu1PTEzkjBkz6OjoSIVCwX79+lll+svT+vXrR4VCwUOHDr1wXbIsc/fu3ezatavpwbxevXpcs2aN2d//6Oho1q5dmwqFgkuWLMnV9deuXUu1Ws1y5crx+vXrebiDgnP16lW6urrS0dGRGo2mwAK8t2/fZuXKlalSqbh+/XpGRkZy69atHD9+PFu0aEFnZ+dMOTfq1avHESNGcMOGDbx06ZJFp+mIAMZL2tFY+d57VAGsIFYaEQRBEAoxMwMYwwGcB5CK9BXHrj9Rrj3v/MJWXsZ+RUEZPnw4FQoF7ezsGBcXZ9o+f/58ArB4ckdz3Lp1i9WrV6ckSZw+fbrZHXFZljl9+nTTw32jRo149epVC7f2+dasWUOlUkkbGxva29vz4sWLZp+r1+u5fft2dunShTqdjgDo5+fHyZMn88qVK2bVIcsyQ0JC6OvrSwBs165dpnNv3LjBpk2bmh6G3njjDbOSQ8bGxrJdu3amESBqtZoTJ058bl6N27dvc8KECXRzc8sxF0CxYsVYrVo1tmvXjiNGjODcuXP5008/8dixY7x7926+PJwlJydz7ty5phEjPXr04LVr10z779+/z48//pgajYY6nY6jR4+22oiBLVu2EADHjh37QvVERUVx1qxZDAgIMAWthg8fnudVYRISEvjOO+8QAMePH5+rn8vff//NIkWK0M3NjUePHs3T9S0tJiaGZcqUobOzMwMCAtisWbMCvf7Dhw9Nq/d8+eWXmb6/sizzypUr/P777/nxxx+zfv36tLGxMf0NOTs7s3379hZpV74HMAD0f+prJYBJea2vIMpL1dEwGmkYNYoNxEojgiAIwkvAnADG4wJgibnHFubyUvUrClBiYiIdHByoUCg4ZMgQ03ZZllm2bFnWrl3biq3LLCkpid26dSMAdu3aNVdv5VevXp0pyd4333xjldEYsixz0qRJBEAvLy8C4KZNm8w67/jx4xw+fLhpyknRokU5ZMgQHj58OM8P78nJyZw+fbopyeCoUaMyBbH+/vtvenh4EABVKhWnTJmSY13Hjx+nl5dXppEgz5pu8Xg1i86dO1OlUlGSJLZp04Y7duxgamoqb968yX379vG7777j9OnTOWjQILZs2ZIVKlSgvb19lgCHVqulv78/mzVrxr59+3LSpElctWoVd+7cyUuXLjE5Odns70tsbCzHjBlDGxsbqtVqjhgxItMqENevX2ePHj1MiUDXr19foEkoo6Ki6ObmxipVqmRKQPosy5YtY48ePXjo0CEajUbu2rWLXbp0MS3R26BBA65bt45JSUkv3L60tDT279/fNBUpN9MZzp07x1KlStHW1pZ//fXXC7clP6WkpLBhw4bUaDT86aefCIBz5syxSju6du1KABw2bFiWJZOflJaWxtOnT3P58uUcOHAgBwwYYJE2WSKA8T2A3wCUAFABwHEAc/JaX0GUl6WjkRQTw9j//IcEGPvee2KlEUEQBKHQy00AozAWAOUBbASwBEBHc855WfoVBW3VqlWmB8AnHzb37t1LAFy1apUVW5eVLMucOXMmJUlitWrVGB4ebva5I0aMIABTvoOGDRsW6HKrqamp7N27t2lEAwB++umnzzznxo0bnDZtmmnlB41Gww4dOnDz5s1mP7iaIyIign369CEylhBduXKlKcAjyzKnTZtmetD19PTk4cOHTec+XmVEoVBQkiTa2tpy8eLFOQaIEhMTuWzZMlauXNn0VvjTTz/N1cgYWZb54MEDnj59mlu2bOGCBQv42WefsXPnzqxTpw49PDyyLGOpVqv5/fff5+r7cvv2bQ4YMIAKhYIODg6cOnVqpqk+oaGhrF27NgGwWbNmuRpJk1eyLLN9+/bUaDRmj5LYt28fFQqFaWrQ4+VPixQpwo8++sgieT1kWebEiRMJgK1atcrVFKnIyEhWqlSJGo2Gmzdvzve25YXRaDQFUIODg7l06dIs/24WdHs++eQTAmDHjh1zFaCzBItMIQHQBcB9ADcB1H+RugqivAwdjXv//ss69vZsClCePZt8SZf/EQRBEF4v1gxgAFgFIArAv09tfxvARQBXAIx+Th0jAbyR8flWc677MvQrrKFmzZpUq9Vs0qRJpu3du3enk5OTxXMP5NW2bdvo4ODA4sWL8+DBg2ado9fr2aRJE2q1Wk6cOJFOTk60sbHh/Pnzn/kGMz/ExsaapmR8+OGHtLW1ZcOGDU1JNJ/08OFDrlixgo0aNTI9fDdo0IBLly7lgwcPLNrOo0ePsm7dugTAatWqcf/+/Zna9eabb5ra9Pbbb/PatWum4eyPH1Rv376dbd1Xr17lyJEjTYlCK1euzOXLl1vsdyw1NZVXr17l33//zbVr17JOnTq0tbXN1VKfj507d840Ncbd3Z3ffvut6WdnNBq5ZMkSOjk5UaPRcPLkyfm+FO2T1q5dSwCcPXu2WcdHRUWxePHidHR0pEqlMuVHAMCSJUtyzpw5fPjwocXa++2331KhULBmzZqMiooy+7yYmBjWrl2bSqWS69evt1j7zDVmzBgC4IwZM0iS7dq1o7e3t9WXf507d64pKGrpfx+exRIjMAIAHAKwFOnLn30LwDav9RVEKewdjccrjdgA3PTZZ9ZujiAIgiCYzcoBjIYAqj0ZwMiY2noVQGkAGqQnDi0PoBKA7U8Vt4yyCMBsAAfNuW5h71dYQ2hoqOnB88lpDNHR0dRoNBw6dKgVW/d8YWFh9PPzo0ajMXukSFRUFH18fOjl5cVTp06xdevWpukOFy5csEg7b9y4wfLly1OtVnPZsmUMDAyku7s779y5k+XYvXv30sHBgQAYEBDAL774IlMOhoIgyzI3bNhgmuLSpUsX3nxievSePXuy5KpwdHTMdiqM0Wjkjh072Lp1a0qSRKVSyc6dO3Pfvn0F/uAXERFBV1dXVqhQIc9Bk4MHD7J+/foEwMDAQG7atMl0H5GRkaZh/YGBgdy9e3d+Np8kefPmTTo6OvKNN94wK+j28OFDli5d2jQFaNiwYTx//jwNBgO3bNliCpLZ29tzxIgRFvtd27x5M3U6Hf39/XM10iY+Pt4UIFu0aJFF2maOZcuWERmr6MiyzNTUVNrb23PQoEFWa9OTgoODqdFoWL58+VyNSstPlghgXADQLONzKePNRVhe6yuIUpg7Gn/OmEFHgO5ipRFBEAThJZTbAAaA4gBaZxS33JybQ32+TwUw6gLY8cTXYwCMMaMeJYAt5lyzMPcrrGXgwIFUKBT08PDINBJgzpw5BJDnJH4FKSYmhs2aNSMAfvzxx9mOaHjaqVOnaGNjwwYNGjAlJYXr16+ns7MzdTodZ8+ena+jMU6cOEF3d3c6OTlx165d7NChA5VKZbYrchw6dIj29vYsW7Ysjxw5YvU3uwkJCZw4cSJ1Oh11Oh0nTpxomgZgMBj46aefUqPRsF27dlne4D98+JBff/01AwMDCYBubm6cMGFCjqMzCsqOHTsoSRL79euX5zpkWeaWLVtMy9XWqFGDISEhpt+bP/74wxQ06N27d65GHTyL0Whk06ZNaW9v/9wgQFpaGpcsWUI7OzsCYM2aNXNc2SM0NJQ9e/akSqWiQqFghw4dePDgwXz//Tt48CCLFi1KNzc3njhxwuzzkpOT2aZNm0yjHwrS77//TqVSybffftv078vu3bsJoNBMbyHT2+To6EhPT0/+888/BX59SwQwHLPZFpjX+gqiFNaORuqiRSwNsJJOx5v5sGSRIAiCIBS03AQwAHTOmH66FsA6pK9CYlbeiWfU+XQAoyOAFU983QvAwuecvwzABgANnnHcQAAnAJzw9va22PfzZRQXF2fKTj916lTTdlmWGRgYyHr16lmxdbmTlpbG4cOHEwDfeusts4ZRBwcHE4Bpidg7d+6YpgjUrl07T9MMnrZt2zba2trSx8eHYWFhpqHe2SX9O3HiBJ2cnOjv78+IiIgXvnZ+unHjBrt06WLKf/Hdd9+ZHm6ffsgNCwvjkCFDTEk269Spw++++86iUypya/z48QTAtWvXvlA9aWlpXLlyJf38/EyjLpYtW8bk5GQmJSVx3LhxVKvVLFq0KFesWPHCSWO//vprAuDy5ctzPEaWZW7bto3lypUzjY5p3ry5WcGI27dvc/To0aalOGvVqsUffvjBrKCguc6fP08fHx/a2dnxjz/+MPs8vV5vyj8xevToAgvunTp1ivb29gwKCmJ8fLxp+2effUa1Wp1pW2Fw5swZenh40MnJiX///XeBXjvfAxgvYylsAQxDairTPv6YBHixYUPGFYK1nwVBEAQhL3IZwDjz5KgLAK4Azph7fg51vlAAI5fXagNgmb+/f/5/I19iixcvNiU2vHfvnmn74zeLL/pwZw0rVqygWq2mv7+/WQGIUaNGEQCXLVtGMv3hLzg4mC4uLtRqtZwxY0aeH94WLVpEhULB6tWrMzIykvv27aNSqeS7776b5eHrzJkzLFq0KH18fDJN1Shs9u/fz2rVqhEA69aty2PHjpFMH43xyy+/mEbCaLVa9unTh8ePH7dyi7OXlpbGRo0a5TkfxtMMBgM3btzI6tWrm3JkzJgxg7GxsQwLCzMlbG3QoEGeEz6eO3eOOp2OrVu3zvHhPTQ01DTdolSpUixatCgDAgJy/ZCdkJDARYsWmZZV9fb25uzZs/NtudiIiAhWqVKFKpWK69atM/s8g8HAgQMHEgCHDBli8VWEwsPD6eHhQS8vryxBxYoVK2bJG1RY3Lx5k+XKlaNGo+GPP/5YYNcVAYxCFsBIuHeP7UqU4GCA8ocfkvkYiRQEQRCEgpbLAMbZp75WPL0ttyW/ppCYeS0RwHiKLMssX748FQoFe/TokWlfly5d6OzsnC9LKVrDgQMH6ObmRkdHR/7666/PPNZgMLB58+ZUq9WZEoHevXuXHTt2NE0PyM1UGqPRyE8//ZQA2KZNGyYkJDAyMpLu7u4MCAjItEQpmf5g6urqSk9Pz1zlBrAWo9HIlStXsnjx4gRgSmSIjISQ06dPz7cpE5aUH/kwnibLMnft2sUWLVoQAB0cHPjpp58yPDycK1euZNGiRalWqzl27Nhc/X3p9XrWqFGDLi4ujIyMzLI/PDycvXr1IgAWK1aMX3/9Nd966y1qtVqePn06z/djNBq5detWNm7cOFOejPz4PX348KEpqe3MmTPNHlEhyzI/++wzAmCvXr3ydXTI0+2rVKkSHRwcskzHCA8PJwDOmjXLItfODzExMaxfvz4lSeJXX31VINcUAYxCFMCICA1lNVtbKgB+3aGD1ecjCoIgCMKLymUAYzaAHQDeyyi/A5hl7vk51Pl0AEMF4BqAUvh/Es8KL3KNp0th6VcUBocOHTINL39yOcx79+5RrVZzxIgRVmzdi7t58yaDgoIoSRK//PLLZ/bdYmJi6OfnR3d39yz5GTZu3EhXV1eq1WpOnTqVer3+mddNSkoyBT6GDh1Kg8HAtLQ0NmzYkLa2tlkCIZcvX2aJEiVYvHjxAll+Mz/FxcXx888/p62tLZs0acJNmzZZ7GHSUvIjH0ZOTp06xW7dulGhUFCtVrNv3748cOCAaRnd0qVLmz2FYvLkyQTAkJCQTNvj4uI4ZswY6nQ6arVajh49mg8fPuS0adMIgEuXLs23+zl58iR79eplypPx7rvv8sCBAy/0XJSSkmKaFvL478Ucsixz6tSppgBafk9P0uv1fOutt6hSqfjnn39m2f84oWdhzxGUlJTEd999l8hYrtnSI1byPYAB4GcA7wBQ5LWOgi6FoaNx6ocf6KlU0g7gtokTrd0cQRAEQcgXuQlgpB+OdwHMyyjtc3NuNnUFA4gEkAbgNoD+GdtbAbiE9NVIxr3INZ66nhiB8ZRevXpRoVAwKCgo0wPIl19+SQD5Mqze2hISEtipUycCYI8ePZ75xvvs2bO0s7NjrVq1mJycnGlfVFSUKf9D1apVeebMmWzriIqKYt26dSlJEufOnWv6vj5+W/zdd99lOv769essWbIkixUrxn///fcF71bIq/zKh5GTa9eucejQoaZ8M23btuU333xjSm7atWvXbEdVPHb8+HEqlUr27NnTtE2v13PRokV0dXUlAPbs2ZM3btwgmb6KjUKhYLdu3Szy0jUiIoJjx4415cmoWbMmg4OD8/xwbDQaOXLkSAJgx44ds/z9Pcs333xDAHzzzTdNyWVflCzL7NevHwHkuLJR+/bt6eXl9VK81DYYDBwyZAgBsHv37kxNTbXYtSwRwHgT6YmurgKYCaBMXusqqGLtAEZiSAjdAHoqlTz1ww9WbYsgCIIg5KdcjsD40pxthb1Yu19RWMTExFCtVmfpoBuNRvr5+fGNN96wYuvy15NvamvWrPnMN6abNm0iAPbt2zfbB5NNmzbRzc2NKpWKkydPzvQgcOnSJfr7+1On02V6S/64ziFDhmSq69atWyxdujSLFCnCU6dO5cOdCnmV3/kwchIdHc1JkyaxaNGiphwi3bp1o1qtppOTExcvXpwlCJCUlMSyZcvS09OTsbGxptVPypQpQwBs1KhRpjwj9+7do4eHBwMDAy2eXDIhIYGLFy82BWJGjRr1QvU9TnDbsGFDs5LwPrZmzRoqFArWq1cvX3J0TJkyhQA4YcKEbPfr9Xo6ODjw/ffff+FrFRRZljl9+nQCYLNmzbJMY8svFptCAsAJwAcAbgE4BKAvAPWL1muJYtWOxtdfkwoF/woIYERoqPXaIQiCIAgWkMsAxslstv1j7vnWLmIERmbz588nADo5OWUalfDXX39lO1LgVfDLL7/QwcGBAPif//yHR48ezfa4CRMmEAAXLFiQ7f779++zR48eBMDKlSvz5MmTPHDgAF1cXFisWDEeemJ1uosXL9LBwYG1atXKNMQ9MjKSgYGBdHBwMCXBFKzLEvkwcpKQkMBvvvmGPj4+BEB/f3/TiiG1a9fOlLNixIgRBMC//vqLx48fZ6NGjQiAZcqU4datWzMF2oxGI5s3b06dTpfjKCFLMBqNpsSaL7qkaHBwMNVqNStUqMBbuVgsISQkhGq1mkFBQZkSEufW+vXrTbk1chpdsWfPHgLgzz//nOfrWMuaNWuoUqkYFBRkkVWBLBLAAOACYATSlxPbCqALgAUA9rxIvZYq1ghgpCUnc2ilSlwKkO3akfk0HEkQBEEQChNzAhgABgM4CyARwD9PlOsAvnve+YWtiBEY6W/iSpcuTQD87LPPMu3r2LEjXVxccjWE+2Vy//59Tpw4kUWKFDENO9+9e3eWh8DWrVtTqVQ+cwnCLVu2sESJElQqldRqtQwICOCVK1dM+xMSElixYkW6uLhkWlUkOjqaFSpUoJ2dHQ8cOGCR+xTy5s8//6QkSezbt2+BXE+v13PDhg2sXLkyAdDZ2Zl2dnZUKBQcOXIkt2zZQgDs06cPu3fvTgB0dXXl4sWLs83F8nik0eMVdQpScnIyq1evTicnp0x/B3mxa9cuOjg40MvLK1c5Jv744w/a2NiwTJkyDA8Pz/V1d+/eTbVazcaNGz9zmsXnn39OlUplsVEMlvbHH39w3rx5FqnbElNIfgFwDulZvUs8tS9X82ALqhR0RyPu1i22zJhL9nmtWqSFE50IgiAIgrWYGcBwQnqyzWAAPk+Uos87tzAWEcAg//77bwKgJEm8du2aaXtkZCRVKhU/+eQTK7auYMTHx3PWrFmmVTTq1KmT6W32w4cPWaZMGRYrVuyZS5o+ePCA/fv35zvvvMP79++btsuyzJ49e1KSJO7YsSPT8UFBQdTpdNy9e7flblDIs8cjcNasWVNg15Rlmb///rtp+VONRmNKsOvs7EytVkudTsexY8fm+NC8Z88eKhQKdu/e3Wp5Ga5fv05nZ2cGBQW98ApGp0+fZokSJViqVKlc5dbYv38/HR0d6e3tzUuXLpl9XlhYGJ2cnFiuXLnnTl+pXLkyGzdubHbdrxNLBDBaZbNNm9f6CqIUZEfj5qFDrKTTUQlw6VPLiQmCIAjCq6awvrywRBFTSP6vY8eOlCSJrVq1yrT98fzoCxcuWKllBS85OZmLFy82DeWvXLkyg4ODaTAYeOHCBTo6OrJq1aq5nlKwZMkSAuB///tf07a4uDjWqlWLGo2Gv//+e37fipBPDAYDGzduTFtbW4aFhRX49Y8dO2b6G30caOzdu/czRxTcu3ePJUqUKJC8F8+zfft2AmD//v1fuK7g4GAC4M6dO3N1XmhoKIsVK8bixYtnWf40O5GRkfTx8WHx4sV5/fr1Zx57+/ZtAuCXX36Zqza9LiwRwMhu/mqWbYWpFFQA4+Hu3SyhUNAR4J8zZhTINQVBEATBml6nAMbj8rqPwLh79y6VSiUBZFq+0Wg0slSpUmzSpIkVW2c9er2ea9euZdmyZU05CVasWMFffvmFkiTl6q320aNHqdFo2LJlS9Ob40ePHrF+/fpUqVTcsmWLJW9FyAd37tyhm5sby5cvn28rW+TWpUuXOH36dIY+Jw+f0WjkW2+9VeB5L55l3Lhxz1zBw1xJSUl0cnLKtPqKuc6dO0dPT086OzvnmO+GTJ/qVb16ddra2mZKhpqTFStWEIBZgZEXJcvyS7HKyZPyLYABwB1AdQDnAVQFUC2jNAZwIbf1FWQpkI7Gpk2kjQ0XFi3KMPGfiiAIgvCaeJ0CGGIERroZM2YQAH18fDINy/7jjz8IgD+85iuuGY1Gbtq0idWqVSMAenl5sVWrVgTAOXPmPPf86Ohoent708fHxzSlJCkpiU2aNKFCoeDGjRstfQtCPinofBh5Zc28FzkxGAxs2rQpdTrdC6+wM2jQINrY2OQp38S1a9dYunRp2tvbZztly2AwsE2bNlQoFNy6datZdXbo0IGenp6ZAgsGg4EDBgygvb09bW1taWtrSxsbG+p0Oup0Omq1Wmo0Gmo0GqrVaqpUKqpUKiqVSioUCioUCtOIm6eLSqXir7/+mut7t5ac+hVS+j7zSZLUB8B7AGogPXnnY48ArCH5c64qLEA1atTgiRMnnn9gHlCWg/vpYQAAIABJREFUMbdNG9T67Tc0rFMH2LIFcHOzyLUEQRAEobCRJCmUZI1cHO8DIIDkTkmSbACoSD6yXAvznyX7FYWdLMvw8vJCZGQk5s+fj48++si0r3379jh48CBu374NjUZjxVYWDiTx559/Yvr06di3bx80Gg3S0tKwadMmtG/fPttzjEYjWrVqhT179uDgwYOoUaMGUlNT0a5dO+zYsQPr1q1Dz549C/hOhBcxceJETJkyBWvWrEGfPn2s3Zws9u7di6ZNm6Jbt25Yv349JEmydpNMoqKiULVqVdjY2CA0NBROTk55qufIkSOoW7cuVq5ciX79+uX6/Dt37qB58+a4cuUKQkJC0Lp1awDpf+PDhg3DokWLsHDhQnz44YfPrSstLQ3FihVDp06dsGLFCgDpf/d9+/bF+vXr0bNnT7i7uwMAJEky/Tyy+2jutrVr16JIkSI4efJkofr55iTHfkV2UQ1zCoAOeT3XzPrfBnARwBUAo7PZrwXwY8b+owB8n1enpUZg6BMTOSBj/eRBfn7kCyaaEQRBEISXDXK3jOr7AI4DuJrxdQCAXeaeX1jK6zyF5PfffycAav/H3n2HR1WlDxz/nqmZTHpCiUDooBQFDSqCrAgKFqQoKioSF5CyiLog2BZFFhTLsv6QVcFlAQvrSglFAuIiCCiCgiyI0qUHQnoyyWTK+/tjBgyRmjaZcD7Pc565c8+9576ZtDtnznmP1SqZmZmn9x85ckSMRqOMGTMmgNFVXWvXrpXbbrvt9CeiQ4cOPesyjS+99JIA8v7774uIb1rKPffcI4DMmDGjssPWykGg82GcT2pqqsTHx0vz5s0lNzc30OGc1bp168RkMkmvXr1KPRXC6/VK8+bN5eabby51HCdPnpTExEQxmUwyd+5cERF56623BJBRo0ZddDtr1qwRQObNmycivhFbSUlJAsjEiRNLHd/5zJo1S4CgmXp2rvuK0nQsPOJ/HAX8uWS51PbOcQ0jsBdoBFiArUCLEscMB97zbz8IfHqhdiviRiNz/37pEh0tgLzQoYN4XK5yv4amaZqmVXWX2IHxo///+5Zi+7Zd7PlVpVyOHRher1c++ugjiYmJEUAGDRp0Rv0rr7wigOzevTtAEQaHRYsWidlsFkBCQkJk5MiRpxMrLlu2TJRSMmDAAPF6veJyuaRv374CyDvvvBPgyLWyqAr5MEpyu93StWvXKpX34lz+9re/CSBvvPFGqds4NfWtLH+jsrOzpVOnTqKUkkGDBolSSu69995LWuHk2WefFZPJJFlZWeLxeGTgwIG/S9Zb3lwulzRu3FiuvfbaoMiHUZ4dGEP8jy+drVxqe+e4RntgRbHnzwHPlThmBdDev20CToJvSsy5SnnfaJyYOFHqKCVGkCeuuUZWTJok6/7xD/ll4UKRnTtFDh+WnAMHxJmbKxIEPySapmlaEPN6xet2i9vpFFdBgRTl54szN1ecOTkiBQUiDoc4MzPFU0Gfrl1iB8Z3/sct8tv/8f9d7PmBLlymOTD27dsn3bp1E0ASEhJ+l3zO7XZLvXr1pGvXrgGMMnisWLFCDAaD1K9fX4xGo5jNZhkwYIDExMTI1VdfLfn5+eJ2u+WRRx656LwZWtW3cuXKKpUPY8KECUEzssfr9cq9994rRqNR1qxZU6o2Dh8+LAaDQf7yl7+UKRaHw3E6p0379u0veanXNm3aSKdOncTj8cjjjz8ugIwbN65MMV2MmTNnCiBLliyp8GuV1bnuKy45B8YpSqkaIpJWqpMv3PZ9QHcRGeR/3h+4QURGFDtmu/+Yw/7ne/3HnCzR1uPA4wAJCQnXHThwoNzi/DkyktY5OXhK7L8F+Mq/3QzYje/OLBSwGwzcZbczo0EDsNt5YN8+CpTCbrUSarVit9loX78+/Tp1gtq1WZuWRkzDhtRu0YKYxo1RRmO5xa9pWtmJ14vH5cLrcmExmcDrpdDhwOlw4PV48LrdeF0uxOulZkwMeL2knThBXl6er87txuN2Y1SKpvXqgcfD3gMHyMrJ+e18jwerycS1TZuC18vmX34h81S9v0TYbHS48krwelm1dSuZubm/1Xu91AwLo0uLFuD1Mn/jRrIdDrxeL16PBxEhISqKO666CkSYsX49+YWFvnp/aVGjBnc3bw4ivLZ6NUVu92/1IrSrXZueTZrg9XoZ+9VXp//JeP2PnevUoWeDBhS4XPx53boz6rxeLz3r1eOeevXIKChg5MaNvvPxzbMXoH9CAnfXrs3h/Hye2Lr1jPMFeCIhgW5xcezMy+OJHTt85xaLYVxCArdGRfFDTg4j9+37rX3/45S6dekQFsbqnByePnz4d/Wzr7iC60JCWJKTwzNpab+rX1yrFi3NZj7KzeX5rCzf2HB/nQDrY2JoaDQyLT+f8fn5vnP5LbPWzrAwairFXwsLmVxUdEY9wEmzGTsw2u3m7WLtCqDg9P+hQcA/S/yMRgDZ/u0HgBcjImidnU15u5QcGEqp14Es4FHgCXyjKneIyAvlHlgFulxyYLjdbt5++23GjRuHwWDg1Vdf5V//+hdms5kNGzacPu7zzz/n7rvv5rPPPuO+++4LYMTB48033+SZZ55h9OjRFBYW8sEHH2CxWPjhhx9o1KgRQ4YM4YMPPmDChAm8+OKLgQ5XKycvvfQSr7zySsDzYaxevZouXbpUybwX55KTk0NiYiK5ubls2bLldJ6IS9G9e3d+/vln9u/fj8FgKHUsRUVFfPzxx/Ts2ZOYmJiLPu/YsWNcccUVTJo0iUOHDvHuu+/y/PPP89e//rXCvwcul4vmzZsTGxvLxo0bq/T3/Fz3FaYytLleKfUrvjwUC0QkswxtVRgRmQ5MB9+NRnm2Hb9mDbFt2xJtNjNn+nSKHA4c2dmEKwX16kF+PmNXrSI1PR2Hw0G+w0F+QQGtw8Kgbl1wOMgpKiLV6cThdpPv8eAQwbl9O/2WLMELdOa3G1MzUMtoZHitWjzXti2emjV5adcuasfHUzshgdqNG1O7eXOuaN2aUJ1AVDsP8XhwFRTgcTpx+4vH6STEbCbMasVdWMiBgwd9+10u3EVFuJ1OroiJoXZUFI68PDZu3477VF1RER63m2sSEmgQG0t6ZibLt2zB7X9z7nG7cbvddG3alKaxsRxMS+PTU/Uej+8Yj4eHW7SgeVQU21NT+eB//8Pjf/Pt8ZdnWrakWVgY648dY9rOnaf3e7xePCJMufJKGoeEsCQ1lSkHDuAVwSNyuv6zRo1IMBqZdfIkb6Wl+epE8OB7I/pd7drUAN7IyeGtvDw8Injh9OOx0FDsXi+ji4r4u9d7RuelwveGE3zvxj4o8ZqHAznF6j8tUX8FcMS/PRJYVqK+OfCLf/spYG2J+kR8CQXAN7/vxxL1nYEu/u2x+OboFdcDuMO//RfgeIn6h4C7/dsTAId/W/nLEIOBniYTSimmOZ0owOCvMwDhv/xCz9BQ3MD8zEwMSp2uMyhFq7Q02LuXIo+Hb1NTfe0qdbr+pNsNmZm43G72Zmb62j7VhlI4MjNBKTyFheQWFf3Wvj+RlSgFJhMGiwWbP85TxyilMMfEQHQ0tpAQ6uXknL72qURYtiZNIDKS6PR0rjEYfne+vU0biIigTmoqXfbtOx3bqfNDExPBbqfZkSPc679hKn5MSPv2EBLCdQcOMPjgwdNxnyqmm28Gs5nOe/diOXLkjLaVUtC5MyhFz127SEhNPaPOajJBp06gFA/t2EGt5s2pAp4FBgLbgCH4fuRL/tpoVcDmzZsZPHgwmzdvpkePHkybNg0RX8K6119//Yxj33//fWrVqkXPnj0DFG3wGTVqFFu2bOGtt95i8eLFjBs3jsLCQurWrcvIkSP54IMPeOGFF3TnRTUzbtw4vv76a4YPH067du1o0aJFpcdw/Phx+vXrR9OmTXnvvfeq9BvZ4iIiIpg/fz433HAD/fr1Y+XKlZhMl/aWNikpiX79+rF69WpuvfXWUsdisVh47LHHLvm85cuXA7Bt2zbmzp3LmDFjKqXzAsBsNvP8888zePBgUlJSuPPOOyv8muWt1CMwAJRS1+PLP9EL2AH8W0Q+KnNQSrUHXhaRbv7nzwGIyKvFjlnhP+ZbpZQJSAVqyHm+oIr4pGTh2LH0ef11XrvjDsYuK/mWo5REICcHz5EjrFu5ktR9+zh+6BCpqamkpqXRNTSUhwwGThw5Qnxa2uk3TadMBJ632zkWF0ffjAxqR0RQOyaGuJgYwsLC6N62La2aNiVbKb47dAh7dDRhMTHY4+Kwx8YSW68elqgouAxHe4jXi/J4wOUiPyuLgtxcXIWFuAoKcBcWojweGtauDS4Xv+zeTUZGBu6iIt8xRUXYTSZubtYM3G5SNm3iRGYmrqIi3C4XLpeLeLud+1q0ALebqevWcTwnB7fbjcv/Bv+qyEiGNm8OLhcjvvmG9MJCXB4Pbo8Ht9fLzZGRjE1IALeb2378kRy3G7fXi1sEtwj32e2Mj4xEXC7qHD3q2w+4RXABI5Visgi5+D6VLekl4GXgKFDnLPVv4ntzvBO48iz17+F7J/I90O4s9R/jeyP8FXC2fxdLDAbutlhYJkI/pxOj/02kUSmMwLzYWG4KDWVxYSGjMjJ8+4uVjxs2pEVYGIuys3nz2DHf+UphNBgwGgx80Lo1dcPCWHTiBHMOHcJgMPjO9de/fcMNRNtsLD58mGWHD/vqDYbTj5M6dSLEYmHZr7/yzZEjGIxGjEaj7xpGI8/deivKaGTlnj1sP34cg9GIwX++1WJhUKdOYDCwetcuDmRm/lZvNGK32bjn+uvBYGDDnj2cyM7GaDb/Vh8aSserrwaDgR/37iW3sNB3vr+E2e20bNoUDAZ2HTqE0+XCYDKdrg+126lXpw4oxeETJ/CKYDCZUAYDBpOJEJuN6OhoMBjIzMnx7TcafccYjZgsFqwhIWAw4PZ6T58bLDc8WsW7xBEYdqBQRDz+50bAKiKO859ZtVTnERj5+fm89NJLTJkyhZo1azJ16lTuvfdelFJMnTqVkSNHsmvXLpo2bQrAoUOHaNCgAWPHjmXSpEkBjj64OBwOOnbsyN69e9m4cSPNmjXjmWee4a233mLUqFG88cYb+m9tNXTs2DHatGlDXFwcGzduxG63V9q1PR4P3bt3Z926dXz33XdcffXVlXbt8jJnzhwGDBjAs88+y6uvvnrhE4opKCggPj6ee+65hzlz5lRQhOfWt29fUlJSyM/PD8jveFFREc2aNaNWrVps2LChyv59Odd9RZk6MIo1Hgf8DXhYRMr8rtffIbEL3weGR/B9sPiQiPxU7Jg/Aa1FZKhS6kGgj4jcf752K+pGo0+dOqQcPcr/Vq6kadeu5d7++XiKikjftYvUX34hdfduUvfvp43dztVKsX/PHgauXUuqw0Gqy0Wm/3s9E3gM+Ba46SxtfgrcD6y2WLjf5cJuNGI3GgkzmbBbLExu1YrEunX5sbCQWfv3Y/J3dJz64X/i2mtJiIxk07FjzNu163S7p+qfvv56atntrD98mM/37j1VyalfnWfatyfKauXLPXtYvnev7827x4Pb7cbt8fB/7doRCny0Zw/Jhw/j8XpPv8F3e72saN0ag8fD6wcPMi89/bc3+F4vZmBrfDy43QzLyODTwsLTb+5dQBy+njCAe4AlJV6bxviWvQHfJ9qrS9S3Abb4t9tx5jrDADcDX/u3r8L3Q27GNxTKrBTdzWbmxsaCyUSHEyc46fViMhgwKYXZYKBbVBQTGzYEk4meP/2EUwSz0YjJaMRkMNA1Pp4hV14JZjOPf/utb7/RiMlkwmQ00ql+fe6+6ipcSvH6N99gMpkwmky+epOJ6xs35vomTSjweJi3ZYuvzmw+XVo2bEjjevVwuN1s3L0bk8XiO8ZqxWgykVCnDnE1alDodnPoxAmMZjNGi8V3nMVCVHQ0IWFhuEVwut0YLRaMVitGiwXDZdhhpmnVySV2YGwAuopInv95GPCFiJzt31KVVV07MFasWMHQoUP59ddfGTx4MJMnT/Z1cPp16dKF1NRUfvrp9G0ZL7/8Mq+88gp79+6lYcOGgQg7qB04cIDExERiY2Pp0aMHb775Jn/605+YOnVqlX1zoZXdl19+ye23386AAQP417/+VWnXnTBhAuPGjWPGjBkMGjSo0q5b3oYMGcL06dNZtGgR99xzzyWf+9FHH5Gamkp4eHgFRfh7LpeL8PBwnE4nTz75JFOmTAnI7/j06dMZMmQIy5cvp1u3bpV+/YtR7h0YSqkIoDe+ERiNgYXAf0Tkh7IEWqz9O4G/41uRZKaITFRKvYIvmcdipVQI8CHQFsgAHhSRfedrs6JuNI5u3sxV113Hw3Xq8I9Dh6CK/qPxFBXhOHkSs9NJiMdD7vHjbNu2jbzMTPKzssjLziYvO5tuDRrQyGrlpwMHmLZpE3kFBeQXFpLndJJfVMTf4+NJ9HpZcPIkSVlZZ8zTBlhttdLOYGCWy8UwtxtK1G8xm7lKKf7P7Wa01/u7+n0GA/WUYjIwwePBBJiU8hVge506RJnNvJWTw8zc3N/q/J+Sf33NNZjMZt45epRlGRm+DgB/nc1sZk6nTmAyMWvfPn5IT8dkMmE2mzGbTESGhjLmllvAbGbxzp0cyM7GbLFg9r8JjwoPp+eNN4LZzHf79pFVWIjZasVstWKyWomIiKDllVeCycTBtDTcgNlmw2yzYbJaCQkLIywqCsxmvP5PvjVN06qDS+zA+FFE2lxoX1WllOoB9GjSpMng3bt3BzqccpOWlsbTTz/Nxx9/TPPmzZk+fTqdOnU645iMjAxq1qzJ2LFjmThxIuDLkdGgQQNatWp1emi0dulWr15N165d8Xg8DBw4kOnTp5dpfr4WHE7lw/jXv/5FUlJShV/vq6++omvXrjz00EPMmTMnqDvICgsL6dChA/v27TudN+Ziffvtt9x0003MnDmzVNNASkNE6N+/Px9//DHdu3dn2bJlAXv9i4qKaNq0KXXq1GH9+vVV8ufgnPcVZ8vseTEF2A9Mwb8SSDCUilzu7McXXxQXiMycWWHX0DRN07SqiktbhWQ9cG2x59cB317s+VWlVJdlVL1er8yaNUtiYmLEbDbLuHHjpKCg4KzHzpkzRwDZuHHj6X2LFi0SQBYsWFBZIVdbc+fOlRdeeEHcbnegQ9EqidvtlltuuUVsNpts3769Qq+VmpoqtWvXlubNm0tuBa1IVdn27dsnUVFRcu21157z79bZeL1eadasmXTq1KkCozvzei+88IIAopSSjIyMSrnu+bz77rsCyBdffBHoUM7qXPcVZRmBoaS0JwdIhQ719Hqhc2cyt27Fs349cS1bVsx1NE3TNK0KusQRGO2Af+NLuaOA2sADUk6jOCtLdZhCsnfvXoYMGcJ///tfbrrpJqZPn07L89zD9OnTh40bN3Lw4MHTowPuuusutmzZwoEDBzCbzZUVuqZVG5WRD6N43ouNGzfSunXrcr9GoCxdupQePXowePBgpk+fftHnvfrqqzz//PPs2bOHxo0bV2CEvml248ePJzY2lquuuoq1a0umY698TqeTJk2aUL9+fdauXVvlRmGc677ikselKaX+7t9crJT6XSlzpMHKYMD5zju0zc7mT3fcceHjNU3TNO0yJSKb8OUCHgYMBa4Kts6LYOdyuZg8eTKtWrVi06ZN/OMf/2Dt2rXn7bxwOBwsX76cXr16ne68OHDgACkpKQwcOFB3XmhaKcXHx/PJJ5/w888/M2LEiHJr1+VykZOTw/Hjxxk/fjxffvkl77zzTrXqvAC4++67ee6555gxYwazZ8++6PP69++PUqrCE3lOmDCB8ePH069fP9LT06vMyh9Wq5Vnn32W9evXs2rVqkCHc9EueQSGUuo6EflBKfWHs9WLyJpyiawCVMYnJRNvu40Xv/ySRS+8wD1//WuFXkvTNE3TqopLGYHhP/4moAHFlnQXkcpPB18GwToCY9OmTQwePJitW7fSu3dvpk6dSp06Z1t76kyLFy+mZ8+erFy5kq7+pOV/+ctfmDhxIvv376d+/foVHbqmVWunPqV/7rnnSEhIwOFwUFBQcEa5lH0ej+eM9h955JGgz3txLm63m9tvv50NGzawYcOGi15ZpVu3buzcuZN9+/ZVSM6ZSZMm8cILLzBgwAA6derEwIED2bx5M23bti33a5VGYWEhjRs3pkmTJqxZU7XexldEEs8nReTtC+2rSirjRqMoL4/r4uLIdLvZ8euvRNStW6HX0zRN07Sq4BKnkHyILwH4j8CpO2wRkZEVFV9FCLYOjLy8PF588UWmTp1K7dq1eeedd+jdu/dFn//HP/6RBQsWkJaWhtlsxuVyUb9+fdq2bcvnn39egZFr2uXB4/Fwxx13sHLlyjP2GwwGbDYbNpuN0NDQ09vFy4X2R0dH07t3b0JCQgL01VW848eP07ZtW8LCwti0aRORkZEXPGfu3Lk89NBDrFq1is6dO5drPK+//jpjx47l4YcfZvbs2Tz88MOsWbOGo0ePVqlOpFNLY3/11VfccsstgQ7ntIpI4rn5LPu2lLa9yiiVlWxrwwcfiAL5U+vWlXI9TdM0TQs0Li2J58/4P0QJRAEaAf8E5hXbZwdmAzPwLQtfZe4rysPnn38uCQkJAsiwYcMkKyvrks53uVwSGxsrDz/88Ol9CxYsEEAWLVpU3uFq2mXL4/HIvn375NixY5KVlSVOp1O8Xm+gwwoaX3/9tRiNRunTp89FvW4Oh0MiIiLk0UcfLdc43nrrLQHkwQcfFJfLJS6XS6KjoyUpKalcr1MeCgoKJD4+Xm655ZZAh3KGc91XlCYHRj+l1BKgYYn8F1/hW870snfDwIGMbNOGQ9u24akCCVo0TdM0rYrZji9x5yVTSs1USp1QSm0vsb+7UmqnUmqPUurZ87UhIvtEZGCJ3X3wdWgMBu4pTWxVkYiQlJTEXXfdRVhYGOvWreMf//jHRX0yWdw333xDeno6vXr1Or3v/fffp06dOlVmPremVQcGg4GGDRtSu3ZtIiMjsVgsVerT+qru5ptvZvLkySxYsIApU6Zc8HibzcYDDzzA/PnzycvLK5cY3n77bUaNGkXfvn358MMPMZlMbNy4kczMTO6ogrkSQ0JCGDt2LKtXr+brr78OdDgXVJqJPt8AbwG/+B9PlVFAt/ILLbi9sWoVyfXqYRwyBJzOQIejaZqmaVVJHLBDKbWiFInAZwHdi+9QShmBacAdQAugn1KqhVKqtVJqaYlS8xzt1gUO+bc95zgm6Bw4cIDZs2czaNAgNm/eTIcOHUrVTnJyMlarle7dfS/9/v37+eKLLxg0aBAmk+kCZ2uaplWeP//5z/Tp04cxY8awbt26Cx6flJREfn4+8+bNK/O1p02bxlNPPUWfPn34+OOPT/99TElJwWAwcNttt5X5GhXh8ccfp1atWowfPz7QoVzQJXdgiMgBEVktIu1FZE2xsllE3BURZDAyR0ej3n+ffT//zCcPPRTocDRN0zStKnkZ6AVM4swPQy5IRL7m9yM+rwf2+EdWFOFborWniGwTkbtLlBPnaPowvk4MOM/9kVLqcaXU90qp79PS0i4m5IDyer2A71NJq9VaqjZEhIULF3LbbbcRFhbGjh07GD58OEopBg0aVJ7hapqmlZlSipkzZ9KwYUMeeOABTpw41599n/bt29O0aVNmzZpVpuu+9957jBgxgp49ezJ37twzVmZKSUmhffv2REdHl+kaFcVmszFmzBhWrVp1UZ0+gVSaKSTr/I+5SqmcYiVXKZVT/iEGsTvuYEKjRiQtWMCOxZfvCrOapmmaVpz4Viz7FTD7tzcBm8vQZB1+Gz0Bvs6Icy6roZSKVUq9B7RVSj3n370AuFcp9S6w5DyxTxeRRBFJrFGjRhlCDh7/+9//+PXXX2nVqhU9e/akZcuWrFmzhkmTJlFXJyvXNK0KioyMZN68eWRkZNCvX7/frchSnFKKpKQk1qxZw759+0p1vRkzZjBs2DB69OjBf/7zHywWy+m648eP88MPP1TJ6SPFDR06lJo1a/LKK68EOpTzKs0IjI7+x3ARiShWwkUkovxDDG6TlywhXCkGP/IIXrceoKJpmqZpSqnBwDzgff+uOkByZV1fRNJFZKiINBaRV/378kXkMREZJiIfn+98pVQPpdT07Ozsygk4gESE119/HYDXXnuNdevW8dJLL3Hw4EHGjh0b4Og0TdPO7ZprruHdd99l1apVjBs37rzH9u/fH6UUc+Zc+mreM2fO5PHHH+fOO+/ks88+O6PzAmDFihUAVb4DIzQ0lGeeeYaVK1fy7bffBjqccyr1pEWlVGPgsIg4lVK3AFcDc0Qkq7yCqw5qtmjBlEGDGDBjBu898gjD//3vQIekaZqmaYH2J3zTPr4DEJHd58lNcTGOAPWKPa/r36eVksvl4tNPP2Xy5Mls374di8XCG2+8wcCBA7Hb7YEOT9M07aIkJSWxfv16Jk2aREJCAs2bN0cphVIKg8Fwxna7du2YPn06d955J0aj8azHlNxevXo1w4YNo1u3bsyfP/+sU/VSUlKoVasWbdq0CcArcGmGDRvG66+/zvjx41m+fHmgwzmrsmRdmg8kKqWaANOBRcAngE5FXUL/997jo/nzefbTT7ln1CjqtmsX6JA0TdM0LZCcIlJ0KrO+UsoESBna2wQ0VUo1xNdx8SBQYQmoRGQJsCQxMXFwRV2jvPhWort4+fn5zJw5kzfffJODBw/StGlTACZMmMDIkSMrIkRN07QKNXXqVDZv3szQoUMv6vgbbrjhktrv2rUrCxcuJCQk5Hd1Ho+HL774gh49emAwlGb9jMplt9sZPXo0Y8eO5bvvvrvk16IylKUDwysibqVUb2CqiExVSm0pr8CqE2Uw8P6CBfy9Sxcixo2DZctAL4ekaZqmXb7WKKWeB2xKqduA4Zwn70RxSqm5wC3HHfWTAAAgAElEQVRAnFLqMPCSiPxTKTUCWAEYgZki8lPFhO6bQgL0aNKkSUVdotxdaBnG9PR03nnnHaZOnUp6ejodO3Zk2rRp7Nmzh6effpo+ffpUUqSapmnlKyQkhLVr1/L999/j9XoRkdOPxbcdDgePPPII7du358knn/xd/dnOsVgs3HXXXdhstrNee+PGjWRkZFT56SPFDR8+/PQojGXLlgU6nN8pSweGSynVDxgA9PDvM5/n+Mtawz/8gbcnT4bRo2HePOjbN9AhaZqmaVqgPAsMBLYBQ4BlwAcXc6KI9DvH/mX+dipcMI3AuJCDBw/yt7/9jRkzZuBwOOjRowdjx449vdzqLbfcQqtWrQimzhpN07SSQkND6dSp0wWPe/jhh5k7dy633norYWFhZb7u8uXLq/TyqWcTFhbGqFGjeP7559m0aRPtqtjsgbKMY3kMaA9MFJH9/mGbH5ZPWNXUk0+y+aqr6PrII2Tu3x/oaDRN0zSt0imljMCHIjJDRPqKyH3+7bJMIalU1SGJ5/bt23n00Udp3Lgx06ZN47777mP79u0sXrz4dOfFyZMnWbt2Lb179w5wtJqmaZUjKSmJ/Px85s+fXy7tpaSkcMMNNxATE1Mu7VWWESNGEBMTUyVXJCl1B4aI7BCRkSIy1/98v4hMLr/QqiGTCcNLL7G6qIhnuncPdDSapmmaVulExAPUV0pZLnhwFSUiS0Tk8cjIyECHcsnWrVtHjx49aN26NQsWLGDEiBHs3buX2bNn07JlyzOOXbp0KV6vl169egUoWk3TtMp100030aRJE2bNmlXmttLS0vj++++DavrIKeHh4fz5z39m6dKl/PDDD4EO5wyl7sBQSnVQSq1USu1SSu1TSu1XSpVu4dzLSJsHHmD0DTfwz127WPXWW4EOR9M0TdMCYR+wXin1F6XUn0+VQAd1sYJpBMapgS1btmyhY8eO3HzzzXz77beMHz+eAwcOMGXKFBISEs56bnJyMvXq1aNt27aVGbKmaVrAKKVISkpi9erV7C/jiPkVK1YgIkHZgQHwxBNPEB0dXeVGYZRlCsk/gb8BHYF2QKL/UbuAl5Yto7HJxOPPPktBRkagw9E0TdO0yrYXWIrvPiS8WAkKwTQCo6CgAIApU6Zw+PBhpk6dysGDBxk3bhyxsbHnPM/hcPDFF1/Qq1evCyYA1TRNq0769++PUoo5c+aUqZ2UlBRq1qzJtddeW06RVa6IiAiefvppFi9ezJYtVWetjrJ0YGSLSIqInBCR9FOl3CKrxmwxMcx47TX2ut28p5N5apqmaZcZERkvIuOBN05t+59r5SwtLQ2AO++8k927dzNixAhCQ0MveN4XX3xBQUGBnj6iadplJyEhgS5dujB79my8Xm+p2vB4PKxYsYJu3boFxfKp5/LEE08QGRlZpUZhlOXV/Eop9YZSqr1S6tpTpdwiq+Y6jxrFsttu44nVq+HHHwMdjqZpmqZVGv+9ww7gF//za5RS/whwWBctmKaQnFKvXj3M5otfLG7hwoVER0dz8803V2BUmqZpVVNSUhL79+9n7dq1pTr/+++/Jz09PWinj5wSFRXFU089RXJyMlu3bg10OEDZOjBuwDdtZBLwlr+8WR5BXS7u+Pe/MdWoQWZSEu7CwkCHo2mapmmV5e9ANyAdQES2Ahde366KCKYpJKXhdrtZsmQJPXr0uKROD03TtOqid+/ehIeHlzqZZ0pKCgaDgdtvv718AwuAJ598koiICCZMmBDoUICyrULS+Szl1vIMrtqLieHIyy9z1datvK2nkmiapmmXERE5VGKXJyCBVHOlWZ127dq1ZGZm6ukjmqZdtkJDQ7n//vv57LPPyMvLu+TzU1JSuP7668+bayhYREdH8+STTzJ//ny2bdsW6HDKtApJLaXUP5VSKf7nLZRSA8sakFIqxr+6yW7/Y/Q5jluulMpSSi0t6zUD6YrHH+f6WrX4y9Kl7Fu9OtDhaJqmaVplOKSUugkQpZRZKTUa+DnQQWk+ycnJhISEVItPDjVN00orKSmJ/Px8FixYcEnnpaWlsWnTpqCfPlLcU089RXh4eJUYhVGWKSSzgBXAFf7nu4CnyhoQ8CzwXxFpCvzX//xs3gD6l8P1AkoZDExbtAgjMPTee5FSJorRNE3TtCAyFPgTUAc4ArTxPw8KwZgD42KJCMnJydx+++3Y7fZAh6NpmhYwHTp0oHHjxpc8jWTlypVBvXzq2cTExDBy5EjmzZvHTz/9FNBYytKBESci/wG8ACLipnyGf/YEZvu3ZwNnHb8oIv8FcsvhegFX74YbeK1vX1ZmZPDh0KGBDkfTNE3TKoRSarJ/s7OIPCwitUSkpog8EkwrmVXnHBg//vgjBw8e1NNHNE277CmlSEpK4quvvuLXX3+96PNSUlKIi4vjuuuuq7jgAuDpp5/GbrcHfBRGWTow8pVSsYAAKKVuBMrjo4haInLMv50K1CpLY0qpx5VS3yulvj+1lFhVNOyTT2gfFsaq2bPhxIlAh6NpmqZpFeFOpZQCngt0IJcb38t+YcnJyRgMBu6+++4KjkjTNK3qe/TRR1FKMWfOnIs63uv1VovlU88mNjaWESNG8J///Ieffw7crM+yvKp/BhYDjZVS64E5wBMXc6JS6kul1PazlJ7FjxNf5qlLzz51ZhvTRSRRRBJr1KhRlqYqlMFkYvl//8u/vF54+ulAh6NpmqZpFWE5kAlcrZTKUUrlFn8MdHCab/nUjh07UpXvmTRN0ypLQkICt956K7NmzcJ7EVP9f/jhB9LS0qrV9JHiRo0aRWhoKH/9618DFkNZViHZDPwBuAkYArQUkf9d5LldRaTVWcoi4LhSKh7A/3jZDEeIuP561AsvsPeTT1j72muBDkfTNE3TytuLIhIFfC4iESISXvwx0MFVR5eyCsnevXvZtm0bvXv3rsCINE3TgktSUhL79+9n3bp1Fzw2JSUFpRTdunWrhMgqX1xcHH/605/497//zc6dOwMSQ1lWIekL2ETkJ3x5Kj5VSl1bDjEtBgb4twcAi8qhzaAhzz5L/9BQej7/PL9exC+JpmmapgWRb/2PQT3aorom8Vy0yHfL1bNnzwscqWmadvno3bs3YWFhF5XMMyUlhXbt2hEXF1fxgQXI6NGjCQkJCdgojLJMIfmLiOQqpToCXYB/Au+WQ0yvAbcppXYDXf3PUUolKqU+OHWQUmot8BnQRSl1WClVLbq5VEgIcxYvxiNC327dcOYE9T2epmmaphVnUUo9BNyklOpTsgQ6uIsVTEk8L2UERnJyMtdccw0NGzaswIg0TdOCi91u5/777+ezzz4jPz//nMelp6fz3XffVdvpI6fUqFGD4cOH88knn7Br165Kv35ZOjBOrThyFzBDRD4HLGUNSETSRaSLiDT1TzXJ8O//XkQGFTvuZhGpISI2EakrIivKeu2qokmXLswaM4bvHQ6eat8+0OFomqZpWnkZCtwMRAE9ShSdNbICXSiJ54kTJ1i/fr1efUTTNO0skpKSyMvLY8GCBec85osvvqh2y6eey+jRo7FarUyaNKnSr12WDowjSqn3gQeAZUopaxnb04rpPXkyoxMTeW/HDpJ1Uk9N0zStGhCRdSIyDBgjIo+VKH8MdHyXs6VLl+L1enUHhqZp2ll07NiRRo0anXcaSUpKCrGxsSQmJlZeYAFSq1Ythg4dykcffcTevXsr9dpl6XC4H1gBdBORLCAGeKZcotIAeHXtWiY3aEC399+Hn34KdDiapmmaViZKqVv9m5nBPIUkmFzsFJKFCxdSv359rrnmmgqOSNM0LfgopUhKSmLVqlUcOHDgd/Ver5fly5fTrVs3jEZjACKsfGPGjMFsNjNx4sRKvW5ZViFxiMgCEdntf35MRL4ov9A0U0gIY775BltEBDm9epF79GigQ9I0TdO0sviD/7Hk9BE9haSCnW8KSV5eHitXrqR3794XnGqiaZp2uXr00UcBmDNnzu/qtmzZUq2XTz2b2rVrM2TIEHbt2oXb7a6065oq7Upa6cTHU/Thh7S//XZa3nADnx44gDLomTqapmla8BGRl/yPjwU6FqVUI+AFIFJE7jvXvmB3MSMwVqxYgdPp1NNHNE3TzqN+/frceuutzJo1ixdffPGMDt/qvnzquUyePBmLxVKpnd/6nXAQsNx2G492785nhw/zf/dVi/spTdM07TKklPrz+coltDNTKXVCKbW9xP7uSqmdSqk9Sqlnz9eGiOwTkYEX2nc5SE5OJjY2lg4dOgQ6FE3TtCotKSmJffv2sW7dujP2p6SkkJiYSI0aNQIUWWBYrdZKH7mnOzCCxJjPP+ee2rUZvXAh37z/fqDD0TRN07TSCPeXRGAYUMdfhgLXXkI7s4DuxXcopYzANOAOoAXQTynVQinVWim1tESpWfYvpXpwuVwsXbqUHj16YDLpgbmapmnn06dPH8LCws5I5pmRkcGGDRsuq+kjgaQ7MIKEMhiYvWEDCSYT9w8fzgmd1FPTNE0LMiIyXkTGA3WBa0VklIiMAq4DEi6hna+BjBK7rwf2+EdRFAH/BnqKyDYRubtEOVHar0Ep9bhS6nul1PdpaWmlbabSXGgKyddff01WVpaePqJpmnYR7HY7ffv25bPPPiM/Px+AlStX4vV66d69+wXO1sqD7sAIIlH16zP/ww9pKoJryBDweAIdkqZpmqaVRi2gqNjzIv++sqgDHCr2/LB/31kppWKVUu8BbZVSz51rX0kiMh0YD2y2WCxlDLnynGuI78KFC7HZbNx2222VHJGmaVpwSkpKIjc3l4ULFwK+6SMxMTFcf/31AY7s8qA7MIJMmwcfZNX06dRZvx556aVAh6NpmqZppTEH2KiUelkp9TLwHb5pIZVGRNJFZKiINBaRV8+17xznLhGRxyMjIysv4AogIiQnJ9OtWzdCQ0MDHY6maVpQ6NixI40aNWLWrFmnl0+9/fbbL5vlUwNNd2AEITVoEFkPPUSPiRP5/OWXAx2Opmmapl0SEZkIPAZk+stj5+swuEhHgHrFntf17yt3SqkeSqnp2dnZFdF8uTrfFJIffviBI0eO0Lt370qMSNM0LbgZDAYGDBjAqlWrWLx4McePH9f5LyqR7sAIUtapUzkSEkL/V17h1xJZcDVN0zStqhORzSLytr9sKYcmNwFNlVINlVIW4EFgcTm0+zvBOALjbFNIkpOTMRqN3HXXXQGISNM0LXg9+uijiAjDhw8HuOyWTw0k3YERpGwxMcxbuhSvCPd164YzJyfQIWmapmlapVBKzQW+BZorpQ4rpQaKiBsYAawAfgb+IyIVkvE6mEZgnE9ycjKdOnUiNjY20KFomqYFlQYNGtC5c2eOHTvGddddR61aZU3jpF0s3YERxBp36cLsZ5/lB4eDp9q3D3Q4mqZpmlYpRKSfiMSLiFlE6orIP/37l4lIM38Oi4kVeP2gG4FR0u7du/npp5/06iOapmmllJSUBKCnj1Qy3YER5Hq++ipjrr+exTt2cPLddwMdjqZpmqZVe9VhBMaiRYsA6NmzZ4Aj0TRNC059+/Zl6NChDBo0KNChXFZ0B0Y1MHHNGn688UbiRo2C7dsDHY6maZqmVWvVYQTGwoULadu2LfXr1w90KJqmaUHJZrPx7rvv6r+jlUx3YFQDppAQaixYgDs8nNc7dybn8OFAh6RpmqZp1VYwjcA42yokqampfPvtt3r6iKZpmhZ0TIEOQCsn8fFsnTCB54cMYdONN/KfgwdRBt0/pWmaVp2J241yu/EUFJB18iQuh4Mih8P3WFBA7chIom02cjIz2bJjB67CQm5s0YKwHj0CHXpQE5ElwJLExMTBgY7lYhVfhWTJkiWIiF4+VdM0TQs6ugOjGrnu8cd5ddEixixbxtv33stTCxcGOiRN07SgI16vrwMgLw+cTsIsFnA62bN7NwU5ORQVFODMz6eooIA4m41WV1wBTieffv01hQUFFDmdFBUWUlRUROu4OLrWr4+nsJDnv/ySIpeLIpcLl8tFkdtN95o1eTA+nlyHg/s2baLI4/mteL0Mj4piiN3O4YIC2qWmUiSCSwQXUARMAUbiW3Kj9Vm+lpnAY8AO4Bb/vv9FRNA6CEYOaOXjbCMwkpOTadSoEa1atQpARJqmaZpWeroDo5oZvWQJ39SpwzPJybR79106DBsW6JA0TdPOz+0Gp5OctDRy09Nx5uZSmJODMz8fiopo26ABOJ1s2LqVQ6mpOB0OnAUFOAsLCTMYePTqq8HpZPqGDexMS8NZVOQrLhf1rFYmNmsGTieDt25lR14eRR4PTq8Xp8dDosXCx5GR4HRyTWYmv3i9FBUL7R5gkX+7A3CiROgPAR/7t/8IOErUDwG6Agp4G7ACFqV8xWDgyuxsyM3FYDSS43RiMRiwmUxEhoRgNhqJbtAAGjXCLkKPLVuwmM2YTSbfo9lM4pVXQuPGXOF2839bt2K2WLBYrZj95frmzSEhgauKivjv/v2YQ0JodPXV5fe9u0wppXoAPZo0aRLoUC7aqREYubm5fPnll4wYMeKMURmapmmaFgx0B0Y1owwG/rVhA4lNmvDoE0+ws2dPTFdcEeiwNE2rosTrBbcb5XSSn55O+rFjFObkUJibS0F2NoV5edzYqBFWr5dtO3fyw65dFDocFDgcFBYUUFhYyPOJiVjdbj7bsYOl+/fjLCqi0OXC6XZT6Haz6sorUU4nLx06xEdZWRR6vRSK4BTBBGT5YxkKzC0RXy0g1b89CVhSor4x8Ohc31nzgG8Aq1KnyzU2G5jNYLWivF5C/J0DVpMJq8nEVTEx0K4dWCz027qVLLcbi8WC1WrFYrXSLD4eEhPBYuG9//0Pj8GANTQUS0gIVrud+Fq1oFkzMJv58dgxTDYbltBQLHY7FrudkIgICA/HYDRSeJ7vgx349jz10cD089THAE+cpz4SuPU89dqlCcYpJKcsX76coqIinf9C0zRNC0q6A6MaiqpfnwUff4yrf39Mjz4KK1aA0RjosDRNuwjuwkIKMjJwZGRQkJVFQVYWV4SHE2kykXbsGBu2bqUgL89X8vMpcDjo3bQpDUJC+PHAAWZs2UKB0+krRUUUuFz8vWFDrlKKBampjElNpdDjoVCEAhEKgf8BLYEPgKfOEtOvQH1gMfDiWeqf2LABq83GHo+HNQUFhBgMWI1GQoxGrEYjbrsdc1wcDYxGbkpPJ8Rsxmq1EmKxEBoSAt26gdXKHw8c4JbsbKw2GyGhoVhDQwkLD4cbbwSrlSlpaUz0eLCGhflKeDi2yEioUQOsVr64wN+583UAADx7gfoLZQtoqkc2aFVQySkkCxcuJC4ujptuuilAEWmapmla6VW5DgylVAzwKdAA333z/SKSWeKYNsC7QATgASaKyKeVG2nVdvX990NeHgwcyLbhw2n9/vuBDknTgpvXizcvj7SDB3FkZJCfno4jK4v8zEwSIiJoHBlJXmYmH61eTUF+Po78fBwFBTgKCrinTh06R0dz8ORJhn3/PY6iIhxuNwVuNw6Ph4l2Ow8A3+XlcaPH87tLfwrcD2zFN6WhpGZAA6U4YrHw76IibAaDrxiN2IxGnCJQowY1bDZuMBiwWa2E+DsQbDYbMR06QI0adM3M5J9HjhASGkqI3Y4tLIyQsDBqXnstREYyrLCQh9xubJGRhPiLNSLidMLg5/zlXB7zl3PpeoFvQeML1Guadn5FRUV8/vnn3HfffRj1BxuapmlaEKpyHRj4PgT7r4i8ppR61v98bIljHMCjIrJbKXUF8INSaoWIZJVs7LL2xz8yd84cHpo+naXx8dz18suBjkjTKo4IFBWRcegQuSdOkH/yJPmZmeSlpxNtMtGmZk3Iz+e9FSvIyskhPz+ffIcDR0EBN0RF8Vh8PJKXxx82bCDf5cLh8eDweMj3ehlsMPCqx0M+UPssl/4L8AqQBxTPOmPANzWg0Z49dI6LQ5lMnMjPJ9RsJsZmI9RiwWaxULNlS2jcmASvl1d27CA0NBSb3Y4tNBRbWBg3Xn01JCRwvdfLphMnsEVG+kpUFLboaMLi4iA0lLuUIv08L9HN/nIuLf3lXGL8RdMud8GUA6P4CIzVq1eTk5OjVx/RNE3TglZV7MDoyW/J0mcDqynRgSEiu4ptH1VKnQBq8NtUas2v14IFtKlbl/6vvMLmrl1p0LFjoEPSNNyFheQdP07u8ePknTiBNy+PljVrQl4eK775hl8PHSLP38mQl5dHLbOZUU2aQH4+Q777jh05OeS7XOS53eR7PNxoMDBfBDwe2gIHS1yvN7DAv/0ikI4vqaIdCFWK0PBwyMlBhYZiMxqJCAkh1GLBHhKCPSSEdo0bQ5s22G02pm3eTGh4OPaICEIjIrBHRdGwQQNo0oQaVitH8/MJjYnBFhuLOTT0jCR59YBN53ld4vF1hpxLBJB4Sa+0pmkVIRhzYCilSE5Oxm6306VLl0CHo2mapmmlUhU7MGqJyDH/diq+HG7npJS6HrAAeys6sGBki4lh/uefc+2tt9K1c2cGdenCkPHjib7hhkCHpgURd0EBpoICyM3l0K5dHNq3j9yTJ8lJTycnI4Oi/HyGXXMN5OUxc+NGvj54kNyCAvKcTnKdTkJF+LJGDcjLo1dGBou83jPabwbs9G+/hq/X8pQQ4EazmVFHjoDdjrOwELPBQN2ICOxWK2EhIbSOj4cOHSAsjL/u2IHLZMIeEUFYVBT26Gji69aFFi3Abme3y4UtNhZrZOTpqQ/FrTjP62AAhp+n3oivE0LTNK2qEREWLVpE9+7dsdlsgQ5H0zRN00olIB0YSqkvOftI7BeKPxERUUr9fgHz39qJBz4EBoiI9xzHPA48DpCQkFDqmINZo86dWfDmm4wdN45xK1YwdMUKaN6cr6+7DtMf/sCNf/wjBlNV7MvSysLrdpN3/Dg5R4+SffQoTaOjsRQU8NNPP/Hdtm3kZGWRm5NDTk4Oufn5vNmyJWGFhbz7yy/MOHKEXLebHLebHH+ixyLADEwGppW4lgkYOm8eymJhq1KsdrsJM5kIN5sJs1ioHRoKN98MYWH0PXiQ6woKCAsPJzwykrDISOJq1YKOHSEsjI8cDpTdTljNmthr1sRosZxxrVkX+Lr7X6A++uJfQk3TtGrj+PHjHD16VK8+ommapgU1VTI7daAppXYCt4jIMX8HxWoRaX6W4yLwfVA7SUTmXUzbiYmJ8v3335drvMEmfds2YteuheRkblm5kjVALYOBe5o1o9eDD3Lrk08SEhUV6DAve0V5eeQcOUL2kSPkpKaSfeIEV8fFEeP18suuXSz47juyc3LIzs0lJz+f7IIC/l6vHk2Liphz9CgjMzLIAYr/du/EN9LhLWB0sf02IMJgYEtCAvHR0cxxOPgsM5MIm43w0FAiwsKICA/nmTvvxBodzfbMTI4UFhIeF0dEzZqE16xJeO3aRNeti7JaK/FV0jStKlFK/SAil9Usp2C4r1i8eDE9e/YkMTGRLVu2kJaWRnS07srVNE3TqrZz3VdUxY/dFwMD8I0kHwAsKnmAUsoCLATmXGznheYT27o1tG4Nw4eTfOAAKW++SfKiRcz95RdmvPwyd0yYwLLevaFXL/L/8AfsdesGOuSgVJSXR/ahQ2QdPkzW0aNkHTtG88hIEkwmDv36K++tXk1WTg5ZublkORxkFRbySnQ0XdxuvkhPp5vT+bs2U4DuwM/4hipZgUiliDCZiDSbcRiN0LQpTevVY8DRo0SEhxMZGUlkTAyRsbHU6tgR4uP5owh9DQbCa9cmPD4eU0jIGdd51F/OpZW/aJqmXa6CKYnnKXv37uWWW27RnReapmlaUKuKHRivAf9RSg0EDuBbPRClVCIwVEQG+fd1AmKVUkn+85JE5McAxBu0ourXp9/UqfSbOhVnTg5f/d//YfnuO1i3jvR586gLdIiOpleXLvQcPZp6l1HeDPF6yUtNJfPAATIPHSLz6FHiTSaah4aSm5rK6ykpZGZnk5mTQ5bDQWZhIUPCwxkA7M7IoFlh4e/anIYvf0IGvmkYUUoRZTQSZbEQZbWi6teHZs1ophSv7NtHZFSUr/MhLo7IGjW4pk0bSEjg7tBQCsPCsEZEnDX29v5yLtHoaRSapmllEYxJPDMzM/X0EU3TNC3oVbkpJBUpGIZ6VgleLydWrGDKK6+QvHkzvxQVAXCtzca0Rx7hxieegFatoNjqClWRMyeH7EOHyD56lOxjx7C73VwVGQmZmUxZtIi09HRfJ0RuLpkOB7fZbIy22XBlZBCano67RHujgTeAHHwdAFFKEX2qAyIkhEFNm/Jgq1bk2GxM/flnovwjH6Jq1CCqdm2atWxJzcaNkchIsNvPmkBS0zQtWOkpJFXTqSkkAAcPHqRevXoBjkjTNE3TLiyYppBogWYwUPOOO3j1jjt4FdiZksKiqVNJXruWGjNmwIwZLK1Vi1V16nBP//7UadkSg9GI0WymQb16YDCQkZ1NgdOJwWRCGY0YDAaMZjOxsbFgMOAoLMTt8fxWbzRiMJmw2mygFIV5eWQfPkz2kSNkp6aSffw4FqeTTnXqQHY201auZE9qKtl5eWT7c0C0Mpv5e2QkZGfT5MSJ3y1L0weY79+eiG/N3WiliDaZiLZYcMfEwHXXYY6O5vlt2wiPjCQ6Lo7oGjWIrl2bRldeCS1bEh4VhSss7JyJTyMokY22hKrd7aNpmqZVR7Vq1dKdF5qmaVrQ0x0Y2gU1v+MOxtxxB2MAUlNhyRK2v/UW/9i8mSmbN58+zgY4/NsjgY9LtFMTOO7f7ocv2UlxjfhtLdxuwNcl6tsAW/zbs/Hlgog0GIg0m4k0mzFERMC110JkJMN27aLQZPJNw4iNJTI2lvqNGkG7dhAdzQGLhdAaNc45CmL8eV4Phe6E0DRN04JDTk4OAI0aNQpwJJqmaZpWdroDQ7s0tWvD4P9n787jbCz7P4B/rruP4XcAACAASURBVLPPPmdmGIxlmGEsZakRsi/hQaEIpeJRiqxpkSfpSVoeFUpCi5QkFCVlVLbIvm8TMsKYwZh9Pdvn98cZ87Nvc86cM+P7fr3u15xzn/u+ru+5Mb7ne677up7C2KeewrOnTmHNxx8jIyUFDrsdWqWApk0BhwODDh5Eq+RkkITD4QAdDph0OqBJE8DhwL/37kWrM2f+/3USQUajs8DgcGDYgQPo43A454AoVw5B5cqhXJUqQMOGQFAQNvn7Q6PXXzXMMdd5G36uvSpCCCFKGaVUDTgHzAWR7FW4rweArnAOpvuM5EoPhugS2dnZAICAgAAPRyKEEEIUnxQwxC0LqFQJ90+ceMXX2hZuV9P9Om33vs7rMnuEEELcvpRSnwPoBuAMyTsu2N8ZwDQAWgCfknz7am2QPApgkFJq8QX7lgJYqpQyA3gXQKkvYJynkXmXhBBClAFSwBBCCCFEafMFgOkAvjy/QymlhXPBp/sAnASwVSn1I5zFjLcuOf/fJM9co/1XCtsSQgghhBeRAoYQQgghShWS65RSkZfsvgfAkcKRFVBKLQDQneRbcI7WuC6llIJzOfdfSO643vFCCCGEKFkynlAIIYQQZUEEgBMXPD9ZuO+KlFKhSqmZABoppV4u3D0cQAcAvZRSz1zlvMFKqW1KqW1nz551UehCCCGEuBEyAkMIIYQQtx2S5wA8c8m+DwB8cJ3zZiulkgDcbzAY7nZjiEIIIYS4xG1VwNi+fXuKUuofFzcbBiDFxW0Kua7uItfVPeS6uodcV/dw13Wt5oY2b0YigCoXPK9cuM/lSC4DsEwp1bO05BUrVqyA8w6Z25b8PnEPua7uIdfVPeS6ukeJ5hW3VQGDZDlXt6mU2kYy1tXt3u7kurqHXFf3kOvqHnJd3aMMX9etAGoqparDWbjoC+ARd3YoeUXpIdfVPeS6uodcV/eQ6+oeJX1dZQ4MIYQQQpQqSqlvAGwEEKOUOqmUGkTSBmAYgDgABwEsJLnfk3EKIYQQwrVuqxEYQgghhCj9SPa7yv6fAfxcwuEIIYQQooTICIzim+3pAMooua7uIdfVPeS6uodcV/eQ6+rd5M/HPeS6uodcV/eQ6+oecl3do0SvqyJZkv0JIYQQQgghhBBC3DQZgSGEEEIIIYQQQgivJwUMIYQQQgghhBBCeD0pYBSDUqqzUuovpdQRpdRYT8dTFiilqiilViulDiil9iulRno6prJEKaVVSu1USv3k6VjKCqVUsFJqsVIqXil1UCnVzNMxlQVKqdGFvwP2KaW+UUqZPB1TaaSU+lwpdUYpte+CfSFKqV+VUocLf5o9GaP4f5JXuJ7kFe4jOYV7SF7hHpJXuIY35BVSwLhFSiktgI8A/AtAXQD9lFJ1PRtVmWADMIZkXQBNATwr19WlRsK5vKBwnWkAVpCsDaAB5PoWm1IqAsAIALEk7wCgBdDXs1GVWl8A6HzJvrEAfidZE8Dvhc+Fh0le4TaSV7iP5BTuIXmFi0le4VJfwMN5hRQwbt09AI6QPErSAmABgO4ejqnUI5lEckfh4yw4f2lHeDaqskEpVRlAVwCfejqWskIpFQSgFYDPAICkhWS6Z6MqM3QAfJRSOgC+AE55OJ5SieQ6AKmX7O4OYG7h47kAepRoUOJqJK9wA8kr3ENyCveQvMKtJK9wAW/IK6SAcesiAJy44PlJyH+ILqWUigTQCMBmz0ZSZkwF8CIAh6cDKUOqAzgLYE7hMNpPlVJ+ng6qtCOZCOBdAMcBJAHIILnSs1GVKeEkkwofJwMI92QwoojkFW4meYVLSU7hHpJXuIHkFW5XonmFFDCEV1JK+QP4DsAokpmejqe0U0p1A3CG5HZPx1LG6ADcBeBjko0A5ECG4xdb4b2T3eFM5CoB8FNK9fdsVGUTnWupy3rqosyTvMJ1JKdwK8kr3EDyipJTEnmFFDBuXSKAKhc8r1y4TxSTUkoPZ5LxNcnvPR1PGdEcwANKqWNwDktup5Sa59mQyoSTAE6SPP9t3mI4Ew9RPB0AJJA8S9IK4HsA93o4prLktFKqIgAU/jzj4XiEk+QVbiJ5hctJTuE+kle4h+QV7lWieYUUMG7dVgA1lVLVlVIGOCeC+dHDMZV6SikF531/B0m+7+l4ygqSL5OsTDISzr+rq0hK5bmYSCYDOKGUiinc1R7AAQ+GVFYcB9BUKeVb+DuhPWQSM1f6EcAThY+fAPCDB2MR/0/yCjeQvML1JKdwH8kr3EbyCvcq0bxC587GyzKSNqXUMABxcM5k+znJ/R4OqyxoDuAxAHuVUrsK940j+bMHYxLiWoYD+LrwA8dRAAM9HE+pR3KzUmoxgB1wriCwE8Bsz0ZVOimlvgHQBkCYUuokgAkA3gawUCk1CMA/AB72XITiPMkr3EbyClHaSF7hYpJXuI435BXKeZuKEEIIIYQQQgghhPeSW0iEEEIIIYQQQgjh9aSAIYQQQgghhBBCCK8nBQwhhBBCCCGEEEJ4PSlgCCGEEEIIIYQQwutJAUMIIYQQQgghhBBeTwoYQogSo5QKVkoNLXxcqXBJKyGEEEKImyZ5hRC3H1lGVQhRYpRSkQB+InmHh0MRQgghRCkneYUQtx+dpwMQQtxW3gYQpZTaBeAwgDok71BKDQDQA4AfgJoA3gVgAPAYgAIAXUimKqWiAHwEoByAXABPkYwv+bchhBBCCC8geYUQtxm5hUQIUZLGAvibZEMAL1zy2h0AHgTQGMAkALkkGwHYCODxwmNmAxhO8m4AzwOYUSJRCyGEEMIbSV4hxG1GRmAIIbzFapJZALKUUhkAlhXu3wugvlLKH8C9ABYppc6fYyz5MIUQQghRCkheIUQZJAUMIYS3KLjgseOC5w44f1dpAKQXfssihBBCCHEtklcIUQbJLSRCiJKUBSDgVk4kmQkgQSnVGwCUUwNXBieEEEKIUkXyCiFuM1LAEEKUGJLnAGxQSu0DMPkWmngUwCCl1G4A+wF0d2V8QgghhCg9JK8Q4vYjy6gKIYQQQgghhBDC68kIDCGEEEIIIYQQQng9KWAIIYQQQgghhBDC60kBQwghhBBCCCGEEF5PChhCCCGEEEIIIYTwelLAEEIIIYQQQgghhNeTAoYQQgghhBBCCCG8nhQwhBBCCCGEEEII4fWkgCGEEEIIIYQQQgivJwUMIYQQQgghhBBCeD0pYAghhBBCCCGEEMLrSQFDCCGEEEIIIYQQXk/n6QBKUlhYGCMjIz0dhhBCCFHmbN++PYVkOU/HUZIkrxBCCCHc42p5xW1VwIiMjMS2bds8HYYQQghR5iil/vF0DCVN8gohhBDCPa6WV8gtJEIIIYQQQgghhPB6UsAQQgghhBBCCCGE15MChhBCCCGEEEIIIbzebTUHxu2IDgcOxcWh1sGDUPv348eEBCxMSIDNbofd4YDd4YDN4cDXDRogAMCnx4/j6+Rk2M6/RsLucGBTzZrQOxx4PTkZ8zIynPtJOAAEaLXY36gRVEgIPk9NxY7cXJiDgmAOCYE5NBRhFSvi/o4dAbMZaUpBX64c/MqXh9JI/UwIIYQQQpQ+f//9N/r27Yv27dvj+eefR1hYmKdDEuK2IAWMMig3JQWrp0/Hz999h1/i45Fgs2EXgAYVKiDRYsGmzExolYJWKeg0GmiVgu30acBkgt1igYOEXqOBj04HrUYDrUYDVq0KGAyoYjIh9swZaLVaaDUaaDQaOCwWqIAA4MwZ7Dx8GPOzspBOgoXxVACQ9OabAIAnACyD8y+eWSmYdTrc4e+P7+65BzCb8eHJk0h2OBASEoKwChUQFhGBytHRaNCsGRAaCgYGSuFDCCGEyymlqgL4AEAqgEMk3/ZwSEIIL5WTk4OePXviyJEj2L59Oz766COMGDECY8aMQUhIiKfDE6JMUySvf1QZERsby7I6W7gtPh66X3/Fxq+/RtvNm1EAwBdA+/BwdGnbFr1eeAFhd91VYvE4bDZkJiYi7Z9/kHfmDOqazUBaGn5auxYHjx5FWloa0jIykJaVhVAAH1WoAKSlof2xY1hjs8FxQVv3AthQ+LgRgCSNBmF6PcJMJoT5+6N5lSoY3a4dEBaGJceOwRgairAqVRAaGYmw6GgERkRI0UMIIdxMKbWdZKyH+v4cQDcAZ0jeccH+zgCmAdAC+PRaRQmlVFcAZpLzlFLfkuxzvX7Lcl4hhLgykujXrx8WLVqEX375BZUrV8brr7+OhQsXwt/fH6NGjcLo0aNhNps9HaoQpdrV8gopYJRS+enpWPvRR/h50SL8cuAAHrNaMR5AdnQ0xgcEoEvv3mg5ZAhMwcGeDvWm0eFA5smTOHf0KFISEqDJzESs2QykpOCdn37C0aQkpGRmIiUnB+fy89Fco8EsiwWw2xEK51dnF3pMKXxZoQIQGopOiYnw8/FBiL8/Qs1mhIaEoNmdd6Jls2ag2YwD6ekIqVYNIVFRMAYEeOLtCyFEqeThAkYrANkAvjxfwFBKaQEcAnAfgJMAtgLoB2cx461Lmvg3ADuAxQAI4CuSc67Xb1nKK4QQN+bdd9/FCy+8gLfffhsvvfRS0f59+/bhv//9LxYvXoygoCCMHj0ao0aNQlBQkAejFcK9jhw5AoPBgKpVq7q8bSlgoAwkGgkJ4M8/4+E33sDy5GTkATABaFuuHJ584AE8+PLLQFSUp6P0DBLIyMCR7duRcuwYzp04gZTERKQkJyPGZEI3sxm2M2fQfs0anMvPR6rVinMOBywAXgTwDoAMABeWe/wAhGi1GFuxIobGxCAtIADjDh1CqNmMkNBQhJYvj5AKFdDorrtQOSYG9sBAWHx94SNDB4UQtyFPFjAK+48E8NMFBYxmAF4j2anw+csAQPLS4sX5858HsIXkOqXUYpK9rnLcYACDAaBq1ap3//PPFZepF0KUQb/99hs6deqEBx98EAsXLoRS6rJj9uzZg9deew1LlixBcHAwxowZgxEjRiAwMNADEQvhPiTRsWNHHDx4EAkJCdDr9S5t/2p5hcyB4cUKMjOxftYs/Pzttzh16BC+ycqCAhASEIBB9eujy0MPoc2wYfKBGQCUAoKDEd2+PaKvcogOwNoLntPhQG5KChwpKYDFAmNSEr5duRKpp0/j3NmzSE1Lw7n0dFQ2m4G8PKQePYrFx44htXDy0vM+BvAMgD0A7gJgBBCs0cCs0yHYYMDEunXRIToaRzUafJ6QALPZDHNYGMzlyyM4PBwNY2NhrlYN9oAAaIKCoLRat1wiIYS4zUQAOHHB85MAmlzj+BUAXlNKPQLg2NUOIjkbwGzA+cVI8cMUQpQGx44dQ58+fVCnTh3MmTPnisULAKhfvz6+//577Ny5E6+99hrGjx+PKVOmYMyYMRg+fDgCZISvKCPi4uLw22+/YcqUKS4vXlyLjMDwNvn5+OHFFzFn0SL8lpyMHAAGAG1DQ7Fs3Djou3UDatZ0fmAXHnF+fo/UhASc++cfVDEYUEGjQWJCAr5as8Y5v0dmJtKyspCWl4fxYWFobbNh5dmz6JyVhUv/xcUB6AjgOwAPAwhWCsFaLYL0egQZjfioUSPUrVIFW/Pz8WNiIoKCgxEYHIyg0FAElSuHFk2bwr9iReQaDLD7+cG/QgWZ80MIUeK8cARGLwCdST5Z+PwxAE1IDnNBX/cDuD86Ovqpw4cPF7c5IYSXy83NRfPmzZGQkICtW7eiZs2aN3zutm3b8Nprr2H58uUIDQ3FCy+8gGeffRb+/v5ujFgI97Lb7WjYsCFyc3Nx8OBBGAwGl/chIzC8XH56OtTnn8P4/vtISUzELq0Wj9erhy4PPoi2w4bBr3x5T4coCml0OgRXq4bgatVQ44L9EQDGjh171fM6ArDZbMg6dQppx48jPTERaYmJaBAWBthsqHXwIMZt2uSc3DQzE5l5ecjIz4fu1Cng6FHsPHMGb+blXTT6AwAOA4gG8BGct8MoAIEAggqLIKsaNEBYWBiWZGRgZWoqAvz8EBAQgMDAQAQEB+Ox++6DPiQE/+TkIBNAQPnyCAgPR0DFijDItwRCiNIrEUCVC55XLtxXbCSXAVgWGxv7lCvaE0J4L5IYPHgwdu/ejWXLlt1U8QIAYmNj8dNPP2HLli2YMGECxo4di/feew8vvvgihg4dCl9fXzdFLoT7zJ07F/v27cO3337rluLFtcgIDA/LS03F7CefxDs//ICxDgdGtGwJx/jxUO3by7fo4jJ0OJCdnIzMU6eQceoUMpKTcVeFCjDm5WHr7t1Ys2cPMtLTkZmVhYzsbGTk5uLrmjXhl5ODN48dw5S0NGSRKLigTSuclcwhAGZe0l8ggIzQUCAgAONzcrA6Px8BRiMCTCYE+PigQnAwJnXqBPj7Y8Xx4zhtscA/OBj+wcHwM5thDg9HvQYNAD8/5Gm1MIaEQKOTuqkQZZEXjsDQwTmJZ3s4CxdbATxCcr+r+vTGvEII4VrTpk3DqFGjMHHiRLzyyivFbm/jxo2YMGECfv31V4SHh+Oll17CM888Ax8fHxdEK4T75eTkoFatWqhSpQo2btx41dupiksm8YR3JRq5KSmY9eST+N+yZUh2ONA6KAhvTJyIFsOHezo0cRuw5uYiKykJ2adPo2pgIJCZiT27d+PQkSPISktDVkYGsjIzYcvLw4T69YGsLLy9fTtWJiUhy2JBls2GLJsNwQD2kwCJznDeDnOh2gAOFj5uBeAPOJf39VMK/lot7vHzw4I6dQB/fzx/7BiSbTb4+/jA39cXfn5+qB0RgX733gv4+uLnQ4dg1+vhFxwM36Ag+JnNCKtUCRUjIwE/P9iNRmiNxhK7hkKIi3l4FZJvALQBEAbgNIAJJD9TSnUBMBXOlUc+JznJRf3JLSRC3AbWrFmDDh06oFu3bvj++++hceGXi+vXr8eECROwatUqVKxYEWPHjsXgwYNhMplc1oc7FRQUYMOGDUhMTERYWBjCwsJQrlw5hIWFwc/Pz20faoXnvfHGGxg/fjz++OMPtGjRwm39SAEDXlLAyM0FZs5E93Hj8GNBAdoGB2PCa6+h9ciRno1LiFvlcDgnOT15EulJSchOSUF2aipyUlOhs1jQtnp1ICcHX61di7+TkpCdk4Oc3Fxk5+Whml6PN6pVA7Kz0X3fPuzNy0OO3Y5sErkAOgP4pbCbKnDOwHehXgAWFT4OAZADwFcp+CkFX60WfUNC8HpUFODri17798NgMMDHYICvyQQfkwltoqPRpUED2AwGzNm5Ez5+fvANCICPvz98g4JQo0YNVImMhN1gwOmcHPiYzfAxm2EMDJQRUkJcwtMjMDzBK/IKIYRbnDhxAnfffTdCQkKwZcsWt60ism7dOrz66qtYu3YtIiIi8PLLL+PJJ5+E0cu+lCGJv/76CytXrkRcXBzWrFmD3NzcKx5rMpkuKmhc6eeFj0NCQqCVSexLhdOnTyM6OhodOnTAkiVL3NqXFDDg2UQj58wZzBw0CP03bUJ4Sgo2x8bC8sQTaDms2HOJCVEmOWw2WDMzYbTbgZwc/LV/P7LOnUNOWhpyMzKQk5GBCj4+aFG5MpCTg7dWrEBGVhZy8/KQm5+PnPx8tA4OxjPlysGRk4O7du1Cjt2OXLsdeSTySAwDMBmXL6F73msAJsA59rzyBfsVAB8A7/j6YlhoKBJ0OvRISoJJq4VJp4NJp4OPXo9nY2JwX/XqOG61YsqBAzAVFk5MJhNMPj74V6NGqFmtGs5aLNj8zz8w+fsXbT5BQagWGQn/kBBYNBrkkzAFB0Pv6yvFE+GVbqcChozAEKJsy8/PR8uWLfHXX39hy5YtqF27ttv7XL16NV599VWsX78eGo3GuWqd2YyQkJCi7dLnl+4zm80unY8gJSUFK1asQFxcHFavXo3EROc0QpUrV8Zdd92FO+64A61atUJQUBBSUlJw9uzZop8XPj7/MzMz84r9KKUQEhJSVNAIDQ2FyWSCTqeDXq+HTqdzyWONRgOHw3HRZrfbL9t3MxtJBAYGXvbnEhISgqCgIJeO2vEGQ4cOxezZs7F//37ExMS4tS8pYMAzBYzs5GTM+Pe/8e6KFThLYmadOnj6k0+A5s1LNA4hxOVot0MVFMCRk4NTx44hLz0duWlpyMvMRF5mJqoFBaFGUBCyUlMxf9065OXkIC83F3l5ecjLy8P9lSujldmM4ykpGLltG/KsVuRbrci32ZBvt2NCSAh66nTYkpWFDmlpyIdzzpHzFsE5imQlgE5XiO8XOEehfA/goQv2GwGYAKwwm9E0IAA/WK14JTUVJq0WxsIiilGnw/RGjVA9NBSrUlOx8MQJmAwGGA0GGI1GGAwGDGvVCsHBwdh1+jR2JCXBaDLB4OMDo48PDD4+aHfPPTD4+eFUZibO5ebC6OcHg58fjP7+MAYEwBweDmU0AjqdrIwkbqsCxnkyAkOIsock/v3vf+OLL77A0qVL0b179xLte9WqVVi9ejXS0tKQmppatJ1/np6ejmt9fvP3979i4SM4OBg2mw25hXlMbm7uRY/z8vKQk5ODjIwMZGdnw2KxXLOf80wmE1auXImWLVte91iLxYKUlJTLChuX/jx37hwKCgpgs9lgs9lgtVov+nnhY2+m0WgQHBx80Z9FaGjoFYsdF27BwcHQeeGccfHx8bjjjjvw9NNP46OPPnJ7f1LAQMkmGszMxOQ+fTA5Lg4pJDqFhmLCm2+i2eDBJdK/EMI72S0W5GdkID89HX4aDUwAMs+exeHDh5GXlYX8rCzkZWcjLzsbrWrUQAUfHxw6fhzLdu5EQUEB8vPznT8tFoyuWxeRBgNWHz+O6fHxyLdaUWCzId9mQ4Hdjm8rV0YNEp+eO4f/pKWhoHAC1wIABHAczltzJgJ49QqxpgIwA3gJwP+u8LoFgB7AcACfwLnks0EpGJSCv0aDQ5GRgMGAV8+dQ1x2NgxabdEWZjTiq6ZNAYMB0//+G3syM2HQ62HQ66HX6RAeGIjnWrUC9HosPnAASbm50BsMMBiN0BuNKBccjM6NGwN6PTb9/TdybDYYTCbofXygN5kQbDYjKioK0OuRlJoKGAww+Po6X/f1hd7XFzqjUQovLiQFDCFEWTBjxgw8++yzGD9+PF5//XVPh3MZu92OjIyMqxY4rrYvPT3deSutjw98fX2Lfmo0GmRnZyM9PR1nz56F1er8qqVixYqoVasW6tWrh5iYGAQEBFx2rlarxYABA5CUlIR169ahQYMGJXotSMLhcFyxsHGlfXa7HVqtFhqNpmi79PnNbgCQmZl52bW/0nbu3LmL/jyupUOHDli+fHmJr/BxLT169MCqVatw5MgRlC+BFTKlgIGSSTQKzp6F8ZNPgPfew8OpqcguVw6vvvkmmj75pFv7FUKIG0WHA7aCAujsdiirFZkpKUg7cwYFOTmw5OSgIDcXlpwc3BMVBa3djn2HDiH+2DEU5OXBkpeHgoICFOTlYUTTplBWK37Yswcbjx+HxWKBxWqFxWqFcjgwKzYWsFjw7oED+P3MGVjs9qItSKPByqpVAYsF/z51Cr/k5cFKwkLCAiASQHxhvG0ArL3kPTQCsKPwcSyA7Ze83uqCc2LgXIriQl0ALAcAnQ417XacIaFTCvrCraevLz6oUAHQ69Hi2DHkA9BrNNBpNNBrNLg/PByjo6MBnQ59tm+HVquFrnDTa7W4r1o19IqJQQGACZs3Fw1hPb+1jIpC81q1kOtwYN727dDp9f+/GQxoGBWFWtWqIcdqxZ9//QWdwQCtwQCdwQCdXo/qVauiXLlyyLfb8c/p0879hRPZ6oxGBJvNMPn7w64ULA4HdEYjdCYTlBvvMb6dChhyC4kQ7kEScXFxaNq0KYKDr3Rzp3utX78ebdu2RceOHbFs2bIyN/wfcK4gsXbtWsTFxSEuLg5//fUXACAiIgKdOnVCp06d0KFDB4SEhNxQe8ePH0fz5s1htVqxYcMG55cH4rrsdjvS09OvWOg4evQopk6diueffx6TJ0/2dKgAgD/++AOtWrXCG2+8gf/85z8l0mepK2AopToDmAbnzOGfknz7kteNAL4EcDeAcwD6kDx2rTbdWcDIOH4cH/7735i6ahXWkajbtSssL78Mg9wqIoQQN48E7HbAakV2Whrys7JgzcuDNS8PltxcaB0OVA8PB6xW7DlwAOnp6bDm5zu3ggIEG41oWbMmYLFg0caNOJeRAUtBAawWC2w2G6oHBuLh2rUBqxWvr12LtLw8WAu/pbHa7bgnJATPVK8O2Gzo8+efyLZaYXM4YLXbYXU4cH9QEF4sXx4OiwV3/PUXrCTsJKwkbCSeNhrxmtGITKsV5XNyYANgv+Dt/RfOUS+Xzq9y3nsAnoOziFPnCq/PAjAYwDYAja/w+nwA/QCsBtDugv0aADtDQlD/3Lmb/AO5vtupgHGejMAQwnXsdjueeeYZfPrppwgLC8OkSZMwaNCgEpvcMTExEXfffTcCAgKwdetWjxRQ3CU5ORnz5s3DL7/8gvXr18NiscDHxwetW7dGx44d0alTJ9SpU+eWVw45ePAgWrZsicDAQGzYsAEVK1Z08Tu4/QwZMgQzZ85EXFwcOnbs6NFYSKJp06ZITEzEoUOH4OvrWyL9lqoChlJKC+cXZvfBufDAVgD9SB644JihAOqTfEYp1RdAT5J9rtWuyxMNhwMZJ05g2sCBmLJmDdJJdAsPx+Tp01G7Vy/X9SOEEKLUo8MBu8UCW14eNA4HDBoN7AUFOH3qFGwFBbAVFMCanw+bxYLwwECE+fsjNycHOw8cgM1qhc1igb3w5x1VqqCq2YxzaWlYuXOn8/XCzW6zoX10NGqGhuKfM2fwzY4dsBcOo7XZbBjWvDnC3377+gHfJClgiNtNWloazGazp8MoE2w2G5544gnMnz8fQ4cOxZ49e7B+/Xo0atQI06ZNu6H5FYqjoKAAbdq0wd69e7F582bUq1fPrf2VBJJYvXo1Zs6ciSVLlsBmFz7sBwAAIABJREFUs+HOO+9Ep06d0LFjR7Rs2dKlS7Zu2bIF7dq1Q40aNbB27Vr5t1FMubm5aNy4Mc6dO4c9e/aUyC0bV/Ptt9+ib9+++PzzzzFw4MAS6/eqeQVJr9sANAMQd8HzlwG8fMkxcQCaFT7WAUhBYUHmatvdd99NVypo3Jh+zlvJ+UCFCtw2b55L2xdCCCFKCwDb6AU5RElsAO4HMDs6OtpVl0+UMitWrKBGo+H06dM9HUqpl5+fz549exIAJ02aRJJ0OBxcsGABq1SpQgDs27cvjx8/7rYYBg8eTABctGiR2/ooKampqZwyZQpjYmIIgGazmc899xz/+usvt/f966+/Uq/Xs3nz5szJyXF7f2Xd7t27aTQa2bVrVzocDo/EkJ+fz+rVq7N+/fq02Wwl2vfV8gpvvbErAsCJC56fLNx3xWNI2uBcCTH00oaUUoOVUtuUUtvOnj3r0iCz7HbkFD7+Jz3dOeRZCCGEEGUayWUkBwcFBXk6FOEBSUlJ6NOnDxwOB8aMGYPs7GxPh1Rq5ebmonv37liyZAmmTZuGcePGAXAuq9mnTx/Ex8fj1VdfxdKlSxETE4PXX38deXl5Lo3hk08+wezZszF27Fj0KqUjqEli8+bNGDhwICpVqoTRo0fDbDZj7ty5SExMxHvvvYdatWq5PY4OHTpg/vz5+PPPP9G7d++iCUHFralfvz4mT56M5cuX48MPP/RIDDNmzEBCQgImT55cYrdzXdeVqhqe3uBcWfDTC54/BmD6JcfsA1D5gud/Awi7VruuHoFBkju/+YaRWi1ROBLjvpAQ/rVkicv7EUIIIbwZbqMRGOc3d+QVwrvZ7Xa2adOGSikajUYCYJs2bTwdVqmUmZnJVq1aUSnFTz/99JrHJiQksHfv3gTAatWqcdGiRS75Rnrjxo00GAzs2LFjiX+77ApZWVmcPXs2GzVqRAD08/Pj008/zZ07d3o0rlmzZhEAH330Udrtdo/GUto5HA5269aNBoOBu3btKtG+U1NTaTab2bFjxxLt97yr5RXeOgIjEc7V/c6rXLjviscopXQAguCczLNENezbF3/n5+Pdbt1gAPBbaipSe/YEevSATe6LFUIIIYQoM9555x2sWbMGJPHLL7+gatWqWLNmDaZOnerp0EqVtLQ0dOjQARs2bMDXX3+NQYMGXfP4yMhILFy4EKtXr0ZQUBB69+6Ndu3aYc+ePbccQ3JyMh566CFERETgm2++8Z5vl2/Avn37MGzYMERERGDw4MGw2WyYMWMGTp06hZkzZ6Jhw4YejW/w4MGYNGkSvv76a4waNer8l83iFiil8PnnnyMkJAT9+vVDbm5uifX95ptvIj093WtWQilypaqGpzc457Q4CqA6AAOA3QDqXXLMswBmFj7uC2Dh9dp19zclCX/8wVk1a5IAqdWyO8CeFSty17ffurVfIYQQwtNwG43AgMyBcVvasGEDNRoNNRoNH3vsMZLktm3bCIBKKS5fvtzDEZYOp0+fZoMGDWgwGLh06dKbPt9qtXLGjBkMCQmhRqPhkCFDmJKSclNtFBQUsEWLFvTx8Snxb7VvVX5+PufNm8cWLVoQAI1GI/v3788NGzZ4bH6Ea3E4HBw9ejQB8PXXX/d0OKXeypUrCYBPP/10ifSXkJBAg8HAAQMGlEh/V3K1vMLjScDVNgBd4FyJ5G8A/ync9zqABwofmwAsAnAEwBYANa7XZokM9XQ4yNmz+ZvJRANAU+GtJQ9WqsTdCxe6v38hhBDCA26nAsb5TW4huX2kpqaySpUqNJlMDAoK4unTp4tee+ihh6jRaOjr68tt27Z5MErvd/LkSdauXZs+Pj6Mi4srVlvnzp3j8OHDqdVqaTab+cEHH9Bqtd7QucOGDSMAzp8/v1gxlIQjR47wxRdfZFhYGAEwKiqKkydP5tmzZz0d2nXZ7XY+/vjjBMAZM2Z4OpxS74UXXiAAfvfdd27vq1+/fvTx8eGJEyfc3tfVlLoChju2kkw0jm/axH8V/qKpqtUWrVYy9+67yd27SywOIYQQoiRIAUOUVQ6Hgw8++CA1Gg0BcObMmRe9/tdff1Gj0TAgIIAVKlRgQkKCZwL1ckePHmX16tUZEBDAdevWuazdvXv3sn379gTAevXq8bfffrvm8XPmzCEAjhkzplj92u12zpkz56JilqtYrVYuWbKEnTp1IgBqtVr27NmTK1euLHVzSlgsFt5///1USnHBggWeDqdUKygoYGxsLM1ms1tX5dm6dSsBcNy4cW7r40ZIAcMDiYbDbuecQYMYBNAHYJewMJ728yMBbmvXjrsXLy7ReIQQQgh3kQKGKKtmzJhBAPT392eTJk2u+AFy0KBB1Ov1DAwMZJ06dZiamuqBSL1XfHw8IyIiaDabuWXLFpe373A4uGTJElavXp0A2LNnT/7999+XHbd161YajUa2a9fuhkdrXM0vv/xCALzrrruYlZVVrLZI54iSpUuXcvTo0axcuTIBMCIigq+99hpPnjxZ7PY9KTc3ly1btqRer+eKFSs8HU6pdujQIfr5+bF169ZumXjW4XCwdevWLFeuHDMyMlze/s2QAoYHE43E7dt5f3g4pwNk48bk0KHsULhySa+ICO6RQoYQQohSTgoYoizavXs3jUYjq1SpQo1Gc9XVHf755x8aDAZ27dqVBoOBrVq1Yn5+fglH6512797N8uXLs3z58tzt5lHIeXl5nDRpEv38/Gg0Gjlu3Lii4sLp06dZpUoVVqtWzSW3XwwcOJAmk4kajYb333//TX+YPHPmDBcvXszhw4ezfv36VEoVzW3RuXNnLlmypNhFFm+Snp7OBg0a0NfXlxs3bvR0OKXaF198QQB84403XN72jz/+SACcPn26y9u+WVLA8HCi4bDb6fjqKzIkhF/rdHy1VSv+p3lzBhTeWtK7cmXuk+VXhRBClFI3UsAAEHKt7Xrne8smk3jeHrKzs1m7dm2GhIRQKcVRo0Zd8/iRI0dSq9Xy/fffJwD27du31A33d7XNmzfTbDYzIiKC8fHxJdbvyZMn2b9/fwJgpUqV+NVXX7FNmzY0mUzcvn17sdsvKChgcHAwH3vsMU6fPp0AOHz48Guek5SUxAULFnDIkCGsW7cuUfgZwMfHh+3bt+frr7/OtWvXMi8vr9jxeaukpCRGRUUxJCSE+/bt83Q4pZbD4WDfvn2p1Wr5559/uqxdq9XK2rVrs1atWrRYLC5r91ZJAcPDBYwiSUkcVK0aAbCxnx/Xz5jBV1q0YADADwDy4YdJ+QcthBCilLnBAkZC4SpjCQDsAFLgXALdDiDheud72+YVeYVwm0GDBhVNmhgREcHMzMxrHp+cnExfX1/269ePb7/9NgHwxRdfLKFovc/atWsZEBDAGjVq8OjRox6J4c8//2RsbGxRseDLL790Sbs//fQTAXDZsmUkWbTaxtSpU4uOOXHiBOfNm8ennnqKtWrVKorB39+fnTt35ltvvcUNGzawoKDAJTGVFkePHmXFihVZqVIlmS+mGNLT0xkZGcnIyEimp6e7pM2ZM2cSAL///nuXtFdcUsDwokTDYbfz21GjGKYU9QAntm/P5D17mPfSS6S/Pz8D2MzfnxPbt+e2efNoL0PDx4QQQpRNN3MLCYBPAHS54Pm/AMy60fO9ZfOWvEK43vz58wmAHTp0IAAuWrTohs4bN24cAXDXrl0cMmQIAfCjjz5yc7TeJy4ujj4+Pqxdu7bH52+w2+2cO3fuZZOvFsfjjz/OoKCgouKDzWZjp06dqJRiu3btWKNGjaKCRVBQELt168bJkydzy5YtZeq2kFu1Z88eBgcHs2bNmm6ZBPV28eeff1Kr1bJfv37FXko3MzOT4eHhbN68udcsyysFDC9MNM4cOMA+VaoQAFdGRZG7dpEpKZzdvTsb+/kV/eIL12g4qGZNOr79lkxL83TYQgghxGVusoCx90b2efvmbXmFcI0jR44wICCAd999NwMCAti5c+cbTuhTU1MZFBTEBx54gFarld26daNGo+EPP/zg5qi9x5IlS2gwGNigQYMy+eE0Pz+fAQEB7NKlC2fPns3HHnuMVatWLcrbAbBNmzacMmUKd+zY4ZaJFsuCDRs20MfHh40aNfL4ZJGl2cSJE50rXc6de83jMjIy+NFHH111tMarr75KAF41P4kUMLw40dj8zjtkeDip03HtE0+woHCyoeS9ezl38GD2rVqV9+v1zj8urZajIyL4ZqdO3LVwIR23+b2VQgghvMNNFjDiALwCILJw+w+AuBs931s2b80rxK07v0xhcHAwu3btSpPJxCNHjtxUG5MmTSr6IJCdnc3GjRvTx8eHmzdvdlPU3mP+/PnUarVs0qRJqV+JpaCggPv37+f333/Pt956iwMGDGCzZs3o7+9/UbGiXLly7NWrFz/88EOuXr2a1apVY4UKFXjs2DFPvwWvt3z5cup0OrZu3bpMz/3hTjabja1ataK/vz8PHz58xWPWrVvHyMhIAuArr7xy2euJiYn09fVl79693R3uTZEChrcnGikpPPnggzQAvNNk4u5LhypareSGDbSPG8emvr5FvzQraTQcVKsW177+OinVSyGEEB5ykwWMEADTAOwEsAPA1NI0ief5zavzCnFLxowZU5TkA+DEiRNvuo2srCyWL1+e7dq1I+mcG6N69eosV67cFZf2LCs+/fRTKqXYunXr684X4i0cDgeTkpK4Zs0azpo1i8899xy7du3KqKgoajSaiwoVFStWZJs2bRgdHU0fHx/+8MMP/Pvvvy8bnbN//34GBQWxXr16LpuboCz7+uuvCYA9evSQ22tu0fHjx2k2mxkbG3vRnCoFBQUcO3YslVKsUaMG77rrLkZERFw2KujJJ5+kXq+/6WKtu0kBo5QkGsvGj2cFjYa+AL+5xmzGp3bu5OcDB7J35coMAvgOQOp0TG/Zkv/r2pX7li6V0RlCCCFKzA1O4vlV4c+R1zu2NGylIa8QN2758uUEwMGDB7NGjRqMiYm55aVQp06dSgD87bffSJLx8fEMCQlhrVq1mJKS4sqwvcK0adMIgJ07d2ZOTo6nw7mM1Wrlnj17uHDhQk6cOJH9+/dn48aNGRgYeFGRwmQysX79+uzduzdfeeUVfvXVV9yyZUvRLQ65ubn09/fnoEGDrtnfb7/9Rp1Oxw4dOnjFag7e7oMPPiAADhw40GvmXyhtvvvuOwLgSy+9RJLct28fGzZsSAAcNGgQMzMzi45Zvnx50Xn79u2jRqO57ipL1+KuiWilgFGKEo1TO3eyeUAAAXDM3XfTcZ1ffJacHGavWEG+9BJ/KRweBIBVtFo+Xbcufxg3jjll8B5EIYQQ3uMGCxgHAFQCsBuAubQuo3p+Ky15hbi+xMREhoWFsX79+nz55ZcJgL///vstt5eXl8cqVaqwSZMmRR/I/vjjDxqNRt57773Mzc11Veged/6WmZ49e95ywcddHA4Hly1bdtEqIABYuXJltm/fnkOHDuW0adO4YsUKHjt27LrL3n7//ffOuetWrrxu33PmzCn68Cgfyq/v/BwML7zwgqdDKbUGDx5MABwyZAiNRiPDwsK4ZMmSotcLCgpYvnx59uzZs2hfly5dGBQUdEuFVZvNxpEjR7JTp05uKdS5vIABYNAlz7UAJtxqeyWxlaZEoyAri8PuvJPjAbJtW/LMmRs+98SWLfzkscfYs2JF+hf+oj6g15MtWnB5+/ac0Lo15wwaxDVTp/LYhg203WbLNwkhhHC9GyxgjABwEEDBBcupnt+OXu98b9kA3A9gdnR0tKsvo/AAm83Gtm3b0tfXl8uXL6der2f//v2L3e6nn35KABdN4Llw4UIqpdirV6/rflj2dg6Ho6jY079/f68b/r9//3527NiRABgTE8M5c+Zwx44dzCqca+5W9O3bl6GhoTf8Xs/fivTmm2/ecp+3C4fDwaFDhxIA33nnHU+HUyodOnSIvoVTDdx3331MTk6+7Jjnn3+eOp2OycnJ/P333wmA//vf/266r9zcXD744IMEwJEjR7plstqr5RXK+drNU0rNBxAMYFDhNydfAFhL8vlbarAExMbGctu2bZ4O46bwiy+gnnkG64OCYJo8GbGPP35T51uys7Hp00/R8sQJqC1bMHb3bvwvKwsX/qkbAWRXrw5djRr4xm7HUZ0OkTVronqDBoi85x5UuPNOaHQ6l74vIYQQZYtSajvJ2Bs89mOSQ9wdk7uVxrxCXO6NN97A+PHj8dlnn+Hrr7/Gjh07EB8fj/Dw8GK1a7PZULduXZhMJuzatQsajQYA8P7772PMmDEYPXo03n//fVe8hRKXnJyMMWPGYP78+Rg8eDA+/vjjovfnaampqZgwYQI+/vhjBAQE4LXXXsPQoUOh1+uL1W5ubi7Kly+PRx99FLNmzbqhc0iif//+mD9/PhYsWIA+ffoUK4ayzuFw4NFHH8WCBQsQGxuL1q1bo1WrVmjZsiXMZrOnw7tIWloaNm/ejJ07d0IpBX9/f/j7+8PPz++Kj88/12q1bolnwYIFGDJkCPLz82G1WvGvf/0LP/74I5RSFx0XHx+POnXq4J133sGCBQuQmpqK+Ph4mEymG+7r7Nmz6N69OzZt2oT3338fo0aNcvXbAXCNvOJKVY0b3QD0AZAC4B8AzYvTVklspWkExoUcW7fyHoOBRoBzrnPP3Y3Iz8jg4V9/5cq33uLs/v35ZuvWZN++ZNOmfNRkumiIHQBWB8iYGLJTJ37csiXf7tyZ344axc2ff84zBw7IXBtCCCFuahLPsrKV1rxC/L8//viDWq2W/fr141dffUUA/Pjjj6973q+//soaNWqwbdu2/OCDD3j8+PErHvfNN98QAOfPn1+0z+FwcMSIEQTAqVOnuuy9XI3FYuFnn3122XwOt6KgoIDvvvsuAwICqNfrOWHCBK+5PcJisfCDDz6g2WymRqPhkCFDePbsWZe1v2jRolu6tSg/P58tWrSg0Wjk+vXrXRZPWVVQUMBJkyaxVatWNBqNBEClFBs0aMDhw4dz8eLFJb48r81m4969ezl79mwOHDiQtWvXvuzz0o1uJpOJYWFhrFatGuvVq8cmTZqwXbt2fOCBB/jII4/wqaee4ujRo/nVV1/d0L+t1NRUPvLIIwTAJk2a8PDhw0Vz8EyfPv2K57Ro0YIVKlQgAM6bN++mrsXhw4cZHR1Nk8nExYsX39S5N+tqeUVxRmDUBDAXwF4AdeC8r/U5krm31GAJKM3flKTEx6Pvvffi97Q0DL3jDkzZuBEGf3+39JWbkoJ/Nm3CsR07kHDgABxnz2JYSAiQkIDWu3djnc120fGtlMLaqCigcmW8kpICR0AAKletispRUahcty6qxcYitFYt4JIKoBBCiLLjZkZglBWlOa8Qzm/qGzZsCL1ej1WrVuGee+5BZGQkNm7ceM3RBPPnz8eAAQNQvXp1aLVaHDx4EAAQGxuLnj17omfPnqhTpw4A5zfKjRo1Qm5uLg4cOFA0CsBut6N3795YunQpFi9ejAcffNAt79FqteKRRx7B4sWLL9pfsWJF1K5dGzExMRf9rFq16lXf+8qVKzFy5EjEx8ejS5cumDp1KmrWrOmWuG9WXFwcRo8ejYMHD6J9+/aYMmUK7rzzTpf28fDDD2Pt2rVITEyE7iZHJp87dw7NmjVDamoqNm3ahOjoaJfGVlbl5+djy5YtWLt2LdatW4c///wTubnOj5p16tRBq1atikZpREREuKzftLQ0bNq0CRs3bsTGjRuxZcsWZGZmAgBCQ0PRtGlTNGvWDM2aNUPjxo2h0+mQnZ2N7Oxs5OTkFPtxVlYWcnJy8MADD+Czzz5DWFjYFeNctWoVnnjiCSQlJWHChAl4+eWXodPpQBLdunXD77//jq1bt172b+GTTz7B4MGDUatWLRw8ePCGR09t3LgRDzzwAEjixx9/xL333lu8C30dLh+BASAeQPvCxwrAGAD7b7W9kthK+zcl1rw8vtC4MQHw3oAApsfHeySOjBMnuGfxYv4wbhyn9uzJuf/6l3MER/PmvMtgoP6SSmNvgDQYyBo12C0khI9GRvKlJk34Ya9eXDJ2LI8sXUomJ5MykkMIIUotyAgMUYo4HA726NGDer2eW7du5ZAhQ6jRaLhjx45rnvfee+8RAFu3bs20tDSSzhVG3nrrLd5zzz1FuU9MTAzHjh3LzZs3c+nSpQTATz755KK2cnJy2LRpU5pMJv75558uf48Wi4W9evUiAL733ns8ePAglyxZwrfffpsDBgxgs2bNaDabr7oKx/jx4zlv3jwuXbqUXbt2JQBGRUVx2bJlLo/1VsXHx18U29KlS90yIiQrK4s+Pj4cMmTILbdx+PBhhoaGsmbNmmVyJZqSUFBQwI0bN/Ltt99mly5dLlpFJioqigMHDuQXX3zBo0eP3vDfA5vNxj179nDWrFkcMGDARaMrNBoNGzRowGeeeYZz587loUOHSmTEkd1u55QpU2gwGFipUqXLRv3k5eVx9OjRBMBatWpxy5Ytl7Vx+vRphoeHs169epdNGjxx4kQCYKdOnW44pu+//54mk4lRUVE8dOjQrb2xm3S1vKI4BYzAK+yrdavtlcRWVhKNb0eOZH+tlvYKFcgNGzwdzmXsViuTdu/m1i++4Pcvvsh1I0eSL75Ia58+bBUYyOo6HQ0X/Gf5HEACzNXpGKnTsUVgIPtVq8YXGjfmtJ49ufvdd8lNm2g/flwmHBVCCC91swUMAOEAuhVu5W/mXG/ZykpecTuaPn160Qf7zZs3UynFkSNHXvV4u93O5557jgDYq1cv5uXlXfG4kydPcvr06Wzfvj21Wi0BsFKlSgwPD2e5cuWYmZl50fFnzpxhdHQ0Q0NDXfqh4MLixZQpU656nMPh4OnTp7lu3TrOnj2bY8aMYdeuXRkdHU2NRnNRcSMwMJBt2rThkCFDilbuOHXqlMtivhlpaWkcPXo0dTodAwMDOXnyZLeugLJgwQIC4Jo1a4rVzvr162k0GtmyZUuvW7GlNLLZbNy2bRvff/99du/enSEhIf+/GmOVKnz00Uc5e/ZsxsfHFxUezp07x+XLl3P8+PHs0KEDAwpXfgTA0NBQduvWjZMmTeLvv/9+2b/XkrZz507GxMRQKcWXXnqJFouFu3btYr169QiAQ4cOveayxXFxcUWrkpx39uxZBgYGsmrVqvTx8WF6evp145g2bRqVUmzSpAnP3MTCEsXl8gJGadzKVKKxZw8ZFcVjOh1nPfJIqZuHwm618vTevdw+bx6PfPwx+eGHPDdiBB+NjGTroCDW0OloLPxl8n5hgeMQQC3Aylotm/r786GICI5s2JDbRo4kv/mGOb/+yqPr1jHfw79shBDidnQzBQwAD8M5f9ZcAF/CuQpJrxs931u2MpVX3EZ27txJg8HALl26sKCggI0aNWKlSpWuOjdEQUEB+/XrRwAcNmzYDc+2f+7cOc6dO5c9evSgwWAgAPr4+PDxxx/nkiVLij54HD58mGFhYYyKinLJvf03Wry4GofDwYULF7Jy5coEwBYtWvCll17iE088wSZNmjAoKOiiwkatWrU4ePBgfvPNN0xKSip2/Ndis9n48ccfMywsjEopPvXUU1dcacHVevbsyQoVKrhkpYXzxZBHHnnEa+YPKSvsdjv37NnD6dOns3fv3ixfvnzR39Pw8PCLltPVaDRs2LBhiY+uuFnZ2dl86qmnipb/1ev1rFChAn/++ecbOn/MmDEEwKVLl5IkR4wYQY1GU/T3cObMmVc91263F4306NGjxzWLJe4gBYyymGikpnJM9eoEwIE1azKvcChjWeGw23k2Pp7p69aRy5Yx8a23+Erz5hwQHc0OISGsbTDQD+CiwgLH7xf8Z1peKd7l48MHKlTgjt69yTff5KkPPuDvkyfz4PLlzDx50tNvTwghypSbLGDsvnDUBYByAHbf6PnespW5vOI2kJWVxZiYGFasWJFnzpzhtGnTCIALFy684vEZGRns0KEDAfCtt9665Q84OTk5rF+/Pk0mE4ODg4uKGT179uSXX37JuLg4mkwmNmnSpFgfEiwWCx966KFbLl7s3buXbdu2JQA2aNCA69atu+wYh8PB5ORkrlmzhu+++y67du160bfYtWvX5jPPPMNvv/3WpcWF33//nXfeeWfRLTw7d+50WdvXkpmZSaPRyOHDh7uszTfffJMA+Morr7isTXE5h8PB+Ph4zpo1i4888ggfeOABTpo0iatWrSrWcrolLSEhgXXq1CEAarVafvTRRzd8bkFBAe+66y6GhIRwzZo11Ol0fOqpp+hwOFi/fn3GxsZe8bzc3Nyi3yUjRoxwyzKp1yMFjDKaaNitVo5v2ZIAGOvry3/ccA+lN3PY7bSnppL79jHx66/52YAB/G/btnyqdm3+q1w53mkycVtAAAnwi0vm5vAHGKPX88A995CPPsqtjz3GqT17ctFzz3HDzJlM+OMP5hdjpm4hhLid3GQBY+8lzzWX7isNW1nMK8q6AQMGUCnFVatWMTExkQEBAezUqdMVCxNJSUls1KgRtVot58yZU+y+N23aRAD873//y99++43PPvssIyIiCIA6nY7169enUoodOnSgxWK56faLU7xITU3liBEjqNVqGRISwhkzZtBqtd7w+VarlVu2bOH//vc/dunS5aKCRt26dTl06FAuXLjwloafHzlyhD169CAA/h979x1f8/U/cPx1sqfEJmaIvWqXWvWlpWrWpkbt2l97lVKlSlG+qjWCGG2KtkaMtqpG7ZEiJPZMkMiQPe7790ciP1si9+YS5/l4fB6593PP55z3JyQ5933PKFq0qKxfvz5TPylfs2aNALJ3716j1WkwGKRXr14CyPLly41W7+vOYDDIjh07pGPHjvLpp5/K//73P9m9e7dRd5N5nRgMBlm5cqU4OzuLs7OzzJkzR+qmvO/r0qVLmncicdl6AAAgAElEQVQU8vf3F0dHR7GyshJHR8fUqV/ffvutAHLy5MlHyt+9e1dq164tSin55ptvjH5faWWKNTA2As0Ai5etI7OPrNzR+HXcOHEGyaWUnPjhB3OH8+qJipK7Bw7IX3PnyuoBA2TWBx/I0LfeknYFC0pQ9eoiRYvK9JS5qo8ft3LkEKlYUdZVqiS9S5aUz+rVk8WdO8vmSZPk2OrVknTzpogZspKapmmvknQmML4GdgA9Uo5twKy0Xm+KAygLeAPfpXU6S1buV2RFD7ZJnTRpkoiItG/fXmxtbeXChQtPlPX39xd3d3dxcHBI81DttGjRooW4uLjIvXv3RCR5iPahQ4dk7NixUqpUqdS+h729vbRr104WLFggx48ff2Ey4WWTF4mJibJkyRLJlStX6tajxlhgMiEhQQ4dOiQzZ86UJk2aiKOjY+q9lStXTgYNGiTr169/4o1pQkKCzJo1S27fvi3h4eEyevRosbGxEUdHR5k+ffoz1x4xpRYtWkiBAgUkycjTtePj46Vx48ZiZWWV7q1Zs5qkpCTZuHGjVKtWTQDJnTv3Iwt0ApInTx559913ZdCgQfLdd9/Jnj17JCQkxNyhm0xwcHDqz3SdOnXk0qVLIpL8Mzt16lSxtLQUd3d3OXDgQJrqW758uQAyefLk1HMhISFPjC66cOGClChRQmxtbeXnn3826j2llykSGI2ANcBFYCZQ6mXryqwjq3c0zvn4SFtnZ7lvYSEyZ47IKziP61X2YMqK788/y7Zp02RZjx4ytWFDSejTR6R5c5nu5ib5LCxEPfTL1BIkCUQsLGS0o6O8ZW8vTXPnlp4lSsi4WrXku/btRby9RfbulTsHD8p9E88N1TRNM5f0JDCSi9MG+CblaJ2ea59S13LgDnD6sfNNAH/gAjD2BXWMAOqmPN6Ulnazer8iKwkICBAnJyepU6eOJCQkyPbt2wWQqVOnPlH20KFDkitXLsmVK5ccOnTIqHH4+vqKUkrGjRv31Nf9/PykdevWqUmM1FGjTk7SqFEjmTx5suzcufORxQVfNnlx4MABqVq1auobpBftwJIR8fHxcuDAAfnyyy/lvffeEwcHh9R7q1ChggwZMkQ2btwoK1euFEDq1asnefPmFUC6d+8uN2/eNFlszxMWFiY2NjYybNgwk9Vfvnx5cXFxkTNnzpikjVdZQkKCeHl5SdmyZQUQDw8PWbp0qcTFxYnBYJDr16/L9u3bZc6cOfLJJ59IzZo1HxndA0i+fPmkYcOGMnjwYFm8eLHs3bs3NUH4OjAYDBIWFiZ+fn7y+++/y8qVK+WLL76Q/Pnzi7W1tcycOfOp0zf2798vRYoUEUtLS/niiy9eOMXDYDDIyZMnn0jEderUSVxdXSU6OloOHjwouXLlkpw5c8q+ffuMep8v41n9CpX82stTSrkAnYAJwHVgCbBaRBIyVLEJvBH7td+/Dz16ELVxI9PLlmXCX3/hmCePuaPKUhJjYwk6dYpbp08TcukSTfPlg9u3WfjHH+y4eJHAyEiCYmO5bTDgRvIqdQAfkPwRoxOQz9qa/Pb2vJUnD982bQr587MjOBiDiwv5S5UiX5ky5CpZEis7O7Pdp6ZpWno8c7/2p5f9SkTGvOhcOtquB0QCq0SkfMo5SyAAaAzcAI6Q3F+xBGY8VsUnKV8nA9FAbRF550XtvhH9iiwgLi6O2rVrc/nyZXx9fcmVKxcVKlTA0tKSf//9F1tb29Sy27Zto23btuTNm5cdO3ZQokQJo8fTuXNnfvvtNy5evEi+fPmeWmbWrFmMGTOG1q1b06ZNGw4cOMD+/fv5999/EREsLCyoWLEib7/9NsePH+fw4cPMnTuXYcOGvbD9oKAgxo4dy8qVK3Fzc+Prr7+mU6dOKKWMfavPFB8fz9GjR9m9ezd//fUX+/fvJyYm5pEyVapU4fvvv6datTT9WjEJLy8vunXrxj///EOtWrVM0sa1a9eoWbMmdnZ2HDx4kLx585qknVdJbGwsK1eu5KuvvuLy5ctUqFCB8ePH07ZtW6ysrJ57rYhw/fp1zpw588jh5+dHVFRUarn8+fNTrly5R46iRYvi4OCAg4MD1tbWJv8/Hx8fT2BgIDdv3uTWrVuPfH348cNxP1CpUiU8PT2pXLnyM+sPCwtjwIAB/PjjjzRo0AAvLy8KFiyYrhh37drFf/7zH4YPH87ixYvJnz8/27Zto2TJkum+X2N7Vr8iQwkMpVROoCvwMXCL5BEZdYAKItLgpSs2kTemoyHCpu7daeXlRQU7OzZu3Urxhg3NHdUbx5CYSMSVK7jGxEBgIFu3b+fMuXMEBgURFBJCUHg4+Q0G1ioFERFUBE49dL0Cmllbs7lECciblxE3b5Job0+e3LnJkz8/eQsVwqNcOcq+/TbkyQOOjpCJnQ9N07SHpTOBcVxEqjx27l8RqZiB9osCWx5KYNQCpojI+ynPxwGIyOPJi8frsQQ2ikjLZ7zeF+gLULhw4apXr159WjHNzESEU6dO4ePjw8aNGzly5Ai//vorLVu25LPPPmPatGn8+eefNHyof7RixQp69+5NxYoV8fHxeWZyIaPOnz9PmTJlGDhwIPPnz39muenTpzNx4kR69OjBsmXLsLCwIDw8nIMHD7J//3727t3L3r17SUpKAqBQoUK88847qUfFihWxtLRMrS8+Pp5vv/2WqVOnEhsby4gRIxg/fjzOzs4muc/0iI+PZ9u2bbRp0wY3NzcCAwPp06cP3333nVnj+vDDDzl16hRXrlwx6ZvdY8eOUa9ePcqVK8fu3btxcHAwWVvmFBkZyffff8+cOXMIDAykZs2aTJgwgWbNmmFhYZGhug0GA9euXUtNZjyc2IiOjn6ivKWlJQ4ODtjb26cmNdLy/PFzNjY2BAcHP5GUuHnzJnfv3n2iXRsbG9zc3ChQoEDq18cf58+fH0dHxzTdt4iwcuVKBg0ahK2tLcuWLaNVq1bp+r7lyZOHkJAQatSowebNm8nzinz4bfQEhlLqF6AU4AWsEJHAh147mtZOTGZ6YxIYKXZMn06nSZMQYN3UqTSZONHcIWnPEh3N1ePHuXnmDEEXLxJ45Qp3bt+mANA3Z064c4eaR4/iHxdH+EOXdSY5awiQD7C3siKPrS15HB3J4+JC0/LlaVuvHpI7N7tu3SK3uzu5PTzI6eGBjZNTpt+mpmlZV1oSGEqpAcCnQDGSp6A+4AzsF5GuGWi/KI8mMNoCTUSkd8rzj4GaIjLoOdePBxyB70Rk34vafNP6FaYWHx/PzJkzKVeuHB9++OEjIyPSIjw8nD/++INt27axfft2bt68CcBbb71Fv3796N+/P/7+/lSsWJF27dqxevVqIPkNwMyZMxk/fjyNGjVi48aNJn9T37dvX1auXMn58+cpXLjwM8t9/vnnTJkyhd69e/P999+nvslLSEigU6dObNiwgf/+978UKVKE/fv3s2/fPm7dugWAk5MTb7/9Nu+88w7u7u7MmDEDf39/PvjgA+bNm2eS0SUZMWfOHEaOHImfnx/z58/H09OTS5cuUaBAAbPEExoaSt68eRkyZAizZ882eXubNm2iVatWtGrVip9//vmR5NPrLjQ0lAULFjB//nzu3btHw4YNmTBhAu+++67JR0EYDAauXr3KmTNnuHHjBjExMcTExBAdHZ16vOj5g3Px8fHPbStPnjzPTEw8+JozZ06T3HNAQACdO3fm2LFj9OvXj2+++eaFiTCDwcCoUaP45ptvADh16hTly5c3emwv65n9iqfNK0nLAXzwlHO2L1vfQ3XkAH4Hzqd8zf6UMm8BB4AzwL9Ah7TU/SbOVb34119S0c5OFMi6jz4SiY01d0haBsWGhcn1Q4fkqJeX+H33nYinpyTNmCEjqlaVru7u8l7OnPKWvb24WVjIOKVEQCKesjhpNpCvc+YUqVlTQt97T7oXLy4jqlWTmU2ayNLu3eXX8ePl6oYNIv7+knT3riSlYzVyTdPePKRhDQzABSgKrAOKPHTkeNG1aai7KA+tgQG0BZY+9PxjYGFG20mpqznwg4eHh0m+l2+qRYsWpf6Nyp49u/Tv318OHDjwzB0nDAaD+Pr6ysyZM6V+/fpiZWUlgLi4uEjbtm1l2bJlj6ydYDAYpGHDhuLi4pK6vWdiYqIMHDhQAOncubPExcVlyr1eu3ZNbGxspFevXs8tZzAYZMKECQJI//79xWAwSHx8vLRp0+apa14YDAa5fPmyrF69WgYMGJC6swkp6wts2bLFlLf10gwGg5QrV05q1qwpIsnbRlpZWcmQIUPMFtODRQ+NvQ7K8zzY1vfjjz+W06dPZ1q7phIUFCSjR48WJycnAaR58+ZpXnTyVZSQkCARERESFBQkly9fljNnzsixY8fk6tWrmfa743ni4uJk1KhRqbv/+Pr6PrNsTEyMtG3bVgDp0aOHWFhYyPjx4zMx2hd7Vr8iI3+8j6fl3EvUO4uUhbaAscBXTylTEiiR8tgNCARcX1T3m5jAEBGJvH1behQrJhdAxN1dwjw9xWDklZS1V1RSkkhIiMT5+sruefPEe/hw+a5TJ5nasKEMqVRJfBo0EGncWC6XLSuFLS3F/rEkx/9ABMQ3ZcHSPEpJWVtbqefiIm3c3GRfy5YiEybIrSlTZEWfPrJ50iTZv3ixnPPxkTt+fpKoE2aa9sZISwLDlMdTEhi1gB0PPR8HjDNmm29qv8IUoqOjJX/+/FKqVCmZOnWqfPjhh2JnZyeAlChRQqZNmyaXL1+W8PBw2bBhg/Tu3Tt1C1JAKlWqJGPHjpW///77mVuQPtgOc9GiRSKS3IF/sPjliBEjjL7LxIsMGzZMLC0t5dy5c88tZzAYZMyYMQLIp59+mrrI57x589LUTlhYmBw4cEBiX+G/yYcPHxZAFi9enHquV69eYmdnl7rlY2Zr0qSJFC1aNFO3bBURGTt2rFim7IxXqVIlmTVrlly/fj1TY8ioK1euyMCBA8XOzk4sLCykY8eOz30zrRnXzp07JV++fGJrayvz589/4v9wcHCwvPPOOwLI7NmzxWAwSLNmzcTNzS1d2yebmtESGCSPVK8KnAUqA1VSjgbAufTW95T6/YH8KY/zA/5puMb3QULjeccb39HYuVOkQgX5AKSWk5P88/335o5IewVF3bkjV/fvl2OrV0vg2rUiXl5y7bPPZMI770i/MmXkIzc3qefiImVtbWW7i4uIhYX4PGWEByDbQMTFRX7Pl0+qOTjIezlzSqciRWRghQoyqW5duT5lioiXl9xctUoOLFkiATt3SnBAgCS+AllsTdPS5xVMYFgBlwB3wCalr1DOSG3pERhGNnv27Cf+hlhaWkqePHme2E4REGdnZ/noo49k6dKlcuPGjRfWHxoaKnny5JHq1atLYmKihIaGSr169QSQOXPmZMIdPun27dvi6OgoHTp0eGFZg8Egw4YNS73/9Ow28joYMGCA2NnZSVhYWOq5CxcuiKWlpfz3v//N9HiCg4PFyspKRo8eneltiySPXJg/f77UqFFDAFFKybvvvitLly6V0NBQs8SUFufOnZMePXqIlZWVWFtbS69evSQgIMDcYb2R7ty5I82aNRNAmjVrJnfu3BGRR7dJ9fb2Ti3/yy+/CCCbN282V8hPMGYCozvwF3A/5euDYxPQJr31PaX+sIceq4efP6N8jZRkisUzXu8LHAWOFi5c2ATf2teLISFBlnbvLvksLASQ9oUKyaW//zZ3WNrrLClJYm7dkgt//imHPT1l27RpsubTT+Xbjz6S68OHiwweLLsbNZKmuXNLDUdH8bC2luxKiUoZ2SEpIz0e7pgqEFel5FLBgiJVqsjP5cvLRwUKSO9SpWRk9eoyvXFjWdSxo0SvXCmyfbvc3LxZ/Ldvlzt+fhIfFWXu74imvZHMmcAgeUpKIJBA8o4jvVLOf0DyTiQXgQnGbveN/2DESCIiIiRHjhxibW0tNWvWlN9//10GDx4sb7311iNbiT5+ODk5SbVq1WTgwIEyf/588fHxkYCAgKeOwPj000/FwsJCjh07Jjdu3JDy5cuLtbW1rF271gx3/P8eTA85efLkc8vFx8enjrwAZNSoUZk+MsBUYmJixNXVVTp37vzEa926dRN7e3u5fft2psa0ZMkSAeTYsWOZ2u7TBAQEyJQpU6REiRICiK2trbRp00Y2bNjwyoyqOXHihLRr106UUmJvby9Dhw6Va9eumTusN57BYJBvv/1WbG1tJV++fLJw4ULJnTu35MiRQ/bu3ftI2fj4eMmbN6+0bNnSTNE+6Vn9iows4vmRiGx4yWv/IHkkx+MmACtFxPWhsqEikv0Z9eQHdgPdReTgi9rVi239v8igIL7u0IGv9+whCdjYujXNli8HV9cXXqtpxpAUH48KD8ciLIwb587x7/Hj3AsKIuT2be6FhHAvNJQvSpfGJTqaH86eZd6NG4QmJhJmMBCbUsd9krelHQF881DdjkAOS0suly6NZY4c/BAezj9RUbg6O+Pq4oKLqys5c+WiW9Om4OrKlagoEuztcXFzw6VQIWyzZcvsb4emvfbSswtJSvkiJI+e/EMpZQ9Yich900VofLpfYRzTpk3js88+w8LCglq1anH48GESEhJwdnamcePGNG3alPfffx9bW1sCAgLYsWMHPj4+nDp1ioSEBJRSPNyftbS0xN3dHQ8PD0qUKEHu3LmZPHkygwcPpl+/fjRp0oTQ0FB++eUXGjVqZMY7T94G0d3dnTp16rB58+anlklISKBjx45s3LiRuXPncv78eRYtWsS4ceOYPn16pm5/ago//vgjnTp14vfff3/i38Pf35+yZcsycuRIvvrqq0yL6b333uPSpUucP3/+lfn+ighHjx5lzZo1rFu3jjt37uDi4kK7du3o0qUL9erVy/BOHmkVExODv78/Z8+eZfXq1fj4+JAtWzYGDRrE0KFDX5ldLLRk//77Lx07duTs2bO4u7uzbds2SpUq9US5MWPGMGfOHG7cuGGyXZjSw2i7kCiluorIaqXUCJKzwI8QkW+ecll66vcHGohI4IMEhYg88R1WSmUjOXnxpYisT0vduqPxpJtHjzLj44/54tw5XHPk4MqgQRQYMwbrLLp9k5Y1xIaFEXb1KnmtrFDh4fgeO8ZpPz9Cg4MJvXeP0LAwoiMjWVymDISFMdbPj7X37hGalERkSh25gAebW7UBfnmofjugrJUVx4oVAxcXxt+9S0BCAi6Ojrg6O+OSLRvuBQrwcaNG4OLCiTt3MDg44JwnD9ny5SObmxv2OXKgMqkjoWmvgnRuo9qH5BGSOUSkuFKqBLBYRP5j0iCNRCnVHGju4eHR5/z58+YO57V27949ChUqRHR0NLlz5yYyMpJBgwbxwQcfULt2bWxsbJ55bVxcHFu3bmXFihX4+PiQlJREoUKFKFWqFA4ODly/fp3z588TGRlJgQIFWL58OR07dsTGxoZt27ZRuXLlTLzTZ5sxYwbjx4/nn3/+oVatWo+8lpCQQIcOHfjll1+YN28eQ4cOxWAw0L9/f5YsWcJnn33G559/bqbIjeP999/n3LlzXL58+alvwLt06cJvv/3GlStXyJUrl8njuXv3Lvnz52f06NF8+eWXJm/vZSQmJvLnn3+yZs0afvnlFyIjIylYsCCdOnWiS5cuVKxY0SiJl/DwcM6ePZt6+Pn5cfbsWS5fvpyaNMyVKxfDhg1j4MCBuOoPQl9Z0dHRrF69mlatWj0zwRQQEECpUqWYOXMmY8aMyeQIn2TMBEY/EfleKTX5aa+LSIZ+iyqlvgZCRGSmUmosyZ2b0Y+VsQG2AZtFZF5a69YJjOc4eZKkESN4a9cu4qytmTViBC2nT9dvwLQsJyk+noibN4kKCqKggwOEhXHg0CEuXrpEWEgI4WFhhIeH45iUxGQPDwgPp8+JE+wPCyMsMZFwg4FooDpwOKXOysDJx9p5F9jl6grZstE8NJR7gLONDdns7cnm4EDNwoXpU7s2ZMvGmrNnsXRwIFvOnGTLnZtsefKQt3Bh8hYrBk5OYGsLr8gnQJr2LOlMYJwkeQroIRGpnHLulIhUMGWMxqb7FRk3evRovv76a6ytrRERtmzZwvvvv5/ueu7evcuPP/7IqlWrOHr0KJaWljRp0oSPP/6Yt99+m3379tG7d28KFSrEjh07cHd3N8HdvJyoqCiKFStG2bJl2bVrV+obz6clLx4wGAz07t0bT09Ppk6dyqRJk8wVfoZcv36dIkWKMHHiRKZOnfrUMn5+fpQvX57x48fzxRdfmDym77//nv79+3Py5EkqVapk8vYyKjo6mk2bNrFmzRq2b99OYmIi5cqVo0uXLnTu3JkiRYo893oR4e7du48kKB48frAlL4CtrS2lSpWiTJkylClThrJly1KmTBlKliz53ESj9nqpX78+gYGB+Pv7m330kdESGA9VmFtE7r64ZLrrzQl4A4WBq0B7EbmnlKoG9BeR3kqproAnyduoPtBDRB5/D/EI3dF4PjEY8Jk6lVEzZnA2Pp76Li7M/vZbqnXrZu7QNO2VkhAdTeydOzgbDBAezqEDB7gTGEhESAgRoaHcDw8nv7U1HxcpAhER9N69m6v37xMRF0dEQgIRiYm8Z2GBZ2IikLyvZMRjbfQElpM8zM0RsFUKZwsLnCwtcba2poubG0PKliXBwYEhvr44OTjg7OyMk7MzTtmyUaNsWd4qX54Ee3t8b93COXdunHLnxjlvXhzz5MHS1jZTv2da1pfOBMYhEamplDohIpWVUlYk72RW0cRhGpXuV2RMUFAQhQoVIjHld+FPP/1E+/btM1yvn58fXl5eeHl5cfPmTbJly0ZkZCRVq1Zl69at5M6dO8NtGNuCBQsYMmRI6jSK5yUvHkhKSqJnz554eXkxY8YMxo4da4bIM2b69OlMnDiRixcvUqxYsWeW69ChA9u2bePq1atkz/7UmeVG85///IcbN25w7tw5s7+BS6/g4GC8vb1Zs2YN//zzDwB169alS5cutG3blqioqKcmKu7du5dah5OT0yMJigeP3d3dsbS0NNetaZnEy8uLbt268ffff1OvXj2zxmKKBEYAcAX4CdgoIqEZijAT6I5G2iTGxrK0Z08+++kn7orw+3/+QyNPTyhUyNyhaVrWYjBAZCQ3/P2JCAwk4u5d7t+9S0RICAVtbamZNy+G8HAm+vhwPzKSyJgY7sfEEBkbSysXF/o7OREeHk6Ja9eIFCHmoaqnApNIXs3waT+5cy0tGebiwkVbW5qHhOBoZYWTtTWONjY42tkxoFw5Gnh4cNNgwNPfH0cnJ5ycnXHMlg0nV1eqV6xI/sKFiVKK27GxOOTIgWOuXDjkzKmTI2+odCYwZgFhQDdgMPAp4CciE0wYotHoKSTG0a1bN7y8vAD44Ycf6NOnj1HrT0pK4q+//mLVqlUopVi0aBGOjo5GbcNY4uLiKFmyJHnz5mXfvn107NjxucmLB5KSkujWrRtr167l66+/ZuTIkZkYdcaICCVLlqRAgQLs3r37uWVPnTpFxYoVmTx5MlOmTDFZTLdv38bNzY0JEyY8c0TI6+Ly5cusXbuWNWvWcPbs2Sdez5kzZ2qS4uFkRcGCBV+7xI1mPNHR0eTPn5+WLVuyatUqs8Zi9ARGSqU1gI5AK8AP+FFEVr90hSamExjpE3HjBt9368bw/fuxsrDgUIcOlJk+nWwFCpg7NE3TniIxNpaoO3e4f/s2jgYD2S0siA4O5o99+4gMC+N+WBiRERFERUXxXoECvJ0tG1dv32bkwYNExccTFRdHZEICUUlJfOnsTJukJPbev0+9pKQn2toItAa2A00fe80G8HF05D8uLuwERt+7h4OVFQ4pCRIHW1um1aiBR758HIuIYMu1azg6OuLg5JR8ODvTpFYtsuXKRVB0NLejorB3ccHe1RX77Nmxz54dh5w5UfqToFdKOhMYFkAv4D2SdxzbASyVjHRKzED3K17elStXUqdxjB8/nunTp5s5IvNbvnw5vXr1olKlSvj6+r4wefFAYmIiXbp0wdvbm7lz5zJs2LBMiDbj9u3bR926dVmxYgXdu3d/Yfk2bdqwa9curl69iouLi0liWrRoEQMHDuTUqVOUL1/eJG1kNhHh5MmTbN26lVy5cqUmK17FkUjaq+HTTz/F09OTwMBAs65rYpIExkOV5yJ5E4AuIvLK9ih1R+MlXbtG3JgxFPnxR0QpPu/Uid7LlmFlZ2fuyDRNywTxUVFE3b2bfAQHE3XvHu7Zs5NdKW5cu8afR48SHRlJVGQk0VFRREdH06dUKYpbW7P3yhVmnzlDdHw80QkJRCcmEpWYyC85clAuPp7v79+nf8rw8YcFACWAr4HRT7wKNwE3GxtmWVgwLz4eewsL7C0tkw8rK7ZXr46DkxNr7txhV3Aw9nZ22NvaYm9vj729PWPffx9lb8+Bmze5GhGBvaMjdk5O2Dk54ejiQrXKlcHennuxsSRZWWHn6oqdqytWdnZ6baBnSGcCwxGIFZGklOeWgK2IRJsyRmPT/YqXV6RIEa5du0adOnXYu3evucN5JTxYuyAgICDNyYsHHt6pZOHChQwcONCEkRpHr169+OmnnwgKCsLJyemF5U+cOEGVKlWYNm0aEydONElMDRo04M6dO5w5c0aPQtDeWMePH6dq1aosWrSIAQMGmC0OU0whyUbyB3AdgeIkL+LvLSLHMhKoKemORsYcWbmSEUOGsDcigrK2tnw9fjxNJ07UnXlN0zIkKT6emHv3iA4JIfrePaJDQ/HIlQubhAQuXLzIKX9/YiIjiUlJkMRERzOocmUckpLYdPo0Wy5cIDoujpj4eGISEohJSGCnhwfWcXFMuXGDpeHhxIgkH4A1EJ/Sdk9gxWPxZAcezAZuBzy8zZUF4KEU/jlygJ0dvSIiOBQfj52lJXaWlthaWVHCyYnF1aqBnR0z/P25GhuLnY0NthjCKEAAACAASURBVDY22NnZ4Z47Nz1q1wZbW37x8yPKYMDWwQE7BwdsHRzImzcvlcqVAzs7LgQFoWxssHVywtbJCRsnJ+xdXbFxcnrlFnZNZwLjINBIRCJTnjsBO0WktiljNBY9hSRjhgwZwoIFC7Czs+P+/ftYWVmZO6RXhp+fH5cvX6ZZs2bpvjY+Pp527dqxadMmFi9eTL9+/UwQoXFERUWRL18+2rVrx/Lly9N8XYsWLdi/fz9XrlzB2dnZqDHdunWLggULMnnyZCZPfupeBZr2xqhcuTIWFhYcO2a+t/amSGBcBn4lOWlxIIPxZQqdwMg4MRj4ddw4Rs+dy4WEBA5Ur87b33wD77zzynWmNU3THicGA3EREdgBxMZy+/p17t2+Tez9+8Tcv0/s/fsYYmNpVKYMxMby+9GjBNy4QWxMTPIRG4ujUoytVAliYph+9CjHg4OJSUggLjGRuMREilhbs8bNDeLiaH79Oofj4ogVIQ6IA+oADz5vLgOceyzGJiRvswXJ65fceOz1tsDPANbWFEpMJBqwUQpbpbC1sKC9qyvTihQBGxsanT2LVUpixdbKChsrK76sX5/CK1YY/Xub3l1IROStF5171el+RfotWbKEvn37AuDj40PTpo9PQtMyIi4ujjZt2uDj48PSpUvp1auXuUN6qpUrV9KjRw/27NlD3bp103zdkSNHqFGjhkm2eXywkOqZM2coW7asUevWtNfN//73PwYNGsTx48fNtuW0KRIYSs9VfXPFR0ayafBg2m7aBPfuMTNfPnI0akSXOXNwfMbewpqmaW86MRhIjI7G2mCAuDhuXblCVHg4cffvExsZSVxUFM6WllQsWBBiY/l1/34iIiKIi40lLiaG+Ph4PFxcaFGsGMTHM+6PP7gfG0t8QgJx8fHEJSTQIEcO+hcogMTGUv/oUeKSkpIPg4F4g4FtxYtT8tzjaZOMS2cCYz8wWESOpzyvCiwUkVpGD8yEdL8ifby9venQoQMAVapUMesne1lZbGwsrVq1YufOnXh6eqZpfYnM1qBBA27evElAQEC6p2o0bdqUo0ePcuXKFaMuylq3bl3CwsI4deqU0erUtNdVaGgobm5u9OrVi4ULF5olBqMlMJRS80RkmFJqM8k7/D1CRFq8fJimpTsaJhAVhaxZQ53hw/knOhoXoGflynw6axYlGjUyd3SapmlaJklnAqM68CNwi+RFPPMBHV7laahPo/sVabd9+3aaN2+OiGAwGLh8+TJFihQxd1hZVkxMDC1atODPP/9k1apVdO3a1dwhpbp06RLFixfniy++YMKE9G88dODAAWrXrs3s2bMZMWKEUWK6ceMGhQoVMun6Gpr2uunatStbtmwhMDAQe3v7TG//Wf2Kl1m8wCvl62xgzlMO7U3i6Ijq25d99++z93//o2nhwiw8cYKSjRuzsGxZ2LoVnrKDgaZpmvbmEpEjQGlgANAfKPM6JS+UUs2VUj+Eh4ebO5TXwv79+2nTpg2urq4kJSXRvn17nbwwMXt7e3777Tfq169P9+7d+fHHH80dUqoVK1aglKJbt24vdX2tWrVo1KgRX3/9NdHRxln3d/365NWO2rdvb5T6NC0r6N27N+Hh4WzYsMHcoTwiI1NIhorI/Bede5XoT0oyR+DJkywZPpx2p09TJjiYw25u7KlcmU/mzydH8eLmDk/TNE0zgfSMwEgpXxsoCqSu4Cgi5t10Pp10v+LFfH19qV+/PtmzZ+fatWtYWlpy9+5dk22DqT0qKiqKpk2b8s8//7Bz504aNmxo1ngMBgPu7u6ULl2aHTt2vHQ9e/fupV69eunereVZatWqRWxsLCdOnMhwXZqWVYgIJUuWpGDBgvz111+Z3r4xR2A88LQJdT0yUJ+WReR/6y0+++svyty6Bd7ebLO2ZtTWrRTw8KBXyZIcX7vW3CFqmqZpZqSU8iJ5JGcdoHrKkebkh/Z6OH/+PO+//z6Ojo7kzJkTg8HAqFGjdPIiEzk6OrJ161aKFi3KgAEDiI+Pf/FFJrRr1y6uXbtGz549M1RP3bp1adCgAV999RWxsbEZquvq1ascPHhQj77QtMcopfjkk0/YvXs3r9KOW+lOYCilOqWsf+GulNr00PEX/7/znKaBtTW0a8fkK1f4d/16upcpw4/nz1O1Sxda5sgBa9eCmf+QapqmaWZRDXhHRD4VkcEpxxBzB6UZz40bN2jcuDFJSUmMGTOGY8eO4ezsrNcXMANnZ2e+/fZbAgICmDt3rllj8fT0xNXVlVatWmW4rkmTJhEYGJiubVifRk8f0bRn6969O5aWlhn+OTOml1nEswjgDswAxj700n3gXxFJNF54xqWHeppf2NWrrBw2DIv9+xl89y5JefIwp3x5Os+cScHq1c0dnqZpmvaS0rmI58/AEBEJNHFYJqX7FU8XHBxMvXr1uHHjBlu2bKFNmzaEhITw7bffMnjwYHOH98Zq0aIFu3bt4ty5cxQsWDDT2w8PDydfvnz07NmTRYsWZbg+EaFu3bpcvXqVCxcuYGtr+1L11KhRA4PBgP5Z1rSna9myJYcPH+b69etYWVm9+AIjMdoUEhG5KiK7RaSWiPz90HH8VU5eaK8G1yJFGPrLLwwOCoLt2zlWsiRjd+2iaI0atC1YkN3z5iEGg7nD1DRN00wrF+CnlNrx8GhOcweVVnoRz2eLiIigadOmXLp0iU2bNrFx40ZCQkLIly8f/fr1M3d4b7R58+aRmJjIqFGjzNL+Tz/9RGxsbIanjzyglOKzzz7jxo0brFy58qXquHz5MkeOHNGjLzTtOXr16kVQUBA+Pj7mDgV4uREY+0SkjlLqPo9uo6oAEZFsxgzQmPQnJa+my3v28N2oUSw7coR7IpSztWXr+PEUGTAAcuc2d3iapmlaGqRzBEb9p50Xkb+NG5Vp6X7Fo2JjY2natCl79+7ll19+oUCBAlSvXh2DwYCnpyc9evQwd4hvvMmTJzN16lR27drFu+++m6lt16pVi4iICE6fPo1Syih1igi1atUiKCiI8+fPY21tna7rv/rqK8aOHcvly5cpWrSoUWLStKwmMTGRwoULU61aNTZtyrzPGow5AqNOyldnEcn20OH8KicvtFeXe716zDp0iBvBwSz/5BOK2dlRcPJkyJ+fZRUqsLJvXyJu3DB3mJqmaZqRpCQqrgDWKY+PAMfNGpSWIQkJCXTo0IHdu3ezYsUKPvjgA/r164eFhQUeHh507drV3CFqwNixYylatCiDBw8mISEh09o9e/YsBw8epGfPnkZLXsD/j8K4evUqXl5e6b7e29ubGjVq6OSFpj2HlZUVPXr0wMfHh1u3bpk7nJffhUQpVVwpZZvyuIFSaohSytV4oWlvGvscOei5bBmbwsKw/PdfGD2aFefP02PJEvIUKkTbggXZMGoUsWFh5g5V0zRNywClVB9gPfB9yqkCwK/mi0jLCIPBQK9evdi0aRMLFiyga9euLFq0iKNHj5KYmMj06dMzdd609mz29vbMnTuXM2fOsHDhwkxrd8WKFVhaWpokkdW0aVOqVq3K9OnTSUxM+2z2CxcucPz4cT19RNPS4JNPPiEpKemlp2sZU0a2Ud0AJCmlPIAfgEKA3h9TM44KFeDLL9kTHc0/339P34oV2XvrFm1nz2ZQnjzQowfs2EFiBrfO0jRN08xiIPAOEAEgIueBPGaNSHspIsKwYcPw8vJi6tSpDBo0iJs3bzJhwgTs7e2pWLEibdu2NXeY2kNatmxJkyZNmDx5MkFBQSZvLzExkVWrVvHBBx+QL18+o9evlGLSpElcunSJdevWpfk6b29vANq1a2f0mDQtq/Hw8KBBgwYsW7YMg5nXK8xIAsOQsmhna2CBiIwC8hsnLE1LpiwsqNW3L9/6+nIzOpqdM2Yw+IMP4NdfOdWkCW4ODgysUIH9332HIR1Zd03TNM2s4kQkdR9tpZQVj66rpb0mPv/8cxYsWMDw4cNTt0gdNmwYsbGxxMTEMH36dCwsMtLd1IxNKcX8+fOJjY1l9OjRJm9vx44dBAUFGW3xzqdp0aIFlSpV4osvviApKSlN13h7e1OrVi0KFy5ssrg0LSvp3bs3Fy9eZM+ePWaNIyN/URKUUp2A7sCWlHPpWzlH09LBys6OxmPHUunXXyEoCDVvHg0KFGD56dPU+fRT3O3sGPP224T8/Tekc3FaTdM0LVP9rZQaD9grpRoDPwObzRyTlk7z58/n888/p0ePHsyePRulFFu3bmX9+vXY29vz9ttv06xZM3OHqT1FyZIlGTlyJF5eXuzbt8+kbXl6epIrVy6T/l94MAojICAgdWTF8/j7++Pr60uHDh1MFpOmZTVt2rTBxcWFpUuXmjWOjCQwegK1gOkiclkp5Q6kf/UcTXsZdnaUHzoU7+vXuXPzJqv69aNcjhwsPnQI2wYNoFw5DvTpw4U//zR3pJqmadqTxgJ3gVNAP8AHmGjWiLR0WbduHcOGDaN169YsWbIECwsLoqKiGDhwIHnz5iUiIoLp06cbdcFGzbgmTJhAwYIFGTRoUJpHLaRXcHAwmzZtomvXrtjY2JikjQdat25NuXLlmDZt2guHuD9IcujpTZqWdvb29nTt2pX169cTGhpqtjheOoEhIn4iMkRE1qU8vywiXxkvNE1LG2c3Nz5evBifO3cIvHoVp+++g9y5GbR0KSUaNaKGkxNzW7Xi1nG9wL2maZq5KaUsAS8RWSIi7USkbcrj12bonFKquVLqh/DwcHOHYhZ37tzh008/pXbt2qxduzZ1gc6pU6dy9epVYmNjadiwIQ0bNjRzpNrzODo6MmfOHHx9fVm8eLFJ2li3bh0JCQkmnT7ygIWFBRMnTuTs2bNs2LDhuWW9vb2pU6cOBQoUMHlcmpaV9O7dm7i4ONauNd/Sl+pl+wtKqXeAKUARwApQgIhIMaNFZ2R6v/Y3y/VDh/hp2jTW7drF8ZgYFDDCzY2vBw+G5s2hbFnQnwxpmqYZxbP2a39G2X1Aw4fXwXgdvan9iu7du7Nu3Tp8fX0pU6YMAKdOnaJKlSpUqlSJY8eOceDAAd5++20zR6q9iIjQqFEjjh8/TkBAALlz5zZq/VWqVEEpxbFjx4xa77MkJSVRrlw5bG1tOXHixFPXX/Hz86NcuXIsWLCAQYMGZUpcmpaVVK1alaSkJE6cOGHSUXbP6ldkZArJMuAboA5QHaiW8lXTXgmFatZk5JYtHIuO5pyPD1PefZd37O1h3DgCy5fHw8aGYZUr8+fXX5MQHW3ucDVN094kl4D9SqlJSqn/PjjMHZT2Yn///TerVq1i5MiRqckLg8FAv379cHFx4fz583z44Yc6efGaUEqxYMECIiMjGTdunFHr9vX15cSJE5ky+uIBS0tLJk6cyL///sumTZueWsbb2xulFB999FGmxaVpWUnv3r3x9fXluJlGt2ckgREuIttE5I6IhDw4jBaZphlRqaZN+WzXLlpduAA3bhA2eTKlc+Rg8cmTNBo9mtyOjnQsXJjzc+bAvXvmDlfTNC2ru0jyAuAWgPNDh/YKi4+PZ8CAARQtWjR1xxGAJUuWcODAAWrXrk1ERATTpk0zY5RaepUtW5ahQ4eybNkyDh8+bLR6PT09sbGxoXPnzkarMy06duyIh4cHU6dO5fGR5iKCt7c39erVI39+vXmipr2MTp06YW9vz7Jly8zSfkamkMwELIGNQNyD8yLyyi408KYO9dSeLerOHf6YN4/NGzaw9cIFjhoMFLC0xKdMGc4WLUqLwYMp8d575g5T0zTtlZeeKSQPXeMgIq/tELg3rV8xc+ZMxo0bx+bNm/nwww8BuH37NqVLl6ZcuXKcOHGCDz/8kJ9++snMkWrpFRERQalSpShYsCAHDx7E0tIyQ/XFx8dToEAB3n333TTtCmJsnp6efPLJJ4/8X4XkqU4VK1Zk0aJFDBgwINPj0rSsolu3bvz2228EBgbi4OBgkjZMMYWkJsnTRr4E5qQcszNQHwBKqRxKqd+VUudTvmZ/TtlsSqkbSqmFGW1XezM55slDyy+/ZKm/P7fi4ylw8CCMHcu2wEBGbtlCyfffp7StLaOqV2fvggWQmGjukDVN0157SqlaSik/4FzK80pKqUVmDkt7jitXrjB16lRatWr1yBvC//73v0RHR+Ph4UFsbCyff/65GaPUXla2bNmYPXs2R48eZfny5Rmub8uWLQQHB9OjR4+MB/cSunbtStGiRZ8YheHt7Y2FhQVt2rQxS1yallX07t2biIgI1q9fn+ltv/QIDFNRSs0C7onITKXUWCC7iIx5Rtn5QO6U8i9chedN+6REy5gr+/axZf58Nu3axe5796gAHMuRAz74gL0eHlTs2ROXwoXNHaamadorIZ2LeB4C2gKbRKRyyrnTIlLelDEa25vUr2jRogV//vknZ8+epXDK377ff/+d9957j+HDh7No0SI6deqEp6enmSPVXpaIUL9+ffz8/AgICCBHjhwvXVfz5s05duwY165dS92lJrMtWbKEvn37sm3bNpo0aYKIULp0aQoVKsQff/xhlpg0LasQEUqVKkX+/Pn5+++/TdKG0UdgKKXyKqWWKaW2pTwvq5TqlZEgU7QEVqY8Xgm0ekb7VYG8wE4jtKlpTyhapw6Dfv6ZnSEhBF+/zuq5c6FZM2J8fHh/yhRyFylC45w5mde6NWd++w15wZ7jmqZp2v8TkeuPnUoySyDaC/32229s3ryZKVOmpCYvYmJiGDBgACVLliQiIgKDwcDkyZPNHKmWEUopFi5cSGho6CNrnKRXUFAQ27Zto1u3bmZLXkDybjmFChVKHYXh6+tLQEAA7du3N1tMmpZVKKXo1asXe/bsISAgIFPbzsgUkhXADsAt5XkAMCyjAQF5RSQw5XEQyUmKRyilLEiesjLyRZUppfoqpY4qpY7evXvXCOFpb6JsBQtSZtgwWLUKm1u32LFgAcOqV+dGZCTDf/2V8q1a8bWrK3TrRuySJdx8Qz6R0zRNe0nXlVK1AVFKWSulRgJnzR2U9qSoqCiGDBlC+fLlGTbs/7t5M2fO5OLFi3z22WesXLmSPn36ULRoUfMFqhlFxYoVGThwIIsXL37pHQa8vLxISkrK1N1HnsbGxoZx48Zx4MABdu3ahbe3N5aWlnr6iKYZSffu3bG0tMz0xTwzsojnERGprpQ68dDwz5Mi8lYarv0DyPeUlyYAK0XE9aGyoSLyyDoYSqlBgIOIzFJK9QCq6Skkmrlc2bePP5cu5Z27dyl9+DBbg4P5EChjY8N/SpWi0Ycf0qB/fz3dRNO0LC2dU0hyAfOBRoAieTTl0MzazUwpVYzkPoeLiLRNOecILALigd0isuZF9bwJ/YoxY8Ywa9Ys9u7dS506dQC4fPkyZcqU4aOPPsLS0pKff/6Zixcv4ubm9oLatNdBWFgYJUuWxMPDg3379mFhkfbPO0WEcuXK4erqyj///GPCKNMmNjaW4sWLU7x4cW7dukXx4sXZsWOHucPStCyjdevWHD58mOvXr6frd0VamGIRzyilVE5AUhp4GwhPy4Ui0khEyj/l+A24rZTKn1JnfuDOU6qoBQxSSl0heeHQbim7omhapitapw69Vqyg9NatcPs2FbZtY/aHH1IkWzaWnTpFqxkzyFGkCAFvvQWTJhGyaRNxERHmDlvTNC3TKaW+Snn4roh0EZG8IpJHRLqmNXmhlFqulLqjlDr92PkmSil/pdSFlDW0nklELonI49Ne2wDrRaQP0CKt95SVnT59mm+++YaePXumJi8ARowYgZWVFb1792b16tUMGjRIJy+yEFdXV7766isOHDiAl5dXuq49cuQIZ8+eNfvoiwfs7OwYM2YMe/fu5eLFi3r6iKYZ2cyZMzl06JDRkxfPk5ERGFWABUB54DTJi2m2FZF/MxSQUl8DIQ8t4plDREY/p3wP9AgM7RUVFxHBQU9P9vzyCxNiY7E4coS+BgNrgHq5ctHo7bdp9PHHVGjTBgszzhPVNE3LqLSMwFBKnQIqAsdEpMpLtlMPiARWPVj0UyllSfJU1sbADeAI0Ink7d5nPFbFJyJyJ+W69Q+NwBgHbBORk0qptSLS+UWxZOV+xYMFHc+cOYO/vz+5cuUC4I8//qBx48Z8+eWXHDt2jJ07d3Lp0qXU17WswWAw8M4773Dp0iX8/f1xdXV98UXAgAEDWLlyJUFBQWTLls3EUaZNTEwM7u7uhISEcPv27QwtTqppWuYx+ggMETkO1AdqA/2AchlNXqSYCTRWSp0neWjpTAClVDWl1FIj1K9pmcY2WzbqDx3KpN27sTh4EEJC6PD553xSoQJXIiIYuWULb3XoQE17e+jUCZYtI/RfY/wYaZqmvZK2A6FARaVUhFLq/sNf01KBiOwB7j12ugZwIWVkRTzwI9BSRE6JyIePHU8b2QnJiY+CKY+f2T96U9bWWrlyJXv37uWrr75KTU4kJCQwdOhQihcvToMGDdiwYQPDhw/XyYssyMLCgoULF3L37l2mTJmSpmtiYmJYt24dH3300SuTvACwt7dn2bJlzJ07VycvNC0LyMgIjHbAdhG5r5SaCFQBvkhJbLySsvInJdrr6caRI/z5ww8knDpF76tXkaAg8gPO1tbUd3enTt261O3UiWLvvovKxKFZmqZp6ZXGERi2IhKnlPpNRFpmoK2iwJaHRmC0BZqISO+U5x8DNZ81OjNlCux0kkdsLBWRGSlrYCwEYoF9b/IaGCEhIZQuXZoSJUo8sgbCt99+y9ChQ/n111+ZN28evr6+XL58GRcXFzNHrJlK//79Wbp0KSdOnKBChQrPLbtu3To6d+7Mn3/+ScOGDTMpQk3TsipTrIExKSV5UQf4D7AM+C4D9WnaG6dg9ep0X7KE3gcPwq1bJJw4wbjWrSmdPTsbz5+n57JleDRqxMRs2aBtWxLmzOHoqlUkxsaaO3RN07SXcSDlq1kXAhKREBHpLyLFRWRGyrkoEekpIgNelLxQSjVXSv0QHp6mpb9eO+PGjSM0NJTFixenJi/u3r3LZ599xvvvv09YWBi7d+9mxowZOnmRxU2fPh0XFxcGDRrEiz709PT0pGjRojRo0CBzgtM07Y2UkQTGg/3amwFLRGQrYJPxkDTtDaUUNm+9xdCNG9l8+zbB8fGc/vVXFnfuTMu6deHYMU6MHEn17t1xtbenUY4cTGnQgD9mzSL6zrNGRGuapr1SbJRSnYHaSqk2jx8ZqPcmUOih5wVTzpmEiGwWkb5Z8c37wYMHWbJkCUOHDqVixYqp5ydMmEBUVBRTpkxh5MiR1KpViz59+pgxUi0z5MyZky+//JI9e/bw448/PrPctWvX+OOPP+jevXumLuanadqbJyNTSLaQ3DloTPL0kRjgsIhUMl54xpVVh3pqb47Q06fZuWQJ+/76i30XLuAbE4MAuywseLdyZfzKlMEvTx7qdO9Ovoc6npqmaaaWxikkdYAuQHtg02Mvi4h8ksa2ivLoFBIrkhfx/A/JfZMjQGcROZOee0grpVRzoLmHh0ef8+fPm6IJs0hMTKRatWoEBwdz9uxZnJ2dATh+/DjVqlVj+PDhhIWFsWrVKo4fP/7CKQVa1pCUlETNmjUJDAzk3Llzqf8vHvbFF18wadIkLl26hLu7uxmi1DQtq3lWvyIjCQwHoAlwSkTOp2x5WkFEdmYsVNPRCQwtqwm/do2DXl7UvX8fh0OHmLRvH18kJgLgYW1NnSJFqPPOO3QdMQLb8uVBKTNHrGlaVpWWBMZDZXuJyLKXbGcd0ADIBdwGJovIMqXUB8A8knceWS4i01+m/vTIav2KefPmMXz4cNavX89HH30EJO9GUrduXc6fP4+npyfNmjVjzJgxzJypd69/kxw8eJBatWoxatQoZs2a9chrIkKJEiUoVKgQf/31l5ki1DQtqzF6AuN1lNU6Gpr2uPjISE789BP7fv2VfceOsS8oiHgR7gGWuXLxXf78hOTJQ/V336Va+/bkLFHC3CFrmpZFpHEERkMR2fWs6SIistE00ZlGVupX3Lx5k9KlS1O3bl22bt2KSkl4r127li5durB48WLmzZtHbGwsZ86cwcHBwcwRa5mtV69erFq1in///ZcyZcqknt+zZw/169dn5cqVdOvWzYwRapqWlegEBlmro6FpaSEGA7f27aPA+fOwbx9t1q/nl8jI1NeLWVnRqlgx5vTtC9Wrk1ChAtbZs5sxYk3TXldpTGB8LiKTlVKeT3k5zVNIzC0rTiFp3749mzdv5syZMxQrVgyAyMhISpUqhZubG82bN2fy5Mn4+PjQtGlTM0ermcOdO3coVaoU1apVY+fOnalJrp49e7JhwwYCAwNxdHQ0c5SapmUVOoGBTmBoGiRPOzn2888c+eMPjpw6RcGICObdvw9AYSCbrS3VCxWietWqVG/alIqtW2P7Cu3nrmnaqyk9U0iyiqzSr9ixYwdNmjRh2rRpTJw4MfX8hAkT+PLLL/H29ubjjz+mRYsWeHt7mzFSzdwWLlzI4MGD+fnnn2nbti2RkZHky5ePjh07snTpUnOHp2laFqITGGSdjoamGd3t2yQeOsQX33zDET8/jgQHczfld8MQCwvmV6lCQpUqrE5IoHrz5pRp1gxLG73pkKZp/y+NIzD++7zXReQb40ZlWlmhXxETE0OFChWwsrLC19cXW1tbAC5evEjZsmXp0KEDgYGBHD58mLNnz+Lm5mbmiDVzSkxMpGrVqoSGhnL27P+xd+dxUdX7H8dfXxgYYBj2RRRQy11JUyQ1l8qt8try89a9de9ts0zbb9ttd0nLlvvLW5ZWlm22/2yxxbVMMzfUzAWXUAERZWcGZmFgvr8/QC4mmhrDDPB5Ph7nwZnDmTOfcwT8znu+3+/J4JNPPuHGG2/kxx9/5Pzzz/d2eUKIFuRE7QqDN4oRQviY+HgMl13GlMsuA2qGnmSvXcvGhQs5q7AQsrPZRk0ENgAAIABJREFU/t573GSzwfz5mIC+YWGkde7MjX/5Cz0vuww6dQJ/f++ehxDC1x29fUFXoD//vRPJWGCDVyo6A/WGkHi7lD9s5syZZGZmsmLFirrwAuC+++4jMDCQ8847jzvuuIPZs2dLeCEwGAy8/PLLDBkyhKeffprVq1fTpUsXBg0a5O3ShBCthPTAEEKcEndVFXuWLGHjl1+ycd06NmRm8nNFBV8Co4DlRiOPGgz0Tkqid0oK5wwdyjmXXUZ4crK3SxdCNIHTvAvJKmCM1tpa+9gMfK21HurJGhtbc29X7Nmzh5SUFP785z+zYMGCuu1Lly5l9OjRTJ48mTlz5tChQwd++ukn/CWkFrX+8Y9/8NFHH+FyuXjqqad4+OGHvV2SEKKFkSEkNP+GhhC+prK8HLVzJwE7drD8q6946rvv2FpWRnG9vys727ale//+bIqNJSsignMuvpizhg3DzyAdwIRoSU4zwNgNnKO1dtY+NgK/aK27erLGxtac2xVaa0aNGsXGjRvZtWsXbdq0AcDlcnHOOedQVVXFsGHDeOutt0hPT6dPnz5erlj4kry8PLp27UpFRQXZ2dm0a9fO2yUJIVoYGUIihGh0gaGhkJYGaWmMuPFGRlAz/CR30ya2fv01W9eupVN4OGzbxltffMFsgOefJxRICQ2ld3IyL02ahKFvX9w9e+IXHu7dExJCNJV3gA1Kqc9qH18BvOW9ck5PSxhC8tFHH7F8+XJmz55dF15AzSSNu3bt4plnnuFf//oX9913n4QX4jgJCQm88cYbZGZmSnghhGhS0gNDCNEkbIWF7Pz6a7Z+/z1bt2xha1YWRVYr291uAK4CthgM9I6L45wuXTgnLY1eF15I5+HDISDAu8ULIX7X6d6FRCnVFxhS+3CV1nqLZyrznObarigrK6Nbt24kJiaybt26uqEh+fn5dO7cmUGDBpGTk4PFYmHnzp2EhoZ6uWIhhBCtjfTAEEJ4VUhMDKnXX0/q9df/d6PWkJ0Nv/zC8Ndfh82b2Zqfz2eHDqFXriTt2WdZHxAAnTvzUFUVgXFxdO/Th+6DB9N15EiCo6K8d0JCiD9Ea70Z2OztOlqjxx9/nCNHjrBo0aJj5rV45JFHsNls9OjRg8WLF/Pll19KeCGEEMKnSA8MIYTPqcjPZ+e331K5dy/nV1VBRgapS5awxenEXbuPAiaYzcwdOhS6d+d9i4Wz+ven+6hRMnGoEF5wuj0wWoLm2K7YvHkz/fv3Z9KkScyePbtue3p6OmlpaYwfP54FCxZw8cUXs3DhQi9WKoQQojWTSTxpng0NIcR/OcvK2LN8ORk//kjGzz/TzenkL+XllO3eTURlZd1+CX5+9AgPZ9J55zHussuo7tKFwvh44nr0QPn5efEMhGi5WlOAUW8OjFv27t3r7XJOWXV1NQMHDiQ7O5tdu3YREREBgNvtZvDgwezbt4+UlBTWrVtHRkYGiYmJXq5YCCFEayVDSIQQzZ4xPJyUceNIGTfumO1ml4u9q1ax87vvyNi8mYy9e8k4fJjy77+HxYvZDfQEopSii8lEp9hYOnfowNWXXkq3oUPRnTqhZDiKEOIUaa0XAYtSU1Nv8XYtp+O1115j48aNLFiwoC68AFiwYAFr165l0qRJzJkzh1mzZkl4IYQQwidJDwwhRMulNeTmcuSnn/jwww/J2LWLvYcP86vFQk51NV8CfwKWANcqRaeQEDrHxtKpfXs6de/OJVdeSXRqKki4IcTvak09MI5qTu2KI0eO0LVrV1JTU1m2bBlKKQCsVitdu3albdu2HDx4kMTERNavX3/M3BhCCCFEU5MeGEKI1kcpSEwk/uqrufvqq4/5lqO0FHXgAGRnE//DD1y9eDG/Hj7Mjzk5vH/gAPqHH9gydy7RwPsmEy9oXRNuJCfTuUcPOvXrR78xYwhMSKh5HSGE8GH3338/drudl19+uS68AJgxYwZ5eXkMGjSILVu28PXXX0t4IYQQwmdJgCGEaJWCIiKgTx/o04c+l13GnH//u+57TouFfatXc7bTCVlZhCxdSsSGDazNzeXDrCz06tUAFALRERG8GhbGsupqOrRpQ4eOHenQvTsdzj2XniNGoMxmL52hEELU+P7773nvvfd47LHH6Nq1a932vXv38sILLzBmzBgWLlzIXXfdRb9+/bxYqRBCCHFyMoRECCFOg9NiYf+aNWSuW8elERGozEyeW7aMNw8c4EBlJY7a/YKBCkDFxDAtMJBflKJDQkJdwHFWv370uOgikFsUihaiNQ0haU6TeFZVVZGSkkJlZSXbt28nODi47ntjx47lhx9+IDExEYvFQkZGBmYJXYUQQvgAGUIihBCNwBgWRrdLLqHbJZfUbXugdtFuN/k7d3Jg/XoK9+ypmRj0wAEqlixhR24uX+fm4qgNUbsAuwFiYrhdKfIDA/8bcPToQZe0NDoPHgxhYV44SyHEyTSnSTxzcnLYtWsXr7zyyjHhxbfffstXX33FmDFj+Prrr1m4cKGEF0IIIXyeBBhCCNFIlJ8f8b16Ed+r1zHbn6ldtNvNkR07OLBhA/asLDCZ4MABHIsWsa2ggEW5uThrA44RwDIAs5lL3G6qjUYSo6NJSkggsX17evftS9rw4ZCYCBERMg+HEKJBR3vamkymum2VlZXcc889nHXWWXz33XeMHTuWK664wlslCiGEEKdMAgwhhGgiys+PNikptElJOWb7G3PmAOCurq7pwbFhA355eRAUBAcPErVwIb8WF7MjM5O8vXvRwI3vvksaoIFYIDoggKTQUBKjokhs04YRaWlccNFF6MREik0mos4+G+Xn19SnLITwQS+99BJ79uwhLS2NI0eOMHv27GMm9hRCCCF8lc8FGEqpKOAjoANwALhaa13SwH7JwDwgiZo2/KVa6wNNVqgQQjQyP3//BgOOBbNm1a27bDYOb9sGeXngclG5fz/XffQRB/PzOVhayncHDnAoMxP/NWu44IUXKKIm4AgCEgMCaBcSQkJ4ODf07cvogQOpiIrip8JCErp2pU3PnkR36iRBhxAt2OHDh5k6dSr9+vVjw4YNPP/88yQnJ3u7LCGEEOKU+FyAATwErNBaz1RKPVT7+F8N7PcOMENrvUwpFQq4m7JIIYTwhoCQEJLOO6/usRH43wcfPGaf6spKKrOzoaiIgN27mfX55xzMySHnyBFyy8pIz8tj9DffwOefswcYVf/4QBt/f1466ywu796dA6GhvJWbS0K7diR06EBCly4kdO9Om5QUDPXG0wshmodHHnkEh8NBTk4OvXv35u677/Z2SUIIIcQp88UA43Lggtr1t4GV/CbAUEr1AAxa62UAWuvyJqxPCCF8mn9gIMGdOkGnToSfdx53X3ddwztarXTOzOSH1as5nJlJXnY2eYcOkVdQQEJkJOzfz66sLKZaLMc9dTEwOiaG70NDedpiIT4sjNioKOJiY4lt04bLR44k5uyzsZnNuKOjMcXFSc8OIbxsw4YNzJ8/n379+rF582YWLVqEweCLTUEhhBCiYb74v1a81jqvdv0wEN/APl2AUqXUQqAjsBx4SGtd/dsdlVITgAmAdJEUQoj6zGZC+/RhaJ8+J9zlYqCyooIjO3dyeOdO8vbuJe/AAXq3aQPl5Ti2bqWsoIC9Bw9ScOAAFbXPG/D228QAbwB3UXNb2Vh/f+KMRmJNJuZfeCHxycmkO53ssNmITUoirmNHYs8+m7ju3QmOivL46QvRmrjdbu68806io6PZtGkTt99+O2lpad4uSwghhDgtXgkwlFLLgTYNfOvR+g+01loppRvYzwAMAc4FsqmZM+MGatrKx9Bavwa8BpCamtrQsYQQQpxEgMlEYv/+JPbvf9z3LqldjqrIz6dgzx7a+vlBSQmD09N5dsMG8vPzyS8upsBiIb+iAuOaNfDFF3zqdPJMA69ZERJCSFwcL1RVsdhuJ9pkIjo8nOjISGLj4rj9iisgOppsl4uq0FCizzqLsKQk6eUhmoRSaiwwtlOnTt4u5ZT99NNPbNiwgfbt2xMYGMiMGTO8XZIQQghx2rwSYGitR5zoe0qpI0qpBK11nlIqAchvYLeDwM9a6321z/kcGEADAYYQQoimY4qLwxQXV/f43DFjOPdEO2vNE/n5TNi5k/zMTAoOHCD/4EGKjhwhpHt3KCjAnZ5OaUkJmWVlFOXkUKo1EcDtn34KwAPAx7WH8weilKJbUBCr+vaF6GheOnKErKoqoqOjiY6NJTohgbbJyQw8/3yIjKQiIIDg+Hj8AgI8d1FEi6O1XgQsSk1NvcXbtZyqjz/+mPbt25OVlcXHH39MeHi4t0sSQgghTpsvDiH5ErgemFn79YsG9tkIRCilYrXWBcBFQHrTlSiEEOIPU4qQ+HjOio/nrAsvbHCX+2qXo6qcTizZ2eB2Q1ER96xZwyW7d1OUn09xURFFJSUEu1wQGAhZWazcs4dv7Xbs9Y5xLrC5dv0CYBMQBkT6+xMRGMjgqChe6t8fIiN5du9enAEBRERFERkTQ0RcHB06daJX374QGYndaCQoKkp6fgifpXVN59OysjIqKyu55JJL+POf/+zlqoQQQogz44sBxkzgY6XUeCALuBpAKZUKTNRa36y1rlZK3Q+sUDU3Lt8EvO61ioUQQjQJg9FIVOfOdY8HDhrEwJPs/3+1X+3FxRRlZlK0fz/aYoHYWCgp4Y6lS9mXm0tpWRklViulFRUEKwW//gqlpczLzWWvPnb04Tjg09r1RMAKhCtFuL8/YQEB/Dk+nkdSUiAsjLt/+YUQk4mwsDDCIyIIi4wkpVs3evfpgzab2VdaSlhCAmHt2mGUT8SFB5SWlgIQHR2NzWbj5ZdfpqbpJIQQQjQ/PhdgaK2LgOENbE8Hbq73eBlwThOWJoQQopkKjooiMSrquHk8rr/hhpM+bw/gstkoy8mhJDub0kOHCHE6ISICSkt5+IsvKCoupqSsDKvNhsVuJ8TPD7KzqSor4/2sLMq0xlXvmA8AvQELUH8GhUAgTCkejYrinqQkCoODuTEzk9CgIEKDgwkNCcFsMvGn3r1J69EDi78/yzMzMUdGEhodXbPExhLfoQMhcXFgNIK8UW31LLV3ESoqKmLmzJl07NjRyxUJIYQQZ87nAgwhhBDClwSEhBDTtSsxXbse9737J0w44fMMQAGg3W6cFguW3FwseXmEVldDYCCBBQW88913WIqLKSstxWKxYCkvp0tsLJjNOPLzOWS1Ul5SQnl1NeVuN1Yg4ccfSQP2UdMb5Lfeomb85To/Py52uwn198fs70+owYA5MJDXBg6k0zffNMKVEc1BZWUlAJGRkdx7771erkYIIYT4YyTAEEIIITxI+fkRFBFBUEQEcT171m0PBv5x9dUnfF4iNeMj69NuN+6KCrDb6VpQwM87dmAtLKwJOYqLKS8r4/x27SA4mOjsbK7/6SfKbTbKHQ6sDgflTieG2k/kRetQWFgIQK9evQiQyWqFEEI0cxJgCCGEEM2E8vPD32wGs5nguDh61wtEfqsz8J+mK034OH9/f2+XIIQQQvxhMm26EEIIIYQQQgghfJ4EGEIIIYQQQgghhPB5EmAIIYQQQgghhBDC50mAIYQQQgghhBBCCJ+ntNberqHJKKUKgKxGPmwMUNjIxxRyXT1FrqtnyHX1DLmunuGp69peax3rgeP6LGlXNCtyXT1DrqtnyHX1DLmuntGk7YpWFWB4glIqXWud6u06Whq5rp4h19Uz5Lp6hlxXz5Dr6tvk38cz5Lp6hlxXz5Dr6hlyXT2jqa+rDCERQgghhBBCCCGEz5MAQwghhBBCCCGEED5PAow/7jVvF9BCyXX1DLmuniHX1TPkunqGXFffJv8+niHX1TPkunqGXFfPkOvqGU16XWUODCGEEEIIIYQQQvg86YEhhBBCCCGEEEIInycBhhBCCCGEEEIIIXyeBBh/gFLqYqXUbqXUr0qph7xdT0uglEpSSn2vlNqplNqhlLrb2zW1JEopf6XUFqXUV96upaVQSkUopT5VSu1SSmUopQZ6u6aWQCn1z9q/AduVUh8opYK8XVNzpJR6UymVr5TaXm9blFJqmVJqb+3XSG/WKP5L2hWNT9oVniNtCs+QdoVnSLuicfhCu0ICjDOklPIHXgYuAXoA1yileni3qhahCrhPa90DGADcLte1Ud0NZHi7iBbmP8BirXU3oDdyff8wpVQ74C4gVWvdC/AH/urdqpqtt4CLf7PtIWCF1rozsKL2sfAyaVd4jLQrPEfaFJ4h7YpGJu2KRvUWXm5XSIBx5tKAX7XW+7TWlcCHwOVerqnZ01rnaa03165bqfmj3c67VbUMSqlEYAwwz9u1tBRKqXBgKPAGgNa6Umtd6t2qWgwDEKyUMgAhwCEv19Msaa1XAcW/2Xw58Hbt+tvAFU1alDgRaVd4gLQrPEPaFJ4h7QqPknZFI/CFdoUEGGeuHZBT7/FB5D/ERqWU6gCcC6z3biUtxizgQcDt7UJakI5AATC/thvtPKWUydtFNXda61zgeSAbyAPKtNZLvVtVixKvtc6rXT8MxHuzGFFH2hUeJu2KRiVtCs+QdoUHSLvC45q0XSEBhvBJSqlQ4P+Ae7TWFm/X09wppf4E5GutN3m7lhbGAPQF5mitzwUqkO74f1jt2MnLqWnItQVMSqm/e7eqlknX3Etd7qcuWjxpVzQeaVN4lLQrPEDaFU2nKdoVEmCcuVwgqd7jxNpt4g9SSgVQ08hYoLVe6O16WojzgcuUUgeo6ZZ8kVLqPe+W1CIcBA5qrY9+mvcpNQ0P8ceMAPZrrQu01i5gITDIyzW1JEeUUgkAtV/zvVyPqCHtCg+RdkWjkzaF50i7wjOkXeFZTdqukADjzG0EOiulOiqlAqmZCOZLL9fU7CmlFDXj/jK01v/r7XpaCq31w1rrRK11B2p+Vr/TWkvy/AdprQ8DOUqprrWbhgM7vVhSS5ENDFBKhdT+TRiOTGLWmL4Erq9dvx74wou1iP+SdoUHSLui8UmbwnOkXeEx0q7wrCZtVxg8efCWTGtdpZS6A1hCzUy2b2qtd3i5rJbgfOAfwDal1M+12x7RWn/jxZqEOJk7gQW1bzj2ATd6uZ5mT2u9Xin1KbCZmjsIbAFe825VzZNS6gPgAiBGKXUQmAzMBD5WSo0HsoCrvVehOEraFR4j7QrR3Ei7opFJu6Lx+EK7QtUMUxFCCCGEEEIIIYTwXTKERAghhBBCCCGEED5PAgwhhBBCCCGEEEL4PAkwhBBCCCGEEEII4fMkwBBCCCGEEEIIIYTPkwBDCCGEEEIIIYQQPk8CDCFEk1FKRSilbqtdb1t7SyshhBBCiNMm7QohWh+5jaoQoskopToAX2mte3m5FCGEEEI0c9KuEKL1MXi7ACFEqzITOFsp9TOwF+iute6llLoBuAIwAZ2B54FA4B+AE7hUa12slDobeBmIBWzALVrrXU1/GkIIIYTwAdKuEKKVkSEkQoim9BCQqbXuAzzwm+/1Av4H6A/MAGxa63OBtcB1tfu8Btypte4H3A+80iRVCyGEEMIXSbtCiFZGemAIIXzF91prK2BVSpUBi2q3bwPOUUqFAoOAT5RSR59jbPoyhRBCCNEMSLtCiBZIAgwhhK9w1lt313vspuZvlR9QWvspixBCCCHEyUi7QogWSIaQCCGakhUwn8kTtdYWYL9S6ioAVaN3YxYnhBBCiGZF2hVCtDISYAghmozWughYo5TaDjx3Bof4GzBeKbUV2AFc3pj1CSGEEKL5kHaFEK2P3EZVCCGEEEIIIYQQPk96YAghhBBCCCGEEMLnSYAhhBBCCCGEEEIInycBhhBCCCGEEEIIIXyeBBhCCCGEEEIIIYTweRJgCCGEEEIIIYQQwudJgCGEEEIIIYQQQgifJwGGEEIIIYQQQgghfJ4EGEIIIYQQQgghhPB5EmAIIYQQQgghhBDC50mAIYQQQgghhBBCCJ8nAYYQQgghhBBCCCF8nsHbBTSlmJgY3aFDB2+XIYQQQrQ4mzZtKtRax3q7jqYk7QohhBDCM07UrmhVAUaHDh1IT0/3dhlCCCFEi6OUyvJ2DU1N2hVCCCGEZ5yoXSFDSIQQQgghhBBCCOHzJMAQQgghhBBCCCGEz5MAQwghhBBCCCGEED6vVc2BITxIa6ocDhylpTjKynBYrTgsFkL9/WkTGkpVeTkrN2zAUVGB02bDUVGBw2bjnLg4+sfHYy0r47mVK3E4HDicTqrdbkKCgvhTjx4M694dq58fH27fTkhoKMFmMyFmM8FhYXTt3Jk2yclUGgwUO52EREURHBVFQEiIt6+IEEIIIYQQooVKT0/nyy+/ZMSIEQwdOtTb5bQaEmCI05K/Ywfpn3zCxh9+YOPOnZxnt/N4dTU4HAS53VT/Zv+7gP8ALmBkA8d7BOgPOIDpQBAQpBR+gF1rEtLTGQbkARMaeP4cYCKwHehXb7sBCAHmhYdzVVQUm4Fbjxwh3GgkPDiYCJOJiLAwxg8cSI8uXcgD0vPziYiPJyIhgYjERCKSkght0wblJx2VhBBCCCGEaO0qKir48MMPmTNnDps2bQLgySefZMiQITz22GOMHDkSpZSXq2zZJMAQJ1SalUXu8uX0LCiA9HTSFi1iY2UlAArobjRyfvfuMHw4BAUxfcMGDIGBBAUHExQSQlBwMN07doQePQgyGlm1Zw9BZjNBoaEEhYURFBZGRFwcREcTYzRSHRBwfFigNTidnGWxkJOVha2kBHtpKbayMuwWC12io8FkIvHwYV756SfsNhu2igrsdjs2u52zO3YEkwm/Q4eILS/H4nBwuKiI0sOHKXW7Gb1pEz2An4A/N3ANVinFkIgIvggIYJrVSsTRACQ0lAizmQcuuoiEpCR+raxkd3k5kQkJRCUlEZWcTGTHjgSYTB7+VxJCCNEYlFLJwItAMbBHaz3TyyUJIYTwETt27GDu3Lm88847WCwWevbsyezZsxk3bhyffPIJzz77LKNHj6Z///489thjjB07VoIMD1Faa2/X0GRSU1O13O7sBCoq2PLxx6z84gvSf/6ZjYcOsdfloguwG+Dss3nWZMI/OZn+I0fS96qrCE1I8HLRjcDlgrIyynJy2LttW02wceQIpYWFlBYV8fdOnWhTVcWyXbt4cds2Sh0OSp1OSquqKK2uZgvQCXgOeLCBwx8MDqZdTAyvu928X1FBVEgIkaGhRIWHExkZyb1/+hPG+Hgy7XZK/Pxqwo+OHQlr1w4/g+SLQojmQym1SWud6qXXfhP4E5Cvte5Vb/vF1HQE9AfmnSyUUEqNASK11u8ppT7SWv/l915X2hWitSovL+eee+7hu+++o23btrRr167BpW3btgQFBXm7XCHOiNPpZOHChcydO5dVq1YRGBjIVVddxcSJEzn//POPCSicTifvvPMOTz/9NPv37+ecc87h0UcfZdy4cfj7+3vxLJqvE7UrJMBohSrLy/ll4UI2fvstv/z8M68YDKidOxnvdvMm0M7Pj/7x8fTv1Yv+F17IyFtvhagob5ftm2oDkILMTPbv2EHxoUOUHD5McX4+JUVF3N+zJ0EWC2/8/DNv799PsdNJictFsduNg5qhNQbgNmqGwxzlB8QqRV6HDqjoaP5dVsYGh4PI0FAiw8OJjIoioU0b/nHppRAZSZbDgQ4LI6pDB8xt28qwFyFEk/NygDEUKAfeORpgKKX8gT3UjGA8CGwErqEmzHj6N4e4CagGPgU08K7Wev7vva60K0RrtH37dsaNG8fevXsJCAjAaDSitcbpdOJyuY7bPyYm5oQBx9ElKipKPq0WPmPfvn289tprvPnmmxQUFHDWWWcxceJEbrjhBmJjY0/63KqqKj788ENmzJjBrl276Nq1K4888gjXXHMNAQEBTXQGDXO73Wit637XlFI+/XsnAQatvKGxZQtfPvIIT65axS82G5W1m2OU4pcLLiBh8GCy2rcnsF8/Evr08WqprYW9uJhghwNKSsjYvJk9u3ZRcuQIJYWFFBcV4bLZmNmtG5SU8ODPP/NFYSElVVWUaE0VkAxk1R7rYmBJ7bo/EKEUqcHBLO7VCyIjmZaby2Gta8KPyEgioqPp2KEDw4cOhYgIch0OguPjCU9Kwt9o9MblEEI0c94MMGpfvwPwVb0AYyAwRWs9uvbxwwBa69+GF0effz+wQWu9Sin1qda6oZGFKKUmUDstU3Jycr+srKyGdhOixdFaM3/+fG6//XZcLhdaa/7yl79QVFTEgQMH2L9//3EBRmhoKCaTCX9/f6qrq7HZbFit1uOOHRQUVBdmJCcnM2HCBIYMGdJUpyYEVVVVfP3118ydO5clS5bg5+fH2LFjmTRpEiNGjMDvND8crK6u5rPPPmP69Ols3bqVDh068NBDD3HDDTdgbKK2ttvtZsuWLSxdupRly5axZs0aKisrG9z3t6FG/aWh7fW3de7cmc2bNzd6/RJg0DoDDO1243juOYIff5xv/P15PiiI/l260H/wYFKvvJL2gwbJp/XNjHa7qcjPpzw3lzYGA5SUsHL1ajL37aOksJCS4mJKysqI1ponk5KgpISx27ez1m6nRGvctce5APi+dr0LsLd23QxE+PszNjycl3v2hMhI/rl3L9poJCIsjIioKCKio+nRpQtpaWkQGUl2eTnmtm0Ja9cO/8DAJr4iQghf4IMBxp+Bi7XWN9c+/gdwntb6jhM8vxcwBSgEyrXW9//ea7bGdoVoncrLy7ntttt499138ff3JyIigk8//ZQLLrigbh+3283hw4fZv38/+/fvrws1jn7Nzs6muvq/070rpYiKiiI8PJygoCCUUrhcLo4cOUJZWRl/+ctfePbZZ0lOTvbCGYvW4tChQ8ybN4/XX3+dgwcP0rZtW2655RZuvvlmEhMT//DxtdZ8/fXXTJ8+nfXr19OuXTseeOABbrnlFkI8cNfE7Oxsli1bxtKEO3akAAAgAElEQVSlS1mxYgVFRUUA9O7dm4suuoiIiIi6uuovp7qtoe2xsbE8/PDDjX4uEmDQ+hoaRXv3csPgwRjz8/nksstQ8+fLUJBWTrvdlB8+TGlODu7SUtoHB0NpKZ8sXUpeXh4lxcWUlpVRarWSYjRyb0wMlJbSa+dOclwuLPWOdSPwJjV9rQOg7g40oUC4nx8TY2J4rFMnXGYz12VkEG4yEW42Ex4RQXhEBANTUujbpw8uk4ldxcWEt21LeLt2mNu2lfk/hGiGmnuAcZqvNRYY26lTp1v27t37u/sL76murubmm29m3bp1PPzww1x77bUY5P+Y07J9+3auuuoqdu3aBUC/fv347LPPSEpKOq3jVFVVkZube1ywcfTrwYMH694cpaSkcPR368EHH+TBBx/EJBOjtwputxur1UpwcDCBHvpQzO12s2LFCubOncsXX3xBdXU1o0aNYuLEiYwdO9YjfyO01qxYsYLp06fzww8/EBsby3333cekSZMICws74+NaLBZWrlxZF1rs2bMHgLZt2zJy5EhGjhzJiBEjiI+Pb6xTaTISYNC6AozVs2dz7T33kF9dzXPjxnHnxx9LTwvxh1VXVmLJzaU0J4dAm412gYG4i4p4+9tvKSsupqy0lDKLhdLyckZERHCt2UxZcTGpO3ZQVlVFmdZ1w5eeBB4DcqgZDnOUoqYXyHORkUxo25Yso5Fbs7IICw4m3GQiLDSUMLOZK1NTOadbN0r8/Nhw6BBhsbGExccT1qYNYQkJmBMS8PPyWEMhWhMfDDBOawjJmWhN7YrmSGvNhAkTmDdvHh07dmT//v107dqVyZMnc/XVV8vEer/j6JCRO+64A7fbjdPp5MYbb+SVV17xyMSclZWV5OTk8M477zBt2jSuuOIKjEYjH330EYmJiTz77LP89a9/9ekx+76orKyMrKwscnNz8ff3JyQkpG4JDg4+Zv10h0n8HofDQVFR0WktJSUluN01/YWDgoIIDw8nLCyM8PDwU1p+u+/R3j0ARUVFzJ8/n1dffZVff/2V6OhobrrpJiZMmECnTp0a9dxP5scff2TGjBksXryYyMhI7r77bu68806iTuGD5qqqKjZu3MiyZctYtmwZ69ato6qqipCQEIYNG8aoUaMYOXIkPXr0aPa/KxJg0DoaGtWVlTx96aVMXrGCswIC+Gj+fPr+7W/eLkuIOo7SUkpzcghyOomo7RGy+IcfKCsqoqykpC4EubJNG4aFhLA7L4/rfvkFi8uFpaoKi9tNObAAuBb4gZrhML/1GXBFaCjfG43cZrUSFhBAmNGI2WjEHBzMQ+edR/f27dnlcLAsJwdzRATmyEjMUVGYo6M5p08fTPHxVBqNqLAwAjzQzU+IlsQHAwwDNZN4DgdyqZnE81qt9Y7Ges3W0K5orrTW3Hfffbzwwgs8+uijPPnkk3z++edMnjyZbdu20aNHD6ZMmcK4ceMa/U1bS1B/yEhwcDAul4sXX3yRiRMnNsmbohkzZvDYY4/x97//nfHjx3PfffexefNmBg0axH/+8x9SU732p8anaK0pKioiKyuLrKwsDhw4cNx6aWnpKR8vKCjomIDjtyFHQ0t1dfUJwwibzXbC1woJCSE6OrrBJSIiAofDQVlZ2UmX8vLy3z2ngICAujDj4MGDOJ1OBg8ezMSJExk3bpxX75KTnp7OjBkz+PzzzzGbzdx2223ce++9xMXFHbNfZmZm3TwW3333HWVlZSil6NevX10vi0GDBjXZ3BpNRQIMWkFDIy+PI1dfTa8ff2RU+/bMWbOGsHbtvF2VEI2uurISbbVisNmwHDrE9q1bsRQUYCksxFJcjKW0lCs6dOAsg4GNmZk8v3kzFrudMocDq8uFtaqKT0wm+tvtvOVycWMDr/Ez0Bt4BbgdMAJmpTD7+2M2GPi6Vy8SY2JYZLXyeX4+oSEhhJpMhIaGEmo2c/PIkQRHRfGrxUKe3U5odDShMTGExsYSGhdHaHw8Sj79Ey2Il+9C8gE1WWYMcASYrLV+Qyl1KTCLmvmN39Raz2ik15MhJD5uypQpTJ06lbvuuotZs2bVvel2u9383//9H5MnTyYjI4OUlBSmTp3KFVdc0ew/rWwsR4eM7N69G4PBQFRUFAsXLmTQoEFNWsf06dN5/PHH+cc//sG8efN47733ePjhh8nPz+eGG27gqaeeIiEhoUlramput5sjR46cMJzIysqioqLimOeYzWbat29P+/bt6dChQ916UlISWmtsNttxi91ub3D77+1jt9tRShEZGUl0dDQxMTEnDCV+uzRGcFBdXY3Vav3doOPoEhcXx/jx40lJSfnDr92Ytm3bxlNPPcVHH31EUFAQEyZMYNCgQaxYsYJly5axf/9+AJKTk+t6WAwfPpzo6GgvV+5ZEmDQsgOM9S++SOr06fiXl3Nw2jTa3XuvDBkR4hS4ysspPXgQ65EjWPPzsRYUYC0qYnD79pirqkjfsYPFW7ditVqxVlRgtdmw2u280akT0Q4HL2Zn80xhIRW1PUOOzgVSBoQB9wP/buh1AYPJxENa80llJaEGA6EBAZgDA4kMDuaD4cPBZOKjnBwyLBZMoaE1S1gYUdHRjB02DEwm9peWUmkwYIqJITQuDlNsrPQWEV7h7R4Y3tCS2xXN2b///W/uv/9+brzxRubNm9dgD4vq6mo++ugjpk6dyp49ezj33HOZNm0aY8aMabVBRv0hI35+flRUVDBo0CA+/fRTrwUFR0OM6667jjfffJOKigqmT5/OrFmzMBqNPPbYY9xzzz1e++TZ4XBQXl6O0+nE6XTicDhO6evv7VNcXExWVhbZ2dk4nc5jXjMqKuq4cKL+emRkZJP9DB8d6iG9mBrH7t27mTlzJu+++y7V1dWYzWYuvPBCRo4cyahRo+jcuXOr+vvU7AIMpdTFwH+o+dRkntZ65gn2G0fNfdv7a61P2opoiQ0Nl83GE8OHM3PdOl5OSOC25cuhRw9vlyVEq6TdbiqtVsqPHCEqIABVUcG+3bvZl5lJeUkJ5aWllJeVYbNaubdfPygvZ356Oiuysih3OCh3OimvrMTf7WZNXBxUVPDX4mI+cruPeZ0kILt2vf4tdI/qBWyLiACTib9bLOysqsIUEFCzGI30iolh6sCBEBLCKzt3UqY1ISYTIaGhmMxmktu1Y3BqKoSEsCMvD3+TCVN0NCFRUYRERxMUESEBqThOawowpAeG73rttde49dZbueqqq/jggw9+d56Lqqoq3n//faZOncq+ffvo378/06ZNY/To0a3qjUL9ISNRUVEUFxczadIkZs2a5bGJFE/Vk08+yRNPPMH111/PG2+8gb+/P3v37uX+++/nyy+/5Oyzz+b555/n8ssv9/i/mcvlYv369XUTJm7YsKHuTfyZUEoRFBSE0Wg85mtERESD4UT79u0xm82NeEbCF2VnZ3Po0CH69etHQCuez61ZBRhKKX9qxq2OBA5SM271Gq31zt/sZwa+BgKBO1pbgJG1Zg3XXHwxa8vLuaVbN2atXk1ITIy3yxJCNLLqykpshYVU1C5V5eV0jY2FigpWb9hA9sGDVFgsVJSXU1FeToSfH3d06wYVFTy8di3bi4oor6ykwuWioqqKFIOBD00msNnoUV5Oxm9e7xLgm9r1JGr+CNf3Z+ATkwlCQuhTWkqlUoQYDIQYDAQHBDAmIYG7UlIgOJi709MxGo3/HUdrMtGvUycGnXMO1YGBLN+9m5CwMILDwwkODyckMpLohATC4uPRQUFgMEhY0ky0pgDjqJbWrmju3n//ff7+979zySWX8Nlnn53WG2+Xy8U777zDk08+SVZWFgMHDmTatGkMHz68xQcZ9YeMhIWFYbfbmTNnDjfddJO3S6szbdo0Jk+efEyIAbBs2TLuuecedu7cyfDhw5k1axa9evVqtNfVWrNnz566CRO///57rFYrfn5+pKamMnz4cNq0aVMXPvw2iPi9rwaDocX/fAlxpppbgHFKM4crpWYBy4AHgPtbU4Dx7eOPc+2MGVRrzWt33cVf//Mfb5ckhGiGtNuN02rFVliIrbgYW3ExAVVVdIyIAJuNb1evprSkBJvVSoXViq2igs5mM+Pat4eKCm5evpxSux17ZSV2lwuby8XY0FAeNZupttmIzcvDrjWOeq95P/AcNcNsIhqoaQowmZpZF5OBYCBYKYL9/Aj28+OR+Hiub9eOHKW49ddfCQoIIDgwkGCjkSCjkb+lpDDw7LM5XFXFBzt3EhwSQrDJRHBoKEEhIfRPSSGhXTus1dVkFRcTFBb23yUigpCoKPy8/IljcyQBhvCmL774gnHjxjFkyBC++eYbgoODz+g4lZWVzJ8/n+nTp3Pw4EGGDh3KtGnTGDZsWCNX7H1aa9566y1uv/12AgMDsdlsxMfHs3DhQvr37+/t8o4zdepUpkyZwg033MC8efPqQoyqqirmzp3LE088QVlZGRMnTmTatGlnPD9AYWFh3dwDy5YtIzu7ps9jx44d6+YfuOiii4iMjGy0cxNCHK+5BRi/e+92pVRf4FGt9Til1EpOEGAopSYAEwCSk5P7ZWVlNcUpeI7TCQ88wE8vvcR9JhPvfvEFnYYP93ZVQghxUu6qKhylpdiKigioqiLcYMBlsZC+ZQu2sjLsViu22qV3XBznRkdTUlzM8ytX4nA6sTsc2J1O7E4n17Vrx6VhYfxaXMw1O3fiqK7GXl2N3e3GoTUvGgz8zeViDTC4gVo+BcYBS4HRDXx/MTDa358vDQZuqqwkSCmC/PwI8vcnyN+fN7t04ZzoaL6rqOCVnByCAwMxBgQQZDRiDAzk/vPPJyE6mi1FRazKycEYHExQcDDG4GCMISGMPu88TBER5FosHC4vx2gyERQWhjE0lCCzmei2bfELDobAQGhGn8xJgCG8Zfny5YwZM4Y+ffqwfPnyRuli73Q6mTdvHjNmzCAvL4+LLrqIadOmcf755zdCxd5Xf8hIUlISOTk5DBs2jI8//vi4OyD4kqMhRkPzmxQVFTFlyhTmzJlDWFgYU6ZMYdKkSb/bBd/pdLJmzZq6wGLz5s1orYmIiOCiiy6qu8vD2Wef7enTE0LU06ICDKWUH/AdcIPW+sDJAoz6mntDY8/SpSy+6Sbuys2Ff/4T/fTTqBZ2uxwhhGgUWlNts2EtKMBeWlqzlJVhLyvjrNhYogIDOXzoED/+/DMOm+2/i93OVd260T4oiM1ZWby5dSt2pxOH04nD5cLhcvG/Z51FV39/Fubl8fihQzUBituNU2ucWpPu50c3t5v/Be5roLQcIBF4Eniige8XA5HAQ9TcPsMIBCqFUSmMfn7s7tQJQ1AQzxUV8ZXFgtHfH6PBgNFgwGw0Mn/YMDAaWbB/P1tLSjAGBhJY27U5wmxmwujR4IGu4a0pwJA5MHzHTz/9VPfmcuXKlURFRTXq8e12O6+++ipPP/00+fn5jBo1iqlTpzJgwIBGfZ2mVH/ISHJyMllZWdxzzz08++yzzWK8/dE7zJxoktYdO3Zwzz33sHz5crp3784LL7zA6NH/jau11uzYsaPutpSrVq3CZrNhMBgYOHBgXWCRmpqKwWBo6tMTQtRqbgHGSYeQKKXCgUzg6M1/21DT5rvsZCFGcw4wFtx2GxPnzCFIKXa9+y7Rf/ubt0sSQghxIlVVNRO6FhfjtFpxWCw4y8txWq30SEwkoKqKvfv2sSszE4fNhtNux1kboExITSWgqopvtm3jh337cFZW1iwuF5UuF+/264eqrOSFPXv44vBhKqurcVZX43S7CdCaLfHx4HRyY0kJH7pcOIGj/9MnAIeio6GwsNFPuTUFGEc153ZFS7BlyxYuvPBC4uLiWL16NfHx8R57rYqKCubMmcMzzzxDYWEhl156KVOmTCE1NbXZzGFQf8hIcHBw3Z1G5s2bx7XXXuvt8k7L0RDjpptu4vXXXz8uxNBas2jRIu69914yMzP505/+xJVXXsnKlStZvnw5eXl5AHTr1q0usLjgggtkgkzhNWVlZaxYsYIlS5awdOlSSktLSUtLY8CAAQwYMIDzzjuv0QNaX9fcAgwDNZN4DqdmGPRG4Fqt9Y4T7L+SFtoDoyI/nzsHD2b+3r0MCQvj/WXLSExL83ZZQgghmgntdlPlcFBZXo6rooKIkBDwwBs9CTBEU8rIyGDo0KGEhISwevVqkpOTm+R1y8vLmT17Ns899xzFxcUEBQWRkJDwu0tMTIxXbzVZUVHBbbfdxjvvvEO3bt3IzMwkMTGRhQsX0qdPH6/V9UdMnjyZadOmnTDEgJrhIS+++CJPPvkkVquVmJgYRowYURdaJCUleaFy4QlOp5OSkhKKi4vrvv52PTg4mP79+5OWlkb79u29Gj5WV1eTnp7O0qVLWbJkCevWrau7derw4cOJi4tj/fr1bNu2re5ON127dq0LNAYMGECvXr1adC+hZhVgACilLqWm96w/8KbWeoZSahqQrrX+8jf7rqQFBhjVW7dy3oABbHY4eHTwYCYvW4YhKMjbZQkhhBDHaU0Bhgwh8a79+/czePBgqqurWb16NZ07d27yGiwWC++99x779u0jLy/vmKWsrOy4/Q0GA/Hx8bRp0+akQUebNm3OaBiH1hqr1cqhQ4c4dOgQubm5deuHDh0iPT2drKws+vbty6ZNmxg1ahQffPBBs/5EV2vN5MmTefLJJxk/fjyvvfbaCUOiwsJC8vLy6NmzZ6MFSTk5OSxcuJDg4GCSkpLqlvDw8EY5/h9hs9nIzs4mOzubrKwssrKyyM/PZ+zYsYwZM8arYdqpOHz4MHl5eXXBw8lCiaOPKyoqTng8pRSRkZFUVFTgdDoBiI2NJS0tjbS0NM477zz69+/v8d+HgwcP1gUWy5cvp7i4GKUUqampjB49mlGjRjFgwIBj/gaUl5eTnp7OunXrWLt2LevWrSM/Px+AkJAQ+vfvz8CBA+tCDU/2RGtqzS7A8ITmEmBotxs1bx7cfTcLAgNp89hjDH/gAW+XJYQQQpxQawowjmou7YqWJDc3lyFDhlBWVsbKlStJSUn53ee8+uqrrF27lnnz5jXJp5V2u/2YQOPom7HfLgUFBTTUDo+IiMBsNmM2mwkNDSUkJASDwYCfnx9aa1wuF5WVldjtdioqKrBYLJSWluJwOI47VlhYGG3btiUuLo6CggIyMjJ46KGHmD59et1dPJqz+iHGzTffzKuvvurRN+dut5tly5YxZ84cFi1aVPfJeH1ms/mYQKP+kpiYSFJSEiaT6Yxr0FpTXFxcF0zUDymOPi4oKDjmOX5+fphMJqxWKz179uTBBx/kmmuu8ak5T7TWLF++nBdeeIFvv/22wX2MRiNRUVHHLJGRkSd8fHQ9PDwcPz8/XC4X27ZtY8OGDaxfv54NGzaQkZFR93vYqVOnukAjLS2NPn36EPQHPjy22+2sWrWqbljIjh01gwnatm3LqFGjGD16NCNGjCAmJua0rtOBAwdYt25d3bJlyxZcLhcAHTp0YMCAAXWhRp8+fU7rltK+RAIMmkdDw11VxXWdO3PxgQP8fdQoeOcdj3T1FUIIIRqTBBjC0woKChg2bBg5OTl89913p3SrT4vFQlJSEhaLhSlTpjB58uQmqPTUuFwu8vPz6wKN7Oxsli1bxq5du7BYLJSXl2O326mqqjrj11BKYTKZqKqqwt/fn7fffptx48Y14ll4n9aaJ554gunTp3PLLbcwd+7cRg8xCgsLmT9/Pq+++iqZmZnExsYyfvx4xo8fT2BgIAcPHiQnJ6fB5ciRI8cdLzIy8oQhR1JSEgEBAceFE0fXs7Ozj+ttEBwcTPv27euW5OTkY9bbtWuH1pqPP/6YmTNnsn37dpKTk7nvvvsYP378HwpU/iiHw8EHH3zACy+8wLZt24iLi2PSpEn06dPnuEDiTG+PfDIWi4VNmzYdE2rk5uYCNT2nevfuXRdopKWl0bVr1xP+fNWfIHbJkiWsWrUKh8OB0Whk6NChjB49mtGjR9OzZ89GHb7icDjYsmVLXQ+NdevWkZOTA9SEPn379mXAgAGkpaURFxdHSEhIg0tAQIBPzekjAQbNo6Hx9ZQp/GnqVKYNHcrj338PPt7FSwghhAAJMIRnlZWVceGFF5KRkcHixYsZNmzYKT3v+eef54EHHmDIkCGsWbOGlStXMmTIEA9Xe3oKCwuZO3cus2fP5siRIyQkJNS96Wzbtu1xS7t27QgJCcFms2G1WikvL8dqtR6z/tttLpeLiRMn0rNnT2+frkdorXn88ceZMWMGEyZMYM6cOX84xNBas3btWubMmcMnn3yC0+lkyJAhTJo0if/5n//BeIp3AnQ6neTm5tYFGg2FHUVFRSc9RkxMzHHBRP3H0dHRp/zGU2vNN998w8yZM/nxxx+Jjo7mzjvv5I477iA6OvqUjtEYCgoKmDNnDi+//DL5+fmkpKRw7733cs0115zytfWU3NxcNm7cWBdqbNy4EavVCtT0akpNTa0LNXr27MnmzZvrelkcDT969OhR18vi6Hw9TX0O69evrxt6kp6e3mAvrfr8/f3rwgyTyXTCoKP+YjKZiI+P58Ybb2z0c5AAg+bR0LgwMpJfrVb2WSwENPEPuhBCCHGmJMAQnlJRUcHo0aPZsGEDX375JRdffPEpPa+yspKOHTvSrVs3Pv/8c/r27YvT6eTnn3/2ibkfdu/ezaxZs3j77bex2+1ccskl3HvvvQwfPtynPgVtLrTWPPbYYzz11FN/KMQoLy9nwYIFzJkzh61bt2I2m7nuuuuYOHEivXr18kDlNXNW1A82XC5XXTjxR4ecnMyaNWt45plnWLRoESEhIdxyyy3ce++9Hp0Ud8eOHcyaNYt3330Xp9PJpZdeyj//+U+f/rl3u93s3r37mF4aW7duPaZ3VGRkJCNGjKiby8LXJoh1uVxkZGRQWlqKzWY7bqmoqGhw++99X2tNt27dyMjIaPSaT9iu0Fq3mqVfv37al6W/954G9HNjxni7FCGEEOK0UDPJttf/r2+KBRgLvNapU6fGunziBOx2ux45cqT28/PTn3zyyWk9d/78+RrQixcv1lprvXHjRm0wGPSVV16p3W63J8r9XW63W69cuVKPHTtWA9poNOqbb75Zb9++3Sv1tDRut1s/8sgjGtC33nqrrq6uPuXnbtu2Td92223abDZrQPfp00e/+uqr2mq1erBi37B9+3Z93XXXaYPBoA0Gg77++uv1jh07Gu34brdbL1myRI8ePVoDOigoSN966606IyOj0V6jqdntdr127Vr9+uuv67Vr1+qqqipvl9Tk3G63ttvturS01CPHP1G7wuuNgKZcfD3AuKZ9e20GXZqV5e1ShBBCiNPSmgKMo4uvtyuau8rKSn355ZdrQL/11lun9dzq6mrdo0cPfc455xwTVjz33HMa0HPmzGnsck+qsrJSL1iwQPft21cDOiYmRk+ePFkfPny4SetoDdxut3744Yc1oCdOnHjSEMPhcOgFCxbowYMH1wVK1113nV67dq3XQi5vysrK0nfffbcOCQnRgL7sssv0mjVrzvh4drtdz5s3T/fs2VMDuk2bNnr69Om6oKCgEasWLZUEGL7e0MjK0j/6+em3Ro/2diVCCCHEaTuVAAOIOtnye8/3tcWn2xXNXHV1tf7b3/6mAf3SSy+d9vMXLVqkAf3ee+8dd9zRo0froKAgvW3btsYq94RKSkr0s88+qxMTEzWgu3Xrpl977TVts9k8/tqtmdvt1g899JAG9KRJk44LI/bt26f/9a9/6djYWA3os88+Wz/33HO6sLDQSxX7loKCAj158mQdFRWlAT1kyBD91VdfnXKoc/jwYT158uS669u7d2/99ttva4fD4eHKRUsiAYavNzT+n737jq/5+h84/jp3JGJFYsYeIWhrz1JKUSpmaxatttbXz6hdWm3x1ZqltFoxqoPUbEmL2krVnqUIsWciQSLjjvfvjyS+qkHGvblJnOfjcR7J/Xw+57zfIeRz3znnfIYOFTEaRfTsC03TNC0TSmYBIwQ4m/DRBoQCYQmfhzypf0ZrGfq+IhOz2+3Sp08fAWTixImpGuOFF16Q4sWLS1xc3L/OXbt2TQoUKCDPPPOM0woJZ8+elUGDBknOnDkFkMaNG0tQUFCKljRoafNwEcNisciaNWvklVdeEaWUGAwGadu2raxfv17/vTxCZGSkzJgxQ4oVKyaAPPfcc/L999+LxWJJ8vqjR4/KW2+9Je7u7gKIv7+/bN68+amczaKlnS5gZOAbjYjz52WA2SznWrd2dSqapmmaliopWUICBACvPPC6BfB1cvtnlJZR7ysyM7vdLsOGDRNARo0alaoxdu3aJYDMmDHjkdesX7/+/hIDR9q1a5e89tprYjAYxGQySffu3eXAgQMOjaEln91ul5EjRwogXl5eAoiPj4+MHTtWLl686Or0Mo24uDhZtGiRVKxYUQApUaKEzJo1S6KiosRut8vatWuladOmAoiHh4f069dP/v77b1enrWVyuoCRgW80pvr7CyD7vvvO1alomqZpWqqksIBxNDnHMnrLqPcVmZXdbpePP/5YAOnfv3+qf2vbvn178fLyeuLmi8OHDxdAVqxYkao4iaxWqyxfvlzq1q0rgOTJk0dGjRolly5dStO4mmMkfl+1aNFCli9fnuSsHC15bDabrF69+v73er58+aR8+fICSOHChWXixIl6GY7mMI+6r9CPUXUxy717lMmdm9I5c7I1IsLV6WiapmlaqqTkMapKqfXA78D3CYdeBxqIyMvOys+RlFKtgFa+vr69Tp8+7ep0Mj0RYf369YwdO5a9e/fSo0cPFi5cmKpHYJ46dYry5cszevRoJkyY8Nhr4+LiqFevHsHBwRw+fDjFj46MjIxkwYIFzJgxg5CQEEqXLs3gwYPp2bMnOXPmTHHumU1kZCQREREULVrU1alo6UxE2LFjB1OmTFkOFu0AACAASURBVCEsLIx+/frRsWNH3NzcXJ2aloU86r4i5T8ZNIdaNmIEF202hg4c6OpUNE3TNC29dAHyA6uAlQmfd3FpRikgImtEpLenp6erU8nURIRNmzZRv359WrRowY0bN5g/fz4LFixIVfECYNq0abi5uTFgwIAnXuvm5saSJUuwWq28/vrrWK3WZMe5evUqvr6+DBo0iMKFC7NixQpOnTrFgAEDnoriBcBbb71FsWLFaNCgAfPnz+fOnTuuTklLJ0opXnjhBVavXs3OnTvp1q2bLl5o6UYXMFxI7HamLViAn5sbLceOdXU6mqZpmuZUSqnvEj7tLiKDRKSqiFQTkcEicsulyWnp6vfff6dRo0Y0adKE8+fPM2fOHE6dOsVbb72F0WhM1ZjXrl1j0aJFvPnmmxQsWDBZfXx9ffnqq6/YsWPHE2dsPGjWrFncuHGDLVu2sGPHDtq3b5/qvDOjq1evsnLlSho2bMjNmzd55513KFSoEN26dWPDhg3YbDZXp6hpWhalCxguFLNhAzWioxnVpQsGk8nV6Wiapmmas1VXShUG3lJKeSmlvB9srk5Oc77du3fTrFkzGjRowMmTJ/n8888JDg7mrbfeYsmSJTRr1oyDBw+mauxZs2YRFxfH0KFDU9Tv9ddfp0ePHowfP57t27c/8fqoqCi++uor2rVrx4svvpiqXDO7hQsXYrPZCAgI4Pjx4/z555+8+eab/PLLLzRr1oySJUsyevRoTp486epUNU3LYvQeGK7UqhXs3g3nz4OHh6uz0TRN07RUS84eGEqpgUA/oDRwGVAPnBYRKe3EFB0uw91XZGAHDhxg7Nix/PLLL+TLl49Ro0bRr18/7HY7AQEBTJ8+nUuXLgHQokULfv311xSNf/fuXYoXL85LL73E8uXLU5zf3bt3qVatGjExMRw+fBhv70fX07788kv69+/Pjh07qFevXopjZXZ2ux1fX19KlCjBli1b/nEuJiaGNWvW8M0337B+/XpsNht16tThjTfeoFOnTnh5ebkoa03TMhuH74GhlHr7oddGpdSHqR3vaROycSO7goKgf39dvNA0TdOeCiLyuYhUABaISGkRKfVAy1TFCy15jhw5Qrt27ahevTp//PEHn3zyCSEhIfTo0YNPP/2U4sWLM2TIEMqUKcOvv/7K+PHjWbt2LYcPH05RnHnz5hEREcHw4cNTlWeuXLkIDAzk+vXrvP322zzqF3x2u53PPvuMWrVq8fzzz6cqVma3efNmQkJC6N2797/OZcuWjQ4dOvDLL79w6dIlpk6dSmRkJP369cPHx4dOnTqxdu3aFO03omma9qC0LCF5SSn1q1LKRyn1DPAnkMtBeWV5nwwYQGMgvGtXV6eiaZqmaelKRPq5OgfNuU6cOEGnTp2oXLkymzdv5uOPP+bcuXN07tyZ9957jxIlSjB+/HgaNmzIrl272Lp1Ky1atKB///7kzJmTyZMnJzuWxWJh+vTpNGzYkNq1a6c65+rVq/Ppp5/y008/8dVXXyV5TVBQEMHBwQwdOhSlVJLXZHVz587F29ubdu3aPfa6QoUKMXToUI4cOcL+/fvp3bs3mzZt4pVXXqFYsWIMHz6cY8eOpVPWmqZlGUk9WzW5DegEhALngXppGSs9WkZ5Xvv1Y8fEHaRPhQquTkXTNE3THIJHPK89K7eMcl+RkZw6dUq6desmBoNBcubMKWPGjJFbt27J4cOH5fXXXxej0Shms1l69uwpx48fT3KMoUOHisFgkLNnzyYr5rfffiuA/PLLL2nO32azSfPmzcXd3V2OHDnyr/MNGjSQ4sWLi8ViSXOszOjGjRtiNptl8ODBqeofGxsrq1atkjZt2ojJZBJAqlevLrNmzZLQ0FAHZ6tpWmb2qPuKtCwhKQsMAlYkFDC6K6Wyp7Ge8lT44j//IRZ4d9o0V6eiaZqmaZqWZiEhIbz11ltUqFCBFStWMHToUM6ePUuzZs3o1q0blStX5qeffmLQoEGcPXuWBQsWUKFChSTHevfddzEajUxLxn2SiDB58mSeffZZWrRokeavw2Aw8M0335AnTx66dOnCvXv37p/bt28f27dvZ9CgQZie0s3XFy1ahMVioVevXqnq7+bmRtu2bfnpp5+4cuUKM2fOxG63M2DAAHx8fGjfvj1r1qx55BIeTdO0tCwhWQN8ICJ9gIbAaWCvI5JSSjVXSp1USgUrpUYlcX6IUuq4UuqIUmqTUqqEI+Kmh+hbt/jy999pVbAgfg74QatpmqZpmZFSqqBSyj+hFXB1PimhlGqllJp7+/ZtV6fichcvXqRv376UK1eOxYsXM2DAAIKDg6lXrx6tW7emYcOG7Nmzh/Hjx3PhwgWmTZtG0aJFHztmkSJF6N69O/Pnz+fGjRuPvXbdunUcO3aM4cOHO2xJR8GCBfnuu+/466+/GDJkyP3jn332Gbly5eLtt99+TO+sS0QICAigXr16VKxYMc3j5c+fn4EDB3LgwAEOHz7MgAED2LlzJ61bt2bJkiUOyFjTtKwoLQWMWiKyCeK3DReRacDjF8Mlg1LKCHwBtAAqAl2UUg//L3kQqCEilYDlQPIXSrrYsSlTsIswdPRoV6eiaZqmaS6hlOoI7AE6AB2B3Uqp11ybVfKJyBoR6e3p6enqVFwmNDSUgQMH4uvry4IFC+jduzcnTpygcuXKNGnShLZt23Lt2jVmz57N+fPnef/99x/7ZI+HDR8+nNjYWGbNmvXY6yZPnkzRokXp3LlzWr+kf2jatCkjRozg66+/ZsWKFVy8eJGlS5fyzjvv8LT+vW/fvp1Tp06levbF41SqVIlp06Zx6dIlihYtmqonyWia9nRIdQFDRO4kcexU2tIBoBYQLCJnRSQOCATaPBRni4gkzun7E3h8KT+jsNupuXIlF6tWpcH//Z+rs9E0TdM0VxkD1BSRN0SkB/E/+z9wcU5aCnTq1Ikvv/ySHj16cOjQIXx9fWnQoAE9e/bEbDbzww8/cPr0afr370/27ClfYVy+fHnatm3L7NmzuXv3bpLX7N27l61btzJ48GDc3NzS+iX9y/jx46lZsybvvPMOEydOxG63M2jQIIfHySwCAgLw9PSkQ4cOTothNpvx9/fnt99+IzY21mlxNE3LvNIyA8NZigAXH3h9KeHYo7wNrHVqRg5y4/vvsZ86RfYRI1CGjPhHr2mapmnpwiAiD64NCCNj3pNoSdi0aRObN29m3Lhx+Pj4UL9+/X88CvXQoUN07do1zftEjBw5koiICAICApI8P2XKFDw9PZ0yIwDi92tYsmQJNpuNgIAA2rdvT4kSmWbVskPdunWL5cuX061bt1QVpFKiVatWREVFsXXrVqfG0TQtc8rUNwtKqW5ADWDKY67prZTap5Tad/PmzfRLLgmvDRhAi2zZ4LVMM0tW0zRN05xhnVJqvVLqTaXUm8AvZJJfRjztRITRo0fj7e3NhAkTknwUqqP2oqhduzYvvvgi06dPJy4u7h/ngoODWbFiBf369SN37twOiZeUMmXK0LZtW2w221O7dATgu+++IzY21mnFogc1atQIDw8PgoKCnB5L07TMJy1PIVmplGqplHJ0EeQyUOyB10UTjj0cvwnxU1Bbi8gj55iJyFwRqSEiNfLnz+/gVJNv76JF/H7nDs1ffhme0p2rNU3TNA1ARIYDXwOVEtpcERnh2qy05FizZg179uwhLi6OSpUqcfz4cVatWkWdOnWcEm/kyJFcvnyZH3744R/Hp0+fjslkYuDAgU6Jm8hms7Fjxw7y58/PwoUL2bZtm1PjZUSJm3fWrFmTypUrOz2eh4cHTZo0ISgoSD+NRNO0f0lL8eFLoCtwWin1qVLKz0E57QXKKqVKKaXcgM7A6gcvUEpVJf7Gp/VDU1AzrGkffEBu4O3Zs12diqZpmqa5lFJqkoisFJEhCW2VUmqSq/PSHs9ut/P++++TP39+IiMjmTJlyiMfheooL7/8MpUrV2bSpEnY7XYAbty4wcKFC+nRowc+Pj5Ojf/zzz8TEhLC9OnTKVOmDN26dSMsLMypMTOaP//8k7/++itdZl8k8vf359y5cxw/fjzdYmqaljmkZRPPjSLyOlANOAdsVEr9oZTqqZQyp2FcK/B/wHrgBLBURP5SSo1TSrVOuGwKkBNYppQ6pJRa/YjhMoTzO3ey/OJF+tSsSe4nPDpM0zRN054CTZM4pp8tnsH9+OOPHD16FIC6detSv359p8dUSjFy5EhOnjzJ6tXxt3uzZ88mNjaWYcOGOT3+9OnTKVWqFF26dCEwMJDr16/z9ttvP1UzAwICAsiZM6fDn/TyOC1btgTiZ/xomqY9KE3LP5RSeYE3gXeIf7TpTOILGhvSMq6I/Coi5USkjIj8N+HYWBFZnfB5ExEpKCJVElrrx4/oWguHDUMBA7/4wtWpaJqmaZrLKKX6KaWOAn5KqSMPtBDgiKvz0x7NYrEwduxYihUrxs2bNxk5cqTD9rp4kg4dOlCqVCk+/fRT7t69y+zZs2nTpg1+fo6a/Ju03bt3s3PnTgYPHozRaKRatWpMmjSJn3/+mTlz5jg1dkZx+/ZtAgMD6dKlC7ly5Uq3uEWKFKFatWp6HwxN0/4lLXtgrAJ+B7IDrUSktYj8KCIDiJ8doQFERPD+0aP8/vLLFK1Z09XZaJqmaZorLQZaEb80tNUDrbqIdHNlYtrjLVq0iODgYEwmE+XLl6dVq1bpFttkMjFs2DB2797NmDFjCA8PZ8QI52+ZMn36dDw9PenZs+f9Y4MGDaJFixYMGTLk/myUrGzx4sVER0en6/KRRP7+/uzatYvQ0NB0j61pWsaVlhkYASJSUUQ+EZGrAEopdwARqeGQ7LIAmTsXU1QUdT75xNWpaJqmaZpLichtETknIl1E5PwD7Zarc9MeLTY2lnHjxuHn50dISAjDhw/HkM6Pg+/Zsyf58uUjICCA+vXrU7duXafGO3fuHMuXL6d3797/mHlgMBj45ptv8PLyolOnTty7d8+pebhaQEAAVapUoUaN9L+19/f3x263s27dunSPrWlaxpWWnz4Tkji2Kw3jZTlxkZHUfP99llSsCFWrujodTdM0TdMeQSlVUSm1VCk1Rymln3f+gK+//pqLFy+SPXt2ChcuzOuvv57uOXh4eNCoUSNiYmLo0KGD0+PNmjULg8HAgAED/nWuQIECfPfdd5w4cYIZM2Y4PRdX2b9/PwcPHqRXr17ptlzoQdWrV6dQoUJ6GYmmaf+Q4gKGUqqQUqo64KGUqqqUqpbQXiR+OYmWYOnw4ey3WPDs2NHVqWiapmlalqWUWqCUuqGUOvbQ8eZKqZNKqWCl1KgnDNMCmCUi/YAeTks2k4mKiuK///0vNWrU4ODBg7z77ru4u7unex4iwokTJ1BK8eeffzo11p07dwgICKBjx44UK1YsyWuaNGlC8+bNmTlzJtHR0U7Nx1Xmzp2Lh4eHSwpWED/bpWXLlqxbtw6LxeKSHDRNy3hSMwPjZWAqUBSYDkxLaEOA0Y5LLXMTu51pixZRwc2N5mPGuDodTdM0TctQlFIllFJNEj73UEqlZYfAb4DmD41vBL4gvjBREeiSMMviOaVU0EOtAPAd0FkpNQXIm4ZcspTPP/+cGzdukCtXLjw9Pendu7dL8tiwYQPHjh2jWbNm/Pjjj4SEhDgt1rx587h79y7vvvvuY68bOXIkN27cYNGiRU7LxVUiIyNZvHgxHTt2xNPT02V5+Pv7c/v2bXbs2OGyHDRNy1hSXMAQkUUi0gh4U0QaPdBai8hKJ+SYKW2ePp1D0dEM7dIFg8nk6nQ0TdM0LcNQSvUClgNfJxwqCvyU2vFEZDvw8D4atYBgETkrInFAINBGRI6KiP9D7UZC6w+MAh65a6BSqrdSap9Sat/NmzdTm3KmEBERweTJk2nUqBFbt26lX79+5M6d2yW5TJkyBR8fH7788kuMRiPTpk1zShyr1crMmTNp0KDBE/d9aNiwIbVq1WLq1KnYbDan5OMqP/74I5GRkS4rWCVq0qQJbm5uehmJpmn3pWYJSeIu4SWVUkMebg7OL9OaNnkyBZTi9Sy8NlLTNE3TUqk/UA+4AyAip4ECDo5RBLj4wOtLCceSpJQqqZSaC3wLTHnUdSIyV0RqiEiN/PnzOyzZjGjq1KlERESQN29e3NzcGDRokEvyOHDgABs3bmTw4MGULl2aHj16MH/+fG7cuOHwWCtXruTChQsMGfLkW1qlFCNHjuTMmTOsWLHC4bm40ty5c6lYsaLTN0t9kpw5c9KoUSNdwNA07b7ULCHJkfAxJ5AriaYdP86ImzeZ1aED2fLkcXU2mqZpmpbRxCbMigBAKWUCxIX5kPB0lN4i8rqIPPXz1W/cuMGMGTNo3bo1a9as4Y033qBQoUIuyWXKlCnkypWLPn36ADB8+HBiY2OZNWuWQ+OICNOmTcPX1xd/f/9k9WnTpg3lypVj0qRJiLj0W9hhjhw5wp49e1y2eefD/P39OXXqFKdOnXJ1KpqmZQCpWUKSON3zSxH5+OHm4Pwyp+nTedHDg45ffunqTDRN0zQtI9qmlBpN/IbgTYFlwBoHx7gMPLgDY9GEY2mmlGqllJp7+/ZtRwyXIX3yySfExMTg4+NDXFwcQ4cOdUkeISEhLF26lL59+97fi8HPz4927doxe/Zs7t6967BYu3btYs+ePQwePBij0ZisPkajkeHDh3PgwAE2bdrksFxcKSAgAHd3d7p37+7qVADuF5P0LAxN0yBtj1HdqZT6TSn1tlLKy2EZZXLXjhxh8MKFXOnQAfLqPcA0TdM0LQmjgJvAUaAP8CvwvoNj7AXKKqVKKaXcgM7AakcMLCJrRKS3Kzc3dKZLly4xZ84cunbtSmBgIO3bt6dcuXIuyWX69OkYjcZ/LV8ZOXIkERERBAQEOCzWtGnT8PLy4s0330xRv+7du+Pj48OkSZMclour3Lt3j++//55XX32VvBnkPrZkyZI8++yzuoChaRqQhgKGiJQj/mbjGWB/wi7e3Z7QLcv7on9/PrfbuZdBqtaapmmalgF5AAtEpIOIvAYsSDiWKkqpJcAuwE8pdUkp9baIWIH/A9YDJ4ClIvKXA3LP8jMwxo8fj91up3jx4ty+fZuRI0e6JI/Q0FDmz59Pt27dKFLkn9uX1KpVi0aNGjF9+nTi4uIeMULynTlzhlWrVtG3b19y5Mjx5A4PcHd3Z/DgwWzcuJH9+/enORdXWr58OREREfTq1cvVqfyDv78/v//+OxEREa5ORdPuCw8PZ9OmTYSFhbk6ladKWmZgICJ7RGQI8Tt93wKy3nOkUiDq5k2+3LmTNj4++DZp4up0NE3TNC2j2sQ/CxYewMbUDiYiXUTER0TMIlJUROYnHP9VRMqJSBkR+W8ac34wXpadgREcHMz8+fPp1asX33zzDY0aNaJmzZouyeWLL74gOjqaYcOGJXl+5MiRXL58mR9++CHNsT7//HNMJhP/93//l6r+ffr0IXfu3EyePDnNubhSQEAAZcuWpWHDhq5O5R/8/f2xWq389ttvrk5Fe4rFxsayZcsWxowZQ+3atcmXLx9NmjShUKFCvPLKK3z77bfcuXPH1WlmeakuYCilciul3lBKrQX+AK4SX8h4ai0aMIBbIgx939GzYDVN0zQtS8kmIpGJLxI+z+7CfLQEH330EW5ubpQtW5bLly8zYsQIl+Rx7949Zs2aRatWrahYsWKS1zRr1owqVaowadIk7HZ7qmNFREQwf/58OnfuTOHChVM1hqenJ/369WP58uWcOXMm1bm40okTJ9ixY0eG2bzzQXXq1CFv3rysWePorXI07dHsdjuHDh1i6tSpNG/eHC8vLxo3bsykSZMwmUy8//77rFmzhiFDhvDXX3/xxhtvUKBAAdq3b8/SpUu5d++eq7+ErElEUtWAEOAzoG5qx0jvVr16dXEWa2ys+JrNUitHDrHbbE6Lo2mapmkZEbBPkn8PsROo9sDr6sCu5PZ3dQNaAXN9fX0d+UfockePHhWllIwYMUIqVKgglStXFrvd7pJcZs+eLYD8/vvvj71uyZIlAsiqVatSHWvy5MkCyMGDB1M9hojIlStXxM3NTfr165emcVzl3XffFbPZLNevX3d1Kknq3r27eHt7i9VqdXUqWhZ27tw5mTdvnnTu3Fny588vxD8hSypUqCADBgyQn3/+WW7fvv2vfna7Xf744w8ZOHCgFCpUSADJkSOHdO3aVVavXi0xMTEu+Goyt0fdVyhJ5SOflFJKUtvZRWrUqCH79u1zyti3f/iBwd260WroUNpPneqUGJqmaZqWUSml9otIjWReWxMIBK4ACigEdBKRTLWBgDPvK1yhXbt2bN68mS+//JJu3brxww8/0LVr13TPw2q1Uq5cOQoVKsTOnTsfOxvAarXi5+dH/vz52bVrV4pnDlgsFkqXLk25cuUc8hSRXr168f3333P+/HkKFCiQ5vHSS2xsLEWKFKFRo0YsW7bM1ekkaenSpXTq1IkdO3ZQr149V6ejZRHh4eFs2bKFjRs3snHjRk6fPg1AoUKFaNKkyf328D48j2Oz2di+fTuBgYEsX76cW7dukSdPHtq3b0/nzp1p1KgRJpPJWV9SlvGo+4oUFzCUUjNEZLBSag1JPLNdRFqnPk3ncuqNRv36cPkynD4N+htS0zRNe8qkpICRcL0Z8Et4eVJELM7JzHmyUgFj79691KpVi3HjxrFu3TouX75McHCwS26yf/zxRzp37syqVato27btE6+fM2cO//nPf9i6dWuK925YvHgxr7/+OkFBQbRs2TK1Kd936tQpypcvz+jRo5kwYUKax0svgYGBdOnShd9++42mTZu6Op0kRUREkD9/foYNG8Ynn3zi6nS0TCo2NpY//vjjfsFi37592O12cuTIwYsvvkjTpk1p0qQJFStWdMhSKovFwsaNGwkMDGTVqlXcvXuX/Pnz06FDBzp37ky9evUwGNK0LWWW5cgCRnUR2a+USvInhIhsS2WOTuesG40TgYFEdelCjZkzYeBAh4+vaZqmaRldKgoYzwMlgfvvkEXkWyek5nBKqVZAK19f316Jv63L7Jo1a8bBgwf54YcfePnll/n8888ZMGBAuuchItSoUYPIyEhOnDiRrBv76OhoSpYsSbVq1Vi7dm2KY0VFRXH8+HGHvYl49dVX2bx5MxcuXCBXrlwOGdPZXnrpJUJCQggODs7Qb6YaN27MzZs3OXr0qKtT0TKR06dPExQUxLp16/j999+Jjo7GaDRSp06d+zMsatWqhZubm1PziImJYe3atSxZsoSgoCCio6MpWrQonTp1onPnzlSvXj3D7T/jSg4rYDww4CARmfmkYxmJswoYHYoVY8OlS1y5fp3sGW26oAj3QkMJPX2aiCtXiI2MpGTevOT38CDs5k22HTxITFQUsdHRxMbEEBsTQ0tfX3xz5uTvy5eZt38/sXFxxFosxMbFEWOx8IGvL8+6u7Pp6lXGnj2buB74/j+4uWXK8EyOHATdusWky5fvp5L4z3GRnx+lPDxYfvMms69c+d/5hP4/PvMMBdzdCbx5k++uXcNoMGAyGDAZjRgNBgLq1iVntmysvHSJ365ciT9uNGIymTAaDHzSuDFGs5m1ISHsv3YNk8kU38xm3N3c6NeoEZjN7AwJ4Xx4OGZ3d0xmM2Z3d7LnyEHjGjXAbObklSvciY3F5O6O2d0dc7ZsZMuZkxIlSoDZzO179xCTCbOHB6Zs2TB5eGA0m9Pn71XTNC2DSeESku+AMsAhwJZwWEQkU/0WIKvMwNi6dSuNGjVi2rRpbN26lT/++IPz588/9nGiBw4c4Oeff8bT05M8efIk2XLnzp3iGRybN2/mpZdeYu7cuSl6lOfEiRMZM2YMhw4donLlysnqs337dho2bMhXX31Fnz59UpTn4+zZs4fatWszbdo0hgwZ4rBxnSU4OJiyZcsyYcIExowZ4+p0Huuzzz5jyJAhhISEULJkSVeno2VQFouFP/74gzVr1hAUFMTJkycBqFChwv0ZFg0bNiR37twuy/Hu3busWbOGwMBA1q1bh8VioUyZMnTu3JnOnTvz7LPPuiy3jMIZBYwDIlLtoWMHRaRqKnN0OmfcaIRs345vw4YMr12bT//806FjJyUmIgL7zZtkj4oi6uJFgjZuJPTqVUJv3iQ0LIzQ27fp5u1NS+DY1avUun6d6IfG+AZ4g/gd1OonEWM58CqwQSnaiuCu1P+awcCC4sWp5+3NtpgYxl+6hEGpf6wl+rxcOSrkyMGvN28y7eJFAB78Plvg50dJDw+W37jB7IQCh8RfBMCyChUoYDIx/+pVvrp2DasINhGsdjtWEfYXKUIuu53x4eF8ERWFVST+GsAKRJpMGK1W+gFfPfS1eQCJ+wF3Ax5+8FoB4HrC522A1Q+dLw0k7i3eGNjy0PkqwEE3NzCbaRITw2G7HbNSmJTCrBS1PDxYUrw4mEx0vHCBixYLZoMBs9GIyWCgjrc3Hz/zDJhMDDh8mNs2GyajEZPRiNlkokahQvSsVAlMJsb/+Sc2pe4XaMxmM5WKFaNpQv+Ff/6J0WzGZDZjcnPDZDZTrnhxni1dGptSbDt+PP54wjmTuzs+BQvi4+ODFTh//TpGNzdM7u73W05PT7LlyIEYjVgBo7s7BqMxie8iTdOeNiksYJwAKma2vbQelhUKGCJC/fr1OXfuHKtXr6ZGjRp89NFHfPjhh4/tV7t2bfbs2fPE8XPlyvXYIsfD7b///S/Hjx/n3LlzZMuWLdlfR0REBMWLF8ff35/Fixcnq0/btm3ZsWMHFy5cIHt2xz4Ep1GjRpw+fZqzZ886/be6aTVq1CimTp3KhQsXUv0UlvRy+vRpypUrx6xZs1L9yFsta7p16xbr1q1jzZo1rFu3joiICMxmM40aNcLf3x9/f39KlSrl6jSTFB4ezqpVqwgMDGTTpk3YRLeRGgAAIABJREFU7XYaNmzIypUr8fb2dnV6LuPIJSRdgK7Ev/f9/YFTuQC7iLyUlkQfiNMcmAkYgXki8ulD592Bb4nfuTyM+M2/zj1uTGfcaAyqUoUvDx/m3N69FKmR7Jmz8W/W793j4tGjhIaEEHbxImGXLxN2/Tp+2bLxkqcn0deu0W7TJkKjowmNjSXUZiMKGAt8DFwDfB4Y0ksp8plMjC5WjDcrViQ0Z04mBQeTL18+8hUsiGfevGTLkYMq5ctTtFgxoux2gq9fxz1nTrLlzo17zpy458pFrrx5MefMmen38rBbrdji4rDFxmKNjcUSHY0tNpZ8np5gsXD92jUiwsLiz8XGYo2JQdntVC9TBiwW9p84wbWbN7HExWFJuCa7yUTbSpXAamXl3r2cDw3FEheH1WrFarWSP1s2+iWcn7p7NyHh4VhsNqxWKxabjbI5cjC2XDmwWul14ADn793DYrfHX2O3Uyd7dmb4+IDFQv2QEK5YrfcLNBYR2pjNzHNzA4uFPLGx3H7oa+4FzCW+IJTUBNAhwDTgLpBUzTnxe+sqkNQtzBRgGHCK/y1cV8TP/zYCs93deTtbNo4ATe/cwaQUxsQGfFawIK08PdkfF0evy5cxKoXJYIg/bzDwia8vz3t7sycykvFnzmA0GP7RPqhUiYre3uy+dYt5p0/HH0+YmWM0GhlSowbFvLzYe/06q8+ciT+XeN5koledOnjnysWBK1f44/x5DInnTSaMRiOd6tQhe/bsHL10ieNXr2I0meKvMZkwmkw0r1kTk5sbp69e5WJY2P/Om80YjEZqV6qEMhq5eOMG4VFRGIzG+JZQSPItVQqMRkIjIoixWDCYTPf7mtzd8fL2BoOBGIsFUQqDyfSPpjLwtF5NS2EBYxkwUESuOjktp8oKBYxff/2Vli1b8tVXX7Fr1y6WLVvGhQsXyJs37yP7/P3331SoUIEpU6bQu3dvIiIiUtVu376d5ONPJ06cyHvvvZfir2X48OFMnz6d06dPU7p06cdee/r0afz8/Hj//fcZN25cimM9ybp162jRogULFy7kzTffdPj4jhIXF0exYsWoW7cuP/30k6vTSRY/Pz9KlSrFunXrXJ1KpmCz2e5vUjlw4MAMX6RKLhHh5MmT92dZ7Ny5E5vNRv78+WnZsiWtWrWiadOmmWYZV6Lr16+zePFiRo0aRbly5Vi/fn2W+TtLKUcWMEoApYBPgFEPnLoLHBERa1oSTYhhJP49UlPgErAX6CIixx+45j9AJRHpq5TqDLQTkU6PG9fRNxrhISEUK12adqVKMWP9esLOniXs/Hnc7t2jupcXhIUxcfVqLty4QdidO4RGRREWE0Njo5EZVivExpId/jVD4h0gIHduJG9enr9xA6/s2cmXKxf58uQhX758NKhcmfp16mDz8uLk3bvkK1MG7zJlMKXgNxVa1iB2O7a4OCz37mGNicEoQnY3NyQujosXLmBNKN5YY2OxxMSQN0cOiubLhzU2lp2HDmGNi8NmsWCNi8MaF0fZQoWoUKgQ96KiWPHnn/HnbTasFgtWi4Xnixenmo8PoXfu8PWuXfGFGYsFm82GzWbjVV9faufPz/nwcD7Ztw+b3Y7VZsNmt2Oz2ehfpgzPe3lx9NYtxhw/jtVuj78m4eMnxYtTN0cOtoWH8+6FC9gSZt8ktu/y56e22cyqyEj6h4fHHyd+/rlNhO3ZslFFhLkWC33t9n/tMnwKKEt8IWZEEn+eV4gvCo4Fxidx/i6Qk/hC0GdJ/X0kfOwFzHvoXC7gTsLnnYEfHzpfGEhccOUP/PLQ+XLASQCDgZdE2CGCAe63akYj23LnBoOBJnfucNRmw0B8YcmgFM+7uxNYsCAYDDS9coULVisGpVAJ5xvlzMmsokXBYKD5mTPcSuhvUAqlFM28vPiwRAkwGGh59CixIvfPGZTilQIFGFCqFKIU7fbtu3888WOrwoXpXro00TYbvfbuxWAwxMc2GDAoRZsSJWhdsiQRFgvv7d0b3++Ba9qWKUOj4sW5ERPD5MT+SqES+rcrX56aRYpw+e5dAg4d+l//hBzaPvMMz/j4cCEigh+PHLnf9/75SpUolS8fIbdu8cvx4//sbzDQunJlfLy8OHPzJttOnYqP+8D5VypXJm/u3ATfuMG+kJB/jf9y1arkyp6d01ev8telS/ePJ17TpGpVsmXLRvDVq5y5evV/fRM+vlilCkaTieArV7gcGvqv8/UqVwalOHvlCjcjIuKPJ5wzmUxUKV8elOLc1asULFAAj5QU3JMphQWMLcRPWtsDxCYez8gbgT8oq+yBYbfbqVGjBrdv32bDhg34+fnRr18/Pv/888f2Gz16NJMnT+bSpUsUKlQoTfEjIyPvFzMiIiK4d+8ejRs3xpyKJZlXrlyhVKlSvPPOO3zxxRePvbZ///7MmzeP8+fPp+lreBQRoWrVqsTFxXHs2LEMu6/EihUreO211xy2iWl6GDp0KLNnzyYsLIycOXO6LI979+4xePBgfH19adOmDX5+fk/ulE5EhL1797J48WJ+/PFHrl27BkCnTp0IDAx0cXapFxcXx++//36/aHHmTPy86MqVK+Pv70+rVq2oWbNmhv33lhKbN2+mTZs25M+fnw0bNlCmTBlXp5TuHL6ExJmUUnWBj0Tk5YTX7wGIyCcPXLM+4ZpdSikT8RMS8j9uOqqjCxhbfHxocu0aiQ8ITtQYSHwQV3ngllLkNZvJly0bebNn58USJRjcoAHkzcvi4GA8vL3JW7QoeYsXJ2+pUniXLo2bC/9D1rSsIrHAY0so1GQzmzGIEB0ZSVRkJDaLJf6c1YrdYqFogQIYleLmzZvcvHkTu80Wf43Vit1qpaqvL0alOHvxIhevXo0/b7Vis1gQu53m1aqB3c6BU6c4d/06dpvtfjMAHWvWBLudzX/9xdnr17HZbNjtduw2Gx4mE2/VqgU2GysOH+b0jRuISPx5ux3vbNnoX6MG2O3M3b+fkPDw++fsdjtFcuRgSJUqYLfzyb59XLh7F1vieRH8cuVi5DPPgM3GkP37uRodjT1hfBGhep48vOfrCyJ027+fWxZLfF/ALkLjPHkYXbw4iND08GGibbb4/iLYgXZ58vBewYLY7Xaq/v13/P+LCedEhJ6engz38uKu1UqVCxeQhHEFsANDcubk3ezZuWK1UiU09P7xxP9fJ7i7099s5qTNRrV79/51fo5SvA3sEaF2Et8LS4gvHG0GkpomGAS0BH4GknrmwTagAfA90D2J8/uBasAc4D9JnE8snk0GRiZx/irxzxF9VPEsEsgBvAvMeOicIv7PAuIL4PMfOp8b7s/W6gS8nzs3z91+eP5W2qWwgJHpNgJPSmafgbFs2TI6duzIt99+y6FDh5g5cybBwcGP3VvAZrNRsmRJKlWqxC+/PFxqdb133nmHH3744bGPMb116xZFixalc+fOLFiwwGm5JD7h5Oeff6Z164xZm2vevDl//fUX586dw5hJloRu2bKFxo0bJ/spNc4yZcoURoz4369D/Pz8aNOmDW3atKFOnToueRP9999/s3jxYhYvXsyZM2dwc3OjZcuWdO3alT179jBlyhT27t1LDScUsZ0lNDSUX3/9laCgINavX8+dO3dwd3encePGtGrVipYtW1K8eHFXp+kUe/fupUWLFpjNZn777Teee+45V6eUrhw5A2OHiNRXSt3ln+/bFfEbcKV5NxSl1GtAcxF5J+F1d6C2iPzfA9ccS7jmUsLrMwnXhD40Vm+gN0Dx4sWrnz9/Pq3p3fd3ixZUXLeOcmYzfV95hXw+PuT18aFY2bI8W6sW5M2L5M6tp31rmqalI7Hb7ze71YrY7feXKdksFqLv3fvfNTYbIkIODw/MJhOxMTHcuX07/pwIdpsNsdvJ6+mJu5sbUVFRhIaFISJIQnFKRChWqBDuZjPhERFcu3Hjfv/EOOVKlMDdbOZ6aChXHj4vQpWyZTEbjVy8epWL16//63y9Z57BaDBw+uJFLj7UHxGaVqsGIhw9e5aLN2/+o6/JYKBFwvm9p05RrkQJPDs9dsJiqqTiKSQlgLIislEplR0wishdhyfmRJm5gGG1WnnuuecwGAxs27aNUqVK0aZNG77//vvH9tu4cSNNmzYlMDCQTk74PkqrkydPUqFChcc+xvSTTz5h9OjRHDlyxKlvCKxWK2XLlqVw4cLs3LnTaXFS69y5c5QuXZqxY8fy0UcfuTqdZLNYLOTPn59XX32V+fMfLtmmj8jISEqVKkX16tUJCAhg9erV/Pzzz2zZsgWr1UrBggVp1aoVbdq04aWXXsLDw8NpuVy6dInAwEAWL17MwYMHUUrRuHFjunbtSvv27cmTJw8Ad+7coUyZMlSqVImNGzdm6KddnDx5kpUrVxIUFMSuXbsQEQoVKnR/lsVLL7302E2Gs5Ljx4/TrFkzoqKi+PXXX6lbt66rU0o3j7yvEJEM14DXiN/3IvF1d2D2Q9ccA4o+8PoMkO9x41avXl0cbXqbNgLI+JdecvjYmqZpmpZZAPsk+T/nexG/PPRMwuuywKbk9s8ozRn3Fell4cKFAsiKFStkwoQJAsjhw4ef2K979+7i6ekp0dHR6ZBl6rRv317y5Mkjd+7c+de52NhY8fHxkaZNm6ZLLrNmzRJAduzYkS7xUuKDDz4QpZScP3/e1amkWKdOnaRgwYJis9lcEv/TTz8VQHbt2vWP4+Hh4bJ48WLp1KmT5M6dWwDJnj27tGvXTr755hsJDQ11SPzQ0FD5+uuvpWHDhqKUEkBq1aolM2bMkCtXrjyy38yZMwWQtWvXOiQPZ9i5c6cYjUYBpFq1avLhhx/K3r17XfZ3nRGEhISIr6+vZM+eXdavX+/qdNLNo+4r0lJkKAO4J3z+IjAQyJPa8R4auy6w/oHX7wHvPXTNeqBuwucmIJSEGSWPas640bDbbNKtVClRIKvff9/h42uapmlaZpDCAsYhwA04+MCxo8ntn1FaZi1gxMbGSsmSJaV69eoSFRUl+fPnl+bNmz+x3507dyR79uzSu3fvdMgy9Xbv3i2ATJ069V/nFi1aJICsW7cuXXKJioqSfPnySatWrdIlXnJZLBYpXLiwtGjRwtWppMp3330ngOzZsyfdY9+5c0fy5s37xH8zsbGxsn79evnPf/4jRYoUEUAMBoM0aNBApk+fLmfOnElR3MjISFm8eLH4+/uL2WwWQPz8/GTcuHFy+vTpZI0RGxsrpUuXlkqVKonVak1R/PRgtVqlatWqUqRIEblw4YKr08lQrl27JpUrVxaz2SzLli1zdTrpwhkFjEMJhQNf4pf3TgF+Te14D41tAs4Sv1moG3AYeOaha/oDXyV83hlY+qRxnXWjcS8sTKp5eIgnSNhDlVhN0zRNexqksICxO+HjQfnfz/0jye3v6ga0Aub6+vo68o8w3XzxxRf338TPmTNHANmyZcsT+yXO2siIswke1qhRIylcuLDExMTcP2a326Vy5cpSsWJFsdvt6ZbLxx9/LIAcO3Ys3WI+yerVqwWQlStXujqVVAkNDRWDwSBjx45N99gTJ04UQHbv3p3sPna7Xfbu3Svvv/++PPfcc4nbN8mzzz4rY8aMkT179iQ5wyAuLk6CgoKka9eukj17dgGkSJEiMmzYMDlw4ECqvo+XLFkigCxatCjFfZ0t8f+jwMBAV6eSIYWHh0u9evXEYDBIQECAq9NxOmcUMA4kfBwODJAHbkQc0YBXEgojZ4AxCcfGAa0TPs8GLAOCid/FvPSTxnTmb0rO//GHrMydW8TPTyQiwmlxNE3TNC0jSmEBYzIwGvib+CeOrQL+m9z+GaVlxhkYUVFRUqhQIXnhhRfEYrFImTJlpFatWsl6I9SoUSPx9fVN1zf/qbV+/XoBZP78+fePbdq0SQCZN29euuYSGhoq2bNnlzfeeCNd4z5Oq1atpFChQhIXF+fqVFKtfv36UrVq1XSNefv2bfH29pZXXnklTeOcOXNGPvvsM2nYsKEYDAYBpHDhwtK3b19Zu3atbNu2Tfr27St58+YVQLy9vaVPnz6ybdu2NC+lsNlsUr16dSlevHiGWgoWGhoq3t7e8uKLL2aK/2NcJSoqSpo3by6ATJ482dXpOJUzChi7gS7E70VRKuHYsdSOlx7N6Tca27aJmExypEEDsVkszo2laZqmaRlICgsYBuL3wVgGLE/4/LHLQDNiy4wFjMmTJwsg27dvlx9//PH+PhhPcu7cOQFk3Lhx6ZBl2tntdqlatar4+fndf8PXsmVLyZ8/v0vetA0cOFBMJlOGmBZ/6dIlMRgM8t5777k6lTRJ3Ifi0qVL6Rbzv//9r8OXroSGhsqiRYukffv2kiNHjvuzM7Jnzy5dunSRNWvWSGxsrMPiifyvmDdlyhSHjpsWffr0EaPRKEePHnV1KhlebGysdOrUSQAZNWpUli34OKOAURH4HOiS8LoUMDK146VHS48bjWNjxogJZOwLLzg9lqZpmqZlFMktYABG4IfkXJvRW2YrYERERIi3t7c0b95c7Ha7VKtWTcqWLZustfDjx48XQEJCQpyfqIMEBgbeXyZx4sQJAeSjjz5ySS7nzp0To9Eo7777rkviP2jcuHECSHBwsKtTSZNjx44JIF9//XW6xLt9+7Z4eXmJv7+/02JER0dLUFCQLF26VO7eveu0OCIiL7/8snh5ecmtW7ecGic59u3bJ0opGTx4sKtTyTSsVqv06dNHAOndu3eG3NMkrRxewMiMLT1uNOw2m/QsWzb+NxrDhzs9nqZpmqZlBCmcgbEDcEvu9Rm1ZbYCxocffiiA7Nu3TzZu3CiAzJ0794n97Ha7lC1bVho2bOj8JB3IYrFI6dKlpVatWtK7d29xd3eX69evuyyfbt26SY4cOSQsLMxlOdhsNilRooQ0adLEZTk4it1ul5IlS6bbBqmJRbx9+/alSzxnO3TokCilZMSIES7Nw2azSe3ataVgwYISoZfhp4jdbpf33ntPAOnYsaPDZ+q42qPuKwykklKqnlJqg1LqlFLqrFIqRCl1NrXjZRXKYODLPXuolSMHPaZM4diqVa5OSdM0TdMymrPATqXUB0qpIYnN1UllZaGhoUyfPp1XX32V6tWrM2nSJAoVKkT37t2f2PfPP//k9OnTvPHGG+mQqeOYTCaGDx/Onj17mDdvHj169KBAgQIuy2fEiBFERUXx5ZdfuiyHDRs2cP78eXr16uWyHBxFKYW/vz8bN24kOjraqbFu377NtGnTaN26NdWrV3dqrPRSuXJlunXrxsyZM7l48aLL8li0aBG7d+9m8uTJeHp6uiyPzEgpxcSJE5k8eTJLly6lTZs2REVFuTotp0t1AQOYD0wH6gM1gRoJH5962fLkYeXWreQ0GGjbsSO3z593dUqapmmalpGcAYKIvw/J9UDLFJRSrZRSc2/fvu3qVJJt0qRJREZGMm7cOA4cOMCGDRsYPHgw2bJle2LfRYsW4eHhwWuvvZYOmTrWG2+8QYECBbDb7QwePNiluTz33HO88sorfP75505/w/0oc+fOJV++fLRp08Yl8R2tVatWREdHs3nzZqfGmTlzJhEREXz44YdOjZPexo8fj4gwduxYl8SPiIhg5MiRPP/883Tr1s0lOWQFw4cPJyAggN9++41mzZoRHh7u6pScK6lpGclpJDwCLTO19J7quWPOHPnIYBBbs2YiWXBdkqZpmqYlIgVLSBIbkD2lfTJSyyxLSC5fvizZsmWTHj16iIhIp06dJFeuXBIeHv7EvtHR0ZInTx55/fXXnZ2m0yxdulQ+/vhjV6chIiLbtm0TQL744ot0j33t2jUxmUwydOjQdI/tLDExMZIjRw7p27ev02KEh4eLp6entGnTxmkxXGno0KGilJIjR46ke+yBAweKUkoOHDiQ7rGzomXLlonZbJZKlSrJ1atXXZ1Omj3qviItMzC2KKWmKKXqKqWqJba0l1Syjnp9+/LhnDkYfvuNO8OGuTodTdM0TcsQEu4djhP/GFWUUpWVUq6bV5/FTZgwAavVyocffsjZs2dZtmwZffv2JU+ePE/su2bNGiIiIjLd8pEHdejQwWW/YX7YCy+8QJ06dZg6dSpWqzVdY3/zzTdYrdYssXwkkbu7O82aNSMoKCixKOpwM2bM4Pbt23z00UdOGd/VRo8ejaenJ6NGjUrXuEeOHGH27Nn07duXqlWrpmvsrOq1117jl19+ITg4mPr16xMSEuLqlJwiLQWM2sQvG5kITEtoUx2RVJbSuzfHO3bEd8YMlr77rquz0TRN07SMYAbwMhAGICKHgQYuzSiLunXrFvPmzeOdd96hdOnSTJs2DZPJlOzlFIsWLaJIkSI0btzYyZk+HZRSjBw5kpCQEFasWJFuce12O/PmzaNBgwb4+fmlW9z04O/vz6VLlzhy5IjDxw4PD+ezzz6jXbt2VKlSxeHjZwTe3t689957/Prrr2zdujVdYooIAwYMwMvLiwkTJqRLzKdF06ZN2bhxI2FhYdSvX5+//vrLabHsdjsXLlzg0KFDTouRlFQXMESkURJN/3RLgu/8+ZTLlYueM2ZweOlSV6ejaZqmaS4nIg/vGmdzSSJZXEREBBaLhbp163Ljxg0WLFhA9+7dKVy48BP7Xr9+nXXr1tGtWzeMRmM6ZPt0aN26NeXLl2fSpElOmzXwsK1btxIcHJylZl8katmyJQBBQUEOH3vGjBncuXMny86+SDRgwACKFi3KiBEj0uV7MjAwkO3btzNx4kS8vb2dHu9pU7duXbZv347dbqdBgwbs2bMnTePduXOHvXv38v333/PBBx/QqVMnqlSpQs6cOSlRogQdO3Z0UObJk5ankBRUSs1XSq1NeF1RKfW241LLOtxy5mT5jh3kMRho+/rrhJ0+7eqUNE3TNM2VLiqlngdEKWVWSg0DTrg6qaxu1qxZxMbGMiyZy1oXL16MzWbL1MtHMiKDwcDw4cM5ePAgGzduTJeYAQEBeHl58eqrr6ZLvPRUsGBBatWqxZo1axw6bnh4ODNmzODVV1+lUqVKDh07o/Hw8GDcuHHs3buX5cuXOzXW3bt3GTZsGNWrV+ftt/VbR2d57rnn2LlzJ56enjRu3JhNmzY99nqr1crp06cJCgpi+vTp9OnThxdffBEfHx88PT2pVasW3bt3Z+LEiezfv58iRYrQt29f5syZw7x589Lpq4qnUltlSyhcLATGiEhlpZQJOCgizzkyQUeqUaOG7Nu3z2Xx9yxcyAtvvcULXl6su3IFUzJ2/tY0TdO0zEAptV9EaiTz2nzATKAJoIDfgEEiEubEFB3O1fcVyXH27FnKlCnD119/zahRo2jYsCGrkvmI9ypVquDm5pbm395p/xYbG0vp0qWpUKGCU4sYsbGxLFiwgMGDB9O3b19mzpzptFiuNH78eD788EOuXr1KwYIFHTLmBx98wIQJEzhy5AjPPZdh3944jM1mo0qVKsTExHD8+HHMZrNT4owcOZLJkyeza9cu6tSp45QY2v9cuXKFl19+mVOnThEYGMgLL7zAyZMn/9XOnDmDxWK538/b2xs/P79/tTJlyuDu7p4uuT/yviKpnT2T04C9CR8PPnDsUGrHS4+WEXYLX9Czp7QDiRowwNWpaJqmaZrDkIynkACTEj52eNK1maFlhPuKJzlz5owA0rVrVwFk165dyep36NAhAWT27NlOzvDpNWXKFAFk3759Dh87NjZWvvrqKylWrJgAUq9ePbl06ZLD42QUBw4cEEAWLlzokPHCwsIkV65c0qFDB4eMl1kEBQU59d/9iRMnxGw2S8+ePZ0yvpa0sLAwqV27tgD/aGazWSpUqCBt27aVkSNHyoIFC2Tnzp0SGhrq6pRF5NH3FWmZgbEVeBXYICLVlFJ1Em5MGqZqwHSQUX5TIgMGoGbPRr79FtW9u6vT0TRN07Q0S84MDKXUUaASsF9EMu2Ty5RSrYBWvr6+vU5n8GWhiTMwvL29efbZZ9m2bVuy+g0ZMoTZs/+fvfuOj6pKGzj+O1PSeyEBEgglhKaAFEHUpYiNsFIURBAEEeuivKgouOtrR7GBgsqLSlAWRVAElwUUVxSkKQIrRUJJCCGQ3tuU8/4xQ0QMiCSTmSTP9/O5n5m559x7n7mE5Mwzp7xJRkYG4eHhLo6ycSosLKRFixZce+21LKulOdIsFguLFi3iueeeIzU1lT59+vDUU09xzTXXoJSqlWt4Iq01sbGx9O7du1aGQMycOZMXXniBPXv20Llz51qIsH7QWtO/f3/27dvH4cOHCQwMrNVzX3fddWzfvp1ffvml1nrKiAtTXFzM3Llz8fX1JSEhgXbt2hEXF4fJZHJ3aOd0rnZFTVYh+R9gFdBGKbUZWAz8rQbnazTUq69y7PLL6Tt+PDuXLHF3OEIIIURdWQvkAZcqpQqVUkVnPro7uAultV6ttZ4cHBzs7lAuWG5uLo8++ugF1bVarSxZsoTExERJXrhQUFAQ9957LytWrODQoUM1OpfFYuHdd9+lXbt2TJ48mejoaNauXcvmzZsZNGhQg05egGN1l8TERNatW0dFRUWNzpWdnc3cuXO55ZZbGlXyAhz38aWXXiIrK4uXX67dxSVXrlzJl19+ydNPPy3JCzcICAhgxowZTJ06lRtvvJG2bdt6dPLifGqyCslO4C/AFcDdQCetde2vX9QQmc34vv8+6QYDQ8ePJ9OFy9sIIYQQHuQJrXUI8C+tdZDWOvDMR3cH1xCd7mkbExPDjTfeeEHHrFu3jszMTJm8sw48+OCDmM3mi/6waLVaef/992nfvj2TJk0iMjKSNWvWsGXLFq677roGn7g4U2JiIsXFxXz77bc1Os8rr7xCSUkJTz75ZC1FVr/06tWLW265hVdeeYWTJ0/WyjlLS0uZOnUqnTt35r777quVc4rGqyarkNwC+Gqt9wJDgY+VUvW2O2hdi+zQgc+SksgIkRkNAAAgAElEQVSy2RjZty+W0lJ3hySEEEK42hbnY73pbVHfnThxAoB+/fpd8IfZpKQkwsPDueGGG1wZmgCio6MZP348ixYt+lMfFq1WK0lJSbRv356JEycSGhrKF198wbZt27jhhhsaVeLitAEDBuDj41Oj5VSzsrJ44403GDVqFB07dqzF6OqX559/noqKCp5++ulaOd+LL75Iamoqb775Zr391l94jpoMIfm71rpIKXUlMBB4F3irdsJqHC4bM4aF997LxoICpvXp4+5whBBCCFfzUkrdBlyhlBp+9ubu4Boim80GOJZJvBB5eXmsWrWK2267DS8vL1eGJpwefvhhKisrmTt37h/WtdlsfPDBB3Ts2JE77riDoKAgVq1axY4dOxg8eHCjTFyc5ufnx8CBA1m9ejUXO8ffK6+8QmlpKf/4xz9qObr6pW3bttx9990sWLCAgwcP1uhcR44c4cUXX2T06NH85S8eO1WiqEdqksCwOR8HA/+ntf4XIH/p/qQx8+czrXt3vtmzh+L5890djhBCCOFK9wBXASHAkLO2RDfG1WD92Q9yy5Yto6KiQoaP1KH4+HhGjBjB/PnzKSoqqraOzWZjyZIldOzYkXHjxuHn58dnn33Gjz/+yJAhQxp14uJMQ4YM4ejRoxw4cOBPH5uVlcWbb77J6NGj6dChgwuiq1/+/ve/4+vry4wZM2p0nqlTp2IymZg9e3YtRSYau5okMNKVUu8Ao4A1SinvGp6v0Zq1aRNb+vUjYOpU2LbN3eEIIYQQLqG13qS1vhd4VGs94axtorvja8j+zPCRjh07ctllMiq4Lk2fPp2CggIWLFjwm/02m42lS5fSuXNnxo4di7e3NytWrGDnzp0MHTpUEhdnGTx4MACrV6/+08fOnj2bsrKyRt/74rSoqCgefvhhVqxYwdatWy/qHGvWrGHVqlX84x//oHnz5rUcoWisapJwGAmsA67TWucDYcAjNQ1IKRWmlPpSKZXsfAytpk5XpdQWpdRepdQepdSoml7XnUw+PvgvX05xdDT3DRhAxq5d7g5JCCGEqHVKqQHOp3kyhMTzJCcns2XLFsaPHy8fjOtYjx49GDBgAK+99hqVlZXY7XaWLVvGpZdeym233YbRaOSTTz5h165dDB8+HINBvjOsTkxMDF27dv3T82BkZmYyb948brvtNhISElwUXf0zbdo0oqKiePTRR/90b66KigoefPBB2rVrx0MPPeSiCEVjVJNVSEq11p9qrZOdrzO01utrIabHgA1a63hgg/P12UqBcVrrTsD1wOtKqZBauLb7hIeT8uqrJJWWMuKqq6golPnNhBBCNDinB0CfPXxEhpB4gMWLF2MwGBg7dqy7Q2mUpk+fTnp6OlOmTKFLly6MGuX4fu7jjz9mz5493HzzzZK4uACJiYls3ryZ3NzcCz7mpZdeory8nL///e8ujKz+CQgI4Mknn+S7777700mhV199lUOHDvHGG2/IfDqiVnnib8GbgCTn8yQcK5z8htb64BmJkxNAJhBZZxG6SOcRI3j/oYfYUlxMr6go/vPqq+4OSQghhKg1WusnnY9nDx+RISRuZrfbWbx4MYMGDaJZs2buDqdRGjRoEN26deOdd97BarWydOlS9uzZw8iRIyVx8SckJiZit9tZu3btBdU/efIk8+fPZ8yYMbRr187F0dU/kyZNol27djz22GNVkwL/kbS0NJ599lmGDx/Otdde6+IIRWPjib8No7TWGc7nJ4Go81VWSvXCMXno4XOUT1ZK/aCU+iErK6t2I3WBka+9xopHHqHAYmHAtGnM7twZjhxxd1hCCCFEjSml/ud8m7vja8w2btzIsWPHGDdunLtDabSUUixdupTPPvuMn3/+mVtvvRWj0ejusOqdnj170qRJkwvuMfDSSy9RWVkpvS/OwWw28/zzz7Nv3z6SkpL++AAcK+vY7XZelS9jhQu4JYGhlPpKKfVzNdtNZ9bTjsFW5xxwpZRqCnwATNBa26uro7VeoLXuobXuERlZPzppDH/pJfZnZvLsNdcw7MgR6NCBjAceoMi5lrsQQghRTwU6tx7AvUBz53YPILNGutHixYsJDAxk6NDfdXwVdSghIYGhQ4dK4qIGDAYDgwcP5t///jcWi+W8dTMyMnjrrbcYO3Ys8fHxdRRh/TN8+HB69+7NP/7xD0pLS89b9+uvv2bZsmXMmDGDli1b1lGEojFxSwJDa32N1rpzNdvnwClnYuJ0giKzunMopYKAfwEztdYXNzWuB/MNC2Pml1/S9tAhuPVW7p43j3axsbw/cSJ2q9Xd4QkhhBB/mtb6Ka31U0AMcJnWeprWehrQHWhRV3EopVorpd5VSi0/Y5+/UipJKfV/SqkxdRWLJygpKWH58uWMHDkSPz8/d4cjRI0lJiaSn5/P999/f956L730EhaLRXpf/AGlFC+++CLp6enMnTv3nPUsFgt/+9vfaN26NY88UuO1HYSolicOIVkFnF58fDzw+dkVlFJewGfAYq318rPLG5RmzSApiSfee49Wfn5MfP99egYFsWnePHdHJoQQQlysKKDyjNeV/MGQ0dOUUu8ppTKVUj+ftf96pdQvSqlDSqnqJgCvorU+orW+86zdw4HlWuu7gL9eSCz1wYWsHPDpp59SXFwsw0dEgzFo0CDMZvN5h5FkZGTw9ttvM27cONq0aVOH0dVPV199NYmJicyaNYucnJxq67z55pvs27eP119/HR8fnzqOUDQWnpjAmAUMUkolA9c4X6OU6qGUWuisMxK4GrhDKbXLuXV1T7h1o9eECWwuKGDJffeRWVnJVQ88wOLLL4fUVHeHJoQQQvxZi4HtSqn/VUr9L7ANWHSBxy7CsQJZFaWUEZgH3AB0BEYrpToqpS5RSn1x1tbkHOeNAdKczy9sprp65HzLoi5evJhWrVpx5ZVX1mFEQrhOYGAg/fr1O28CY9asWVitVp544ok6jKx+mzVrFkVFRTz33HO/K8vIyODJJ5/kxhtvJDFRFpUSruNxCQytdY7WeqDWOt451CTXuf8HrfUk5/MPtdZmrXXXM7Zd7o3c9ZTBwG3z5nHgxAmeGzCAv+7ZA+3bk3z//ZRkVjvSRgghhPA4WuvngAlAnnOboLV+4QKP/RY4e33EXsAhZ8+KSuAj4Cat9X+11olnbef6g3kcRxIDztM+qm+Tg/9RD4y0tDQ2bNjAuHHjZKUL0aAMGTKEAwcOcOjQod+Vpaen88477zB+/Hhat27thujqp06dOnHHHXcwb948UlJSflM2ffp0KioqeP3118+bMBWipuQvVT3k36QJMzZsIOTgQfTQodwyfz7tmjblw3vukfkxhBBC1Ata651a6znO7acanq45v/aeAEcyovm5KiulwpVSbwPdlFKPO3d/CoxQSr0FrD5P3PVucvDz+fDDD9Fay/AR0eAMHjwYoNpeGLNmzcJmszFz5sy6Dqvee+qppzAYDL+ZN2TTpk188MEHPPzwwzIZqnA5SWDUZ7GxqKVLmf/22zTz8eH2d97hipAQtr37rrsjE0IIITyWs7fnPVrrNqd7fmitS7TWE7TW92qtl5zveKXUEKXUgoKCgroJ2EW01ixevJgrr7xSvoUWDU7r1q3p2LHj7xIYx48fZ8GCBdxxxx20atXKTdHVXzExMTz00EMsWbKEXbt2YbPZeOCBB4iJiWHGjBnuDk80ApLAaACuuPtuthUUsGjSJI6VldF70iTWDRgAx4+7OzQhhBCiLqQDsWe8jnHucwmt9Wqt9eTg4GBXXaJO7NixgwMHDjB+/Pg/rixEPZSYmMjGjRspLCys2vfCCy9gt9ul90UNTJ8+ndDQUKZPn84777zD7t27efXVV/H393d3aKIRkARGA2EwmRj/f//HwfR0Zg8YwIDNmyEhgZ/uvZfS7Gx3hyeEEEK40g4gXinVyrlS2a04VjUT55GUlISPjw+33HKLu0MRwiWGDBmC1Wpl/fr1gGPOl4ULFzJx4kTi4uLcG1w9FhISwhNPPMH69euZNm0aAwYM4Oabb3Z3WKKRkARGAxMQHc3DGzZgPnCA8uuv58a336Z9dDQfTZmCttvdHZ4QQghRI0qppcAWIEEpdVwpdafW2go8AKwD9gPLtNZ7XRhDvR9CUlFRwdKlSxk6dCj1vSeJEOfSu3dvwsLCWL3aMa3NCy+8gNZael/Ugvvuu4+4uDisVitvvPGGTNwp6owkMBqqVq3wWbGCj+bMIdzLi9FvvEH3gAD+t18/UlasAJnsUwghRD2ktR6ttW7qXI0sRmv9rnP/Gq11O+e8Fr9f4692Y6j3Q0j+9a9/kZeXJ8NHRINmMpm44YYbWLNmDSkpKSxcuJA777yTFi1auDu0es/b25vVq1ezevVqOnbs6O5wRCMiCYwG7i9TpvBDfj4Lx4/HbDDwzMaNnLj5ZggP54d+/Xhr9GgOf/21u8MUQgghRB1KSkqiadOmXHPNNe4ORQiXSkxMJDs7m5EjR6KUkokma1Hnzp25/vrr3R2GaGQkgdEIGL28uHPRIrYVF5N16BC9PvoIRo1i1a5d3PfRR7QdOJDWZjP3dOzIp48+ilXmzBBCCCHOqb4PIcnKymLNmjWMGTMGk8nk7nCEcKnrrrsOo9HIjh07mDRpErGxsX98kBDCY0kCo5EJa9MG06hRsGABT+XmcnD9et685RYuiYhgyf793DN7NoYmTaBPH1bdeiub5s/HUlrq7rCFEEIIj1GfhpBorQF+Mz596dKlWK1WGT4iGoXQ0FCuuuoqvLy8ePzxx90djhCihiTt3ogpg4H4QYOIHzSI+wFLaSlHVq7EcOAArF/PtI8/5tDHHxN4//0MiI7m2quv5vrJk2k9YADIRD1CCCFEvZSUlMRll11G586d3R2KEHVi7ty5pKenExMT4+5QhBA1JD0wRBWznx8Jt90GTz8NW7ey/cgRlj/8MKPbt2d3djb3L1vGc9dcA61boydPZuWjj5J39Ki7wxZCCCHqVH0eQvLzzz+zc+dO6X0hGpVLLrlE5moQooGQHhjinEJbtWLE7NmMmD0bbbdz+D//QX/3Hezaxd4lSxhWWoqaPZtWJhPtQkJo17w5d9xwA90GDsTWpg0qNhaDjK0VQgjRwGitVwOre/TocZe7Y/mzFi9ejMlkYvTo0e4ORQghhPjT5NOluCDKYKDtwIEwcCAACaWlbEpKYsMnn7Dv8GEOZmXx3e7dDNy9m26zZrEBGArE+/jQLjycdi1b0q5DB24cPpzIyy+H8HC3vh8hhBCisbFarXz44YfceOONREZGujscIYQQ4k+TBIa4KGY/P/reey997723ap+227Gnp8PhwzT7z3+471//4pe0NPZkZrIyPR3r99+z8913iQQ+8vdnjlK0a9KEdq1bk3DppbTr3ZuO112HKSjIfW9MCCGEaKC++uorMjIyZPiIEEKIeksSGKLWKIMBY2wsxMbSuV8/Xn7qqaoyS2kpKZs307KkBI4exXvtWvy2b+fr1FQWHzkCX30FQCYQGRvLQl9fviwrIyo0lCaRkUQ1a0ZUbCyJiYkYmjbFFhGBMSDATe9UCCFEY6aUGgIMadu2rbtD+VOSkpIIDQ1l8ODB7g5FCCGEuCiSwBB1wuznR/ygQVWvh02dyjDn85JTpzj0zTckb9tGRGgoJCeT/e23/HTyJKfS0ih01vMFSp5/HoAJwEogymymiY8PUQEBtG7ShJeHDoUmTdheWEhlUBBR8fFEdehAYLNmKIPMWSuEEKLm6uMcGBUVFaxcuZKJEyfi7e3t7nCEEEKIiyIJDOF2/lFRdBk1ii6jRlXte8y5AZTn55O5fz95R46ggoPh1CkGf/UVYQcOkJmby6nCQg7m5pKRlQW7d1cd/58zruEDXO3jw7qEBAgO5tH0dDLsdoIDAggODCQ4OJj4Fi0Y1q8fBAezOzMTU0gIwc2aERITg39UlCRAhBBC1FtHjhyhvLxcho8IIYSo1ySBITyeT0gILfr0oUWfPlX7Rt15J6Oqq2y1QlYW87duJXXfPjLT0jh1/DinTp0ixGqF2FgoKOBIdjY7S0rIt9ko0Bo7MAgY9s47gGMC0pQzTmsERpnNLGnWDIKDGZaejs1kIsjXlyB/f/x9fenTujXDu3cHf38+2L0bn4AA/IOC8A8JwS80lOYtW9IsLg7t50e50YhPaKgkRYQQQriU1hqAX375hfbt29OzZ083RySEEEJcPI9LYCilwoCPgTgcnyFHaq3zzlE3CNgHrNRaP1BXMQoPZjJB06a0HzaM9sOGnbPa8jOea7udksxMLDk5oBQUFPDuxo1kZWRQkJNDQV4eBQUFJPj6QtOmUFBAWVoapwoLKcjJodBmo1RrCn/4geHLlmEHxlVzzYeA14BSIABQgB/grxR+RiNTIyKYEhtLnpcXtycn42s24+PlVbWN6NCBfu3akWu3s+i//8XHzw8fX1/Ho78/3Tt2pGWLFpRozcFTp/AJDMQnKAif4GB8goMJCA/HHBAAkjQRQogaqU9zYJxOYJw8eZIpU6aglHJzREIIIcTF87gEBo7e/xu01rOUUqdHEkw/R91ngG/rLDLRICmDgYDoaIiOrto34IzeHtVZW80+bbNBWRmquJgjBw9SkpNDSW4upQUFlOTn0zIwEMLDMeTnM+vLLykpKaGktJSSsjJKy8uJiYyEkBDK8/M5UVREhd1Omc1Gud1OudZ0OHCAflYrGVozrZrrvwtMBH4GeldT/jEwEvjaYGCI3Y6XUngBXgYD3krxbrNm/CU0lI3l5cw8cQIvoxFvkwkvkwkvo5FnunalfWQk2/LzWXLkCF5mM15eXnh5eWE2m5nUuzdRoaH8NyuLTSkpmL28MHt5YXI+3tizJwFBQRzNyeFoVhYmb2/Mzs3k40Pn9u0x+fiQV1pKcWUlJm9vTN7eGL28MHp5ERQaijKZsBsMKJNJeq8IIdymPs6BAXD77be7OwQhhBCiRjwxgXET0M/5PAn4hmoSGEqp7kAUjs+SPeooNiHOSRmNEBCACgig1RnJkLP5AtP/53/OWd4U2HmuQq3pUFFBQXY25QUFlBcWUl5YSFlhIc2Dg8Hbm/isLFbu3El5SQnlpaWOrayMbm3aQEAAMRkZ3Pfjj1RYLFSesYXGx4OfH+rkSbwzM6m02SgpK6PSbqfSbqd8zx4ADhcU8GFREZVaUwlYnKHd9NVXROGYe+TBakJPwdHzZCkws5rybCAceAmYVU15BeAFTAHmAQYcv8CMOHqyZIeEgNHIg6WlLK+owKgUJqUwKkWE0ciWNm3AaOSRkyf5prgYg7PMoBTNvL1Z1rkzGAw8fuQIPxUVYTQYMCiFwWCglb8/r3ftCkYj/9i7l8PFxRiNRsc5DAbiQ0J4rGtXMBh4ZudOMkpLMTiPV0rRITyce7p0AYOB57dto6CyEuU8t1KKzk2aMPqSS0ApXvr+e8pttqoyBXRp2pTBHTqAUsz+9lvsWjvKnN+kdo+NZUB8PFa7nTc2bQJn2enyni1bckXr1pRZLLy3devv7m2f1q25LDaWwrIyPtyx49cC5/FXtWnDJc2bk1NczLKdv//pHJCQQEJUFBn5+Xy6a5fzR1VXld/QoQNtIiJIzc3l8z170I4KVY/DLrmElqGhHMzK4ot9+9B2e9U5tNaM6daNZoGB7Dlxgn8dOFC1H+fj3T16EOnvz7a0NP6dnFxVfnp7+PLLCfH25uujR1l/9GjVfrvdjgae6dMHP6ORVYcP89WxY9jPLNeaeX37YlSKDw8e5D8nTjjKnHXMSrGwd2/Qmnm//MK3mZm/KQ80GlnUrRvY7Tx78CDf5+VVXdeuNVFmMx927Ah2O1OTk9lRXPyb49t4e7OkVSuw2xl79Ch7ysuxO8vtQDcvL5ZGRYHdzqCMDH6xWKrKNNDfbOafAQFgt9O5oIA0u53vo6PplJFRzf8y0RDZnf+fYmJiiImJcXM0QgghRM14YgIjSmt9umV1EkeS4jeUUgbgFWAscM35TqaUmgxMBmjRokXtRipEXVMKg48PQTExBJ2jIRoG3HTzzec8RTtg9nkucTWw4Tzltzm30+xWK9bycscvE5uNSQUFjMzLw1JejqWsDGt5OZaKCpo1awbA7enpXJmW5iivrMRSUYG1ooLALl0AGHHwIG2OHsVqsWCzWrFardhsNkx9+oDWDN63j4i0NGw2W1WZ0hquuAKsVrrs3UtJRgY2ux2rzYbNbsffYICEBLDZCK6ooInW2Oz2qg+CJoMB7HawWCgpLyfvjA+JNq0xl5bC/v1gt7P/+HF+Ki/HDticHxRzTCZISwOtWZ+TwwGbzfEBFceH1IEmE/ds3w5ak1RayrEzPmDagRHA6JUrAXgByD/rnk8ATi96+DhgO6t8CjAAsALVpcZmAFcAxUB1Y+1eAC4DcoD7qyl/E7gESAfuq6Z8EZAAHDnH+T8F2gD7qT651enzz2kJ7IZqexddtWYNzYAfnO/lbMO+/ppIYCvw1Bn7lXO7a8sWQgwGttvtvGa3o3AkwE6Xz/zlF/wMBnZWVPBhZeXvyt/IycFoNLK/qIh1ZWW/KfMxGEBrUIpjubnsLilxlCuFAQg1meDYMVCKgoICsktLHed3Js8qlHLM3WMwYDIa8XYmxpTzHMH+/o7eYQYDzYqKKC0pqUqOGZSiXXAwOJNjvXbtIra8vCpxZjAY6BweXlV+8/btFFRWEnr11dXcRdFQZWVlAdC6dWs3RyKEEELUnDrzW7I6u6hSXwHVfUU9E0jSWoecUTdPax161vEPAH5a65eUUncAPS5kDowePXroH374oWbBCyGEq2iN3WZD2+3YrVZHTwG7HYNSmE2OfHNZaSnabv+1l4LdjsloxMfbG601hQUFVcedLvfx8sLP1xe73U5OTs7vLuvn64u/vz82m42c3NyqWE4L8PfHz88Pi8VCbt7vpyQKCgjA11meX+hc+PiMHiCBgYF4e3tTabFQXFLya5nz0d/fH7PZjMVqpayszHG4c4iQMhjw9fPDaDJhtdmw2mwog6FqQylMZjPKYHD0ylBKhhe5iVLqR611o+oRWR/aFUlJSdxxxx0MGDCADRvOl54WQgghPMe52hVu6YGhtT5nrwml1CmlVFOtdYZSqimQWU21PsBVSqn7cPRK91JKFWutH6umrhBC1A9KYXAmKoxeXtVW8fXxOffhQHBw8DnLDUBkkybnLDcCTc4z/MkMRDVvft7yyPOUe+HoIXS+483nKTdx/j9aMjWhEEIIIUTD5olDSFYB43EMgx8PfH52Ba31mNPPz+iBIckLIYQQQgghhBCigfLEfrazgEFKqWQc81vMAlBK9VBKLXRrZEIIIYRo9JRSQ5RSCwoKCtwdihBCCNGoeFwCQ2udo7UeqLWO11pfo7XOde7/QWs9qZr6iy5k/gshhBBCiNqgtV6ttZ58viFbQgghhKh9HpfAEEIIIYQQQgghhDibW1YhcRelVBaQWsunjQCya/mcQu6rq8h9dQ25r64h99U1XHVfW2qtI11wXo8l7Yp6Re6ra8h9dQ25r64h99U16rRd0agSGK6glPqhsS0bVxfkvrqG3FfXkPvqGnJfXUPuq2eTfx/XkPvqGnJfXUPuq2vIfXWNur6vMoRECCGEEEIIIYQQHk8SGEIIIYQQQgghhPB4ksCouQXuDqCBkvvqGnJfXUPuq2vIfXUNua+eTf59XEPuq2vIfXUNua+uIffVNer0vsocGEIIIYQQQgghhPB40gNDCCGEEEIIIYQQHk8SGDWglLpeKfWLUuqQUuoxd8fTECilYpVS/1FK7VNK7VVKPejumBoSpZRRKfWTUuoLd8fSUCilQpRSy5VSB5RS+5VSfdwdU0OglJrq/B3ws1JqqVLKx90x1UdKqfeUUplKqZ/P2BemlPpSKZXsfAx1Z4ziV9KuqH3SrnAdaVO4hrQrXEPaFbXDE9oVksC4SEopIzAPuAHoCIxWSnV0b1QNghWYprXuCPQG7pf7WqseBPa7O4gGZg6wVmvdHuiC3N8aU0o1B6YAPbTWnQEjcKt7o6q3FgHXn7XvMWCD1joe2OB8LdxM2hUuI+0K15E2hWtIu6KWSbuiVi3Cze0KSWBcvF7AIa31Ea11JfARcJObY6r3tNYZWuudzudFOH5pN3dvVA2DUioGGAwsdHcsDYVSKhi4GngXQGtdqbXOd29UDYYJ8FVKmQA/4ISb46mXtNbfArln7b4JSHI+TwKG1mlQ4lykXeEC0q5wDWlTuIa0K1xK2hW1wBPaFZLAuHjNgbQzXh9H/iDWKqVUHNAN2ObeSBqM14FHAbu7A2lAWgFZwPvObrQLlVL+7g6qvtNapwMvA8eADKBAa73evVE1KFFa6wzn85NAlDuDEVWkXeFi0q6oVdKmcA1pV7iAtCtcrk7bFZLAEB5JKRUArAAe0loXujue+k4plQhkaq1/dHcsDYwJuAx4S2vdDShBuuPXmHPs5E04GnLNAH+l1Fj3RtUwacdSZLIcmWjwpF1Re6RN4VLSrnABaVfUnbpoV0gC4+KlA7FnvI5x7hM1pJQy42hkLNFaf+rueBqIvsBflVIpOLolD1BKfejekBqE48BxrfXpb/OW42h4iJq5Bjiqtc7SWluAT4Er3BxTQ3JKKdUUwPmY6eZ4hIO0K1xE2hW1TtoUriPtCteQdoVr1Wm7QhIYF28HEK+UaqWU8sIxEcwqN8dU7ymlFI5xf/u11q+6O56GQmv9uNY6Rmsdh+Nn9WuttWSea0hrfRJIU0olOHcNBPa5MaSG4hjQWynl5/ydMBCZxKw2rQLGO5+PBz53YyziV9KucAFpV9Q+aVO4jrQrXEbaFa5Vp+0KkytP3pBpra1KqQeAdThmsn1Pa73XzWE1BH2B24H/KqV2OffN0FqvcWNMQpzP34Alzg8cR4AJbo6n3tNab1NKLQd24lhB4CdggXujqp+UUkuBfkCEUuo48K6ORBQAACAASURBVCQwC1imlLoTSAVGui9CcZq0K1xG2hWivpF2RS2TdkXt8YR2hXIMUxFCCCGEEEIIIYTwXDKERAghhBBCCCGEEB5PEhhCCCGEEEIIIYTweJLAEEIIIYQQQgghhMeTBIYQQgghhBBCCCE8niQwhBBCCCGEEEII4fEkgSGEqDNKqRCl1H3O582cS1oJIYQQQvxp0q4QovGRZVSFEHVGKRUHfKG17uzmUIQQQghRz0m7QojGx+TuAIQQjcosoI1SaheQDHTQWndWSt0BDAX8gXjgZcALuB2oAG7UWucqpdoA84BIoBS4S2t9oO7fhhBCCCE8gLQrhGhkZAiJEKIuPQYc1lp3BR45q6wzMBzoCTwHlGqtuwFbgHHOOguAv2mtuwMPA/PrJGohhBBCeCJpVwjRyEgPDCGEp/iP1roIKFJKFQCrnfv/C1yqlAoArgA+UUqdPsa77sMUQgghRD0g7QohGiBJYAghPEXFGc/tZ7y24/hdZQDynd+yCCGEEEKcj7QrhGiAZAiJEKIuFQGBF3Og1roQOKqUugVAOXSpzeCEEEIIUa9Iu0KIRkYSGEKIOqO1zgE2K6V+BmZfxCnGAHcqpXYDe4GbajM+IYQQQtQf0q4QovGRZVSFEEIIIYQQQgjh8aQHhhBCCCGEEEIIITyeJDCEEEIIIYQQQgjh8SSBIYQQQgghhBBCCI8nCQwhhBBCCCGEEEJ4PElgCCGEEEIIIYQQwuNJAkMIIYQQQgghhBAeTxIYQgghhBBCCCGE8HiSwBBCCCGEEEIIIYTHkwSGEEIIIYQQQgghPJ4kMIQQQgghhBBCCOHxJIEhhBBCCCGEEEIIj2dydwB1KSIiQsfFxbk7DCGEEKLB+fHHH7O11pHujqMuSbtCCCGEcI1ztSsaVQIjLi6OH374wd1hCCGEEA2OUirV3THUNWlXCCGEEK5xrnaFDCERQgghhBBCCCGEx5MEhhBCCCGEEEIIITyeJDCEEEIIIf4EpdQQpdSCgoICd4cihBBCNCqNag4MIYQQv6ftduxWK9pmw2QwgM1GcWEhtspK7DYbNosFu8WCt9lMcEAA2GykHjuG3WrFZrVit1qx22yEBgYSFRaG3WZjb3IyWmu0zYbdbkfb7USFhtI8MhKLxcKP+/ah7XZHHbsdu81GXHQ0sZGRlJWVsWXvXrTd7gxQA9AuJobYyEiKSkvZun8/2rn/dL3OcXE0Dw8nr6iIrQcOgNboM46/rE0bosPCyCooYMfBg45zK4Vy3oeeCQlEBAdzMjeX3UePVt0fZXDk+nslJBASEMCJ3Fz2paZWHX9a744dCfD3Jz07m0MnTqAMBpRSVY/d27fHx8eH9KwsjmdlOfafUadLQgIms5mM7Gyy8vMd+41GDAYDymgkoXVrDCYTWbm5FJWVYTCZUEphMJkwGAw0b94clKKguJgKiwWD0eg43mjEaDIRFBwMBoNj8/Or/R+kRkRrvRpY3aNHj7vcHYsQQggHrTWVlZWUlJRQWlpatZ1+HRcXR3x8vLvDFDUkCQwhhDgHbbdTWVxMZXExFUVFVJaU0DQkBGWxkJ6WRsaJE1SWlVVtdouF67t0AYuFLXv3kpyejqWysmozA/f07AkWC0t/+on/ZmRgsViw2mxYrFZCTCae7doVLBae272bn3JzsdntWG02bFrTwsuLtxMSwGrl7l9+YU9JCVa7HavW2LTmUm9vPoyKApuNa9PT2WexYNPaUQ70Mxr51NsbbDbalpeTAtjB8SEfGAEsdz5vAeSddT/uAN53Pm8LWM8qfwB4A6gELq3mfj4OPA8UAH2qKX/eWeckMLCa8jec10gBrq2mfBEwHtgP3FhN+XIc73EnMLia8nXO824Cbqmm/Htn3OuAidWU/xfoDKwAHqymPAVo6YzziWrKs4FwYA7wYjXlFYAX8BQw76wyL2c5wBRg8Vnl4c7zAxAWBjk51VxBCCGEcC+73c7SpUtJS0v7TfKhuoREda/tp7/8qIbRaGTGjBk88cQTeHl51eG7ErVJEhhCCI9kq6igLDeXsvx8ygsLKS8ooKywkNYREQQYDBw/dowf9+2jvKSEspISyktLKS8rY0ynTkQajWw6dIhP9u6lrKKC8spKx2ax8H/t2xMFJB0/zhsZGVTYbFTa7VTY7VRqzX+Dggi3WnmitJTnqvkjWA544/iA+cZZZSbA4ny+AMcH1TOFAvesWAHAp8BKwOw8zqwUcUYjz2ZlgdlMSk4O+ysqMCmFUSlMBgMhdjtUVIDJhI/ZTJC3N0aDAZNzaxEUBF27gslErz17iC0vx2Q0YjQaMRmNdAgPh27dwGhk8o4dFFZWYnB+w280GOgQFQWXXgoGA89s3Uql3f5rudFI+6ZNoWNHMBhYuHUrKFVVbjAaadesGbRpg1lrPtm+HWUwOHoPOB/jmzeHFi0IstlYs3t3Ve8Dg9GIMhho27w5NGtGU4uFb/bvryoHQCnaNG8OERG0Li9nU3KyY7ezd4Q6XR4WxiWlpWxNSam670opUIq2MTEQHEzv4mK2paY6emhoXVUvoUULCAykf34+3x87BvCb8k6tW4OfHzfm5vJdWtpv/m213U6r+Hjw8WH4qVN0Tkv7TQ8TrTVNOnUCLy9GpafT7fjx35Rpu51A57/N2NRUeqWnO3qunO6hYrdj6tULlOL25GR6nTiB3dlzRWuN0hr69gW7nXH799MrIwOtdVXvF2+TCXr3dvRG8fY+x/86IYQQwr1mzpzJrFmzAMffbz8/P/z9/fHz8/vNFhER8ZvX1dU5c5+vry8LFy7kmWeeYfXq1SQlJXHppdV93SI8nTqzcdbQ9ejRQ8tyZ0LUAq2xlZSQm5ZG0alTlOblUZqXR0l+PvHh4cT4+pJ58iTLv/+e0uLiXzPjZWWMa9mSnv7+7Dpxgmk//0ypxUKp1UqpzUaJzcZiHx+uqazkc6uVodVceiNwNbAEGFtN+Y/AZcC7JhMP22z4KIWPweDYjEY+T0igRVAQn+TlsejkSbxNJrzM5qrHl6+6iuCgIL46cYJNGRl4eXnh7e2Nl7c33j4+TOjXD7OfH3syMkjNz8fbzw+ztzdePj6YfXzo1bUrmM2czM+nxGLB7Ov7my04IgLMZrTzQ7sQDYVS6ketdQ93x1GXpF0hhBC154MPPmDcuHFMnjyZOXPm4O3t/esXGbXk888/Z/LkyeTl5fHkk08yffp0TCb5Tv9i7dixA601vXr1qvVzn6tdIQkMIRoBbbdTmp1N4YkTeFVUEG42Y83LY+3GjRTn51Ocn09RYSHFhYX0Dg9nUEQE+Tk5jP/uO4orKiiqrKTYYqHIZmO6lxcPVFaSbLPRrpprzQPuA3YB3c7Y7wP4KcXboaHcEhHBbqV4ICMDP7MZPy8v/L298fP25v7u3enSsiWHy8r4LDkZH19ffPz88PX3x8ffn6u7dSMyOpqcigpSc3PxDQ7GJyjIsQUHE9SkCUZfX8c4fyFEnZEEhhBCiIu1ZcsW+vXrxxVXXMH69esxm80uu1Z2djb3338/y5Yto2fPniQlJdGhQweXXa+h0lpz1VVXkZaWxuHDh2s9EXSudoWkm4TwcNpupyw3l4Ljxyk4cQJTSQltg4KgoIAP1q7lVGYmBQUFFBQWUlBcTA9/f/4WFgYFBbTfu5csq5UC5xwIAPcC853Ph1RzvelGI4PCwjD6+ZGSn0+g2UyYjw8tQ0II8PWldYcOcMklRJvNvLF3LwHBwfgHBeEfHIxfcDAJ7dpBy5Z0Mps5WVmJf0QEvmFhGM8aa9gF+O4877sN8PB5ysOdmxBCCCGEqL9SU1MZOnQosbGxLF++3KXJC4CIiAg+/vhjRowYwX333Ue3bt149tlnmTp1Kkaj0aXXbki+/fZbNm/ezJtvvlmnvVgkgeGBDm3YQGluLpdefjmEhEBg4G9muhf1j7bbKT55ktyjR6nIzqZdYCDk5fHZhg0kp6SQl5dHbn4+ecXFtDAYeDkiAvLz6XPsGD9Yrb+ZLPF64N/O5zOBNEABQUCw0UhYaKjj5yYmhn7FxRh9fAgODCQ4OJigkBAujY+H7t0xBQSwPS2NgIgIAiIjCYyOJiAqCpOPDwCBwO7zvKdAHBMqnosZiLrI+yWEEEIIIRq+4uJi/vrXv1JRUcHGjRsJD6+7r6dGjhzJX/7yF+6++24eeeQRVq5cyfvvvy8rlVygZ599lujoaCZOrG5qc9eRBIaHydy7l07XXIMvkO/cN0Yp1gGhJhOhXl6E+PjQOjiYtwcNgtBQPk1PJ1trQps0ITQqitBmzYiMi6NFp05wetk8USus5eUUpKY6vvnPyWHH1q3s27+fvOxscnNyyMvPx1BRwZw2bSA3l0n797OqqIg8rauSEO2AX5zP5+CY08EMhBoMhJlM+AYHQ9Om0KEDQ5s0oZ9ShAQHExwaSnB4OHFxcY7J+IKD2V5RgV9UFAHR0RiqyXy+/Qfvp2et3BUhhBBCCCH+HLvdztixY/n555/597//Tfv27es8hqioKD777DOWLFnC3/72N7p06cKLL77I/fffj0E+Q53Ttm3b+Oqrr3j55Zfx9fWt02tLAsPDrHntNSqB+bfdBgMGQF4egzZuJCQlhbyiIvJKSsgrK+NYWRl8+ink5fG61fq7rvhdgZ8AlOIag4HDShHp7U2LkBBaRkfTs3Nnbh0+HFq2pCQiAv/mzev8vbqV1lBURHZyMqn79pFz/Dg5J06Qc/IkudnZzOzcGWNeHm/u3MniY8fIraggx2YjX2vMOJYrVMBb/LqspAJClKKF2QxBQRAayqVt2mCuqCA0JISw0FBCIyNp2rw5XHMNhIWxAvCOisI/MrLaCR2n/8HbiK7FWyKEEEIIIURdmTlzJp9//jlz587l2murWyC9biilGDt2LP379+euu+5iypQpfPbZZ7z33nuOLw7F7zz33HOEhYVx99131/m1ZRJPD3NzTAxbMzJIs1gubIUCrSnJyiI3JYX8tDTyTpwg7+RJvMvLuT42FvLyeHb9eg5mZnKqoIDUoiJSKysZBKxyniIGKAJa+vjQMiiIllFRDOjaleGJidCyJVn+/kR07Oh5KybYbJSdPElGcjL56enknzzp2LKzGdq6NWGVlXz988+8v3s3+c7ET25FBblWKz8qRXObjWeAf1Rz6qzAQCIiInjbZmNlSQnhAQGEBQURHhZGeEQE9w0dijEigjSrlUo/P8JatSI4NrbaXhBCCNEY1PdJPJVSLYC5QC5wUGs964+OqQ/tCiGE8ESLFy9m/Pjx3H333bz11lu1vtrIxdJa89577zF16lS01rzyyivcddddHhOfJ9i1axfdunXjmWee4YknnnDZdWQVEjy/oVFZXExEYCCj27fnnf37XXYdbbdTmpqKf3Y2pKby2gcfcDQlhdTMTFLz80kpL2cMjtUkLDhWjzADLcxmWgYG0jIighGXX84NgwZRER3NTykp2KxW7FYrNpsNu9VKfNOmxEZEUFhUxLd79jjKbTbsNhs2m42ecXG0ioggMy+PNbt2Ve0//XhjfDxxBgN7Dh3ila1byS8tJb+sjPyKCvItFpZ6e3NFaSn/BMZU8x63Az2VYomvL3+vrCTEbCbE25swf3/CAwN5atAgolu0YH9FBQdLSwlv3pzwFi0Ib9WK0FatMPv5uez+CyFEQ+TOBIZS6j0gEcjUWnc+Y//1OEbrGYGF50tKKKUGA6Fa6w+VUh9rrUf90XU9vV0hhBCe6Pvvv6d///5ceeWVrF271uWTdl6M1NRU7rzzTjZs2MB1113HwoULiYmJcXdYHmHkyJGsW7eO1NRUQkJCXHYdWYWkHshbu5YbgOG33urS6yiDAf9WraBVK+jZk6k33/y7OtacHEhPx5aczJyPPiI1JYXUkydJzctj9aFDxB88yA0ffMBJoE8115gDTAGOUf1KF+8BrYDDwIRqyj8G4oBCf382lpdXJSBahYQQ4u9PUJ8+0LYtfWw2FmVkEBIZSUh0NCFNmxLSvDnNEhIgNJQxBkO1CY7TOjg3IYQQ9doi4E1g8ekdSikjjlz8IOA4sEMptQpHMuOFs46fCGwFliulJgIf1EHMQgjR6JxecaRFixZ88sknHpm8AGjZsiXr16/n7bff5pFHHqFz587MmTOHcePGNereGPv372f58uU8/vjjLk1enI/0wPAkU6fC229DTg54eA8AXVqKSkuj7NAhNv70EwajEaPJhMFkwmgy0SY2luZRUZRVVrI3NdVRbjZjMBoxmM00j44mJDSUcouFjJycX481mzGYTARHROATGQmylJEQQtQL7h5CopSKA7443QNDKdUH+F+t9XXO148DaK3PTl6cPv5hYLvW+lul1HKt9e+z+456k4HJAC1atOiemppa229FCCEapKKiIvr27cuxY8fYunWrWybtvBiHDx9mwoQJfPfddwwZMoQFCxYQHd04Z6IbP348y5cvJyUlhcjISJdeS3pg1AMpK1cS17+/xycvAJSfHyQk4JuQwPWDB5+zni9wvtasD46eGEIIIUQta45jpenTjgOXn6f+WuB/lVK3ASnnqqS1XgAsAMcXIzUPUwghflVWVkZ5eTmhoaHuDqVWnV5xZN++faxZs6beJC8A2rRpwzfffMOcOXOYMWMGnTp1Yt68eYwaNapR9cY4cuQIS5Ys4cEHH3R58uJ8PGxWxsbr4Lp1tEpJYbEbfxiEEEKIxkpr/bPW+mat9T1a64fPV1cpNUQptaCgoKCuwhNCNAI7duygU6dOxMfHc+DAAXeHU6tmzJjBqlWreP3119264sjFMhgMTJ06lZ9++on4+HhGjx7NyJEjycrKcndodebFF1/EaDQybdo0t8bh1gSGUup6pdQvSqlDSqnHqim/Wim1UyllVUrdfFbZeKVUsnMbX3dRu8YX8+cDcPVdd7k5EiGEEKJBSAdiz3gd49xXY1rr1VrrycHBwbVxOiFEI6e1Zs6cOfTt2xer1YrRaOTaa6/l+PHj7g6tViQlJfHiiy9yzz33cP/997s7nBpp3749mzZt4oUXXmDVqlV06tSJ5ORkd4flcsePH2fRokXceeedNGvWzK2xuC2BccbkWjcAHYHRSqmOZ1U7BtwB/POsY8OAJ3F0Be0FPKmUqtf9rP713Xd09vYm7sor3R2KEEII0RDsAOKVUq2UUl7Arfy6grgQQniEvLw8hg8fzkMPPcT111/Prl27WLt2Lfn5+Vx77bXk5OS4O8Qa2bx5M5MnT2bAgAHMnTu3QQy5MJlMPPbYY2zfvp2srCxWrFjh7pBc7uWXX8Zut/Poo4+6OxS39sDoBRzSWh/RWlcCHwE3nVlBa52itd4D2M869jrgS611rtY6D/gSuL4ugnaFgmPH+DYvj8Ru3dwdihBCCFHvKKWWAluABKXUcaXUnVprK/AAsA7YDyzTWu+tpevJEBIhRI1t27aNbt268cUXX/Dqq6/y+eefExYWRrdu3Vi1ahVHjhwhMTGRkpISd4d6UVJSUhg2bJjbVxyxWq188803fPPNN9TmAhZdunShdevW/Pjjj7V2Tk+UmZnJggULuP3224mLi3N3OG5NYFQ3uVbz2j5WKTVZKfWDUuoHTx2jtP7117ECg2+/3d2hCCGEEPWO1nq01rqp1tqstY7RWr/r3L9Ga91Oa91Ga/1cLV5PhpAIIS6a1ppXX32VK509rzdt2sTUqVN/0zuhX79+LF26lO3btzNixAgqKyvdFe5FKSoq4q9//SuVlZV88cUXhIWF1en1S0tLWblyJePHjycqKor+/fvTv39/rr76ar7//vtau0737t0bfALjtddeo6Kigsce+92MD27R4Cfx1Fov0Fr30Fr3cOdsqeczMCODD/396T1xortDEUIIIcQfkB4YQoiLlZuby0033cS0adNITEzkp59+4vLLq18gadiwYbzzzjusW7eOCRMmYLef3SndM9lsNsaMGcO+ffv45JNPSEhIqJPr5uTksGjRIoYOHUpERATDhg1j9erVJCYm8umnnzJ//nySk5Pp27cvQ4cOZd++fTW+5mWXXcbRo0fJy8urhXfgeXJzc3nzzTcZOXIk7dq1c3c4gHsTGDWZXMtlE3PVOZuNsA0bGDN0KCYfH3dHI4QQQog/ID0whBAXY8uWLXTt2pW1a9cyZ84cPv300z9cLnXSpEk8//zz/POf/2Tq1Km1OgTCVWbMmMHq1auZM2cOgwYNcum1UlJSmDNnDv3796dJkyZMmDCBnTt3MmnSJDZs2MCpU6dISkpi2LBh3HvvvRw+fJhnn32Wr7/+mksuuYQ777yzRpOldu/eHYCdO3fW1lvyKG+88QbFxcXMmDHD3aFUcWcCoyaTa60DrlVKhTon77zWua/e2fvxx8zJyqKgf393hyKEEEIIIYSoZXa7ndmzZ3P11VdjMpnYvHkzU6ZMueAJLR977DGmTp3K3Llzef75510cbc0sWrSIl156iXvvvdclK45ordmzZw9PP/00l112Ga1ateKhhx4iOzubGTNm8OOPP5KamsrcuXMZMGDA7+bd8Pf3Z+bMmRw5coQHH3yQDz/8kPj4eB599FFyc3P/dDyXXXYZQIMcRlJUVMScOXO46aabuOSSS9wdzq+01m7bgBuBg8BhYKZz39PAX53Pe+KY36IEyAH2nnHsROCQc5twIdfr3r279jRPXHmlNoLOOXTI3aEIIYQQFw34QbuxTVGXGzAEWNC2bdvaun1CiAYqKytLDx48WAN6xIgROi8v76LOY7PZ9NixYzWg33nnnVqOsnZ899132mw264EDB+rKyspaO6/VatXffvutnjp1qm7VqpUGtFJK9+3bV7/88ss6OTn5os+dkpKix40bp5VSOiQkRM+aNUuXlpb+qXO0bNlSjxo16v/ZO+/wqKqnAb93S3oDEhJ6CyBdCBCkRmrooQiCgHQVUGwooKDyQ7EjIEWKCCJI771JAiIdpPfeQktCenbvfH9s2I+etpsNeN/nmWez59xzZu7uZvfcuXNmMm1DTuWbb74RQHbu3OkQ/U9aVyjyDIQh2YqqVavK7t27HW3GA1R2c8PLyYktUVGONkVDQ0NDQyPTKIqyR0SqOtqO7CQnris0NDRyDlu3bqVTp05ERkby448/0q9fvyyVEU1JSSEsLIw1a9Ywb9482rVrZ0Nrs8a5c+eoVq0auXLlYseOHWlujUmLhIQENmzYwJIlS1i2bBk3b97EycmJRo0aERYWRsuWLfH397eR9fDvv/8ydOhQVq5cSYECBfj888/p3r07BoMhzbHt2rXj33//5eTJkzazx9HEx8dTrFgxKleuzJo1axxiw5PWFc99Es+czKVdu9ifkEDzmjUdbYqGhoaGhoaGhsZzhslkYsOGDQwdOpSLFy+mPUDDJqiqytdff01ISAjOzs5s376d/v37Z8l5AWA0Gpk/fz41atSgc+fObNq0yUYWZ427d+/SsmVLTCYTy5cvz5Lz4uzZs7z66qv4+fnRqlUrFixYQOPGjZk3bx43b95kxYoV9O7d26bOC4CKFSuyYsUKtmzZQqFChejTpw8VKlRg8eLFaeYdCQoK4tSpUzxPiZ2nTp1KZGQkn3zyiaNNeQTNgeFAVo4ZA0CLN990sCUaGhoaGhoaGhrPAykpKaxdu5Y+ffoQEBBAo0aNGDVqFB06dCAlJcXR5j333Lhxg+bNmzNkyBDatWvH3r17rXkSbIGbmxvLly+nZMmStG7d2uG5F8xmM507d+bo0aNZqjiiqirjx4+nQoUKrFq1im7durF27Vpu3LjBH3/8wSuvvIKnp6eNrX+Ue2VWFy1aBEDbtm2pWbMm4eHhTxxz7/3dt2+f3e3LDpKSkqw5W+rUqeNocx5Bc2A4kLM7dhBoMFCmRQtHm6KhoaGhoWF3FEXJ/TRxtH3pRSujqpHTSE5OZtWqVfTs2RN/f39CQ0OZO3cuTZo0YdGiRcycOZN//vmHTz/91NGmPteEh4fz4osvsnnzZiZOnMiff/6Jl5eXzfXkzp2btWvXkidPHpo2berQrQtDhgxhxYoVjB07loYNG2ZqjjNnztCgQQMGDBhA7dq1OXz4MBMmTKBx48Y4OTnZ2OK0URSFNm3acPDgQaZMmcKFCxeoV68eLVq04ODBg48cf68SiaOdSbZi5syZXLp0Kcd+X2g5MBxFQgLkyUNS9+44T5jgaGs0NDQ0NDSyRHpyYCiKchYQQAEKA3dS//YBLohIMbsbakNy1LpC4z9HYmIi69evZ8GCBSxdupTo6Gi8vLxo3bo17du3p3Hjxri4uFiPf/PNN/nll19YvXo1oaGhDrT8+UNVVUaNGsXw4cMpUaIE8+bN48UXX7S73hMnTlCrVi08PDzYtm0b+fPnt7kOESE2NpZr165x/fr1Bx7PnDnD7Nmz6devH+PHj8/w3KqqMmHCBD7++GMMBgOjR4+mR48eWd5qY2vi4+MZN24cX3/9NdHR0XTt2pURI0ZQpEgR6zGFCxemdu3azJ4924GWZh2TyUTp0qXJkycPO3bscOh78aR1hebAcBCyahVK8+awZg00aeJoczQ0NDQ0NLJERpJ4KooyBVgsIqtSnzcFwkTkDXvaaGty0rpC479BQkICa9euZcGCBSxbtoy7d+/i4+NDWFgY7du3p2HDhjg7Oz9xbHBwMNeuXePAgQPky5cvm61/PomMjKRLly6sX7+eTp068csvv2TLVod77N69m5dffpmiRYsSHh6e7vwTcXFxjzgknvSYkJDwyHhFUfDz86Nx48b8+uuvj5QrTYvTp0/Tq1cvtmzZQmhoKFOmTKFgwYIZmiO7uX37Nl9//TVjx45FROjfvz9Dhw7F19eXsLAwjh07xrFjxxxtZpaYNWsWXbt2ZenSpbRq1cqhtmgODHLWQuO9SpU4c/gwS+7eRXF1dbQ5GhoaGhoaWSKDDoyDIlIhrbacTk5aV2g8v8THx7N69Wrmz5/PNUYbSwAAIABJREFUihUriIuLI3fu3LRp04b27dtTv379dIfZHz16lKpVq1KjRg3WrVuHXq+3s/XPN5s3b+a1117jzp07jB07lt69ezvkjvXGjRtp1qwZ1apVY926dbi5uT3QHxUVxQcffMDx48etjonY2NhH5lEUhTx58hAQEIC/v/9TH319fTP1+bmX62Lw4MEYDAZ++uknunfvnuOiLp7GxYsX+fzzz/ntt9/w8PBg+fLlbNmyhc8++4zo6OhsdWDZElVVKVeuHE5OTuzbtw+dLu1sE6dOncLDw4OAgACb2/OkdUXadWE0bI6oKosOH6ayn99jnReiqijp+MBoaGhoaGg8o1xRFOVTYFbq89eAKw60J0MoitISaBkYGOhoUzSeU2JjY1m1ahXz589n1apVxMfH4+vry2uvvUb79u0JCQlJ9x1vVVVZvnw59erVo0yZMowbN45evXoxatSoHLvHPaciIuzZs4clS5awdOlSDh06ROnSpVmzZg0VK1Z0mF0NGjTgjz/+oEOHDnTo0IHFixdbPx8pKSm0b9+e8PBwateuTfXq1Z/olPDz80tX2dDMcurUKXr16kV4eDhNmzZl8uTJOT7q4nEUKlSIadOm8cEHHxAWFkbnzp354YcfEBH27dtH3bp1HW1ipli0aBHHjh3jzz//TJfzAmDo0KFs3bqVy5cvZ58TSkT+MxIUFCQ5gX8XLhRApnTr9kjfrVOnJMjJSa716yeiqg6wTkNDQ0NDI+MAuyWdv8dAbmAMsA/YC/wE5E7v+JwiOWVdofH8EBERIW3atBEXFxcBxN/fX9566y3ZtGmTpKSkZHg+VVXl3XffFUACAwPl8OHDoqqqdO7cWXQ6nYSHh9vhLJ4vkpKSZO3atdKvXz8pUKCAAKLT6aRevXoyevRouXv3rqNNtDJx4kQBpGvXrmI2m0VVVendu7cA8ttvvznMLrPZLGPGjBFXV1fx9vaWX3/9VdTn5Dpn9+7dYjAYpGXLlgLI6NGjHW1SplBVVSpVqiSlSpUSk8mUrjGJiYni4eEhffv2tYtNT1pXOPzHPzslpyw0RjVpIoBc3rPnkb6vGjcWD5BjIGqvXmJOTnaAhRoaGhoaGhkjPQ4M4PfUx4FpHfssSE5ZV2g8+5jNZhk5cqTodDrx9/eXAQMGyJYtW9J9IfEkRo0aJYC8+uqr4u/vL56enrJ06VKJiYmRwMBAKViwoNy8edNGZ/H8EB0dLX/++ae8+uqr4uXlJYC4ublJmzZtZMaMGTn6NRsxYoQA8v7778s333wjgHzyyScOs+fkyZNSp04dAaRZs2Zy8eJFh9liL+79n/n4+EiXLl0cbU6mWLFiRYYdXatWrRJAVq5caRebNAdGDlpo1PL0lCquro+0J929K/l1OmmYO7fIp5/KSJBORYpIclycA6zU0NDQ0NBIP+l0YBwB8gMHgFypkRhWSWt8TpOcsq7QeLa5ceOGNEm9udWpU6dM39FXVVUiIyNl7969smzZMnnttdcEkGLFiknTpk1l3bp1UrVqVQFkxIgRsmvXLjEajdKqVavn5m54Vrh06ZJMmDBBmjRpIkajUQDx8/OTXr16ybJlyyQ+Pt7RJqYLVVXl7bffFkAURZGOHTuK2WzOdjvMZrP89NNP1qiL33777bn9nJlMJqlXr57o9XopUaKEo83JMKqqSnBwsBQtWlSSM3Dz/I033hB3d3dJSEiwi11PWldoOTCyGbl5kzaxseRp2fKRvnmDBnFFVZk6cCAMH45hzx7mrF5NXIkSzD16FBcfHwdYrKGhoaGhYTMmARuB4sAeLCVU7yGp7Roa/xm2bdtGx44duXHjBpMmTaJv376P3UduNpuJjIzk0qVLT5Xk5OQHximKgtlsZuvWrVy/fp2//vqLfv36MXz4cA4cOMDIkSP5+OOPGTt2LAMHDsyu084RiAhHjhxh6dKlLFmyhF27dgEQGBjIwIEDCQsLo0aNGs9colNFUXjttdeYMGECZrOZkJCQdOczsBUnT56kZ8+ebN26lWbNmjF58mQKFCiQrTZkJ3q9nt9//52SJUty+vRpoqOj8fb2drRZ6WbTpk3s2LGDiRMnZii3zrJlywgNDX2gXHN2kGYVEkVReonItPue64FPReQLextna3JEtvA//oAuXWDHDqhe3dosqkpVDw/izWYOx8WhS02gM+HVV+k/dy4NcuViyZEjeNghw6uGhoaGhkZWyWAVkoki8pa9bbI3OWJdofFMIiL88MMPDB48mCJFijB//nyqVKnCoUOHWL9+/SOOiStXrmAymR6Yw8nJiYIFCz4iUVFR/O9//6NixYps2rQJLy8v5s+fT4cOHfjhhx947733GD16NIMGDaJs2bIEBASwZcsWtm/fTlBQkINekezBbDazfft2axLOU6dOAVC9enXCwsJo3bo1ZcqUeaYqYjzM+fPnCQ4OxtXV1VpadeHChYSFhdldt6qqjB07lqFDh+Lk5MSYMWPo1q2bzV5PESEpKYmkpCQSExMfeHxc28OP1atXp2bNmjax5XF89NFHfPfdd/To0YNff/3VbnpsTf369Tl+/DinT59OtzNix44d1KhRg99//50uXbrYxa4nriseF5ZxvwCzgVVAPqAcsAv4Pq1xOVFyQqjn3w0bSpSvr8hDoVyxa9ZIJ5CpXbs+MmZGnz6iA6nj5SWmHLznTkNDQ0PjvwsZSOL5rAvQEpgcGBhoq5dP4z/E7du3pVWrVgJI27ZtJSoqSk6ePCmdOnUSRVEEEFdXVylVqpTUr19funXrJkOHDpUJEybIsmXLZO/evRIZGfnYcPy9e/eKp6enlC1bVm7dumVtV1VVmjdvLm5ubnLu3DkREVm3bp3kypVLfHx8xM/PTwIDAyUmJibbXofsJDw8XHr27Cl+fn4CiNFolNDQUJk4caJcvnzZ0eY9wI4dO2T58uWZGhsVFSXly5cXb29vOXLkiMTGxkpwcLA4OzvLli1bbGzpg5w4cUJq164tgDRv3lwuXbqUqXnOnDkj9erVk8DAQClUqJD4+fmJl5eXODk5CZZIvUyLk5OTHDlyxMZn/v9cvnzZunVn27ZtdtNjS7Zu3Zqp5KNDhgwRvV7/wPeMrXnSuiLNCIxU70dHYDwQB3QWkW0ZdKDkCBx9p8SUmIifmxttAgP59cSJBzvDwmDrVrh4ER5TWnXhoEHEjB5Nj4oVYe1a8PPLJqs1NDQ0NDTSJiMRGM8Ljl5XaDx77Nq1iw4dOnDp0iW+//572rVrx8iRI5k2bRpGo5GBAwcycOBA/P39M3zX+tSpU9SqVQsXFxe2bdv2SHnK8+fPU65cOUJCQli+fDmKonD69Glat27NkSNHAOjUqROzZs16piMQ7iEibN68mREjRrBlyxa8vb1p1qwZYWFhhIaG4uXl5WgTH0BEGDNmDB9++CFms5nZs2fTqVOndI83mUy0aNGCjRs3smbNGho0aADArVu3qFOnDpcvX6ZZs2b4+PikS5ydndOl12w2W6MuXFxcGDNmDF27ds3UZ+j69evUrl2bW7duWbcmODs7p/mYnmPi4+OpVq0apUuXJiIiwi5bg0SEgIAAa9njAwcO5LjP2cM0a9aMXbt2ce7cOdzd3dM9rly5cvj7+7Np0ya72ZaVCIySwN/AL0A4lv2rbmmNy4ni6AiMLWPHCiALP/zwgfaL4eFyEETSyhC8erWIi4tsKFxYLu3aZUdLNTQ0NDQ0Mgb/oQiMe+LodYXGs4OqqvLzzz+Lk5OTFC5cWNasWSMffvihuLi4iNFolP79+8uVK1cyPf+VK1ekWLFi4uvrK8eOHXvicT/++KMAMnfuXGtbTEyMtGnTxnqXetKkSZm2IyegqqqsW7fOGg2QP39+GTNmTI5OwhkbGyudO3cWQFq3bi1169YVo9EoGzZsSNd4VVXlzTffFECmTp36SP+FCxekcePGUrJkSfHz87MmKX2auLi4SEBAgLzwwgtSo0YNCQ0NlVdffVXefPNNGTx4sHz99dcyceJEqVWrlgDSokWLLEWzREdHS+XKlcXNzU3+/vvvTM/zNH7//XcBZMyYMXaZX0SkWbNmUrx4cdHpdNKtWze76bEFu3fvFkC++uqrDI07ceKE9XWcMmWKDB06NMsVkx7Hk9YV6XFgHAMapP6tAB8Ah9MalxPF0QuNQdWqiREk5qGQqrcrVhQnkFuHD6c5R+yaNZJXUaSYwSBn7BwKpqGhoaGhkV4y6sAA/IEWqZI3I2Nzijh6XfG8kZSUJB9++KFs2rTJ0abYlOjoaOnQoYMA0qRJE/n444/F09NTFEWRbt26yZkzZ7I0/507d6RixYri4eEhu9K4wZWSkiJBQUHi7+8vt2/ftrabzWb57LPPBBCdTiebN2/Okk2OQFVVWbVqldSoUUMAKViwoIwfP95uFRJsxalTp6RixYqiKIp8+eWXYjab5c6dO1K+fHnx9PSUffv2pTnHPcfUxx9/nC6dqqpKXFycXL58WQ4fPizbtm2TlStXyh9//CHjx4+XL7/8UgYNGiR9+vSRV155RRo1aiTVqlWzOkAMBoPV0eHj4yMzZ87MUoWRhIQECQkJEYPBIKtWrcr0PGmhqqo0bdpU3Nzc5OzZs3bR8emnn4pOp5OhQ4cKIHPmzLGLHlvQtm1b8fHxkejo6AyN++677wSQ06dPS9GiRaVOnTp2sS8rDgyvx7SVSmtcThRHLzTKOjtbSqTex51z58QdpFvx4umeZ+dvv0kuRZH8Op0cWbHC1mZqaGhoaGhkmIw4MIAOwHlgBjATOAu0T+/4nCKOXlc8byxbtsx6UdS3b1+JiopytElZZv/+/VKyZEnR6XTSokUL8fX1FUDatGkjhw4dyvL88fHxUrt2bTEajbJ+/fp0jdmzZ4/odDrp27fvI33Tpk0TRVHEYDA8M44kVVVl2bJl1hKxhQsXlkmTJkliYqLddF6+fFnGjBkj7dq1k4ULF2Z6npUrV4qPj4/kypVL1qxZ80DfpUuXpFChQhIQEPBUJ9eSJUtEURRp165dtpVLvd8Bktmyv/cwmUzWCKBZs2bZyMInc+HCBfHw8JBGjRrZpazr4sWLBZCIiAipUaOGeHt7y/nz522uJ6scOnRIABk2bFiGx9auXVsqVaokixYtsuwuyML/wNPItAPjeRJHLjTOhYdbEqSEhT3Q/m2zZgLIvj//zNB8/y5YIP46nfgqSobHamhoaGho2JoMOjAO3B91AfgBB9I7PqeI5sCwLT179hQvLy95//33RafTSYECBWTFM3qjRlVVmTJlijg7O4u3t7fkzZtXAGnQoIHs2LHDJjpSUlKkZcuWoijKA1tC0sMHH3xgvch6mEmTJlkjMaZMmWITW+2B2WyWxYsXS+XKlQWQYsWKydSpUyUpKcku+q5evSo///yz1K1b15psNVeuXAJIx44dJTIyMkO2jxgxQhRFkRdffPGJDorDhw9Lrly5pGTJknLjxo1H+nfv3i1ubm5SvXp1iYuLy/S5OQpVVaV3795239bxMBMmTBBAfv31V5vPfeHCBQHk559/llOnTomHh4fUq1fPLlssskLnzp3F3d1dbmawQMT169dFp9PJ8OHDpW7dulK0aFG7nZvmwHDwQkMdM0aOgET+84+1LTkuTgrp9fKyj0+m5jy+dq0U0uvlA2dnETvtFdPQ0NDQ0EgPGXRgHHzoue7htmdBNAeG7TCZTOLn5yevvvqqiFgqMZQrV04Aee211zK8yHYksbGx0qVLFwHEzc1NAKlevXq68xmkB1VVpXv37gLIhAkTMmVjkSJFpEyZMo+NVHj77bet0TD9+vWT5ORkW5htE8xms8yfP18qVqwogAQGBsr06dPtYuP169dl4sSJ8vLLL4tOpxNAypYtK1988YUcOXJEkpOTZeTIkWI0GsXPz0/mzZuX5px37tyRli1bCiBdu3ZN0/GwdetWcXFxkeDgYImNjbW2X7hwQfLlyyeFCxeWq1evZvlcHcG9bRafpJUH0MaYzWapW7eu+Pj4ZCn3zONQVVV8fX2lZ8+eIiLy22+/CSCjRo2yqZ6scPLkSdHpdDJo0KAMj502bZoAMnv2bAHk+++/t4OFFjQHhqMXGk2aiJQq9UDTnq++EneQZZ9+mulpr+3eLeYSJUTc3SV57dqsWqmhoaGhoZEpMujA+A5YC3RPldXAt+kd72hBK6Nqc+6V8ps8ebI1DD4xMVGGDx8uBoNB8ubNK/PmzbNLyLctOXTokBQqVMh68V+uXDlZvHixze0eNGiQAPLFF19keo6VK1cKICNGjHikLzk5WYKDg62lK+vWrSvXr1/PislZxmQyyZ9//ml1bJUuXVp+//13SUlJsameGzduyOTJk6VBgwZWp0Xp0qVl+PDhT9z2c/DgQesWlnbt2sm1a9eeeFzJkiXFYDDIuHHj0v25WLx4seh0OmnevLmkpKRITEyMVKxYUby8vOTgwYOZPldHMnr0aOt2MUf8Xx8/flxcXFykTZs2NtffpEkTqVSpkohYHBqvvPKKGAyGNHPUZBe9evUSZ2fnTDm+WrVqJYULF5bXX39d3N3d5c6dO3aw0EJWcmAsApoDurSOzeniKAfG3atXpZtOJ3u7dPn/RlUVqV5d7hQvLuasfvFevSrnS5WSUooiyzOxj0lDQ0NDQyOrZCKJZ1vgx1Rpk5GxOUW0CAzb8eGHH4rBYBAnJycpVqyY/O9//5OLFy+KiCWPRFBQkDV3hK3vmNqKYcOGWS94AwICZObMmXYJrf72228FkP79+2f5wqtjx47i7Owsx48ff6Tv7Nmz4u3tLSVKlBBnZ2cpXLiw7N27N0v6MoPJZJI//vhDypQpI4CUKVNGZs+ebdPX9tatWzJt2jRp3Lix6PV6a2THJ598IgcOHEjX65ySkiJff/21ODs7S548eWT27NkPjJs7d664u7tLQEDAY7fupMW9rT3du3eXpk2bil6vl7XP6M3Le9VA2rVr59CtFd98840AMn/+fJvOO3ToUDEYDNYEsrdu3ZKCBQtKqVKlHoiicQTnz58Xg8EgAwYMyPDYuLg4cXV1lR49eoiTk1Om5sgIWXFgNAT+AE4DXwOl0xqTU8VRC43FgwcLIJt++MHadnf9elFBZPx4m+i4deqUVHN3FwPIn++8Y5M5NTQ0NDQ00ksGIzC+SU9bThfNgWEbVFWVkiVLWi9Q75VlvHfHedGiRRIfH2+9OPTx8ZHp06fnmGiM7du3W6MunJyc5Msvv7RbHobp06dbcy7YImHj1atXxcfHR0JCQh77ei5YsMC61aFgwYLi6uqabVUVUlJSZMaMGVKqVCkBpHz58jJv3jybJaq8c+eOTJ8+XZo2bWqtqlG8eHEZPHiw7N27N9OfryNHjkhwcLC1JOqFCxfkww8/FEBq1qyZpVKjw4YNe+bL3a5cuVIMBoPUr1/frolW08O9qjx58+aVW7du2Wzee/83O3futLZt2rRJFEV5bPLc7GTAgAFiNBozlVh0yZIl1u8D4LGOT1uS5S0kgDfwJnAR+BvoARjTO/4Jc4YCx4FTwODH9DsDc1P7dwBFU9uLAgnA/lSZlB59jlpo9CpVSrxAku/b49a+QAFpYDCImsXMvfcTffGi1PX2FgVkSg6vO6yhoaGh8XyRQQfG3se0/Zve8TlFNAeGbThy5IgAUqlSJSlatKioqiqnT5+WTz75RPLnzy+A+Pv7y0cffSSrV6+2OjiaNGni0Oz+J06ckObNm1svKENCQuxaOWXp0qWi1+ulcePGNnWQTJ48+akJDd966y0B5I8//pDatWtby3Xa6855cnKy/Prrr1KiRAnr52LhwoU2cVxERUXJzJkzpUWLFmI0GgWQIkWKyKBBg2T37t02c4qZTCb57rvvxNnZ2eoc6devX5bftzFjxlg/bxMnTrSJrdnJtm3bxNXVVapUqZLh0p32Yv/+/WIwGKSbDa+dzp49+9j36KOPPhJAlixZYjNdGeHq1avi7OwsvXr1ytT47t27i5eXl+TNm1eaN29uY+se5UnrCsXS93QURckDdAG6AldSIzJqAxVEJCTNCR4/px44ATQCLgG7gE4icuS+Y/oBFUXkTUVRXsUSYtpRUZSiwAoRKZ8RnVWrVpXdu3dnxtxMo5pMFHR2pnb+/My7eBGAs+HhBNarx6AaNfh6+3ab6ou/eZN2Zcqw5uZN/uzWjY4zZth0fg0NDQ0NByGCajYjqvqA6BQFg14PIsTHxT3S72Q04uLsjKgqd27fxsvLC0PevDY3T1GUPSJSNY1j3gL6AcWxRHbewxPYJiJdbG6YHXHEuuJ5ZNSoUQwdOhRPT086d+7MpEmTrH0mk4k1a9Ywbdo0li9fjtlspk6dOhQpUoRFixah0+n45ptvePPNN9HpdHa18+rVq2zZssUqR48eBcDFxYUZM2bQoUMHu+mOiIigcePGVKxYkY0bN+Lh4WGzuVVVpV69ehw5coSjR4+S96Hvh8TERIKDg7ly5Qq7du3im2++YdKkSTRt2pTffvsNo9FIfHz8UyUuLi7NY+Lj44mNjeXixYtERUVRokQJOnbsSNWqVVFVFbPZnCU5ePAgq1evJjk5mYIFC9KhQwc6duxItWrVUBTFZq/nPXbt2kXr1q25fv06qqrSvHlzfvnlFwoUKJCp+VauXEmrVq1o0aIFZrOZ1atXs2DBAtq0aWNjy+3DoUOHqFOnDnnz5iUiIuKRz5kjGTZsGCNHjmT16tWEhoZmeT4RwdfXl7Zt2zJlyhRre3JyMi+99BLnz5/n4MGD5MuXL8u6MsKgQYP48ccfOX78OIGBgRkaazabCQgIIDAwkH/++Yf169fTsGFDO1lq4UnrijQdGIqiLAZKA78Dv4nI1fv6dqe1WHnKvC8Bn4tIk9TnQwBEZNR9x6xNPWa7oigG4BqWUmtFeEYcGHtmzaJq167M6NOHbpMnA/B+UBDj9u7l7M6dFKxWzeY6k2Ji+KJ6dT4+fhzv//0PPvkE7PDFrKGhkXMQsxnFbEZNSSH+7l1MSUmYk5MxJyVhSk7G290ddycnEuLiuHDxIuaUFFSzGXNKCuaUFIoFBJDL3Z07d+5w6PRpzCaTpS/1sVqJEvh6enLp+nX+OXbM0m4yYTabUc1mmpUvj5+7O8cuX2bzsWOoZrN1wamazXSrUgVfV1d2nT/P2hMnLLpV1XKcCIOqVcPHaGT92bOsOn3a0ieCqqqoqsoPwcG46/UsOHOGFRcu/H9fqjd+VvXq6EWYcvo0K69ds/SnigFYVrkyqCpfnznD2tu3reNUEbz0ela98AKoKoMuXGBTTIy1T4D8BgOrixQBVaXHlStsi49HwDI/8ILBwOq8eUFVaXXzJnuSk1FJvUUmQlWjkZWeniBCzehojpjNlvGpxzTQ61nq5AQilExM5Px9fQK0A+anvs+5gTsPvffdgempfxsB00P9bwNjgUTAFfjXy4sK0dG2+uhZSacDwxvIBYwCBt/XdVdEbtvcKDujOTBsQ40aNYiKiuL48eMsXLiQtm3bPva4a9euMWPGDKZOncqpU6fw9PTE29ubS5cuUbduXaZOnUrJkiVtZtelS5fYsmULf/31F1u2bOHkyZMAeHh44Ofnx9mzZ6lSpQqLFy+mcOHCNtP7MAcOHKBevXrky5ePiIgIfH19ba7j6NGjVKpUiQ4dOjBr1qxH+o8dO0ZQUBDBwcGsX7+eqVOnMmDAAEymh79x0sbFxQU3Nzer6HQ6EhMTiYmJISoqClVVbXFKj1CgQAHat29Px44dCQ4OtqvDa9q0afTr1498+fIxf/58tm3bxtChQ3FycmL06NF07949Q06T/fv3U7t2bV544QW2bNmCoig0aNCAffv2sWHDBmrXrm23c7EF586do1atWgBs27aNokWLOtagh0hKSqJy5crExcVx6NAhPD09szxno0aNuH37Nnv27Hmg/dixY1SpUoU6deqwevVquzte7xEVFUXBggUJCwt77P94WkRERFC3bl2KFi2Ku7s7Bw8etIvj736etK4wpGPsFBFZ9dBkziKSlFnnRSoFsGxHucclIPhJx4iISVGUaCBPal8xRVH2ATHApyIS8TgliqL0BfoCdv1xeRI3162jJND0vfcAiLl0ial799KhSBG7OC8AnL28+OrQIejVi4Rhw5gZEUHf1atRsukfREPDoagqyXFxJMfFkZKQQEp8PCnx8ehFCPDxAZOJYydOEBsTgyk5mZTERMsFvrMzVYoVg5QUVu/cSUxsrKU/ORlTSgqFvb1pXLIkpKQw5q+/iE1IIMVkIiUlBZPJRBU/PzqWKAFmM/03bybJZMJkNlulSd689ChUiJTkZFrt3IlJVa1iVlW65snDW7lzcycpiVqnTmESwSSCOVU+cnfnHWdnzicnUyEmBjNgxnKxasZygfo2cAio9JiXZTqWC929WMLnHmYBlgvlnVj29j3MWqAx8A/wymP6/8biXd6O5fb6wzRevhzf1PHD7mvXpUqf3bvx0es5YDbza3IyOkVBB+gBRVH46vZt3A0GTsfG8ldsLEpq/73jzIcOodfruXnzJueioy3tqX1OOh3ExIBOh2oyoYqgAHqdDp2i4GowgJcXKAo+d+6QLzWqQUmdw9/ZGV54ARSFQL2exJgY6/yKTkchd3eoUgV0Omr8+y/+d++i6HQogE6no7iXl6VfUWi5dy/V4uOt8ys6HaVz54ZKlUCno/eOHUQnJ1v6UqWcnx9UqACKwuBt20g0mx/orxgQAGXLgqIwKiLCcn739VcuWBBKlcIgwpht28iXuoh0BCISDUQDnRxmhEaO4urVq+zYsYOQkBBOnTpF/fr1n3hsQEAAH3/8MR999BERERFMnTqV+fMt7r2tW7dStmxZhg0bxtChQzEY0rPEfZBz5849EGFx5swZALy9valTpw59+/YlKCiIb7/9ljVr1vDGG28wduxYnJycMnfy6eDMmTOEhobi6elDZ5SDAAAgAElEQVTJ2rVr7eK8AChTpgxDhgxhxIgRvP766zRq1OiB/hdeeIHx48fTo0cPvvzyS4YPH05QUBDr1q17wBnh5uaGu7v7I233xNXVlevXr7N+/XqrXL9+HYCyZcvSrVs36tevj6+vL3q9/omi0+me2v/wcdl1kZiUlMQ777zD5MmTadSoEXPmzCFPnjxUq1aNFi1a0KtXL3r27MncuXOZMmUKhQoVSnPOy5cv06JFC3LlysWyZctwd3cHYPny5dSqVYuWLVuydetWypUrZ+/TyxSRkZE0btyYhIQEwsPDc5zzAsDZ2Zlp06ZRq1YthgwZws8//5zlOYOCgvjxxx9JSkrC2dnZ2v7CCy/w448/8tZbbzFu3DgGDhyYZV3pYc2aNcTFxdG/f/9MjV+yZAkGg4Fz584xefJkuzsvnkZ6IjD2ikiVtNoyrFhR2gOhItI79XlXIFhEBtx3zKHUYy6lPj+NxclxF/AQkVuKogQBS4ByIhLzNJ0OuVNSvTro9ZC6VWRc27a8s3gxu2bMoGq3bvbVrapMevll3goP561y5fh5/350mfhB1/hvI6pKSlwcSXfv4m4woEtJ4da1a0RevUpSXBzJ8fEkJySQnJBASJky6Ewm9h0/ztFz50hOSiI5MZHkpCTMKSkMrFEDUlJYeOAAOy9eJDklxSpOwPjKlSE5mVFHjrDlxg2SzWZSVJVksxlfvZ6VhQtDSgrdL19mU0ICySKkpEpJRWGPTgdmMzWxXEjfTzCWi2eAClgu9O+nIbA+9e9iwLmH+sOAxal/+wE3U//WY/EEdzEYmOruDgYDRe7cwQwYFAW9omBQFLr4+DAsXz5Mej21TpzAoNNZRa8ovJo/Pz2LFSMW6LlvH3qdDoNeb31sU7w4zYsV447JxIjduy3tBoN1kdasdGlqFC3KzcREpu/bZ+0zGI3o9XpCypaldIEC3IiLY/2RI+gNBnR6PXqDAb3BQLXSpcmfNy+34uLYd+aMpd1otD6+ULw4Pj4+RMfFcSEy0tJnNKJ3ckKn15M/Xz5c3N2JT0oiJj7eMr/BgC51DncvL/RGI2YRVEVBbzSi6PUO/QHUsC3picB43tAiMLLO5MmTeeONN6hQoQKenp5s27YtQ+OjoqKYM2cOEydO5ODBgwDkyZOH77777ql3uUWEM2fOPOCwOH/+PAC5cuWibt26hISEUK9ePSpWrIher+fkyZO0atWKU6dOMXbsWN56662snXwaXL9+nVq1anHnzh0iIiIoW7asXfUlJiZSqVIlTCYTBw8exM3N7YF+EaFbt27Mnj2bzZs3U7du3XTNGx8fT0REBOvWrWPdunUcOmT5Bfbz86NRo0ZWyezWipzCpUuXaNeuHTt37mTIkCH873//Q6/XP3CMqqpMmDCBwYMHo9Pp+OGHH+jdu/cTP6exsbHUrVuXkydPsm3bNipWrPhA/7lz53jppZcwGAxs376dggUL2u38MkNMTAwvv/wyR48eZcOGDdSsWdPRJj2Vd999lzFjxhAeHk6dOnWyNNf8+fPp0KEDu3fvJigo6IE+EaF169asXbuWXbt2PfK+2oPu3buzfPlyIiMjH/lcpoWIULJkSWJjYzGZTFy8eBFXV1c7Wfr/ZHgLiaIoAVgiIGYBnYF7/1leWJJmvpBFgzK9hUQeMlpRlL+AD0XkqauI7F5oJJ0/j6FoUfQjR1q2cZhMJJYowToPD1odPpwtNoiqMrhmTb7dsYNmfn60btyYl9u1o2SzZnCfN1Aj5yGpkQRJ0dEkRkeTGBNDHldX3HU6bl+/zqFjx0iMjSUxNpaEuDgS4+NpUrIkAc7OHDx7lsUHDpCYmEhiUpJFkpP5rEwZihgMrLxwgZ/OnCHJZCLJbLaIqrLG358iqsq4qCg+iYsjGUi6z6ZrgD+WO+gjH2NzHOAGvAf89FCfgiVSQAHeUBRmiuAEOCkKTopCLr2eQ8WKgZMTQ2/cYFNsLE56PUa9HqNOh7+rKzOqVQMnJ74/eZLDMTE4GQwYjUaMBgP5vbwYVLs2GI3MOnyYq3FxGJ2crJIvTx5aVqsGRiObjh4lzmTC6OSEwdkZo5MTuXPnpkLp0mA0cuziRVSdDqOLCwYXF4wuLrh7eZHLzw8MBhJMJgwuLuidndFl8EdAQ+N5RXNgaGSGZs2aceTIES5evMjw4cP57LPPMj3X3r17GTJkCOvXr0dEyJ07N++//z49e/YkICCAkydPPrAl5PLlywD4+vpSr149q5QvX/6RO/br1q2jY8eO6PV6FixYQEhISFZOO02io6MJCQnhxIkTbNy4kRo1athV3z22bNlCSEgIH3/8MV9//fUj/Xfv3iUoKIj4+Hj279//2IgQVVU5cOAA69atY/369URERJCcnIyzszO1a9emcePGNGrUiEqVKmVbZIS9+euvv+jYsSPx8fHMmDHjidug7nH27Fl69erF5s2badiwIVOmTHkkMsFsNtO2bVtWrFjB8uXLadas2WPn2r9/P3Xr1qVIkSKEh4eTK1cuW51WlkhMTKR58+aEh4ezdOnSJ9qfk4iNjaVChQo4OTlx4MABXFxcMj3X6dOnCQwMZPLkyfTp0+eR/hs3blChQgX8/PzYtWtXlnSlhaqq5M+fn5dffpk5c+ZkePzhw4cpX748iqIwePBgvvrqKztY+SiZcWC8jiXiuCpw/6/zXSy5MBZl0SADliSeDYDLWJJ4dhaRw/cd0x9LotB7STzbikgHRVH8gNsiYlYUpTgQkXrcU/fPZvdCY3rPnnw4fTr7V6+mUGgoLFgAr7wCixZBNibcEVXl+5YtGbV6NXdEGAEMMxq5XaYMg5OTCQoKompoKOVbt8bZBnu+nntEUOPiuHn+PLE3bhB36xbxUVEk3L1LUW9vinp5EX3zJn9GRBAfG0tCamKqhMRE2hQqRG1vb05HRjJwzx4SUlKIT0khwWQi3mzmOy8vWosQHhtLveTkR1QvBVoBK4CWjzFtI1Af+BNLfLYRcAFcFAUXnY7l+fNTycuLJQkJfBsZibPBgLNej7PBgJPBwE/Vq1MgVy423bjBsosXcXZ2xtnJyfLo7Mwb9erh6e3Nv5GRHImMxNnVFSdXV5zd3HBydaVm5coY3Ny4FhNDTFISTu7uOLm54eTujtHNDS9fXxQnJ0tUkoaGxnNFRh0YiqIUAUqKyAZFUVwBg4jctZ+FtkdzYGSNu3fv4uvrS6NGjVi5ciV///03L730UpbnvXjxIh07dmR7avSrXq8nT548REZGAuDv72+NrqhXrx5lypR5aqTGmDFj+OCDDyhXrhxLly6lWLFiWbbxaSQmJhIaGsq2bdtYsWIFTZo0sau+h+nVqxczZsxg7969j70zvG/fPmrUqEHjxo1ZtmwZiqJw6dIl65aQDRs2cOPGDQAqVKhgdVjUqVPnkaiOZx0R4aeffmLQoEGULFmSRYsWUaZMmXSNVVWVyZMnM2jQIAC+/fZb3njjDatT5/3332f06NH8/PPPaYb9b9q0idDQUF566SXWrl1r14vh9GA2m+nYsSMLFy7k999/p0uXZyc/84YNG2jUqBGDBw9m1KhRaQ94AvecqB07dnwgMfH9rFmzhqZNmzJw4EB++unhW3+2Y+/evQQFBTFjxgy6ZWIHwFdffcUnn3yCwWDg7Nmz2Rbp88R1xeNKk9wvQLu0jsmsAM2wODFOA5+kto0AWqX+7YIld9kpLFuzi9+zCTiMpYTqXqBlevRld7mztvnzSwGdTtTUsk+dfX1lpp+fiJ3KTqWFajbLmS1b5Movv4h8/LHsrl5dfBTFWo7JCFLFzU3CW7YU+eUXSfj7b0myYZlXR6CazXL36lW5vGePHF25Us4tXSqyebPI8uUy9513ZGq3bvJTWJiMbNBABteoIQubNhXp3l2S2raVUF9fqe3lJS+6ukqg0SgBOp2McHISURSJ/P/8eg/IVyACcvahdh2IO8gvHh4ihQvLieLFpYqrq9Ty9JRGuXNLq4AAebVwYQlv2lSkf38516ePDKtTR75s1Eh+aNVKxnfsKNO6d5dzP/0ksnCh3Jg9WzZ9/738/csvsmfWLDm8dKmc3rxZEk6fFrl1S0wxMWKyUw16DQ0NjcdBxsqo9sFy4+J06vOSwMb0js8popVRzRrz588XQJo1ayY+Pj6SkpJi0/mXLVsmefPmFUDKly8vEydOlGPHjqW7VGZiYqJ0795dAGnTpo3czYY1UUpKioSFhQkgs2fPtru+x3Hr1i3x8/OT6tWrP7FU6tixYwWQli1bStmyZa3rHX9/f+nSpYvMnDlTrly5ks2WZx8JCQmyYcMGad++vfXzkdmyoOfOnZOGDRtaS/GePn1aJkyYIIAMHDgw3fPMmTNHAGnXrp3dStymB1VVpW/fvgLI6NGjHWZHVujZs6fo9XrZs2dPluapX7++VK1a9anHvPPOOwLI6tWrs6TraYwcOVIAuXbtWqbGV6lSRfR6vXTq1MnGlj2dJ60rnhaB0UVEZimK8kHql9LDjo8fn+wvyZlk552S5Lt3yePlxWtlyjDpyBF2TJtGjd69GdO2Le8sXJgtNqQHUVXOhoeze+lS9vz9N3tOnuRHk4mKd+/yO9AbqODmRlDhwgRVrUrV0FAqtmmDwd4edFUl9to1oi9fJvrqVWIiI4m5cQNXk4k6BQpAdDRj163j/I0bxMTGEhMfT0xCApWdnfnKxwdiYih5+TJnVJX7c1l3xlIDGMADy5aHezgBbzo7M8bfH3F3p8aFC7gbjXg4O+Ph4oKHqytNS5akzYsvkuziwtR//8XDyws3T0/cvLxw8/amRIkSFCpaFJOTE5FxcbjlyYNrrlw4eXhoSVQ1NDSeazISgaEoyn6gOrBDRCqnth0UkQr2tDENm8oCnwO3sDhTFqQ1RovAyBpdunRh9erVuLu7U716dRYsSPMlzzBRUVF88MEH/PrrrzRt2pQ5c+bg7e2d5rhr167Rtm1btm/fzmeffcbw4cPtvt0hLi6OHj16MH/+fMaOHcvbb79tV31PY/bs2bz22muMGzeOAQMGPNIvInTo0IEVK1ZQt25da5RFhQoVnsvcRqqqsn//fjZs2MCGDRuIiIggMTERo9HIF198weDBg7N03iLCtGnTeP/99zGbzSQlJdGsWTMWL16coXwFo0eP5v3336d///6MGzfOIe/FvZKkQ4cO5csvv8x2/bYgKiqKsmXL4u/vz86dOzEajZmaZ9CgQYwdO5bY2NgnzpGQkEC1atW4efMmBw8exM/PLyumP5Y6deoQHx//SEWU9HDlyhVrfpp//vmH4OCHa27Yj8xUIXFPfbRdoen/EOETJxILtGjfHoDRX3yBF9Bj3DiH2vUwik5H8ZAQioeEYK1eLgJnzlB+wQLeXbSI3SdPMvfYMSYfOwazZnHZaCR/xYqsDwjgjLc3bp6eJMbHkxgfj85spn9QECQlMWP3bnZfvkxSSgqJyckkpaTgrdMxuXRpSErinWPHiIiOJlFVSVRVklSVEjodEUYjJCbSQISdD9n7EpZqBwBTgTOAl06Hl8GAl9FIipsblCoF3t50PXqUFKMRLy8vvHx88PTxIbBECUs1AHd39t68iWvu3HjkzYu7nx9O99VUV4AdT3ndnHh8pYV7GID8GXgfNDQ0NP5jJIlI8r3Fdeq20qdnFX8KiqL8CrQAIuW+EuuKooQCY7Dk250qIo9u6v9/mgLjRCRCUZRlWIrzaNiJlJQUVq5cSUhICEuWLOHTTz+1ix4fHx+mTZtGcHAw/fv3Jzg4mGXLllGqVKknjtm9ezdhYWHcuXOH+fPn0z51LWdPTp06RZs2bTh8+DDfffedQ50XAJ06dWLGjBkMHTqUsLCwR0LGFUVh7ty5mM3mTF/c5XTOnj1rdVhs3LiRW7duAVC+fHnefPNNGjZsSL169fDwyPqlkqIo9O7dmyZNmtC/f3+io6OZPXt2hpMtvvfee1y5coXvv/+eAgUKMGTIkCzblhHGjh3LyJEj6dOnDyNHPi5b2rOBj48PEyZMoE2bNnz33XcMHTo0U/MEBQWRnJzM4cOHefHFFx97jKurK7Nnz6ZatWr07t2bJUuW2NTxFBUVxfbt2xk8eHDaBz+GJUuWAFCpUqVsdV48lceFZdwvWJJmOjxM0xaSnaGeA198UVxA4m7ckPN//y16kA/SCCHKyahms5zauFEWvv++yKBBIvXry+tG4yNbKDxTt1CIokg3vV5yKYoE6HRS1GCQF5ycpKGHh0hwsEjdujK8eHFpFRAgHQoWlK7Fi0ufF16QEcHBIh9+KDJsmMzr0kUmd+0qf77zjqz64gvZOmGCHF+2TOTcOZHbt8WsbZHQ0NDQyDGQsS0k3wJDgWNAIyxFfr5M7/jHzFcXqAIcuq9Nj2WLanEsfucDQFkshYhWPCR5U2U88B2wLT16tS0kmWfjxo0CSM+ePQWQs2fP2l3nli1bxNfXV3x8fGTt2rWPPWb27Nni4uIihQsXln379tndJhGRFStWiLe3t+TOnfuJdjmC06dPi6urq4SFhTnalGzh1q1bMn/+fHnjjTekRIkS1rVt/vz55fXXX5fff//9mdgWYzab5bXXXhNApk+fnm16Z82aJYC0bdvWoVtYbMkrr7wiTk5OcvTo0UyNP3HihAAyderUNI/98ccfBZBJkyZlSteTmDdvngCydevWTI2vXLmyADJnzhyb2pUenrSuSM+i4ASwDugF5Err+Jws2bbQUFX5u0ABmVSunIiIfFi1quhBzm3blj36swnVbJazERFycsMGubhzp9w4dkzuXrkikpwsks79pRoaGhoazwcZdGDosOTBmI8l0qEPqYnFMytA0YccGC8Ba+97PgQYko559MDSp/T3xZLcfHfhwoXt9Go+/7z99tvi4uIiTZo0kVKlSmWb3rNnz0rFihVFp9PJ6NGjrfkwTCaTDB48WACpU6eOXL9+3e62mM1m+fzzzwWQypUrZ4sTJ6N88803AsiiRYscbYrNSUhIkI0bN8rgwYOlatWqoqTmhfP09JRWrVrJ2LFj5ejRo+nOmZKTSEpKkoYNG4per5dVq1bZXd+qVavEYDDIyy+/LAkJCXbXl11cu3ZNcufOLTVr1syUU8ZsNounp6f069cvXcc2atRIXF1dM+0weRw9e/bMdI6h6OhoURRFPDw8JDk52WY2pZdMOzAsY6kO/IglYn8F0CU943KaZJsD49gxy0s7frzI3buy2s1NRpYvnz26NTQ0NDQ0HEAGHRjugP6+53rALb3jnzDnww6M9li2jdx73hX4OY3xk7GkSqqdHp1aBEbmUFVVChcuLM2aNRM3Nzd5++23s1X/3bt3pU2bNgJIjx49JDIyUlq0aCGA9O3bV5KyIcLz9u3b0rx5cwHk9ddfl/j4eLvrzAzJyclSsWJFKVCgQKaTVOYUzGaz7N27V7755htp1KiRuLi4CCAGg0Hq1KkjX3zxhWzbts3myWQdRUxMjFSuXFnc3Nxkx44ddtPz999/i6urq1SuXPmZ/4w8jpkzZwogY8eOzdT4evXqSXBwcLqOvXz5suTJk0eqVKlik+8hVVUlf/788sorr2Rq/HfffWf9XnQEWXJgyP//uPsCMwFzRsblFMmuhUZ4v34SAZatDmPHWl7mf/7JFt0aGhoaGhqOIIMOjH8Aj/ueewB/p3f8E+bMkgMjg7paApMDAwNt/0L+B9i3b58A8sEHHwggy5cvz3YbzGazfPbZZwKIq6ur6PV6GT9+fLbcbT9w4ICUKFFCDAZDtunMCjt27BBFUWTAgAGONiVD3Lx5U9asWSMjR46U1q1bS548eazbQsqXLy/vvvuurFixIluqyziKq1evSrFixcTX11dOnDiR4fHJyckSFRUlV65ckVOnTsmBAwdk+/btsnHjRlm+fLnMmDFDcuXKJYGBgZmucJHTUVVVQkNDxd3dPVNRUu+99564uLik2zG2ePFiAWTw4MEZ1vUw+/fvF0B+/fXXTI2/t5UqOyLSHseT1hVPS+IJgKIoXkAb4FWgBJZ9qtXTGvdf5rPZs7np7My+fPn44fPP6RoURL6ckvREQ0NDQ0PD8biISOy9JyISqyiKrctbXQYK3fe8YGpblhGR5cDyqlWr9rHFfP817iWpS0pKwmg0EhISku026HQ6ateujbu7O3Fxcfj6+lKjRg27V22YM2cOvXv3xtvbmy1btlCzZk276rMF1atXZ8CAAfz888906dIl5yTyu4+YmBj27t3L7t272bVrF7t37+bMmTPW/tKlS9OiRQsaNmxIgwYNyJcvnwOtzT4CAgJYu3YtNWvWpEmTJrRt25b4+HirxMXFPfD8YTGZTGnqKFCgAOvWrcPf3z8bzij7URSFX375hXLlytG3b1/Wrl2boe+JoKAgEhMTOXr0KBUqpF1oKywsjB49evD999/Tq1cvAgMDM237mjVrAAgNDc3w2KtXr3L69GlKly5N3rx5M22DPXhiGVXrAYpyFlgCzBOR7dlilZ3IjnJnUefP41e0KB/WqEFwSAhtvv6aee+9xys/PnNVZzU0NDQ0NNJNBsuobgPeFpG9qc+DsERHvJQF/UWBFZJahSS1sskJoAEWx8UuoLOIHM6sjvt0tQRaBgYG9jl58mRWp/vPUblyZdzd3YmPj8fb25vNmzdnq34RYdy4cbz//vuUKVOGr776iv79+3Pz5k1+++03OnTokPYkGSQlJYWPP/6Y0aNHU7t2bebPn09AQIDN9diLu3fvUrZsWXLlysWePXscWnkkISGB/fv3Wx0Vu3bt4vjx4/eioyhatCjVqlWjatWqVKtWjSpVqqSrdO7zzM6dOwkLCyMmJgY3NzeruLu7P/D8afKkY4sUKYK7u3vaRjzjTJgwgf79+zN9+nS6d++e7nHHjh2jTJkyGRp37do1AgMDad68OXPnzs2cwUBISAhRUVHs378/w2N79uzJ9OnTn1hKOTt44rricWEZ8mCYZJaSauUkyY4tJHPffdeS6XXCBKnr7S1F9HpJeY6S2WhoaGhoaDwOMraFpBqWCiERwFbgFBCU3vGPmW8OcBVIAS4BvVLbm2FxYpwGPsns/E8SLQdGxjl37pwAMmzYMAHkq6++svYlJSXJkCFD5PPPP5dZs2bJ9u3b5caNGzbdYpGYmGitfBIWFiYxMTEiYknWV6tWLQHk008/FbPZbDOd165dk7p16wr8X3v3HR5llTZw+HemZBKSUBKKIfQAQugJUqQrVaUIyIqw6+faQBARXAFXwHVhURQFWVYXsWNZRSTgEg0gTUBKACUBqcLSSwIJpE453x8zCQETkpBMZiY893W918yc85Zn3kBy5plT0OPGjfPIZHilYdmyZRrQr7zySpldMysrS8fHx+t33nlHP/roo7pVq1baaDTmDgUJCwvTAwYM0C+//LKOjY3V58+fL7PYxK3FbrfrLl266MqVK+vTp08X+TibzaYDAwOLPdfPtGnTNKC3bdtW3FC11s4JOE0m000NRcnKytKBgYHaYDDotLS0m7p+aSioXVHgEBKl1Fyt9XhguWtW3usTHwOKl0O5NXy7fDkhSmH292dDSgpzBgzA5O/v6bCEEEIIr6G13q6UagLc7irar7W2luB8wwsoXwmsvNnzitIXExMDkPuNeO/evXPrFi9ezKxZs353TMWKFWnYsCERERHXPDZs2JCwsDAMBkORrn3mzBmGDBnC5s2bmTp1Ki+99FLusTVq1GDNmjWMGTOGGTNmsGfPHj755BOCg4NL9H5/+uknhgwZwsWLF1m8eDEjRowo0fk8aeDAgQwePJiXXnqJoUOHEhERUarnT09PZ9++ffzyyy/s2LGDHTt28PPPP5OVlQVASEgId9xxB/3798/tXVGzZs1SjUGIghgMBhYtWkTLli0ZM2YMX3/9dZGOMxqNtGnThvj4+GJdb+LEibz99ttMmjSJNWvWFHt425o1a7DZbPTr169YxwF89dVXpKWl0b59eypUKO3RnSVX4BASpVS01jpeKdUtv3qt9Xq3RuYG7h5Com02GlksdKhTB4CYo0c5cewYlVyvhRBCiPKqOENIXPvfiXPizdwvU7TWH7shtFInQ0hu3t13383p06e54447WLlyJWfPnsVgMGC324mMjCQwMJDNmzdz9OhRDh06xOHDh695/O23364Zl+/v709ERES+yY06depgMjn/ee3cuZOBAweSnJzMhx9+yAMPPJBvfNo1vOTZZ58lMjKS5cuXU79+/WK/T601Cxcu5Omnn6ZWrVp88803tGrV6uZumhc5efIkTZs2pUOHDsWeCyCHzWbj4MGDJCQksGfPntzHw4cP5w4DCQ4OJjo6+pqhIPXq1XP7HCVCFObVV19l8uTJLFmyhCFDhhTpmPHjx/Puu++SmpqK0Wgs8rXmz5/PuHHjiI2NLfY8Fk888QT/+c9/uHDhQrGGfGmtadGiBYmJiSxatIhHH320WNctTQW1K4oyB8YzWut5hZX5ArfPgbFlC9l33smlWbN45oUXCG/ThteLmW0TQgghfFEx58D4BOfE4LsBu6tYa63HuSs+dyiLubXKk4sXL1KtWjWee+45PvroI3r06MFnn30GOL/xGzZsGF9++WWByQVwfvg9fvz4NUmNnOeHDx8mIyMjd1+TyUS9evVo0KABGzdupFq1asTExNC6detCY121ahXDhg3DaDSyZMmSYk00mpmZyZgxY3j//ffp27cvn376KSEhIUU+3tstWLCAsWPHFtqjRGvN8ePHf5eo2LdvH9nZ2YDzW+1GjRrRokULmjdvTvPmzWnRogUNGzYscs8aIcqSzWajffv2nDx5kr179xbp//bHH3/Mww8/TGJiIpGRkUW+VnZ2Nk2bNiUoKIhdu3YV+f+E1po6derQrl27IvcUybFlyxbuvPNOlFKcPXuWatWqFev40lRQu6LQVUiAh4HrkxX/l0+Z+O9/8TMaqX72LEEIXfoAACAASURBVJ8rhf7qK09HJIQQQnijtkCkLuxbFFGu/Pe//8Vut9O8eXPOnDmTO3xEa82sWbNo3LgxgwcPvuE5TCYT9evXp379+vTq1euaOq01p0+fviapkfPYq1cv3n333SLPpt+rVy+2bdvGgAED6NWrF/Pnz2fUqFGFHnfs2DGGDBlCfHw8U6dOZfr06cX6xtUXjBo1isWLFzN+/Hj69u1LaGgoSUlJv0tUJCQkkJqamntcrVq1aNGiBb17985NWDRt2hR/GWotfIjJZOL999+nbdu2TJgwgQ8//LDQY6KjowGIj48vMIGhtebixYucPXuWs2fPUq9ePerVq8fMmTMZPnw4n332GSNHjixSjHv37uXEiRNMnz69yO8rx9y5czEajbRr186jyYsbudEcGMOBh4D6SqnleaqCgWR3B+aLhv3zn3StU4ee779Pk0GDUA0aeDokIYQQwhslALfhnHjT5+QZQuLpUHxKTEwMYWFhnD7t/LHnJDDi4uLYtWsXixYtKtGHfaUUNWvWpGbNmnTt2rXE8TZq1IiffvqJhx56iNGjR/PLL78wb968Artjr169mgcffBCr1cry5cvp379/iWPwRkajkYULFxIVFUWHDh1IS0vL/ZkCVKlShRYtWjBy5MhrelZUrlzZg1ELUXpatWrFpEmTcpMLffr0yXc/h8NBUlISNpsNPz8/Pv30Uy5cuJCbpMi7nTt3Dqv16lRQAQEBLF++nGHDhvHaa6/x4osvMnTo0CIl/GJjY4HiL596/Phxvv76a+x2e5GHx3jCjebAqAvUB2YBk/NUXQZ+0VoXvjCwl3FnV88T27ZRu3177g8L45vTp0n4+GOa/fGPbrmWEEII4W2KOYRkLdAa2AZk5ZT72gThMoSk6DIzM6lWrRoPPfQQR44c4cyZM+zZswdwLvV36NAhjhw5gp+fn4cj/T273c4LL7zA7Nmz6d69O1999RVVq1bNrdda89prrzFlyhSaNm3KN998Q6NGjTwYcdmYM2cOX3zxBc2aNctNVLRo0YKwsDCZq0KUe5mZmbRp04b09HSefvrpfJMS58+fx263/+5Ys9lM9erVqVGjRr5bSEgIkyZNYv/+/SxbtgyTyUSvXr144403ePbZZwuN7e677+bcuXO5v2OLavLkycyePRutNQcPHsTTSfqbngOjPHFnQ+PfI0Yw6rPPqGs0Ut3fn62pqSgZuyeEEOIWUcwERrmYIFwSGEW3cuVK7r33XpYuXcrw4cMZM2YMc+bMyR1vXdSGuSctXryYxx57jLCwMJYvX06LFi24fPkyjzzyCF9//TXDhg3jvffeIygoyNOhCiHKwObNm+nWrRs2mw2LxVJgQqJGjRp88cUXxMXFcezYMUJDQwtN8iUlJdGrVy8SExNZsmQJ//znP9mxYwdHjhzJXcUpP5cvXyY0NJTx48cze/bsIr+XtLQ0ateujclkolq1aiQmJhb5WHcp9hwYSqkftdadlVKXca61nFuFc6Ktim6I02d9u3o1NQwGjtntvPLII5K8EEIIIQqgtV7v6unZSGu9WilVAfCZiQJkCEnxxcTEEBQUhMlkIisrK7fL9axZswgNDeXxxx/3cISFGzlyJI0aNeL++++nY8eOzJ49m3/+858cOHCA119/nQkTJkjPAyFuIXfeeSenTp3Cz8+PihUr3vD/f0ZGBsuWLePChQvX9OAqSGhoKGvWrKFv374MHjyYWbNmERcXx+zZs5k5c2aBx61duxar1Vrs5VMXL17MxYsXMRgMPPbYY8U6tqwV+Clba93Z9Rista6YZwuW5MW1MpKTWXPuHCalqGU0MuTVVz0dkhBCCOG1lFKPA0uAf7uKwoFlnouoeLTWK7TWT9zoWzBxlcPhYPny5fTt25e1a9disVjo0qULCQkJrFixgnHjxvlMr4X27duzfft2mjZtypgxY7hw4QKrVq1i4sSJkrwQ4hZUrVo1KlWqVOj//6ioKMC5pHNRValShbi4ONq1a8fkyZO58847efPNNzl58mSBx8TGxhIUFESnTp2KfB2Hw8HcuXOpV68eDoeDQYMGFflYTyi0m4BSKkIpZXE9766UGqeUkll48rj43//SEzhvtzOuTx/MFSp4OiQhhBDCm40BOgGpAFrrg0DRlocQPmfbtm2cOXOGQYMGERcXR9euXQkICOCVV14hKCiIsWPHejrEYgkPD2fDhg3Mnz+f+Ph4evTo4emQhBBeLjIyEn9/f+Lj44t1XKVKlfjuu+/o1KkTP/30E9nZ2fztb3/Ld1+tNbGxsdx9993Fmk9o1apV/Prrr1SrVo2wsDDati3SaFCPKco4h68Bu1KqIbAQqA185taofEzNLVtYbjJx0t+fUW+/7elwhBBCCG+XpbXOznmhlDJx7XBVUY7ExMRgNBpp1aoViYmJ9OnThyNHjvD555/z5JNPEhIS4ukQiy0gIICxY8dSu3ZtT4cihPABJpOJVq1aFTuBARAcHMzKlSvp0aMHdrudRYsW8euvv/5uv/3793Ps2LFiDx+ZN28et912G4mJiQwYMACDl0+FUJToHK4VR+4H5mut/wKEuTcs36EdDg4sWYK22aj62GME16nj6ZCEEEIIb7deKfUCEKCU6gV8BazwcEzCTWJiYujWrRvbt28HnMunvvbaa5hMJiZMmODh6IQQomxERUWxa9cuHA5HsY8NDAxkxYoV3HXXXWitefDBB3+3z80sn/rrr7/m9tpIT0/3+uEjULQEhlUpNRx4GPjWVZb/Ati3oD3ffMPt58/TGMgaNcrT4QghhBC+YDJwHtgDPAmsBF70aETFoJTqr5RamJKS4ulQvN6BAwfYt29f7vCRsLAwqlatygcffMDDDz9MzZo1PR2iEEKUiejoaFJTUzl8+PBNHR8QEMDKlSu5/fbb+fnnnxk/fvw19bGxsTRt2pS6desW+ZxvvfUWFosFpRTBwcE+MSSuKAmMR4COwEyt9W9KqfrAJ+4Ny3csW7AAgAYhIViaNfNwNEIIIYR3U0oZgU+01u9qrR/QWg91PfeZISQyiWfRxcTEAHDvvfeyatUqevfuzdy5c7FarTz//PMejk4IIcpOdHQ0wE0NI8lhsVjYsmULFouFefPm5S6VmpaWxvr164s1fOTixYt89NFHDB8+nNWrV9O3b18sFstNx1ZWCk1gaK33aq3Haa0/d73+TWtdKstsKKX6KqX2K6UOKaUm51NvUUr9x1W/VSlVL0/dFFf5fqVUn9KI52Z8vHEjAC9Mm+apEIQQQgifobW2A3WVUkWfYUz4rJiYGFq3bk1ycjJJSUl06tSJt99+mwceeABZhlYIcSuJjIzEz8+vWCuR5KdKlSq88cYbAEyaNImZM2eybt06srOzizV8ZNGiRaSnp3PXXXdx5swZBg4cWKK4yoqpsB2UUp2Al4C6rv0VoLXWDUpyYdc3MAuAXsAJYLtSarnWem+e3R4FLmqtGyqlHgReBf6glIoEHgSaATWB1Uqpxq5GUZk5t3cvh202blOKrk8/XZaXFkIIIXzZEWCTUmo5kJZTqLV+w3MhidJ27tw5Nm/ezPTp04mLiwPgyJEjXL58mSlTpng4OiGEKFt+fn60bNmyRD0wcjz++OPMnTuXc+fO8eKLL9K2bVsCAgLo2rVrkY632WzMnz+fHj16kJiYiMlk4p577ilxXGWh0AQG8B7wLBAPlGaCoB1wSGt9BEAp9QUwEMibwBiIM3kCzvXi/6mci+wOBL7QWmcBvymlDrnOt6UU4yvU60OHAjC6WzeUl8/WKoQQ5ZLWzs3hwG61YrNacdhsuZu22wkMCMCoFBnp6VxOTcVhtzvrHA4cdjthVatiMhq5dOkSScnJV+u1xmGz0bhOHUxGI6fPnuVsUpLz3HZ7bv0dTZpgUIrDx49z6vx5HA5H7rkV0KNVK9CaPYcPc/LChavHOhyYDQb6tmkDDgc/7d/PyaSkq/V2OxX8/BgQFQVas/qXXzh18aLz/FqjHQ4qBwQw2FW/bOdOzqSk5F5fa02N4GAeaN0aHA4+3raNC2lp/KlTJ6p6vuv+YddmAII9HItwkxUrVqC1ZuDAgTzzzDO0bt2aRYsWcc8999CqVStPhyeEEGUuKiqKL7/8Eq01zo+1N8dsNjNr1iyGDh1K586d+fHHH4mIiCjy8qnffPMNx48fZ/78+UyePJlu3bpRpUqVm46nLBUlgZGitY51w7XDgeN5Xp8A2he0j9bappRKAUJd5T9dd2x4fhdRSj0BPAFQp5RXCOly8iT/BgaNGVOq5xVCeD+HzYYtMxN7djbaaqWCxQJ2OxeTkshMS3N+mM7Oxp6djZ/RSO3q1cFm49dDh0hz1dutVuw2G5X8/WlRty7Y7azbtYsraWnYbbbcrWalSnRq2BAcDj7ftIn0zExnnd2O3W7n9qpV6dWoEdjtzFm3jmyrNbfObrfTLiyM+xo0wGa1MmndOhwOBw6HA7vrsXd4OIPq1OFyZiZPb9mSW253OHBozYPh4QwOC+NsejqP7d6N3fXhO+dxbHg494eEcDgtjT8eOIBDaxxaO+uBv1WvzoDgYHanpTH85ElnPTjrtebtKlXo5+fHuowMHkxJyT3OATi0Zqm/P3cbDHxjtTLcas2t067HTcCdOCdneiSfn9UvQAtgETAun/rfgHrAv4C/5lN/HqgKvAW8kk99JmAB3sTZrTAvM5CzVugc4KPr6kOAJNfz14Cl19XXBQa4ns8GVl1X3wwY7Hr+Ktf+YQToADyQ5/hEoNe6dR5PYGit/waglKqgtU73aDA3QSnVH+gvQyBuLCYmhrp169KgQQM2b95M9+7d2b17t/S+EELcsqKjo1m4cCG//fYbDRqUaEADgwcPpn379hw4cACAw4cPM3HiRObMmVNocmTevHk0aNCARo0a8euvv/LUU0+VKJayVJQExlqlVE67KiunUGtdssE7ZURrvRBYCNC2bdtSnSCs/ebNWJs3543Jk/nQ1RtDiFuRw2oFqxWDw0HWlSukJidjzcjAmpnp3DIyqH/bbfgbDJw5c4bDR49izc7GmpmJLTsba1YWd0dGEmg0sufIEbYfPIjNasVms+U+jm7XjgBgzYEDrDtyxFlns2Gz27HZbLzRvj1mrflk/36+P3HCWe5wYLPbnd9Ot2oFNhuvHDnCt0lJ2LV21mtNkFJsrFsXbDbGnDnDt+np2LTGDti0pqZS/FKhAths3JuVRazW5P1lEonzgyHAvfy+K1h7rn6wfABIuK6+J1c/mD4CHL2u/n6gk+v501z9wJvjTzjH4oHzA3jWdfVjleI+kwltMPBOVhZGwKgUBsAI1Dx6lEEJCdiBdWfPYlDqar1SnLfbISMDh93OqcuXr9YbDBiVwu5wgMmE0d+fID8/DAYDBqWc+xkMVAgPh9tuo0JaGi1tNmedax+jwUDVpk2hRg2qp6YyKDExt1wphdFoJLxVK6halYYXLjB+3z4MrjqDwYDBYKBWdDRUqULUuXP848CB3HLlerytXTsIDqbb6dP88/BhjCaT83ijEaUUoe3aQWAg/U+coPaJE1fPbzSiDAaC27UDi4WRx4/T/uzZq+d21Zuio8FkYuyJE9yflIQyGq+5Pq1bg8HAiydPMio19Zpzm81maNIElGLOqVO8lJFxzbn9/Pygbl0wGPjw3Dkys7NRBgPKFbufnx/cdhsYDKy4eBGb3Z5bZzAaMfv5QeXKoBRbrlzBoTVBFSviaUqpjjh7eAYBdZRSrYAntdY+0YLSWq8AVrRt2/ZxT8firdLS0li1ahVPPPEE69evx2az8fPPP9O5c2c6d+7s6fCEEMIj8k7kWdIEhlKKV199le7duwPw8MMP8+abb5Kdnc1bb73lbIPkY/v27WzatIm5c+fy7bfORUYHDBiQ777eqCgJjJxeEW3zlGngrhJe+yRQO8/rWq6y/PY5oZQyAZVwtt2LcqzbVW/WjFFt2vDWrl1M37CB+kUccyREYbTDgTU9newrV8i6fJnstDQqGI1UsljITktjT2Ii2enpZGdkkJ2eTlZGBk1vu42IKlW4ePEiS7ZsISszk+zs7NzH++rXJzo0lKMXLjB7+3asVivZNhtWm41su51n69WjU3Aw8Rcu8OyBA1gdDrLtdqxak+1w8O/QULoZjay8coU/pqSQrTVWnN8ua2Aj0Bn4D841l6+3C2gNfA2Mzaf+INAQ51qKv5vRFxi5fDkBwDrgHzh/eeVuSvHqmTOYzWZ+S0vjp7Q0TAYDJqUwKYWfwQApKWAyYVAKi8mEyWDAaDBgMhio6OcHzZuDyUTTQ4dIS07GZDRiMhoxGo2EVqgAnTuDycSwxESiU1MxGo2YTCZMJhPVgoOhY0cwGnkuIYFzaWm59UaTieqVK0N0NBiNzNu7lytZWRjNZoyu+qohIc4PsUYj3xw+jFVrZ53ZjNFsplKlSlCrFhiN7Dx9GoxGZ52fH0aTiYDAQKhUCYxGkjIzr9b5+WEwXf01bybPZAP5qMzvkyd5heEcS1iQekDcDeob4/z3UZBI4J0b1Lcg/x4QOVq6tputb+HaCtLMtRWkiWsrSEPXVpB6rVvfoBZqNmp0w/qq4fl2RMwV7F1dQ+cCfYDlAFrrn5VS8ke0HImLiyMzM5OBAweydOlSLBYL58+f58MPP/R0aEII4THNmzfHbDYTHx/PAw88UPgBhejWrRvVqlUjKSmJOXPmUK1aNV5//XWys7N555138k1izJs3j+DgYB555BH69etHmzZtirX0qqcVmsDQWrtrMdjtQCPXsqwncU7K+dB1+yzH+VloCzAU+EFrrV2Tfn2mlHoD5ySejYBtborzhp57910WtG3Lq6NG8c7evYUfIHyKdjjIvHSJ9KQkSE8n1GKBtDS2bN1KSnIyaSkpZFy5QmZ6OnWDg+lVrx5kZfFyXByX09PJzMoiy2olMzubrlWq8FjNmjgyM+m+dStZdjuZOZvDwaP+/kwzmUjJyKBydvbvYnkJmA5c4NpsYo7XgYnAOVxjpq4TtmED0RYLKUYjX6Wl4acUZteHe7PBQIrFAtnZGKxWjAYDAWYzZqMRs9GIn8lEcPPmcNtt1EpN5aEDBzCbzfiZzZhdW+22baFaNdpfvMj8Q4cw+/k56ywWzH5+1I2OhsqV6X/xIo1On8bs74/ZYsFksWD296fW7bdDYCBPZmTwYEaGszwgAJO/PyaLhaDKlcHPj5eNRv5uNBb4M5vm2gryvGsrSH7JlbzyS87kNbiQ+sIyv607dbphfZ2IiBvWBwbLdALCN2itj1/XxbVMJ+IW7hUTE0PlypXp0qULo0aNwmQy0aRJk2It8SeEEOWNxWKhefPmJV6JJEdGRgapqak4HA5eeeUVZs+ejcViYebMmWRnZ/Pee+9hzNNuPnXqFF9++SVPPfUUGRkZbNmyhenTp5dKLGWlKKuQ1MD5hWdNrXU/1wogHbXW75Xkwq45LcYC3+Psxfy+1jpRKfUysENrvRxn99JPXJN0JuNMcuDa70ucE37agDFlvQJJjprR0TwaGcl7e/cydft2wu+4wxNhiLysVpIOH+bcoUMkHz9O0okTJJ89izkjgxGNG0N6OrM3bmTf+fOkZ2WRlpVFWnY2t5vNvFO9OqSn0+nECX6xWknHOcYeoB/O3gEAw3BOvJLXUK52458HZAD+Sjk3g4HaKSngcGCwWPAzGAj088PfZMJiNuPv50fjevWgWTMqmM1M3bYNi8WCxWLBz2LB4u9P24YNoXFjQpQiJjERv4AALBUq4BcQgF+FCs45XsLCaGAwcDwlBUtQEH5BQViCg/ELCsr9Jr4VzjH9BWkDrL1BfUtg/g3qb3dtBanj2gpS2bUV5OanOxJCeJHjSqk7Aa2UMgPPAPs8HJMoJTabjW+//Zb77ruPEydOcPDgQQAmT55coknrhBCiPIiOjmbp0qUlnsgTYP369WRlZdGzZ0/mz5/P008/zYwZM7BYLEybNg2r1cpHH32EyfU54O2338Zms/H000/z7bff5k607EuKMoTkQ+ADrs5tdgBnL+ASJTAAtNYrufqZMKdsWp7nmVydf+z6Y2cCM0saQ2mY9O9/c3e3boQtXgySwCg19uxsLh07RtKRIyQfP87lM2foVbcuJCXx+YYN/HjwIEmpqSRfuUJSZiYV7HY2WiyQmsoInJmxvJoAIwD8/dlot/Ozw0Gg0UgFo5FAsxlzQAC4egHc8+uvdHA4CKxQgQoVKhAYFERErVrQoQMEBvLl0aOogAAqVKlChcqV8a9YkeDQUKheHSwWLrjGrxdk9Q3etxl4+Qb1/lyd1K+g42vdoF4IIbzAKJy53nCcvTDjAJkRu5zYtGkTSUlJDBw4kO+/d/41rl27NkNlvjAhhCAqKopFixbxv//9r8RDN2JjY/H392fBggW0bNmSadOm8eGHHzJ16lTMZjNTpkwhOzubzz77DLvdzjvvvEP//v2JiIhg/Pjx1K1b1+dWhSpKAqOq1vpLpdQUyO05Id0886jbuTN1//QnePddeOEFqFHD0yH5DO1wcGrnThK+/56927YxvkoVVEICExMSeDMr65qJEs04JydUwBrgG6UINZkItVi4LTCQ2pUrwz33QGgoE86e5f8MBkLCwgitXZuQOnUIrV8fatYEo5EVhcSV30oEeXUspF6+XxJCiN9TSr2qtZ4E9NBaj/B0PMI9YmJi8PPzo0+fPtxzzz0AvPjii7nfAAohxK0s70SeJU1gfPfdd/To0YPGjRvz9NNPM2fOHCZOnEiLFi2YPHkyFouFCRMmYLVa6dOnDxcuXGD8+PGkpaWxevVqnnjiCZ/rGae0vvHCHEqpdcAQYJXWOkop1QF4VWvdrQziK1Vt27bVO3bscMu59f79zGzaFEPnzrywYYNbruHrkg8fJujoUfz272f5ihW8vnkzCZcvczHPv8H/Va9O7Vat+NZsZvuVK4SGhhJSowahYWGEhIfTrmtXVGgoulIl1A3mQRBCCFG2lFLxWuv8pujJu88enCPR4rXWUWUTmfu4s13hq7TWNGzYkCZNmhATE0NAQAB+fn4kJydjsVg8HZ4QQnhcZmYmQUFBTJo0iZkzb35AwZEjR4iIiGDevHmMGzeO5ORkIiIi6NSpU+7qIgALFixg7NixKKVo0aIFu3fvZtmyZQwePJg1a9Zw110lXZvDPQpqVxQlFT4B52SaEUqpTUA1nMP9RR7q9tvZW6cOKzZu5MmDBwktZLb4ci09nTMbNhD71Vck/PwzCUePsufiRU47HGzG2XvBUaEC2mTiD02b0rxZM5p36kTzfv0IbdwYgPtcW0F8K08ohBDC5TvgIhCklErF+etc5zxqrT2/xmsRKKX6A/0bNrzRujK3poSEBI4cOcKkSZP44IMPsNlsDB8+XJIXQgjh4u/vT7NmzUo8kWdsbCxA7uTIISEhTJkyhUmTJrF+/Xq6dXP2NxgzZgxms5nRo0czadIklFLXTLTsawrtgQHgWsL0dpwNjP1aa6u7A3MHd39TkvDNN7QYPJhpXbvyt/Xr3XYdb3L4hx/YERNDws6dJBw+zGig95kzbNSarjjna4gMCKB5zZo0b9KEPwwbRp277oLwcPCx7kpCCCEKVsQeGBatdZZSKkZr7VuzhuVDemD83owZM5g6dSqnTp2iR48e7N+/n2PHjjknmhZCCAHAn//8Z7799lvOnj1700M4+vfvz759+zh06FBuWUZGBo0bN6ZmzZr89NNP15w7NTWVihUrYrPZqFGjBvfccw+ffPJJid+Lu9x0Dwyl1APAd66VP14EopRSM7TWpbP2SznS/P77uT8sjLc2bmTC//5HpXL8xzp59Wr+b+RIVpw9CziXkWns58elqCgYPZo7GjfmQEgIDbp1w+jn59lghRBCeIstQBSQ6ulAhHvExMTQoUMHkpOT2b9/P+Hh4ZK8EEKI60RHR/PBBx9w4sQJateuXezjMzMz+eGHH3jkkUeuKQ8ICODll1/mz3/+M0uXLmXIkCG5dRUrOjs5btq0ieTkZJ9bfSRHwcskXDVVa31ZKdUZuBvn6iNvuzcs3/XX2bO5pDX/evxxT4fiFqdjYqBvXyr36sXFpCT+1qMHP3/1FWkpKezNymLYli0wdSr+f/gDjXr1kuSFEEKIvPyUUg8BdyqlBl+/eTo4UTInTpxgx44dDBw4kJdfdq6nNXz4cA9HJYQQ3icqyjkN1M0OI9m4cSPp6em5w0fy+tOf/kSzZs2YMmUKVuvvB07knWjZFxUlgZGz4si9wLta6/8C8qm0ANEjR/K3hg25e+tWSEvzdDilQjscrH3zTe6qUoVmgwaRun07hlmz2HDhAtN++IGWQ4diqegTw5aFEEJ41iigC1AZ6H/ddqOpj4QPWL58OQBt27ZlyZIlAAwaNMiTIQkhhFdq1aoVBoOB+Pj4mzr+u+++w2Kx0L1799/VGY1GZs2axcGDB3nvvfeuqdNas2zZMnr27ElwcPBNXdvTipLAOKmU+jfwB2ClUspSxONuWdM++oh2KSmwcKGnQykR7XDw/cyZdKlShbsmTGBfaiovDhiAef9+mDwZVamSp0MUQgjhQ7TWP2qtRwPPa60fuW77s6fjEyUTExND48aN+eabb9BaExwcTPv27T0dlhBCeJ0KFSoQGRl50wmM2NhYunbtSmBgYL719913H507d+all17iypUrueUJCQn89ttvPjt8BIqWiBgGfA/00VpfAkKAv7g1Kl93550c69iRCVOnknnpkqejKT6tYcUKdrdsSd8XX+RYWhrzhw7lyPnzTIiJIaBqVU9HKIQQwgcppXLWarsoQ0jKl5SUFNauXUvPnj157733CAwMpGfPnphMRVnwTgghbj1RUVE3NYTk2LFj7Nu3L9/hIzmUUsyePZuzZ88yd+7c3PKYmBjAOQGoryo0gaG1TtdaL9VaH3S9Pq21jnN/aL7t8JAhvJmWxgejR3s6lCJzswhkoAAAF2RJREFU2Gws/ctfmB0eDgMG0CYtjZinnuJQcjJjv/qKgJAQT4cohBDCt3VzPV4/fESGkPi42NhYrFYrly9fJisriytXrtC7d29PhyWEEF4rOjqaM2fOcOrUqWId99133wHcMIEB0LFjR+6//35mz57N+fPnAWcCo3379oSFhd1c0F5AhoK4SY9nn6VjUBCvfPUV1vR0T4dzQ/bsbL4YN46WQUEMef11Pk5Kwvruu3DgAAMWLJD5LYQQQpQKrfV01+P1w0dkCImPi4mJoWrVqsTExNC6dWsAn50gTgghykJ0dDRAsYeRxMbGUq9ePW6//fZC9/3HP/5Beno6M2bMyJ1o2dfnJpIEhpsog4EXn3uO/9ntLB471tPh5M9mY/PUqTQLDmb4/Plo4NOnnuLny5cxP/YYmM2ejlAIIUQ5opSacKPN0/GJm5Odnc3KlSupV68eqampBAcH07BhQ+rXr+/p0IQQwmu1atUKpVSxhpFkZ2ezZs0a+vbti1Kq0P2bNGnCo48+yttvv507lMSX578ASWC4Vb+pU4kKCOAfixdjz872dDi5sq9c4cycOXD77dw2YwZBRiNfTZjAnitXeGjBAln6VAghhLsEu7a2wGgg3LWNAqLKKgilVAOl1HtKqSV5ygKVUh8ppd5VSo0oq1jKg3Xr1pGamsrBgwfp1asXO3fulOEjQghRiKCgIJo0aVKsHhg//vgjV65cKXT4SF7Tp0/HZDIxZ84cGjVqRJMmTW4mXK8hCQw3UgYD0595hrusVtI++cTT4ZB56RL/evBBGlWuzGPPPQchITSIiWFHWhpD58zBIBNtCSGEcCOt9d+01n8DagFRWuuJWuuJQDRQpyjnUEq9r5Q6p5RKuK68r1Jqv1LqkFJqciFxHNFaP3pd8WBgidb6cWBAkd+UICYmBrPZTEpKCvfccw9paWkyfEQIIYogKiqqWAmM7777DrPZzF133VX4zi41a9bk2WefBZy9L4rSc8ObSQLDzQbMnMm/IyOp+Oab4HB4LI5vp02jQWgoY/7zH2pVqMDYv/8dtm2DAQPAx/8RCyGE8Dk1gLxdE7NdZUXxIdA3b4FSyggsAPoBkcBwpVSkUqqFUurb67bqBZy3FnDc9dxexFhueVprli1bhtlspmPHjpw9exaTyUT37t09HZoQQni96OhoTp06xZkzZ4q0f2xsLF26dCEoKKhY13n++ef54x//yJNPPnkzYXoVSWC4m8EAf/0rWxIT2fTKKx4J4acFCxjy979Tw8+PNa+/zo+XLtH3xRclcSGEEMJTPga2KaVeUkq9BGzFmZgolNZ6A5B8XXE74JCrZ0U28AUwUGu9R2t933XbuQJOfQJnEgNu0D5SSj2hlNqhlNqRM6v7rSw+Pp5Tp06Rnp7OlClTiIuLo2PHjlSUCcCFEKJQORN5FmUejOPHj5OQkFCs4SM5KlWqxMcff0zDhg2Lfay3kQRGGXAMHcqfzGbGzZiBLuteGLt20XzyZB6rUoU1CQncNXEiyiA/diGEEJ6jtZ4JPAJcdG2PaK1nleCU4VztPQHOZER4QTsrpUKVUu8AbZRSU1zFS4EhSqm3gRU3iH2h1rqt1rpttWrVShBy+bBs2TIAIiMjadeuHTt37pThI0IIUUQ5qzYVZRjJ999/DxS+fGp5J59ky4DBz48pI0awMyOD72bMKLPrHlu/niu9exNUpQoLfvmFkIiIMru2EEIIcSNa651a63mubVcZXztJaz1Kax2RkzjRWqe5lnMdrbX+9EbHK6X6K6UWpqSklE3AXmzx4sUA/PWvf+WHH34AkAk8hRCiiCpWrEjjxo2L1AMjNjaWWrVqERkZWQaReS9JYJSRkfPnU8do5O+vvVYmvTDO/Pwzd/XsyR9SUiAuDmrVKvwgIYQQwjedBGrneV3LVeYWWusVWusnKlWq5K5L+ITDhw9z7NgxQkNDGTZsGN9//z2hoaFERZXZgjJCCOHzoqOjC+2BYbVaWb16Nf369fP5SThLShIYZcQvKIhJQ4ey5coV1r75pluvlfK//9G3QwfO2mxM//e/wceXyhFCCCEKsR1opJSqr5TyAx4Elns4pnJvzpw5AIwfPx6j0UhcXBw9e/bEaDR6ODIhhPAdUVFRHD9+nBvNq7RlyxZSU1Nv+eEjIAmMMvXnd96hucnEqfffd9s1Mi9dYmDLluzNzGTpP/5Bu0cecdu1hBBCiLKmlPoc2ALcrpQ6oZR6VGttA8YC3wP7gC+11olujEGGkACff/45JpOJ5557jsTERE6fPi3DR4QQopiKMpFnbGwsJpOJu+++u6zC8lqSwChD/pUr88urrzJy717YvLn0L2Cz8UybNqxPSeGjsWPpPWVK4ccIIYQQPkRrPVxrHaa1Nmuta2mt33OVr9RaN3bNazHTzTHc8kNIVq9ezaVLl+jatSv+/v65k8tJAkMIIYqnTZs2wI0n8oyNjaVTp06ywhMeSmAopUKUUquUUgddj1UK2O9h1z4HlVIP5ylfp5Tar5Ta7doKWtPd66gnn8QRGsrGCRNK98Raw+jRTDp6lA9HjGD4/Pmle34hhBBCALd2D4ykpCSmTJnCoEGDAJg2bRoAcXFxREZGUkvm3BJCiGKpXLkyERERBSYwTp06xc8//yzDR1xMHrruZGCN1voVpdRk1+tJeXdQSoUA04G2gAbilVLLtdYXXbuM0FrvKMugS0VgIO906sSY5cuJ//RTokaMKJXTfvfQQ/T+4gsavPACDWa69YsnIYQQ4pamtV4BrGjbtu3jno6ltDgcDs6fP8/Jkyc5efIkp06duub58ePHOXLkCBkZGbnHhIWF0bVrVzIyMtiwYQOjRo3y4DsQQgjfFR0dzbZt2/Ktk+VTr+WpBMZAoLvr+UfAOq5LYAB9gFVa62QApdQqoC/wedmE6D4jFyzgrytWMPP55/m6FBIYbw0ZwjNLl/Jh1648XIbLtAohhBDC+6Wnp3P8+PECkxMnT57k9OnT2Gy2a45TSlG9enXMZjPnzp0jOzubiIgI/vCHP9CtWzdatmyJUoqNGzeSmZlJnz59PPQOhRDCt0VHR/Pll1+SlJREaGjoNXWxsbHUrFmTFi1aeCg67+KpBEYNrfVp1/MzQI189gkHjud5fcJVluMDpZQd+BqYobXW+V1IKfUE8ARAnTp1Shp3qahYqxbjunTh5Q0bSFy2jGaubpg347MxY3hm6VLuDwtjZFwc3OLL6gghhBDuppTqD/Rv2LChp0Mp1KVLl6hduzZXrly5prxixYqEh4cTHh5Ojx49CA8Pp2bNmrllVapUYdmyZbz++uucOHGCXr16MX36dDp16vS7a8TFxeHn50fXrl3L6m0JIUS5krP89K5du+jZs2duuc1mY9WqVQwePPiWXz41h9sSGEqp1cBt+VT9Ne8LrbVWSuWbfLiBEVrrk0qpYJwJjD8CH+e3o9Z6IbAQoG3btsW9jtuMW7SIOY0bM3P8eD67yQTG9zNn8vC//kW3SpX4bO9ejBZLKUcphBBCiOv50hCS5ORkrly5wujRo3nggQdyExVBQUH57p+ens4777zDq6++yrlz5+jZsyfTp0+nc+fOBV4jLi6OLl26UKFCBXe9DSGEKNdyEhjx8fHXJDC2bt3KpUuXZPhIHm6bxFNr3VNr3TyfLQY4q5QKA3A9nsvnFCeB2nle13KVobXOebwMfAa0c9f7cJfQRo14ql074o8dI+OXX4p9fOoPPzD8xRdp5u9PzC+/4F+5shuiFEIIIUR50KFDB3r06EHjxo3zTV6kp6fz5ptv0qBBAyZOnEiLFi3YuHEjq1atumHy4tSpU+zZs0eGjwghRAmEhIRQv379303kGRsbi9FovCapcavz1DKqy4GcVUUeBmLy2ed7oLdSqoprlZLewPdKKZNSqiqAUsoM3AcklEHMpW7655+TaLEQMHdu8Q789VcqDhvG0rAwvtu6lUpeMjRGCCGEEL4lb+JiwoQJNG/enA0bNrB69eobJi5yrFq1CpDlU4UQoqSioqLYuXPnNWWxsbF07NiRyvJldS5PJTBeAXoppQ4CPV2vUUq1VUotAnBN3vl3YLtre9lVZsGZyPgF2I2zV8a7Zf8WSi6wQQNMTz5J+scfk7x7d5GOObF9O0s6dwajke4bN3Jby5ZujlIIIYQQeZWHZVQzMjKYO3cuERERTJgwgWbNmrF+/XpWr15Nly5dinyeuLg4atSoIZPLCSFECUVHR3P48GEuXboEwNmzZ9m5c6cMH7mORxIYWuskrfXdWutGrqEmya7yHVrrx/Ls977WuqFr+8BVlqa1jtZat9RaN9NaP6O1tnvifZSGrHHjaGK38+LIkYXum3z4MH26dOGxpCSSvvgCIiLKIEIhhBBC5KW1XqG1fqJSpUqeDqXYchIXDRo04Nlnn6Vp06asX7+eNWvWFHsSTofDQVxcHL1798Zg8NR3YkIIUT5ER0cD5PbCyFk+tW/fvh6LyRvJXxsPs0RE0K9JE95LTOTUdV2G8kq/cIH7WrfmUFYW38yZQ2iPHmUYpRBCCCF8WXZ2NvPmzbsmcbFu3Tp++OGHm149ZPfu3Vy4cEGGjwghRCnImcgzJ4ERGxtLjRo1aN26tSfD8jqSwPACk95+Gzvw+uP5T2ZuTU/ngchItl65wufPPUePCRPKNkAhhBBC+KScVeb/8pe/MH78eJo0acLatWv54Ycf6NatW4nOnfPtYK9evUocpxBC3OqqVq1KnTp1iI+Px263ExcXR9++faWH23XkbniBBt27M6JBA97ZuZPz+/ZdW+lwsLxfP1aeP8/bI0Yw+LXXPBOkEEIIIQDfmgPj9OnTgHOG+7Vr17J27Vq6d+9eKueOi4ujdevW1KhRo1TOJ4QQt7qoqCji4+PZvn07ycnJMnwkH5LA8BJT5s8nE/hy/PhrK55/niEbNrD1iSd4YvFij8QmhBBCiKt8aQ4Mq9UKQLVq1Th69CgrVqxg8+bN7N+/n/Pnz2Oz2W7qvFeuXGHTpk0yfEQIIUpRdHQ0Bw8e5D//+Q8Gg0F+x+bD5OkAhFOTe+7hlz59aLZpE1y8CFWqsOD+++mwbBnRY8fS7q23PB2iEEIIIXzMmTNnANi6dStbt27Nd5/KlSsTGhpKaGgoISEhuc9v9HrDhg1YrVZpXAshRCnKmchz4cKFtG/fnpCQEA9H5H0kgeFFms+eDa1akf3mm3x26hRjly3jz/Xr8968eaCUp8MTQgghhI9xOBwAdOrUiY8//pikpKTcLTk5+ZrXSUlJXLhwgf3795OUlERqauoNzx0QEEDnzp3L4m0IIcQtIWciz/T0dBk+UgBJYHiTli35oHVrJs+YQZLW9AwJ4V+7d4NM3CKEEEKIEjCbzTRo0IAGDRoU+Rir1UpycvLvEh05r1u0aIHFYnFj1EIIcWupUaMG4eHhnDx5kn79+nk6HK8kCQwv03z8eM793//RtkIFlu7Zg6ViRU+HJIQQQohbkNlspkaNGjJJpxBClKF27dqxadOm3OEk4lqSwPAydzz8MD+mp9P83nsJrlnT0+EIIYQQ4jpKqf5A/4YNG3o6FCGEEOXMvHnzuHjxoiyfWgC5K16o0+jRVKpTx9NhCCGEECIfvrQKiRBCCN9Su3ZtWrZs6ekwvJYkMIQQQgghhBBCCOH1JIEhhBBCCCGEEEIIrycJDCGEEEIIIYQQQng9SWAIIYQQQgghhBDC6ymttadjKDNKqfPAsVI+bVXgQimfU8h9dRe5r+4h99U95L66h7vua12tdTU3nNdrSbvCp8h9dQ+5r+4h99U95L66R5m2K26pBIY7KKV2aK3bejqO8kbuq3vIfXUPua/uIffVPeS+ejf5+biH3Ff3kPvqHnJf3UPuq3uU9X2VISRCCCGEEEIIIYTwepLAEEIIIYQQQgghhNeTBEbJLfR0AOWU3Ff3kPvqHnJf3UPuq3vIffVu8vNxD7mv7iH31T3kvrqH3Ff3KNP7KnNgCCGEEEIIIYQQwutJDwwhhBBCCCGEEEJ4PUlgCCGEEEIIIYQQwutJAqMElFJ9lVL7lVKHlFKTPR1PeaCUqq2UWquU2quUSlRKPePpmMoTpZRRKbVLKfWtp2MpL5RSlZVSS5RSvyql9imlOno6pvJAKfWs63dAglLqc6WUv6dj8kVKqfeVUueUUgl5ykKUUquUUgddj1U8GaO4StoVpU/aFe4jbQr3kHaFe0i7onR4Q7tCEhg3SSllBBYA/YBIYLhSKtKzUZULNmCi1joS6ACMkftaqp4B9nk6iHJmHvCd1roJ0Aq5vyWmlAoHxgFttdbNASPwoGej8lkfAn2vK5sMrNFaNwLWuF4LD5N2hdtIu8J9pE3hHtKuKGXSrihVH+LhdoUkMG5eO+CQ1vqI1job+AIY6OGYfJ7W+rTWeqfr+WWcv7TDPRtV+aCUqgXcCyzydCzlhVKqEtAVeA9Aa52ttb7k2ajKDRMQoJQyARWAUx6OxydprTcAydcVDwQ+cj3/CBhUpkGJgki7wg2kXeEe0qZwD2lXuJW0K0qBN7QrJIFx88KB43len0D+IJYqpVQ9oA2w1bORlBtzgecBh6cDKUfqA+eBD1zdaBcppQI9HZSv01qfBF4H/gecBlK01nGejapcqaG1Pu16fgao4clgRC5pV7iZtCtKlbQp3EPaFW4g7Qq3K9N2hSQwhFdSSgUBXwPjtdapno7H1yml7gPOaa3jPR1LOWMCooC3tdZtgDSkO36JucZODsTZkKsJBCqlRno2qvJJO9dSl/XURbkn7YrSI20Kt5J2hRtIu6LslEW7QhIYN+8kUDvP61quMlFCSikzzkbGp1rrpZ6Op5zoBAxQSh3F2S35LqXUYs+GVC6cAE5orXO+zVuCs+EhSqYn8JvW+rzW2gosBe70cEzlyVmlVBiA6/Gch+MRTtKucBNpV5Q6aVO4j7Qr3EPaFe5Vpu0KSWDcvO1AI6VUfaWUH86JYJZ7OCafp5RSOMf97dNav+HpeMoLrfUUrXUtrXU9nP9Wf9BaS+a5hLTWZ4DjSqnbXUV3A3s9GFJ58T+gg1Kqgut3wt3IJGalaTnwsOv5w0CMB2MRV0m7wg2kXVH6pE3hPtKucBtpV7hXmbYrTO48eXmmtbYppcYC3+OcyfZ9rXWih8MqDzoBfwT2KKV2u8pe0Fqv9GBMQtzI08Cnrg8cR4BHPByPz9Nab1VKLQF24lxBYBew0LNR+Sal1OdAd6CqUuoEMB14BfhSKfUocAwY5rkIRQ5pV7iNtCuEr5F2RSmTdkXp8YZ2hXIOUxFCCCGEEEIIIYTwXjKERAghhBBCCCGEEF5PEhhCCCGEEEIIIYTwepLAEEIIIYQQQgghhNeTBIYQQgghhBBCCCG8niQwhBBCCCGEEEII4fUkgSGEKDNKqcpKqadcz2u6lrQSQgghhCg2aVcIceuRZVSFEGVGKVUP+FZr3dzDoQghhBDCx0m7Qohbj8nTAQghbimvABFKqd3AQaCp1rq5Uur/gEFAINAIeB3wA/4IZAH3aK2TlVIRwAKgGpAOPK61/rXs34YQQgghvIC0K4S4xcgQEiFEWZoMHNZatwb+cl1dc2AwcAcwE0jXWrcBtgB/cu2zEHhaax0NPAf8q0yiFkIIIYQ3knaFELcY6YEhhPAWa7XWl4HLSqkUYIWrfA/QUikVBNwJfKWUyjnGUvZhCiGEEMIHSLtCiHJIEhhCCG+Rlee5I89rB87fVQbgkutbFiGEEEKIG5F2hRDlkAwhEUKUpctA8M0cqLVOBX5TSj0AoJxalWZwQgghhPAp0q4Q4hYjCQwhRJnRWicBm5RSCcBrN3GKEcCjSqmfgURgYGnGJ4QQQgjfIe0KIW49soyqEEIIIYQQQgghvJ70wBBCCCGEEEIIIYTXkwSGEEIIIYQQQgghvJ4kMIQQQgghhBBCCOH1JIEhhBBCCCGEEEIIrycJDCGEEEIIIYQQQng9SWAIIYQQQgghhBDC60kCQwghhBBCCCGEEF7v/wGbfeQeyX28uwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_sensitivities('x', eps)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDcAAALICAYAAABrWRshAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeXxMV//A8c+dJZM9EREkRJHYaq2tilYf1KNVWkVtpX2qWmot7YOiVC0tfpbaqqpauiitavtQ1aq1tVNq3yIICSL7NjP3+/tjJiOJiFiSKOf9ep1XJvece+6ZyWTmnu899xxNRFAURVEURVEURVEURfmnMhR1AxRFURRFURRFURRFUW6HCm4oiqIoiqIoiqIoivKPpoIbiqIoiqIoiqIoiqL8o6nghqIoiqIoiqIoiqIo/2gquKEoiqIoiqIoiqIoyj+aCm4oiqIoiqIoiqIoivKPdlcGNzRN+7emaUc0TTuuadqwXPLf0DTtoKZp+zRN+03TtHJF0U5FURRFURRFURRFUYreXRfc0DTNCMwGWgPVgC6aplXLUWwPUE9EagLLgQ8Kt5WKoiiKoiiKoiiKotwtTEXdgFw0AI6LyEkATdO+BtoBBzMLiMjvWcpvBbrnp+LAwEB54IEH7lxLFUVRFEW5xq5duy6JSImibkdh0DTtaeBpHx+fVypVqlTUzVEURVGUe1pe5xh3Y3AjBDiT5fezQMM8yr8MrM5PxQ888AA7d+68jaYpiqIoinIjmqadLuo2FBYR+RH4sV69eq+ocwxFURRFKVh5nWPcjcGNfNM0rTtQD3gsjzK9gd4AoaGhhdQyRVEURVEURVEURVEKy1035wZwDiib5fcyzm3ZaJrWAngbaCsi6derTETmi0g9EalXosR9MUJWURRFUZRComna05qmzY+Pjy/qpiiKoijKfe1uDG7sAMI1TSuvaZob0Bn4IWsBTdPqAB/hCGzEFEEbFUVRFEVREJEfRaS3n59fUTdFURRFUe5rd91tKSJi0zStH7AGMAILReSApmnvAjtF5AdgMuANLNM0DSBSRNoWWaMVRSlStowMMhISyEhKQk9PJ8DDA6xWThw7RmJcHOnJyVjT0khPTcXXbKZ++fJgtfLD1q0kJCVht1qxZmRgtVoJ8fGhbbVqYLXyf+vXk5SWhm6zYbXZsNntPBgQQI/KlcFmo//69aRbrdh0HV3XsdntPBwQQL/wcDKsVjpv3Yqu69h1HV0EXYSWAQG8ERpKbGoq7f/+27U9Mz1XrBhvlizJiZQUnjt1Ch0QZ54AL/n58WZAADtTUuh64YIjz1lGgEG+vgz09mZNaiovx8YCOPKdr9UoT0/6enryRUoKA5OTIUueANM8POjp5sas9HRGpqZmywNYaLHQwWxmbFoak222a/JXmM20MhoZYLXysd2eLQ9gg8lEQ4OBHlYrS51tzuqQwUBFg4F2djurRK7Z/5Km4W8w0MxuZ3Nu7wWDI2ZfV9fZmyPPBKQ786voOsdy5FuAFMd3CuVEsk3+BOADxDvzS4pwMUd+gLN9AP4iJOTIDwbOOvO9RUjJkV8ROOZsn7uuY82R/yCwz5lv1nX0HPkNgT8MBtJ0HW+u1RxYYzQSqetUcL62a9zcaJ5+3cGPSj5kTigaFhZW1E2556xevZpRo0bxwQcf8K9//auom6MoiqLc5e664AaAiKwCVuXYNjrL4xaF3ihF+QfLSEoi4dw5ki9eJOnyZSoWL447cOzoUQ4eP05acrIjpaaSlprKy7Vr4w38sH8/G06eJMNqJT0jgwybjQyrlYV16uAuwgeHD/NLTAwZuo5N17GJoOs6O8PCwG6n19mzrE9JwS6CHdBFMAERxYuDrvN4fDx7bDbsODqwOuABXHZzAxHCrFYinHmZHVxPIMn52B/IORDcK0t+dSAtR34xINb5+DnAliO/FJAZKR0K13S+ywM9VjvmMJ6Vy2u9NyKCfrt3owMrcsmPvXSJN44eJR7YkEu+X3Iyb549SyywL0eeBvx18SJcvsxlXedklu2ZTsfHQ1IS8brORV1Hy5KvAfFpaaDrZFitpDk7uFnzrXY76Do48wzOzrirjMkEFgsedjsednu2fQEs3t5gsVA8KYliKVe775nt8ChWDCwWysTHU9KZn7WNllKlwGwmLDaWssnJaDmObypbFoxGHoyJISo1NdvrYwAoXx6AOhcukJwlXwMsBoMjX9Ood+4chrTs7w4/gwEqVACgwZkzeOfo9AeZTK76658+TYQ1e/gh1GyGcuUc+RERnLdlf3dVcnODso67LuucOkWsM/iTqZa7O4SEAFDj1CmS9avhCwHqubtDcDAAVU6exJYjOFTb0xNKlsRgt1MhMpKcHvTygsBA3G02Hjh7FoBiZcteU065OVknFC3qttxLRIS3336bPXv20Lx5c4YMGcL48eOxWCxF3TRFURTlLqWJ5Dx1v3fVq1dP1EzmSkGypaWRcPYsbunpeIuQcO4cf+7cSWJsLMnx8STGx5OSnMwTZcpQ28+PvadPM3PPHlIzMkjLyCDVaiXdZmNY6dK08vTkm5gYRkdHYxXBliXN8fTkOZOJ91JSmGi1okO29A2Ojnt34Itc2vkL0BJ4ihxRRKe/gJrAo8CmXPLP4wgC1AV255Jvx9Epri/CHhwdS4PzpxuQ4OkJmkaz1FT+EsHgzDcCvgYDR0uXBqORdjExHLLZHHmahlHTKGU280vlymAw0OPUKU5lZGAyGDBqGiaDgQc8PZlXpw6YTAzev5+YjAxMRiNmoxGTyURFf3/erF8fTCYm7thBkt2O2WTCYDRiNpupGBhIp7p1wWzm0x07sItgtlgwms2Y3dwIDQqiUfXqYDbz2759GN3cMFksmN3dMZrNBJUsSWiZMugGA6ejo135Jnd3TBYL7t7eePr6ohsMYDJhMN2VMWZFuS2apu0SkXpF3Y7CpM4x7qwNGzbQrFkzpk2bxpEjR5g3bx41a9bkiy++oHr16kXdPEVRFKWI5HWOoc6qlXteRlISF/bvJ/rIES6ePs2V6GjKeXjQpGRJUi5eZPjatSSnppKclkZSejqpGRm09vVlSPHinE5I4F8REWSIkOEcJm4ToZvRyFyjkfVWK//KZWh9F+BL4EccAYacTgFzcVy5/zSX/Efi42kFnASOcTU4kJmSbDYwmfA2mfC22Rwde03D7PxZIiQEihWjZVwcpy9fxs1gwM1kwmIy4WYyEfbQQ1C8OK9HR1Pp/HnczGYsFgsWiwV3d3ceePRRKFaMWRcvciw2Fg9vb9y9vfHw8cHD15fAGjXAx4dNBgMGb2/cvL1z7aTvuMHfZv0N8lfeIP/zG+RPu0H+8Bvkv3SD/OZPPnndPANQvmrVPPMVRVGU3E2fPp3ixYvz6quv4uHhwVNPPcXLL79MvXr1mDRpEgMGDMBgUJ+kiqIoylVq5IZyV0qJjMQzJgZiYvjmf//jTGQksbGxXImPJy4xkTCzmXeDgyEpidoHDhBrt5Om66SLYAVqA39oGroIxlzqr4FjyH8CkNsUcA8Df+IIQoTjGFFgxBENNGkaL7i7MyMwkGPAM9HRuBuNWIxGLM4AQs9y5egSHs4pm40phw/j5e6Op6cnnl5eePv48HitWlStVIk4TePQxYv4BAXhExSEX3Aw3sHBmNzdC+BVVRRFKRz308iNLHNuvHLsWM6ZXJRbceLECcLDwxkxYgTvvfeea3tMTAy9evXixx9/pEWLFixatIgQ561ciqIoyv0hr3MMFdxQCs2Fffs4uHYtx3bvJiM6mv4lSsD58zTfsYNDaWkk6TqpOOZAyDovghtcM7FeEBDtfOyJ4zYIE+CmaViAxu7ufFuuHHh50erkSdzMZvw8PfHz9sbPx4eGFSvSrmFDdG9vfjp2DP9SpfAvXRr/kBACKlbEMzBQXRFSFEW5RfdTcCOTOse4cwYOHMjcuXOJiIgg2DnPTCYR4eOPP2bw4MFYLBbmz59Phw4diqiliqIoSmFTt6UoBSctjZ2ffsqOjRs5deIEZ6KjiYqLw261stnfHxITqZiU5Jr4MJMb0N/5+BCOQIanphFiMFDczY2axYrB449DsWJMPXYM3cODwNKlCSpblhLly1OmRg2oXBlMpmtWHMhpTR55Bq5OHqkoiqIoStGKj49n4cKFPP/889cENgA0TaN37940a9aM7t2707FjR3r27MnMmTPx9fUtghYriqIodwsV3FBuyr7vvuPrKVP488ABfgMMCQl0AY7nKGcEx4oLnp7U9/TEX4QgLy9CAgJ4oGxZqtaoAS+8AFWqEOXpmecx++eZqyiKoijKveKTTz4hKSmJQYMG5VmuUqVKbNmyhXHjxjF+/Hg2bNjA4sWLadKkSSG1VFEURbnbqNtSlOtLSIBly/hw5kymHDhAlN2ebdnMXRYLD1WqxBf+/pxyc6Ni1apUfuQRqrRqhWdAQJE1W1EURSla99NtKWrOjTvHZrMRFhZGaGgoGzduZPPmzbzzzjssXLiQcs5llnPzxx9/0L17d06fPs2wYcN45513cHNzK8SWK4qiKIVF3Zai3JBus/HnggV8M28em44e5VhqKvOAbjhGZZwDShuNPBQYyJOPP07HceMICAsDZxlFURRFuR+JyI/Aj/Xq1XulqNvyT/f9999z+vRppk1zrHXVuXNnzp07R8WKFZk6dSoDBw7Mdb9HHnmEv/76i4EDBzJhwgTWrFnDkiVLqFKlSmE2X1EURSliauTGfSrmwAGSly6l/I4dfLt1K53i4tCz5PsCk8qWpc/zz2Nr3x5To0ZF1VRFURTlH+Z+GrmRSZ1j3L4mTZoQFRXFsWPH+PPPP2natCkhISHExMRgtVpp2LAhv/76K97e3tet49tvv6V3796kpqYydepUXnvtNTRNK8RnoSiKohSkvM4x1HIQ94mUS5foX7MmD1oseGoaJatX58Vx4+Dnn2mUmEg5o5Hny5RhSZ8+JF+8SLwIfSIjYfJkFdhQFEVRFKVA7dixgy1btjBgwACMRqNrzo1evXpx7NgxqlSpwrZt2wgKCuKHH364bj3PPfcc+/fvp2nTpvTt25enn36a6Ojo65ZXFEVR7h0quHGv03XSBg4koEQJZu3fz8GMDDw0jSa+vvR4+mk4fJhgm42TNhtfnzlDtzlz8AwMLOpWK4qiKIpyH5k2bRo+Pj785z//ISoqil27duHl5cXYsWNp2bIlM2bMYPjw4aSlpdGuXTs6dOiAruu51hUcHMzq1auZOXMmv/76KzVq1MgzIKIoiqLcG1Rw4x72ba9e4OeH+8yZtNY0RjZpQnpiIpd1nU3x8bz8ww+O5VQVRVEURXHRNC1U07TvNU1bqGnasKJuz73u7NmzLFu2jF69euHr60v//o510tLS0mjVqhUArVq14ujRo6xevZoSJUrw7bffEhQUxN69e3Ot02Aw0L9/f3bt2kVwcDDt2rXj1VdfJTk5udCel6IoilK41Jwb96CfRo/mlfHjuaDrTAGGvPgifPQRqJnDFUVRlEJQlHNuaJq2EGgDxIhI9Szb/w3MwLFa+QIRmZRHHU8BxURkiaZpS0Xk+Rsd9345xygIw4cP54MPPuD48eOEhITg5eWFpmnY7XaOHj1KmTJlmDJlCuPHj8dgMDBy5Eh2797NsmXL0DSNN998k/fff/+69aenpzN69GgmT55MWFgYS5YsoUGDBoX4DBXl/qbrOmlpaaSkpLhSampqtt/zs+3hhx+mf//+GAzq+vz9LK9zDBXcuIfs/fpruvTsyeGMDACeCAjgiz/+IFCNzlAURVEKUREHNx4FkoDPM4MbmqYZgaNAS+AssAPogiPQMTFHFf8B7MByQIDFIvLpjY57r59jFJTk5GTKli3L448/zrfffsuIESOYOHEibm5utG3blmXLlrnKRkREMGjQIFauXEnVqlV54YUXGDduHKmpqYSHh7N+/XqCg4Ove6z169fTo0cPoqKiGD16NMOHD8dsNhfG01SU+8bvv//OwIEDuXLliisokZaWdkt1ubu74+HhgaenJ0ajkcjISJ555hk+++wzfH1973DLlX8KFdxwumdPPKKiyOjUCc8tW7ADtdzd+WrZMqq2aVPULVMURVHuQ0W9WoqmaQ8AP2UJbjQCxohIK+fvwwFEJGdgI3P/ocB2EdmoadpyEelwo2Pes+cYBWzu3Ln07duXTZs20aRJE/z9/UlISEBE2Lp1Kw0bNrxmn//973/079+fU6dO0aFDByIiIti5cycmk4nZs2fTu3fv6x4vLi6O119/nS+//JJ69erx+eefU7Vq1YJ8iopy3zh37hy1a9fG19eXZs2auQITWVPObdf73cPDI9sIDRFhxowZDB06lPDwcL7//nsqqwu49yUV3HC61048Ui5dYmCDBnx46hTuwHu+vjwyejT/GjKkqJumKIqi3MfuwuBGB+DfItLL+fsLQEMR6Xed/asDY4BLQJKIDL1Oud5Ab4DQ0NC6p0+fvrNP5B6n6zrVqlXDx8eH7du38/XXX9O1a1fc3d2pX78+GzduvO6+qampvP/++0yaNAk3NzdatmzJypUrsdvtPProo6xevRpPT8/r7r9s2TL69OlDcnIyEydOZMCAAWqou6LcBpvNRvPmzdm5cyc7d+4ssKDh77//TqdOncjIyGDx4sW0bdu2QI6j3L3UUrD3GN1mY0jduviXKMGCU6d412KBRYsYGR+vAhuKoiiKcptE5G8R6SAir10vsOEsNx8YC+x2U/Na3bSff/6ZI0eOMGjQIDRNY+TIkYBjItE333wzz309PDwYM2YMBw4coEmTJnz33XeEhYURHBzMxo0bCQoKYu3atdfdv2PHjvz999+0aNGCwYMH07x5cyIiIu7k01OU+8rYsWPZuHEjc+fOLdDRUI8//ji7du0iPDycdu3aMXbs2OuunKTcf1Rw4x/mw44d8TWb+b/duzEA7zz2GO8lJUHPnkXdNEVRFEW5W50Dymb5vYxzm1KEpk2bRnBwMB07dmTv3r2cPHkSd3d3qlSpwlNPPZWvOipWrMj//vc/VqxYQWpqKlFRUVStWpWUlBSeeOIJevTocd2OT6lSpfjhhx/45JNP2LlzJzVr1mThwoXcT6Oa72eRkZHs2bOH48ePExMTQ2pqqvrb36Jff/2V8ePH89JLL9GjR48CP15oaCibNm2iR48ejBkzhmeeeYb4+PgCP65y91O3pfxT/PQTtpdfxjsmBivQIyyMj/bswc3bu6hbpiiKoijZ3IW3pZhwTCjaHEdQYwfQVUQO3Klj/qPPMYrA/v37qVmzJhMmTGD48OE0bdqUzZs3A/Dxxx/Tq1evm64zOTmZCRMmMHnyZCwWC7quk5KSQqlSpVi3bl2eV5MjIiJ48cUX2bBhA23atOHjjz+mVKlSt/z8lLuXzWZjwoQJjBs3DpvNli3PZDLh4+ODj48Pvr6+2X7md1tgYCDFihUromdX+M6fP0/t2rUJDAxk+/bteHl5FdqxRYTZs2czePBgKlSowIoVK6hWrVqhHV8pGmrODad/4onH7i+/5OX//Icf09MpA6yuU4f6X32lVkBRFEVR7lpFvFrKV0AzIBCIBt4RkU80TXsSmI5jhZSFIjL+Dh3vaeDpsLCwV44dO3Ynqrwv9OrViy+//JIzZ86gaRqBgYGYzWaKFStGREQE7u7ut1z3kSNH6NevH7/++it+fn7Ex8djMBgYPXo077zzznX303WdmTNnMnz4cLy8vJg3bx4dOtxwLlnlH+To0aP06NGDbdu20bVrVzp06EBiYiKJiYkkJCRc8zjnz8yUV/9J0zQ6d+7MqFGj7vnJau12Oy1btmTr1q3s2LGDBx98sEjasXHjRjp27EhKSgqff/45zz77bJG0QykcKrjh9E8KbpzdsYMuLVqwOSEBgHdKlmTMhg2gghqKoijKXa6oR24UhX/SOUZRi4mJITQ0lBdffJF58+bRs2dPPv/8cwDGjx/PiBEjAPjiiy8YOXIkw4cPz3MFlNyICMuXL2fw4MGcO3cOo9GI3W6nevXq/P777wQGBl5330OHDtGjRw927txJ165dmTVr1n11Jf5eJCLMmzePoUOHYrFYmDt3Ls8///wt1ZU5Iii3wEdCQgL79u1j7ty5pKSk3PNBjrFjxzJmzBgWLlzISy+9dMv16LpOXFwcV65cITY2ltjYWOLi4oiLiyMhIcGVWrVqxZNPPplrHWfPnuW5555j+/btjBw5kjFjxmA0Gm+5TcrdK89zDBG5b1LdunXlbmePj5cOISGigQASajTK79OmFXWzFEVRFCXfgJ1yF3zvF0YCngbmh4WF3amX7543duxYAeTQoUNit9vFYrGI0WgUT09PuXz5sqtc8eLFBef5UFBQkHz99dc3fazExER58803xWg0itFoFEDMZrMsXrw4z/0yMjJk7NixYjKZJDg4WH7++eebPvb9IDExUQ4ePChr1qyRBQsWyNSpU+XMmTNF3axsoqKipHXr1gLIE088IWfPni3wY8bExMh///tf8fLyEk3TpEuXLnLw4MECP25hWrdunWiaJi+88ILouu7avn//fmnatKnUqFFDwsPDJTQ0VEqVKiUBAQHi4+MjHh4e4ubmJkajUTRNc/2P5ze99NJL121Tamqq/Oc//xFAWrduLbGxsYXxUiiFLK9zDDVy426h6zBkCMyaRaDNhl3TmNGrFz3mzy/qlimKoijKTVEjN5TrSU9Pp1y5cjz00EOsWrWKiRMnMmLECDRNo3///syYMQOAH374gXbt2tGoUSN8fHxYu3YtIkLZsmX56KOPaN269U0d98CBA/Tr14/169e7tjVr1oz//e9/eS4Zu2vXLnr06MHBgwd57bXXmDx5Mt73yXxn6enpnD17ljNnzlw3Xbly5Zr9LBYLffv2ZdiwYQQFBRVBy69atmwZr732GqmpqUyePJm+ffuiaVqhHf/ixYtMnTqVWbNm3VMjOaKjo6lduzb+/v7s2LHD9T+ROcdNYmIimqZhMBgwGAwYjUZMJhNmsxk3Nzfc3NywWCy4u7vj7u6Op6cnHh4eeHl54e3tjbe3N76+vnh7e+Pn54e/vz9ms5k+ffpw5coVqlevzp9//pnr/6KI8NFHHzFgwABCQ0P5/vvvqV69emG/REoBUiM37vKRG9OeeUZ8QTaBiLu7nB86VOxWa1E3S1EURVFuCfkcuQEE5JXyU0dRJ9TIjZuyaNEiAWTNmjUiIlKiRAkBRNM0OXXqlKtc1apVBXBd7Y6IiJDGjRu7rt6GhYXJpk2bburYuq7LF1984TomIJ6envLjjz/muV9qaqoMGTJENE2TChUqyObNm2/uSd+FbDabREZGypYtW+Trr7+WyZMny4ABA+TZZ5+VevXqScmSJXO9ah4QECC1atWSNm3aSJ8+fWTChAmyePFi2bBhg5w8eVKOHTsmL730khgMBvHy8pK3335brly5UujP78qVK9K9e3cBpH79+nL48OFCb0NWOUdydO3aVQ4dOlSkbbpVdrtdWrZsKe7u7rJv375seQ0bNhRA+vfvXyDHTk1NlXr16gkgPj4+8tdff1237ObNm6VUqVLi5eUl33zzTYG0RykaeZ1jFPlJQWGmuy24sXzoUCnhHI5lBJn58MMi6elF3SxFURRFuS03Edw4BZx0/rQDl4DLzsen8lPH3ZLutnOMu5Gu61KrVi158MEHRdd1+fHHHx3nQEajPP/8865yR48eFUAqVap0TR1///231KlTx9XZrlGjhuzdu/em2nHlyhV5+eWXs3Xa27VrJ9YbXFjasGGDlC9fXjRNk7feekvS0tJu6rh3iz179kiFChWuCVz4+PhItWrVpFWrVtKrVy8ZO3asLFy4UNauXSuHDx+WpKSkfB/j0KFD0qlTJwHE399fJkyYcFP7347ffvtNypYtK0ajUcaMGSMZGRmFctz8uBeCHO+9954AMn/+/GzbM283q1KlSoG3oX///gKIwWCQjz/++Lrlzp07J40aNRJA/vvf/4rNZivwtv1T2Gw2SUlJkbi4OLl8+XK2W4vudiq4cZedeNg3b5bKZrPjSgXIkyVKyOUTJ4q6WYqiKIpyR+Q3uJGZgI+BJ7P83hr46GbqKOp0t5xj3M3WrVsngKszkjk6A5CdO3e6yrVq1UoAWb58+XXr2rZtm1SpUsW1f4MGDeTo0aM31Z5ffvlFSpcu7arD19f3hqNBEhISpHfv3gJI9erVZc+ePTd1zKL25ZdfioeHh4SEhMjs2bNl1apVsn//fomLiyuQ4+3Zs0fatGnjmjdlxowZBRYUSk1NlcGDB7sCY9u2bSuQ49wJMTEx8tZbb4mnp+c/KsixYcMGMRgM0qVLl2yd4R07doimaeLu7p5t3pyCtHTpUjGZTALICy+8cN1yaWlp8uqrr7rmXCms9hWEb775Rvr37y+9e/eWF198Ubp27SodOnSQtm3bSqtWreTxxx+Xxo0bS/369aVmzZpSpUoVqVChgpQpU0ZKlCghfn5+4uHh4Zp/KGsqXry4tGzZUt566y356quv5MiRI2K324v6Kecqr3MMNedGIYrZsYOg11+HHTuoA5g8Pfn6xx+p+K9/FVmbFEVRFOVOu9k5NzRN2y8iNW607W6kloLNv3bt2vHHH38QGRnJ2bNnqVSpEkajkUcffZR169YBjnv2fX198fX1JTY29oZ1/vbbb/Tq1YuIiAjAMY/G4sWLKVOmTL7alJSUxLBhw5g9e7ZrW8+ePVm4cCEGg+G6+61atYpevXpx8eJFxowZw3//+19MJlO+jlkUbDYbw4YNY+rUqTRp0oTly5dTsmTJQjv+n3/+yYgRI1i/fj1ly5Zl9OjRvPjii3fsNduzZw/du3fn4MGDvP7663zwwQd5zqWyZMkSXnvtNdLS0lxzQWTOAeHp6Ymnpyc+Pj74+Pjg7++Pv78/xYoVo0SJEgQGBlKyZElKlixJqVKlCAwMzPO9kpeLFy8yZcoUZs2aRVpaGl26dGHUqFFUvgtXR7x48SK1a9fGy8uLXbt24ePjA0BaWholS5YkISGBVatW3fR8OLfjxIkTNGzYkMuXL1OlShW2bduGr69vrmUXLFjA66+/TkhICCtWrKBWrVqF1s47Yf78+bz66hmXirIAACAASURBVKv4+Pjg6enpmrckcw6TG/2eV56IcPDgQfbs2cP+/fuxWq0AeHt7U7t2berUqUOdOnV46KGHqFatGmazuUhfCzXnRhFfVbly6pQ8VaKEaCDzQKRiRZE//iiStiiKoihKQePmR26sAUYCDzjT28Cam6mjqJMauZG3Y8eOiaZpMnLkSBEReeKJJ1xXDFetWuUqN2DAAAFk1KhRN1X/d9995xqFoWmatGnT5qau0G7cuFHKlCnjalNgYOANR2VcvnxZOnfuLIA0bNiwyOd1uJ5Lly5JixYtBJC+fftKehHdAq3ruqxdu1YaNGjgmjflyy+/vK2rwzabTSZMmCBms1lKly59w1VtUlNTpXnz5q5bGipUqCClS5eWgIAA8fLycq3iATe3ggfO26ssFov4+/vLgAEDbnibU1ZZR3IYDAbp1q3bXfV+stvt8u9//1ssFss1/xeZc+G89tprRdK29PR0efjhhwUQb29v2bVr13XLbt26VYKDg8XDw0O++uqrQmzl7fnyyy9F0zR58sknC/z/Nz09Xfbs2SOffPKJ9OvXTxo3bixeXl6u97mbm5s89NBD0qtXL5k9e7b8+eefkpycXKBtyimvc4wiPxkozFTYJx7piYnySuXKYsz8otQ0+XHYsEJtg6IoiqIUtlsIbgQAM4A9wG5gOv+QCUUzkwpu5K1fv35iNpslKipKEhMTxWAwiNFodM2/kcnb21vMZvNNdQyzWrRokWsJWYPBIM8//7wkJibma9+UlBQZOnRotg7roEGDbrjf119/LQEBAeLh4SGTJk0qsuBBbvbu3Svly5cXNzc3+eSTT+54/UlJSbJq1SoZOXKktG3bVho2bHjDAIOu67Jy5UqpUaOGa96UlStX3vQ9/8ePH5dHHnlEAOnUqdMNg1m//PKLeHt7CyDlypWTOXPmyPz582X79u25/s3sdrtER0fLnj175Oeff5bFixfL1KlTZcSIEfLaa69J586dpXXr1tK4cWOpVauWhIeHS0hIiJidt55bLBYZNGjQPRHkmDRpkgAyZ86cbNsnTpwogISHhxdRy67KvCXJYDBc086szp8/L02aNBFAhgwZcsufNYVl5cqVYjQa5bHHHpOUlJQiaYPNZpPDhw/LV199JW+++aa0aNFCAgICXJ+TBoNBqlatKt26dZMpU6bIunXrCnQZXhXcKOwTD7td7O+8I36ZM3GDTHn66cI5tqIoiqIUsfwGN4DFzp8D81P+bkyo1VJu6MqVK+Ll5SU9evQQEZE+ffq4Too//fRTV7kFCxYIIM8999xtH3PGjBni6+srgJhMJnnllVfyHXTYvn27hIaGutpYpkwZOX78eJ77REVFyTPPPCOAVKtWTdavX3/bz+F2ff311+Lp6SnBwcGydevWW67HarXK5s2bZeLEidKpUyepXbu2lChRwtWJzy098sgjEh0dnWe9drtdvvrqKwkPD3fNm7J27dobBjl0XZf58+eLl5eX+Pn5yRdffJHnPna7Xbp27eoa1dOxY0cpV65criMvfH19JTQ0VBo0aCAdOnSQ4cOHy5IlS+TQoUP5HmGSnp4uAwYMEIvFcseCHN27d5cjR47ke/87adOmTWI0GqVjx47ZXuddu3aJpmlisVjk4sWLRdK2nL777jvXPBydO3e+7t8sPT1dXn/9dQHkX//6l1y6dKmQW5o/v/76q1gsFqlfv74kJCQUdXOy0XVdTp8+Ld9//72MHj1ann766Wyj3wCpUKFCgQR7/5HBDeDfwBHgODAsl3wLsNSZvw144EZ1FkZwY9nrr4vV11cEpKemyYBatcSamlrgx1UURVGUu8VNBDcOAsHAX0Ax/oFLwWYmNXLj+iZPniyA7N69W+x2u2sSxdKlS2c78c3scJ47d+6OHNdut8u7774rHh4eruHUb7zxRr46mWlpaTJixAjRnKvaaZomY8eOveF+P/74ozzwwAOuSQ4vXLhwJ57KTbHZbPLWW2+5ggznz5+/4T52u1327dsns2bNkhdffFEaNmwopUuXdnXQcyZN08RoNIrRaBSDwXBNXmawYOjQoTcMClitVlmwYIGULVtWAGnWrJls2bIl17Lnz593TVDavHlziYyMzLPuPXv2uJb+LVasmOuWGECaNm0qo0ePls6dO8sjjzwi5cuXFz8/P1fnOLdkNpulWLFiUrFiRWnSpIl0795dxo0bJ99//72cOXMm27Ezgxxubm63HOSIjo6WN998Uzw9PcVkMsmgQYMK9Ip4TpcuXZIyZcpIxYoVs006m56eLv7+/gLIypUrC609+XHy5EnX3zw8PDzPpYg//fRTsVgsEh4eLseOHSvEVt7Yn3/+KV5eXlK9evUCCb5ERETI0qVLZcSIEdKrVy85e/bsHak3JiZG1qxZI5MmTZIBAwbckTpz+scFNwAjcAKoALg5T3qq5SjTF5jnfNwZWHqjegvyxOO3KVOkrPMevQEg0qGDSD6HQSqKoijKveQmghsDgENAOleXhM1MJ/NTx92SVHAjd1arVUJDQ+Wxxx4TEZHZs2e7OoqTJk1yldu+fbsA8tBDD93xNthsNhkyZIirk+nh4SHTpk3L17579+51BStwzhNxo2BBcnKyvP3222I2m8XPz09mz55daEtQXr582TWfyWuvvXbdq6YfffSRPPbYY1KuXDlX8Odmk8FgEC8vLwkJCZG6devKM888I23atLkm2FG8ePEb3qoi4ggozZgxQ4KCggSQp556Ktv8Dt99950EBgaKu7u7TJ8+/YZBk6FDh7oCLVWqVHHNpREcHCwbN27Mc1+r1Sr79u2TRYsWyVtvvSXPPvus1K1bV8qUKSPe3t7XPMesycPDQ3r27Omah+BOBDkuXLggvXv3FoPBIMWLF5fZs2cX+O0UdrtdnnrqKXFzc7tmHotHH31UAOnVq1eBtuFWpaenu2498fLyku3bt1+37ObNm6V48eISGBgof9wlcyLu3btX/P39JSwsTKKiom56f7vdLocPH5bPPvtMhg4dKm3atJGaNWtKqVKlxN3dPdf3rcVikXXr1hXAs7nzCiS4AXwHPAUYbrWOPOpuRJaJxIDhwPAcZdYAjZyPTcAlcKz+cr1UECcef3/1ldTM8iZp6usrZ/L4B1IURVGUe11+gxty9Tt97s2UvxuTCm7kbunSpQLI999/LyIiwcHBrg5H1iuqjRo1EkA2bNhQYG1JT0+X3r17u67MN2vWLF9Dpq1Wq4waNcrVUTYYDDJz5swb7nf48GHX5JX16tWTHTt23ImncV379u2TChUqiNlslvnz51+33HvvvXfDwIWmaeLh4SGlSpWSGjVqSOvWraVfv34ye/Zs2bx5c54TCF6+fFnatm3rer0yU35uVRFxzOMxYcIE18iAjh07Ss+ePV3BrwMHDuS5/+nTp6VChQquDpuPj49r5M77779/w+PnV0pKivzxxx8yZ84c6devn7Ru3Vpq1KjhChaZTCbp0aNHtiBH//79swU5Bg8efFNBir1790qzZs0EHEsRr1279o49n5wyR1x9+OGH2bZ/8MEHAkjFihUL7NhZxcfHy9ChQyUkJERq166d50iMnDJHMGmaluf/7NGjRyUsLEzc3d3zXIK6MBw5ckSCgoKkTJkyEhERkWsZq9Uqe/bskY8++kj69+8vrVq1kmrVqkmJEiVc76/rBTCCgoKkRo0a8tRTT8ngwYPl008/ldGjR4umaaJpmkyZMqWQn/HNy+sc45aXgtU0rQXwEvAwsAz4VESO3FJl19bdAfi3iPRy/v4C0FBE+mUp87ezzFnn7yecZS5dr947vRSsXrw4pthYBHAHqnp4UNzDg1IeHixu0AAsFqafOMHBxEQsZrNj2R03N4L9/en36KNgsfD9oUNcTEvD4uGBxd0dNw8PSgQG0qRBA/Dz40JGBpbAQHxDQjC6ud2xtiuKUkREEF1Ht9vRbTZE1xG7Hd1ux+LmhgHISE8nLSUFPUue6DoB/v4YgMTERJKSklz1iK4juk7Z0qXRRLh0+TLxCQmIiOsYAJUfeAB0nbPnz3MlPt7xRaDriAhGoEZYGIhwPDKS2Ph4V57oOm4mE3UrVQIR9h8/TqyzftF1dF3Hy2Lh4apVQdfZdugQVxITr+4vgr+nJ42rVgURft+3j/jk5Gz5Qb6+NK1SBUT4aedOktLSsrWvbEAAjzqXxlu6dStpGRnZ8sOCgng0PBxE+GTzZux2e7Yvu+qlS9O0YkXsdjtzN2265suwXtmyNClfntSMDOZu2XJNftMHHqBRaChxqanM3bo1a6ccEaFVWBj1g4OJTkxk3s6d1+Q/W7kydUqVIjIujvm7dzvOMrKU6VatGtUDAzl6+TIL9u27emzn2+aV6tWpEhDAXzExLDpwwLU9c/9BtWpR3teXrefPs+To0WzHBni7Th1CvLz4/dw5vj5+3LX/2Mceo/S8eXf8bX6zS8HeC4p6ufm71SOPPEJ0dDRHjx5ly5YtPPbYYwC88cYbTJ06FYBLly4RFBREqVKliIqKKvA2xcTE0KhRI06ePElAQAAbNmygevXqN9zv8OHDPPnkk5w6dQqAmjVrsmHDBvz9/a+7j4iwdOlSBg8eTHR0NH369GH8+PF57nMrli9fzosvvoivry/ffvstjRo1yrXczJkzGThwIAD+/v6ULl2akJAQypcvT5UqVahVqxZ169a9pfbFxcWxa9cuGjdujLu7O1FRUbzwwguuZX4BDAYDb7zxBu+///4Nl0+Ni4tj6tSpTJs2jdTUVEaMGMGoUaNwy+N8ePr06QwdOhS73Y63tzdJSUkAPPvssyxZsiTP5WHvFF3Xeffdd5kyZQrJycmYTCa6dOnCnDlz8Pb2JiMjg6FDh/LRRx+RkZGBxWKhb9++fPDBB/laGldE+P777xk6dCgnT57k6aefZurUqYSHh9+x57B161aaNm1K27ZtWb58OZqmAbBv3z7q1KmDyWTizJkzBAUF3bFjZqXrOp988gnTp0/n0KFDjk6rpiEieHl5sWXLlnwv5frDDz/QoUMHrFYrzz33HN98802u771Lly7Rtm1btm7dyuTJk3njjTdcz7uwnD59mqZNm5KWlsamTZuuWRK4bt267N27F915XpeTwWDAbDa7ljbOutyrpmnYbDZsNhtWqxWbzYbdbsdut6PrOr6+vkRFRaHrOu3atWPFihWF/vzzK69zjFsObmSp3A/ogmPZtjPAx8ASEbHeRp13LLihaVpvoDdAaGho3dOnT99qs66xo0YNGvz9NwANvLzwNJtJt9kIMBj4KTQU0tN54dw5fk1LI12EDBHSgcrA3846HgH+zFFvAxyTiADUAvY5H/sAfkYjLX18WPjgg+Dnx+ATJ0gzGvHz9cXPzw//YsWoFhbGY40agZ8fhy9fxqtkSfxCQvAJDka7xXW4lYKV2QnVrVbMBgPY7aQkJpKemordakW3WrFbrWgilCpeHOx2os6fJykxEbvVit1mQ7fZcDMYqBIaCrrO30ePEp+Q4PjgslrRbTZ83N1pEB4Ous76v/4iLjHR0cm227HbbJT09aVZlSpgt7N82zYSnB1su82GruuUDwjg35Urg64ze+NGUtLT0Z2dW13XqREURFtn/e/8/jtW5wdmZnqkdGnaV6yIzWZj4IYNju2ZHWQRWgcH81xoKInp6by2dSu6iCM587uGhPBccDAxqan8Z+9ex76ZZUToGxLCs8WLczI5mZ5HjmTPB0aVKsXTvr78lZxMj8hIRx44ygHTAwNp5enJpuRkel686NquO/9GS/z8aObmxk+pqbyUmOjY7txfB37x8OBhTWOJ1corVuvVfZ0/9wI1gA9xjMXP6SRQHpiA4wM1p4tAIDACmJhLfhqOyYj6A7Ny5JmBDOfjF4HPcuQHAJedj5/DMTQvq1Ag89PzCWBtjvwHyftz7eEs22pkKZupJfCL8/EDWY6VqT3wrfNxcSA2R35PYJHzsRuQ8wvodRyvSQaO1yinYThe08s4XuOcxuN43SNw/I1ymonjdd8P1Mwl/1PgRYOBrSI0cX7valnSVyYT7Y1GftN1nnauL581f4W7Oy3MZn6w2XghNdWVD6BpGj97e9PQZOKrjAz6p6RkzwfW+/tTzWzmk7Q0RjpP9jVgQ3g44YcP59Li23M/BTc0TXsaeDosLOyVY8eOFXVz7irbtm3j4YcfZsaMGQwYMIC6deuye/duDAYDp06dIjQ0FIAePXqwePFiZs6cSf/+/Qulbbqu85///IfPPvsMg8HA9OnT83Vsu93OhAkTeOeddxARTCYTixYtolu3bnnuFx8fz+jRo5k1axaBgYFMnTqVbt263XbnwW63M2rUKCZOnEijRo1Yvnw5wcHBuZYdPXo048aNAxyv+Wef5fwmuHlxcXGsXLmSZcuW8csvv2C1WilTpgxjxoyhZ8+emEwmTpw4Qbdu3di2bZtrPz8/P5YuXUqrVq1ueIxLly5x+fLlazp6OdvRokULdu3ahcFgcHX+KleuzLfffsuDDz5428/1Zum6zrhx45g8eTLJyckYjUa6dOnC3Llz70iQIz09nenTp/Pee++Rnp7OgAEDGDVqFH5+frfV7tjYWOrUqYPRaGT37t2uQFdGRgalSpXiypUrfPfddzz77LO3dZzcbN68mXfeeYdNmzZhdX4XlitXjldeeYUhQ4YwevRoJk+ejNFoZNGiRXTv3j1f9UZGRtKgQQOio6OpUKECO3bsICAg4Jpyqamp9OzZk2XLltG3b19mzJiRr7/FnXDhwgWaNm3KxYsXWb9+PbVr186Wv2DBAl555ZVbqlvTNFcyGAyuZDQaMRqNiAiJiYnkjAuEhoZSs2ZNmjVrRvv27SlfPrczoMJXYMENTdOKA92BF4Ao4AugCVBDRJrdRr2NgDEi0sr5+3AAEZmYpcwaZ5k/NU0zAReAEpLHEyqIqyp1PDzYm5aGEVg/cyZN8vHFqFutGGw2SE8nNjqalPh40hMTSU9OJiMlBTcRqgUFQXw8y9au5ez588THxRGfkEB8UhKV3dz4b8mSEB/Pw3//zYmMDOJFXCfzXYAvnY99gUTnYw3HCJNXLBZmFCuGuLlR9fx53IxG3I1GLM7UuUwZeoWHk2Yy0Wf3btydI04sbm64Wyw0r1yZR6tUIUXT+GLvXtwslmxfzvUrVKBqSAhxycn8tHcv5PjifjgsjLBSpbiUmMgv+/dnf3E0jcaVKlGuRAnOx8by6/79ro63ruvY7XZaV61KqL8/xy9c4Ednfmaeruu8UKsWZb292RsVxfIDB7Ll2XWdobVrE+zhwfrISL44etS1PTNNr1WLILOZbyMjWRQZmS3PLsL3Vavip2nMi4rik5gY7CKupIuwNzQUN11nzOXLLExKcuQBdhE0IMbHB+x2eqelschux46j4wuO2fQyO20duNqZy5S1g9mKq53BTNWAA87HuXUwGwJbnY9r4uiIZdWCq53W8jg6clk9y9VObyBXO8OZenC10+yFo4NpyJJ6m838n6cnVk0jOD4eDTBomiNf03jd25vhxYoRJ0L9qCg0wKhprjIDAgN5JTCQ83Y7T588eXV/ZxoUEkLHoCAi0tN5+ehRx4d4ZhmDgcHly9OyZEmOJCfz34MHHR/umR/2msbgypV5OCiI/XFxTD582LU98+egGjWoHhjI3suX+ThLvsFgQNM0+teuTYWAAHbGxPDNkSOu7Zl19GvQgFK+vmw/d441J09m+6LRNI3XGjXC39OTbWfOsOX06WvyezVujIfFwraICPacPevY7szTNI0XmzbFaDSy/dQpDp8/j8FodOUZjUaeb9wYNI0dJ05w+tKlq/saDFjMZp6sXx80jV0nTnAhLu7q8Y1GPNzdebRmTdA09p44QWxS0tW2GQx4eXhQt0oVMBjYf/IkSamp2er39vSkWsWKoGkcioggLSMjW76Plxfly5YFTeNYZCQ2uz37/l5eBJcqBZpGxNmz6CKOfGcZb29vigcEgKZx7sIFgKv5BgOenp74+voiwOUrV67Jd3d3x8PDA12EpORkcB438/huFgtmNzcExwmeK98ZMDaaTBiMRseICOdn3v0cTL6fghuZ1MiNa3Xu3JnVq1dz9uxZ4uPjKVu2LJqm0bVrV5YsWQI4OoCenp4YDAaSkpJueDX/Tlu2bBndunXDarXSqlUrfvrpp3x1Zk6ePEmLFi1cozgaNWrEunXrcHd3z3O/PXv20KdPH7Zt28Zjjz3GnDlzqFat2i21/cqVK3Tr1o3Vq1fzyiuv8OGHH2KxXBu+1XWd9u3bs3LlSgD69OnDnDlzbumY4AjUZAY01qxZg9VqJTQ0lE6dOlGvXj2mTZvGtm3bqFy5MuPHj6d9+/ZomsbevXt54YUX+Pvvq+HtWrVq8csvv9zWCIClS5fSs2dP0tPTXVf3vb29mTVrFj179rzleu8UXdcZP34877//vivI0blzZ+bNm+cKcgwZMoT58+ffUpDjwoULjBw5koULFxIYGMi4cePo1asXRqPxptsqIjzzzDOsXr2aLVu2UL9+fVde8+bNWbduHT179mTRokU3Xff1nDlzhtGjR7NixQri4+MBR/Crffv2vPvuu5QpUyZb+aVLl9KtWzfsdjsDBw5k+vTp+TqOzWajZcuWrF+/Hg8PD3777bdcRzjpus6wYcOYPHkybdq04auvvsLb2/v2n2geYmNjadasGSdPnmTt2rXXtGvt2rU88cQTADz55JO0b98eT09PvLy88PLyyvbYx8cHb29v3N3db+rzVNd1tm3bxooVK5g3bx6JiYnXlDGZTJQoUYJq1arRpEkT2rZtS+3atQv9c7tAghuapq3AMQhhMbBIRM5nydt5Oyc1zmDFUaA5cA7YAXQVkQNZyryOI4jymqZpnYH2ItIpr3oL4sRj5+efU9/5wWkE1k2fzqPO4X6FSXSdtLg44s+eRUtMpKTJBPHxLF+zhrhLl4iLjSUhPp7UtDQaFC9Ox9BQbKmpdF+/nnSbjXSbjTSrlXS7nS7+/vTz8yMuOZmakZGk6zppzlEn6cB7OK4qRwLlcmnLNGAQjinwc4uTLwBexjE65eFc8pcCnYBfcVzNzWkV0BpYgeNqbk6bcETYluC4mmvE0bHO/LnF25uabm4ssloZkZzs6Dzj6EQbNY1fy5alnLs7n8bH82FsrGu70WDAqGmsrFGDYu7ufHbhAktjYq7mOdPiRo2wuLnxRUQEv0ZHX80zGjEbjcx4/HEwGll2/Di7Y2JcUVOjwYCnxcLQxx4Do5GfjhzheGwsRqPREV01mfD19KRro0ZgNPLb4cNcSEjAaDI5ktGIr7c3LR56CAwGth07RkJaGobMfJMJXx8falWuDEYjByMiSLfZMJrNGIxGDEYj3j4+hJYpAwYDZ6KjEU3D4Oy0Gd3ccPfwwM/fH4xGEpOTHXlmMwaTCc1gwOjmhtFsviagpSjK/eVWghuappUEMs+kt4tIzJ1vWcFRwY3szpw5Q/ny5Rk4cCBTp06lffv2rFixAnB08DOvSr7//vsMGzaMXr168fHHHxdJW8+dO0ejRo04c+YMJUqUYPPmzVSqVOmG+4kIEyZMYNSoUYgIbm5ufPHFF3To0CHP/XRdZ8GCBQwbNozExESGDBnCqFGj8PLyynebDxw4QLt27YiMjOTDDz/k1VdfzbVcbGws9evX5+TJkwB06tSJpUuX5vs4mRISEvjhhx/45ptvWLNmDRkZGYSGhtKxY0c6depE/fr1XRe6RISVK1cyYsQIDh06RL169Zg0aRLNmzcHYMuWLXTt2pXIyEhX/b1792bu3Lk31UnKyMigbdu2rFmzxrXNYDDw8ssvM2fOnDwDAyLCjh07XCNNSpcuneftLneCrutMnDiRSZMmkZSU5Ljo8PzzzJs3Dx8fn1yDHK+//jrvv/9+voIcu3fvZtCgQWzatImaNWsyffp0Hn/88Ztq4/Tp0xk8eDDTpk1j0KBBru0zZsxg0KBBPPDAA5w4ceK2O7Pp6elMnjyZBQsWkDmq3mw28+ijjzJmzBiaNGmS5/4HDhzgkUceISEhgSZNmvD777/ne4TF22+/zYQJE9A0jSlTpvDGG2/kWm7OnDn079+f2rVr89NPP1G6dOmbe5L5lJiYSIsWLdi7dy+rVq1y/Z9k2rZtG40bN8ZutwOQkpKCh4dHgbQlq759+7r+Jzt37kxsbCwHDhzgwoULrlE14PifCwgIIDw8nEaNGvHUU0/RrFmzAg145HmOcb3JOG6UgMdvdd981v8kjgDHCeBt57Z3gbbOx+445vo4DmwHKtyozoKa7KtNyZLiBaKBNAaR338vkOPcDXS7XeypqSLx8WKNipIz27fLid9/v5rWrZMru3eLHD8u6QcPyrFff82e1q6VuF27RI4elZS//pIjP/98Na1eLUdWr5aEnTtFDh2S5L175divv8rJDRskYvNmObN9u5zbtUvSIiJEYmIkPSpKrkRESMLZs5IUHS0ply9LemKi2NPTRfK5FrmiKIpy53HzE4p2wjEw7TPgcxyrpXS4mTqKOqkJRbN76623xGAwyKlTpyQ9PV1MJpNomiYtWrTIVi4oKEg0TZP4+PgiaqmD3W6X559/XnAuYfrRRx/le9/IyMhsK6rUq/f/7J15WFTVG8e/584GDAz7JrhD7qaSuWuumaam4pJpaVSGZWqaGv5yKzXXTMvM1NLMxKWy1Fyzcl8wzQ13TEWUfYfZ3t8fA1fAAWaGWVDP53nOM8O995zzzjAD53zvuzxjUvnV+/fv04gRIwgAVatWjX755RfS6/Xl9tuyZQsplUoKCAiggwcPlnrd0aNHycXFpZhd5pCenk7r1q2j3r17i0kKq1atSu+//z4dPXq0XFu1Wi19++23YonXLl26FKtasWPHDvL09BTtk8lk9MMPP5hk2/79+8nV1bVYssTmzZs/VI61JAkJCTR37lx66qmnHkqg6u/vEjzbIQAAIABJREFUT2FhYdSnTx965513aM6cOfT999/T/v376cqVK5STk2OSbeWh0+lo1qxZov0SiYQGDx4sfgfy8/Pp3XffLZZ41NQSxnq9njZu3CiWVe7bty9du3bNJLuOHz9OMpmM+vTpU+x3e+7cORIEgWQyWYXLNG/atInCwsLEajOMMWrYsCGtXLmy3Oo3JcnIyKDQ0FCxAo45ZZd37Nghvr99+vQpde5t27aRUqmkatWq0blz58yyzxRycnKoY8eOJJFIxKTLRTl37hzJZDLxc1qjRg2r21AW3377rfi7mjx5snj81q1btHTpUurXr5+YiLXo9wkAubu7U9OmTSnTBtVDy1pjOHwxYM9mq4XHye+/JyVAnzVpQhqASCIhnQ2zF3M4HA6HU5mxQNw4A8CvyM++AM6YM4ajGxc3HpCZmUkeHh4UHh5ORA8qFgCgXbt2idft3LmTAIhlYisDa9euFaup9O7d2+QNl16vFyt6oKCiyoQJE0zqf+DAAWrYsCEBoBdffJGuX79u9DqdTkdTpkwhANSiRQu6fft2qWMuWbKkWLWSgIAAkyrDZGRk0A8//EB9+vQhhUJBACg4OJjGjRtHR44cMXsDSkSUm5tLn332Gfn4+BAA6t+/P128eFE8v2bNGnEuAOTl5UWXLl0q9T149dVXi22ivL29aceOHaXOr9Vqafv27dS3b1/xd9uuXTv67rvvaNeuXbRq1SqaMWMGvfnmm2LFk6KiS8m5nn76aerRowe99dZbNHPmTFq9ejXt3r2bLly4QBkZGSa/LzqdjmbPni1Wc5FIJDRo0KBiIseoUaPETbiTkxMtXLjQpLFzcnJo1qxZpFQqSS6X06RJk8oUEFNTU6lGjRpUrVo1Sk5OFo9rNBry9vYmABQdHW3S3BcvXqR33nmH/vjjD9Lr9XTmzBnq3bt3sQ1wYGAgTZw40az3yxg6nY5eeukl8f0pS+wrya1btygwMJAAUGhoaKkVgGJiYiggIIDc3d1p3759FbK3KGq1mnr27EmMMVq3bt1D569fvy6+Z4XC65gxY6w2v6nExMSQUqkkANS5c+dS/wakpqbS999/T8OGDaMGDRqQq6srSaVSm9jExQ07LDzSX3iByMODaNUq+gsgN4D2zZ9vs/k4HA6Hw6msWCBunC3xs1DymD0bDCmMNgL4ylQPEi5uPOCLL74gAHTo0CEiIlKpVGLpyqJ3hBs1akQA6MyZM44y1ShxcXHipicgIKBUsaEkOp2O+vfvL3ohACAfHx/au3dvuX3VajUtWLCAlEolOTs706xZsygvL088n5qaSj179iQAFBERUexcSRvCw8MJBaVICzd98fHxpc6dkZFB69evp5deekkUGYKCgmjs2LF0+PBhiwQNY6Snp9O0adPI1dWVBEGgiIgI+u+//8TzU6dOFe8SA6D69esX23CePXu2mOggkUjoo48+KtW+Gzdu0EcffURBQUEEgPz8/GjixIkUGxtrkr1ZWVl06dIl2rdvH61Zs4ZmzZpFkZGR1KtXL2rWrBn5+fkZFUCqVKlCMTExJr8vOp2OPv3002Iix8CBAyktLY2IDCJHZGQkSSQSURjYb6KX+J07d0TRzd/fn1auXElarbbYNXq9nvr160dSqZSOHDlS7Fy3bt0IAA0ZMsSk+ZKSkqhmzZrFfkeFz5VKJQ0YMMDk998cCssbM8boyy+/NLmfRqOhtm3biqLazZs3jV538+ZNatCgAUmlUvruu+8qbK9WqxUFi+XLlz90/u7du6Jnz5w5c+jZZ58lAKXaZ2tSUlJE77SqVavS/fv3Tepnrb8dJeHihj0WHqdOkR6g62PH0qZx44gBJAFo77x5tpuTw+FwOJxKiAXixnwAu2Ao5jMcwO8A5pkzRpGxVgO4D+BciePdAVyCIZx1cjljjAfQruD5r6bMy8UNAzqdjkJDQ6l58+ak1+vp+++/Fzc3a9euFa+Li4sjAFS7dm0HWls6Re8IS6VSWrNmjUn9cnJyqFWrVqRQKKhdu3bia3/uuecoNTW13P63bt0SxYk6derQ3r176fz58xQaGkpSqZSWLVtWajhIamoqhYSEiB4GEomEGGOiyFSUzMxM+vHHH6lv377i3eEqVarQmDFj6NChQzbblBAZwnHGjh1LcrmcFAoFjR8/npKSksTzhe97YXvxxRfp3XffLXasa9eu4ua/KHl5eRQdHU1du3YlxhgJgkA9evSgLVu2mOS5Yi55eXl0/fp1+vvvv2n9+vU0b948qlq1KgUHB5sVJkFk+MzNnTtXFDkEQaABAwaIn5vk5GTq3Lmz+B60aNGi3DCcQo4fP06tW7cmANS0aVP6+++/xXNLly4lADS/xE3ZwuNVq1Y16fOg0WioVatWxTyGCptcLqfXX3+9WFiStdmxY4coKg4fPtysvoXhYQqFgo4ePWr0mrS0NPH9nzZtmkkhZMbQ6/X0xhtvEACaZ2SfmJqaKop4EydOJL1eT3K5nLy8vCyaz1rodDp64YUXCAA5OzuX+j7ZA5uIGzAUTegJQLB0DHs3Wy88JoWEkAdjlBoXR5vef58YQAJAu+fMsem8HA6Hw+FUJswVNwxd0A/AooLW19z+RcZpD6BZUXEDhpzS1wDUgqFa8JkC74xGALaVaH4F7csC0eWQKfNyccPAb7/9RgBo/fr1RETiXdzAwEBSq9XidS+++GKx6yor33zzjXj3ecCAASZt8hITEykkJIS8vb1py5YtYs4JmUxGs2fPNmneHTt2UK1atcQNl5+fX7ENaUmOHz8uuo63adNG9JZZsWLFQ9deuHBB9GYIDAyk9957jw4ePGhTQcMYcXFxNHz4cBIEgVQqFc2cOVOMz8/OzqY6deo8tEn29fU1ukE+d+4cjR07VgyhqF69Os2cObOYZ4i9OHXqFDk7O1Pbtm0tElR0Oh3NmzdP/B0KgkDh4eGiyBETEyN+NgRBoNdee82kefR6Pf3444/i53HAgAH0888/k1wup549exb7/cfGxop5NkwRUOLi4qhKlSri76lq1aq0YMECUqvVFBMTQ2+++aaY/yUsLIxWrlxZahhIRbh+/Tp5eXmJIk5pHk7GmDt3rvielvZ3KT8/n4YPH04A6NVXXzX796vX6+n9998nAPS///3vofPZ2dkUEBBAAGjkyJFERLRr1y5CQThXZWDq1Kni+2TM68Qe2Erc6AJD6ddrAD4FUMfSsezVbL3wOLV+PQGg6c89R0REmydMEAWOfZ9+atO5ORwOh8OpLFjguTHXlGNmjFejhLjRCsCuIj9/COBDE8aRANhaxvm3AJwEcLJatWo2eCcfPTp16kRBQUHipqZws7NgwQLxmtzcXJJIJOTu7u5AS03n8uXL5OvrK27aTNnsXblyhXx8fKh27dp0//59mjNnjnhXuWrVqnTixIlyx8jJyaFp06ZR7969y5zzyy+/FO+WT5w4UUyWOWrUqIeu/eeff8jX15f8/f1p7969dhc0jHHu3DnRW8PPz4+WLFkibkpPnTpF7u7uJJVKi32GiAzeJytXrqSWLVuK4tGAAQNo9+7dDn9dGzZsIAD01ltvWXyHX6fT0YIFC4qJHO3ataOTJ08SEdHq1avF0AVnZ2daunSpSeNmZ2fTjBkzRLEhODi4mOeMRqMRP+/liY937twp5k2iVCqNJsYkMng+LF26lOrXr0+AIeHke++9RxcuXDDxHTGNnJwcatKkiejBFBcXZ3LfzZs3i2Lm9OnTjV6j1+tp5syZBIA6duxokkdWITNmzCAANHr06Ic+FxqNRkwEO2jQIPF4oRD8119/mTyPrdm6dasY9hYREWH3+W0ibtCDf+zuAN4GcAvAYQAjAMgqOq4tmj3uqrwUGEjuAKUWfJF++uAD8gMoDiDaudPm83M4HA6H42gsEDdOGTn2rzljlOhbUtwIB7CyyM/DAHxRTv8VBTdx2poyJ/fcIDpz5owYI05E1KZNGwJALi4uxZIZTpgwQdyIPypotVrRJVsmk9GGDRvK7XP48GFycnKili1bUk5ODqWnpxfbCPbp04dyc3MttqlohReZTEZbt26lXr16EQBq27btQ9cfPXqUPDw8qGrVqnT58mWL57UVR44coQ4dOhBgqAqxdu1ao/khjh49Sm+88Ya4sa9Xrx4tXLjQ5DwA9uLDDz8kALRs2bIKjaPX62nhwoXFcnxUq1aNvvrqK9JoNDRq1ChxQx4cHEwHDhwwadxbt27R+PHjH8oPUvg5L7rBLsm9e/fohRdeKBaC0rBhQ5Mruvz11180ePBgUfDr0KEDbdiwwaqhQ4WJZ2UyGe00Yw8WExNDzs7OBIBefvnlUq9bu3YtyWQyql+/vkkCymeffSaGzJQU33Q6HdWrV48A0PPPP1/snEqlIoVCYbFIZiuuXr0qhs+EhYWZ5SVTUWwmbgDwBjCm4K7FrwAGAVgK4M+KjGurZo+Fx+noaEMsVtHM3z/9RMQYJQP019y5NreBw+FwOBxHYqq4ASASwFkA2QD+LdJuAFhnyhiljFshccPMuXoBWBESEmKbN/MRYsSIEeTi4kLJycmUnJwsbnw++OCDYtepVCqSSqU2yYFga5YuXSomvRw2bFi5G44tW7YQY4z69u0rbtT3798v3hl3cnKyaPObnp4uemj4+flRXFwcffTRRwQYkoGW3GQWlk6tXbu2WXey7Y1er6edO3dS06ZNxQ3z1q1bKSkpiRYvXixWlXFxcaHXX3+dDh8+XOk2fYVotVrq2bMnSaVS+vPPP60y5t69e6lZs2aioODs7EwRERF09epVeu6558TjrVu3NqkccUmWL18ufoaMeb+kpKRQnz59xO+2l5cXubu7U61atYp5f5jKvXv3aM6cOWKySn9/f4qKirLaZ7Ro1SBTQ8KIDAk9C7+jzz77bKmizb59+8jd3Z0CAgLK9MZauXKlGFpSciydTkfNmzcnANSqVati5y5duiT+PisjOTk51LhxY4u8ZCqCTcQNAD8DuACDa2dgiXNmx9rao9nrrkq/KlWoniCQruiX/JdfqHpBiMqOGTPsYgeHw+FwOI7ADHHDvUCI+BFA9SLNy5T+ZYxbUtywKCzFxLm4uEFECQkJJJfLKTIykoiIXnnlFQIM1RKKliwtTDDau3dvR5laYc6fPy/G9desWbPcxJGFd2zHjh0rHtPpdDRx4kTxjntoaKjJVSROnDgh5tdo27YtaTQa2rx5s7jpL+nB8Pvvv5OTkxPVr1+/zKoplQmdTkfR0dEUGhoqhmQUbjRXrFhRZlnTykRaWhrVrVuXfHx86MaNG1Yb9+7duzR48GCxug1jjFq3bk2rVq0SQxsEQaA33njDJG8KIkP4lUQiIalU+lBVjoyMDBowYID4e/D09KQlS5ZQ8+bNydXVlc6dO1eh11NYrvfFF18kxhgxxqhnz560bdu2h7x3zOXAgQNi0ty+ffuaLIbl5uaKITTBwcGlhp+cP3+eqlevTi4uLvTrr78+dH7Dhg3EGKPu3bsb9W7o0qULAaBGjRo9JCiNHDmSANDKlStNstlRDB06VPSS+f33320+n63EjR5GjiksHc8ezV7ixt19+ygXIProo2LHf4mKEnNwbC8ljovD4XA4nEcdR9/kMCJuSAFcB1ATDxKKNrDmnE96WMq0adMIAMXGxpJOpyO5XE4oSLpXlMJEiI4qaWgt1Go1derUiQBDJYjS8gwUMmbMGAJAixcvLnb87t274l1bxhi9+uqrZW5Gly1bJm4wCz1izp49SxKJhARBEPMxFLJlyxaSyWTUtGlTSkxMtPDVOg61Wk3ffPMNTZ48udKVDDaVS5cukbu7Oz399NOUlZVl1bF1Oh3Nnz9fTEJZ6HUxcOBAMaeGUqksN/GjTqcjf39/AlCsMlBWVhYNHTpUFOFUKhV99tlnpNfradiwYQSAfv75Z6u+pri4OJoyZYpoT/Xq1Wn27NlmV58pSnx8vPge1alTR0xcWx46nY569OhBAMjNza1UAfLu3bsUFhZGgiDQF198IR7ftm0bSaVSateundEEqv369SMAVKtWLaPf+6CgIGKM2TXkw1KKesl88sknNp3LVuKGsfjYh45VpmbXhUf//qR2c6PsEgmgtkZFkVAocEydaj97OBwOh8OxE44UNwq8QO4C0AC4DSCi4HgPAJdhSIQ+xYrzPfGeG8ePHycfHx/q0aMHERF98skn4kbr33//Fa8rzMnRuHFjR5lqdebPny+KDW+++Wapd4W1Wi317duXGGP0008/PXT+p59+EhNHurq6UnR09EPXDBkyRLw7WiimpKWliaVDi5baJTJ4yUgkEmrVqpVZSQ851uf3338XS7vaKozm77//pubNm4sbTIVCQaGhoeLns3r16nT48GGjfXv37k0AqF+/fkRkKHEbEREhJo1UKpU0Z84c0bNg4cKFBIBm2NAbPT8/n6Kjo6ljx47i537SpEkWv39qtVrMA6RSqej8+fMm9x07dqxow969e41ek5WVJea8GT9+PO3bt4+cnJwoLCzMqKdRYfnZwMBAo7l3UlJSCAA99dRTpr9IB1PUS6ZPnz42S+xrVXEDQACAMAAXATSFodxaMwDPAYg1dzx7NnuKG5lHj1JNgP5nJKHTbx99RAJATgBptmyxm00cDofD4dgDR3tuOKI9iZ4bCQkJ4gI9ICBATExYWI6zS5cuxa5v3749AaDdu3c7wlyb8c8//5CHh4coTIwZM4ZycnIeui47O5tatGhBTk5OdOTIkYfO63Q6evPNN8XNadOmTenWrVuUnp5OdevWJcBQCvX69evi9YW5CsaPH19srK+//poYY9SxY0eT71JzbMu8efMIAM2aNcum8yQmJtKwYcPETWbh57Lwefv27enevXvi9YX5IAIDAykvL49GjRolJvp0dnamadOmFduk7tq1iwRBoP79+9utKs3FixfFULeS3k/m8u6774ohc5s3bza537Jly8SQmdI8YbRarTg+Y4zq169v1GOqsBysl5dXqSFWs2fPJgAUFRVlso2Vgbt371JgYCABoJCQEJuEkFlb3HgNwH4AmQWPhe1XAP3MHc+ezd4Lj/5BQeQGUPLVqw+d2z59Om0GiBgjKseVkcPhcDicRwlLxA0Ycm10KXjuDMDN3DEc0Z5Ezw21Wk0LFy4klUpFMpmMPvjgA3EBu3XrVnETtW/fPrFPamoqMcbIz8/PUWbblNzcXBo4cKC4KZRIJNSjR4+H8izcv3+fateuTT4+PnTVyPqQyFCFoDDWXxAEMbygVatWxZKwdu3alQBQ586di/VftGgRAaCePXsaFVk4jkGv19Mrr7xCjDGjuRmsjU6no8WLF1NQUJD4nSz04hAEgSIjI+nq1askkUhIIpHQ66+/LubwcHJyokmTJj2U7+Ly5cvk4eFBjRo1srtoptPp6KWXXiJBEGjHjh0VGmvNmjXiezF58mST++3evVv8jr///vtGr9Hr9fT555/Tc889R3fu3Hno/McffyyGuRQVmUpSmDzX2BiVHY1GQ+3btycnJyeLEtuWh63CUvpb2tdRzd7ixr9bthAAmtKmjfELtm8nHUDdAPrlww/tahuHw+FwOLbCXHEDwJsATgC4VvBzKIB95ozh6PakeG7s2rVL9CLo3r37QzHohefq1atXzH389ddfJwA0b948e5tsV9RqNUVFRYmeHChIFFjUW+XSpUvk7e1NoaGhZebBWL16tViScty4ccXOFZbTrVGjhnj3XK/X08yZMwkAhYeHP5LVaB53cnJyKCwsjNzc3MwKi6gohw8fplatWhUr3Vq0FYafyOVyGjt2rNH8D+np6VSvXj3y9vYWvYfsTWZmJj399NOkUqnowoULFRrr1KlTYmLeadOmmdwvNjZW9ITp2bOnWd4rS5YsET1iyqoskp+fT4IgkK+vr8ljV0ZsFQ5nbc+NoQWP4wG8X7KZO549myMWHgOCg8kVoKRS6olf+PprEgBiAP30CNV753A4HA6nNCwQN07DkOjznyLHzpozhqPak+K5ce3aNerTpw8BoNq1a9Nvv/32UOx7bGysuFlav369eFyn05GTkxMpFAq7ubFXBn788UeqXbu2+J74+/vTggULSKfT0aFDh0ihUFDr1q3L9K7QaDQP3bldt26dGGqQkpJCRAZhY+LEiYSCJK6mVsjg2J9bt26Rv78/hYSEiL8/e5GSkkIjRowoFrKCglwSb7/9dqmJK3U6HfXq1YskEgn98ccfdrW5JDdv3iQ/Pz+Ly88WJSUlhSQSCXl6eprVLzk5mYKDgwkANWjQwGjOjJKsWbNGFJDKE2Y2bNhAAOiVV14xy64nBWuLGyMLHqcZa+aOZ8/mCHHj7M8/EwNoUQmXwaLs/OSTBwJHiVrwHA6Hw+E8alggbhwrePyn4FEK4F9zxnB0e1w9N7KysmjKlCmkUCjEpIKlbYAKSxr6+PgU21wXlkItWTnlSeH06dPUrl078a65k5MTRURE0Jo1a4gxRuHh4SaLPjExMSQIAkkkEjp79iwRGTae77zzDgGgyMjIJ0pAelQ5dOgQyWQy6tatm0OEKJ1OR19++SU1aNCAhg8fXm740pQpUwgALV261E4Wls3hw4dJLpdThw4dKuyh1LlzZwJQaqLQ0tBoNGKlIz8/vzLDL3755RdijJFUKqXjx4+XO3ZhEtWjR4+aZVNZ6PV60uv1pNPpSKvVklarJY1GQxqNpsLldu2NrcJSfC3t66jmqIXHsS5dSKdUEpXherh7zhxR4NhcIikUh8PhcDiPEhaIG/MARAGIBdAVwM8AZpkzhqPa4+q5odfr6ccffxTvTg4dOpRu375d6vWZmZni5v2zzz4rdi4gIIAYY5ScnGxrsys1KSkp9Nprr4l5DQRBED07SiYENUZSUpKYf2Pjxo1EZNhgDR8+nADQhAkTbFaJg2N9ChN5mvK7dyTR0dEEgCIiIirV5+v7778nlFOlyBROnjxJAKhly5YW9R88eLAYalKYVLko+/btI0EQSBCEYnmISkOv15OTkxM5OzsXe12JiYnUvn17ksvlJJPJSCaTkVQqJalUKuZNEQRBTHpqLPyotKZUKmnPnj0WvX5HUNYagxnOmw9j7DKAOADRAH4iolSLBrIjzzzzDJ08edL+E1+4ADRsCM2ECZDNm1fqZXs+/RQvfPgh3gOwKDoaGDjQfjZyOBwOh2MlGGMxRPSMGdcLACIAdAPAAOwCsJIsXaQ4AIetMWzAmTNnMHr0aBw4cADNmjXDkiVL0KZNmzL7REZGYvny5XByckJiYiJcXV0BAPv370enTp3Qpk0bHDx40B7mV3p0Oh0WLFiAhQsXIjExUTweERGBlStXltqnRo0auH37NqKiojBr1iyo1WoMHToUmzZtwvTp0zF16lQwxuz1MjhWYPTo0fjiiy+wdu1aDBs2zNHmPMTp06fRpk0bNGnSBH/88QcUCoWjTSpGVFQU5syZg8WLF2PMmDEWjxMQEID79+8jIyND/NtlDjNmzMD06dMhkUiwadMm9O3bFwBw4sQJtG7dGjqdDj///DP69OlT7lhHjhxB69at0bFjR/zxxx8AgNu3b6Nbt264ceMGIiMjoVAoxO+6sUdzz61evRpKpRKnT5+GRCIx+/XbmzLXGKWpHqY0AM8CWATgOoBtKMjHUVmbI11GN7dpQ0GMUeLFi2Vel/zTT0QSCRFAx994w07WcTgcDodjPWC+54YSgKTIzxIALuaM4ej2OISlJCUlUWRkJAmCQD4+PrRixQqT3JVTU1PFGP5JkyYVO9e0aVMCYPSOJodo+/btYmUUFOTRmDZt2kPve2EZ3Z49exKRoTrLiy++SABowYIFjjCdYwXUajV17NiRFAoFHTt2zNHmFOP+/ftUvXp1CgoKsknFC2tgrQoqU6dOFb2fLGXdunViBZZ58+bRhQsXSC6XEwBas2aNyeMMGTKkWN6iK1euUPXq1cnNzY3++usvi+0ri0LvHHPsdCRlrTGs8g8dgA+AtQB01hjPVs2RC4/zv/5KDKDJprg8HT5MXxZkLX7Rz490PCkUh8PhcB4hLBA3jgJwLfKzK4DD5ozh6PYoixsajYa+/PJL8vT0JIlEQu+9955JiQ51Oh1FRUWJlRYEQaD4+Hjx/K1btwgAVa9e3YbWPx6cOXOGVCpVsQSPgwcPpvv379O7775LACg0NJR0Oh1lZmZSp06dCAB99dVXjjadU0ESExOpRo0aVKVKlWLfH0eiVqvFUp4nTpxwtDllYo0KKjk5OSSRSMjLy6tCthw+fFgMOyv8u7hkyRKzxvD29iZBECgnJ4fOnDlD/v7+5O3tTSdPnqyQbWWh0+koLCyMqlWrZlJyVEdjE3EDgArAawB+B3AZwFwAYZaOZ4/m6IXHy9WrkxKg+yZ88e6dO0dBBepfiFRK6bdu2cFCDofD4XAqjgXixmlTjlXGhkc858aff/5JjRs3JgDUqVMnMUlleWzfvp28vb3F7P9SqZRef/31Ytf07duXANDq1attYfpjx71796hGjRpivD0AMXZepVJRRkYGpaamUuvWrUkQhEfmLiunfM6cOUMuLi7UsmXLUhP22pPIyEgCQOvWrXO0KSZx8+ZN8vf3r1AFlULvqIpWg7l58yZ5eXkRAJoxY4ZZfa9du0YAqH79+nTkyBHy8PCgoKCgCpe9NYW9e/cSAFq0aJHN56oothI3bgD4DEArS8ewd3O0uHFh2zZiAE169lmTrtfk5lIHd3cCQG4And2yxcYWcjgcDodTcSwQNw4BaFbk5zAAR8wZw9HN0WsMc/nvv/9o0KBBBICqVatGmzdvNikp361btygsLEz0MOjbty999dVXBKCYW31+fj5JpVJyc3Oz5ct47IiNjSUvLy966qmnaP78+RQUFESurq4UGxtLiYmJ1KxZM5LJZLR582ZHm8qxMps3byYANGLECIcm7ly+fDkBoA8esQqOhV4TllZQOXAD80iBAAAgAElEQVTgAAGg1q1bV9iW/Px8iwSJSZMmEQAaPnw4KZVKCgkJoRs3blTYHlPp2rUreXl5UVpamt3mtARbiRvM0r6OapVh4TGkwHsj7coVk/uMa9aMANBLAFGRuvEcDofD4VRGLBA3mgO4BuAAgIMArlZ2b9CSrTKsMUwhNzeXPv74Y3J2diYnJyeaPn06ZWdnl9tPo9FQRESEGFNep04dOnfuHBERPf/881SzZs1iG7KoqCgCQOPGjbPZa3lcOXDgACkUCmrbtq3oIh4fH08NGjQghUJB27dvd7CFHFtRmPvh888/d8j8f//9N0mlUurevfsjVx6UyJD3AhWooOLj40OCIFB6eroNrCufWrVqiWFpjRo1snuuk5iYGAJAUVFRdp3XXKwqbgBYXPD4G4BfSzZzx7NnqwwLj2t79tBxxojMTFizd/Jk0jFGBNDViAgbWcfhcDgcTsUxV9wwdIEMQMOCJjO3v6NbZVhjmMJbb71FACg8PJzi4uJM6rN69WpSKpViwsui4RCJiYkkkUgeSiTq4eFBEonkkYjfroxs2LCBANDAgQPpxo0bFBISQkqlssIu85zKjU6noz59+pBEIqG9e/fade6bN2+Sr68vhYaGUmpqql3ntiYffvghAaDFixeb3bfQc6Lk3zN7kJycLHrEtWzZ0qS8R7Zg8ODB5OzsXGnyvxjD2uJGWMFjB2PN3PHs2SrNwmPoUCJnZ9InJJjX78wZOuDkRAygTh4ePNEoh8PhcColFoobrQEMAfBqYTN3DEe2SrPGKIdu3bpR8+bNTbr27NmzFBoaKiYLHTlyJGlKrD2+/vprAkCnTp0Sj23atIkA0AsvvGBV25805s2bRwDI2dmZ3N3d6fDhw442iWMHMjIyqEGDBuTl5UXXrl2zy5zZ2dnUtGlTUqlUdLGcyo6VnYpUUElNTSXGGHl5edk9NCg8PJwAUJUqVSgzM9Oucxfl6tWrJJVKaeTIkQ6zoTzKWmMIMBMiiil42oSI/iraADQxd7wnEfrf//BWbi6ievc2r2Pjxmh48SJqSqX4Iy0NNZyckHTpkm2M5HA4HA7HTjDGvgewAEBbGEJUmgMwXsO+ksEY68UYW5Genu5oU0xGIpGUeT4rKwt9+vRBo0aNcOXKFTz77LO4desWli9fDqlUWuza6OhohISEoEmTB0vAqKgoAMDSpUutb/wTxIQJEzB27Fh4enpi//79aNWqlaNN4tgBNzc3bN26FUSEPn36IDMz06bzEREiIiJw+vRprF+/HnXr1rXpfLZGEAR8//33aNSoEQYPHoyLFy+a3NfDwwMtWrRASkoK/vzzT9sZWQQiwsyZM7F582YAhr+prq6udpnbGLVr18bIkSOxcuVKXL582WF2WExpqkd5DcApI8f+sXQ8e7TKdFdlWK1a5AxQwr//mt1Xp9FQD19fAkAuAB3/9lvrG8jhcDgcjoXA/JwbF/EI5vIq2irTGqMsunXrRi3LKEs/e/ZsksvlBIB8fX1p586dpV6bkJBAgiDQlClTxGPnz58Xs/1zrINOp3O0CRwHsGfPHhIEgfr27WvTz8CcOXMIAM2ZM8dmczgCSyuo7Ny5kwBQmzZtbGidAZ1OR2PHjhUrIzk7O1eK73tCQgIplUoKDw93tClGKWuNYbbnBmPsZcbYbwBqMsZ+LdL2A0ixgt7yRPC/r75CPoB5I0aY3VeQSrH9/n181K4dcgCMGDECWLXK6jZyOBwOh2MnzgEIcLQRTzJ//vknAgMDERUVBSLCtGnTcP/+fTz//POl9tmyZQv0ej0GDRokHhs9ejQAYO7cuTa3+UlBEMxernMeA7p06YKFCxfi559/xscff2zVsYkIarUaW7duRVRUFAYPHoxJkyZZdQ5HU61aNfzyyy+4c+cO+vfvD7VabVK/bt26wd3dHYcPH0ZKiu22tlqtFhEREVi8eDF69eoFIkK7du0qxffd398f48ePx+bNm3H8+HFHm2MWzCB+mNGBseoAagKYA2BykVOZAP4lIq31zLMuzzzzDJ08edLRZoi8Vrs2Nl2/jutnziCgcWOLxtjx0Ud4dvZs+Oj1SHrtNfh89511jeRwOBwOx0wYYzFEZHJYScENkiYAjgPILzxORGbGbzqOyrbGKI1u3bohMzMTR44cAQAkJCSgf//+OHz4MACge/fuiI6OhkqlKnesDh06IDExEefPnwdjDFlZWXB3d4eXlxcSExNt+jo4nCcBIsKIESOwZs0azJo1C76+vsjLy0Nubm6FHwv3gE2bNsXBgwfh4uLi4FdrG3744QcMHToUb775Jr7++mswxsrtM3bsWHz++ef48MMPMXv2bKvblJ+fjyFDhuCnn37C9OnTcfz4cezYsQObNm1CeHi41eezhIyMDISEhKBhw4bYt2+fSe+bvShrjWG2uPEoU9kWHlf37UPdLl0wplkzLIyJKb9DaVy6hPjmzVErMxNNlUocSEqC1MnJeoZyOBwOh2MGFogbHYwdJ0M+L5vDGKsFYAoAdyIKLzimBLAMgBrAn0T0Q1ljVLY1Rml069YNWVlZOHjwIMaMGYNly5ZBr9ejZs2a2Lx5M5o1a2bSOPHx8QgODsa0adMwbdo0AEBkZCSWL1+OTz75BFOmTLHly+Bwnhjy8vLQqVMnUZAsikwmg7OzM5ycnCx6VCqVGDJkCHx9fR3wyuzHlClTMHv2bCxevBhjxowp9/qEhAQEBgbC09MTycnJVt3YZ2dno2/fvtizZw8WL16M0aNHw83NDXl5eUhPT3dovo2SLFmyBGPGjMHOnTvL9OKzN1YVNxhjB4moLWMsE4ZyNeIpAERE5Uv9DqIyLjzWtmuH506cQLUbN4DAQIvHyUpIQPPq1RGrVsOfMZw6eRJVTFygcDgcDucRR68HtFqoMzKQlpgIdVYWNLm5yMvIgCYvDzV8fKCSyRB/9y7OxMZCk58PdU4Ouj3zDFQvv2x1c8wVNwr6VAcQSkR7GWMuACREVG4mPcbYagAvArhPRA2LHO8O4HMAEgAriehTE8baXETcGAYgjYh+Y4xFE9GgsvpWxjWGMbp164a4uDjcu3cPGRkZcHZ2xsKFCxEZGWnWOJ9//jnGjh2Lixcvom7dutDr9XBzc4NWq0Vubm6lcK3mcB4XtFot4uLiiokTTk5O5SYH5hjQ6/UIDw/H1q1bsW3bNrzwwgvl9mnWrBn++ecf7NmzB126dLGKHampqejZsyeOHTuGVatWYfjw4Th27BhatmyJxo0b48yZM1aZx1rk5+ejXr16UKlUOHXqVKX5u17WGkNq7GBZEFHbgke3ihrGAV797jugTh1g7lxg8WKLx3ENCMD57GwMqlkTm2/fRq2wMOxevBjtTVAnORwO55FHrwfUaiAnBwn//YfctDTkpKcjPzMTuVlZcJdK0bBKFSA3F5sPHEB2VhbycnOhzs+HOj8fIR4e6BMSAqjVmLhnDzRaLdRqNTRaLTRaLVp5eeGtGjWQk5eHQceOQavXG5pOB61ej54eHpjs54fbubnoce0atETQE0FX0F5xccHHKhVO5+Whe0oK9AB0MNwh0BNhpEyGuXI5fler0U+jQWGxe33B4/sA5gkCVuj1eBvF7ywAwIcAZsMQLzrdyNszD8AHAOYCWFLk+HYAPWwgbpgLY+xNAG8B8AJQG0AQgOUAOpvQ/TsAXwBYW2Q8CYAvAXQFcBvACcbYrzAIHXNK9H+diO4bGTcYwNmC5zpTX0tl5+zZs0hISABjDK+++iq++eYbyOVys8eJjo5G48aNxcoKy5cvR05ODl5++eVKswDmcB4XpFIpQkJCHG3GI4sgCFi7di3atWuHwYMH4+jRo6hXr16ZfaZMmYLw8HBMnz7dKuJGQkICnn/+ecTGxmLTpk3o168fAGD16tUAgFdeeaXCc1gbhUKBjz/+GEOHDsWGDRswZMgQR5tULhaHpTDGagO4TUT5jLHnADQGsJaI0qxon1WprHdVLvbrhw+2bsU3J08isGnTCo83r0cPTP79d3gBSFq8GOACB4fDMYI6KwtZ9+8jJzkZuWlpqO3rCyE3F+cvXsSNmzeRl5WFvJwc5GVnQ5Ofj8hnnwVyc/FjTAz+uXMH+Wq1oWk0kBLhmyZNAI0GE8+exam0NGgKNv8aIqgYw96aNQGtFi/evImLajW0hZt/AL6M4V93d0CvR730dNwigh4PNvf+AP6TSAAiuOv1KOk66AOgMMJfiod3okEw7HABQMDD4kAIgCsFz405nzYGcAZAGgBPI+fbAjhQMEadIuMUtgGMYb1MhpMA2qvVEAqOCwAExvC2QoE5rq44qNViYEaGeFwCQMIYxnt6ItLbG3/m5WFMQgIkjD1ogoBJVauid0AA/kxPx7ybNyERBMgkEkgkEsgEAeMaNEDzgAAcSknB+mvXIJVKIZdKMaZ9ewQvXGjkFVUMC8JSTgN4FsAxImpacOwsETUysX8NANsKPTcYY60ATCei5wt+/hAAiKiksFFynJKeG6lEtI0xtoGIBpfVt7KuMUoil8uh1Wpx7do11KxZ06Ix/vvvP1SvXh2zZs0Sy74GBwcjPj4eCQkJ8PPzs6bJHA6HYxVu3bqF5s2bQ6lU4vjx4/D29i71Wq1WCw8PD+Tk5ODu3bvw9/e3eN6bN2+iS5cuiI+Pxy+//IKuXbuK5wICAnDv3j3ExcWhevXqFs9hK/R6PZo1a4aMjAzExsZaJIZbG5vk3ChYiDwDoAaAHQC2AmhARD0stLNwXC8A0QXjxgEYSESpJa5pAuArACoY1rCziCi6vLEr68Lj+v79eKpTJ7zz9NP4/PRpq4y559NPofroI7TQapEzaBBcNmywyrgcDqcM9HogLw95SUm4GxeH7KQkZCYlISc9HdlpaXgmOBhVnJxw8epVbDt9WkzslZefj7z8fLwTEoIGLi749cYNrLh2DWqdDvlaLTR6PdR6PVZUqYJmMhnm3b+P5Wlp0ALFBII/lEo0Zgyv5+TgR52umDhAAC7DcEu8HYCDRsxPh+GPamM8uF1dlML/FiEArpU4xwrmAgy3u++UOC8HkF8Qs1qTCLfxYHPPAPgwhltKJSAIaJKdjdt6vbixlzCGmlIp/g4OBiQSdLl9G/f1esgKNvYyxlBfqcQ3DRsCUileO3cOmXo95FIppBIJZFIpnvb1xdiwMEAux8zjx6EXBMjkcjg5OUGuUOCpKlXwfNOmgFyOLf/8A5lCAYWLCxRKJRSurqhSpQqq16wJvVyOhPR0OKlUcPLwgNzVlec4MoIF4sYxImrBGPuHiJoyxqQwlJw3Kdu2EXEjHEB3Inqj4OdhAFoQ0bul9PcGMAsGT4+VRDSnIOfGFwDyABw0lnODMfYWDB4nqFatWtjNmzdNfckOQyaTQa/XQ6ez3BllwYIF+OCDD3Dp0iVs2rQJn3/+ORITE9GiRQscPXrUitZyOByOdTl69Ciee+45tGzZErt37y5zsz5y5EisWLECkydPxpw5ZWrjpRIbG4uuXbsiKysLO3bsQKtWrcRzV69eRWhoKAIDAxEfH2/R+PZg165d6N69O5YsWSJWxHIkthI3ThFRM8bYBwDyiGhp4aKkgsbOA5BCRJ8yxiYD8CSiSSWueQqG/B5XGGNVAMQAqFee10hlFTcAIOKpp/DDlSu4duIEgp4xK0y5dG7ehLpZM1RLSYG/kxOO3b0LJw8P64zN4TgYvVaLnKQkZNy5g8x795CZmAhPQUBtlQp5KSlYu28fcrKzkZ2ZieycHOTm5aG9ry/6+vsjPjkZkTExyNNoDAKCTge1Toeh7u4Y6+6Ok5mZ6HfvHrREhgZAR4R3pVLMkkqxUaPBKwXiQaFwAABjAXwGYD6AiUZsng5gGgwhBMaC/5cAGA0gEgZ//JJEAxjIGCKJsBIodvdfAoO40Vwuxwd5eViXnw9pwZ1/GWOQCgJ21ayJakolPk1MxPb0dMgEAXKJBDKJBHKpFN+3bg0XpRJr4+JwMiUFCrkccoUCCoUCzs7O+KB7d0ChwMGbNxGfnQ0XlQrObm5wcnODUqVCk6ZNAaUSWXo9BBcXOHl4QKgECj/H/lggbsyDwTHmVRi+BqMAXCAik7JSVlTcqAiMsV4AeoWEhLx55cqVcq93NNYQN5o0aYL//vsP2dnZUKvVEAQB7du3x5YtW+Dl5WVFazkcDsf6mFpBpVB88PDwQHJystkhd6dOncLzzz8PiUSC3bt3o3GJ6pgff/wxpk6dilGjRuHLL7+0+PXYGiJC586dce7cOVy7dg1ubo7NTmErceMYgMUwZBfvRUQ3GGPniibzsnDcSwCeI6K7jLFAGDKU1ymnzxkA4URU5qqiMosb1//8E3U6dkRk48ZYYsVkMuqsLLT280NMbi68GMPkF15A+KRJqNm+vdXm4DyZ5KWlIeX6daTHxyMtPh4ZiYlQaLV4rlo1ICsLy/buxd2UFGTn5CAnNxc5eXmopVBgeq1aQF4eusfEIEmthlqvR36BZ0JTmQw/qVSARgPv1FTkweCaVeiB0BTAiYLnxlJohQE4CSAehjCEkrQH8BeA0wVjlaQ/gM2CgINE6EQECR4IBxLGMNrJCTPd3fG3VovhqamQCgLkBU0mCBgfHIyBwcE4lpODuXFxUMhkUMhkcJLLoVAo8FqTJmhWowYuZWVh940bcHZxgdLdHS5ubnBRqRD29NPwCgxEFmPIYgyufn5w8fGBIDU7PRKH41AsEDcEABEAusGg2e2CwYPCpEWKtcJSKkJlXmMUpSLixsGDBzFq1CicPWvw7XJxccGrr76KefPmOXyxy+FwOOZgagWVBg0a4MKFC9i+fTt69DA9QOHvv/9Gr1694OnpiT179iA0NPSha+rWrYtLly7h8OHDxTw6KiMnTpzAs88+i2nTpmH69OkOtcVW4kZ9AG8DOEJEPzLGasIQQjLXclMBxlgaEXkUPGcwxLuW6m7AGHsWwBoYQmL0Rs4/Mi6jb9Spg3WXL1vXe6OA1596Ct8WuaO0UhAQERiI3/39cdrHB+ETJiC0SPwX59FCnZVlEBpu30Ydd3cgPR1/Hz2K81euID0tDZmZmcjKygI0GnzeuDGQk4P3T5/GibQ05Gq1UOt0yNPr4QrglI8PoNEgLDUVl3Q66PBAYHADUBgj5gogu4QdbgAyCp47Acgvcd4bQFLBcxkALR7kJBAANGQM/zg7AxIJArOyoAMgZQxyxiBjDM8plfimRg1AoUDHS5cglUigkEjgLJfDWS5Hh+BgRDRtCrVCgXmnTsFFqYTS1RWu7u5w9fBA3aeeQp0GDaCVyxGfkwNVYCBcAwJ4WAGHY2XMETcKkn+uJSKLs6kZETekMERidYYhSuoEgCFEdN7SOcqY+7H23CAiLF26FHPnzi3mNv3JJ58gKirKqiUSORwOx14UraBSr149MMbAGIMgCMWeJycnIy4uDkqlEo0aNTJ6nbF+Bw4cQI0aNbBnzx4EBwc/NH9SUhJ8fX3h4uKCjIyMR6LyzYABA/D777/j2rVrFcpBUlFsIm5UBMbYXgABRk5NAbCmqJjBGEslImP521Do2QHgNSIqN8izst9ViTt4ED906ID3IiLgtmKF1ce/8fffiJ49G3+dPIlvZTIEJCWhjVaLwwXnJQD8BAENPDyw6e234TF0KFBOJmFO2eSlpSHpyhWk3LyJlNu3kXr3LjpXqwaVRoM9MTH4/cIFZGZlISsvD5l5echRq7GhVi346XSY+N9/2JiRATUR1ETQFIRH3JXJoCIq9rsrSuE3+ik8SJBo7HxVPEiwWCgwKAFkODkBEgla5ObiGhFkBcKCgjEEy+XYX7cu4OSEt27cQLxWC2e5HEonJzgrFKjl44MPOnYElEpEx8ZCI5fDzdMTbt7eUPn6wjc4GNXr1wc8PAAuKHA4jy0WeG4cBNCJiNQWzPUjgOdgyCt7D8A0IlrFGOsBg4epBMBqIppl7tgmzv9YihtpaWkYP348fvzxR+Tm5oIxhhYtWiA5ORne3t44cuSInSzmcDgc25CdnY3JkycjPj4eRAQigl6vF58TETQaDfbu3Qu9Xo/27dtDLpcXO1/y+sKfg4KCsGzZMvj6+hqde9WqVXjjjTfQs2dPbNu2zc6v3DIuX76M+vXrIzIyEkuXLnWYHbby3GgDQwh5dRiS0zMY8mDUstDOwnFNCkthjKlgEDZmE9FmU8au7OIGAOCtt4A1a4CrV4GqVW0+3c0DB7Bx7lzsP3YM51JTkaDTGZIUwnAnvRWAOEFAPZUK7Rs3Rr/Ro9E4PNzmdtmLrIQEJF+5gsQbN5B86xbSEhLwrK8vaspkOBUbi29OnkRmTg6y8vKQlZ+PbI0Gs3x90UkqxbLERMxMT4caEIUHHYAfYQhvGArgoexzMGTffQFALwDG/pQdB9CcMfQjwjYUhETAkDdBBuCcnx/8XFzwQVoa9ubmwkkqhbNUCmeZDC4KBaI7d4agUmHz7du4kp0Ndw8PqLy8oPLxgVdAANp26AB4eEDt4gKpSsVDHjgcjtWxQNxYC6AegF9RxCmMiBbZwDyb8EisMVC+uBETE4OxY8fi0KFDICIoFAoMHDgQixYtQkpKCurUqYNFixZh3Lhxdracw+FwHMOwYcOwbt06TJo0CZ9+aixrmvm0a9cOBw8exMaNGzFgwACrjGkP3n77baxatQqxsbGoXbu2Q2ywlbgRC2AcDMk8xf+QRJRs0YAPxp0PILlIQlEvIppY4ho5gN8B/EZEi00d+5FYeMTFYUvt2rj8zDP48Ngxh5iQdPo0fP78E9i/H2137sQJtRpFb6WpAKT7+QH16mGVmxuCW7aEQqmEIJFAEAT4enqiTs2agCDg1OXL0BNBkEohCAIEqRRenp4IDgiAHsC127chyGTieSaRQKVSwcPTE9r0dPxz7BhS7txBemIi0pKSkJ6WhjBPT3Ty9UV8QgImHDqEnALRIVejQa5Wi1fd3DDG1RUHMzLQPzkZauBBUkgYMtUthKHczigjr38CDAkhZwH4n5HzcwBMFgR8CmCmXg8pIHo2yBnDN4GB6OrtjR+ys7E6KQkucjlcnZzg6uwMlVKJMe3bo1r16jiflYWrOTnwDAyEV1AQvGrUgFetWjzpK4fDeeSxQNyYZuw4Ec2wnlW24XHw3CAirF69Gh9//DEKw3f9/f0xfvx4jBs3DtICEbww+d2tW7eMullzOBzO48ipU6cQFhYGd3d3JCUliX8TLSU3NxcqlQp6vR6pqalQqVRWstT23L17FyEhIejTpw/Wr1/vEBtsllCUiFpUyDLj43oD2AigGoCbMOTxSGGMPQPgbSJ6gzE2FMC3AIrGzg4nojLrqD4S4gaA0Y0bY9nZszi5fj2avvyyo80BAMSfOoWf5szBvoMHocjMxAatFsjPhwQPyj8WUh2GGr6AwZ2nJHUBXET5SSFvwlAPuCQdAfxRcE1zI+cHAdggkeBvxtBdq4UMD/I2yBnDOE9PjA0Kwim9HpNu34ZSoYCrkxNUSiXcXV0x4Jln0KxBAyQIAs6kpMA7KAi+tWrBt25duPj4lPk+cTgcDsd8caNIPxciyrGFTbbmUVljFBU3srKyEBUVhdWrVyM72+Aw06RJE8yfPx9dunR5qG/Dhg3h6emJAwcO2NtsDofDcSi1a9fG9evX8csvv6BPnz4VGuu3335D79690aRJE/zzzz9WstB+FCZjjYmJQbNmzew+v63EjU9h2Jv+hCJ5A4nolEUD2oFHZeGReuMG6tSujdpKJQ6lplbasAF9QgK+HjcOZ86cgU6nAwHQE+FpT0+MqVcPIMLrhw5BrdM9iEUD0NLLC2NCQ6HX6TDg6FFDKU293vBIhE7e3hhTsybyJBK8dfYsXF1c4OriApVKBTeVCi0bNECLZs2gVioRm5YGj6pV4VWzJq8qweFwOJUECzw3WgFYBcCViKoxxp4GMJKIjDnYVSoeVc+NTp064Y8//oBer4dUKkXv3r3x2WefoVq1akb7nT9/Hg0bNsTSpUvx7rtWr6jL4XA4lZolS5ZgzJgxaNWqFQ4fNpb1znQGDhyITZs2Yf78+ZgwYYKVLLQf6enpqFWrFsLCwrB79267z28rcWO/kcNERJ0sGtAOPCriBgCsefNNDF+5EquGD8fr337raHM4HA6HwzEZC8SNYwDCAfxKRE0LjlW4vLw9eVTWGIIgoHDt5+npidGjRyMqKgoKhaLMflOnTsWsWbNw584dBAQYywnP4XA4jy+pqanw9fWFTqfDtWvXUKuWZWkmdTodPDw8kJWVhatXrzosb0VFWbRoEcaPH489e/YY9fSzJWWtMQRLByWijkZapRU2HjVeXb4cbVUqTFqzBmnXrzvaHA6Hw+FwbAoR3SpxyLRapRyzKBQ2tmzZguTkZMyYMaNcYYOIEB0djQ4dOnBhg8PhPJF4enqid+/eAIBly5ZZPM6xY8eQlZWFKlWqPLLCBgCMGjUK1apVw+TJk6HXl0xS4DgsFjcYY/6MsVWMsd8Lfq7PGIuwnmlPNkwiwbLVq/EZAHcrZeXlcDgcDqeScosx1hoAMcZkjLEJMKRnqvQwxnoxxlakp6c72hSz6NevHxgzlhnrYc6cOYPLly9j0KBBNraKw+FwKi+jR48GAKxYsQJqtdmVywEAGzduBAD079/fanY5AicnJ8ycORMxMTHYvNmkwqV2wWJxA8B3AHYBqFLw82UAYytqEOcBjfr3x9AxY8BWrgQ5qHIKh8PhcDh24G0A7wAIAnAHQJOCnys9RPQbEb3l7u7uaFNsRnR0NCQSySO/GOdwOJyK0KFDBwQGBiIzMxM///yzRWNs2rQJABAeHm5N0xzC0KFD0bBhQ0yZMgUajcbR5gComLjhQ0QbUVAsg4gKK21yrMmMGVitUqFz167QWagQcjgcDodTGWGMzS142pGIXiEifyLyI6KhFS0tz7EOhSEpnTt3hg+vGMbhcJ5gBEHAO+8YdPdFixaZ3fiQZuEAACAASURBVP/SpUuIj4+Hs7MzWrdubW3z7I5EIsGcOXNw9epVrFy50tHmAKiYuJFdULaVAIAx1hLAo+WT+SigUsF52DDsz8zEitdec7Q1HA6Hw+FYkx7MEBvxoaMNsZRHNSzFVE6ePIkbN27wkBQOh8MBMHz4cDDGcPz4ccTGxprVt9Dbo1u3bpA+JhUee/bsiXbt2mHGjBnIyspytDkVEjfeB/ArgNqMsUMA1gIYbRWrOMUY/Pnn6OjhgajoaNw/f97R5nA4HA6HYy12AkgF0JgxlsEYyyz66GjjTOFxD0vZuHEjZDIZ+vbt62hTOBwOx+EEBQWhc+fOAICvvvrKrL4//PADADxWYjFjDHPnzsW9e/ewePFiR5tToWoppwB0ANAawEgADYjoX2sZxnkAEwR8+f33yCbCpJdecrQ5HA6Hw+FYi/8RkQeA7USkIiK3oo+ONu5Jh4iwceNGdOvWDZ6eno42h8PhcCoFhaEpq1atQm5urkl97t27h3PnzkEQBDz//PO2NM/utGrVCi+99BLmzZuHxMREh9pSkWopAwA4E9F5AC8BiGaMNbOaZZxi1HvxRbzfogXWXL2KKxs2ONocDofD4XCswZGCx0fCS+NJ4+jRo/jvv/8eq7uMHA6HU1F69uwJT09PZGdni9VPyuO3334DADRt2hReXl62NM8hzJ49G9nZ2Zg9e7ZD7ahIWMpHRJTJGGsLoDOAVQDM883hmMX/fvkFB3x9ETpnDqDVOtocDofD4XAqipwxNgRAa8ZYv5LN0cY96URHR0Mul6N3796ONoXD4XAqDTKZDBEREQCAJUuWmNRnQ8HN6cdVLK5Xrx5GjBiBZcuWIS4uzmF2VETcKKyM0hPAN0S0HYC84iZxSsM1IABtvvoK+PdfpM2f72hzOBwOh8OpKG8DaAfAA0CvEu1FB9plMo9rQlG9Xo9NmzbhhRdewOOaT4TD4XAs5Y033gAAnDp1CqdPny7z2uzsbPz1118AgF69etncNkcxffp0CIKAqVOnOsyGiogbdxhjXwMYBGAHY0xRwfE4ptCvH76pXx+1oqJwt5wvEofD4XA4lRkiOkhEkQAmEtGIEu11R9tnCo9rQtGDBw8iPj7+sb3LyOFwOBWhTp06aNmyJRhjWL58eZnX7t69G1qtFlWqVEGdOnXsZKH9CQ4OxnvvvYd169bh338dk4qzImLEQAC7ADxPRGnA/9m77/gqq/uB459z90hys0lImDJkioooDlygICC4raM4ClpHW6tVaW2pm1b8aWudFUWqIpUiQ9yA0AIKuFhlDwkkZN2su8f5/XEvFDGElZtLku/79TqvPPd5nvs83xxC8s035zmHTOA3jRKVODilOO/ZZ/EA98nkokIIIZoxpdQF8U23PJZyfJk+fTp2u71F/5VRCCGOxe23347WmqlTp1JbW3vQ82bMmAHAFVdcQWz185brwQcfxOVyMX58clZ4P5bVUrxa65la603x18Va608aLzRxMF2HDOGBc87h7R07+PyZZ5IdjhBCCHG0zo1/PPCRlGbzWEpLFA6HmTFjBsOHDyclJSXZ4QghxHHpyiuvxOFw4PP5ePvtt+s9JxwO75tMdNSoUU0ZXlJkZGQwfvx4Pvjgg32P4jQlpbVu8psmS//+/fXKlSuTHUaj8FVW0qtNG+wGA99WVmJ2OpMdkhBCCAGAUuorrXX/ZMfRlJpLjrH3r4YN5X/z589n8ODBvPvuu1x55ZVNFZoQQjQ748aNY/LkyfTs2ZNVq1b9aGTG4sWLOffcc7Hb7VRVVWGxtPwpKn0+H127dqWwsJBly5Y1+miVhnIMmSOjmbJnZvLX8ePZEgyy/P77kx2OEEIIccSUUr9uqDVhHJ2VUpOVUjMa2tdaTJ8+HafTySWXXJLsUIQQ4rg2duxYotEoa9asYfny5T86PmvWLAAuvvjiVlHYALDb7Tz88MNkZGTQ1JNtS3GjGRvxyCNsGzKEs954A4qKkh2OEEIIcaRS460/8HOgIN5uB045nAsopV5TSpUqpdYcsH+oUmqDUmqzUurBhq6htd6qtb71UPtag1AoxL/+9S8uvfRSHA5HssMRQojjWv/+/enVqxcGg+FHE4tqrXn33XcBuOyyy5IRXtLccsstfPjhh6SnpzfpfaW40czlv/wyRCIsHzMm2aEIIYQQR0Rr/bDW+mGgEDhFa32v1vpe4FSg/WFeZgowdP8dSikj8DwwDOgJ/EQp1VMp1Ucp9f4BLbfRPqEWYP78+VRWVsoqKUIIcRiUUvtGb7z99tu43e59x9atW0dRURFKKYYNG5bEKJtesiZOleJGc9epE9NGjuT0BQv45Mknkx2NEEIIcTTaAMH9Xgfj+w5Ja70YqDxg9wBgc3z0RRB4BxiltV6ttR5xQCttjE+gpfjnP/9JWloaQ4cOPfTJQgghuOGGGzCbzQSDQaZOnbpv/+zZswE45ZRTyMnJSVZ4rYoUN1qAy199la5mM3dNmECgpibZ4QghhBBHaiqwXCn1R6XUH4EviY3IOFoFwM79XhfF99VLKZWllHoJOFkpNf5g++p53zil1Eql1MqysrJjCPf4EAwGee+99xg9ejRWqzXZ4QghRLOQlZXF5Zdfjslk4oUXXtg3YfPeR1KuuOKKZIbXqkhxowWwpqXxt4cfZlMoxFOXX57scIQQQogjorV+HLgZcMfbzVrrJhuOqLWu0FrfrrU+Ye9969tXz/teAR4Gvm4JE8V98sknVFVVySMpQghxhG699VbC4TAbN25k8eLF7N69m2+//RaAESNkZfOmIsWNFuKi8eO5sqCAx+fPZ9u//53scIQQQogjorX+Wmv9l3j75hgvtwtot9/rwvg+0YDp06eTkZHB4MGDkx2KEEI0KxdeeCHt27fHZDLx0ksvMXfuXADy8/Pp3bt3kqNrPaS40YI8M3Mm+Uqx9YEHkh2KEEIIkUwrgK5KqU5KKQtwLTAnETfSWs/VWo9zuVyJuHyT8fv9zJ49m8suu6zVLFcohBCNxWAw7Bu9MWPGDF599VWUUowePTppk2u2RqZkByAaT+GAAWx64gmM48fD+++DDIESQogWRUejhLxeAjU1BGprCdTWkudyYQyH2b1zJzt37iTg9RLweGIffT5Gn3QSxlCI/6xdy1dbtxLw+wkEAgQCAX51zjlkN/PJqJVS04DzgGylVBEwQWs9WSl1F/AxYARe01qvTdD9RwIju3TpkojLN5kPP/yQ2tpaeSRFCCGO0k033cQf//hHwuEwK1euBODSSy9NclSti9o74Ulr0L9/f733C63FCgYJn3QSr5WVcePGjdgzM5MdkRBCtAg6GiVYW4u/qgpfdTX+mhr81dW0TUsjzWSirKSEFatW4fd4CPh8sY9+PyO7daPAbmfV9u288913+OOFBX8wiD8Y5LETT6STycScnTt5avt2AuEw/mgUfySCPxplUXo6nUIh/s/j4b5IhAN/ahcDecAfgEfribsWSAF+DTyz334DsDovj57FxY3eV0qpr7TW/Rv9wsex5pJj7P0L4oH537XXXsv8+fMpLi7GZJK/fQkhxNEYNmwYCxcuJBAIYLPZcLvd2Gy2ZIfVojSUY8hPr5bGYmH5nXdy2913UzR6NI8sXpzsiIQQotGFvF58lZX4qqqwRaO4zGaCNTWs/PZbfDU1+Gpr8dXV4auro1+bNvTNyqKyooJnFy3C5/PhCwTwxwsMPy0o4CKXi42Vldy8di2+cHhfYcEXjfJXm42rolH+7fdzbj2xzAJGEXsOYng9x7sQW6bjv8AkwArYlMJqMGBTilqTCVwujMEgFqORVKsVm8mEzWzGarFgPeMMyMxkQHk5D+3cidVqjTWbDavNRso554DLxfXl5ZxRUYHV4cDqdO5r9p49weHg4VCIhwwGrKmpWNPSMEmy1ShawsgNj8fD3LlzufHGG6WwIYQQx+DWW2/lo48+wmAwcNFFF0lho4nJT7AW6My77uK6SZP407//zY2ffkrXIUOSHZIQojWIRPCUl+OtqMBbWYk3PsLBCXTPyQGvlxkLF1JdVYXX48Hr8eDzeumVns5V7dqB18sNCxZQGwjgCwbxhkJ4w2GudDr5rcNBwOslu7wcHxDZ77YPAk8SG6FwVj1hPQb0jR9/FLABdqVizWDg4lAI8vIwAw6zmUy7HZvZjN1qxWaxUNi7N3TqROdQiCfWrcNmt2Oz27E7ndgcDk7t2xcKCxkYDrOspAR7WhrWlBRsaWlYU1PJysuDtDSutli4xmg8aPcNp/7iyF5nx9vBdI+3g0lt4Jg4elrrucDc/v37j012LEdr3rx5eL1eeSRFCCGO0aWXXkp2djbl5eXySEoSSHGjhZo0axbvn3wyd//kJ3xYWooyyNyxQrR6kQh1e/ZQU1KCJ16A8FRVofx+BnbsCB4Pc5ctY+uuXXg9HjweD16fj1yTiQe7dQOPhztWrGB1TU2s8BCJ4IlE6G8wMNNggECAk4AtB9x2JP+byfFuoOSA4zcajVzlcoHDwdqyMrRSOEymWKHB4SCroAD69MFis/Gz5cux2+3YbbbYR4eD/t26Qa9euCwWPlq/Hnta2v+ay0V227bQpg3tbTaiVutBvx92Aj5toPsKgfENHM8AzmjguEwn1jK1hJEb06dPJy8vj0GDBiU7FCGEaNYsFgtjxozh2Wef5ZJLLkl2OK2OzLnRgv3l8sv51XvvMeO++7jiqaeSHY4Q4jCFvF7q9uyhtqSEurIy6ioqOK1DB5TXy4rvvmPVpk3U1dTgqavD4/EQ9Pt56uSToa6OSatWMa+4GE8oRF0ohCcSwQmsM5kgEGAUP14yohOwNb49BPgsvq0AJ3Cq2cznhYXgdPKzPXvYGgrhsFhwWq04bTZ65uRw39lng8PB62vX4gUcKSk4UlOxp6RQUFDAqf36gd3O1ooKzKmpODIysGdmYktPxyDD4FscmXPj+HXgnBu1tbXk5ubys5/9jOeeey6ZoQkhRIvg8/nYsGED/fr1S3YoLZLMudFK3fn22yzLyyNv6lT44x/B6Ux2SEK0ONFIBE9pKfZwGJPPx54dO1i/bh21lZXUVVVR63ZTV1PDzT17kh6J8PG6dby1bh11Ph+1gQB1wSC1oRCLc3LI9Pn4Q1UVj0YiP7qPB3AAbwF/2W+/EUhTij8XF6NSUvDX1RGJRsmy22mfnk6KzUZWSgpcdBGkpHDb999zic+HIzUVZ1oaTpeL9OxsOO00cDqZ5vdjSEnBkZWFNS3tR6McXj1Ef9x8iOOdD9mjQoimNHfuXPx+vzySIoQQjcRut0thI0mOu+KGUioTmA50BLYDV2ut3Qc5Nw1YB8zSWt/VVDE2FyabjXfmzYOzz4ZHH4WJE5MdkhDHhWg4jKe0lJrdu6ktLaWmtJTOaWlkGwx8v20bc5Yto7amhtqaGmrq6qj1eLi/Uyd6KcXH33/PPdu3UxMOUxuNUgto4EtgADAXqO/B+4tmzybdamWn2cx//H5SjEZSzGZSLRbapqURPfNMyM7m/IoKLOXlpKSmkhovPqRmZGCOTxr5u2CQXxsMpOTk4MzNxZKS8oMCxEPxdjCHGiCZfWRdKUSr19wfS5k+fToFBQWceeaZyQ5FCCGEOCbHXXGD2Nxw87XWE5VSD8ZfP3CQcx8FZDmQhpx1FjXXXceEP/+ZcWefTY8RI5IdkRBHT2uiXi+lW7ZQU1xMdUkJNaWl1JSX0yM9nRMdDvbs3s1T8+dT4/FQ7fFQ7fNR4/dzf0YGo7Xmy8pKBnq9P1pO8x3gGmATsXkhIPYNMk0pUg0Gbo5GoW1b0jMy6O31kmq3k+p0kpaaSmpqKgXnnAPt2jEsGGR+ZSUpWVmkZmeTkpNDal4eaXl5YLXyM+BnDXyK58fbweQcbd8JIRKiOU8oWlVVxUcffcSdd96JQebmEkII0cwdj8WNUcB58e03gM+pp7ihlDoVaAN8BLSq53qPlP+3v2XKtGl8d+ONzK+okMlFRfKEw1BdzdbVq6natYuqkhKq9uyhurycLk4n52RmEigv57aPP6bK46HK56M6GKQ6FOI2i4UHgkFKw2Hy67n0E8Qme/QCLwJpBgMuk4k0sxmX1Yq5XTvo3p32JhMPrV9PWloaaenppGZkkJqZGZsTolMnzrZY2KM1aQUF9T6WcTrwzwY+xYJ4E0KI493s2bMJBoPySIoQQogW4XgsbrTRWhfHt0uIFTB+QCllAJ4GbgAGN3QxpdQ4YBxA+/btGzfSZiK3Vy+euOYa7njnHYbl5nL72LEM//3vMTscyQ5NNDdaQ00NO9eupXzHDty7d+MuKcFdWkqOUowqLISqKn7+ySfsrK6myuejKhikOhxmmFK8Eg4D0BvwHXDpscA5gDktjUUeT6woYbHQLi2NXnY7nbt1g1NOIdPp5IU1a0jLzMSVnU1aTg6uNm0o7NIFOnakU2oqHrP5oJ9CPvBIA5+iFcg9pk4SQrQmzfmxlOnTp9OhQwcGDBiQ7FCEEEKIY5aU4oZS6jMgr55Dv9v/hdZaK6XqW87lDuADrXXR3lm/D0Zr/QrwCsRmMj+6iJu/cW+8QUVZGS8uXMhlEyfy0HPP8egvfwm33gqdZYq/VkVr6oqLqdi2DXdREe5du6gsLsbo8zG6Y0dwu5k4fz7f7t6N2+ul0ufDHQrRHZgXjUIkwjBg7QGXvRAYZTSCy8UGr5dqpUi32eiemorL6WRAhw4QnzdiysaNWF0u0tu0IT0vD1dBAVkdOkDbthiMRrY1EL4F+HmCukYIIY5Uc30spaKigk8//ZR77rmHQ+VSQgghRHOQlOKG1vqgoy2UUnuUUvla62KlVD5QWs9pA4FzlFJ3ACmARSlVp7V+MEEhN3tGi4WHPvuMB/1+Pnz8cXovXQoTJ/LZE0/wp8xMxv70p4x+9FEsKSnJDlUcAW95OZXbtlGxbRvVu3czqLAQKip4b/FilmzYQEV1NRW1tVR6vRjDYRalpIDbzU/CYd4/4FqdgNEARiNfGY2s0poMi4Vsh4OuTic927SBIUMgI4M/ff89IbudjPx8MgoKyGjXjswOHaBNG1CKBYeI++qE9IYQQojD9d577xEOh+WRFCGEEC2G2rvO+fFCKfUUULHfhKKZWuv7Gzj/JqD/4ayW0lzWoG8yRUXM/M1v+PW777IjEiFbKW469VTGPvYY3S6+ONnRtSo6GqV6505S/X6MlZWs/fprln/1FRWlpVRUVFBRVUVlbS1vnXACVreb32/fzqTaWvz7XUMBIWJLg94GvAlkGo1kmc1k2e3kp6by5rBhkJnJB3v2UBKNkpGbS0ZeHhnxkROFPXtCSgrIX/GEEMegoTXoW6rmkmPsHaUxePBgtm3bxqZNm2TkhhBCiGajoRzjeJxzYyLwT6XUrcAO4n/kVUr1B27XWje00IA4EoWFXD5tGqPeeINP//xn/v7iizy7ciVvDx3K94MGYRw3Dn355Si7PdmRNjvBmhpK16+nbMsWynfsoLyoiPKSEq7t0IEcn4/3v/uOp9eto9znozwUojwaJQxsI7YG8lxik2NC7D9plsFAltlMXWEh1s6dOa1NG+6uriYzM5Os3Fwy27Qhq6AAzjsPcnJ4IT2dl53Og8Z3qOVAhRBCtGwLFizgwQcflMKGEEKIFuO4G7mRSM3lryrJVLJqFRuff55B8+cT3rKFk41GLuzTh7F//CO9Ro1KdnjJoTWe0lLKNm4kIxjE5fOxY9063lm4kNKyMsrcbspqaij3evlrWhoDa2uZ7vFwbT2X+g9wVnY2c6xWnqqtJcfpJNvlIjsjg+ycHMZcfDFZnTpRbjJRa7WS3aULKXl5ssKNEKJZaU0jN/abUHTspk2bkh3OIe1fzPjuu+/o27dvEqMRQgghjkxDOYYUN0T9olHKZ8/m7l/9ipnff08QGJiSwrhrruHqiRNxZGcnO8JjEqmro+i77yjbsoXSbdsoKyqidPduzs3MZIDRyMZt27hh5UpKAwHKIhG88fdNBW4kVqQ4B7ADuUYjOVYrOU4nE049ldN79GC7ycSnJSVk5+eT06ED2R07kn3CCWR27oyhgZU8hBCiJWhNxY29mkuOsbe4ceKJJ7Ju3ToZuSGEEKJZaW6PpYjjgcFA9mWXMe2yyyhfv56p99/PKx9/zM2TJ1MwbRpDxowhdPPNmE87Lalh6miUupISKrZupWL7dlyhEF1sNgIlJUycM4eKysrYpJp1dVT4fIyx27nL76fE46FjPdebaDQyoG1bnC4XWQ4HPfLyyMnIIDc3l5y8PM466yzo04fTMzKoc7lw5ta/aGhHYkubCiGEEMeja665RgobQgghWhQpbohDyj7xRH49Zw73RKMsfeklBi5bBq+/zvgXX2SRw8GVgwbhTEnBYDSS6XRy7emng8HAvNWrKfN4MBgMGIxGDAYD2S4XF/XrBwYD89esoTYQwGAwYDSbY8fT0zmtRw9Qio/+/W+Kd+6korSU8vJyKqqqOMlq5a70dKiooNP69eyORAjuF+ttwEvEvrAfAVKBLJOJLKuVbIcDV9eucMYZ5GZm8urmzeQUFJDbqRM5nTuTe+KJpOTlgcFAAfBhA31ijjchhBCiOZJVUoQQQrQ08liKODpuN1PuvpunZ8xgTSCwb3dPYG18+yxg6QFvOx34Ir7dF1h9wPHBwKfx7U7A9vi2mdikmpe7XDzfpw9kZXHvpk2YnU6ysrLIys0lKz+fbj170uPUUyEri3BaGiabrVE+XSGEEIdPHks5fu0drdGa8j8hhBAthzyWIhpfRgY3vfkmY6ZOpXrnTiLBIJFQCEP8GNEo/yopwe/zEQ2HiUYiRMNhLCYT5OdDNMq7W7fi8/mIhMP7zkm126F9e4hGmVdSgj0vj6zOnUnNz//RpJpPHyJE+eIWQghxOJRSnYHfAS6t9ZXxfaOB4UAaMFlr/UkSQxRCCCHEIcjvf+KYKIOB9A4d6j2WV1DQ4Hu79+7d4PGeRx2VEEKI1kIp9RowAijVWvfeb/9Q4C+AEXhVaz3xYNfQWm8FblVKzdhv3yxgllIqA5gESHFDCCGEOI5JcUMIIYQQzdkU4G/EFrQCQCllBJ4HhgBFwAql1BxihY4nD3j/LVrr0gau/1D8WkIIIYQ4jklxQwghhBDNltZ6sVKq4wG7BwCb4yMyUEq9A4zSWj9JbJTHIanY5BQTgQ+11l8f5JxxwDiA9u3bH1X8QgghhGgchkOfIoQQQgjRrBQAO/d7XRTfVy+lVJZS6iXgZKXU+Pjuu4nNc32lUur2+t6ntX5Fa91fa90/JyenkUIXQgghxNGQkRtCCCGEaNW01hXA7Qfs+yvw10O9Vyk1EhjZpUuXBEUnhBBCiMPRqoobX331VblSakcjXzYbKG/ka4oY6dvEkH5NHOnbxJG+TYxE9Wv9M003nV1Au/1eF8b3NTqt9VxgrlLqsuaUY+xdErYVk+8piSN9mxjSr4kjfZsYTZ5jtKrihta60ceMKqVWHmydXXFspG8TQ/o1caRvE0f6NjFacL+uALoqpToRK2pcC1yXyBtKjtG8SN8mjvRtYki/Jo70bWIko19lzg0hhBBCNFtKqWnAMqC7UqpIKXWr1joM3AV8DPwX+KfWem0y4xRCCCFEYrWqkRtCCCGEaFm01j85yP4PgA+aOBwhhBBCJImM3Dh2ryQ7gBZM+jYxpF8TR/o2caRvE0P69fgm/z6JI32bONK3iSH9mjjSt4nR5P2qtNZNfU8hhBBCCCGEEEKIRiMjN4QQQgghhBBCCNGsSXHjGCilhiqlNiilNiulHkx2PC2BUqqdUmqhUmqdUmqtUuqXyY6ppVFKGZVS3yil3k92LC2JUipdKTVDKbVeKfVfpdTAZMfUEiil7ol/L1ijlJqmlLIlO6bmSin1mlKqVCm1Zr99mUqpT5VSm+IfM5IZo/gfyTESQ/KMxJIcIzEkx0gMyTEaz/GSY0hx4ygppYzA88AwoCfwE6VUz+RG1SKEgXu11j2BM4A7pV8b3S+JrR4gGtdfgI+01icCJyF9fMyUUgXAL4D+WuvegJHYkp7i6EwBhh6w70Fgvta6KzA//lokmeQYCSV5RmJJjpEYkmM0MskxGt0UjoMcQ4obR28AsFlrvVVrHQTeAUYlOaZmT2tdrLX+Or5dS+ybd0Fyo2o5lFKFwHDg1WTH0pIopVzAIGAygNY6qLWuSm5ULYYJsCulTIAD2J3keJotrfVioPKA3aOAN+LbbwCjmzQocTCSYySI5BmJIzlGYkiOkVCSYzSS4yXHkOLG0SsAdu73ugj54diolFIdgZOBL5MbSYvyLHA/EE12IC1MJ6AMeD0+HPdVpZQz2UE1d1rrXcAk4HugGKjWWn+S3KhanDZa6+L4dgnQJpnBiH0kx2gCkmc0OskxEkNyjASQHKNJNHmOIcUNcVxSSqUA/wJ+pbWuSXY8LYFSagRQqrX+KtmxtEAm4BTgRa31yYAHGd5/zOLPZo4ilti1BZxKqRuSG1XLpWPLp8kSaqJVkDyjcUmOkVCSYySA5BhNq6lyDCluHL1dQLv9XhfG94ljpJQyE0s43tJaz0x2PC3IWcClSqntxIY4X6CUejO5IbUYRUCR1nrvX/9mEEtExLEZDGzTWpdprUPATODMJMfU0uxRSuUDxD+WJjkeESM5RgJJnpEQkmMkjuQYiSE5RuI1eY4hxY2jtwLoqpTqpJSyEJuAZk6SY2r2lFKK2DOF/9Va/1+y42lJtNbjtdaFWuuOxL5eF2itpULdCLTWJcBOpVT3+K4LgXVJDKml+B44QynliH9vuBCZRK2xzQHGxLfHALOTGIv4H8kxEkTyjMSQHCNxJMdIGMkxEq/JcwxTom/QUmmtw0qpu4CPic2u+5rWem2Sw2oJzgJuBFYrpb6N7/ut1vqDJMYkxOG4G3gr/ovIVuDmJMfT7Gmtv1RKzQC+JrbCwTfAK8mNqvlSSk0DzgOylVJFwARgCfJDyQAAIABJREFUIvBPpdStwA7g6uRFKPaSHCOhJM8QzZHkGI1McozGdbzkGCr2+IsQQgghhBBCCCFE8ySPpQghhBBCCCGEEKJZk+KGEEIIIYQQQgghmjUpbgghhBBCCCGEEKJZk+KGEEIIIYQQQgghmjUpbgghhBBCCCGEEKJZk+KGEKLJKaXSlVJ3xLfbxpfiEkIIIYQ4JpJjCNF6yVKwQogmp5TqCLyvte6d5FCEEEII0YJIjiFE62VKdgBCiFZpInCCUupbYBPQQ2vdWyl1EzAacAJdgUmABbgRCACXaK0rlVInAM8DOYAXGKu1Xt/0n4YQQgghjjOSYwjRSsljKUKIZHgQ2KK17gf85oBjvYHLgdOAxwGv1vpkYBnw0/g5rwB3a61PBe4DXmiSqIUQQghxvJMcQ4hWSkZuCCGONwu11rVArVKqGpgb378a6KuUSgHOBN5VSu19j7XpwxRCCCFEMyM5hhAtmBQ3hBDHm8B+29H9XkeJfc8yAFXxv8gIIYQQQhwuyTGEaMHksRQhRDLUAqlH80atdQ2wTSl1FYCKOakxgxNCCCFEsyU5hhCtlBQ3hBBNTmtdASxRSq0BnjqKS1wP3KqU+g5YC4xqzPiEEEII0TxJjiFE6yVLwQohhBBCCCGEEKJZk5EbQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNakuCGEEEIIIYQQQohmTYobQgghhBBCCCGEaNZMyQ6gKWVnZ+uOHTsmOwwhhBCiRfvqq6/KtdY5yY6jKUmOIYQQQiReQzlGqypudOzYkZUrVyY7DCGEEKJFU0rtSHYMTU1yDCGEECLxGsox5LEUIYQQQgghhBBCNGtS3BBCCCGEOEpKqZFKqVeqq6uTHYoQQgjRqklxQwghhBDiKGmt52qtx7lcrmSHIoQQQrRqrWrODdEArSESIRIM4q+rIxIMEgmFiAQChINBMlNTsRgM1FRVsae0lEgwSDh+jsFopGufPtjy8yElBZRK9mcjhBBCCCFEk9Jas3PnTtq1a4eSfFiIJifFjRbOvXUrn/zlL5yxaxcdVq7kk8pKrq6tJQxE9mufABcC7wI/qec6XwIDgOnAuHqOrwF6AS8YDEzQmgyTiQyLhXSbjQyHg79dcAHZ+fksr6vju+pqMnJyyGjThoyCAtILCujYpw+G9HQwGhPRDUIIIYQQQiTUhAkTePTRRxkwYAD33Xcfl112GSaT/LolRFOR/20tTDQc5ptp0/hwyhQ+XLGCL2priQL/Z7dzz/DhFJrN3PTf/2I0GDAajRiNRkxGIx1POQVycuhXWcmfNmyIHTOZMJlMGE0mOvTvDxkZnF9ezj+2bcNkNseOm81EwmE6dOoEPh8nfvMNV373HVV1dbg9Htx+P9tqajC+/z5UV/NeOMzEeuL2AnaleMhi4a1IhAyzmUybjeyUFLJdLp677DJUdjYrqqtxG41kd+hAVseOZHfpgiMnB2WQJ6yEEEIIIURyvPzyyzz66KMMHTqUTZs2cfXVV9OpUyfuuecebrnlFpxOZ7JDFKLFU1rrZMfQZPr3769b4jJtFZs2UTp7Nj1WraL6ww/JLi8nAvR3OBh66qkMu+EGBowZg9FqTW6gWuMrL6d861aqiopw796Nu7iYqtJSxvTqBW43b37xBR9v3ozb46HS66U8ECAcibA1GgXgGuCfB1y2A7C9bVvIzmZCTQ3rw2GyXS6yMjLIzsmhQ8eOjLroIsjOplRrbPn5pLZtKwURIYRIEKXUV1rr/smOoym11BxDCHFoc+bM4bLLLmPo0KHMnj0bpRSzZ8/mqaee4osvviAjI4M77riDu+66i7y8vGSHK0Sz1lCOIcWNZigaDrPyH//gw6lT+WjlSpbX1XE2sCgzEy6+mI8KCjjlppvI7dUr2aE2nnAY3G6+X72anevXU15URPnu3ZSXlmL0ermvc2eoqOCOL79kgdtNeShEpdZo4GTg6/hlBgAriA1ZylSKTLOZczMyeGnAAMjM5KmtWwlarWRlZ5OZl0dWfj7tu3ena79+kJkpc4oIIcRhkOKGEKK1+OKLL7jgggvo3bs3Cxcu/NEIjaVLlzJp0iRmzZqF2Wzmxhtv5N5776VHjx5JiliI5k2KG3HNOfGo3roV17Jl8OGHXPHuu8wMBlHAAKeTof37M3zMGE776U9lzor9RIJBqnbswFdcTKHJBBUV/Oujj9j+/fdUVFRQWVVFRW0tXY1GnsjIgIoKuhUVsemA/xNXADPi2wVA1GAg02wm02ol0+FgeOfOjDvjDMjI4KU1a0jNzCSjTRvS8/LIKCgg74QTyOjUCWy2pu4CIYRIitZU3FBKjQRGdunSZeymTZuSHY4Qoglt2rSJM888E5fLxdKlS8nNzT3ouRs3buSZZ55hypQp+P1+RowYwX333cegQYNk8lEhjoAUN+KaU3EjEgyyYupUPvzHP/joq6/42uNhD5CZnc2Hffrg7tGDi+6+m+wTT0x2qC2Ov7oa97ZtVGzfTuXOnaSGQpycng4VFfzuvfcoc7uprK2l0uOhwu9nlNnMI5EIQa+X+h78uQ94CqixWOgWDpMen2w1w24n3eHgul69GHHyydTZ7byzcSMZubmkt2lDRn4+rvx88k44AWfbtmA2N3FPCCHE0WlNxY29mlOOIYQ4dnv27OHMM8+kpqaGZcuW0aVLl8N6X1lZGS+88AJ/+9vfKC8vp3///tx3331cccUVMvmoEIdBihtxzSLx2LqVf91+O7d99hkVWqOA01NSGHbaadwxfjzZF14IMlfEcUkHApRt3hybT6SoiKqSEtx79tAtJYVTUlOp3rOH33z8cWyyVa+XKr8fdzDIfVYrt/v9bIhEqK9U9SJwO7DKYuGicJg0oxGX2YzLaiXNbufek07irG7d+B54d8sW0jIycGVl4crOJi03l559++IqLCSSkoIhNVXmGhFCJJwUN4QQLVldXR3nn38+a9euZeHChZx++ulHfA2fz8fUqVN5+umn2bRpEx07dtw3+WhKSkoCohaiZZDiRtzxnHhs+vRTfH/7G33nzaPYYOCBwkKGDR/ORb/4BVlduyY7PJFoWhOuqqJ4wwbcRUW4d+3CXVJCTUUFp+fm0t1mY+v33/Onf/+bGq+Xap+Par+fmmCQp9PSuCgQ4KOaGobVc+mPgIuBmcBVQJpSpBoMpJpMpJpM/L1PH/rk57PU5+PtXbtIdTpJTU0lNS2N1PR0Rg8aRHpeHntCIcqCQVJzc0nNzyc1Px+z3d6k3SSEaB6kuCGEaKnC4TCjRo3io48+Yvbs2YwYMeKYrheNRpk7dy5PPfUUS5YsIT09nZ///Ofcfffd5OfnN1LUQrQcUtyIOx4Tj/++/z6P330307Zv50KDgU9+8Qv4zW+gbdtkhyaamWg4TF1JCdW7dlFTUkJ1SQnVe/ZwWn4+2VqzZsMGpi9fTnVNDbVeL7U+H7V+P8+1a0e3cJh/FBfzq8pKarUmtN91NwDdgEnAbw64pxXYmplJ2/R0XgkEeKOmBqfZTIrVitNmI8Vu55mLLsLmcrG4tJS1bjcpLhfOtDRSMjJwZmRw5hlnoFJTqdUalZKCIzsbgwzLFKJZk+KGEKIl0lozduxYJk+ezMsvv8y4ceMa9frLli3j6aefZubMmZjNZq6//nruvfdeerWkRQKEOEYN5RjyG0SSrJk5k0d/9Sve3bkTO/Dr/v25d/Jk6Ns32aGJZspgMpFWWEhaYWG9x3vH28HcGG8AgZoaaouLqd2zh0KnE/x+Rq1fT/s1a6itqoq1mhpq6+pI79sXfD4s69Zh9/moDQYp9njwRCLURSL8dds28PmYDrxwwD3NQDC+fTfwRnzbATiVosBs5ptu3cDh4OHSUlZ4vTgtFhxWKw67nbbp6fzuggvA6WTuli2UBYM4UlNxulw40tLIbtOGk/r1A4eDCr8fY2oqzpwczA7H0XSxEEIIIVqxRx55hMmTJ/PQQw81emEDYODAgcyYMYPNmzfz7LPP8tprr/H6669zySWXcO2115KdnU16evoPms1mkwlJhYiTkRtN7dtv4dFH+b+ZM5kA3D1wIPdMnkyOLAclWrJoFG95OTUlJdSVlVFXXo6nshJ/TQ0Xdu0KdXV8vGIFq7Zupa6uDo/HQ53XizkS4blevcDr5f61a1lQWYk3HMYTieCNRikAvo1/DzsXWHzAbfdfBrg/8FV82wTYgfMtFmbn54PDwZXFxZREIjjMZuxmM3aLhdPz8rinf3+w23nq228JGY3YHY5Yczrp1qEDA/v1A7ud5du2YXY6saWmYktLw+ZykZadjTMrC6xWWUJYtCoyckMI0dJMnjyZn/3sZ9x000289tprTVJQKC8v58UXX+S5556jrKys3nMsFsuPCh6H21wuF9FoFJ/Ph8/nw+/3/+DjofYd7Hh6ejp/+ctfyMvLS3gfidZHHkuJS2biseKNN3j0gQe4Ys8exrhceO+4A/+tt5J5wglJiUeIFiMaBb8f965d1JSW4nW78brdeKqqsITDnNG+PXi9/HPxYnaVleGpq8Pr9eLz++los/HLLl3A5+OWL75ge10dvnA41iIRzrVYeMVuB6+XXK+XA9OKG4Gp8W0bEDjg+M+JjVaJACnxc2wGw742Ljube9q3p85s5ur167GZTNgsln1tVPfuXHziidRozUvffovVZsNqs2Gz27E6HPTv3p2unTrhiUb5ZudOrE4ntpQUrCkp2FJTyc7Lw5GZSdRsBqtVHvcRTUaKG0KIluSDDz7g0ksvZciQIcyZMwfzQVawe+utt7jnnnsYMWIEzz77LGlpaY1y/0AgwNatW6murqaqquqgrb7jfr+/UWI4kNFoxG63Y7fbsdlsP9hevXo1hYWFLFiwgIKCgoTcX7ReUtyIS0biseyVV3j0oYf4sKyMDKWYOHIk4954A9LTmzQOIcSx0dEowbo6fG433spKfFVV2LWmbWoq+Hx8/O9/46urw+/x4Pd68Xu99MjM5NyCAkIeDw99+in+QCDWgkH8wSCX5uRwfXY2lbW1DF29Gl84jD8a3dd+azZzTyTClkiE+haY+xtwJ7AKOKme468DNwFLgLOJPQZkBaxKYVWKV3NyGJaezrJwmF+WlGA1GrEYjbGPJhMP9+nDSW3a8FVNDa9t2YLFYsFqsez7eNMZZ1CQk8MGt5sl33+P1WbDsl8755RTSHG5KKmtZbfbjcXhiDWnE4vDQZuCAow2G2GDAWW1YrRYEvOPJ5pccy9uKKXaA38FKoGNWuuJh3qPFDeESAytNeFw+KAFhURbsWIF5513HieeeCKLFi066Eomn3/+ORdccAF7f7cyGAwMHjyYl156iU6dOjVlyD/g9/sbLIoYjcYfFSfqK1gcuN3QsrVLlixh2LBh5ObmsmDBAtq3b9+En7Fo6aS4Edekicfixdx1/fU8X1REtlLce9FF3PHqqwedD0EIIQ5Gh8N43W4CNTUEamsJ1NURqK0lx+kk02aj1u3mi2++IRAvqgS8Xvw+H4M6dqRrWho7SkqYsnw5/kCAQCBAIBgkEAxyZ5cunJySwoqSEv6wbh3BSIRAOEwwGiUQifD3Nm0YYDAwq7qasW43Qa0J8L8RKiuIPe7zCnBbPXH/FzgR+D/g3nqO7wQKgUeACYABsBArwliUYmtuLmk2G3+uq+ONujrMSmE2GGLNaGRh//4YLBZe3rWLzyoqMJtMmI1GzCYTKVYrz55/PpjN/HPzZtZUVmI2m7FYLJgtFlxOJ7cOGgRmM59v3kxxbS0miwWz1YrZYiEtLY1zTj4ZTCbWFRXhDYcxW62YbDbMNhvO1FQK2rUDs5lqrxdMJswOR+y4w9Hql1xOZnFDKfUaMAIo1Vr33m//UOAvgBF4taGChVJqOJChtX5TKTVda33Noe4rxQ0hGl9VVRVXXXUVK1as4De/+Q2//OUvm3SZ1C1btjBw4ECcTifLli076GMWGzZsoE+fPoTDYd5//31WrVrFpEmTqKioAKBfv34899xznH322U0We7J9+eWXXHzxxaSnp7Nw4cKkFnhEy9IsixuHSkKUUlZiI8JPBSqAa7TW2xu6ZqITDx2NsvCZZzj1vfdwLVnC3PR0Npx9Nre/+iopbdok7L5CCNGUdDRK2O/HGA5jCIfxuN2Ul5QQqKsj6PUS8vkI+nz07dABu1Js3bGDNVu2EPT7Yy0QIOj3c8Mpp+AAFm/YwKLNmwkGg7EWChEMhfi/AQOwRiJMXb+eOUVFhCKRfS0cibCwZ08IhXh4506mu92EtCYUjRLSGhuwJTUVQiGu9/l4+4CfdW2BXfHt4cAHB3yO3YH18e365nM5Fdj70+QU4JsDjp8PLLBYwGymv9/P9mgUk1KYAJNSXOR08krbtmAyMWT7dqqiUUwGA6Z48WZIdjbju3UDk4nrv/mGMMSOG40YjUbOLyjgxh490AYDv166FJPRiMlkih03mTirY0eGdO9OEHj+yy8xmUwYTabYOWYzp3TqRL8TTgCnE0aPPqqvg4YkubgxCKgDpu4tbiiljMBGYAhQRKw29xNiOcaTB1ziFmJPk80ANPAPrfXrh7qvFDeEaFzbtm1j+PDhbN68mbPPPpuFCxeSk5PDb3/7W26//XZsNltC719WVsaZZ56J2+1myZIldO/evd7zysvL6dSpE3V1dbz00kvcdtv/yv0zZszggQceYOvWrQC0a9eOxx57jJ/+9KcJjf148fXXXzNkyBAcDgcLFiyga9euyQ5JNJFp06Yxb948pkyZ0uAon6PR7IobB0tCtNbr9jvnDqCv1vp2pdS1wGWH+stKohIPHY3yycSJPDpxIktqa3kqLY37HnkExo4FWZVBCCGSTkejRIJBQh4PQY+HSCBAZkoKhELs3rWLmqoqwn4/oUCAkN+PGTi5c2cIhfhi1SrK3G7CgQChYJBQMEi6xcLwXr0gHObtZcsoqaoiFAoRCgaJRCK0T0nh5vjxR5csYY/HQzgcJhQOE45E6Jeezj1dukAoxI3Ll1MZDMaKNtEo4WiUwWlp/CEvD8Jh+q9fT100SkRrwvF2g83Gkw4H4VCIzKoqIkA43qLElm3+M1AFZNTTH48Avwdo0wZKShq9v5P9WIpSqiPw/n7FjYHAH7XWF8dfjwfQWh9Y2Nj7/vuA5VrrxUqpGVrrKw9y3jhgHED79u1P3bFjR2N/KkK0SsuWLWPUqFGEw2Hee+89zj33XL744gt+97vfsWDBAgoLC/nDH/7ATTfdlJDHVbxeLxdccAHfffcdCxYsYODAgfWe5/f76dSpEyUlJdx///386U9/qve8FStWcOedd7JixQoAXC4Xv/rVr3jooYca/Re/4813333H4MGDMZvNzJ8/nx6yiEKLFwwGyczMxOv1sm3bNjp06NCo128wx9BaH3cNGAh8vN/r8cD4A875GBgY3zYB5cSLNQdrp556qm5U27frWX376gFOpwZ0odGon7/mGu1zuxv3PkIIIcRhikYiOhIIaO3z6WhNjXZv367LN27UJatX66KVK/WOpUu1+5tvtN64MdYSAFipk5tHdATW7Pf6SmKjQPe+vhH4WwPv701s5MZLwKTDuWej5xhCtFLvvPOOtlqt+oQTTtDr16//0fH58+frM844QwO6S5cu+q233tKRSKTR7h8KhfTIkSO1wWDQ77333kHPi0QiumfPnhrQV1111WFde+fOnfrSSy/VRqNRA9pisegxY8Zodwv/3WHNmjW6TZs2Ojc3V69evTrZ4YgEu/baazWgf/7znyfk+g3lGEkvZNQb1GEkIcAaoHC/11uA7Iau29iJR9Rs1sSGrOqx3btrf01No15fCCGEaI6ae3HjCO81EnilS5cujduJQrQy0WhUP/744xrQZ599ti4rK2vw3Dlz5ui+fftqQPfp00fPmjVLR6PRY47htttu04B+/vnnGzx3yJAhGtCnn376Ed/H4/HoO+64Q9vtdg1og8GgBw8erDdv3ny0oR/31q9fr9u2bauzsrL0119/nexwRIKsXr1aAzojI6NRi477ayjHaPEznimlximlViqlVh5sfeijVTdpEntXuP77hg20dbl4//e/b9R7CCGEEOKY7QLa7fe6kP9Nu3JMtNZztdbjXC5XY1xOiFYpGAxyyy238Lvf/Y7rrruOzz77jOzs7IOer5Ri5MiRfPPNN0ybNg2/38/o0aM544wz+Oyzz/YWHo/YE088wcsvv8z48eO54447DnreuHHj+PTTT+nYsSP/+c9/jvg+DoeD559/nrq6OiZNmkRmZiafffYZXbp04aSTTuLzzz8/qviPZ927d2fx4sU4nU4uuOCCfY/oiJbl0ksvBeDNN9/EkITJ1Y/X4sbhJCH7zlFKmQAXsYlFf0Br/YrWur/Wun9OTk6jBpn6i1/g3rGDNipW4qjUmpGPPcZVNhu8916j3ksIIYQQR20F0FUp1UkpZQGuBeY0xoWVUiOVUq9UV1c3xuWEaHXcbjdDhw5lypQpTJgwgTfffBOr1XpY7zUYDFx77bWsW7eOV199leLiYoYMGcIFF1zA0qVLjyiOKVOm8NBDD3HjjTfy+OOPH/S8J598kr///e9kZGSwevXqY5ozw2AwcO+991JWVsbMmTPp0qULq1at4vzzz6ddu3a8/voh5zI+7pSWljJ9+nQWLVrEzp07iUaj+46dcMIJLFq0iIyMDAYPHsyyZcuSGKlobE8//TTbtm3jrLPO4pJLLklKDMfrhKImYhOKXkisiLECuE5rvXa/c+4E+uj/TSh6udb66oaum6gJRWuKirigWze+8vkAeBb4JTAnM5PQLbdwxVNPNfo9hRBCiONVkldLmQacB2QDe4AJWuvJSqlLiP2INgKvaa0P/tvLUZDVUoQ4clu2bGH48OFs27aNyZMnc8MNNxzT9QKBAC+//DKPP/44paWlDB8+nMcee4x+/fo1+L6PP/6YESNGcN555zFv3jwsFku9502bNo3rrrsOm83Gpk2bKCwsPKZ46/P1119z55138sUXXwCQlpbGL37xCyZMmHBcTj5aUlLC5MmTmTdvHmvWrKG2tvZH5yilMJvNWK1W7HY7drudkpISwuEw5557Lr1796agoICCggI6dOhA586dycvLS8pf/sXRqampIScnh2g0yp49e8jMzEzYvZrdaikA9SUhSqlHiD1jM0cpZQP+AZwMVALXaq23NnTNRCYetbt3M7JHDy6tqeHXBgPRaBQn4AfaGgw8c/fdXP3sswm5txBCCHE8SfZqKU1JKTUSGNmlS5exmzZtSnY4QjQbS5YsYfTo0USjUWbNmsU555zTaNf2eDz89a9/5c9//jNVVVVcffXVPPLII/Uu5/r1118zaNAgunbtyqJFi0hLS6v3mv/5z38499xzUUqxfPlyTjnllEaLtz67d+/mzjvvZO7cuUQiEQCMRuMPigQOh4PU1FRcLhcZGRlkZmaSk5NDbm4ueXl5FBQU0K5dO9q1a3fQgs2R8Pv9rFu3jtdff50FCxawdetW/H7/vuMWi4WsrCy6dOlC165dKSsro6KigqqqKmpqavB4PPj9foLxlcUOxWAwYDKZsNls2O12bDYbxviS6HubyWT6wfbBmtls3vdx/7a3YBSNRolEIkQiEaLR6L7Xe7cbeq21JhKJoLXed8xgMJCZmUl2dvYP/j0KCwvp0KEDqampx/zvcTwZMmQIn332GQ8//DB/+MMfEnqvZlncSIRE/1VF19Sghg+HpUt5ITOTO8vLf3A832DgmTvu4JrnnktYDEIIIUSytabixl4yckOIwzdt2jRuvvlm2rdvz7x58+jatWtC7lNVVcWkSZN49tln8fl8jBkzhgkTJuxbmnLbtm0MHDgQq9XKsmXLaNu2bb3X2bJlCz179iQUCjFr1qx98wo0Bb/fzwMPPMCiRYuoq6vD4/Hg8/kIBAKEQqHDKhLstbc4YrFY9hVHotEowWAwtlx5KLTvmvv/In80vy+efvrpLF26tMHRF5s3b2bYsGHs2LGDsWPH4nK5KCkpobS0lMrKStxuN7W1tfuKInsLCPqHkzof9Rwryba3eGO1WrHZbDgcDlJSUuotVrVt25a2bdtyzjnnNEqhqjF9/vnnnH/++RQUFFBUVJTw+0lxI65JEo+6OhaeeSaXrF7NmB49mPLf/xIArEAAOB9YkJcHkybB9dcnNhYhhBAiCaS4IYSoj9aaxx9/nN///vcMGjSImTNnkpWVlfD7lpaW8uSTT/Liiy8SjUa57bbbuP3227niiisoLS1lyZIl9OjRo973VlZW0rFjR2pra3nuuee46667Eh7vkQoGgxQXF1NUVMSuXbsoLi5mz549+0ZOuN1uqqur9xUK9i+OKKX2/ZJtNBoxGAyEQqF9BY/9f1c0Go24XC4KCgro2bMnmZmZpKSk7GtpaWmkpqbyyCOPsG7dOk4++WRWrlzZYIGjvLycIUOGsG7dOv71r38xYsSIY+6PcDiM3+/f1wKBAMFgkEAgUG8zGAw/GAVy4Ov9P+5/bG/b+5799/n9foqKiigqKqK4uHhf0aa8vJzKykqqqqqora2lrq4On8+H3+8nFAr9qM8PlJ6ezs6dO/l/9s47LKprfdvPnkbvHVGDCtgLIGKPiiF2sccW/UwsiS3GeKxHjSXR2AKWeI4tJ2oSu7FhjBKDEhN7b6igIiIiInUYZp7vD4b9A0GkDEWz7+taFzO7rPXuYcpaz36Lubl5qV8nQ6DT6eDs7Iz4+Hj8/fffaNq0aZmPWegc41VlVN7GVl416JNjY9nWyooygP/98EO2sbLKrmUN8IGjIwnwC4BOgsAfRo4sF5skJCQkJCTKC1RwKdgMYAjpAAAgAElEQVTybJBKwUpIFAm1Ws0PP/yQADh48GBmZGQU6bzPPvuMPj4+PH36dKltuH//Pj/++GPK5XICoJGREcPDwwu12dXVlQA4adKkUo9fGbl16xanTJnCxo0b09jYmADEZmVlxbZt23LZsmVMSEgocp9arZaNGzcmANavX58ajabQ4xMSEujr60ulUsldu3aV9pLeeLRaLR89esS//vqLO3fu5MqVKzljxgy2b99eLH1cWZg8eTIBsHv37uU2ZmFzjAqfFJRnKy9xgyRT4uL4rrU1ZQB/GD2a2ydN4mKlkgSYamfH7lZWFPRfHI6CwE0jRpSbbRISEhISEmVJUcUNALaFtaL0UVlaec4xJCTeNBISEti2bVsC4Ny5c6nT6V57jlarFc/JaT4+Prx27Vqp7bl9+zbHjBnDAwcOFDp+gwYNCIBBQUGlHrMycfbsWXbp0oUmJiZ5Xl8bGxu2a9eOwcHBTExMLNUYWq2Wfn5+BEAvL6/XChzPnz9n8+bNKZfL+dNPP5Vq7LeZpk2bEgCHDRtW0abw0aNHlMvlNDY2Znp6ermNK4kbFTTxSI2PZztrawoA/54zh0xPJzt3ZiBAAWD/qlXZQb8fAOvK5eR//1uuNkpISEhISBiaYogb9wDc1f/VAniK7LLuWgD3itJHZWmSuPHPJjIykg0bNuTx48cr2pRKx+3bt+np6UmVSsUtW7YU6ZykpCS6u7sTAGvWrMnQ0FDWqlVLXIS3bt2a0dHRZWp3p06dREHlbeDJkyf85JNPaGdnJ76OZmZmDAgI4KpVq5iUlGTwMbVaLVu1akUArFGjBtVqdaHHv3jxgm3atKFMJuP//vc/g9vzNpCRkUFbW1sC4Lp16yrUFh8fHwLg2rVry3VcSdyowIlHanw8v/Pyog4gN20iSYbOn09L/ZeKnSBwz7RpDLSz4ziABJhgY8N57dsz8d69crdXQkJCQkKitBQ3LAXAfwF0zvW8E4C1xemjopoUliKRnp5OK30IsoWFBbVabUWbVGkIDw+nnZ0d7ezsCg3/yM2tW7doaWlJAAwICMjzeu7bt49ubm4EQEEQGBgYyLi4OIPb/cknnxAAq1Wr9lqPg8qMRqPhkiVLWLNmTVHQkMvlbNWqFQ8ePFhuduSEU1SvXv21d/hTUlLYvn17CoLA9evXl5OFbxaRkZFUKBSUyWQ8f/58hdiwfft20SunvJHEjQoUN0iSaWlkx468DnCzPseGJj2dffRfzgA4vlYt8sED8v332SeXe5iDILBPlSo8umRJxdguISEhISFRTEogblwuyrbK3N6Wu7sSxScnt0BO69evX0WbVCnYvHkzVSoVPT09efv27SKdExoaSqVSSQAcN27cK4/bunUrHRwcCIAymYy9e/c2mOfB4sWLCYDW1tZl4s1QHuzfv58tWrQQc4sAoIeHB1esWFFhYk2OJ0yVKlWYnJxc6LFpaWkMDAwkAK5Zs6acLHyz2LFjBwHQ3Ny83N+nGo2GFhYWFAShyJ9tQyKJG5Vh4pGWxiEuLhQArssVIxW+ahXtBYHrANLSkgwNZcLt25zTti0bGhtTmevH8rxcTjZqxL9HjWJCBbyRJCQkJCQkikIJxI3DAGYCeEffZgA4XJw+KrpJ4sY/k2HDhonztIULF1IQBALg7t27K9q0CkOn03HOnDkEwLZt2xY5EWVwcDAFQaAgCPzuu++KdM7q1atFrxm5XM5hw4aVKvY/5260kZERo6KiStxPRXD9+nX26dOHZmZm4nvS3t6eY8eOZXx8fEWbR5Ls2bMnAdDJyem1C/L09HR27dqVAPjtt9+Wk4VvFpMmTSIA1q5du1zHHTJkCAFwRCE5I2NjY7lt27YyGV8SNyrJxCPt2TMG2tsTAP87dOj/7dBqyeHDSUGgN8DODg5Mz5XE57fFiznK3Z10cCABOud8YQkCe7m68tevvqqAq5GQkJCQkCiYEogbtgC+BXAewDkAK96UhKJSWMo/lzVr1oiLyE6dOlGn03HWrFmiN8GxY8cq2sRyJyMjg4MHDyYADh069LU5FnIYNWpUdmVBlYpHjx4t1pharZYLFy6kqakpAVCpVHL8+PHF9lCIiIigTCajXC7n33//XaxzK4qkpCROnjyZzs7O4nvR2NiY3bt354ULFyravALp37+/KLy8TvhSq9Xs1asXAXDx4sXlZOGbRYsWLQiAAwcOLJfxrl+/TkEQaGlp+coQvJMnT9LV1ZWWlpbFqrJTVCRxo5KIGySZnpjI9/UCx9pBg/LsU//1F11ksuyYTYCnv/8+fwcJCVwSGMhGL3l1OANkgwbknDlMf/CgnK5GQkJCQkIiP8VIKPqD/u+EohxfmVtlmGNIlB+nTp0SvTSsra0ZGxsr7nN0dBQXmX/88UcFWlm+3L59m61btyYAzp8/v8gVUdq0aSO+jnfv3i3x+FqtllOmTKGRkZH4+s+aNatIOVDu3r0rnlfZS5FqtVquXbuWdevWFd+DMpmMvr6+3L59e0WbVySGDh1KALS1tX2tV0lmZqYoiAwdOpSbN29mZGRkkd5fFUVsbCz//PNPXrhwgbdu3WJMTAwTExOZmZlp8LHUarUYorVq1SqD9/8yOYl99+zZk2+fTqfjypUrqVQqWbNmTV68eLFMbJDEjUo28Uh//pydHRzYFmDW6tV59mk1Gn5Sv372FxXA4N69C+3r6JIl7OPmxlHGxiTARH0lFjtBYJCLC0PnzaP2DU6EJCEhISHx5lEMceMaAFcAFwHYQCoFK/EGEB8fn6eE5vbt23njxg3279+fU6ZM4dKlS0UPAnNzc0ZERFS0yWVKTEwMR40aRYVCQVNTU27durVI5yUmJrJ69epiPojX5WEoKmq1mmPGjKFCoRBzEixdurRQO3JCW5YvX16qsR8/fsyJEyfmEbsMxfHjx9muXTsxJwkAvvPOO1ywYAEzMjIMPl5Z8/HHHxMAraysXvt6aTQafvrppzQ3N88TctO1a1fOnz+fv/32W4XlR3n06BH37dvHOXPmsFu3bnR1dc2Tg+flplAoaGVlRRcXF9aqVYsNGzZk8+bN2aFDB3bv3p0DBgzgiBEjOG7cOE6dOpVffvkllyxZwjVr1vD7779nZGRkPhuioqKoVCopk8nK1Oto5cqVBMBmzZrl25eamiqGq3Tp0oXPnj0rMzsKm2MI2fv/Gfj6+vLMmTMVbQYAQP3iBTT9+8M8NBRZISFQjB2bZ/8vM2agz8KF0ACI6tgR1UNDAZms8E6fP8ed+fPRd/VqXE1PR6Z+swLATEdHzB45EimtW0Ph5wdja+uyuCwJCQkJCQkIgnCWpG8RjhsPYAyAGgBiAAi5dpNkjTIy0eBUpjmGRNmh0+ng7u6O+/fvQyaTYcCAAfjggw8waNAgkER6ejqysrIgk8mg0+lgbm4OADh69Cj8/Pwq2HrD8uzZM3z99dcICQmBVqvFyJEjMXPmTDg7O7/23Js3b6Jp06ZITk7Ge++9h0OHDkH2unluMUlLS8PIkSPx448/QqfTwdbWFkuWLMHw4cPFY7KysuDu7o6HDx9i3LhxCA4OLtWY06ZNw9dff4369esjLCwM9vb2JepHp9PhyJEj2LFjByIiInD37l1kZGQAAKytrdG7d2/MnTsXVapUKZW9Fc348eMREhICCwsLXLlyBdWqVSv0eK1Wi6tXr+LUqVNiu379OgBAEATUq1cPzZs3h7+/P/z9/VG7dm2Dvq8ePXqEs2fP5mmxsbHi+F5eXvDx8YGPjw88PT2hVquRlpaG1NTUPH8L2vaqv5mZmXlsMDIywuzZszF58mQolUpx+y+//IIePXrAzMwMDx8+hLWB13qpqamws7NDVlYWHj16BEdHR3Hf3bt30atXL1y6dAlz5szBzJkzDf55zk2hc4xXqR6vawB2AegCQFbSPsq7Vbq7KhkZTO7Uia0AruzbN9/uB3//zRUWFiRAVqvGpJs3i9X98eBg9q9alY6CwO/1ZWYn5ZSBAmgFsJZCwXetrXk+KIhcsYKJhw8z/Q3NDC0hISEhUTlA8XNurCnO8ZWxVbo5hkSZ8N577xEAzczM6OLiwunTp1MQBHp7ezM6OppJSUncvXu3mHcip8lkMg4ePJi//fbbG3mXPTfJycmcP38+LS0tKQgCBw8ezDt37hT5/IMHD4peFePHjy9DS7NJTExkjx49xBAOZ2dn7tixgyTZpEkTAmDXrl1LPU5WVhZdXV1Zr149GhkZ0dvbm4m5cugVxoMHD7ho0SK2b9+eDg4Ooq05zdbWloGBgTx58mSp7axsTJ48WfxMlSQsKTExkYcPH+acOXP4/vvv09raWnzdLC0t2bFjR86aNYsHDhzg06dPi9SnTqfjw4cPuXfvXv773/9mly5d8uQ1EQSBderU4eDBg7l8+XL+8ccffPHiRbFtLwoajYZJSUmMjY3llStX2KdPHwJg48aNefbs2TzHTp06lQBYs2ZNg5ekzql2M3369DzbDx06RBsbG1pbW/PAgQMGHfNVFDbHKI24EQBgC4A7AL4G4FXSvsqrVcaJhzo5mT30H5YCQ1C0WjIwkEMAGgElTx6alESuWMEd777LVpaWdJfLaaEPfQHA3/TiR48clymA1oJAD6WS7a2tGTN4MBkSwvjQUKoN5DYoISEhIfF2Ulxx401ukBKK/mOYOXNmdl40CwsCYMuWLQmAgwYNYlpaWr7jc5JkNmzYkMbGxuLCyMzMjN26dePq1atLlWOivMnIyGBwcLCYU6R79+68dOlSsfpYvny5WBFl7dq1ZWRpwcTExLBDhw55Fr45i0RDLAQPHTpEANyxYwcPHDhApVJJf3//fItejUbDffv2cdiwYfTy8hJzfeQ0IyMjenp6cujQody7d2+Z5GmobEyfPp0AaGJiwlu3bpWqL61Wyxs3bnDTpk0cPXo0GzduTJk+pyH0IVBDhw7l6tWree7cOWo0Gj548IB79uzhrFmz2LlzZzo5OeURJuvVq8ehQ4fy22+/5YkTJwwWQlVSdu3aRWdnZ8rlcv7rX//K8/2Tk8OmT58+Bhvv5MmTojCYg1ar5ZdffklBENioUaMCw2XKijIRN/h/P+pWAEYDeAAgAsBwAMrS9lsWrTKKG2S2wNHTxYUAuCIoqMBjFnXqREH/IZveooVBx0968ICa0FBy0SKubdaMLczNWf0l8SNBL3545xI/bASBnkolO1hbUzt8OLloEa+sXs2Yl1RECQkJCYl/Fv8kcSOnVdY5hoRh2Lt3r7jwBEAbGxvKZDIuXbr0lYkNtVotzc3NKZPJGB4eThcXF1pYWHDAgAF0d3cXF09eXl6cOHEiQ0NDS1XGtKzIysripk2bxPwY7777bonyiOTkWFCpVAwLCzO8oUUkMjKS/v7+BMCqVasWu6rKq+jfvz/t7OzECjE7d+6kXC5ns2bNOHv2bLZt25Z2dnZ5vDIEQaC9vT3btWvHhQsXvnHlZw3JvHnzxESwV65cMWjfycnJDAsL41dffcUePXqIAh2QXUI4t5BRv359fvjhhwwODubJkyeZkpJiUFsMxbNnzzhixAhRsDl+/DjJbPEsR5wpbQ6ZHHK8VnI8hxITE9mtWzcC4ODBg5mammqQcYpKmYkbAOwATABwBsAvAPoDCAHwe2n6LatWmScemamp7KVPQLO2gBAVkjyxZg1N9R++lhYW5eZBkRQdTYaGkgsXcmGjRmyuFz/M9eKHoBc+CLBKbuVZn9jU28iIbNOGHDKEW/v04Y7Jk3n3+HEp0amEhITEW4okbki8TURGRlKhUFAQBFHUsLGx4ZEjR1577vfff08A9PX15c2bN+ni4kInJydeu3aNN27c4IoVKxgYGCiKJiYmJuzcuTODg4N5+/btcri6V6PT6bhr1y7WrVuXAOjj48PDhw8Xu0qFVqtlq1atRFGosizgExISDOa6/+zZMxoZGXHkyJHcsWMHhwwZQg8PDzH8JqcZGxuzdu3aHDFiBA8cOGAwYeVtYfHixaIAdv78+TIbR6fT8d69e/zxxx85ZcoUhoSEMCIiotwX6YbgyJEjolg6evRoJiUl8cGDB1SpVBQE4bWhTDqdjteuXXvl5zrHq6ZTp04kyUuXLrFWrVpUKBQMCQmpkKo1ZRWWshvZWc6nAXB5aV+lnNRU9olHZmoqP6lRgzcBcsYMsgD1PvHePXrpsySvMDUlS+m6ZQhSY2LIsDAyOJgL/f3Zyd6eDY2N6SqT0QygXS7xw+yljMFKgHVkMrJGDbJFC07y8uLMVq24dexYXvnlF2qKWB9dQkJCQqLyUJJ5AAAnAF31zbG451d0q+xzDImSkZ6eTltbW7EyRU48e3FyTHh4eBAADx06xGvXrtHR0ZEuLi553O9TU1N58OBBjhs3TjweAGvVqsUxY8Zw06ZNvHr1KrOyssriMvNx9OhR+vn5iZ4l27dvL9EiJjExkdWqVSMAenp6vpGLx5eJiori5s2bOXHiRAYGBtLT0zNP9ZzcXhmOjo6iOPTee+/9I0JMSsuKFSuy1whKZZlW/nibSElJ4aRJkyiTyejm5sb9+/eLYVImJiavzDUSGRnJjh07EgA3bNiQb39cXBzlcjmNjIyYkpLCrVu30tTUlC4uLjxx4kRZX9YrKStxo11Jz62o9kZMPDIzyaFDqQM4zNyc2z77jLoCVOVNzZtn//vkckYWUt6q0pCaSp46xR+GD+dn3t7s4exMHxMTVpXL6SeTkXI5mSsMJnfzAkhLS7JaNbY1N2cPZ2d+5u3NtYMGMWLtWqa+pj62hISEhET5UlxxA0A/ANEAvgfwPwD3APQpTh8V3d6IOYZEsWncuDEBiG7eXl5exXZTv3TpEgHQwcGBJHn58mXa2dnRzc3tlTk3IiMjGRISwi5duuQpf2lubs62bdty8uTJ/Pnnn3n37l2D3jn9+++/GRAQQAB0c3PjunXrSuxdcO3aNTE/yfvvv2/wBIdlRVZWFs+dO8eVK1dyxIgRbNWqFatXr04zM7N8iT5zQhlkMhmVSiXbtm3LTz75hEeOHMlzvTklNPv161duAtWbzHfffZcdBq9QVOgi+k3j1KlTrFevHgFw4MCB/Pzzz0VhNvf7Ua1Wc8GCBTQ2NqaFhQWrVKnC+vXr5/suadasWfYN9RUrOHHiRAJgq1at+OjRo/K+tDyUac6NN6m9SROPpzt3sqE++VQrS0ue/v77/Adt2MDV+i/Z4R4e5W+koVGref7HH7lpxAhO8fNjnypV2MzMjCPMzEhra6pzxcTlbvUBUiZjqrExXWQyNjAyYqCdHUfVqcOl3bvz4urVZFxcRV+dhISExD+GEogbF3N7awBwAHCxOH1UdHuT5hgSRWPYsGFiKEGOwFHSnBhdu3YlAM6ePZskef78edrY2LB69eqvDdPIysri1atXuWnTJn766af08/OjSqUS50F2dnZ8//33OWvWLP7yyy+MjY0ttn3Xrl1jr169CID29vZctmxZqfJ/HDhwQAzJmDRpUon7KUsuXrzIBQsWsH///vTx8aGzs3O+5J45TaFQ0NbWlnXq1GHnzp05ZcoUbtu2jY8ePeLVq1cJgMuWLSt0vG+++YYAOHTo0DdG6KlINmzYQEEQKJfLKzRHy5uGWq3mnDlzqFQqaW9vz/r16xPITgBMkuHh4aI3UZ8+fRgTE8P169cTAI8ePSr2s2fPHlEYyUlSOn78+GJ5H0VHRxv8+khJ3HhjJx5ZajX/M3gwHfUCxtCaNfn08uU8x1zbt482+v21VSomPXhQQdaWD1qNhpFHj3L7pEmc264dh7i7M6RmTdLTkzesrWmkzwGS+wcpUB8ScypXHpBaCgVbWliwf9Wq/LV/f3LDBqpPnJC8QCQkJCQMQAnEjcsvPZe9vK2ytzdtjiFROGvWrBFDCxQKBeVyealyACQnJ1OpVFKpVIqVFs6cOUMrKyvWqFGDD4o5f1Or1Txz5gzXrFnD//f//h8bNGiQpyKEm5sbg4KCuHDhQh45cuSVJUmjoqI4bNgwymQyWlhYcM6cOUxKSirxdZLk0qVLxYoo69atK1VfZcGpU6dYu3btfAKGkZERnZ2d6e3tzX79+nH+/Pk8cuTIaz11pkyZQoVCwbgi3EibO3cuAXDUqFEVkqvgTWPz5s0UBIEymYyhoaEVbc4bxZUrV0TPixzRLifUrFq1aty3b594bHp6Ou3t7UUBRKvV0srKigDo6OhIExMTbt68uchjJycns379+lQqlWUicEjixhs+8Ui6f5//ataM7gCTTUzIefPIXCV/0hMT2czMjNDntDhVCX9Iypu4K1cYOn8+l3TrxrBu3cjAQIa5u9NZnwckd/jLGL34sSrHvRCgCUBHQWBtlYq76tUjhwxh5Lhx3DpuHC/v2kVNJcxmLiEhIVFZKIG48Q2AwwCG6dshAIuL00dFNUilYMuMuLg4fvfdd+VeLjUiIkIMP8gJR1mwYEGp+81Z2Hbp0kXcdurUKVpYWNDDw6PUrt4pKSkMDw/nsmXL+MEHH7BWrVp5Fu8eHh4cOHAgly9fzrCwME6YMIEqlYpGRkacNGkS4w1wgyeneoORkRHDw8NL3Z8huXDhAhs1aiS+Hg0aNGBwcDDPnj1b4lARjUZDZ2dncVH4OnQ6Hf/1r38RACdOnCgJHEVgx44dosCxdu1aKQlrMcjKyuKyZcuo1OdrzAmNKkiwmzFjBgVBYGRkpPg5FgSBNWvW5MWLF4s85unTp8VQOl9f3zKpAFVWOTd2AegCQFbSPsq7vaniRg4ZV6+SvXpRDTDAyIhbx47Nk4/ji6ZNCYCdAHLJkgq09M1AnZzMi9u3MyYkhJw1i2EdOrCtpSW9lEo6CAJN9F4gIXrxY9xLCr9cLybts7YmGzTgjgYNOLRGDc5q04bfjxzJvzdtkjxBJCQk/pEUV9zIPgW9ACzTt6Dinl/R7U2fY1RGevToIf7m+vj48Ouvv2ZkZGSZjnn//n2xNGSTJk1obW1Nf3//1y6oNBoNly9fLpZjfBUODg4EwEuXLonbTpw4QTMzM9auXZuPHz82yHXk8OzZM/76669csGABe/bsySpVquTJFTFixAjev3+/1ONs3bqV9vb2BEBbW9tKUxGFJG/evCnesYY+b8rrKkgUlQMHDhAAd+/eXeRzdDodx48fTwCcMWOGQex429m7d28ezyRbW1u2atWKs2fP5o0bNyraPJLZuXTmzJnD9u3b09nZmcbGxjQ3N6eNjQ2dnJxYtWpVenh4sEGDBvTz82O7du3YpUsXDhgwgB999BEnTZrEOXPmcPny5dy0aRP37NnD8PBwXrlyhXFxcSUSdSIjI/nee+8RAE1NTcXPfUGlnGNiYqhQKDh48GDxde7UqROfPXtW5PGCg4PF/9Nnn31WbHuLSlmJGwEAtgC4A+BrAF4l7au82tsy8Yj++Wc20Wdlbm5unsdT48Q331CjUJAATzRvLpVbNQTJyWREBM/OnMkvmjZlnypV2NzcnDUVCtoKAiOUSlIQ2KWAGE0APAGQRkYcb2REd4WCvqam7OrkxDH16nFxly5M376djIwkpfhLCQmJt4QSeG4sKsq2ytzeljlGZeHXX38lAH7xxRf85ptv8ixOmzRpwgULFuSpNmIIoqKixFwWbdq0YWBgIE1MTF47TkxMDF1cXET7VCoVGzduzPnz5+cLBzl8+LDoRZGb48eP08TEhPXq1eOTJ08Mel0vc/z4cVpaWlKlUtHZ2Zk+Pj7s378/FyxYwKNHjxbrTmtoaCirVq0q3uXt3LlzpamIEhUVxdatW4v/F3d3d/72228GHaNv3760t7enupjV/XQ6HT/++GMC4Pz58w1q09vKlStXOGrUKNavXz9fdRqlUkl3d3f279+fmzdvLvP34MWLFzl79my2a9eOzs7OeYSXnO8AJycn2tnZ0dLSkiYmJlSpVJTL5QUmpS1Oc3R0fG2SVbVazYULF4oJQ0NCQqjRaBgUFCT2s3DhwnyCSffu3cX9ffv2LXJuGK1Wy549e4r/i71795b4tS0KZRqWAsAKwGgADwBEABgOQFnafsuivU0Tjyy1mhuGD6ez/sM02N2dL65fz94ZE8MrDg4UALrJ5Yw5e7Zijf2HkBwTw4i1a7lh+HBOb9GCA6tX57vW1kz09CRdXNhDLqeigC+pZL1niE8ubxBnmYy1VSq+a2VF9ulDTpzIgyNHcs/06bx24ADVlWTiICEhIVEQJRA3zhWw7VJx+qjo9jbNMSoajUbDunXrsmbNmszIyBC3R0VFcenSpWzevLn4G9qwYUPOmzeP13PmQCUkPDxcdN1u0qSJWK1h5cqVhZ7366+/ivHs77//PoOCgkQPhpzm4ODA3r17iwvrpnpP202bNuXp67fffqOxsTEbNWrEhISEUl3PqwgLCxOv09HRsdAEmnZ2dqxXrx67d+/O6dOnc/fu3WJJyb///pteXl7i8a1atSqz5IHF5dGjRwwICBAXkW5ubmWy2EpISKBKpeKECRNKdH5WVpZ4l3zpm1D5sJIRFxfH4OBgdurUiS4uLvkEBktLSzZt2pRffPEFz5ZiLXT+/HnOmjWL7777Lp2cnAoUMt555x326NGDwcHBjImJKVK/arWaMTExvHz5MsPCwrhr1y6uW7eOS5cu5axZszhx4kQOHz6cffv2ZadOndi2bVs2aNAgj/hQkDfHyZMnxSSivXv35sOHD/Psb9++vdiHt7e3mEvo0KFD4veBvb19kV+fuLg4sdyzi4tLsfMHlYQyEzcA2AGYAOAMgF8A9AcQAuD30vRbVu1tnHi8iInh9BYt2EIQqDU2JmfPpi45mVqNhp31ro8qgAfnzq1oUyX0aDUaRkdE8MDcuQzp1YscN47s2ZNjHB1ZU6GgnSDQWB8SI9MLHwTo8tLEQwBoC5A2NmT16hxkbc2OtrYcWqMGp7dowf8OGcKIlSvJ2FjJK0RCQqJcKaq4AWAMgMsAUgFcygbbRAUAACAASURBVNXuAdhclD4qS3sb5xgVRUhICAFwz549rzzm/v37XLFiBVu2bCn+LtarV49z5szhlStXijyWTqfjmjVrxAWLi4sLb926RTMzMwYEBBR65zInh4YgCPkWp/Hx8Zw7dy4bNWqUJ95doVCIySxNTU3z5XoIDQ2lSqWij4/PK5OAlpQtW7ZQJpNREASuWbNG3J6VlcUzZ84wODiYw4cPZ4sWLVi1alWampq+9i6zubk5Bw4cyO+//5737t0zqL3FJSEhgd26dcuTL+XHH38ss/FyyrteuHChxH1oNBr27t2bALh69WoDWvfPQ6vVMiIighMnTqS3t3eeEsoAKJfL6ebmxh49enDt2rUFfr7Onj3LmTNnsm3btnR0dCxQyHB3d2fPnj0ZEhJSZCHDkISHh9POzo4AaGFhwQMHDpDMDkEbNWoUAbBq1ar85ZdfCjxfq9WKYoS5uTnlcrnodZHz2XF3dy+S10ZucTcwMLDcqgCVibgBYDeAawCmAXB5aV+xY21znWsL4AiA2/q/NgUc0xjAnwCu6idB/YvS99s88dDeuUP268enABsqFPxh9GhqNRou6dZNrB7yha9vRZspUUw0qanktWvknj384YMPOL5RI/Z2dWUrS0vWVqnoo1CQFhakUkmrgiYducQRB71XiIMgsKZCQR9TU35StSo5dCg5dSp/+PBDHpw7l7dCQ7PHlZCQkCghxRA3rAC8A+BHANVzNduinF+Z2ts8xyhPnj59ShsbGwYEBBQ52eLDhw8ZHBzMNm3aiJPzOnXqcNasWbx06dIr+8nIyBBDAwDQxMSEcXFxbNmyJa2srF6Zi0Kr1TIwMJBAdpnYoiTOPHr0KPv27UtHR8c8v9NGRkbs0aMHDxw4IC4M9u/fT6VSST8/v1JXLsnhq6++Ehd4+/fvL9a5kZGRXL58eZ58HTnVUF6edwiCQHt7e7Zv356LFy8udZLUopCUlMR+/fqJC1FbW9tyqdLi6+vLxo0bl7oftVotlgp+2ZtHonQkJSVx3bp1DAoKYrVq1cTyxDnNzMyMderUKVDIMDIyYo0aNRgUFMRVq1aVqMRyWaHVavnRRx+Jn8EGDRqI1zBp0iSxItOrePLkiVjiOue7zM3NjQDE92LuaioFMXPmTPEz/9VXXxny8l5LWYkbnQvYZlTS/nL1sRjAVP3jqSg4DtcTgIf+sSuAWADWr+v7nzDxuLFlC331CWP8zMwYsXYtT61bRzOAVQBqq1UjXxOnJfHmknjvHk+tW8cfRo/m3HbtuLhpU7JzZ9LXl41VKtrpE6XK9V/crrnEj5dL6ArIDpWhpSXp4sIGKhX9zc3Z1dGRH3l6cnabNjz6+efk0aPU3rsn5XeRkJAQKc1Njje1/RPmGOXBJ598QrlcXizvi9w8evSIq1at4rvvvisuVjw9PTljxgyeP39eFDoePXokhrfIZDLKZDL+9ddfXLRoEQHwf//7X4H9x8XFiTkmqlWrVqIKI4mJiZw/f34+cUChULBu3bqcPn06N27cSIVCwRYtWrx2ofI6xowZIwoxZ86cKbatPXv2FG11cXHJE+IRFxfHHTt2cOrUqezatSs9PT3zhbrk5BIZPXo0f//9d4Pd3U1NTeWHH34oJoC1tLTkt99+a5C+X8fly5cJgCtWrDBIf+np6QwICKBMJuNPP/1kkD4lCubixYucNm0a/f39aW1tnUfI6NWrF1evXl2ksr6VgYMHD4qfN0EQOG/evCKf+8cff1AQBBoZGXHz5s0EskPoMjIyWKVKFQYEBBR4nlqtZqtWrUTvs9fl/ygLykrcKCg+Nt+2EvR7M8cTBIALgJtFOOdijthRWPunTDy0Gg2///hjuup/1AdUq8b4P/5grK8vCfAnvfARVclKdEmUP6nR0WREBLl5M7967z1+Ur8+e7m6srWlJesZGXGYqSlpbc1UlSpP+dyc5qsXRmJyCSIqgBYAnQSBk62sSG9vxrZqxQHVqnF8o0b8KjCQP4wezeMhIUy4dEkKmZGQeAuRxA2JknDp0iXKZDKOGzfOIP09fvyYa9asYYcOHUSho1atWpw0aRJdXFxoYmJCMzMzAuDatWt56dIlqlQq9urVq0Bvj+PHj4t3Ozt37lzqRfq6desIgHXr1uUHH3xAZ2fnfHeVBUFg7dq1S7TY0ul04l1Ya2vrYlUwSU9P57Bhw0ThwMbGhhs2bCjy+VFRUZw/fz7btGlDW1vbPNclk8no4uLCLl26cM2aNcUOv1Gr1Rw9erQY7mNmZsaFCxeWm0s8SX7++edUKBQGTf6akpLC1q1bUy6XFxqS9U/kzp07/OKLLzh06FDOnz+f27Zt48WLFytN8tryJjMzk1999ZVYkSX3d5yfn1+Rc/YsXrw4z2fz999/J0kuWLCAAPKJzJGRkWJOIQ8PD4OHzhUVg4obAJwB+AC4DqAJAG99exfAjeL2V0D/z3M9FnI/f8XxfnpbXluS9p828Uh5/Jj/bt2aA2Uy0tiYuunTeXfVKnbTZxgWAAa5uDC5ErlZSVRutBoNo0+d4tGlS7lu2DAeHTqU/PhjPggIoL+5OeuoVHSTy2mj9xD5UC9+HCxAGAHAAfr9e3OJIo6CwBoKBZuYmPCnevXIvn15bcAAzm7blt8NHMi9M2fy/M8/M7GCY3slJCRezZsubgCoC2AbgDUA+hTlnH/aHMPQ6HQ6tmvXjra2tmWSTPPJkyf8z3/+w44dO1Iul9Pd3Z2enp4EwOHDh1OtVrNRo0Z0dHQscMG6ePFiMRTDkNUtatSoQQBistGkpCQuWbKEvr6++TwgzM3N6e3tzbFjx/K3334rdDGv0Wjo7e0tupsXNbxFq9Vy8uTJYtUYMzMzLlq0qNTXqVaruW3bNg4YMIA1atTIk4ck59p8fHw4efJkMcFhDmFhYVyyZAk1Gg0///xz0TZjY2POmDGjXEUNMnth6eTkxKCgIIP3nZSURD8/P6pUKh46dMjg/b9J6HQ6HjlyhN27d6cgCJTL5XlCo3JatWrVGBAQwE8//ZTffvstQ0NDeffu3Xz5bN4WIiIixIShQUFBYgLPu3fvit9pSqWyyF5FOSW3c3tqxMfH09jYmCNHjhS3bd26VQzrGTRoULl/7nJjaHHjQwBhAJL1f3PaLwB6FbGP3wBcKaD1eFnMAJBYSD8uek8P/0KOGYnshKdnqlWrVlavcaVGFxVFDhzIOzlfAnI5W1tY0DTHDRLgtKZNpTvoEmWGOj6eF7dv597p07mqXz9Ob9GCIzw8eKBpU7JFC4a6ubFqLlEkJ2xmql78mPsKcWQ+QMpkXCyT0RzZ+USqy+VsYGTElhYWPNWyJTlsGE8NGsQl3bpx69ixDF+5klHh4VLFGQmJMqQk4gayc20E6B+bALAobh/6czcAeALgykvb39fPGSKhD38tpI/PAbTWP/6lKONK4kbp2LlzJwFw1apVZT5WUlIShwwZQiC7MgpJzpgxg0D+JKZarVac/BsZGRm8lOi5c+cIgM7OzgXuP3XqFDt37lxgjgtBEGhra8sWLVpw6tSpPH36tHh9OQkDGzVqVGBFhZfRarX86quvaKoPbVapVPziiy/KdAFz+fJlTp06lX5+frS0tMwXolO9enX26dNHzAWQI2qoVCpOnDixSNdVFuzbt48Ayqzc5bNnz9i4cWMaGxszLCysTMaozKSkpHDNmjWsW7euGCoxY8YMcRGfkpLC8+fP86effuKXX37JQYMGsWnTpvneQ0ZGRqxXrx579erFqVOncuPGjTx58qRY8aeykpaWxnv37vHPP//k7t27uWbNGs6ZM4ejR49mp06dKAgC3dzcXunds3jxYlGEqFOnzmurGGm1Wu7atSufGDRixAiamJgwISFBzE0kl8uL5cFVVhQ2xxCy9xcfQRB6k9xZopML7/cmgHdJxgqC4ILsyiteBRxnCeB3AAtJ7ihK376+vjxz5oxB7X2TSPjrL/y8fDl+P3kSv8fEIF7/v1cAaA5gl0qF1PHjUf2bbyrUTgmJHHQvXkD24AEenjuHI8eO4dGDB4iLj8fT58+RkJKCfzs6oiWApY8eYWFyMjJIZALQIvuX7WcA/QAM0D9+mV8BdJTL8TGJn3U6GAsCTGQymMnlsFAqsdvbG67OztiZlIQLaWlwdHKCk5sbXD08UKVBA1T384PM2LjcXg8JiTcFQRDOkvQtxvEfI/tmhC3JmoIgeAD4jmSHEozdBkAKgP+RrK/fJgdwC0BHAA8BnAbwAQA5gK9e6uL/6f/OBpAGoAXJlq8b958+xygNGRkZqFOnDiwsLHDu3DkoFIoyG0un02Hx4sWYNm0abG1tERMTgwsXLqBly5YYOnQoNm7cKB777Nkz+Pr64t69e3B1dcXp06fh6upqcJvef/99HD58GAsXLsS0adMKPObPP/9Ely5doFKpMHHiRFy5cgVnzpxBdHQ0MjIyxONkMpk4yff09MT+/fvh4eFR6Pjr16/H5MmT8fz5c8jlcgwbNgyrV6+GSqUy6HW+juTkZGzbtg379u3DmTNnEBsbC51Ol+eYkSNHIiQkpNxty02fPn0QHh6Ohw8fQqlUlskY8fHxePfddxEdHY0jR46gefPmZTJOZeLevXtYtWoV1q9fj+fPn6NJkyaYMGEC+vfvD+MizLVI4smTJ7h58yZu3ryJW7duiX/v3LmDrKws8VhbW1t4eXnB09MTnp6esLa2homJCUxMTGBsbCw+ftVzY2NjyGSyIl9bVlYW4uPj8fjxY7HFxcXleZ7TkpKSCuzD3t4eTk5O6NSpE/7973/DwsLileM9efIEnTt3xtmzZyGTyTBjxgx8+eWXRbYXAC5fvoyGDRvCyckJcXFxsLa2xokTJ1CvXr1i9VMWFDbHKLa4IQjCYJKbBUH4HNnrhzyQXFYyM8X+vwGQQPJrQRCmInuiM+WlY1QADgHYR3JFUfuWJh7/B3U6XNu3D2GbNyMoJQVmR49io0aDScie6QXY2mJg795oN2IEqjZrVtHmSkgUG11mJvD4MWQPHuBSRASORUQg7vFjxCUk4FlyMp6np2OzmxvcMjMx/tEjbE5Lg5qEBkAWsr/cHgBwA+AL4GwBY6QCMAXQGtkrJSUAI0GAsSDAUi7HtXr1AAsLfPn4MW5mZsLawgJ2NjZwcHSEa7Vq6N21K+DiggwbG6js7SErwwm9hER5UgJx4wKyw0z/ItlEv+0yyQYlHP8dAPtziRvNAcwhGah/Pg0ASL4sbLzcjxzALpI9XrF/JLJFGVSrVs0nOjq6JOb+41m4cCFmzJiBo0ePon379nn2ZWRkFGlh8ypI4vjx49i4cSOOHz+OBw8eQKfTQalU4saNG3B2dkbjxo2hVqtx6dIlWFlZAcgWEzp06ID09HR06NABoaGhZSa6JCUlwd7eHjKZDImJiTA1NS3wuKtXryIwMBApKSnYt28fWrduDQB4+vQpdu7ciZ9//hm///47Xp7bKxQKuLq6onHjxujYsSP69esHR0dH7N27F6NHj8bjx48hCAKCgoKwceNGWFpalsl1FhedTocOHTrgzz//hL+/P44fP45t27ahb9++FWbT06dP4erqinHjxmHp0qVlOlZsbCzatGmDJ0+e4NixY/Dx8SnT8SoCkggLC0NwcDB++eUXyGQy9O7dG+PHj0eLFi0gCIJBxtFoNIiKisonety8eROxsbEl6tPIyKhQAQTIFhkeP36M+Pj4fJ9LALCwsICzs3Oe5uTklG+bo6NjiYS0jRs3YsyYMVCr1ahevToOHTqEOnXqFOncM2fOwN/fH1qtFr6+vggPDy/Vd7EhMbS4MYrkWkEQZhe0n+TcEtiYu387ZMe5VgMQDaAfyWeCIPgCGE3yI0EQBgPYiOxSsDkMI3mhsL4lcaMQdDrc+fFHDBgxAmfUanGzDEDSO+/AvEMHXK5ZEzYBAXBr2rTi7JSQKE+ePwcePsSl8HBcOH8ecTExiH/yBE+fP8eL1FTs8PQEXrzA0MhIHE1NRQYpCiQyAOn6bqoAePRS13JkiygA4ADgKbKTDMmR7U3lJAiIsrcHjI3RJSEBsSTMlEqYq1SwMDZGXUdHzOnQAbCxwY6oKAiWlnB65x041KwJp9q1YenmJoklEhVGCcSNv0g2EwThPMkmgiAokJ2kvGEJx38HecWNPgDeJ/mR/vkQAM1Iji3k/OkAzACsIXnidWNKc4ySERMTAy8vLwQGBmLnzrwOwX369MHOnTthZ2eHLl26YPr06fDyyufMm4/Tp09j/fr1OHr0KO7duwetVgsg26uhatWqaNu2LWbMmAFPT0+MGzcOK1euxLFjx9CuXTsAQEhICCZMmACSmDlzJubNm2f4C3+JGTNmYOHChejZsyd27979yuPu37+P9957D9HR0fj555/RvXt3AMChQ4fQrVs3aLVaLFiwAIMGDcK2bdtw9OhRXL58GXFxceLrAAAqlQqZmZkAgPbt2+OHH34oE6+U0vDgwQO4u7tj8uTJWLBgARo3boz09HRcu3atwjw3QkJCMH78eFy8eBENG5bo66lY3L9/H23atEFycjKOHTuGRo0alfmY5UFqaiq2bNmC4OBgXL16FXZ2dhg1ahTGjBkDNze3crclOTkZGRkZSE9PR3p6ep7HxX2e81in0+URKl4WLZycnGBmZlbm15eSkoLu3bsjLCwMgiBg9OjRWLlyZaGeJyEhIZg4caLoOVXRouLLFDrHeFW8yusaAIeSnltRTYqHLRoXt29nbX1cIwAOMTIiraz4rv55LaWSH3l5ccsnnzDm7NmKNldConKj0TDu8mWe3bKFB+bM4aYRI7i4c2cuatuW/Phjsk8fjqpShf7m5mxgZMQaCgVdZDLWlclIU1NSqaRdAflGrPT5SKhPxvryfgeAFARSLqc1QDOA1oJAZ5mM1eVyDrSwIL29yVat2MPBgb1dXTmsVi2Ob9yYs9u04b6PPiI3bSL37mXEmjW8cegQE+7ckUr+ShQJFDPnBrLLwE8HcAPZoSO7ASwoTh8v9fcOcuXcANAHwLpcz4cAWFnS/l8aqxuA/9SqVassXsq3nsGDB9PIyIh37tzJsz2n1KZKpRLjxwHQ1taWgwYNypPF/+rVq5w4cSLr1q2bJ1GlIAh0dXVl3759uW/fvnz5I44cOUIAnDBhAsns2PO+ffuKCfkOHDhQ9i+AHq1WSzs7OwLg1atXCz02Pj6eTZs2pUwm4/r16/nf//5XzMnxqhK2ZPZrOmvWLLZp04aOjo708/PjrVu3DH0pBmPGjBmUyWS8p08gfvDgQQJgcHBwhdnk7e1Nb2/vch0zMjKSrq6uFASBLVq04JIlS/J9Xt4U7t27x8mTJ9PGxoYA2LhxY27YsIFpaWkVbdpbz549e8TqUA4ODjx16lS+Y7RaLXv27Cl+B+7evZvu7u5s2bJlBVj8agqbY5Tmx/wWskPWRwCwKWk/5dkkcaN47Jk+nY6CwOEAKZfzr/btuaRLF3Z3dqaVfuIQAJC1apFDhnDzhx/yzObNzJQSNUpIlAlajYbxN27w8q5dPL92Lfnzz+Tq1VzRqRMneXtzhKcne1epwvdsbTnW2Zls1Ij08KCHXE4HQaAlQBOASoCNcokjLwsjAFhfvy/9FfvbAaRCwRiViuYAbQWBLjIZ35HLWVup5DxnZ7J5cz5o2ZLdnZz4QbVq/NjLi5O8vTmnbVuemjCB3LCBSVu3MmzFCl7cuZMPzpxhegWVFZMwLCUQN2QAPgawHcAO/WOhOH281N/L4kZzAIdzPZ8GYFpJ+y+oSXOM4hMREUEAnD59er59OVn/oa/YUbVqVdrY2IjlDoHskqK5n+dM2rt168Yff/yRmZmZrxw7MTGRbm5u9PLyYlpaGpOSkujh4UEAdHR0fG0SvrIgJ1Fl7dq1X3tscnIyO3bsmCcBp6GTnVYkGRkZdHBwYI8ePcRtOp2O7du3p52dHZ8/f17uNl28eLHCxJUHDx7wyy+/ZJMmTcT/eaNGjTh37lxevny5wNLFlQWdTsdjx46xZ8+elMlklMvl7Nu3L8PDwyu13W8jarVaFC8AcMCAAWJi3ri4ODERsYuLi5jAdfny5QQgJiyuDBQ2xyhxQlEAEATBD9m5+noCuAbgJ5KbS9xhGSO5jJYM3ZIlkP373+iVno5QAPO7d8eE7dtxcft2aP7+G82io5EcEQGr+HgQgDEAX0tL+Ht5oW/v3vAbPBioUqWCr0JCQqJAdDo8vXMH8bdvIyEqCgkxMXgWG4vqRkZo7+CAjIQEjPn1VySnpSFFrUZKZibSsrLQxcQE8ywscCc1FU0TEqAhkYXsUBsdsn8UdgI4AuC9AoYdAOBHZCd6HVDA/rEAQmQybBEEfKTVQg5AKQhQ6v8utLHBh/b22J+RgXlPn8JEoYCpUglTlQpmxsb4zNsbjd3dcSklBcdiY2FhZQUrOztYOTjA2tkZ9Zo0gWmVKoC1NSCF7xicEoSlmAHIIKnVP5cDMCKZVsLx30HesBQFsm/KdAAQg+w0OQNJXn1VH8UYqxuAbrVq1fr49u3bpe3uH4NOp4O/vz9iYmJw8+ZNmJubi/s2b96MIUOGAAA6duyI6tWrIzw8HPfv30d6enqB/QmCAFdXVwQEBMDf3x/u7u5wd3dH9erVYWRklO/4Dz/8EFu2bEFERAQUCgXatGmD1NRUtGrVCmFhYWWa1LQwvL29cf78eWzevBmDBg0q9NihQ4fihx9+AJB9PRs2bChWksPKTM574MiRIwgICBC3nzt3Dj4+Ppg2bRoWLlxYrjZNmjQJK1euRGxsLOzs7Mp17Nzcu3cPu3fvxq5duxAREQGS8PDwQK9evRAUFISmTZtWivdBWlqaGHpy5coV2NnZYeTIkRgzZgyqVq1a0eb9o/njjz8QFBSEZ8+ewdLSElOmTMG8efOgVqsRGBiIgwcPiu+hpKQkuLm5oWfPnuL3TUVj0JwbrxjAHsAyAINIykvdYRkhiRulICsLX/j6YvnFi9ACcBQE/HfaNHRfsABAdoLS+3/+iVPbtuFUeDj+un0bZ1NSsBTZi5T7zs74XC6Hf5MmaNapE3wGDICJrW1FXpGEhEQ5kPXiBR5fv45n0dF49vAhEmJj8Tw+Hk3t7dHQ3By3o6OxOCICKRkZSMnIQFpmJtI0Gky0s0N/Y2PsfPYMY589g4YUBRQtgEUyGSYA+LdOh4Ki4YMBjAMwBsB3BezfDGCQvm3VbxOQ7T4gB3BMpUJLpRKfZWbih6wsKAUBqpwmk+GwhwfcLCzw7dOnOPz8OUxUKpioVDDVJxhb1LEjjC0tcSw2FpFJSTCztISFjQ3MbW1haW8PX39/wMICmcbGUFhavnX5UUogbpxCdhnYFP1zcwC/kmxRgrF/BPAuAHsAcQBmk1wvCEJnACuQ/S/eQHJBcfsuDGmOUTy+//57DBs2DD/88AMGDx4sbtfpdLC2tkZycjIsLS1BEsnJyeJ+S0tL1K1bF82bN0f9+vXx+++/47fffsPjx4/xqjmtq6urKHa4u7uDJObPn49Zs2bBzc0NY8aMgU6nw+TJk/FNBVeMi46Ohru7OywsLJCYmFjgIlWn0yEgIABhYWGws7ND9+7dsXHjRgwZMgTr168vswoe5Ym/vz+eP3+O69ev50sqOXjwYOzcuRO3b98ut/wMGo0GVapUQZs2bbBjR5GKNJYLjx8/xt69e7Fr1y4cO3YMWVlZqFKlCoKCgtCrVy+0bt263IQ6jUaDe/fu4datW/jjjz+wbt06JCYmolGjRpgwYQIGDBgAExOTcrFF4vXodDp89NFH2LRpU7bHgyDg66+/xpQpU/IdO378eHz33XeIjo6Gi4tLBViblzIRN/SlWIOQfdOtJrLjY7eRLKioQKVAmniUnmd372JQs2YIffoUANDZzAwHIiKAApIqqV+8QNa5czC7dAkR+/Zh8O+/456+DJMCQCNTU/yna1d4d+8OjY8PFJ6eECqB0iwhIfHmkZWWhufR0UiIjsbzmBh4WVvDWqvFlevX8eu5c0hOSkJKaipS0tKQmp6OWTVrwkMux7p797D+0SOotVqotVpk6nRQkzhkbY16AEa/eIHNGg20yBZVdPp2G9k/fM0BnCrAniQAlgAaArhcwP6cX14PAJG5tssAqACkK5WAXI7majWukZALAhQAFIIAO7kcl6tWBZRKDIiNxW2NBiqZDCq5HEYKBdxMTbGhWTPAyAhfXr+OeI1GzORuamKCqo6OGNS6NWBmBlhZAV27GuA/kJeSVEsh2fh12yojkudG8UlOToanpyfeeecdnDx5Ms8CPifBZw5yuRy+vr7o3r07PvroIzg6Or6y3/3792PZsmWIiIiAWp8cXaVSwcnJCfb29nj27JlYLcXb2xt16tTBli1boFAosG3bNgQFBZXdRReDHI+MsWPHIiQkJM8+tVoNb29vXLt2DTVq1MClS5dgamqKBQsWYNasWejcuTO2b9/+yoorbwKnT5+Gn58fQkJCMHZs/py/UVFR8PLywqBBg7Bhw4ZysWnv3r3o2bMn9u3bh65l8J1pCBITE7F//37s2rULhw8fRnp6uih+9erVCwEBAaWudpGVlYX79+/j1q1buH37dp4WFRUlJq2Vy+UICgrC+PHj0apVK4NVPZEwPBcuXMDnn3+OL7/8Ei1bFlz1/Pbt2/Dy8sKsWbMwd26paocYhLISN+4B2INsQePPUthXbkjihuG4GRqKfkFBGJ6RgYkAzlStihtdumDwmjWFnhd35Qr++vFHnAoLw6nr17FRrUb19HSsBDBHEODv4AD/Bg3g/957aDpgAKyqVSuX65GQkJAoCZkpKXgRE4OkmBgkPXqE548fIyUxEV1r14YsPR0H//4b56KikJaWhtS0NKRnZCArKwsbGjcGMjIw7coVnExMRIZWi0y9uKIEcNHZGdBo0O7pU1zIyoKWFMUVUwAJCgWg08FVp8PLReyM8X+VeswAqU1/5gAAIABJREFUvBzXYQHgRc4TQQD02dANSQnEjZMAxpE8p3/ug+yEn80NblwZIc0xis7UqVOxaNEi/PXXX/Dz8xO3P3nyBC4uLmKGfmNjY5w5cwb16tUr9hiHDh3CsmXLcPLkSTGUxczMDG3btkW/fv2waNEiXL9+HXZ2dvjrr79Qs2ZNw1ycAcjMzIS1tTUyMzPx6NEjUdBJSEhA/fr18fjxY/j7++PEiROQy//PYXrt2rUYM2YMmjdvjn379sH2DfWQHTZsGHbu3ImYmJhXlqWdPHkyli1bhosXL6JBgxJVjC4WQUFB+PPPP/Hw4cMKC1kqDqmpqTh8+DB27dqFffv24cWLFzA3N0eXLl3Qq1cvdOrUCRYWFgWeq9Pp8PDhwwIFjLt370Kj0YjHmpubw8PDI1+rXbv2G/v+kyiYrl274vTp07h//36BoX7lSVmJGwINEdNSjkgTjzLg6FFg3Di0uH4dfyJ7Iv2Blxe+CQ2F9TvvvP58rRa4dg3HNm3C5n378Nf9+7imv9uiAPDcywtmLVrgjLMz5A0bokHPnlBUkhrLEhISEpUJXVYW0p4+RcbTp7BXKoHUVJw5cwZPHj9GWlISUl+8QGpyMqzkcgyqUwdISwPkcqAMylyWQNxoCuAnZFdNFgA4A+hfmb1Bc5A8N4pHZGQk6tWrhw8++ACbNm3Ks69Fixb488/s+2Wmpqa4dOmSQUSHI0eOYOnSpfjjjz/y5Oxo2rQpTpw4UWFlRQtj9erV+PTTT9GqVSuEh4fjzp07aNKkCZKTk9G7d+9Xhkbs3LkTAwcOhIeHBw4fPowqb1jOs/j4eFStWhUfffRRHg+el0lMTETNmjXRrFkzHDp06P+zd99xVZftA8c/N3tvEREBFQeCe+eqnKllZcOWZZZlWq7SyuepfmW2zMyGDUtLy540LVeae+QeKQoqIohskSWbw7l/f3A0MydyOIDX+/U6LzjfcX+v8xUPF9e5h9lj8vf3Z+zYsRYftlQexcXFbNiwgcWLF/Prr7+SlpaGvb09vXv3ZtCgQQD/KGTExMRQWFh4/nxHR0dCQkIuWcTw8/OTXhk3iTVr1tCnTx/mzp3L448/btFYKrS4oZSaobUeq5Raxt89a8/TWt9VvjDNT4ob5hO/fTvj77uPZUlJFFOWmXZxcWHLihXQvft1tZV18iS7fvyR49u28ZzWsHMnfdPT+YOyTyzburnRsXFjevTqxcBRo6CS18MWQghxZddb3DCdYws0MT09qrUuudLxVY3kGNfm7rvvZt26dRw7duwfY7f//PNPunbtCpQVNqKiogg0Q+/NjRs3MmPGDFq1asUbb7xR4e1XpODgYE6ePMnMmTN58cUXKS4uZty4cUyfPv2K523YsIFBgwbh6enJH3/8QZMmTa54fFXy7rvv8sorrxAZGUloaOgVj/3www958cUX/zXpaEX7+OOPGTt2LBEREYSHh5vtOpWhtLSUbdu2nZ+Q9OTJk0DZ8K2GDRv+o3DRuHFjGjVqhL+/f5WYoFRYltaa8PBw7O3t2bt3r0WLWhVd3Girtd6rlOpxqf1a603liLFSSOJhfkaDgY/uuYePVq7E3mgkBqBWLWZ16MDwn37C7oLZ0K+Z1sRt2cL2hQvZuXUrO6Kj2Z+XRxdgPYC/Py86OVErJISOffvSbsgQXPz8KvR1CSGEuHblLG7cQtkSruf7fGutv6/g0MxGcoyrO/fJ37vvvsukSZP+sc/e3p7i4mLs7OyIj4+ndu3aFoqy6ti1axcdO3Y8/3zGjBmMGTPmms7dt28f/fr1Q2vNypUrad++vbnCrDAGg+H8H9hr16696vGFhYXnhz/s2bPHbH+At2rVCltbW3bv3m2W9i1Fa01UVBROTk7Uq1fvH0OchLiUL7/8kmeffZbNmzfTrVs3i8VxxRzjcmvEXu0BjLmWbVXpIWvQV66Sbdu07t5dLzq3Bjvo/rVq6WN//HHDbRdmZ+uEZcu0njlTGx56SIfa2v697j3o5g4O+qtu3bSePVvriAhtKCqqgFckhBDiWnCFNegv9QDmAduAz4FPTI+Z19OGpR7AncBXISEhFXsTa5ji4mLdrFkz3bBhQ11YWPiPfU2bNtWAVkrp1NRUC0VYNQ0ePFjb2dnpRYsWXfe5x44d08HBwdrZ2Vn/UQG5l7ktWbJEA3rJkiXXfM78+fM1oOfPn2+WmPbv368B/dlnn5mlfSGqk7y8PO3p6akHDx5s0TiulGPcyJwb+7TWbS7atl9r3bpcDVYC+VTFMnLT0vhvv37M2b+fbNO2hjY2/Pzqq7SpwBl3048eZddPP7Fz/Xp2Hj7MvQUFjMjPJxFoCrT38KBj06a079aNdvfeS70OHWR1FiGEMINyzLkRBTTT5U1KqgDJMa7sk08+4YUXXuDXX389P84foE+fPqxZswYoGzLSo8clOwaLckpOTqZfv35ERUUxf/58HnjgAUuHdFm9evU6P+fDtU7aaTQaad++PWfOnOHIkSM3vBrIxcaOHcusWbNITk6WCTKFACZNmsS0adM4ceIEQUFBFonhSjnGdf9lp5R6yDTfRn2l1NILHhuAjBsNVtQ8Lr6+fLRvH1las3jiRMLt7Yk1GPB5801wdmZ1nz5kHD9+9YauwqdJE/q//jr/t2kTq9LTGZGbC0ePUjp9OkPDw8kpLmbajh0M/uADgjp35n+enjBgAAnjxrHstddIOXiwAl6tEEKIcjhE2SSiogZKT0/ntddeo3fv3tx1V9nUbEajkR49epwvbNx6661S2DCDOnXqsGnTJjp16sSQIUP47LPPLB3SJUVFRbFu3TpGjhx5XauRWFlZ8cEHH3Dy5MkrTkBaHsXFxfzwww8MGjRIChtCmIwaNQqlVJV9LynPnBtBQH3gHeDlC3adBQ5qrQ0VF17Fkk9Vqo78Y8dweu01jIsX41xSQhHQxsmJ9954g54vvWS26xZmZXHgl1/Ys3o1g4CAyEi+iozkGdP/g7pWVrSvXZt2YWE8O2IE3rffDt7eZotHCCFqonL03NgAtAJ2AUXntusqPEn5xSTHuLxRo0bx5ZdfcuDAAcLCwjAajXTq1On8HAbW1tYUFRXJmH8zKigo4MEHH2TZsmW89tprvPHGG1VqlYvRo0cze/ZsTp06Ra1ata77/P79+7N9+3ZiYmIqrBCxZMkS7r33XlauXMkdd9xRIW0KURM88MADrFmzhoSEBJydnSv9+mZZCrY6ksSj6jEaDHzywANMW7qUhNJSALyV4o0+fRi9dClUwvJseamp/PXLL+xes4Y9f/3F7sREoktKOAN4Ap97e7PB0ZH2zZvTrmdP2t5/P+5mmMFdCCFqinIUN6rdJOXnyFKwV3bw4EFat27NqFGjmDlzJqWlpbRu3ZqIiAiUUmitmTVrFs8++6ylQ63xDAYDI0aMYM6cOYwcOZJPPvmkShSUcnJyqFu3LoMHD/7X8sDXKiIigpYtWzJ+/HimTZtWIXENGjSI3bt3Ex8ff129SYSo6c6tbmWp9+6KXi1lq9a6q1LqLP9cClYBWmvtVv5QzUuKG1Xbvh9/ZMKoUWzOyuJJ4GsrK442bszWDh0Y9s03WFXiL5azCQm4HjsGe/bwwQ8/MCsykljD352SWtnbs+/ee1EdOnDC35/at96Ks69vpcUnhBBVWTlXSwkCGmmt1yqlnABrrfVZ80RY8STH+DetNT179uTAgQNER0fj6upKeHg4x44dw9PTk8zMTOrWrUtCQoKlQ71paK155ZVXeO+99xg1alSFD+Uoj08//ZTnn3+e3bt3067ddb1t/MOTTz7JDz/8wNGjRwkODr6hmFJTU6lbty4TJkzgvffeu6G2hKhptNa0b9+e/Px8Dh8+XOm9wKTnhokkHtVDfno6vPUWTgsXcm9yMksoWxewnYsL44YP575p0yq10HHOmWPH2LNwIXs2buRsXBzvFhRAYiKdKOtH3djOjla1a9OqWTO69O5Nt0cfBVnKTghxEypHz42ngRGAl9a6oVKqEfCF1rqn2YKsYJJj/NvixYsZPHgwn332GcOGDSM0NJSTJ0/SokULDprmuYqMjCQ0NNTCkd58xo0bx4wZM1i7di09e1ruv5nWmtDQUDw8PNixY8cNtZWQkEDjxo255557+OGHH26orenTpzNhwgT5+RTiMubNm8fQoUNZvXo1ffr0qdRrm6W4oZRqCCRorYuUUrcCLYDvtdZZ5Y7UzCTxqH7it2/nrSee4NfoaNJNP6v2QEqXLnj897/Qt69lA0xOZtVXX7Fz40b+OnqUv06fJs5g4F7gFwA/Px6zsiIgMJDWnTrRql8/Qnr2tEhxRgghKks5iht/AR2AnedWXVNKRWitm5srxoomOcY/FRYWEhoaiqurK5s3byYsLIykpCR69erFvn37yMjIYMCAASxfvtzSod6UCgoKaNWqFUVFRURERODq6mqRONauXUvv3r2ZN28ejz766A23N3nyZKZOncqePXto27ZtudrQWtOiRQucnZ1vuOAiRE1VVFREUFAQbdq0YeXKlZV67QpdLeUCvwClSqkQ4CugHvDjDbQnxL8Edu7M10ePctpoJHLFCh4KDCTMygqPP/+Efv1obWVF/1q1+POLLywTYJ069Hv9dV7fsIElSUnElpSQGRvLRz/9BB99REHPnkRkZDBtxw4enDGDJv364WZry7TgYHjuOQxffMHu776jIEMWGhJC3NSKtNbF554opWz459BXUc1Mnz6duLg43nzzTRo3bkxSUhL33HMPQUFBZGRkYGNjw88//2zpMG9ajo6OzJkzh/j4eF5++eWrn2Amn376KbVq1eL++++vkPYmTpyIj48PL730EuX9AHf//v0cOnSIJ554okJiEqImsre3Z+TIkfz+++8cPXrU0uH8TWtdrgewz/T1JeB50/f7y9teZTzatm2rRQ2xe7cuGDhQu5YlvxrQrqAH+/vrAwsXWjq6fynMztb7FyzQ3w4bpl9o2VIvDwvT2s1NHzLFbg06zN5ePxIcrD8YMEDHfP+91qdPWzpsIYQoF2CPvr6c4n3gVeAI0BtYArx9PW1Y6gHcCXwVEhJSsTexGktISNDOzs66f//+2tPTUwP60Ucf1StXrjz/O3vKlCmWDlNorcePH68BvX79+kq/dmxsrLaystKTJ0+u0HZnzpypAb1y5cpynT969Ghtb2+vMzIyKjQuIWqalJQUbWdnp0eNGlWp171SjnEjw1J2AjOAycCdWutYpdQhrXV4uRqsBNJltGbaOGMG77z1FpszMigE+gG/e3qS1bcvZ55+moa3327pEC9Na7IPHmTdDz/w144d/HXsGPvT00koLWUF0B/Y4u3NFCA8KIjwli0J79GDZnfcIZOXCiGqtHIMS7EChgN9KJugfDUwW5c3SbEAyTH+9thjj/Hzzz9ja2tLXl4eI0aMYOrUqTRt2pT09HRq1apFWlqapcMUQH5+Pq1atcJgMHDw4EFcXFwq7dovv/wy06ZNIzY2lnr16lVYu8XFxYSFheHg4MBff/11XSvCFBUV4e/vT58+fViwYEGFxSRETfX444/zyy+/kJCQgIeHR6Vc84o5xuWqHld7AM2AmcBDpuf1gUnlba8yHtJzo+b77dVX9aE2bbS2tdUvmD4d8lVKjwwL04l791o6vGty+sgRnb9ihdYffKB/79VLt3Vy0o4X9FBRoCMCArS+6y69Z9gw/ePo0frgokW66OxZS4cuhBBa6+vruQFYAz9c6/FV9SE5Rplt27ZpQNva2mpAjx07VhuNRn3fffed/z22atUqS4cpLrBlyxatlNKjR4+utGvm5+drLy8vPXjwYLO0v3DhQg3ob7755rrOW7RokfyMCnEd9u7dqwH94YcfVto1r5RjyGopomYyGvl90iRe+/xz9ufnU2raXNfKir+GDsXn1VehUSOLhng9SouLid2yhUNr13Jo925e9PTEISqKCZGRTDf9H7YBGtvbE+7ry/dPPol9q1ZkBwXhEhaGtZ2dZV+AEOKmUo6eG1uB2/UF825UN5JjgNFopGXLlhw6dAgom9xxypQpzJ8/n8ceewyAdu3asXv3bkuGKS7h3OopGzdupEePHma/3pw5c3jyySfZsGEDt956a4W3r7Wmc+fOnDp1iujoaJycnK7pvDvvvJP9+/dz8uTJ6+rxIcTNrFu3biQkJHD8+PFK+X9jrtVSugBvAEGU/V2lAK21blDOOM1OEo+bk6GwkK+HDWPWkiWcLCoi27S9t7U1tp6ePDdyJP1fe61armBSlJPDsTVrOLRxI4f27SMiJoaUrCx2FRUBMARYCjRzciK8Th3CmzaldZcu9Hz4YahXD6xuZE5hIYS4tHIUN74HQil7y8o7t11rPd0M4ZmF5Bjwf//3f7zxxhsATJ06lVdeeYVTp04RHh5Obm4uWmvi4+MJCAiwbKDiX/Lz82nRogVaaw4ePIizs7PZrqXLejpRXFxMREQESimzXGfLli10796dt99+m1dfffWqx6ekpBAQEMDEiROZOnWqWWISoiZatGgR999/P0uWLOHuu+82+/XMVdw4AowD9sL5D8bRWp8pV4OVQBIPgcEA8+bBt9/itXUrmabNNkC4gwMjBwxgxNy5UIljTs0iNxeiovj1++/ZvG0bh0+e5FBmJklGI62BfQCOjjzp6EiBiwtNGzSgaYsWNO3alcY9e+Lo5WXhFyCEqM7KUdx4/VLbtdb/V3FRmdfNnmOsWbOGPn36APDRRx8xduxYjEYjvXv3ZsuWLZSUlPDEE08wZ84cC0cqLmfz5s306NGDF154gY8//ths19m+fTu33HILs2bN4tlnnzXbdQDuvvtu1q9fT0xMDLVq1brisdOmTeOll17iyJEjNGnSxKxxCVGTGAwGGjZsSIMGDdiwYYPZr2eu4sZOrXXHG4qskt3siYf4t53ffMPHb77J2lOnOK01bYE9QKG/P+Pc3Bj70Uc06dfP0mFWmIyYGE7v2EGT/Hw4coRHfvqJ7WlpxBkM59dcvBNYWr8+NG3KG5mZ+DdsSNOOHWl6++3UCg1FSW8PIcRVXG9x44LznLTW+eaIydxu5hwjOjqaJk2aoLU+PxQFYMaMGYwbNw6lFI6OjmRnZ2NTDXtJ3kxeeOEFPvnkEzZt2kT37t3Nco1HHnmE5cuXk5iYaPYJTI8cOUJ4eDjPPfccM2fOvOxxWmuaN2+Om5sb27ZtM2tMQtREH3zwARMnTuTAgQO0aNHCrNcyV3HjXcomAVsMFJ3brrXeV64G/27XC/gfEAzEAQ9orTMvc6wbEAn8qrUefbW2b+bEQ1xd2uHDZH7yCU02beLzI0cYZdruCtzi7c0zw4cz6O23q+XwlaspyMggesMGjmzdildGBr1KSiiKjMT7wIG/+4cDnkrxSr16vNSzJ4ZGjfg9P5+m3btTv1s3bBwcLBa/EKJqKUfPjc7AN4CL1jpQKdUSeEZr/ZzZgqwgSqk7gTtDQkKejo6OtnQ4lU5rjb+/PykpKXTp0oWtW7cCEBkZSZs2bXB2diYjI4PPP/+ckSNHWjhacTV5eXm0aNECpRQHDx685rkqrlVKSgqBgYE899xzzJgxo0LbvpyRI0cye/ZsIiMjaXSZ+dZ2795Nhw4d+PLLLxkxYkSlxCVETZKZmUlAQABDhgzhm2++Meu1zFXcuFSfE621vqF1N5VS7wMZWut3lVIvA55a60mXOfZjoJbpeCluiApjKCzkp3HjmL1gAbuzszn3MeInVlaMDgsjtm9fvMeMwa2Gjxs2Ggwk7N7NkY0bidq9myNHj9JbKe49c4bolBQam46zBRra2dHI05OxXbtye8+eFNSrR6qHB/U6dJAJTYW4yZSjuLETuA9YqrVubdpWpZeXv9jNmmM8//zzfPrpp9ja2pKQkICvry/FxcV06tSJ2NhYsrKyCAoKIi4uztKhimu0ceNGbrvtNsaOHctHH31UoW2/9dZbvPbaaxw9epTGjRtf/YQKkJKSQkhICHfccQcLFy685DGjRo3i22+/JSUlBXd390qJS4iaZuTIkcyZM4dTp05ddRjYjTDLUrDmegBHgTqm7+sARy9zXFvgJ+AJ4NNraVuWaRPltfeHH/TQBg10nq+v1qDbmZazq2NlpYc1aqQjfvnF0iFWusKUFL1j9mw996mn9KSOHfU9dero5g4Oeqmdndag15nukR3opnZ2eqCvrx7Xpo0+9vrrWv/xhy46ckQbioos/TKEEGbAdSwFW3Y4O01f91+w7cD1tGHpx82YYxw4cOD88q4LFy48v33y5Mka0N7e3hrQu3btsmCUojxGjRqllVJ6y5YtFdZmcXGx9vf313379q2wNq/VG2+8oQG9ffv2f+0rKCjQnp6e+uGHH670uISoSSIjIzWgp0yZYtbrXCnHuJGeG7WBqYC/1voOpVQzoLPW+ob6oSilsrTWHqbvFZB57vkFx1gB64FHgV5AOy09N0Rlycjgk0ce4Yv16zlaXHx+Nl0PILN1axg4kMInnsChQZVdOMi8jEZITiZx2zZ+X76c6CNHOJ6QwPGMDI4XFrIB6AB8DzwFNLCzo5GHByF16xLSqBEPP/AAnm3aQGAgyDJsQlRL5ei5sQiYDnwKdATGUPa7fYiZQqxwN1uOYTQa8fHxITMzk759+7Jq1SoAtm3bRrdu3WjXrh27du3i9ttvZ926dRaOVlyv3Nxcmjdvjq2tLX/99VeFDE9ZuHAhDzzwAMuWLWPgwIEVEOW1y83NJSQkhEaNGrF58+Z/rNByLq4//viD3r17V2pcQtQ0ffv25dChQ8TFxWFra2uWa5hrWMrvwBxgsta6pVLKhrJPXJpfw7lrAb9L7JoMfHdhMUMplam19rzo/NGAk9b6faXUE1yhuKGUGgGMAAgMDGx78uTJa3uBQlwDo8HAwgkTmPPDDxiys1lrMABgb3q0cnNjcM+eDJs5s8YPYbkW2mhEJyVhFRPD3rVrWbhmDccTEog+c4bjhYXkA0mUddn6wMqK2dbWNPTwoH7t2tQPCqJ+aCh33Xcfto0bg6fnVa4mhLCUchQ3fICPKfvAQgF/AGN0FV6B7WI3W3Fj6NChzJs3DycnJ1JTU3FxcSE3N5dWrVphMBhISUnBYDCQlpaGl6zAVS2tX7+enj17MmHCBKZNm3bD7fXo0YNTp04RHR2NtQU+vPjyyy959tln+fXXXxk0aND57f379+fQoUPExsZaJC4hapKVK1cyYMAAfvzxRx566CGzXMNcxY3dWuv2Sqn9+u/xsX9prVvdQKwopY4Ct2qtk5VSdYCNWusmFx3zA9ANMAIugB3wudb65Su1fbMlHsICsrIonDWLnlOnciA39x+TcQ6wtWV5794YhwzBeP/9MgHnRbTRSMqBA/jl5KBiYli0bBk/7d5NbEYGsYWFZGqNLVBA2UzGL9rZsc7amvoeHtT396d+gwaEhIfT7/77ITgYHB0t+4KEuIlda3FDKfWe1nqSUup+rfWlB8NXEzdTjrFjxw46d+4MlM3P0KNHDwCeeeYZvv76a3r27MnatWsZP348H374oSVDFTfoueee44svvmDr1q3ccsst5W7n4MGDtGzZkmnTpjFhwoQKjPDaGQwGmjdvjtaaiIgIbG1tSUpKol69erzyyivnV/kRQpSf0WgkNDQUDw8Pdu7caZZrmKu4sREYDKzRWrdRSnUC3tNa9yh3pGXtfgCc0X9PKOqltZ54heOfQIaliCoqfvt2vnzxRZbv28eg4mLeNBpZDtwF+FtZ0T0ggGEjR9LzxRdr5CosFSn75EkS9+yhmVIQG8tnS5eyMiqK2Oxs4oqLKaBsiaVY0/FDHRyItrGhgbc39QMCqB8SQrO2bel8550QEAByv4Uwm+sobkQALYC9Wus25o/MfG6WHKO0tBQPDw9yc3N55JFHmD9/PgArVqxg4MCBjBgxgq+//ho3NzcyMjKwkuXDq7WzZ8/SvHlzHBwc2L9/P47l/ODgmWeeYd68eSQkJFi0J8/SpUsZNGgQs2bN4tlnn+X9999n0qRJHDt27LIrqQghrs+nn37K888/z/bt2+nUqVOFt2+u4kYb4BMgHDhE2aol92mtD5Y3UFO73sDPQCBwkrKlYDOUUu2AZ7XWT110/BNIcUNUF/v28ft//8sLf/xBrMFwfr4Oa2Cury+PDh6M8amnsGpTrXP8SqeNRlIPHeLMwYOEmYofr//yC1vj4ojNzSXedK+7AlsArK3pa2tLvp0dgZ6e1KtTh8CgIFq1a8ctffuWzfchs6ULUW7XUdz4AHiasl6Y+ZQNSdHnvmqt3cwa6N9xNKBsaKy71vo+0zZn4HOgmLJepD9cqY2bJce4++67+e233/D09CQlJQU7OzvOnDlDWFgYtWvXBso+pf/pp5948MEHLRytqAjr1q2jV69evPTSS7z//vvXff65JSIffvhhvv76azNEeO201vTo0YOjR49y/PhxOnTogLe39/kljIUQN+7s2bMEBATQv39/FixYUOHtm6W4YWrYBmhCWRJyVGtdUu7GKsHNkniI6sFoMLBu2jTmzJrF5oQENhmNNAT6UzZbbhMHB/qGhzP05ZcJHzzYwtFWb4aCAk7t3k1hTAyhRiPExjJq4UIiU1OJz8vjlMFACfAwcO6vlyClcLOzI9DNjcBatQgMCKB7p0506dULAgMx+PpiI0NfhLik6yhu2Guti5RSv2mtB13t+Mu08S0wEEjTFywdq5TqR9k8HtbAbK31u9fQ1qILihuPAVla62VKqf9pra/4l/rNkGOc+yMXygoYzZuXTbM2dOhQFixYwLRp0xg7diyhoaFERkZaMlRRwZ555hlmz57Nn3/+ed2fxH700UeMHz+e/fv306rVDY1erxA7d+6kU6dODBw4kOXLlzN79myGDx9u6bCEqFHGjx/PV199RVJSEm5uFfs5hbl6btwPrNJan1VK/QdoA0zRWu8rf6jmdTP/kcnwAAAgAElEQVQkHqIaMxjgf/9jwn/+w3cnT3Lmgv+b9kBu/frYdO1KdOfONBw+HCs7O8vFWsMYS0pIiYig9NQp6hUVYYiNZcKCBcSnpnIyO5v4wkLOaM0k4F0gB/AE/K2tCXRyItDTk0A/P+7u2pXOXbtSUrs2aXZ2+LVogbX8O4mb0HUUN/aZhrbO01o/Vs5rdQdyge/PFTeUUtbAMaA3kADsBh6irNDxzkVNPKm1TjOdd2Fx4xXgd631X0qpH7XWD18pjpqeYxQXF+Pu7k5hYSHjxo1j+vTpAPz+++/079+fyZMn88UXX5CRkcHhw4cJDQ21cMSiIuXk5BAeHo6zszP79+/H4RrnDTMajTRu3Jg6deqwZcsWM0d57R588EF+/vlnHB0dSUlJqfA/voS42aWlpaG1Pt+jryKZq7hxUGvdQinVFXgLmAa8prXuWP5QzaumJx6iZslNSeGniRP5ddUqzmRlsd1gAK1xoyyL91WK1t7e3Hn77Tz83nt4BAdbOOKaLS8tDcPJk7hnZpJ15AjTFy0iPimJ+DNniM/N5ZTBwIfAaOAwZeP1rAE/KyvqOjoS4O7O2E6d6NahA5keHhzIz6duWBh1W7fGqVYti742ISradRQ3DlG2rPxbwEsX79daL77G6wUDyy8obnQG3tBa9zU9f8XU3sWFjYvbubjnRqbWerlS6qerLUtb03OM22+/nQ0bNuDv78+pU6ewsrI6/wevq6srd999N1OnTuWee+5h8eJr+mcT1cwff/xB3759mTRpEu++e9WOUMDfxa+qNkwpJiaG0NBQhgwZwvfff2/pcIQQ18FcxY39WuvWSql3gAit9Y8XrpxSFdX0xEPUcEYjrFnDyDFjWHfiBCdLSig27fIDkl1doWlT3nV25p5Jk2jSr58lo73pGA0GDMnJ2J0+zenISH5ZsYLEU6dISE0lMSODxLw8pllZcUdBAauBC/91PJSirp0dX7dsSeewMKIdHVmflUXdhg2pGxqKf/Pm1GrSBCszrRcuREW7juJGV+AR4AFg6UW7tdb6yWu8XjD/LG7cB/Q7N0+XqVDR8QrLxnsDb1PW02O21vod05wbnwKFwNZLzblxsyw3/9tvv3H33XejlCIuLo7AwEDg75U0Vq9ezYABA1BKkZmZiZOTk4UjFuby9NNP8+2337J9+3Y6dOhw1eMHDBjA/v37iYuLw66K9WTcv38/QUFBslSxENWMuYoby4FEyhKBNpSt0LhLa92yvIGamxQ3RE0TtXw586ZOxTchgbGZmUTl5tLMtM8OCLa1pVtwMM+OGUO7kSNBZq23vNxcMiMj2b9lC4nR0STExpKYnExiejpTvb0JzchgdnIyT1/03mwN7PfxoXlgIKusrVmUnU0dX1/q+PvjFxREnZAQ2t56K3aBgSDLDAsLu9bixgXHD9daf3MD1wvmBoobFaGm5hj5+fl4eHhQUlLCO++8w8svvwzA5s2b6dGjB+PGjWPTpk3s27eP9957j4kTL7vAnagBsrOzCQ8Px83Njb17915xeMrx48dp3Lgxr7/+Oq+//nolRimEqMnMVdxwouzDxwitdbRSqg7QXGv9R/lDNa+amngIcU5uQgJzx49n+fr17M/I4LTWaOAx4Hul2OnlxVtWVvTt3p37//Mf/KrAxF7i3wyFhaRERJB48CCJR4+SHBdHclISE+rXxzMjgy8iIvi/xETSjEaMF5yXRtmyVe85ODDXaKSOkxN13N3x8/Ghjp8fY+6/H9t69Ui3t8fa3x+PoCCUFLyEGVxHz43btdbrlVL3Xmp/ZQ9LKQ+l1J3AnSEhIU9HR0dXdPMW1759e/bs2UPjxo05cuQISikKCgpo2bIlpaWlPPnkk/znP/+hefPmHDx4QwvmiWpi1apV3HHHHbzyyitMnTr1ssdNmDCBmTNnEh8fT506dSoxQiFETWa21VKqGyluiJuNobCQlW+9RejhwzSKiGBMbCwzL5qoNMDGhrldutD10UfhvvvAw8NyAYvrUlpczOkjR0iOjCT52DH6+ftjlZbGgk2b+OXwYZJzckgpKCDZYMBIWfc6BTwJzAFsAV8rK3zt7Ql2dWVx375QuzYrzpwh3doa38BAfBs0wLdRI3ybNsVeJlwT1+g6ihv/p7V+XSk15xK7b2RYig1lE4r2pKyX6W7gYa314Wt8CdetJuYYc+fOZdiwYVhbW5Oamoq3tzcAEydO5IMPPuDHH3/ksccew8rKiqSkJHx8fCwcsagsw4cPZ+7cuezYsYP27dv/a39eXh4BAQH069fPLEtBCiFuXlLcMKmJiYcQ1+vwb7+x6KOP2HjgAJHZ2aRrzV6gFXAPsBoIsrWlbd26DBg4kEGvv46TJKzVmjYayU1OxjU3F5KT2bR+PfsOHuR0Whqp6emkZWdjU1zMEnd3SE2lT2Ehay5qozFw1MMDfH0Zc/YsCUpR29MTXx8ffP38aNykSdkSkbVqkWNvj0tAgMwRchO73mEpN3itBcCtgA+QCryutf5GKdUfmEHZqK5vtdZvm+n6NbLnRnZ2Nt7e3pSWlvLtt98ybNgwAPbs2UPHjh0ZPnw4a9euJTY2lrlz5/L4449bOGJRmbKysggPD8fDw4O9e/dib2//j/1ff/01I0aMYOvWrXTp0sVCUQohaiIpbphIcUOIfzMaDFjt3w+LF/PC3Ln8mJpKhmk4yzl5jo44hYTwnYcHbrfcwoD//Ac7FxeLxSzMSGtyU1JIjYoi7fhx0uLiSI2Px76ggMfr1oXUVIZt3syuzEzSios5Y/pZuR1YZ2qiEXAC8FIKH1tbfBwc6OPvz3+7dgUfH76MjsbB05NadeviExSET/36+DZujEudOqCUxV66qDjX0XNj/JX2a62nV1xU5lXTcozQ0FCOHDlC+/bt2bVrF1C2HGy7du04c+YMgwYNYtasWdx2222sX7/ewtEKS1i5ciUDBgxg8uTJTJky5fx2rTWtWrXCysqKffv2oeR9XQhRgaS4YVLTEg8hzMVoMLD5009ZMncucXFx/AaQnY0HkG06xg0IcXSkb7NmTH3nHbjtNrCxsVjMwjIMhYWkHztGcVISgVZWkJ7O10uXkpCUxOmMDNKzs0nPzaWzrS1v29hAejrOJSXkX9TOcGC2rS3a25u2WVl4Ojjg7eKCj7s7Pl5e3NaiBbd17Eipuzu7U1PxCgzEKzgYj6AgbGQC1SrnOoob52YZbAK05+8VU+6kbJLyR80UYoWpiT03ZsyYwbhx47C1tSUrK+v86idvvvkmr7/+OtOnT2fChAk4OTmRnp5+xUklRc02bNgw5s2bx86dO2nbti0AW7ZsoXv37syePZvhw4dbOEIhRE0jxQ0TKW4IcQMMBlZPncqSn35ie2wsJwoLyaVsAss00yFBSuFqZ0dLPz96dO3KwPHj8W/TxoJBiypHa7JPnSL9+HHSY2NJP3WK9MRE6tva0t3dncKUFIasWkV6fj7phYWkl5SQoTX/Ad6k7Get9kVNugNve3szKjiYVBcXxsbG4uXmhpeHB97e3nj5+tKlXTsahodT7OJClrU1nvXrYyvLVZpNOVZL2QwM0FqfNT13BVZorbubK8aKVlNyjLS0NPz8/NBas3TpUu68804ADh8+TOvWrRk8eDBr1qzhzJkzrFq1ir59+1o4YmFJmZmZhIWF4ePjw549e7Czs+PBBx9kzZo1JCQkyLLAQogKJ8UNk5qSeAhRVeRnZBA7Zw5hBw9SvHcvvocPn+/ZcU5HYEedOhhCQni1qIi+999Pj9Gj5dN2cc1Ki4sxnDmDfV4eBUlJbNy4kYyUFDLS0sg4c4aMzEzu8vGhp709xxISGBgVRYbBQKbW51eTmQM8AewAOpu2uQIe1tZ42NryUaNG9Kxfnyil+PLkSTzd3fHw8sLD2xuPWrXo0qkTPsHBFDo6UuLsjIufn6w0cwXlKG4cBVporYtMz+2Bg1rrJuaKsaLUtJ4bQUFBxMfH06dPH1avXg1AaWkpXbp0ISYmhi5duvDbb78xZMgQmShSALBs2TLuuusuXnvtNUaMGEFwcDBjx47lgw8+sHRoQogaSIobJlLcEML8jAYD22fPZuW8eeyMiqK7wcBrhYWsLymh5wXHuQABdnZMbNmSYU88AXfdBQEBFopa1ERGg4HshAQyYmPx1hqPkhKSYmJYsnHj+aJIZk4OWXl5vFqnDh2MRn5PSmLI6dPkXNTWJqA78CPwCGUzVLorhae1NR52dsxv2ZKmdeuytbCQ31JScHNzw93DA3cvL9y8vOjTvTvOfn5kW1lRZGeHe716NXr1mXIUNyYDDwBLTJvuBv5njqVbzaUm5Bj//e9/mTJlCo6OjuTk5GBjGmp4bhjKxIkTef/99/Hx8SE1NRUrKfAJk6FDh7JgwQLuuusulixZwvHjx2nQoIGlwxJC1EBS3DCpCYmHENVVblwcv0yZwoYNG9iflMTJwkJygAnAB8DnwBjAx8qKRi4utA8Joc+993LbmDEyeamodIaiInISEsg6dYqsxEQaubnhWlxMZGQkK3fuJCsri6ycnLLiSH4+s+rVI7CggFmJiUzIyaHgovbigXrAFOC/pm12lBVI3Gxs2NOsGR5eXvyYk8MfWVm4u7jg5uqKu7s7bp6ePNW/P1bu7pzIzSVHa1x9fXHz88O1Th3s3dyqXC+S8qyWopRqA3QzPd2std5f8ZGZT3XPMeLj4wkKCgL4xwoXMTExNG/enFtvvZVNmzZRUFDAvn37aNWqlSXDFVVMRkYGYWFhpKSkMHDgQJYtW2bpkIQQNZQUN0yqe+IhRE1jNBgwbN+O3bp1zP/lFyZHRZFSWkrxBcd8DTzl4MDnDg78z2ikZXAwXW+7jV6jR+MVEmKp0IW4opL8fHISE8lOTCQnNZUwHx9s8/LYd+AA2yMiyM7KIjs7m+zcXHLy8pgbGopdbi5To6P5Mj2dHKORHNOwGhugGFDAk5QNsbmQF3DGywtcXZmUl8eWwkJc7e1xdXDAzcmJAE9P3uzdG1xdWXnyJGeMRlw9PXHz8aFDx464dO1a4a+/MpeCtbSaMCxFa03t2rU5ffr0P4abaK3p2bMne/fupVmzZuzYsYPx48fz4YcfWjhiURUtW7aMIUOGsGLFCm699VZLhyOEqKGkuGEixQ0hqoeM48f5ffp01q1dy1RHR/xSUhh4+jQrLnq/sgGOeHnRsEEDFjk7c6ZuXfo88wz1u1ebOQiFuCxtNJKbksLZpCT8nZzg7FkO/vUXx2NiOJuZydmsLHJycqCoiFfDw+HsWd7es4eNKSmcLSribEkJZ0tL8QX2aA1GI7cBGy+4RqSnJ6EZGRUe+81U3DinOucYo0aN4vPPP8fd3Z3MzMzzS3d+9dVXPPPMMzz++ON89913NGjQgJiYGAtHK6qywsJCWT1HCGFWUtwwqc6JhxACsuLiWPvJJ2xZt46DcXHE5+YSbW2NVXExjYDjpuOsADelCLSzY3///lh16kRSeDh+ffpgJcvVipuR1lBQQHpcHJmJiZxNS+NsejodGjfG8Y47KvxyUtyoPiIjIwkLCzv/fWhoKAAJCQmEhYXRokULdu7cidFo5MSJEwQGBloyXCGEEDe5K+UYkuULIaoNj+Bg7vvwQ+67eEdxMfO//poV//sf+44c4VhWFsklJZwoKsJqyRJYsoTmQAbgDNS2sSHYxYUuISG8OXo0dO8O9etX+usRotIoBU5O+DRrhk+zZpaORlQRWmtuueUWAJ5//vnzhQ2tNSNHjqSkpITU1FRKSkr48MMPpbAhhBCiSpOeG0KImstohEOHYO1aRn7+OdsSE0koKiJba0oxzVVgOtQV0ICPtTVBzs6E1q1L3x49uOeFF6BJE6hiEzYKUZXdTD03qvOcGw899BA//fQTvr6+pKamnt++YMECHn74Yfr168eqVato27Ytkj8JIYSoCmRYiokUN4QQ52QcP07CihW0SE2FiAharVnDqeJicrTGYDomBIgGjIAH4GFtTT1HR5rUqUObli3p++ijNLrzTil8CHGRm6m4cU51yzF27NhB586dUUoRHx9PgGkp7tOnT9OsWTMCAgI4ePAgtra2pKSk4OHhYeGIhRBCCBmWIoQQ/+IVEoLXmDHnn/91wb6chAT+nDMHu+hoyM0lLSoK+6NHSSkt5VRuLtuio5kTHU23RYvYDMTa2dHVYMDfwYH6Xl40bdCA1p060W3oUHxMY9mFEKKqKC0tpWfPngC88cYb5wsbAC+88ALZ2dlYW1tjNBr57rvvpLAhhBCiWpCeG0IIcR3y09PZ8d13bF+1itYFBfTPz2f1iRPclZ39jyVsAYYC3ynFShsbni4tpY69PUGenjQNDqZlx470GjYMr+bNLfEyhDAr6blRtfXr14/Vq1cTHBxMbGzs+e1Lly5l0KBBtG/fnt27d9O3b19WrVplwUiFEEKIf5JhKSbVKfEQQlQ/hsJCIpcvZ9fSpRw8cID77O3pnpfHlydP8kJe3r+KH1OAyUrxsbU17xmN1La3J9jdncZBQbTq0IEBTz2FW3i4DHsR1Y4UN6quVatWcccdd2BlZcXp06fx8vICICsri7CwMJycnDh+/Diurq6kp6djZ2dn4YiFEEKIv8mwFCGEqAQ2Dg60uO8+Wtz3z/VcnjE9jAYDUStWsGvZMg7u28d9rq6QkUHaiRNk5OeTXFDAXwUFkJICO3fy2yefcBfwvJUVC7TGy8aGOk5OBHl5ERIczNhhw3Dr2hWCgqQAIoSFXDChqKVDuSZDhgwBYObMmecLGwAvvfQSycnJuLi4AGW9OKSwIYQQojqRnhtCCFFFGA0GYjZsYOfixRzYs4fJPj54JCXxbHQ08wsKKKBsctNzEgF/oAewHXBWCi9ra2o7OBDo6cn8Rx7BJjyctIAAvDp2xMbBwRIvS9yEpOdG1WVnZ0dpaSmlpaXnt61bt45evXoREhLC8ePHeeKJJ5gzZ44FoxRCCCEurVoNS1FKeQH/A4KBOOABrXXmJY4LBGYD9ShbwbG/1jruSm1Xl8RDCCEuJz89nQO//krExo2M8PWFEyd47s8/WZ6ZSVZpKfnAuT9Zzr27BwMnKeuq50TZqi8NHB3Z0KMHBAbyS24uNvXqEd6zJ/W7d8fKRjr1iRsjxY2q6+LiRl5eHs2bN6ewsJDk5GT8/PxITEzESnqDCSGEqIKqW3HjfSBDa/2uUuplwFNrPekSx20E3tZar1FKuQBGrXX+ldquLomHEELcCENhITGrV9MkOxuiopi0eDGbExNJLSwk02gkT2tsgTzT8e5AzgXnWwOBSnGidm3w9OSJjAxKHBwI8venUdOmNO3UibCBA3Hz96/01yaqByluVF0XFzfGjRvHjBkzsLOzo6SkhIiICMJklSchhBBVVHUrbhwFbtVaJyul6gAbtdZNLjqmGfCV1rrr9bRdXRIPIYQwO6MREhLg8GHmzJvH/sOHOZWWRvLZs5wuKqI2sM3GBoqKsNUaw0Wn1wLSlAI7O4KKi7GyssLH3h5fZ2fqeHpya1gYjw4aBCEhZNWujUc1mY9AVAwpblRdFxY3duzYwS233IKvry+pqam8+uqrvP3225YOUQghhLis6lbcyNJae5i+V0DmuecXHHM38BRQDNQH1gIva61LL9HeCGAEQGBgYNuTJ0+a+RUIIUTNkp+eTuTKlUT++SfHo6KIS0ggSGvecnGBjAw8kpLIg38UQJoCUaZttqZtNoA9ZXODDHZ15fMmTcj38mJMbCz1/P0JbtSIhm3aENqzJ16NGlXuixQVSoobVde54kZ+fj6tW7cmOTmZrKwsmjRpwpEjRywdnhBCCHFFVW61FKXUWsDvErsmX/hEa62VUpeqvtgA3YDWQDxlc3Q8AXxz8YFa66+Ar6As8bihwIUQ4ibk5ONDu6FDaTd06CX3Z5m+Gg0GUg4e5NjmzTinpYG1NYUnTtB39WrS8/PJKC4mx2jkrNak5uTA7t0coWzyJI4dg40bz7fZH1hhY8M+GxvuKCrCxdoaD1tbPB0cqOXqyhOtW9P3llvI8vQkqrSU+rfcgm+zZjJfiKh01W21lHMfak2ZMoWoqCisra2xsbFh/fr1Fo5MCCGEuDEWyQK11r0ut08plaqUqnPBsJS0SxyWAPyltT5hOudXoBOXKG4IIYSoHFY2Nvi3aYN/mzbnt7kAqy53gtFIsxMnWPfbb5w4cIDYmBgSU1NJzsriXmdnsLYmNT2ds4WFnDEYOGEwQEEBZGbiHh9P399+YwHw3IUxUNZTZKq9PeO9vFiuFG9lZ+Pt6EgtNzf8vL0JqFePe/r2JaBdOwz+/lj5+EhRRJSb1noZsKxdu3ZPWzqW6/Huu+/i5uZGTk4On3/+Of4yh44QQohqripmc0uBx4F3TV9/u8QxuwEPpVQtrfVp4Hag6vcFFUII8TcrKxxCQrh9wgRuv8whdwAXzhSdk5DAia1b8SsshLNn6bx3L49v3UpadjZnCgrILi4mp7QUXysryMhgZ1ERuwDy8iA9HU6cgN27sV68mOeA0cCXgKLsF6Id4KAUi3x8uNXHh28KC1mYk4OXszM+np7UrlULv7p1uf/OO3Fr0gRjYCBWbm5mvElCVDyj0YiDgwM5OTl07tyZkSNHWjokIYQQ4oZVxTk3vIGfgUDKVi98QGudoZRqBzyrtX7KdFxv4EPKctK9wAitdfGV2q4u42GFEEJUHKPBQPrRo8T8+SfxERHEnzjBg35+BBYUMD8igk9jY8kpKSG3tJR8o5FCrVljbU1no5EBWrPyEm3uBdoAtwEbKesxcm5OEXuliPLzw8fdnTeys9lcUIC7gwMeLi54ubnh4+PDpMGDsfLzI14prPz88GveHBsHh0q7J+Ymc25UXdbW1hiNRpRSODg4kJaWhouLi6XDEkIIIa5JtZpQ1JyqS+IhhBCiajAaDGTFxRG3axcJhw+THBdHSmIiLzVqhNPZs7y7Zw+/JCdz9lxxRGuKtOaMjQ0ORiMtjUYOXqLdc795GwInLthuBTgBZ52dwcGBQbm5RBmNOFtb42Jnh4udHfVcXfmqZ0/w8GB+XBxnbW3x9vPDJyAA3/r18WvWDJ9GjcDKyty357KkuFF1lc3VXmbx4sXcc889FoxGCCGEuD5VbkJRIYQQojqwsrHBKyQEr5AQ2lxi/8umx+UcAAqzskg9dIikyEhSYmLISE6Gxo3hzBme3rSJP5OSyCks5GxxMbkGA7Zag4MDFBVxrKiIE0BpSQkUFgJgl57OV7NnAzAKyLnomk5Anun7WkA2fw+5sVOKZra2bAwKAicn8t3dcdq0qZx3R1RngwYNksKGEEKIGkWKG0IIIYQZOXh4ENS1K0Fdu/5r35UKI1C2nO45RoOBjNhYsk+cAEdHSEvj6z/+IObkSTIzM8nKySEnPx9vpSAwEPLyaHrkCPHFxRQajRQDeVqTWlwMMTFgNFKsFE4V+WJFtbFo0SJLhyCEEEJUKCluCCGEENWAlY0NPo0alQ05MXngvvuueM6Wq7TpYTRWQGSiOrKRFYKEEELUMJYbkCuEEEIIy7LgvBxViVKqgVLqG6XUoittE0IIIUTVJVmNEEIIIaotpdS3Sqk0pdShi7b3U0odVUodV0pdcQSQ1vqE1nr41bYJIYQQouqSPolCCCGEqM7mAp8C35/boJSyBj4DegMJwG6l1FLAGnjnovOf1FqnVU6oQgghhDAXKW4IIYQQotrSWm9WSgVftLkDcFxrfQJAKfUTMEhr/Q4wsHIjFEIIIURluKmKG3v37k1XSp2s4GZ9gPQKblOUkXtrHnJfzUfurfnIvTUPc93XIDO0eT3qAqcueJ4AdLzcwUopb+BtoLVS6hWt9TuX2naJ80YAI0xPc5VSRyvsFZQx28+9UsoczVYn8p5iPnJvzUPuq/nIvTWPSs8xbqrihta6VkW3qZTao7VuV9HtCrm35iL31Xzk3pqP3FvzkPtaRmt9Bnj2atsucd5XwFfmikv+fcxH7q35yL01D7mv5iP31jwscV9lQlEhhBBC1DSJQL0LngeYtgkhhBCihpLihhBCCCFqmt1AI6VUfaWUHTAEWGrhmIQQQghhRlLcuHFm644q5N6aidxX85F7az5yb82j2t9XpdQCYDvQRCmVoJQarrU2AKOB1UAU8LPW+rAl4yynav/vU4XJvTUfubfmIffVfOTemkel31elta7sawohhBBCCCGEEEJUGOm5IYQQQgghhBBCiGpNihtCCCGEEEIIIYSo1qS4cQOUUv2UUkeVUseVUi9bOp6aQClVTym1QSkVqZQ6rJQaY+mYahqllLVSar9SarmlY6lJlFIeSqlFSqkjSqkopVRnS8dUEyilxpneCw4ppRYopRwsHVN1pZT6VimVppQ6dME2L6XUGqVUtOmrpyVjFH+THMM8JM8wL8kxzENyDPOQHKPiVJUcQ4ob5aSUsgY+A+4AmgEPKaWaWTaqGsEATNBaNwM6AaPkvla4MZRNsCcq1sfAKq11U6Alco9vmFKqLvAC0E5rHQ5YU7bqhSifuUC/i7a9DKzTWjcC1pmeCwuTHMOsJM8wL8kxzENyjAomOUaFm0sVyDGkuFF+HYDjWusTWuti4CdgkIVjqva01sla632m789S9uZd17JR1RxKqQBgADDb0rHUJEopd6A78A2A1rpYa51l2ahqDBvAUSllAzgBSRaOp9rSWm8GMi7aPAj4zvT9d8DdlRqUuBzJMcxE8gzzkRzDPCTHMCvJMSpIVckxpLhRfnWBUxc8T0B+OVYopVQw0BrYadlIapQZwETAaOlAapj6wGlgjqk77myllLOlg6rutNaJwDQgHkgGsrXWf1g2qhqnttY62fR9ClDbksGI8yTHqASSZ1Q4yTHMQ3IMM5Aco1JUeo4hxQ1RJSmlXIBfgLFa6xxLx1MTKKUGAmla672WjqUGsgHaALO01q2BPKR7/w0zjc0cRFli5w84K+WlmwcAACAASURBVKUetWxUNZcuWxte1ocXNwXJMyqW5BhmJTmGGUiOUbkqK8eQ4kb5JQL1LngeYNombpBSypayhOMHrfViS8dTg3QB7lJKxVHWxfl2pdR8y4ZUYyQACVrrc5/+LaIsERE3phcQq7U+rbUuARYDt1g4ppomVSlVB8D0Nc3C8YgykmOYkeQZZiE5hvlIjmEekmOYX6XnGFLcKL/d8P/s3XlcVGX7+PHPYRgYlmEHAREX3MMtMdsezcjdTM2nTFMzK6uvrZbtWpal6aOVS1lmVpZZapm7j6al2VO5hrnkjgiyrwMDs9y/P8D5iaKCAgN4vV+v++Us59znOgOM97nOvdBM07TGmqa5UTwBzY9OjqnW0zRNo3hM4QGl1Axnx1OXKKVeUkpFKKUaUfz7+pNSSjLUlUApdQY4pWlai5KXYoH9TgyprogHbtQ0zbPkuyEWmUStsv0IjCx5PBJY4cRYxP8nbYwqIu2MqiFtjKojbYwqI22MqlftbQzXqj5AXaWUsmqaNhZYT/HsuguUUn87Oay64BZgOBCnadqektdeVkqtcWJMQpTHE8BXJRcix4BRTo6n1lNK/a5p2lJgF8UrHOwGPnZuVLWXpmmLgduAIE3TEoCJwBTgW03TRgMngXucF6E4S9oYVUraGaI2kjZGJZM2RuWqKW0MrXj4ixBCCCGEEEIIIUTtJMNShBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIUe00TfPTNO3xksfhJUtxCSGEEEJcFWljCHHtkqVghRDVTtO0RsAqpVS0k0MRQgghRB0ibQwhrl2uzg5ACHFNmgJEaZq2BzgMtFJKRWua9gAwAPACmgHTATdgOFAI9FFKZWiaFgXMAYKBfOBhpdTB6j8NIYQQQtQw0sYQ4holw1KEEM7wInBUKdUeeP6896KBQUAnYDKQr5TqAPwGjCjZ5mPgCaVUR+A5YG61RC2EEEKImk7aGEJco6TnhhCiptmslMoFcjVNywZWlrweB7TVNM0buBn4TtO0s/u4V3+YQgghhKhlpI0hRB0myQ0hRE1TeM5j+znP7RR/Z7kAWSV3ZIQQQgghykvaGELUYTIsRQjhDLmA8Up2VErlAMc1Tfs3gFasXWUGJ4QQQohaS9oYQlyjJLkhhKh2Sql04FdN0/YB066gimHAaE3T9gJ/A3dVZnxCCCGEqJ2kjSHEtUuWghVCCCGEEEIIIUStJj03hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUatJckMIIYQQQgghhBC1miQ3hBBCCCGEEEIIUau5OjuA6hQUFKQaNWrk7DCEEEKIOm3nzp1pSqlgZ8dRnaSNIYQQQlS9S7UxrqnkRqNGjdixY4ezwxBCCCHqNE3TTjo7huombQwhhBCi6l2qjSHDUoQQQgghhBBCCFGr1cjkhqZpCzRNS9E0bd9F3tc0TftA07Qjmqb9pWna9dUdoxBCCCGEEEIIIWqGGpncABYCvS7xfm+gWUl5BPiwGmISQgghhBBCCCFEDVQj59xQSv2iaVqjS2xyF/CFUkoB/9M0zU/TtDClVFK1BCiuiLWggLyUFPIzMopLVhb5WVlEh4XhrRSHjx7l17/+Ij8vjwKTCRedDm8fH+7u0oWA0FCSioo4bTJhDArCOzgY75AQvEND0bm5OfvUhBBCCCGuabm5uXz11Vd4e3vToEEDIiMjqV+/Pm7SThNCVJMamdwoh/rAqXOeJ5S8JsmNamK3Wvlr2TI2LVrE7UAHg4E/EhMZ//ff5FutxcVmI99u51uDgS5FRSyzWhlSRl3/AzoDW4HRZbzf5csvCQAWA+PKeD/e3Z0GPj7MsduZZzLhrddjdHPD290db4OBD++4A09/f35KSSEuK4vAevUIql+foMhIgpo0oWH79mheXqBplfb5CCGEuDZomnYncGfTpk2dHYoQTvPHH39w3333cezYsVKva5pGaGgokZGRjoTH2X/PPg4JCUGTNpgQohLU1uRGuWma9gjFQ1eIjIx0cjS1mFLk7t3L19OmsemXX9h8+jRpSgGwLDCQDqGhuCiFAgI9PGjg5oanuzueBgOBMTEQGcn1+fnMPH4cTy8vPI3G4uLjQ4sOHaBePe622bjdYsHTzw8Pf39sVit5KSnUMxjAbGbg4cM0O3CAvKys4pKTQ25uLgFt20JREUFxcTQ9epTcwkJyCgtJzMsjz2rFdelSMJn4vrCQ2eedlg6wABgMvKjXs95qJcjDg2CjkSBfX+qHhPDCwIEQHMwBkwmr0UhQVBSBzZrh5uVVvT8DIYQQNY5SaiWwMiYm5mFnxyJEdbPZbLz77rtMmDCB8PBwfvrpJ8LDwzl16hTx8fHEx8c7HsfFxbF69WoKCgpK1eHu7k5ERESZiY+z/xqNRiedoRCiNtFUyQVqTVMyLGWVUiq6jPfmAVuUUotLnh8CbrvcsJSYmBgly7SVX9KePWyaNw//I0fo+88/ZMbHEwSE63TENmpE7B13cPtDD1E/JsbZoZaLJT+f3KQk0o8dI+34cdJOnSI3JYWhUVGQlsasX37hvydOkGoykVZYSJrViq9SnCjZvzew7pz6fIAYDw82tW0LwcFMT04mTaejXr16hNSvT0hkJJGtWtHihhsgKAhc63wuUQghANA0badSqnb851BJpI1RO9jtdiZMmEB+fj5PPvkkjRo1cnZItdbp06cZPnw4mzdv5t///jfz5s3D39//kvsopcjIyCiV9Dj38alTpzh9+jR2u73Ufu3atWPFihU0bNiwKk9JCFELXKqNUVuTG32BsUAfikc0fKCUuuFydUrD4zKyslg9fTrrfvyRTYcOcaCoCIC79Hp+6N8fYmM52bIlkV27ornU1LloK5fNbEaXnQ2pqez89VeO//MPqYmJpKWkkJaejq/NxqTwcEhJofuBA/xcWFjcE6REV2ALgKZxi05HposL9Tw9CTEaCfHz48YWLRjWvTuEhLAzIwPfhg0JadECY3j4NfMZCyHqHkluiJrIarXy4IMP8uWXX+Li4oKmadx7772MHz+edu3aOTu8WmXFihU8+OCDmM1mZs2axahRoyptaInVaiUpKcmR7Dh+/DhTp07Fy8uL9evXEx19waWBEOIaUuuSG5qmLQZuA4KAZGAioAdQSn2kFX97zqZ4RZV8YJRS6rItCml4lFaQkcGv8+dzaONG/i8rC3bupJvdzh/AvwIDie3cmdihQ2l3zz3o9Hpnh1srKLudrJMnSTl4kJSjR9Hn5nKjry+kpDB+xQqOpaaSnJtLSkEBKVYrfZTiq5J9fYDckscGIESnY1RICK936IAKCuLlQ4cIDAoiJDyckMhIQho3pmGbNgQ2bw4Gg3NOWAghyiDJDVHTFBUVMWzYMJYuXcpbb73FiBEjeO+99/j444/Jy8ujZ8+ejB8/nm7dusn8D5dQUFDAuHHj+PDDD7n++uv5+uuvadGiRZUfNy4ujp49e1JQUMCqVau45ZZbqvyYQoiaqdYlN6rKNd/wsFrZ/913LP/0Uzbt3Mn2rCyKKL6QTr/xRjx79CChTRtCevXCzdvb2dFeE+wFBbhkZKDOnGH92rWkxMeTkphIcnIyyRkZdPX0ZLSbG3nJyQSdPk3hefu/DEwGMoxGOpvNhBgMBHt5EeLnR0hgIHfecAOdO3XC7OfHkYICgps3J7BpU1wlGSKEqEKS3BA1idlsZvDgwaxevZr//Oc/PPvss473MjMz+eijj3j//fdJTk4mJiaG8ePHM2jQIHQ6nROjrnni4uIYMmQI+/fvZ9y4cUyePBl3d/dqO/6JEyfo0aMHp06d4rvvvqNfv37VdmwhRM0hyY0S13TDY9s2GDSImampPAu09/AgtnVrYvv351+PPIJ3aKizIxSXoex28pKSHL1CUk6cIMrNjWi9npQTJ3h6wwZSzvYKKSoi1W5nNvAY8BdwtsOtBvhrGsF6PdOiorizRQtOGAx8Eh9PUHAwwWFhBEdEENyoEc2vvx7vhg3B09Np5y2EqH0kuSFqCpPJxIABA9i4cSNz587lscceK3M7s9nMl19+ybRp0zh8+DBRUVGMGzeOBx54AA8Pj2qOumZRSjFnzhyee+45/Pz8+OKLL+jRo4dTYklJSaFPnz7s2bOH+fPn88ADDzglDiGE80hyo8S12vBY99ZbZE6axH2NG5P54ovYbr6ZoGroQiicy261YktNRZ+VRebRo2z86SdSEhJISU4mNT2dtOxsngoO5haLhU0JCfTMysJ2Xh1rKJ5IdbW7O/9ntRLs7k6QpyfBPj4E+/nxZGwsDZs357SmcaKoiMCGDQls3JiAqCh0sq69ENcsSW6ImiAnJ4e+ffuyfft2FixYwMiRIy+7j81mY8WKFUydOpU//viD4OBgnnzySR5//HECAgKqIeqaJTU1lQcffJBVq1bRp08fPvvsM0JCQpwaU25uLoMGDWLjxo28++67PP/8806NRwhRvSS5UeJabHh89+yzDJs5k/aenvx25Ai6sDBnhyRqKLvVSvapU6T+8w9px4+TGh/PzcHBBJvN/O+vv5j7xx+k5uSQlp9PamEhqTYbvwFtgbnA/51Tlwb4aRp/RkYSFRrKCquV5ZmZBPr5ERgQQGBICIGhodzZoweGsDBMnp64hoTg7uPjlHMXQlQuSW4IZ8vIyKBnz57s2bOHr776invuuadC+yul2Lp1K++++y6rV6/Gy8uLhx56iGeeeeaaWbFj48aNjBgxgvT0dKZNm8YTTzxRY+YjKSwsZOTIkSxZsoRx48bx7rvv4iITsQtxTZDkRolrreGxYNQoHl64kJuMRlbFxeF3jfxnLKqPMpnQ0tNJPHCAuB07SE9MJD05mfS0NNIyMpjcrBm+ubnMPnCAaUlJpNtsmM7ZPwcwAs8D0wEvIEinI9DNjUAPD9becQe64GBWp6dz2GwmIDgY/3r1CAgPJzAykpYxMeDvD9JLRIgaRZIbwplSUlLo3r07Bw8eZOnSpdx5551XVV9cXBzTp0/n66+/RinFfffdx/PPP0/btm0rKeKapaioiFdffZVp06bRqlUrFi9eXCNXk7Hb7Tz11FPMnj2b4cOH8+mnn6KXCfBFDbBq1Sp+++03nn/+efz8/JwdTp0jyY0S11LDY+aAATy7YgU9AgNZvn8/Xk7uQijEWeasLDKOHiXt+HHaBASgZWSwZft2tsfFkZaRQXpWFum5uZjMZjbXqwcZGQzLyODr8+oJAlJLHg/X6fgZCNDrCTAYCPDyomlQEFN69oSAANYlJmJycyMgLIyAiAj8GzQgoFGj4rlmashdKCHqktqe3NA0LRL4AMgA/lFKTbncPtdSG6MmO336NLGxscTHx7NixQq6d+9eaXWfOnWq1AorvXr14oUXXqBr1641pkfD1Tp8+DD33XcfO3fuZMyYMcyYMQPPGjzvllKKyZMn89prr9GnTx++/fZbvLy8nB2WuAYdPnyYV155hTVr1mAyFd/K0zSNLl26MHv2bFnCuBJJcqPENdHwUAreeIPX3niDA/Xr89X+/dLVX9R6Z4fMZJ48SUZ8PBmnT1OUmUm/Ro0gI4MPt2zhj5MnycjLIyM/n4zCQsKUYiNAURE3Af87r84bgN91OvDzo39BAUmAn8GAv6cnft7edIyMZMxtt4G/P6uPHcPV1xe/0FD8IyLwi4jAv1Ej9NKAEqJMzkxuaJq2AOgHpCilos95vRfwPqAD5l8qYaFpWl/AXym1SNO0JUqpey933GuijVHDnThxgtjYWFJSUli9ejVdunSpkuNkZmby4Ycf8v7775OSkkKnTp0YP348AwcOrLUrrCil+Pzzzxk7dixubm7Mnz+fQYMGOTuscvv444957LHHuOGGG1i9evU1OT+KqH75+fm89dZbLFy4kKSkJAAMBgM9e/akffv2fPjhh6SkpADQtGlTJk+eXOEhcgDZ2dls3bqVX375BRcXFzp27EjHjh1p3LhxnUmsVoQkN0rU9YaH3Wrl1COP0PCzz1APPID9o4/QVeMSXULUOEpBQQFJBw6Qevw4GQkJZCQmkpGcjK/dzr8bNoTMTJ7etIl/MjLIKiggs6iITKuVLsC3djsAoUDyeVUPARZ7eoK/PzdmZKDX6/EzGPD19MTX25vbmzXj7htvRPn48O2BA/gGBeFbrx6+oaH4hocT0LAhHkFB0nNE1ElOTm50AfKAL84mNzRN0wH/AN2BBOBP4D6KEx3vnFfFg4ANWAoo4Eul1GeXO25db2PUdP/88w+xsbHk5eWxfv16brjhhio/ptls5osvvmDatGkcOXKEJk2a0KFDB+rVq0e9evUICQm54LG3t3eNuxjJysriscce45tvvqFr164sWrSIiIiICtVht9sZNmwY3377LS4uLnh6euLj40NQUBD16tUjIiKCxo0b07x5c6677jqaN2+Oq6trpZ7H8uXLGTp0KFFRUaxfv77C5yDqvoKCArKyskqV3NxcGjduTJs2bTAYDJetw263s3jxYqZNm8Zff/2FUgoXFxc6dOjA+PHjL0herF27lvHjx7Nv3z4A/Pz8GDt2LBMnTrzo30BOTg5bt25ly5YtbNmyhV27dmG323Fzc0MphcViAcDf35/rr7/ekezo2LEjTZo0qXHfMZVNkhsl6nLDw2o283CbNqw6coS4hx8m9KOPQCZWEuLqmM2QmcnBXbvISEgg68wZMpOTyUxLo4nBQJ+QEFRGBv9ev56M/HyyCgvJtljIttkYBUxTinyK5xI530vA2zodmUYjHfPy8NPr8XV3x7ckQTI0Opqe7dqR4+7Ot//8g09AAD6BgfgEB+MTEkJk8+b41K8PRiPU0juFou5y9rAUTdMaAavOSW7cBLyulOpZ8vwlAKXU+YmNs/s/B/yhlPpF07SlSqnBlztmXW5j1HT79u3jjjvuwGaz8d///pf27dtX6/HPrrDyySefcPLkSZKTk8nIyChzWw8PjzKTHmW9FhAQUOWTZG7fvp2hQ4eSkJDApEmTeOGFFyrc++T333+nd+/eZGZmVmg/FxcXDAYD3t7e+Pv7ExISQnh4OI0aNSIqKopWrVrRpk0bfH19y13nli1buOuuu/D19WX9+vW0atWqQjFdraysLLZv346/vz/h4eGEhYXhVoPmBbNYLCQlJZGQkEBCQgJnzpzhlltuoWPHjs4OrVwKCwsdSYnMzMwLEhWXK4WFhRetW6fT0bp1azp06OAo7du3d/z+7dmzh1deeYVNmzY56omIiGD06NG8+OKLl02MHD16lCeeeIINGzZgs9nQ6/XcddddzJo1Cy8vL7Zt28bmzZvZsmULO3fudCQzbrzxRm677Ta6detG586dcXFxYd++fezcudNR/vrrL0fCw8/Pj+uvv75U0iMqKuqi3yX5+fmsWrUKk8nk2EbTtAseV/Q9FxcX9Hp9pQ4NPEuSGyXqasOjMCeHYa1asSwxkddvu40JmzahSWJDCOdSCvLzsWVkcGj3brLPnCE7JYXs1FSy09Np5+dHZ19f0s+c4amffiI7P59ss5msoiKyLRZecXPjEbOZv5WirFGanwAPUXz7uRvg4+KCr6srPno9Pu7uTIiO5l9NmnDEbufzY8fw8fHBx8/PkSTp3LEjQQ0akO/qSp6mYQwLw+DnJ98dolLUwOTGYKCXUuqhkufDgc5KqbEX2T8aeB1IA/KUUs9dZLtHgEcAIiMjO548ebJyT0Rc1q5du+jRowdubm5s2rSp2i9mL8ZisZCamkpycjLJycmkpKSU+Tg5OZnU1FRstvMXYy++2AoODiYoKAhvb2+8vb3x8vK64N+yXrvYv2fvFNtsNiZPnsykSZOIjIzk66+/5sYbb6zQOdrtdh599FE++eQTx2sNGzYkJCSE5ORkMjMzyc/PL/PcgFJ3ly91PaJpGj4+Prz22muMGzfusnHt2bOHXr16YbFYWLNmDZ07d67AWVXc2aTawoUL+eGHHy64gA4ODiY8PJz69esTHh7uKOc+Dw4OvuohTWazmdOnTzsSF+eWs6+fOXOmzM/6pptuYuzYsQwePLhGJWMA0tLS+Pzzz/nkk084dOjQJbfV6/X4+/vj5+fnKOc/P794enpy+PBhdu3axe7du9m9ezdnzpxx1Onr60tBQQFFRUUAeHl50b9/fyZPnkzjxo0rfD75+fmMGzeOhQsXYjabL4j/bDLjtttu46abbsLDw+OydRYVFZWZ8Dgbs6+vLx06dKBjx460atWK+Ph4tm3bxp49ey6aiK0sVZFrkORGibqY3DClpDCodWs2pKczc8AAnv7+e2eHJISoLHY71sxMzhw9Ss6ZM2SfOUNOaio56el0DAmhibs7x0+eZPbWreTk5ZGTn0+O2Uy22cw7QUF0tdlYk55Ov/x8zv+m3wTcDiyheIgNgCvgrWkYXVxY2bAh7YKD2VBUxEdnzmD08MDo5VVcjEbG3H47gaGhHM3P52h2NsagIHxCQvAODsY7JAT/iAhcytG9U9RNtT25cSXqYhujpvvtt9/o3bs3vr6+bNq0iaZNm5ZrvxUrVmC32xk4cGAVR1g+drudjIyMMhMfKSkppKWlYTKZMJlM5OXlXfC4Itzd3fHy8sLFxYW0tDSGDh3K3LlzK9Q7Aop7y/To0cMxzwDAs88+y3/+858LtjWbzezevZs9e/awf/9+jh49SkJCAqmpqWRnZ2M2my96AaTT6dA0DavVCkBAQADTpk3jwQcfvGR8R48epWfPniQlJbFs2TJ69epVofMrj7///pvPP/+cRYsWkZSUREBAAEOHDmXQoEGYzWYSExNJTEzk9OnTpR4nJydfcL46nY7Q0NBLJkB0Ot0lkxdpaWkXxOjr60tERMRFi5+fH8uWLWPOnDkcPnyY0NBQxowZwyOPPEJ4eHilf2bldXYp5nnz5rF06VKKioq45ZZb6N27NwEBARdNVBgMhqsekmG325k2bRqzZ88mISGhzG3CwsJK9fC4/vrradSo0UWPnZeXx6+//sqWLVvYvHkzO3bswGazodPp0Ol0jiRE/fr1mTBhAg8//PBVn0dRURF///03P//8M99++y1xcXHk5eWV2kbTNAIDA+nQoQPBwcG4urqi0+lwdXVFr9ej0+kcPTDO9sg4+7urlMJut1/w/OxjpRSurq7MnDnzqs6jLJLcKFHnGh5ZWbwcHc3U06f5ZNQoHlywwNkRCSFqILvVSn5aGjmJieQkJZGTnEyLgAB87XYOHz7Mhp07yc3JITc3l9y8PHJNJt5o1oxIm41vT5xgUnw8uVYruXY7uUphBY4BjYEpFA+xOV8yEKLX845Ox1yLBW+dDqNej7dej7e7O9917Yq7ry8/JiezIzOz+K6kjw/ePj4Y/f0ZGBsL3t6cNpko1OvxCgrCKygIz6AgXCp5nLaofDUwuVGhYSkVPNadwJ1NmzZ9+PDhw1dbnSinLVu20K9fP8LCwti0aRORkZHl2u+tt97itddeAyAwMJCXXnqJZ555psqHf1QVu91OQUHBBQmPspIg575mMpno0aMHQ4YMufxBzvP8888zffp0x3MfHx/WrVvHTTfddMXnkZKSwo4dO/jrr784ePAgJ06cIDExkfT0dHJycrBarXh6epKfnw9AaGgoc+bMueSkp8nJyfTq1Yt9+/axcOFChg0bdsXxnZWens4333zDwoUL2bFjB66urvTp04cHHniAvn37lqvXg9VqJTk5uczEx9nHiYmJl72jHhQUdMnERf369fH29i7XedntdjZs2MCsWbNYu3YtOp2OwYMHM3bsWG6++eZqm8PhxIkTzJ07l8WLF5OQkIC7uztNmzalXr162Gw27HY7Pj4+jh4ZgYGBBAYGEhISQkhICGFhYYSFheHj41PhmLdt28aECRPYunWrI5kWFRXFY489xlNPPYXJZGLPnj2lengcOHDA0TPJz8+P9u3bOxIegYGBbNu2jS1btvDnn39itVpxdXXlhhtuoFu3bo6eGV5eXvz222889dRT7NixA6UUXl5ejBo1iqlTp1Z4taKUlBQWLFjAqlWriIuLIycnx/Geh4cHkZGRNGnSBD8/P44ePcrevXsvOVznXO7u7nh6euLh4VGqlPWah4cHRqORt99+u0Lxl4ckN0rUqeRGSgr07EnBvn1sf/llYt94w9kRCSGuAcpupzAnB7fCQlxMJpKOHePoP/+Qm5ZGbmYmeVlZ5OXkMKZdO9zNZpbv2cOqI0fIKygg12wmr6iIPIuFnfXr42Iy8WRaGrMtllI9SzyBs/ci7we+Oi+GSE3jZGAgeHnxdG4uvxUW4qXX4+Xmhpe7O438/Jhy223g7c3iI0dItljwMhqLi68v9UJDubFTp+LkSU4OLl5eeAYG4hkUhL4c3T/F5dXA5IYrxROKxgKnKR7RNVQp9XdlHbNOtTFquHXr1jFw4ECaNGnCxo0bCQsLK9d+L730ElOmTMHDw4Obb76ZzZs3Y7fb8fT0ZMyYMUyZMqXGdcmvSY4fP063bt04d/jV7bffztq1a6v0c7Pb7cTGxrJlyxaCgoJo1aoVW7duBaBRo0Z8+umn3H777WXum52dzYABA9iyZQszZszgmWeeqfDxLRYL69atY+HChaxcuRKLxUL79u0ZOXIkQ4cOJSQk5KrO72IKCgpISkpyJDusVqsjcREeHl6uyS+heHWfXbt2ERcXx8GDBzl+/Lijp8fZC9+zd+r1ej2aplFQUEBubi52ux0vLy8iIyNp3LgxRqMRT09Px1Anb2/v4mGvJcXX1xc/Pz/c3d0dvUqSkpJISkoiNTWV9PR0ieDBzAAAIABJREFUsrKyyMnJIS8vj/z8fAoLC7FYLI67/pVF0zRHLwQ3Nzfc3d0xGAx4enri7e2N0WjEx8cHFxcXNm/eTHZ2NlA8SefgwYOZNGkSoaGhlzxGQUEB+/btK5Xw+OuvvxzDTVxdXenUqZNjzoybb775kksVnzlzhqeffprly5djsVjQ6XR0796d2bNnExUVVeY+CQkJLFiwgDVr1vD333+X6p3h5eVF69at6dOnD6NGjaJhw4YX7G+xWDhy5Ag5OTkUFBQ4Sn5+fqnnV/KaTqcrs0fR1ZLkRom60vCI/+03nu/Rg3lWK34//AA9ezo7JCGEuGLKbqcgI4O85GTyUlIoyMjgutBQyMvjt507+ef4cUy5ueTl5mLKy8PNZuOVNm3AZOLNHTv4NSUFk8VSXKxWIlxc2OThAXl53GK1sv2843UC/ih53B7Ye857rkAvV1dWhoSApyd3JieTphSeJckTTzc3bgoL46kbbgBPT/6zZw92V1c8vb3xMhrxNBpp2rAh17dpA56e/HXqFO4+Pnj6++Ph749nQAAGP7863/vEyaulLAZuA4Io7kQ0USn1qaZpfYD3KF4hZYFSanIlHU96blSjH374gXvuuYfrrruODRs2EBwcXK79nnjiCWbPno2XlxdxcXE0btyYrKwsxo4dy7fffovFYsHV1ZXBgwczZ84cWUr0PG+++SYTJ050dEHX6XTMmTOHMWPGVFsM9913H9988w1Go5EVK1bw0ksv8fvvvwPQunVrvvjiizInxjSbzQwbNozly5fzwgsv8M4775Trrv7evXv5/PPP+eqrr0hJSSE4OJj777+fkSNH0q5du0o/vyuRlZXFzp07L5q4uNiQH03TcHd3d6zeY7FYsFqtWK1W7Ha7o5dEVV0nnk06nB1yZLVacXFxITw8nOuuu45mzZoRGhpKeHg4kZGRjqLT6UhJSSEpKckxbOts0iQjI4PMzExycnIcyROTyURBQQFms5mioiIsFovj3M6l1+vp2rUrkyZNuqoeSFDcM+fQoUOkpqYSExNT7t4z59fx1ltv8cEHHzgm6m3dujXTp0+nVatWzJ8/n3Xr1nHgwAFHbyYAo9FIdHQ0ffv2ZdSoUU4dWlSVJLlRoi4kN/5Zv547+vYl22bjp/nz6Th6tLNDEkKIGqsoLw9TaiqmtLTikpGBq8VC29BQMJlYsXUrZ1JTMeXlkW8ykZ+fTyMPDx6JigKTidHbtnHKZCLfYikuNhuxbm7McXOD/Hz8zGayzzvmKODsIEE9YD3v/bHALIOBQg8PorKz8dDp8NTp8HB1xcPVlZGRkTzQvDm5rq48v3cvHgYDnh4eGAwGPDw8uK11a2JatsQEbDh0CIO3Nx5GIx4+Pnj4+NCgUSP8Q0OxublhBgz+/uj0+qr9oM/j7J4bzlAX2hg13eLFixk+fDgxMTGsXbsWf3//cu03atQoFi5ciK+vL/v377+gwV9UVMSrr77K3LlzMZlMaJrG7bffzrx58y56t/RakZiYSGxsLAcPHnS8FhkZyS+//FLmXeCqNm7cOGbMmIG7uzvbtm1Dp9MxYsQIxzKbnTp1YtGiRTRv3rzUfjabjf/7v/9j3rx5PPjgg8ybN6/MZThTUlL4+uuvWbhwIXv37kWv19O/f39GjhxJr1690F/Fd6nVaiXn7BDQ3Nwyhwzl5+c77nqfe0e8sLCQ9PR0EhISyp24MBqNBAcHExYWRqNGjWjZsiXR0dF07Nix3ElBKJ4/Yd26dXzwwQesX78egM6dO9OtWzciIiLIy8sjNze31LCnoqIixzLA4eHhREREEBkZScOGDdm/fz/z5s3jm2++oaCggJiYGMaMGcOQIUOuKBFwpYqKijhz5gxZWVlER0fX2KFpy5Yt46WXXqKs5Lmvry9t27blzjvvZNSoUQQFBTkhwup3yTbG2Qk/roXSsWNHVZvt/uYbFaJpKljT1K6vv3Z2OEIIcc2zWSwqLzlZJe/bp45v3ar2/fCDOrlypVK//KLsa9eq5S+8oL56/HH1yYgR6oO771ZTevdWG+6/X6nx41X+o4+q0c2bq/saNlQDwsJUj8BA9S8fH/VJw4ZKtW6tEhs0UCEuLsoIyhUUJWV68Vo86uA5r51bPip5f8c5r+lB+YCq5+KilgcHK9WqldrZsqU6etttVfK5ADtUDfh/vzpLbW9j1HSffvqp0jRNde3aVeXk5JR7v8GDBytABQYGqtTU1Etua7PZ1HvvvaeCg4MdfzsdOnRQ27dvv9rwa6X3339fubq6lvp+GT16tLLZbE6Na/r06QpQOp1OrVmzRiml1JYtW1RUVJQjzttuu00lJCSU2s9ut6sJEyYoQPXv31/l5+crpZQqLCxUy5YtU/3793ecb0xMjJo9e7ZKS0u7bDw2m02tX79eDR8+XDVq1Ei5ubkpnU6nXFxclKZpZX5PX2nRNE0ZDAYVHBysWrdurWJjY9Xo0aPVtGnT1Nq1a1VKSkrlf+DnOHnypHrxxRdVYGCgAlTr1q3V3LlzVW5u7iX3y87OVnPnzlXt2rVTgPLy8lKPPPKI2rlzZ5XGW5fs27dP9ezZU3Xr1k299957KjMz09khOc2l2hjSc6OW+GP+fHo8/DBGnY6NK1fSondvZ4ckhBCiGlnNZgoyM3G1WPAAzFlZHDxwgIKcHApycjDn5VGQl0eH8HCaGI0knTnDl7/9RkF+PmazmYKS8lCTJnTy8mLXmTPU8/Oj/o8/Vnqs11LPDRmWUvVmz57NE088QY8ePfj+++/LPcFenz59WLt2LaGhoRw6dAgfH59yH3PZsmWMHz+eY8eOAdC4cWPeffddBg8efEXnUJtkZGTQvXt3du3a5XjN09OTH374ge7duzsxsv/vq6++Yvjw4QB89tlnjBw5EoAff/yRxx57jMTERDRNo1+/fixcuLDUMKM5c+bwxBNPcMstt9C+fXsWL15Meno6YWFhDB8+nJEjR9K6deuLHttut7Nq1Sq+/vprtm/fzunTpx3DHFxcXAgJCcHLy8sxh8XZ+R7OnffBYDDg7u5e5qSMZ5f3PXduC6PR6FgytiYoKChgyZIlzJo1i127duHr68uoUaN4/PHHadasmWO7HTt2MG/ePBYvXozJZKJ9+/aMGTOGoUOHVujvUYhzSc+N2n5XZcMGFW8wqDs8PNSJbducHY0QQghxSUjPDVFJpk6dqgB11113KbPZXK59bDab6tq1qwJUgwYNlMlkuuLjb9++XV1//fWOO+fBwcFq5syZTu+9UFU+++wz5ebm5uglAKhOnTpd9s68M2zcuNHR0+Ltt98u9d7ChQsdvQtcXFzUsGHDSv0eLFmyROn1euXu7q6GDBmi1q5dqywWS5nHsVgs6ttvv1V33323Cg8PL9Ubw8XFRTVs2FANGzZMrVmzps7+XlyM3W5Xv/76q7rvvvscP4vevXuradOmqY4dOypAeXh4qAcffFD9/vvvym63OztkUQdcqo3h9MZAdZba2PD435QpyqrXK9W2rVJnzjg7HCGEEOKyJLkhrtavv/6q+vfvrwA1ZMgQVVRUVK79bDabiomJUYBq2rSpKiwsrJR4jh07prp37+64sPXy8lLPPvtspdXvbLm5uerWW28tNQTCxcVFTZ061dmhXdLu3buVwWBQgBo7duwF78+cOVMZjUYFKFdXV/X44487fpeOHz9eZtd+s9msvvjiC9W/f38VGhpaKpmh0+lUkyZN1AMPPKA2bdp0zSUzLiUxMVG9/vrrKjQ0VAGqTZs2avbs2SorK8vZoYk6RpIbtbTh8fnDDysdqGmRkUplZDg7HCGEEKJcrqXkBnAn8HHTpk0r6+O7ZtlsNrVy5UrHRXZAQICaNGmSslqt5drfYrGo6OhoBajo6OiL3om/GpmZmWrYsGFKr9cXz2ej16uhQ4eq9PT0Sj9WdVm6dKny8PBwJDQAFRISovbv3+/s0Mrl5MmTytfXVwFq0KBBF7xvs9nUhAkTHEkQd3d39corrzgSEyaTSc2fP1/17t271HwrZ3++zZs3V4888ojaJr2ny6WwsFAdPnxYemlUMpvNptasWaM2bNhQJd9ttcml2hgy50YNNWvwYJ5ctoxYf39+2L8f78ussyyEEELUFOWdc0PTtEuut6mUyqi8qKpWbWpj1DRFRUUsXryYadOm8ffffxMZGcmzzz7L6NGjy716QlFREdHR0Rw+fJiYmBh+//33Kl39oKioiFdeeYUPP/zQscJKt27d6Nq1K1FRUbRo0YKWLVtW6+oPFVVUVMRdd93FunXrSr0+ePBglixZUmNXjyhLVlYWrVu3JikpiZtvvpmtW7deEL/VamXcuHF8+OGHWCwWvLy8MBgMpKenO7Zxc3MjKiqK2NhYRo4cSUzMNTF1kKiB7HY769atY9GiRWzbtq3U3C4Afn5+REVFcdNNN9GvXz9iY2PLXAGoLpKlYEvUlobHzAEDeHbFCgaEhbF4/34Mfn7ODkkIIYQotwokN45TfIdUAyKBzJLHfkC8UqpxlQZaiWpLG6MmycvL45NPPmHGjBkkJCQQHR3NCy+8wL333luhJTfz8/Np1aoV8fHxdO3alZ9++qnaLsztdjuzZs1i8uTJpKamXvC+pmno9Xo8PDwwGo34+/s7lueMjIykUaNGNG/enJYtWxJaDTeyrFYrx44dY9u2bTz11FPk5eWh1+uxWCy4u7uzaNGiWjtpqtlspn379hw6dIgWLVqwZ88eDAbDBdsVFBTw6KOPsnjxYlxcXGjevDndu3dn1KhRREdHOyFy57Db7aSlpREUFFSrElllyc/P5+TJkyQkJJCYmEhSUhIpKSmkpaWRnp5OVlYW2dnZ5OXlOZbYLSoqwmq1YrfbMRgM1K9fn7Zt29KtWzcGDhxIREREtZ6D3W5n/fr1jmRGQkJCqYlqIyMj6dKlC5qmsWPHDk6cOIHJZCpVh6+vL02bNqVz587069eP7t2718mEhyQ3StSGhoclL48Qo5Ebg4JYeeoUrmV8KQshhBA1WUVXS9E07RPge6XUmpLnvYEBSqkxVRVjZZHVUiouJSWFWbNmMWfOHDIzM+nSpQsvvPACvXv3RtO0CtWVk5NDixYtOHPmDL1792bNmjWX3efw4cMYDAYaNGhwpadQph07drBr1y6OHz/OqVOnSEpKIjU1lYyMDPLy8igoKMBisXCptrerqyvu7u4YjUb8/PwIDAwkODgYHx8ffH198fX1xd/fH39/fwIDAwkMDCQgIACbzUZ8fDxHjhy54PhZWVmYTCbMZnOpO78AOp0Om83Gddddxy+//FJqVZHayG6306VLF3799VfCwsLYt29ftZxTUVERM2bMYN68ecTHx+Pq6oqXlxf+/v6EhIRQv359mjRpQvPmzbnuuuto06ZNlfbqsdvtHD58mD179vD3339z9OhR4uPjOXPmjOP3saioCACDwcC9997L9OnTCQoKqrKYrsbff//N+PHj2b9/f6nkhMViueB3+mI0TcPV1RW9Xo/BYMDDwwNvb28MBgOJiYmkp6eXqsvV1ZXQ0FBat27Nv/71LwYMGFCpyS+73c5///tfvvzyS7Zt28apU6dKJTMaNGhA165dGTFiBN26dSszAZWfn8+qVatYu3YtO3bs4Pjx42UmPJo0aULnzp3p27cvPXr0wM3NrdLOwxkkuVGiNiQ3+P57jg4ahH3+fJqNHu3saIQQQogKu4LkRpxSqs3lXqvJakUbw8mOHTvG9OnT+eyzzygsLOSuu+7ihRde4MYbb7yi+tLS0mjZsiXp6ekMHjyY77777rL7mEwmmjRp4rj7Wd13Z6G4x8qBAwc4dOgQR48e5dSpU5w+fZqUlBQyMjLIyckhPz+fwsLCSyZCKkLTNHQ6nePCTq/Xk5KSgqZpvPjii7z99tuVcpyaYvDgwSxbtgxfX1/27t1Lw4YNq+Q4a9eu5c033+SPP/7AZrOhaRoNGzbEYrGQnZ1NQUEBNputzH01TcNgMODt7U1AQAChoaFERETQpEkTWrRoQbt27WjZsuUFd96LiorYv38/e/fuZf/+/Rw9epSEhASSk5PJzMzEZDJhtVrLPKZOp8PDwwNfX19CQkLw9fXlf//7H2azGU3TiImJYcaMGdx6662V/llVlN1uZ+bMmbz//vucOnUKKE44nF1S9+xSuWcTgf7+/gQFBREcHExoaChhYWFERETQoEEDQkJCytU7Zc+ePaxYsYJt27Zx4MABkpOTS32WLi4uBAUF0bx5c8dwkFtvvbVcddvtdjZv3sznn3/OL7/8UmYy49Zbb2XkyJHExsZecW+a/Px81qxZw5o1axwJj7y8vFLb+Pj4OBIeffr0oVevXrUq4SHJjRK1ouExeDBs3QqnT0Md7EYkhBCi7ruC5MZ6YCuwqOSlYUAXpVTPqoivKtSKNoaT7N69m6lTp/Ldd9+h0+kYMWIEzz33HC1btrziOhMTE2ndujXZ2dk88MADfPbZZ+Xab9q0aYwfPx6DwUDbtm35+eefyxy64Gxr167l1VdfZdeuXWW+r9PpHHeh9Xo9rq6u6HQ6NE1D0zSUUthsNiwWi6P7/dku+Gfb/gEBAaxfv77OzivxxBNPMHv2bAwGA7/99hvt27evlHqPHz/OK6+8wsqVKx0XjcHBwdx///1MmDABv/OGk1utVg4fPkxcXBwHDhzg2LFjnDp1ijNnzpCenk5ubi6FhYUX7YGg0+kwGAxomnbJZImrqyuenp6O3iIRERFERUXRsmVL2rVrR3R0dJm/63a7nTlz5jB16lROnz4NQGhoKM888wzPPfdctQ9ZOXToEOPGjWPDhg1YLBY0TaNDhw68+eab9OnTp1pjATh58iTff/89W7ZsIS4ujtOnT1NYWOh4X9M0fH19iYqKolOnTvTq1YuePXvi5ubGli1b+OKLL/j555+Jj48vlcyIiIjg1ltv5f7776dnz55V+jmbzWZWr17N2rVr+eOPP8pMeLi4uODi4oJOp7vg++VsQsnd3d3R68XDwwNPT088PT0xGo2ORNPZ4uvri5+fHz17Vv5/45LcKFHTGx7Z8fE83LgxL99zD+0XL3Z2OEIIIcQVuYLkRgAwEehC8RwcvwCTZELR2kspxU8//cTUqVP573//i9Fo5NFHH+Xpp58mPDz8quo+efIk0dHR5OXlMXbsWGbNmlWu/XJzc2ncuDExMTGMGTOGQYMG8eCDDzJ//vwKD4epCnl5eUyYMIGFCxeSmZkJQEREBPfffz9t27alVatWtGzZslKSMVartU6OxT/fO++8w8svv4yrqytr1qyhe/fuV1SP2Wzm3XffZf78+Y5eBO7u7nTv3p3JkyfTtm3bq47VbDYTFxfHvn37+Oeffzh69KijR09mZiZ2ux1/f39CQ0OJjIykSZMmtG7dmvbt29OiRYtK+Xn+/vvvjBs3ju3bt6OUws3Njbvuuov33nvvqv9uL+Xs3DUzZ87k5MmTABiNRoYOHcrbb79d44ZLZWRksGLFCjZu3Mju3buJj4+/YDiIi4tLqWRG/fr1HcmMXr16OX2eE7PZzNq1a1mzZg27d+/GZDJRWFhIUVGRY8iPxWLBZrNhs9mw2+2lkqPlVRW5hku2MS62jEpdLDV9KdgFo0YpQP1v/nxnhyKEEEJcMcq5FCzwZcm/T5Vn+5pYkKVgS7FarWrJkiWqY8eOClChoaFqypQpKisrq1LqP3jwoGPZ0vHjx1do37fffru4nfW//ymllHr11VcVoObMmVMpsV2prVu3qptvvtmxDKtOp1M9evRQe/fudWpcdcWCBQuUpmlK0zS1aNGiCu27fPlyFRMT4/jZaJqm2rZtqxYtWuRYSrYuyszMVA8//LDy9PR0LIvbtm1btW7duko9zpEjR9SAAQOUm5tbqeP88MMPlXqc6lBQUKCWL1+uxowZo66//nrVuHFjNWTIELVy5co697tis9lUZmamOnbsmPrzzz/Vxo0b1dKlS9WCBQvUe++9p9544w31/PPPq6effrpKjn+pNobTGwXVWWp6ciPW319Fuboqex37AxBCCHFtqUByYz8QDuwF/IGAc0t56qgppaa3Mapafn6++vDDD1VUVJQCVLNmzdTHH3+sCgoKKu0Yu3fvVu7u7gpQb775ZoX2zc7OVv7+/qpv376O12w2m+rXr59ydXVVP//8c6XFWR6FhYXqtddeU8HBwY6Lunr16qk33nhDFRYWVmss14I1a9YonU6nADV9+vRLbvvPP/+owYMHl7qwDw0NVS+++KLKzc2tpohrjvnz56tGjRo5PovAwED12muvKYvFckX12Ww2NXfuXNWkSRNHnd7e3mr06NEqNTW1kqMXdZHTkhvAcqAv4FKVxylvqckNj9M7dyoN1IR//cvZoQghhBBXpQLJjSeBA0AhcAw4fk45Vp46akqpyW2MqpaSkqIiIyMVoDp16qSWLl2qrFZrpR5j+/btSq/XK0DNnDmzwvtPmjRJAerPP/8s9XpWVpZq3ry5CgkJUfHx8ZUV7kXt2rVL3X777Y4LbRcXF/Wvf/1Lbd++vcqPfa37888/HcmxZ599ttR7JpNJvfzyyyosLMxxwe3h4aEGDRqk9u/f76SIa5a4uDh1++23O3qxuLq6qv79+6tjx46Va/8TJ06ou+++2/EzAFR0dLRasmRJFUcu6hpnJjfuAL4CjgJTgBZVebzLlZrc8JjRv78C1ME1a5wdihBCCHFVypvcOFuADyuyfU0sNbmNUdUeffRRpdPp1Nq1a5Xdbq/0+jdt2uRIBsybN6/C+2dmZio/Pz/Vv3//Mt/fv3+/MhqNqlOnTpXa0+Qsi8WipkyZosLDwx0XdQEBAer5559XJpOp0o8nLu7YsWPKaDQqQA0ZMkR98803qn379krTNMewk44dO6rvvvvO2aHWWCaTST399NPKx8fH8fvcsmVLtXTp0gu2tdls6pNPPlFNmzZ1bOvp6alGjBihkpKSnBC9qAucPiwF8AUeBU4B24FRgL46jn1uqckNj/mRkWqwn5+zwxBCCCGuWkWTG3Wh1OQ2RlXau3evcnFxUU8++WSV1L9y5Url4uJyRfMlnDVx4kQFqF27dl10mx9++EEB6oEHHqi0BM2BAwdU3759HT1ONE1TnTp1Uhs3bqyU+sWVSU1NVSEhIY6LbUDVr19fvfbaa5JsqqCvv/5aNW/e3PE5+vr6queee04dOXJE3XvvvcpgMJRKgFzp37AQ57pUG6PKV0vRNC0QuB8YDiRS3JPjVqCNUuq2Kj34eWrsTOYHD0KrVjBjBjzzjLOjEUIIIa5KRVdLqQtqbBujCimluOOOO9izZw+HDx+u1BUNrFYrEydO5J133kHTNJYuXcrAgQMrXE9GRgaNGzfmjjvuYNmyZZfcduLEiUyaNIlZs2YxduzYK4rbbrfz0UcfMW3aNE6cOAGAj48P999/P2+//Ta+vr5XVK+oXGazmX79+hEUFMTkyZOJiopydki12uHDh3nqqafYsGFDqaVqPTw8GDhwINOmTavS1VbEteVSbYwqXQNK07TvgRbAl8CdSqmkkreWaJp2bbUALuHQBx/QWNNwGzLE2aEIIYQQogI0TbsTuLNp06bODqXarVixgp9++onZs2dXWmIjLy+Pp59+mkWLFlFYWIirqyurVq2iZ8+eV1TfjBkzyMnJ4fXXX7/sthMnTmT37t0888wztG3bli5dupT7OHa7nREjRrB06VIKCwsBaNu2LW+88QYDBgy4othrm+zsbF5//XViYmLo378/RqPR2SFdlMFgYOPGjc4Oo85o1qwZa9asoaioiNdff53NmzfzyCOPMHLkSKcveSquLVXac0PTtG5Kqc1VdoAKqol3VZTdTlN3d9r6+/N9SoqzwxFCCCGu2pX03NA0rR7QqeTpH0qpWvWfYk1sY1SlwsJCrrvuOgwGA3v27MHV9erulyUmJvLYY4+xevVqbDYbBoOBUaNGMX36dDw9Pa+ozrS0NBo3bkyfPn1YsmRJufbJzs6mc+fOZGRksHPnTho0aFCu/V588UWmTp2Kp6cn99xzD1OnTiUkJOSK4q6t3nnnHV5++WWgOHnQp08f7rnnHvr164eXl5eToxNC1BWXamNUaSqtJiU2aqrfFyzgmNVK/379nB2KEEII4RSapt0D/AH8G7gH+F3TtMHOjUpcyvvvv8/Ro0eZOXPmVSU29u3bxy233EJERAQ//vgjRqORN998E5PJRM+ePXnzzTevuO7p06djMpmYOHFiuffx9fXlhx9+wGw2M3DgQAoKCi67j91u54MPPkCv15Oens5nn312zSU2LBYLc+bMITY2lm3btvHwww+zfft2hgwZQkhICPfeey/Lly8v1+cphBBXSvoJOdlXH3yAOzCoHN0lhRBCiDrqFaCTUmqkUmoEcAPwmpNjEheRnJzMW2+9Rb9+/ejevfsV1fHTTz9x3XXX0aZNG7Zv305YWBjz588nKSmJ3NxcAgMDGTBgAFOmTOE///lPhetPSUlh9uzZ3HfffbRu3bpC+7Zs2ZJFixaxc+dOHn30US7Xy/n111+noKCAESNGYDAYKhxrXbBs2TJOnz7NM888wy233MIHH3xAQkICmzdvZuTIkWzevJm7776bkJAQhg0bxooVKxzDd4QQotJcbKZRZxagF3AIOAK8WMb7DwCpwJ6S8lB56q1pM5kXmUwqWNPU4Pr1nR2KEEIIUWmo+FKwcec9dzn/tZpealoboyo99NBDSq/Xq0OHDlV43y+//FI1aNDAsYJCixYt1Jo1a9TBgwdVz549HUu+6nQ6x3Oj0ahsNluFjvPcc88pFxcXdfDgwQrHeNbrr7+uAPX+++9fdBubzaa8vLyUq6vrNb3Sxo033qiaNWt20Z+TxWJRGzduVA8//LAKCAhQgPLx8VEjRoxQq1atUoWFhdUcsRCitrpUG6NKe25omrZc07S+mqaV+ziapumAOUCJnrksAAAgAElEQVRvoDVwn6ZpZaXclyil2peU+ZUUcrXa8t57pCrFsOHDnR2KEEII4UzrNE1b///YO+/wqKqtD79nanojhF4iHZReBYNKR5rAFQFRES6Iil5BinIpVgQBP0QURSxcRcEIgoKgXi5NkC4dAgESQhohbVImk5lZ3x8ziZQQEshkEjjv8+xnzpy1z16/GUKyzzprr60oytOKojwNrAd+cbMmlQI4ePAgy5YtY/z48dSvX79I19jtdt59912CgoIYMWIEFy5coF27dhw8eJDp06czfvx4GjZsyKZNm/Dz82Pq1KlkZmayceNGHnvsMUwmE2+//XaRNcbHx7N48WKGDx9OgwYNbvWjMn36dPr378+ECRPYsmVLgX1mz55NZmYmQ4cOveXaIOWdP//8kz///JMXX3zxhsUjdTodXbp04dNPPyU+Pp6NGzcyaNAg1q1bR58+fahcuTKjRo1i06ZN5ObmlvInUFFRuVNwdUHRrsBIoD3wPfCFiJy6yTUdgFki0sP5/lUAEZl9RZ+ngdYiUqx9uspasS954gl2rl1L64sXMfr5uVvOLZF47BjHf/uNrLQ07q9dmwCdjr8iIth58iRms5mcvJaTw8RmzQjWall18iQ/nz+PxWol12bLf13RsCFBisIb586xLiUFBTBoNBh1OgxaLavbtcPLy4tPo6PZk5qK0WDAw2DAw8MDLy8vpvXqBZ6e7LhwgdisLLz8/PDy98e3QgV8KlSgUdOm4O2N3c8PjcHg7q9ORUVF5Y7lFguKDsSxVTzAdhFZU/LKXEdZm2O4AhHhwQcf5Pjx45w+fZqAgIBC+5vNZqZMmcLSpUvJzs5Go9HQo0cP5s+fz4cffsjy5cvJyMgAoEmTJrzzzjv069fvqjEyMjIIDAzEYDBgMpmKtPPCyy+/zKJFizhx4gT16tW79Q8MpKen065dO5KSkti/fz81a9bMt9ntdvz9/cnOziY1NRUfH5/b8lVeGTp0KL/88gsxMTHF/g4sFgu//fYbK1eu5Mcff8xfkjRo0CAee+wxOnfufNvFalVUVO4sCp1j3CiloyQb4A88C1wAduIIeOhv0Hcw8NkV70cAH17T52kgDjgMhAM1CvE9BtgH7KtZs2bJ5MKUBBkZIt7eIqNHu1tJoWSnpMj2Dz+U+X37yplHHxW5/355x99ffEAUZ0ppXgsHEZDB15zPa1ud9u43sJ902h+4gT3Tab/3BnZxtnsKsClX2KtdcU4LYgCpCCJ+fiIVKshDBoPU0mqlgV4vzTw8pL2PjwytVEmkTx+RoUPl9Vat5OWWLWVW587y/oAB8vnIkfLf118X2bpV5OhRSTl1Smy5ue7+p1NRUVFxGxR/Wcqcopwry+1uWJby/fffCyBLliwptN/ly5dlyJAhotPpBBC9Xi9PPvmkbN26VcLCwkSj0eSff/TRR+X8+fOFjjdy5EgBZOrUqTfVePHiRTEajTJy5MhifbbCOHnypPj5+UnLli0lKysr//zcuXMFkMcff7zEfJU3Lly4IDqdTiZMmHDbY2VnZ8uPP/4oQ4cOFW9vbwEkJCRExo0bJ4cPHy4BtSoqKncChc0xXJq5AaAoSgXgCRxBiljgGxxPZu4TkQcL6D8Y6Ckio53vRwDt5IosDeeYGSKSoyjKWGCIiDx8My1l6anKuldeYdP8+by7fj2+vXu7TYfdauXUxo38uXo1LbKzaZ6czKqjRxkXF0e6CNYr+s4EZgELNRpeF6GiTkctX19qBgfjaTQyoU0bQitVYldCAttjYzF6eODh4YGHtzcenp70at8ev6AgotPTScjKwtPPD6OfH54BAXgFBhJQtSoaDw+45qmMJSODrMRE/DQaNNnZnIuI4GJ0NJlpaWSkpZGdkUFOVhajWraErCy+2bOHQxcvYs7JwZyTQ05uLlq7nc+bNwezmXGHDrE/PR2z1Uq2zUaOCD7AcT8/yM2lfmYm50WwAXanBi8g84rja2t9+wOpzmMjYHEeK4AWqA8c8/YGg4H66enkAB4aDZ5aLV46HZ0qVGBuy5bg68ukw4cxeHkREBBAYIUKBFaqRMPGjWnSpg0EB2MNCEB3lxYsU1FRKR8UN3NDUZQDItLymnOHRaRpyasrWRRF6Qv0rVu37j9Pnz7tbjkuw2w206hRI/z8/Dhw4ABarfa6PpGRkYwdO5bNmzcjInh7e/Pcc89Rs2ZN3nvvPaKjowEICQlh/PjxTJ06tUhP5c1mM35+fmi1WkwmU6HXjB8/niVLlnDq1CnuueeeW//A1/Dzzz/Tr18/hg8fzvLly1EUhYCAAEwmE8nJyfj7+5eYr/LEa6+9xpw5czhz5gyhoaElNm52djYbNmxg5cqV/Pzzz3h4eBAXF4fRaCwxHyoqKuWTwuYYrl6WsgZoAPwH+FJE4q6w7StIVFGWpVzTXwski8hN/6qUpeBG30qVOHj5MtFmM5pSSLezZGSQPncuwcePc+DoUR45fZpUux3zFX2GAiuAn4HHgQpaLdU9PakbEkLTRo0YPGIEtfr3h7vwxtqSno4hIwOSkti9YwexUVGkXrpEWkoKaSkpVFAUXqhTB9LTGbZjBxczM8nMzSXLZsNss9FIp2O9jw9YLASYTGTBVcGTe4BI57FSgP8mwFHADHhe0U+DI3jSR6PhB19fEnU6WqWm4qEoeGq1eOh0eOv1PF69OmPvvZckvZ65J07g5++Pf0AA/kFBBFWuTNPmzanZqBH2ChWw+/mpwRMVFZXboqjBDUVRxgHPcfWvQQBf4A8RecJFEkucsjTHcAXvvPMO06ZNY/PmzTz00ENX2axWK2FhYezatQuAihUr8vLLL3Pq1ClWrVqVv/1ny5YtmTt3Ll26dCm2/+eff56PPvqIf/3rX7z//vsF9omJiaFOnTo89dRTfPrpp8X2cTPefPNNZsyYwfvvv49Go+Gll15i0KBBhIeHl7iv8kBWVhY1a9YkLCyM1atXu8zPL7/8Qu/evfnpp5/o06ePy/yoqKiUD9wZ3OgtIhuuOWcUkRvu/aQoig6IALoAF4G9wDAROXZFnyp5gRJFUR4FpohI+5vpKSsTj6RTp6jSsCH/atOG9/bscamv9JgYXnzwQVZERtIK2AVE4Yg4BSgKlY1GQgMDaRwayqABA2g5YgRUruxSTSpXY7dasaamYkhLg6Qkft6wgeS4OFKSkkhNTibNZKK5jw9PVqlCRkoKfXbvJjM3l2xn4MRst9NPr+cjo5FTFgtNzeb8wEne/+7eOKrz/QZ0L0DD48C3wErnMVwdPJmi0/GGlxfrRBiXmYlRUTBqtXhptXjqdLxWty69a9dmb3Y2n0dH4+Plha+vryOIEhhIj44dqVqnDqkaDWlaLRXq1cMrOLhIa6dVVFTKH8UIbvgDgcBsYOoVJpOIJLtKnysoK3MMVxAbG0v9+vXp3r17gTexY8aMYenSpVSvXp0xY8awfv169uzZg4hgNBoZPHgwCxYsICQk5JY1WCwW/Pz8EBFMJhOGAmpnPffcc3z22WecPn2aWrVq3bKvG2G32xk0aBA//fQTXl5eZGZmcunSJYKCgkrcV3lg6dKljBkzhq1btxIWFuYyPxaLhZCQEAYMGMCXX37pMj8qKirlg8LmGK5OGXgL2HDNuV1AywL6AiAiVkVRXgA24biv+lxEjimK8gaO9TXrgBcVRekHWIFkHDU4yg3fz5qFFRg+caLLfMQeOMDYXr3YkJiIHcfT/odatYIvv6RW48aY1ZvKMoNGp8MQHAzBwVCnDn3atbthXx9gSyFjNQCujRyaU1OxJyZCVhbtoqNZuXkzqUlJpKWkkJ6eTlp6On0rVwY/P+rExhJ29ChZziU7ZueyncrO5UKXsrK4bLc7gic2W37myb6DB+l98CCrgSUF6Prgiy8YD7wGfHyNTQF+0Gh4VK9nss3GJ1YrekXBkNc0GtbUrk0Tf38+SU1ldXIyXgYDXkYj3h4e+Hh7M6NLFwIqVmRvcjJnMjLwDwrCv3Jl/CtVIqBGDao2aoTmLi30pqJSlhGRNCANR/KgShnltddeIzc3l/fee+86W3x8PMuWLcNgMJCbm8uMGTMAqFatGq+88kqhO2gUB4PBwPjx45k3bx4vvvgiS5Zc/dcmKiqKzz77jNGjR7sksAGg0WhYvnw59evXJz4+nq5du961gQ0RYeHChbRo0YIHHnjApb4MBgP9+/dn7dq1WCyWAgNbKioqKuCizA1FUSoD1YCvgWH8nWnvBywRkYYl7rQIlJWnKg/4+5Ock8PRrCyUkg4ynDgBY8dSZ/t2zuLIzpjcrRtT1q8vleUvKncfdqsVMjLQpKSQGBnJof37SUtMJDUpifTUVNJTUxlRpw51dDp+PnWKzyIiyLRYyLJY8gMoy4ODaa0ovJqczBKzmVxnzRMrjgyUP4E2QFfgvwVoOAPUwbEt0+4C7Gk4fvm0xVFdWMPfWSkGIM3fH3Q6Bmdmsjc3Nz+oYtRqCdLr+b1VK/D05I3z5zmTnY2Xhwfenp54e3tTOSiI53r0AF9f/oiJwazV4lexIj4hIfhXrkxAzZp4BQVdV0tGReVO5lZ2SynvlJU5Rkmzd+9e2rZty+TJk5kzZ8519k6dOvHHH38AoCgKHTp0YP78+bRvf9OE2mJjtVrx8/MjNzeXtLS0q7ZeHTNmDF999RWRkZFUr169xH1fSVBQECkpKdx7773s3r37rtwC9vfff6dbt258+eWXPPXUUy7399NPP9GvXz82btxIjx49XO5PRUWl7FLqy1IURXkKRzZFaxz3EnmYcNTecN3CvEIoCxMPW2Qkz9Wty719+jD+p59KbNw/lixh3Msv847ZTB9gQ2Agcf37M+qLL0rMh4qKu7FbraRHR5MSE0NKTAypcXGkJSbySP36GLKy2LB3L9tPnyYjM5OM7GwyzWaycnJYd++9aHJyeOn0aX5PSyPHbsciQq5zD504Pz+wWmmXlcVBEez8vaxHC/mFdSsBiddo0vN3AdlA/i4sm4cnkOU8DsIRaNFc0WorCif8/ECno2laGiki+Vkreq2Wll5efNmoERiNDD1+nBxFwUOvx8NoxNNopGW1aoxq2xa8vPjk4EF0np74+Pvj7e+PT1AQtUJDCW3YEHx9ydLp8AgKUgOdKi5HDW7cGYgInTp1IjIykoiICPyu2bZ+x44dPPDAA2g0GkSEyMjIEi0qWRAzZ87kjTfeYMSIESxfvhyAs2fP0qBBA5599lkWLVrkUv9ffPEFzzzzDK1ateLAgQMMGzaM//znPyhKQRWz7lz69u3Lnj17iI6OLpUin2azmZCQEIYMGcLSpUtd7k9FRaXs4s6aG4NE5AeXOSgmZWLi8c47MG0anDsHtWvf9nBrpkzhlQULOGt13H497evLFytWgFpwSUWl5LBYIDWV6BMnSIyKIi0xkfRLlzClpKC1WBjeuDFkZDB/yxbOXL5MltlMtsVCtsVCRZ2Oz+vUAbOZnidOEJWTkx9YyRWhtqKwy8cHbDYqZWSQClcFV6oD0U4ZGv6uo5JHbeCc87igqXUj4DiOAMy1008FeBj4XacjHgi1WtHiCOhoFQUd8LiHBx8EBxMpQu+EBAwaDXqNBoNGg0Gr5clq1RgdGso5q5VpJ0/iYTTiYTA4Xo1G+jZuTIcGDYjNyeGXM2fw8vV1ND8/PP38aNioEcHVq2PR6zHrdHgFB6sFbe8AbiW4oShKLaCeiPyuKIonoBMRk2sUljxlYo5Rwnz77bcMGzaMzz77jFGjRl1nr1GjBjExMQB06dKF33//3eWa7HY7fn5+mM1mkpOT8fPz45lnnmHFihWcPXuWqlWrutR/pUqVuHTpEhcvXmTZsmVMnz6d+fPnM2HCBJf6LUucPn2a+vXrM3PmTGbNmlVqfocPH86mTZuIj48v0i47KioqdyalXnNDUZQnRORroLaiKNf9theRBa7wW+YR4a9ly2h2//0otxnYsC9ZQu3nn+eC3VH1oKWnJx8tWkS7AiYfKioqt4nBACEh1AwJoWYh3W5WRWfjTewJhRnNZuIjIzElJGBKTCTj8mVMyckE6/VQpQpkZjJvwwYyMjLIys4m22wm22ymdUAA1KiBPSODLnv2kGOzYclrdjstvbwgIAC72UxAYiJW5xbQVhEsQHpODiQkkGS1csZuR7g6wBKSns7oEyc4gKMo7bXE79pFBxy7MI0twD4BmA8sAF69xqYAc4BJWi2z7XZmiVxV6FYDfOntzaOeniwwm1mQlYVOUdAqCnpFQafR8GXNmrT292dZSgpfJyWh12oxaLUYdDqMej3vtW5N9aAg1l28yJaEBIzOwIzRaMTDw4MxDz+Ml58ff8XHcy41FS9fXzx9ffF0BmcaN22Kxtsbs0aDxscHg1rb5ZZQFOWfwBgcCU51cMT1luAoLq7iBrKyspg8eTItWrTg6aefvs6+aNEiYmJi0Ov1WK3W/CwKV6PRaJg+fTpTp05l9OjRvPPOOyxfvpzx48e7PLDxzTffkJiYSNeuXalSpQqvvfYaBw8eZNKkSTRr1uyWdoEpjyxatAiDwcCzzz5bqn4HDx7MihUr2Lp1613zXauoqBQPV4U9vZ2v6izvCg6Hh9Pi7Fm+7NSJW1mdaLda+ah/f57bvh2NyURtoE5AAJ+uWkW9bt1KWK2KikqZwsODkCZNCGnS5IZdJj733I0vBwp7ploViCvE3g7H9sVXYrdasWdlQVYWvS5dYv/Ro2SnpZGVmkpWejpZJhMtK1WCgAC6xcTw+p49mM1mzDk5jmax8GitWuDvT/uLF+keEYHFbsditWKx28m122lSsaLjsycnUyk1FasINmdNFhugtdkgO5uEnByS7Parsl4ESDx9GnDsFrSlgM/1YnQ01YEPKLieS/916wgFnqXgei6ZgBeOmjBHr7FpAJuigKLQym7nsPNcXoDGC0jy9QWNhocyMzlmszkCN84ATbBWy4GaNUGn4x+xsZyxWNBqNOicS5ZqGI2saNYM9HpePHmS2Jwc9DodBp0OvU5HaEAA09q1A6OR+fv3Y7LbMRqNGAwGjB4e1K5UiT4dO8LQMlHL83kcZXF2A4jIaUVRbn1rDZXb5r333iMmJoYVK1ag1WqvslksFqZMmYKiKOTm5tK7d2+XBxauZNKkScyePZsffvgBRVEwGAxMmTKlVPwCfP7554Aj0PLll1/Svn17hgwZwr59+6hdAlm5ZZnU1FQ+//xzHn/8cSqX8u56PXv2xNvbm/DwcDW4oaKiUiCuXpZSUUQuucxBMXF3yuiUdu1YsGcPcSdPEtygQZGvM6emMiksjM+OHMEMfKAojB8wAJYsgdvYVk1FRUXlbsJqNpOVlERWcjKZSUlkpqbSsFIlDLm5nIqI4HhkJOasLLIyMsjJzsZsNvNcixZ4iPDDoUP8ER1NjsWCxWJxBGCsVr5p0QKN1cobJ06wJTmZXLudXJsNq92OAuy95x6wWhkWE8NOsxk75AdoPBWF8/7+YLfT1mTi+BXBGTuOpwQpWi2IUMVuJ/6az3NlPRfvK47z8MNR4wUcS5Is19grAomKAnY7JU1xl6UoirJbRNopinJQRFo4t4U/ICJNS1yci3D3HKMkiYmJoX79+vTp04dVq1ZdZ3/66af56quvMBqNWCwW4uPjb2ub11th0aJFvPjiiwC88sorBe7kUpKEh4fzj3/8g86dO7Nly5arbKdPn6ZNmzbUrl2bnTt33tEFRhcsWMDEiRPZv38/LVvecPNDlzFkyBC2bNlCbGzsdUE3FRWVuwN31tyIAM4DK4HVIpLiMmdFwJ0TD7vVSm0PD5pWqMDPCYUmn+eTfv48Yzt3Jjw6GiuOXR2erF+f97duxaeUo+UqKioqKmULq9mMzmoFs5nYc+fITE0l22QiJz2dnMxMPIDWtWpBTg5r//iD5NRULDk5mLOzseTkUNXLi+GtWsHUqSWu7RaCG3Nx1ON9EhgPPAccF5FpJS6uaHoaA7OAy8B/RST8ZtfcScGNJ554gvDwcE6ePHldJkJMTAw1a9bEYDCQk5PDgAEDWLNmjVt05gVXjhw5wr333utSX3n1RSIjI7nnnnuus//yyy/07t2bWbNmMXPmTJdqcRc2m426detSo0YNtm3b5hYN33//PY899hhbtmyhc+fObtGgoqLiXkq95kYeIlJfUZS2wOPANEVRjgPfOetx3FVsX7yYCzYbcx577Oado6NhzBismzaxEkfq8qQOHXhj82a10J6KioqKCsDffw98fKgaHFxo3/6DBpWCottiKjAKOIKjPMsG4LNbGUhRlM+BPkCiiNx7xfmewEIcJVs+E5F3CxmmF7BIRLYrirIOuGlw407hzz//5JtvvmHatGkFLrEYNGgQIoKiKGg0Gr5w065sx48fx2Jx5CNNnDiRTZs2uczXunXriImJ4f777y8wsAHQq1cvHn30URYsWMD48eMJCgpymR53sW7dOs6fP8/8+fPdpqFXr154enoSHh6uBjdUVFSuw6WZG1c5UpRgHDXjhouIW/LI3PlU5fkmTfjq+HESEhLwLiR1M/nMGbrXr8+3ItSrUIF9Tz5Jy7lz1a0bVVRUVFTKDbeQueENmEXE5nyvBYwicu1qm6KMFQZkAMvzghvO8SKAbkAMsBcYiiPQMfuaIZ5xvs7EsdrnfhHpeDO/d0Lmht1up0OHDly4cIGIiAh8rimQu3nzZrp06UJQUBDJyckMGTKE7777zi1ahwwZwoYNG/D09CQpKYlz585Rq1Ytl/iqXbs2UVFRnDp1ivr169+w35EjR2jWrBmvvvoqb7/9tku0uJMHH3yQ8+fPExkZ6dYlIYMGDWLXrl3ExMSg0WjcpkNFRcU9FDbHcOlvBEVR/BRFeUpRlF+AnTjq1bV1pc8ySU4O8y5eZHPPnoUGNgAevO8+9ouw5uGHISmJ1gsWqIENFRUVFZU7nf/iKCOShyeF18C9ISKyDUi+5nRb4IyInBURC/Ad0F9EjohIn2taorM9jyOjJOlGvhRFGaMoyj5FUfZdulRmSozdMt988w179uxh9uzZ1wU2wLFcBRw7qWi1Wj799NPSlgg4ggjff/89L730EgsXLkREePLJJ13ia+PGjURFRdG2bdtCAxsA9913H4899hgLFy7kTvh5uJK//vqLrVu3Mn78eLfXuhg8eDBxcXHs2rXLrTpUVFTKHq4Odx4CmgNviEh9EZkiIvtd7LPs8csveKal0dZZ+OpGvP7ggxwxm2np6cnk/xZUt19FRUVFReWOxENEMvLeOI9LsipjNeDCFe9jnOcKRFGU2oqifAosB25YqVJEPhWR1iLSumLFiiUm1h1kZGQwdepU2rRpw4gRI66zL1iwgLi4OEJDQzGbzQwbNgw/Pz83KIXXX38dX19fJkyYwNChQ6lWrRrbtm0jIiKixH298MILACxbtqxI/WfOnEl2djZz584tcS3uZOHChXh7ezNq1Ch3S+GRRx7BaDQSHn7XrBZTUVEpIq4ObtwjIi+LyF0dWp0yZQof+vhAIdu1Hlu7lte3bsUD+O/x46UnTkVFRUVFxf1kKoqSv/WCoiitgGx3iRGR8yIyRkSGi8iOwvoqitJXUZRP09LSCutW5pkzZw6xsbH83//933Wp/haLhWnTpqHVaomLi0On07FkyRK36Pzrr7/44YcfePnll/PrWixevBigxLM3Nm/eTGRkJC1btixywdJGjRoxbNgwFi9eTHz8tXsclU8SEhJYsWIFTz/9NAEBAe6Wg5+fHz169CA8PBy7C3Z7UlFRKb+4JLihKMr/OQ/XKYpyXXOFz7JKekwMH0REcCo0FG60vMRup9/AgQiwYvJkAu7wPdJVVFRUVFSu4V/A94qibFcUZQeOXdZeKMHxLwI1rnhf3XnuthGRn0RkjL+/f0kM5xaioqKYN28eQ4cO5f7777/OPnLkSMxmMy1atMBsNjNy5Ei3bXc6a9YsAgIC+Ne//pV/rn///tSqVYvdu3dz9OjREvM1btw4oOhZG3nMnDkTi8XC7NnXlnMpn3zyySdYLJb8rXfLAoMGDSImJoa9e/e6W4qKikoZwlWZG/9xvs4D5hfQ7hpWz5qFGRhe2B+EYcNYa7fz7wYNeHTOnFLTpqKioqKiUhYQkb1AQ2Ac8CzQqISXse4F6imKEqooigHHLm4l8rDlTsjcmDx5MoqiMKeAOUhUVBTffvstfn5+HD58GL1ez6JFi9ygEvbv38/atWuZOHHidRkEefU/Sip7Y8eOHURERNC0aVOaN29erGvr1q3LU089xZIlS4iJiSkRPe4iJyeHjz76iN69e9+05khp0rdvX/R6vbo0RaVMkpuby+XLl90t467EJcGNKyYkzUVk65UNRw2Ou4Zv1qyhjk5Hu2eeKdB+9MMPsaxcyb3BwbypLkdRUVFRUbl7aQM0BVoCQxVFuaW7VEVRvgV2AQ0URYlRFGWUiFhxZIJsAk4Aq0TkWEmILu+ZG9u3b2fVqlVMnjyZGjVqXGfP2/q1Q4cOWCwWxo4di9FodINSR0ZEUFBQgRkE3bt3p169ehw8eLBEnuaPHTsWgM8+u6UdiZk+fToiUu53TVm1ahUJCQlXZcqUBQIDA+natSvh4eGU1s6PKio3wmw2s23bNt566y26d+9OYGAgwcHBtGnThrfffptjx46pP6elhEu3glUU5YCItLzm3EERaeEyp4VQ2tu0xf31F9VbtGBap068sX37dfb0mBgq1ahBBSDm0CFo2rTUtKmoqKioqLiKW9gK9j9AHeAvwOY8LSJSdvLgb0J53ArWbrfTpk0bEhMTOXXq1HVLTTZt2kTPnj2pV68eUVFRKIqCyWRCr9eXutY9e/bQrl07Zs+ezdSpUwvss337dsLCwmjSpMltLU/ZvXs37du3p3Hjxhw7dusxsHHjxrFs2TIiIiKoXQ6XHIsIrVq1Iicnh6NHj6IoirslXcXnn3/OqFGj2L9/Py1btrz5BUyfebkAACAASURBVCoqJYTJZGLXrl1s27aNbdu2sXv3biwWC+DYNSksLIxKlSqxfv16du/eDTgyugYMGMCAAQNo376923cdKs8UOscQkRJvOPaO/wlIwZH2mdf+B/zXFT6L0lq1aiWlyYkpU6QPyIn16wu0t/byEkD+3alTqepSUVFRUVFxJcA+Kd684QTOBy7lrQF9gU/r1q1bcl9gKbFs2TIB5Ouvvy7QHhISIoAMHjxYAHnllVdKWeHf9OzZU4KDg8VkMhXar3HjxgLI9u3bb9nXfffdJ4Ds2LHjlscQEblw4YIYjUZ55plnbmscd7Ft2zYB5JNPPnG3lAJJSkoSrVYrr776qrulqNzhXL58WdauXSsTJ06UNm3aiFarFUC0Wq20bdtWXnnlFVm3bp1cvnz5umsvXrwoH3/8sfTo0UP0er0AEhISIqNHj5aff/5ZsrOz3fCJyjeFzTFckrmhKEotIBSYjWOP+DxMwGFxpIeWOqX+VKVNG7DbYf/1y4bnPvIIUzZsoLHBwLGcnNLTpKKioqKi4mJuIXPje+BFEYlzoSyXUt4yN0wmE/Xq1SM0NJSdO3de91R+9uzZvPbaa3Tv3p3Nmzej1+sxmUxuedq4c+dOOnbsyNy5c5k0aVKhfffu3Uvbtm2pV6/eLW0Ne+DAAVq1akX9+vU5derUrUrO56WXXmLx4sWcPHmSunXr3vZ4pcngwYP53//+x4ULF9xWQPZmdO/enXPnzhEREVHmMktUyi9xcXFs3749PzPjyJEjABiNRtq1a0dYWBhhYWF06NABHx+fIo+blpbGL7/8wo8//siGDRswmUx4e3vTq1cvBgwYQO/evQkMDHTVx7pjKPXMjbLaSjNzI2HnTokCkfnzr7NF/PabaEAMIJdOniw1TSoqKioqKqUBxc/c+B+ObM9NXJHxWZwx3N1KOzv0dpk6daoAsnv37uts2dnZYjQaRafTybBhwwSQadOmuUGlg65du0pISIhkZGQUqX/z5s0FkF9//bXYvlq0aCGAbN68udjXFkRcXJx4enrKE088USLjlRbnzp0TjUYjU6dOdbeUQvnkk08EkEOHDrlbiko5xW63y7lz5+Srr76SUaNGSb169QQQQLy9vaV79+7y1ltvybZt20o0y8JsNsvGjRvl2WeflSpVqgggOp1OunbtKh9++KFER0eXmK87jcLmGC75Aw/scL6agPQrmglId4XPorTSnHjMCAsTLcilI0euNths8mNQkBhAvh43rtT0qKioqKiolBa3ENzoXFArzhjuapTDZSmRkZFiMBhkxIgRBdrzlqG8/PLLotVqxdvbW2w2WymrdLB161YBZMGCBUW+5siRIwJI7dq1i+Ur77o6deoUV2ahvPLKK6Ioihw/frxEx3Ulr7zyimi12jJ/g5WQkCAajUamT5/ubikq5YjExET59ttv5ZlnnpEaNWrkBzMCAwOlX79+Mm/ePNmzZ49YLJZS0WOz2eTPP/+UqVOnSsOGDfP1tG7dWt588005cuSI2O32UtFSHihsjuHSgqJljdJKGRW7nfoeHtT08eG/yclXG595Br74AkuPHhg2bnS5FhUVFRUVldKmuMtSnNfUAuqJyO+KongBWhExuUZhyVOelqUMGjSIjRs3EhERQbVq1a6yRUZGUq9ePQICAujevTsrV67krbfeYtq0aTccLy0tjY4dO5Keno6fnx/+/v5XvRZ0rqBXDw+P65YWPPTQQ5w8eZKzZ8/i6elZ5M/Yvn17du/ezY8//kj//v2LdE3btm3Zu3cvmzZtonv37kX2dTMuXbpEaGgojzzyCCtXriyxcV1FRkYG1atXp2fPnnz33XfulnNTHn74YeLj4zmu7jqocgPMZjN//PEHv/32G7/99hsHDhwAICAggC5duvDQQw/lFyPWaFyymWixOHnyJGvXruXHH3/kzz//BKBOnToMGDCAMWPGlKltmd2B25al4Kh8bnQePwi8CAS40mdhrbQyN3Y7C3Qte/rpq87/PneutAJJ8fMTyckpFS0qKioqKiqlDcXP3PgnsBeIdL6vhxsLkN9KKy/LUv73v/8JIG+++WaB9mbNmgkgX331lWg0GvH19b1p1saHH34ogAwZMkQGDhwoXbp0kTZt2kiDBg2kcuXK4uUsoH6zptPppEKFChIaGirNmzeXDh06CCAffPBBsT9nRESEAFKtWrUi9T9x4oQAUqtWrWL7KgqvvfaaAHL48GGXjF+SLF68WADZtWuXu6UUiTy9x44dc7eUckdsbKzbsrJcid1ul8OHD8v8+fOlR48e4unpmf87JiwsTN588035888/xWq1ulvqTYmNjZUlS5ZIz549Ra/Xi4+Pj6y/wWYVdwuFzTFcvRXsX0BroDawAVgLNBGR3i5zWgil9VTlpebN+eTQIRKiovCvWROArKQkQipWJAvY/fnntBk50uU6VFRUVFRU3MEtFBT9C2gL7BbndvGKohwRkftcpbGkKS+ZG48++ii7d+8mMjLyukyIn3/+mb59+9K4cWMaNmzI6tWrmTdvHhMnTrzheCJC06ZNMRqNFPb5c3NzMZlMpKWlkZ6env965XFBr/7+/qxcuRIPD49if9awsDC2b9/Ot99+y+OPP15o344dO7Jz507WrVtH3759i+3rZiQnJxMaGkqXLl1YvXp1iY9fUtjtdho1akRAQED+FpZlnbi4OKpVq8asWbOYMWOGW7VYrVb++9//0qJFC0JCQtyqpSBEhMOHD7N69WrWrFnDkSNHmDRpEnPnznW3tNsmLi6O33//PT87Iz4+HoCGDRvSvXt3unXrRufOnfH19XWz0lsnJiaGfv36cejQId5//33Gjx9/VxbSdWfmxgHn6yRgvPP4oCt9FtZK46mKLSdHqmk0MuiaJwUP+Pk51q+2aOFyDSoqKioqKu6E4mdu7JYr5giADsfuam7PyCiC9nJVc6N79+7Svn37Am3BwcECyB9//CEajUYCAgJuus57x44dAsjSpUtdIfe2OH/+vCiKIpUqVSq035kzZwSQGjVquFTPrFmzBJD9+/e71M/tsGHDBgFkxYoV7pZSLB544AG577773C1DZs+enZ+J1KpVK5k2bZps375dcnNz3abJZrPJH3/8IRMnTpTQ0FABRKPRSFhYmDz00EOi1Wrl6NGjbtN3q2RmZsovv/wiEyZMyN++GZAKFSrI448/LsuWLSvzNWNuhYyMDBkwYIAAMm7cuFKrC1KWKGyO4eo/+LuBocBRINR57qgrfRbWSiVldONGiQc5vXhx/qnFQ4Y4ClTpdK73r6KioqKi4mZuIbgxF3gNOAl0A9YAbxdnDHe38rIs5UbBjbwb7379+skjjzwigCy+Yi5zI4YPHy5+fn5F3smktOnatasA8tlnn92wT1hYmAASHh7uUi2pqakSGBgojzzyiEv93A7du3eXqlWrlrsbpoULFwogJ924C2FiYqL4+vpK165d5a233pJOnTqJVqsVQPz9/WXgwIHy6aeflsoNt8VikV9//VWeffZZqVy5sgCi1+ulV69esnTpUklISBARkUuXLklgYKA89NBDZb5gpc1mk/3798u7774rDz/8sBgMBgHEYDDIww8/LO+++67s37//jlxmcy02m02mTJkigHTr1k1SUlLcLalUcWdwozHwATDU+T4UmOJKn4W1Upl4jBgh4u8v4twqKDcyUowgOpALe/a43r+KioqKioqbuYXghgZH3Y3vgXDnsVKcMdzdynNwIzMzUwwGg+j1ejl9+rQoiiIVKlS46ViXLl0Sg8EgL7zwgqvk3jaxsbGFfp6oqCgBpEqVKqWi55133imz9SyOHTsmgLz99tvullJsLly44Hbtzz//vGi1Wjlx4kT+uZSUFAkPD5fRo0dL9erV87MLGjduLBMmTJBff/21xLYXzczMlDVr1siIESMkICAgfyvTwYMHy4oVKyQ1NbXA6z766CMB5LvvvisRHa7AZrNJr1698r+/++67TyZMmCAbN26UzMxMd8tzG59//rno9Xpp2LChnDlzxt1ySg23BTfKWnP1xCPz0iXprdXKtisj8vfcI+tB/jNypEt9q6ioqKiolBWKE9wAtMA3Re1fVlt5Dm7kpThPnz5dunXrdtNMhzzee+89Acp8SnufPn0EkEWLFl1n69KliwDyzTfflIoWk8kkFStWlG7dupWKv+IwduxY8fDwkEuXLrlbyi3Rvn17aeGm5d8nT54UrVYrzz333A372O12OXr0qMyfP1+6deuWn3ng6ekpvXv3lg8++EAiIiKKlUGRkpIiX3/9tQwcODC/cG9gYKA89dRTsnbtWsnKyrrpGFarVVq2bCnVqlUTk8lUZN+lyccffyyAzJgxQ2JjY90tp0yxZcsWCQoKkgoVKsi2bdvcLadUcGfmRkfgNyACOAucA8660mdhzdUTj+9efFEA2Tx/voiI7Bg4UGwg8uCDLvWroqKioqJSlriFzI0dgKE415SVVt5rbpw8eTI/s+HcuXOiKIqEhITcdBybzSZ16tSRBx54wJVyS4SkpCTRaDTi7+9/1Y1jTExMkT9vSTJv3jwBytSNyOXLl8XT01NGjx7tbim3TN736o4n2P379xdfX9/85R5FISMjQ9avXy/jx4+XevXq5Wcl3HPPPTJu3DhZu3atpKenX3ddfHy8fPLJJ9KjRw/R6/UCSNWqVeW5556T33///ZaWFO3cuVMAmTx5crGvdTVRUVHi6+srXbp0KfNLZ9zF6dOnpUGDBqLX6+Wrr75ytxyX487gxkmgFxACVMhrrvRZWHN1cKNvpUpSTaMRW26u7HBGGLtotflLVFRUVFRUVO4GbiG4sRzHVrDTgQl5rThjuLuV18yNJk2aCCBr166Vzp07CyBff/31Tcf59ddfSzXj4XYZPHiwADJnzpz8cz169BBAPv/881LVkpmZKZUrV5bOnTuXmZu1d999t9xsVXsjzp07d92/cWmwZcsWAeSdd965rXEiIyPlo48+kn79+om3t3d+nYyHHnpI5syZI/Pnz5dOnTqJoiiOWn516sikSZNk165dJVJnYuTIkaLT6a5aVuNu7Ha79OzZU7y8vOTs2bPullOmSU5Ozs9Ee/XVV+/o2iNuLSjqyvGL21w58UiKiBAdyCutW0uOySR+zujr/95/32U+VVRUVFRUyiK3ENyYWVArzhjubuUxuBEeHp6/fj0yMrJYtScGDhwowcHBYjabXSm3xEhNTRWtVis+Pj5is9kkISFBFEWR4OBgt+j54IMPBJDff//dLf6vxGKxSPXq1aVLly7ulnLbtG7dWtq2bVtq/mw2m7Ru3VqqV69epCUgRSUnJ0c2b94skydPlqZNm+ZndTRr1kxmzZolhw8fLvHAWEJCggQEBEjXrl3LTNDtq6++EkAWLlzobinlAovFImPGjBFABg4ceMfWI3FncONd4D2gA9Ayr7nSZ2HNlROPJcOGCSAHVqyQbkFBAsg/GzRwmT8VFRUVFZWySnGDG3kN8LqV68pCKy/BjW7dukn79u3FZrNJYGCgKIoiERERcv/99xd5x5CLFy+KVquVSZMmlYLikuOJJ54QQGbOnJlfh2PJkiVu0ZKdnS3Vq1eXDh06uP1GcuXKlQLIunXr3KqjJMjLQDl//nyp+Pvmm28EkOXLl7vUz8WLF0vlMy1atEgA+f77713u62bExcVJYGCgdOzY8Y7OQihp7Ha7LFiwQBRFkVatWsnFixfdLanEKWyOoTjsrkFRlP8VcFpE5GGXOS2E1q1by759+1wydnijRnx/8SK9HnuMkcuWUUOr5bzZjEanc4k/FRUVFRWVsoqiKPtFpHUx+ncAlgE+IlJTUZRmwFgRec5lIksYV84xSpLu3buTkZHBgw8+yOzZsxk4cCBvvfUWjRs3pkaNGkRHR990jDfeeIOZM2dy5swZ6tSpUwqqS4bMzEwCAgLQ6XRYLBb8/f1JTk52m55PPvmEZ599lg0bNtCrVy+36bj//vtJTEwkIiICjUbjNh0lwZkzZ6hXrx4LFizg5Zdfdqkvs9lMgwYNqFChAvv27Sv33x2A1WqldevWJCcnc+LECby9vd2mZdCgQaxfv55Dhw7RoEEDt+kor/z0008MHTqUgIAAfvrpJ1q0aOFuSSVGYXMMl/4vFJGHCmhuCWy4lKgoBp88ycrnn+fiF1/gCWzdvFkNbKioqKioqBSN/wN6AJcBROQQEOZWRUVEUZS+iqJ8mpaW5m4pRcZms/Hee+9hMBj4z3/+w5NPPgnARx99dNNrrVYrS5cupXv37uUqsAHg7e3NyJEjMZvN2O12Zs2a5VY9I0eOpHbt2syYMQNXPmwsjD179rBr1y5eeumlO+LmvG7dujRv3pzw8HCX+/rggw+Ijo5m3rx5d8R3B6DT6Vi8eDEXLlzg7bffdpuO8PBwVq9ezeuvv64GNm6Rvn378scff6DRaOjUqRM//vijuyWVCi79n6goSiVFUZYpivKL831jRVFGudKnOzj6/vukA6xaxTS7nYz58wkNKxdzMhUVFRUVlTKBiFy45pTNLUKKiYj8JCJj/P393S2lyERERGC1Wpk+fTqnT59m3759hIaG0qdPn5teu2HDBmJiYnj22WdLQWnJs2jRIoxGI4GBgYwfP96tWgwGAzNmzGDfvn2sW7fOLRoWLlyIn58fTz/9tFv8u4LBgwezc+dOLl686DIfSUlJvP322/Tp04eHH76zntt27NiRJ598knnz5hEREVHq/i9fvszzzz9Pq1atmDhxYqn7v5No1qwZe/bs4d5772XgwIG89957bguklhauDjN+CWwCqjrfRwD/crHPUmfokiXcp9HwyNmzWNu0QTNhgrslqaioqKiolCcuKIpyPyCKougVRXkFOOFuUXciGRkZpKamUrFiRf7973/z1FNPAbB06dIiXf/xxx9TtWpV+vbt60qZLsNoNHLu3DkiIiJQFMXdchgxYgR169ZlxowZ2O32UvUdGxvLqlWrGDVqFL6+vqXq25UMHjwYgNWrV7vMxxtvvEFmZiZz5851mQ93MmfOHDw9PXnxxRdL/Wb4X//6F8nJySxbtgydmgV/21SuXJktW7bwj3/8g8mTJzN69GgsFou7ZbkMV//EBIvIKkVRXgUQEauiKOXiSUxRORweztGcHAAuAeZ16/BxrySXIHY71pwcrNnZaO12DBoNNrOZ+NhYbLm5V/UNDAjA18eH3NxcEpKS4JrJQ2BAAN5eXlgsFpJSUq52pCgE+vvj6emJxWolLSMDjU6HRq9Hq9Oh0enw8PZGZzBgB0SjQaPVotwh6YAqKioqdynPAguBasBF4FfgebcqukM5cuQIAF999RV79+7l0KFD1KtXjy5dutz02rNnz7Jp0yZmzJhRrm86qlSp4m4J+eh0OmbOnMmIESP44Ycf+Mc//lFqvj/66CNsNhsvvPBCqfksDRo0aMC9995LeHi4S7JzIiIi+Pjjjxk9ejSNGjUq8fHLApUrV+b111/n5ZdfZu3atQwYMKBU/K5fv56vv/6aGTNm0KxZs1LxeTfg6enJt99+S4MGDXjzzTc5e/YsP/zwA0FBQS7zmZubS3x8PDVq1HCZj4JwdUHRLcAg4DcRaakoSntgjoh0LsK1PXFMdLTAZyLy7jV2I7AcaIVjje4QETlf2JiuKPY1qU0b5jnHXD9rFr1nzizR8a9F7HasGRnozWYwmTj611+kJiRgSkoiIzUVU0oKtby86FK1KphMvLRhA6mZmZiys8nIycFis9EvMJAJISFYLRZanjxJrt2OVST/9VlPT/5tMJCSm0vVjAysgPUKDW8B04BooFYBGt/HkZ5zHGhSgP0zYBSwG2hfgH0l8BjwO9CtAPsGoBfwI/Co85yCIw1JC2w2GOio0/Gd3c5YsxmtouTbNIrCb8HB3OvhwdfZ2cxKTUULaBUlv/1Uty41PD35OjmZJYmJaDUaxxjO1+9atCDQw4MVcXH8EBfnsF/RPu3UCaPBwKpz59gSH+84r9Wi1WrRa7W8+/DDoNWy9swZ/kpIQKvVotPp0Gq1eBmNPB8WBlotv0VEcDY52RHU0WjQ6nT4enkxsF070GrZERFBosmEVqfLb77e3nRq1gw0Gg6dO0dGTg6aPLtej4+PDw3uuQe0Ws7FxmKx2dDq9Y4Akk6Hl5cXIZUqgUbD5bQ00GjQ6PVotFq0BgN6oxGjlxdoNNgBRQ0sqaioFEBRC4oqijJHRKYoivIPEfm+NLS5ivJSUNRgMGCz2bDZbDRp0oTjx4+zfft2OnXqdNNrX331VebOnUtUVBTVq1cvBbV3Bzabjfvuuw9wBJ+0Wq3LfWZnZ1OzZk06derEmjVrXO6vtHn99dd5/fXXiY2NpXLlyiU69sCBA/ntt984ffp0iY9dlrBarbRo0QKTycTx48fx8vJyqb+0tDSaNGlCQEAABw4cwGAwuNTf3co333zDM888Q61atfj555+pX7/+LY+VlZXF2bNnOXPmDJGRkURGRuYfR0VF4e3tTWpqaolnyRU2x3B12H0CsA6ooyjKH0BFYPDNLlIURQssxnFvGwPsVRRlnYgcv6LbKCBFROoqivI4MAcYUtIfoDDsVisfOicyw2rVuj6wIUKOyYQpPp6MxEQykpLIuHwZrdlMm+rVwWTi+61biYqLIyMjA1NGBhlZWdQyGHitVi0wmRh48CAnsrIw2Wxk2Gxk4Lix/8npohsQf42uIUAXAIOBdVYroij46nR463QYdToUvR4CA9HqdNRJSECv1aJz3njrdToa1qoFDRrgCYzfvRudXo9ep0Ov16PT6QirVw/q1aOCzcanBw+i0Wiu+qFtGxoK1apRJTOTpfv3X/eddKpXDypXJjQtjU/++uu677VVw4YQHEyDy5f58NAh7HY7NpsNu92O3WajQePGEBhIw4QEXj982HE+r48I1Zo2BV9f6sTGMvL4cYddJL9PQPPm4OFBpQsXaHfmDDa7/e8mgr5yZdDr0ZnNGHU6bHY7uU7fNrsdnNkolxMSOHX5MjaR/GYXQXJywG7nUHo632dlYQOHHUcA5t2DB8Fm40e7nS+v+eyBwPPOScYnwA/X2GsAA53Hb+J4tHkljYFjzuPngJ3X2NsBfzqP+wNHrrF3BX5zHrcBzl1jfxTIS/KsBCThCCxpnZ/tCa2WZR4eoNFQKSODXOd5DY7A0jOenrwTGIhVUagXF5d/Pu/1n87AW7oID0ZGOmxX2MdWqcJTlSqRYLUy9OTJv+3ONrZWLfpXqUJ0djYvHTuGRqP5267RMLZuXR6sUoUzGRm8eeRIvl3JszduTKuQEE6mpbH46NH8n+28fv9s1owGwcEcu3yZFSdO/G1z9hvZsiU1AwM5nJjI+lOnUPL8O+1PtmlDRT8/DsXGsu3sWRRFcfRx2oe1a4eflxeHL15kX1SUIysp73qNhsFt2+JhNHL4wgVOxMbmn1ec1/dv1w6tTsfR6GjOXbqUP67iDLB1b90aNBqOR0cTn5KSb1M0Ggx6PR3uuw8UhVPR0SSbTPnjarRajEYjTevXB0UhMiYGU3Z2vk1RFDw8PKhbuzYoClGxsZgtlr+1aTR4enhQrUoVUBRiExPJtVqvsnt4eBBcoQIoCknJydhErtJnNBrx9fMDRSEtPR2Bq+x6gwEPT09QFLLNZoCrxs8LAAqQF9LPs6m4ld6KokwFXgXKdXCjvLFjxw6OHz9O48aNixTYyMnJYdmyZfTt21cNbJQwWq2WWbNmMWTIEL777juGDx/ucp8rVqwgKSmJl156yeW+3MHgwYOZNWsWa9asYdy4cSU27o4dO1izZg1vvvnmHR3YgL+Li3bu3Jl3332XN954w6X+Jk2aRFxcHKtXr1YDGy5k+PDh1K5dm0cffZR27drxww8/FFo3Jjk5+brARd5xXFzcVX0DAgKoW7cubdq04fHHH6du3brY7fZSCdjm4dLMDQBFUXRAAxz3QKdEJPcml+RtCTdLRHo43+cta5l9RZ9Nzj67nD7igYpSyAcq6acq3zduzGMnTqAFOvn5kWm1kmG1EgT84eUFGRl0s1r5/Zrr7uXvm8r7gV3OY2/AR6Oho6cnP9StC76+PB8dzSW7HR9PT3y9vPDx9qZJzZoM69QJfH3ZdPo0Gm9vfIOD8Q0OxqdiRQKrVcOvalVQfzGUbUSwW63YLBZsubnYLBbsubn4enmBzUZqcjJZGRnYrFbsubnYcnPRALWrVAGbjXPR0aSnpzuutVqxW60YtVqa16kDdjt7jx0jNT3d8YQuNxe7zYa/pydhDRuC3c4v+/aRkpGB3WZzBG6sVqr4+9OzcWOw2Vi+axdpmZl/B45sNuoGBTGgUSOw23lv61YyLZb8wJPNZqNlSAiP1a8PdjsTt2wh1xlwygtAda5cmaGhoeRarYzeseNvmzMw1L9yZYZVr44pJ4fh+/djs9sRyO/zdJUqDAsJId5s5rFjxxxLk5zX2kWYUKkSQwICOJ2dzeBz5xznId/+ToUKDPL2Zn9WFoMSEx1jO+0CfOrnRx+9nv/l5DDYZLrKZgd+NBjoqtGwxmrlMavV4Z+/b5Z3AB1xFBsaWcA/+SGgKbAIeLEA+1kgFJgNvFaA/RIQ7LTNLsBuBozAeODDa2w6IO+X79PAV9fYA4G8DREH8XcQK4+aQJTzuDt/B8HyaAIcdR5f+Xstj/ZXnLvvir55dOPvYF3tK3zlMZC/g30VrtCax1OQHyw0AteuJn0ex3dicdqvZSowW1G4DFR2/hlRnA3gDa2WKXo9USL8P3v3HR5VtT18/LtnJskkISRAwBAChN4JSBFQEASkKNVYEFGxIF4V9V71CldFBZRXRUQRBSmK/EAQkC5wRQVRQWmXKib00EJIJW3K2e8fmUSIoc9kMsn6PM95Zubsc/ZZcwjJnjW7NHYNRTy//N2AAIYHBLDXMLg5M/Nv5ZODgxlktbLFbueO9PS8cqUKq1mRYgAAIABJREFUjvksNJQ7rFY22Gzc7xqud3757EqVuDUwkNXZ2fzDtXRlft0KmB8RQSurlcXnzvHy2bN/Xd9Vx5Jq1WhgtfJ/aWm8dV75spgYam/eXMQduT5X0XPjXeBxoByQ5QpL5z9qrcu7PTgP8ZWeG35+fhiGQd26dfnzzz/57bffaNOmzWXP++qrrxg0aBCrV6+mR48exRBp2WIYBi1btiQ7O5u9e/d6bNhPZmYms2bNYuzYsURERLB9+/YSMfeIu2mtady4MZGRkaxbt85tdbZr146EhATi4uI83pOhpBg8eDCLFi1iz549Hlshad26dXTr1o0XXniBd9991yPXEBc6dOgQd955J3/++SeTJk2iadOmRSYxUgpNIVC1alXq1q1LnTp1qFOnzgXPPTnM5XyXamN4eljK3cBqrXWGUuoV4EZgrNZ622XOiwV6aq0fc70eAtyktX76vGN2u45JcL0+4DomqVBdw4BhADVq1Gh15EjhJvO1y6pQgeDUVAAa+vlRKyyMcgEBRJYvzwfdukG5ciw8dIiTNhvlypenXFgY5cLCCI+IyGtIhISQbLfjFxZGcOXKsnSsED5KGwbaMFBaowCnw4HDZsNwOtGuxJDhdBIcGIjZZCInK4vMzEwMh6PgXMPppHLFilhMJtLS0khNTc1L3LiOMQyD2tWqYTaZSExKIuns2bxyp7OgjmZ162ICjp48SeLZswX1aq3BMGjXpAlozf7DhznlOl8bBlprzMCtzZuD1uyIj+dUcnJBmdYaq58fXZs1A635ee9eEl3xaVeCqrzVSg/X+f/duZMzaWkF5VprwoOD6eUqX7J1K8nnzl1QXi00lN5Nm4LWzNm0ifScnAuuX6dSJXo3bgzApxs3km23XxB/kxtuoFeDBqA1723YgMP1vvO31pGR9KhbF6fTybgNGy4o01rTsUYNuteqRZbNxriNG/P2A7jKb4+O5rYaNUjOzubtTZv+KievwTugTh06RkZyIiOD/7d16191u455oF492kVEcDAtjXe3by8oy/8b/ETDhrQKD2dPcjITd+/+W/k/GzemWYUK/H7mDB/98UfB/vzH15o2pX758qw/fZqpcXEF5+Zf/93mzakRFMS3J04w8/Dhgvc26ZZbqDZ/vtv/T1xFciNAa52rlFqqte7n9kCKkS8lN5yu/x8xMTHsKKIHZVE6d+7M0aNHiY+PLzXLXpY0S5YsYcCAAcycOZOhQ4tKkV+7M2fOMHnyZD7++GPOnj1L+/bt+eijj2jVqpVbr1OSvPrqq7z11lucOnWKypUrX3d98+fP57777mPWrFmlanWZyzlx4gQNGjTg1ltvZcWKFW6vPzMzk2bNmmGxWPjf//5HYGCg268hipaWlsZ9993H6tWrC/aZzWZq1qx5QdIiP4lRu3btEpHUu2Qbo3ADz50bsNP1eAvwA3AHsPkKzoslb56N/NdDgMmFjtkNRJ33+gB5E5hetN5WrVppd/vs3nu1yfXl7T+aNnV7/UIIIYSvAbboK2snbHM9fnklx5fEDegDTKtbt677bqAHWSyW/A5neseOHVd0zt69ezWgx48f7+HoyjbDMHSrVq10dHS0zs3NdUudcXFxevjw4dpqtWpA9+3bV2/cuNEtdZd0O3bs0ICeNm3addeVk5Ojo6OjdUxMjHY4HG6Izre89957GtDLli1ze93PPvusBvT69evdXre4PLvdrhcvXqxXr16t4+Pjtc1m83ZIl3WpNoanU+/5K6PcAXymtV4JXMlYiePkTS+QL8q1r8hjXMNSQsmbWLRYPfbVV2xftIhQYMru3bQMDCQrKemy5wkhhBACf6XU/UAHpdTAwpu3g7sSWuvlWuthoaGh3g7limhXb5/WrVtf8WoEn376KX5+fjzyyCOeDK3MU0rx5ptvcvjwYWbNmnVddW3evJnY2Fjq16/PzJkzeeCBB9i3bx9Lly7l5ptvdlPEJVvz5s2pU6cOCxcuvO66Jk+ezOHDh3nvvfeKdf6AkmLEiBE0btyYZ599luzsbLfV+/PPP/Phhx/y1FNP0alTJ7fVK66cxWJhwIAB9OjRgzp16uDn5+ftkK6Lp5Mbx5VSU8mb43KVa4WTK7nm70A9pVQtpZQ/cB95E5Oebxl5w6whr6fH9zr/L3Yxaz5wICfOnKFlYCDHcnKw1K4NO3d6IxQhhBDClwwHOgJh5PWAOH+704txlVpOZ973TrNnz76i47Oysvjiiy+IjY11S9d+cWm9evWiXbt2jB07lhzX5MhXyjAMVqxYQadOnWjXrh3r1q1j5MiRHDlyhM8++4yGDRt6KOqSSSlFbGws33//PcnJhWdqunJnz55l7Nix9OrVi27durkxQt/h5+fH5MmTOXToEO+8845b6szJyeHRRx+levXqvP12UTOJCXH1PJ3cuAdYA/TQWqcCFYEXL3eS1toBPO06dx+wQGu9Ryn1plKqr+uwGUAlpVQ8eauyvOyJN3ClgsLD2ZaVxdHHHsM/I4MdMTFMHzLEmyEJIYQQJZrWeqPW+kngJa310EKbdBPwoEaNGl3RcfPnzyctLY3hw4d7OCIBeR/Ix4wZQ0JCAp999tkVnZObm8vMmTNp2rQpffr04ciRI0ycOJGjR48ybty4Ur+qx6XExsbicDhYtqzwd6RXbuzYsaSnp7vtQ72v6tKlC/feey/jx4/n0KHC6+ldvTfeeIP9+/fz2WefERIS4oYIhSiG1VJKkmKb7GvhQmrdfTeHgUE1azInPl4mCxVCCFFmXMWEordprb+/2BAUrXXhhXtKLF+ZUDR/ZYwrbf+1bduWzMxMdu/eXSpX1SiJtNZ07tyZP//8kwMHDlx0Ar/U1FSmTp3KpEmTOHnyJC1atODFF1/k7rvv9vmu5e6itaZWrVo0bdr0mibDjI+Pp3Hjxjz88MNMmzbNAxH6loSEBBo2bEjXrl1ZunTpNdezbds22rZty4MPPsjMmTPdGKEoCy7VxpDprj0hNpbv16+nslLMO3KEhkFBpB4+7O2ohBBCiJLmVtdj4SEpMiylBNi6dSu///47w4cPl8RGMcrvvXHq1Ck++eSTv5UfO3aMf/3rX1SvXp2XX36Zpk2bsnbtWrZt28b9998viY3z5A9NWbt2LWlpaVd9/siRI/H39+eNN97wQHS+Jyoqitdee41ly5axatWqa6rDZrMxdOhQqlSpwoQJE9wcoSjrJLnhIbU6dSIhPZ2O5csTZ7dTrVYttlzn5FBCCCFEaaK1Hu16LDwkRYallABTp04lMDCQITLMtth16tSJbt26MX78eM6dOwfAzp07GTJkCLVr12bSpEn069eP7du3s3btWrp37y4JqIuIjY3FbrezfPnyqzrvl19+YeHChbz00ktUrVrVQ9H5nueee46GDRsyYsSIq54XBuD//b//x86dO/nkk0+oUKGCByIUZZkMSykG/7n5Zj745Rf2AjXfeQdevOy0I0IIIYTPuophKf+8VLnW+n33ReVZpW1YSlpaGtWqVePee+9lxowZxRGaKGTTpk20b9+eoUOHcuLECdasWUNwcDDDhg3jueeeo0aNGt4O0ScYhkHNmjVp1aoVS5YsuaJztNZ06NCBI0eOEBcXR3BwsIej9C3fffcd3bt3Z8yYMbzyyitXfN6ePXto2bIlAwcO5KuvvvJghKI0k2EpXjbu559JW7GCmgEBpL70Eo9Vr47hcHg7LCGEEMLbQlxba+BJoJprGw7c6MW4yrw5c+aQmZnJk08+6e1Qyqx27drRu3dvZs2axf/+9z/eeustjh07xvvvvy+JjatgMpm46667WL16NRkZGVd0zsKFC9m0aRNjxoyRxEYRunXrRmxsLG+99RZHjhy5onOcTiePPPIIoaGhfPTRRx6OUJRV0nOjOJ06xQO1a/N/2dlEmc1s3rKFyBYtvBePEEII4QFX2nPjvOM3AHdorTNcr0OAlVrrTp6K0d283sa4QlfSc0NrTfPmzQkICMAX3lNpdvLkSX7++Wf69OlDQECAt8PxWRs3bqRjx47MmzeP++6775LH5ubm0rhxY4KCgtixYwdms7mYovQtR48epVGjRvTs2ZNFixZd9vgJEybwwgsvMHfuXAYNGlQMEYrSSnpulBQREcxOT6d35cokOJ3UbtmSNePGeTsqIYQQwttuAGznvba59hULpVRtpdQMpdTC8/YFK6W+UEp9ppQaXFyxlAS//PILu3fvluVfS4CqVasSGxsriY3r1KFDB6pWrcrChQsve+yUKVM4ePAg7733niQ2LqFGjRr85z//YfHixaxdu/aSx8bFxfHKK6/Qt2/fyyaXhLgektwoZiaLhZWJibzTuzc2oOcrrzC+SxdvhyWEEEJ402zgN6XU60qp14HNwOdXcqJSaqZSKlEptbvQ/p5Kqf1KqXil1MuXqkNrfVBr/Wih3QOBhVrrx4G+V/pGSoNPPvmE8uXLy7erotQwmUwMHDiQVatWkZmZedHjkpOTGTNmDLfffjs9evQoxgh907/+9S/q1avHM888Q25ubpHHGIbBY489RkBAAJ988olMfCs8SpIbXvLiypX89MknhAHNf/wROnUCm+1ypwkhhBCljtZ6HDAUSHFtQ7XWb1/h6Z8DPc/foZQyAx8DvYDGwCClVGOlVDOl1IpCW5WL1BsFHHM9d17dO/JdSUlJfP311zz44IMy14AoVWJjY8nOzubbb7+96DHjxo0jNTWVd999txgj810BAQF8+OGH/Pnnn0ycOLHIYz799FM2bNjA+++/T2RkZDFHKMoaSW540c3Dh5OSkkLvevUwfvqJ/iEhHNqwwdthCSGEEMVOa71Naz3JtW2/ivM2AMmFdrcF4l09MmzAV0A/rfUurfWdhbbEi1SdQF6CA8pQe+nzzz/HZrPxxBNPeDsUIdyqY8eOVK5c+aJDUw4ePMjkyZMZOnQozZs3L+bofFfPnj3p378/Y8aM4dixYxeUHTlyhH//+990796doUOHeilCUZaUmT/WJVZYGPzxB0s7dmSpzUb9W29l4b/+5e2ohBBCCF9Wjb96XUBeoqLaxQ5WSlVSSn0KtFRKjXTtXgzcpZT6BFh+kfOGKaW2KKW2nDlzxk2he49hGEydOpVbbrmFpk2bejscIdzKbDYzcOBAVqxYQXZ29t/KR40ahcVi4c033/RCdL5t4sSJGIbBv877DKO1ZtiwYWitmTZtmgxHEcVCkhslgcnEgA0bmDpkCAZw9/vv079qVeL++19vRyaEEEKUelrrs1rr4VrrOvnDYbTWmVrroVrrJ7XW/3eR86ZprVtrrVtXrly5eIP2gHXr1hEfHy/Lv4pSKzY2lszMTNasWXPB/k2bNjF//nxeeOEFqlW7aB5UXER0dDSjRo3i66+/5rvvvgPgiy++YO3atYwfP57o6GjvBijKDFkKtoTZuXAhne+5hxStCQIyq1aFBx7A8fLLWCpW9HZ4QgghxGVd7VKwbrheNLBCa93U9bo98LrWuofr9UiAq5jH42qu3QfoU7du3cfj4uLcXb3bXWop2LvuuosNGzaQkJAgq3OIUslutxMREUGvXr2YM2cOkPd/oWPHjsTHxxMfH0+5cuW8HKVvysnJoWnTpvj5+bF69WpatGhB06ZNWb9+PSaTfJ8u3EeWgvUhzWNjSTYM5j/7LOOiouD0aU69+y7WSpVoHBDA1MGDMRwOb4cphBBClGS/A/WUUrWUUv7AfcAyT1xIa71caz0sNDTUE9UXmxMnTrB06VKGDh0qiQ1Ravn5+dG/f3+WL19esLrHN998w88//8yYMWMksXEdrFYrkyZN4o8//uCmm24iJyeHGTNmSGJDFCv5aSuh7vngA547dgwyM0l48kmizGb22WwMnzuXAD8/OoeFsWPaNG+HKYQQQniVUmoe8CvQQCmVoJR6VGvtAJ4G1gD7gAVa6z0eun4fpdS0tLQ0T1RfbKZPn47T6WTYsGHeDkUIj4qNjSU9PZ3vvvsOm83Gv//9b5o0aSITXrrBHXfcQZ8+fTh9+jRvvvkm9evX93ZIooyRYSk+5MS2bbw2aBCL4+JI0Zr5wD0hIWxu354q//kPtTp18naIQgghRLEPSykJfKWNUdSwFIfDQa1atWjcuPHf5iIQorSx2WxUqVKFAQMG0LJlS5599llWrlxJ7969vR1aqXD69GkWL17M448/jsVi8XY4ohSSYSmlROSNNzJ9/36SDYPts2dzT8+eYLNx/9q11L71VqqZzYzq0IFzp055O1QhhBBC+IhVq1aRkJDA8OHDvR2KEB7n7+9Pv379WLJkCW+88QZdu3alV69e3g6r1Ljhhht48sknJbEhvEKSGz6qxZAh8O23kJXFW089RcvAQE4aBm//+ivlq1alc3AwTJ8OhuHtUIUQQohSqzQMS/n000+JjIykT58+3g5FiGIRGxtLamoqKSkpvPfee7JMqRClhCQ3fJ3JxL2TJ7MtK4uslBRev/VWqpvNOLKy4PHHsfn7c2d4OBs++sjbkQohhBCljq9PKHro0CFWr14tXchFmdK9e3fCw8MZOnQoLVq08HY4Qgg3keRGKWINC2P0jz9yxOFg45Ej8PDDfOXvz8qzZ7l1xAhClaJDSAhPNWvGvg8+gPR0b4cshBBC+DRf77kxbdo0lFI89thj3g5FiGJjtVrZt28fn376qbdDEUK4kSQ3SqsaNWDWLB7MymLjJ5/QvWJFbMCv584xZfdufnj+eQgN5W2LhRoWC10rVODf7dqx7t13sZ075+3ohRBCCJ/gyz03bDYbM2bMoE+fPkRFRXk7HCGKVXh4OH5+ft4OQwjhRpLcKANuHj6ctWfPkq01GSdPsvill7jvscegQweO+ftz0unk+9RU3tm8mW4vvURASAjbrFaoV485LVsyrnt3ts2di+FwePutCCGEEMJNFi9ezJkzZ3jyySe9HYoQQghx3WQpWAHAqZ07+faDD9jw00/sOn6cTQEBWNLTqW8YxLmOUUAIUDMggB39+mHq2JFzt95KuWbNvBi5EEKIkkaWgi25zl8KtnPnzhw9epT4+HhMJvm+SwghRMl3qTaGzBwlAIho3pyhM2cytND+b9euZcUnn7Dx99/Zc+YMCTYbB3JzMS1YAAsWUAs4C1iBYKWoYDbTJCSEb7p0gRo1WJCWRmidOjTp2ZPImBhMMlmZEEKIUkQp1QfoU7duXW+HclX27dvH+vXrGT9+vCQ2hBBClArSc0NcPcOA33+HNWt4cOpUfjtzhhSHg3NakwuEkpfwAAgAbOedagGamEzsqFoVKlbk7lOnCAoJoWa1atRv0oSG7dvTuHdvgsLDi/tdCSGEcBPpuVFy5ffcePbZZ5kyZQoJCQlUqVLFy1EJIYQQV+ZSbQxJbgi3M2w2TIcOwd69TJo1iz8OHODYmTOcOneOJJuNBkqxxmQCux1VxM9fbeCAUhhmM6EOB/5KYVWKYLOZYLOZflWq8Hrz5uSUL8/IffuoVLEiVSIiiKhZk6r16lGnTRsqNmgA0ktECCG8QpIbJVd+ciMsLIxevXoxd+5cL0ckhBBCXDkZliKKlcnfHxo0gAYNeHbAgEsem5aQwJ5Vq/hj0ybi9+/n8PHjxJhMYLWSk55OwIkT5GpNptacNgycdjtBR4/y+tGjHAM+KKLOrsB3wBagHXk/5P5AgFIEmkz8IzSUl6tVY6fTyTMJCQT6+REcEEBwQADlgoK4v3lzbmncmASnk3XHjhEWHk5oRAQVIyMJq16diAYN8A8LA+nGK4QQwkelpqYyfPhwb4chhBBCuI0kN4RXlY+Kov2wYbQfNuxvZUFAUlEnORxw4gTVDx1i8apVJCYkcObUKc6cPUtKejo9QkOhXDn8ExOJPniQLMMgR2uytCbN6eRYcjKkpLBTazYUUb3as4dbgIXA80WUjwTeAt4G/gOYyVt2yOR6PtVqZXBgIB/ZbIzPzsaiFH5K4Wcy4WcyMbVmTdpXqsS81FRmJyZitViw+vtj9fMjMCCAUR06EFWlCj+fOcOmkycJDAoiIDAQa1AQ1uBgerVvT1BYGAkZGSRlZxNcqRKBYWEEVahAUHg4/uXKydwmQghRTHx1zo3GjRvTsWNHb4chhBBCuI18AhK+x2KBGjWw1qjBgFtvvehhzYH4S1TzAHC/w0Hq4cOcPXSI1OPHST5+nEYVKoDFwh0HD5L8yy+cy8wk49w5MnNyyMzN5fZq1cBqpc6JEzQ8cYJcw8CmNQ6tsWuN1TXk5kxuLmcNAwMwAO3aTuzfD8BSYHURccXu3UsUMPYi5buApsAgYGMR5aeBKuT1WvnNtU+5NhNg8/cHk4muNhubDaMgMWNSCitwIjwcTCb6paayzeHADJiVwuyaMHZz7dpgNvNgQgL7cnOxmExYTCbMSlE1IIB5MTFgNjPijz84mpOD2WTC7DqmZkgIb7dpAxYLb2zfTpLNhsViwWI2Y7FYqFWxIsPatgWLhalbt5LpdOLn54fZbMZssVCjcmV6tWwJZjOLtm7FqTVmPz8s/v74+fsTGR5Oi4YNwWzm1z/+wOTnV1Bu8fenYqVKREZGYphMJCQmYrJYsAQEYPLzw+LnR1D58liDgjBMJhyGgcVqlUSR8BjD4SjYTOT9QTYcDtJTU/P2O50Fj+WsVsoFBeGw2TiWkPBXudOJYbdzQ4UKVCxfnqzMTP44cADD6UQbBg67HcPppE5EBBEVKpCans7WffswDAOHw8HNMTGU79vX27fCp2mtlwPLW7du/bi3Y7kaw4cPLxiiIoQQQpQGMueGEF5iO3eO9OPHyTh9mozERDKSkjiXksLNNWtSzjDYvGsXm+LiyM7KIjcnh1ybjdzcXEa3bk15rfli717WHDuGzeEg1+HA7nRidzpZ2aQJVqeTlw4dYk1aGg7DwOFKvmitORgRAYbBgLNn2Wi3FyRfDK3xA5KCg8EwaJWTw26tC5IymrxVcc65GsORWnOy0HsKAHJcz0OAc4XKg8/bZwVyC5VX5K/JaP0AR6HyqsAJ13OTK6bz1QYOuJ4X1WRvBux0xRBSRPlNwCYgDqhfRPntwBpgM3nJo8LuB/5PKVZoTVEfF58CPjKZmGMYPFREnK8qxWizmSmGwbOG8bfy900mnjabGe90MtpVfr6ZZjODLRZG2e28X6hcAYv9/OhlNjPCbuczp/Nv5//k709rk4mhNhtfFVH/bn9/6phM3G2zsbKI8lP+/pQ3mehls/FjEdfPsloB6Jiby++F/vb4A+kBAQDcaLOx97xyTd7PTrK/PwANbDYOFbp2GJDoSkRFORycLlReGThhNgMQ7nSSel7dAFHAEddQs3KGQVah82sD8a6ffT+t//az2RDY53pe1M9mc+B/XPxnrx3wKxf/2esG/Je8hGZR37UPBBa5ttgiyocCM4FpwBPn7V8O3OmBdoDMuVFy5Sc0UlJSCAsL83I0QgghxNWROTeEKIH8y5UjvEEDwhs0KLL8Jtd2MQ+5tot5x7VdzDeXiW/rZcpPFHptOBw4slwfCW02Dpw4QXZ6OrbsbGxZWdizs/FTCqKiwG5n3Y4dpKWlYc/NzdtsNipardCwITgcTNuwgbSsLJwOB06nE6fdTnRYGDRpAk4no3/8kSybDcPpxGEYOJ1OmlaoAI0agdPJYz/+iN0wMAwDp2FgaE2HihWhdm38HQ76bt6M4Ur45D/2qFQJatSgQm4uXXbtQgOGYeQ9ak2vSpUgIoIq2dm0iY9Hu87LL29XsSKEhxOZmUmThATAlRhyHdO0QgWoUIHIc+eoe/p0wQfg/PLosDAoX54bzp0j6uzZv31ArhIWBkFB3HDuHDekpxfszz+uQmgoBAZSJSOD8HPn/qrf9RgSEgIBAVTMyCAsq/DHd7CGhICfH+Hp6YTl5Pyt3K98ebBYCE9LIzS3cGoKTK65aCqnphJm+2udpPxeQ1SoAEBESgqVbLYLzrUqBa5VkqolJZFot19QHmYyQZUqoBQ1ExPJdjgKEj8KuMFshqpVQSnqnTqFv90OShUcU9NigWrVQCkaJyRw6rzkjgIa+vtD9eoAxBw5QorTmdfjyVVHy8DAvHKlaBMfT5ZhXFDeoVw5qFEDlKLdvn04XfXml3cJDYXoaPy1puPu3X+Vucp7hYdDdDSV7HZu37XrgjKlFAMiIqBmTaJzc+l/frlru7t6dahZkxaZmdzvKjcBJpMJpRSD6tSB6tXpmJ7OE7t2Fexvfsstf/t3FGWDJDaEEEKUNtJzQwghhBBuJT03Sq78nhtlqf0nhBCi9LhUG0OWexBCCCGEEEIIIYRPk+SGEEIIIcQ1Ukr1UUpNS0tL83YoQgghRJkmyQ0hhBBCiGuktV6utR4WGhrq7VCEEEKIMk2SG0IIIYQQQgghhPBpZWpCUaXUGeCIm6sNB5LcXKfII/fWM+S+eo7cW8+Re+sZnrqvNbXWlT1Qb4klbQyfI/fWc+TeeobcV8+Re+sZxd7GKFPJDU9QSm0pazPCFxe5t54h99Vz5N56jtxbz5D7WrLJv4/nyL31HLm3niH31XPk3nqGN+6rDEsRQgghhBBCCCGET5PkhhBCCCGEEEIIIXyaJDeu3zRvB1CKyb31DLmvniP31nPk3nqG3NeSTf59PEfurefIvfUMua+eI/fWM4r9vsqcG0IIIYQQQgghhPBp0nNDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpkty4Dkqpnkqp/UqpeKXUy96OpzRQSlVXSv2glNqrlNqjlHrW2zGVNkops1Jqu1JqhbdjKU2UUmFKqYVKqT+UUvuUUu29HVNpoJR63vW7YLdSap5SyurtmHyVUmqmUipRKbX7vH0VlVL/VUrFuR4reDNG8RdpY3iGtDM8S9oYniFtDM+QNob7lJQ2hiQ3rpFSygx8DPQCGgODlFKNvRtVqeAA/qW1bgy0A56S++p2zwL7vB1EKTQJWK21bgjEIPf4uimlqgEjgNZa66aAGbjwJTPlAAAgAElEQVTPu1H5tM+BnoX2vQys01rXA9a5XgsvkzaGR0k7w7OkjeEZ0sZwM2ljuN3nlIA2hiQ3rl1bIF5rfVBrbQO+Avp5OSafp7U+qbXe5nqeQd4v72rejar0UEpFAXcA070dS2milAoFOgEzALTWNq11qnejKjUsQKBSygIEASe8HI/P0lpvAJIL7e4HfOF6/gXQv1iDEhcjbQwPkXaG50gbwzOkjeFR0sZwk5LSxpDkxrWrBhw773UC8sfRrZRS0UBLYLN3IylVPgBeAgxvB1LK1ALOALNc3XGnK6WCvR2Ur9NaHwfeA44CJ4E0rfVa70ZV6tygtT7pen4KuMGbwYgC0sYoBtLOcDtpY3iGtDE8QNoYxaLY2xiS3BAlklKqHLAIeE5rne7teEoDpdSdQKLWequ3YymFLMCNwCda65ZAJtK9/7q5xmb2I69hFwkEK6Ue8G5UpZfOWxte1ocXZYK0M9xL2hgeJW0MD5A2RvEqrjaGJDeu3XGg+nmvo1z7xHVSSvmR1+D4P631Ym/HU4rcDPRVSh0mr4vzbUqpOd4NqdRIABK01vnf/i0kryEirk834JDW+ozW2g4sBjp4OabS5rRSqiqA6zHRy/GIPNLG8CBpZ3iEtDE8R9oYniFtDM8r9jaGJDeu3e9APaVULaWUP3kT0Czzckw+TymlyBtTuE9r/b634ylNtNYjtdZRWuto8n5ev9daS4baDbTWp4BjSqkGrl1dgb1eDKm0OAq0U0oFuX43dEUmUXO3ZcBDrucPAUu9GIv4i7QxPETaGZ4hbQzPkTaGx0gbw/OKvY1h8fQFSiuttUMp9TSwhrzZdWdqrfd4OazS4GZgCLBLKbXDtW+U1nqVF2MS4ko8A/yf64PIQWCol+PxeVrrzUqphcA28lY42A5M825UvkspNQ/oDIQrpRKA0cB4YIFS6lHgCHCP9yIU+aSN4VHSzhC+SNoYbiZtDPcqKW0MlTf8RQghhBBCCCGEEMI3ybAUIYQQQgghhBBC+DRJbgghhBBCCCGEEMKnSXJDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpktwQQgghhBBCCCGET5PkhhCi2CmlwpRS/3A9j3QtxSWEEEIIcV2kjSFE2SVLwQohip1SKhpYobVu6uVQhBBCCFGKSBtDiLLL4u0AhBBl0nigjlJqBxAHNNJaN1VKPQz0B4KBesB7gD8wBMgFemutk5VSdYCPgcpAFvC41vqP4n8bQgghhChhpI0hRBklw1KEEN7wMnBAa90CeLFQWVNgINAGGAdkaa1bAr8CD7qOmQY8o7VuBbwATCmWqIUQQghR0kkbQ4gySnpuCCFKmh+01hlAhlIqDVju2r8LaK6UKgd0AL5WSuWfE1D8YQohhBDCx0gbQ4hSTJIbQoiSJve858Z5rw3yfmeZgFTXNzJCCCGEEFdK2hhClGIyLEUI4Q0ZQMi1nKi1TgcOKaXuBlB5YtwZnBBCCCF8lrQxhCijJLkhhCh2WuuzwM9Kqd3Au9dQxWDgUaXU/4A9QD93xieEEEII3yRtDCHKLlkKVgghhBBCCCGEED5Nem4IIYQQQgghhBDCp0lyQwghhBBCCCGEED5NkhtCCCGEEEIIIYTwaZLcEEIIIYQQQgghhE+T5IYQQgghhBBCCCF8miQ3hBBCCCGEEEII4dMkuSGEEEIIIYQQQgifJskNIYQQQgghhBBC+DRJbgghhBBCCCGEEMKnSXJDCCGEEEIIIYQQPk2SG0IIIYQQQgghhPBpFm8HUJzCw8N1dHS0t8MQQgghSrWtW7cmaa0rezuO4iRtDCGEEMLzLtXGKFPJjejoaLZs2eLtMIQQQohSTSl1xNsxFDdpYwghhBCed6k2hgxLEUIIIYQQQgghhE+T5IYQQgghhBBCCCF8miQ3hBBCCCGukVKqj1JqWlpamrdDEUIIIcq0MjXnhs+YMiXv8R//8G4cQgghhLgkrfVyYHnr1q0f93YsQojSx+l08u6775KRkcGYMWMwmeS76csxDIPU1FTOnj1LcnIyycnJpKamkpqaSlpaGunp6WRkZJCRkYHdbmfkyJE0bdrU22ELN/BqckMp1ROYBJiB6Vrr8YXKOwEfAM2B+7TWC88rcwK7XC+Paq37Fk/UHmYYnHz1VZ5MTubNKlVoHhvr7YiEEEIIIYQQxez48eMMHjyY9evXA5CZmcnEiRNRSnk5suL36quvsnDhQnJycsjNzcVms2G323E4HDgcDpxOJ4ZhoLW+6rrnzZvHU089xaRJkyR55OO8ltxQSpmBj4HuQALwu1JqmdZ673mHHQUeBl4ooopsrXULjwdazE6vX8/+5GQ2Ak8+8gg/9e+PySIdbIQQQgghhCgrVq1axUMPPUR2djZffPEF27dv54MPPqBSpUq8+uqr3g6vWI0bN46xY8eilMJsNmM2m7FYLPj5+REcHIy/vz9Wq7VgCwoKIigoiODgYMqVK0e5cuUoX748oaGhhIaGEhYWRlhYGBUrVuTgwYMMGzaMyZMns2jRItasWUOzZs28/ZbFNfLmp+a2QLzW+iCAUuoroB9QkNzQWh92lRneCNAbvvrwQ54D3uzShdd++IFZjz3Go59/7u2whBBCCCGEEB5ms9kYNWoUEyZMICYmhvnz59OgQQMeeOABUlJSeO2116hYsSJPPfWUt0MtFkuXLuWVV17BarVy4MABIiMj3Vr/TTfdxF133cWAAQNYtWoVMTEx0ovDDaZOncq6deuYPn065cuXL7brevNfrBpw7LzXCa59V8qqlNqilNqklOp/sYOUUsNcx205c+bMtcZabL7/9Vfq+Pnxyn//S8fy5Xlp9myS9u/3dlhCCCGEEEIIDzp48CC33HILEyZM4KmnnmLTpk00aNAAAJPJxPTp0+nXrx9PP/00c+fO9XK0nrdv3z5iY2MxmUx8//33bktspKSkMGfOHO6++24iIiJ4/PHH+fjjj1mxYgXBwcFMnjyZqKgodu3adfnKRJFGjhzJokWLcDgcxXpdX05H1dRatwbuBz5QStUp6iCt9TStdWutdevKlSsXb4RXyZGTw4+nT3NbnToos5kpn39OutaMGTjQ26EJIYQQQgghPGT+/Pm0bNmSuLg4Fi9ezOTJk7FarRccY7FY+Oqrr+jcuTMPPfQQq1at8lK0npeamspNN92Ew+Fg+vTptG/f/rrqO3LkCB9++CFdu3alcuXKDBkyhI0bN9KhQwcWLFhA/fr1WbNmDXv37qV3796cPHmSmJgYnnnmGQyjzAwicIupU6eSkpJCnz59qFixYrFe25vJjeNA9fNeR7n2XRGt9XHX40HgR6ClO4Pzhu3z55MO3Hb77QA0HTCAr/v35/W9e+Hnn70bnBBCCCGEEMKtsrKyGDZsGPfddx9NmjRhx44dDBgw4KLHW61Wli5dSkxMDHfddRc//fRTMUZbPAzDoGXLlmRkZPDcc88xdOjQq65Da8327dsZPXo0LVq0IDo6mmeffZaTJ0/y4osv8uuvv3L8+HEWL15MXFwcDz/8MFOmTKFRo0bceOONzJ8/X3pxXKNXXnkFpRTTp08v9mt7M7nxO1BPKVVLKeUP3Acsu5ITlVIVlFIBrufhwM2cN1eHr/r+q68A6PL4X6vJ9f/ySypUr45j+HAcOTneCk0IIYQQQgjhRnv27KFt27ZMnz6dkSNHsn79emrWrHnZ88qXL8+3335LzZo1ufPOO9mxY0cxRFt8br/9dg4fPkzXrl2ZOHHiFZ9nt9v57rvveOaZZ4iOjubGG29kzJgxlCtXjnfffZc///yTvXv38vbbb9OuXbuCOTWioqKYNm0ae/fu5Y477mDs2LE8+eSTvPLKK/Ts2VN6cVyFWbNmkZSURI8ePQgPDy/266trWS7HbRdXqjd5S72agZla63FKqTeBLVrrZUqpNsA3QAUgBziltW6ilOoATAUM8hI0H2itZ1zueq1bt9Zbtmzx1Nu5buldu7LlwAFuO3z4gv2pc+bQecgQHuzbl38uXeqd4IQQQogrpJTa6ho6WmaU9DaGEKLk0FozY8YMRowYQUhICHPmzKF79+5XXc+xY8e4+eabyc3NZePGjdSrV88D0Rav559/ng8++IBatWoRHx9/2Uk909PTWb16NUuXLmXlypWkpaVhtVq5/fbb6devH3feeSdVqlS5qhi2bt3KqFGjWLt2LVFRUQwYMICZM2eSmZlJ1apVZUWVS4iIiCAxMZGEhAS3T/6a71JtDK8mN4pbiW542GxQoQI8+ih8+OEFRdow6FO1KusTE9n3229EtWnjpSCFEEKIy/P15IZSqgbwIZAM/Km1Hn+5c0p0G0MIUWKkp6fzxBNP8NVXX9GtWze+/PJLIiIirrm+/fv307FjR4KCgti4cSNRUVFujLZ4zZgxg8cee4yQkBASEhIuusrG8ePHWbZsGUuXLuX777/HbrcTHh7OnXfeSf/+/enevTtBQUHXHc8PP/zAyJEj2bx5M/Xr1yc4OJjt27ejlJIVVYowb9487r//frp27cp3333nsetcqo0h/xolxM65cxmTlcXZ1n//d1ImEx99/TVO4LlLjMETQgghyjql1EylVKJSaneh/T2VUvuVUvFKqZcvU00zYKHW+hFKwZxeQoiSYcuWLbRs2ZKvv/6acePGsWbNmutKbAA0aNCA1atXk5yczO23305SUpKboi1ev/76K8OGDcNisbB58+a/JTYOHz7MuHHjaNu2LVFRUfzjH/8gPj6eESNGsGHDBk6dOsWsWbPo16+fWxIbAF26dOHXX3/lm2++wWKxsH37durWrUtAQIDMxVGEF154AYCZM2d6LQZJbpQQS2bPZjRg6tixyPJanTrxSrduLDp+nG/ffLN4gxNCCCF8x+dAz/N3KKXMwMdAL6AxMEgp1Vgp1UwptaLQVgXYBDyqlPoeWF3M8QshShmtNRMnTqRDhw7Y7XbWr1/PqFGj3Pat/4033sjy5cs5dOgQvXv3JiMjwy31FpcTJ05w2223YRgGixYtolGjRgVlTqeTCRMm0KhRo4KJKseNG8fu3buJi4vjvffeo2PHjpjNZo/EppSif//+7Ny5k88//xybzUZOTg6VKlWSuTjO880333DixAk6depEjRo1vBaHDEspITqHhZFhs7E1K+uix+SmpxNTuTL1LRaWJSVBYGAxRiiEEEJcGW8PS1FKRQMrtNZNXa/bA69rrXu4Xo8E0Fq/fZHzXwB+01pvUEot1FrHXuS4YcAwgBo1arQ6cuSIu9+KEMLHJSUlMXToUFasWEH//v2ZMWOGx5bHXL58OQMGDKBz586sXLmSgIAAj1zHnWw2G9WrVycxMZG33nqLkSNHFpTt3buXRx55hM2bN9O3b18+/PDDK5pw1ZNyc3OZOnUqY8eO5cyZM5jNZpxOZ5mfi6NmzZocPXqU+Ph46tSp49FrybCUEi4rKYlf09K4rUmTSx4XUL48386cyaKsLHi7yPaYEEIIIf6uGnDsvNcJrn0XsxoYoZT6FDh8sYO01tO01q211q0rV67slkCFEKXHhg0baNGiBWvXruWjjz5i8eLF15TY+Oabb5g2bdplj+vTpw+zZs1i3bp13H///TgcjmsJu1i1b9+exMRE7rvvvoLEht1uZ9y4cbRs2ZL4+Hjmzp3LkiVLvJ7YAAgICGDEiBEcOHCAN954g0DXl81luRfHqlWrOHr0KO3atfN4YuNyJLlRAvwycyY24LY+fS57bK3Bg/EbPJj08eM5XgrXtRZCCCG8TWu9W2sdq7UerrV+4VLHKqX6KKWmpaWlFVd4QogSzul08uabb9KlSxeCgoLYtGkTTz/9NEqpq6rHMAwGDBjAwIEDeeKJJ3jjjTcue86QIUOYNGkSixcv5oknnqAk99IfPHgw27ZtIyYmhnnz5gGwY8cO2rZtyyuvvEL//v3Zu3cvgwYNuup752khISG89tprHDp0iH/+85/4+fmhtWby5MlERkaWqbk4nnnmGcC7c23kk+RGCXBk/XpCgFsee+yKjjfeeYf2TicP9++PLmOZQSGEEOIaHAeqn/c6yrXvummtl2uth4WGhrqjOiGEjztx4gTdunVj9OjRDB48mK1bt9Ky5dXPS7x//36qVq3KkiVLiIiIIDAwkNdff50pU6Zc9twRI0YwevRoZs6cyYsvvlgiExzvvPMOc+fOpXLlymzatInc3Fxee+012rRpw8mTJ1m0aBHz58+/6mVci1t4eDgTJkwgPj6ehx56CIDTp08TExNDWUh6r1u3joMHD9KqVasL5krx1s+czLlRErRvj0MpLL/8csWnTLn3Xp5asIB5zzzDfYWWjhVCeI/hcGDk5GBxODCysjgSH09Oejq5586Rm5lJblYWNwQG0qBKFWyZmSzYsIHcnBxsOTnYcnOx5ebS6oYbuC0qiuS0NMZt3Ijd4cDhdOJwOHAYBndERnJXtWocSkvjxe3bcRoGDsPA6doerlqVQZUrsyU1lWfj43FqjVNrDNfjC+HhPFC+PN+mpfF8YiIGeX+E8h/HhIUxODiY2efOMSo1FQ0Fm6E1U0JCuMvfnwlZWbyVnV2wP/+vyTyrld4WCyNzc/nIbi+4N/nla/39udlsZpjNxpdO5wVlAFstFpqYTMTa7Swr4m/UUZOJCJOJ251Ofiii3G6xANDB4eC3QmVmINc16Vhzp5O9hcoDgExXeQOnk4OFykOAZFf90Q7H3z4dhwMn/fwAiLTbSQLO/66pOhDvGgN9Q24u6eeVKaC+UuywWkEpKmdlkXXe+Qq40WRifXBwXnl6OnYo+DZLAZ0sFpaEhIBSVElOLtivXMf19PdnVoUKJGtN88REvqlWjTZHj/7tHl6vEjjnhgX4E+hKXlLjd+B+rfUeN1yrD9Cnbt26j8fFxV1vdUIUC4fDgdlsLnHfhvsqp9PJpk2bWLp0KbNmzSIrK4spU6YUfNi9Wh999BHPPfcchmFw1113sWDBAvbt20fLli2x2+3Mnz+fe+6555J1aK0ZMWIEkydP/ttcFt62atUq7rjjDgICAoiPj+fEiRM88sgj7NmzhwcffJCJEyd6bF4ST9u3bx+9e/fm8OHDDB06tET0ZvCk+vXrExcXx//+9z+aN29esH/ixIksWLCAdevWuW31mnyXamNY3HolcfXS0+H337Fc5S+cJ778klkrVvD8xx/T64UXCPXirLRCFBdHTg7pCQnkJCcTGRQEGRls/v13EhISyExNJTMjg6xz5whRimFNmkBWFq/99BOHU1PJttnIttnIdTqp7ufHzFq1wG6n6x9/cNJux6E1DsPAATQ0m1kbFgZOJ1HJyaS7Pvg7yfsQ3gTYajaD1lgMA2ehOBsC+1zPaxfxPloBW4AkYEgR5Z2A24CjwPtFlCfGxXEXeZ/UFhVRHp6czCBgP1BUynRbQgIPKMUxrYnjwg/PAMdTUiA9nWSnkyRX7zB1XnlmdjY4ndjsduxaF5SZlMp7bjaDvz9WhwOra7zv+ef7BwVBQADh584Rlp19wfUVYA0PBz8/aqakUPW88nz+VauCxUK9pCTis7NdJ6uC44yoKEwmE43PnCExv9xVt59SEB0NQLNTp8jJyQH++oahnMkE1fO+4G908iQOm+2Ca1c0mSAqCrSm3smTmFzJm/wUSzWzGapWBSD65Eks5yVvtNZUs1igUiUAqiQmYjaMgnO11lSyWCAkJC+WnByUK2mUf4zVZAJXcgWlwJW0yr9GrmGAzYbhdJJ53v78+pNsNkhJweb6t808e5bSRik1D+gMhCulEoDRWusZSqmngTXk5bhmuiOxAXk9N4DlrVu3ftwd9QnhaceOHePWW2+lWrVqLFiwgKqu31ni6mRmZvLf//6XpUuXsmLFCpKSkrBYLHTr1o2JEyfSsGHDq67TZrPRs2dPfvjhB/z8/Jg9ezaDBw8GoEmTJqxfv56OHTsyaNAgKlWqRNeuXS9al1KKSZMmkZKSwqhRo6hYsSJPPPHENb9fd9m/fz/9+vVDKcXKlSv58MMPmTBhApGRkaxcuZLevXsXSxxHjhzhvffe44cffqBv376MHTvWLavXNGrUiFmzZtGlSxe++OILXnrppWv6WfAFGzduJC4ujpiYmAsSGwCLFy8mJyfH7YmNy5GeG1727Rtv8NrrrzP/yy+p/cADV3XultmzafvQQzwTE8OkHTs8FKEQF+FwQHIyJ/bsIX73blJPnSI9KYn01FTOpafzQosWmLKymLplCz8mJJCdm0uW3U62w4HT6eSXWrUgN5e7ExL4OTcXm9Z5CQbAD0ixWMAwqG0YHCp0aQuQ3x+gIpBSqNwK5H+kLQdkFioPgYJvzEOg4NtxRd5YvTpKsddqBbOZqMxMslzXNCuFGWgTEMA3kZFgsdD6yBEMpbCYTPgphZ/ZTMcKFRjToAFYLNy1bRtmsxk/sxk/iyWvPCqKB5s3x6YUY377DT8/P/z9/fG3WvH396dVnTq0b9SIHGDl7t0EBAbiFxCAn9WKv9VKdI0aRFWrhg04lJiIf1AQfoGB+AcF4R8cTFBYGP7lyv31IViIYubtnhveUBLbGEIUlpSURMeOHTl+/DhOp5OwsDAWLVpEu3btvB2aTzh16hTLly9n2bJlfPfdd+Tk5BAaGsodd9xB37596dmzJ9c6RG3btm107dqV1NRUoqOj+fnnn4mMjPzbcatWreLOO+/EbDbz66+/0rr1pX/V2u12Bg4cyMqVK5k3bx733nvvNcXnDunp6VSvXp309HRefPFFlixZQlxcHMOGDeOdd9655nt3pTZv3syECRNYt24dya7ejfnKlSvHmDFjeO655677OoZhYLFYMJlMNGvWjE2bNvnEyjVXq3Hjxuzbt4/ff//9gp/DxMREIiIiGD16NKNHj3b7dS/VxpDkhpf9q3VrPt66lZSzZwm8hu5XTzdrxqHdu1n222+Y27TxQITCpxkGWadOcWTbNk7Hx5N4+DBnT58mOSmJh+rWJQpYtHs3s+PiOJebS6bdTrbTSbbTydKKFWmkNU+mpvKlzYaDvJ4L+b0X/gTqAe2BTUVcOgUIA2KAnUWUOwGT2czNTifbyPsq1ULeN+shJhMHo6LA35+HExPZZbMRYDYTYLEQYDZzQ1AQX3ToAFYr7//5J8dzcwkKDCQoOJig4GAiwsO5t0sXCA5m24kTGIGBhFSuTMgNN1C+WjWCwsMxyQd/ITymLCU3ZFiK8BXp6el07dqV3bt3s3btWsLCwujfvz/Hjh3j448/5vHHpfNRYVpr9u7dy9KlS1m2bBmbN28GIDo6mr59+9KvXz86duyIn2s44rV68803ef3119Fa8+ijjzJt2rRL9iKYPXs2Dz30EAEBAezatYt69epdsv7s7Gx69OjBpk2bWLZsGT179ryueK+FYRjUr1+fAwcO0Lx5c3bt2kXNmjWZPn36JXugXO81Fy5cyKeffsqmTZvIdvXm9PPzo0WLFjz66KMMHjyYp556ijlz5mAYBpUqVWLSpEkFPWauVaVKlTh37hw2m41//vOfTJgwwR1vqcT47bffuOmmm2jSpAm7d+++oGz69Ok8/vjj7Nixg5iYGLdf+5JtDK11mdlatWqlS5qWgYG6c1jYNZ+fe/q0NqpU0bptW60dDjdGJrzFnp2tj23apFPWrNF6yRJ9+O239ds9eugX27TRj9Wvr2OrVdO3V6yoVzVsqHWzZnpOlSo60mTSFZXS5UAHgDaD/hS0Bv0kF0yZULB94SofXGi/cp2/zmLROjBQP+/vrysppSNNJl3bYtGN/f11q8BAfaRtW6179tRftG6th9arp0fExOhRHTrot3v00B/fc4/OnTVL66VLdfzcuXr7vHn68E8/6bRjx7TTbvf2LRZCeBiwRZeAv/vFuZXENoYQ+bKzs3WXLl20xWLRK1asKNh/9uxZ3aNHDw3oJ554Qufk5HgxypLBbrfrH374QT///PO6Tp06Be2jNm3a6DFjxuidO3dqwzDccq2MjAzdqlUrDWir1aqXL19+xedO+P/snXd8FMX7xz97/dJJIyEhgUDokBAIvdfQpEoEpEkRkS6gCCJN+IIg0ouIKKAIoQgCShGR3gQEkQ6RhBBCer1c+fz+SLIS0pNL0d++X695JTczO/Ps3t7dzLNPWbaMAGhpacmwsLA8+8fExNDX15darZZnzpwpitiFolOnTuJ5CoLACRMmMD4+3uzzJCcnc9myZfT19aVCoRDfPysrKwYEBPDgwYPZHhcZGcnu3btTEAQCYMWKFXnkyJFCy9G0aVMC4MiRIwmAhw8fLvRYZZF69eoRAE+fPp2lrVu3bqxcubLZPievktsao9QXAyVZytrC48XduxQAzmvXLlP9BB8fVlcq2cDCgqu8vcnevRkWGMhp/v5c0rUrt4wYwZ/mz+f1XbsY/+gR+c03fAzw8LhxpXMiEiIZiomzGzbw7qpV5Jo1DH/vPY6tU4dveHiws4MDm1hZsbZazcV2dqSzM49otaJC4mUlw8h05cP6HJQTkwBSELhWEKgGaAXQPl0JUUWh4B4PD7JpU/7k58d+bm4cWa0ap/n7c2GnTlw/cCDDNmwgjx1j5C+/MPjsWSZHR5f25ZOQkPiPICk3JCTKDnq9nj179iQAbtu2LUu7wWDgjBkzCIBNmzbl06dPS0HK0iUuLo67du3im2++yXLlyhEA1Wo1u3btyvXr1zM0NNTsc544cYKWlpYEwNq1azMyMrLAY2S8b/b29oyNjc2zf3h4OL29vWlnZ8fr168XRuxCMW7cOHH96u3tzVOnTpl1/LCwME6dOpWVK1cWlRMA6OzszMGDBxfoXIODg9miRQtxjBo1avDSpUsFlum9994jAK5fv5516tShs7Mznz17VuBxyiJXr14lAFarVi1LW1xcHFUqFSdPnlxs80vKjTK68Ng9bVqaxmvdOrEuMSKCwksb2L7pG9x9OWxwh6S3+6a/1qfPN0UAACAASURBVAC0BegsCKwkl3NLhQpkkyY86+/PwIoVOc3fn5uGDuXFr76SNrPZoE9O5uNTp3hq9WpeWriQXL6cxunTOdzbmz1dXNjKxoY+Gg29FAqO0GhIW1uGqVRZFBMA2Cr9vbmeTZsA8A1BILVaXrGyoku6QsJHo2FLGxt2d3bmvjZtyAkTGDplCte8/jq/nziRJ5Yt4639+xn96JFkASEhIVFm+f+k3ADQA8DGqlWrmuvySUiYDaPRyKFDhxIAV61alWvfXbt20dLSkq6urqXyZL+kCQ0N5dq1axkQEECVSkUAdHBw4NChQ7l79+5isSrIYPLkyeKacMqUKUUaK8MywM3NjTqdLs/+jx8/ppubG11cXHj//v0izZ0fpkyZIp7rhAkTmJSUZJZxr1+/zkGDBtHJyemf9bUg0MvLi9OmTcuXNUtu3LhxQ7ROAMBGjRoV6HqdOnWKAPjGG2/wxo0bVKvV7NKlS7FZM5QkGdZGx48fz9K2c+dOAuDJkyeLbX5JucGyqdz4tVcv9pPLqUtIEOvmtm1LAJzVogVJ0hgfT96/z+gff+T3EydyVb9+/KhlS46tXZtveHjwYP36ZNOm3OjsnEm5oQWoALgofYM9KwflyDKAtLDgFzY2rKVSsX25chzu7c2FnTpx34wZjP/jD9JoLK1LVCB08fF8fOoUz37xBffNmMED775LLlhATp7MCTVqsKeLC9vY2bG+VsuqCgW7qtWknR2p1VKbzbWpnH7tmE2bHGBbmYy0s6O+fPksiokhXl7c0aULuXAhdevX8+CcObz63XeMuH1bUkpISEj85/n/pNzIKGVtjSEhYTKZOGnSJALg3Llz83XMjRs3WKVKFSqVSm7YsKGYJSwd7t27x7feekt0WfD29ubUqVP522+/UV/Ma7TIyEjWqFFDdCcxlwVDr169xCfpxnys22/dukUHBwdWrlyZW7Zs4Q8//MCTJ0/y+vXrfPz4MWNiYvI1Tm5ERkaya9eu4tp5+/btRRrPaDTywIED7Ny5M62srMRxFQoF69evz+XLlzM5OblIc2THyZMn6eXlJc7XsWNHhoeH50teQRBE64bVq1cTAFesWGF2GUuSmzdvEgC9vLyybR84cCAdHR1pKMZwCbmtMaSAoqVJrVqApydw+LBYVV+txrXUVMQ+eQIbd/cCDTezeXMsPHsWv37+OVpPnPhPQ3pQyftnz+LPkyfx1/XrePjkCZ5ERWGprS38k5PxbnQ01hmNePVuOACgO4B3BAHfkbCTy+GkVsPdxgaVXF3x8eDBsKtRAzcfP8bDp09h1OvTisEAk8GAAY0bA0Yjfrl5E/eePYPRYBCLHMD4pk0BoxHfXbuGO8+fw2gywZCeTUNpNOKTatWAmBgMvXIFV+PjkWgwINlkQgoJWwCPlErAYICtySRmv8jg5YwYGgC6l9rkAKoKAm7b2ABaLRpGRcEgk8FWpUI5CwvYW1ujSeXKGN2lC+DqinPR0ahQpw5cfX3TslBISEhISOTI/6eAohmUuTWGxP97FixYgI8++ggTJ07E8uXLIQgCfvzxR3z++ec4f/48GjdujOPHj2c5Ljo6GgMHDsRPP/2EUaNGYdWqVf+JTA9//fUXPvnkE3z33XdQqVQYPXo0xowZgxo1akAQXk06bn7279+P/v37Q6fToVGjRjhx4oRZ02S2bNkSp0+fhr+/Py5evJhn/0uXLqFTp06IiYnJtl0QBNja2sLOzk78m1Feff1q3dWrVzFmzBi8ePECAPD999+jf//+hT63H3/8EQMHDkR8fDwAwMLCAk2aNMHYsWPRu3dvs6RwzYu9e/di7NixePbsGWQyGfr27YvNmzfDKpd9gaOjIxITE5GcnAySeO2113DkyBFcunQpS+rUfwtNmjTBhQsXcOjQIXTp0iVTW2pqKpydndG3b198+eWXxSaDFFC0DD5Vib9/n6EAuWTJP5XR0TQCPOnmVqgxEyMiWEmhYE2VirpCmtJFP3rEE8uXc1W/fhxfrx4jAwLIBg041tKSNunWIHiphKZbNtTPwTIkw/KhWh7tFbNpk73U7op/Al1qAFoD9JbLyYoVyerVOaBcObaxs2NPFxcOrVKFk+rX59oePcgNG8h9+3hj61Y+PnWq0NdFQkJCQiL/IJ+WG0jL5pxjyc8YpV0guaUUGwkJCTx8+HCRnyD/f2TNmjUEwDfffJM7duxgy5YtqVar/7FAlcsJgLNnz872+JfjcDRp0qRYYk6UFNeuXWO/fv0oCAItLS05derUIrssFASj0chhw4aJbhPz588vtnnq1KlDAAwICMjXMYmJibx//z6vXLnC48ePc/fu3fzyyy+5bNkyzp49mxMmTOCQIUP42muvsVWrVvTx8aGnpydtbW2zXde/XDIsY/JrNZQdycnJYiBSQRDYu3dvXrx4sdDjmYMNGzaI569QKPjOO+/kaPHTrFkzAmBUVBRJ8vnz53RxcWGtWrWYmJhYkmKbhbt37xIAPT09s23/+eefCYD79+8vVjlyW2NIlhulxHfjx2Pg6tW49u238BkwIK3y/feBJUuAhQuBGTMKNe6Ps2fjx/nzsXTuXFjNnm1Gif/BZDDgwYkT+OPnn9HXzg54+hTfPXiAi+HhkMnlkMtkkCsUEGQyLGzfHpDL8cOdO/grMhJyhQJyuRxyhQIqpRLvtGkDyOU4fucOQmJjIVcqxT4OLi5o37UrUKECYG8PlIBWVkJCQkKi6OTXckMQhEdIWwgLADyQlkVaQFom6b9JVi5WQc1IWVpj/FeYNWsWPvnkEzRr1gybNm1CzZo1S1ukfwXbt2/Hm2++CTs7OyQkJMBgMAAA7Ozs0LFjR3zwwQfw8vJChQoVkJKSgnPnzqFx48bZjhUUFIRhw4bB2toau3fvRrNmzUryVIrEpUuXsGDBAuzfvx82NjYYP348Jk2aBEdHxxKTISQkBC1atEBwcDDKlSuHY8eOwc/Pr9jmMxgMqFq1KoKDgzF48GB88803xTaX0WhEfHw8YmJiEBsbi5iYGLHMmzcPDx8+RN++fREUFFSo8Xfu3Ilhw4YhOTkZ7u7uOHz4MOrUqWPmsygcJpMJCxcuxMKFC5GcnAyNRoNp06Zhzpw5maxIpk+fjk8//RSbN2/G8OHDAQBHjx5Fp06d8M4772Dt2rWldQqFIsM6aN++fejZs2eW9rFjx+Kbb75BREQEtFptsckhWW6UQcuNkdWr0xag4aXAP3WUSjYHyKL6i/XqRVpYkI8fF1FKCQkJCQmJgoMCxtwA8AWAri+97gJgQ0HGKO1SltYY/xVq1qzJKlWq0N7eniqVivPmzctXwMT/j+j1eq5ZsyZTbACkB8gcPHgwb968meWYI0eOEACtra1zfYp88+ZNVq1alUqlkuvXry/zARFPnTolpre1t7fnvHnzGF0KQfS3bt0qWi+0b9++xO7dxMREMcimOTNW6HQ63rhxg0FBQVy0aBHHjBnD7t2709/fn15eXnRwcKBGo6FMJiMA1q1bt1DzxMfHs1WrVqK1xtSpU812DuZGr9dzwoQJVCqV4mfp5cC9p0+fJgAGBgZmOm5aelKJffv2lbTIhebx48di4NrsMBqNdHV1Zd++fYtdltzWGKW6EAAQAOAOgPsAPsimvRWA3wEYAPR7pW0ogHvpZWh+5itLC48qCgV7uriIr8PTg7PUVquLPnhwMM+r1ZwumchKSEhISJQChVBu3MhPXVkuZWmN8V/g9u3bBMCVK1cyPDycgYGB4obpwoULpS1emSA5OZlLlixh7dq1xQ0l0k3lhw4dyocPH+Y5xvjx4wmAjRs3zrVfVFQUu3TpQgAcOXIkU1JSzHUaZsFkMvHYsWNs06YNgbQUoIsXL2ZcXFyJy2I0GsUAn3K5PM8sNcVBREQEbWxsCIALFy7MsZ9Op+Mff/zBHTt28JNPPuHo0aPZrVs3NmzYkJUrV6a9vX0mhUVORS6X08LCgs7OzqxWrRq7d+9eqOCeX3/9teg+VblyZd69e7col6HESExM5KBBg8Tr5OTkxF27dolBRb29vTP11+l09PPzo729PUNCQkpJ6oLRNj3pxY4dO7JtP3/+PAFw69atxS5LbmuMUnNLEQRBDuAugI4AQgBcAjCA5K2X+lQCYANgKoD9JIPS6+0BXAbQEGkfqisAGpCMzm3OsmIyGnzmDCq1aIHPe/fGxD17AAATfHyw6o8/sLJvX4wvpPnWyyzp1g3vHzqE/TNnoseCBUUeT0JCQkIif9BkgslohEmvh8lggDH9r1alglwQkJKUhPi4OJjSAy+bDAaYjEa4OjhAIZMhKioKERERaWMYjWJ77cqVoZDJEBIWhqfPn8OUMU96aVGnDmQA7v79N/5+9kxsp8kEmkzo2qABYDLh93v38Pj5c5iMRnTy94fNG2+Y/RoUNKCoIAg/AzgFYFt61SAArUh2NrtwxURZWWP8V1i8eDE++OAD/P3336hYsSIA4MCBA3jnnXcQFhaGiRMnYv78+bC0tCxlSUuWhIQEfPbZZ9i+fTvu3buXoQiEs7MzYmJiULFiRZw7dw5OTk75HrNWrVr466+/MHfuXMzOxaXZaDTi448/xieffILGjRtj9+7dcHNzK/I5FQWSOHz4MBYsWIBz586hQoUKmD59OkaNGmXWYJ35wWAwYMuWLZg5cyaeP38OFxcX/Pbbb/D29i5ROTIIDg5GjRo1kJKSgg0bNmD06NGZ2o8ePYqAgACYTKZsj5fL5dBoNLCysoKdnR0cHR3h6uoKd3d3eHl5oWrVqqhVqxYqVqxY5ICeUVFR6Nq1Ky5cuACZTIaZM2di3rx5RRqzNHjx4gWGDBmCn376CSSxbds2TJw4UQwq+jJ3795F/fr10aRJExw9erREgqIWlpCQEHh4eKB8+fIICwvLts+MGTOwdOlSPH/+HOXKlcOSJUvw66+/4ttvv4WdnZ1Z5cltjVGayo2mAOZkLFwEQZgBACQXZdN3C4AfX1JuDADQhuTb6a83APiV5He5zVlWFh5bRo7E8C+/xB+7d6Nunz4AAFe5HM9NJuiSk6HQaIo8hz4pCfXt7ZFgMODPp09h6exc5DElJCQkAAAk9Ckp0CclpZXkZBhSUqASBNhbWQEGA/66cwd6nQ6GlBQYUlNhSE2Fs7U1qrq4wJSaisPnz6fV6/Xi35rly8PP3R0pSUnY9NtvMBgMae0GAwwGA1p7eKClmxuiExLwv7NnYTQaYTAaxb+vV6qEduXLIyQ2Fu9fuQKDyQRjejEYjRjv4YFO9va4FRuLsbdvw2AywUTCmF4Wubqio4UFziUk4K3QULHeSMII4Bs7O7RVKHAwORlD4uPF+ozyi1yO5iYTviExNJvLdg2AD4A1AMZl0/4AgBeAxQA+yKY9HIAzgFkAPsmmPQmAFsBEACtfaZMjzQQSAN4C8FX6/7fs7VEzMjLbt7koFEK5YQ/gY6RZbBLAbwDmkYwyu3BmRhCEHgB6VK1addS9e/dKW5z/DE2bNoVer8er67bY2FjMmDED69atQ+XKlbFhwwZ07NixlKQsGaKiovDpp5/i+++/x6NHj8R6T09PBAYGok+fPnjttdegVqtx+vRpeHh45DpeSkoKmjVrBg8PD+zZswcxMTFwc3ODTqfDhQsX4O/vn+vxe/bswdChQ2FpaYmgoCC0aNHCLOdZEEwmE3744QcsWLAAv//+Ozw9PfHBBx9g2LBh0JhhHZ1foqKisHz5cuzatQv37t0TFQW9e/dGUFBQqW9Yb968CT8/PxgMBuzatQt9+/YFkJY5pl69ejAajejbty88PT1RuXJleHt7o2bNmnBzcysx2detW4dJkyYhNTUV1atXx88//wxPT88Smbu4+PPPP1GvXj0oFAr4+Pjg0qVLiIyMhL29faZ+mzdvxogRI7B48WJMnz69lKTNm4CAAPz888/4+uuvMWTIkGz71KhRAxUrVsTRo0cBAB4eHggNDYVOp4NCoTCrPLmtMcw7U8FwA/DkpdchALKPZpS/Y7NVHQuCMBrAaAB5ftmXFJ1jYvC1tTVqpwdiCT59Gs9MJvhptWZRbACA0sIC65YuRavx47GgZ08sOnfOLONKSEiYF5PBAF1cHFLj46FPSoKjlRWg0+FJcDBePH8OXWIiUpOToU9JgcxoRNuaNQG9HieuXkVweDj0Oh1SdTqkpqbCRqHACF9fIDUV6y5cwL0XL5Cq10Ov1yPVYEBFjQbzatYEUlMx7upV3ElIgN5ohN5kgt5kgp9Gg/WuroBej7bBwbiv18NAQp9eAuRyfC8IgMEANwARr5zLIPzz2L0BgORX2scAWJf+f/dsrsVUAH5IS9s8Ppv2uQBaCgIS5XKsMBigQNqmXSEIkAPwDQlBOxsbpJC4EB4OhUwGuSCktQsCkqKjAYUCQmoqAECtUEAuCJAJAuQyGdTlywPOzrCKj0ddvT4tOPJLxaFuXcDJCe7R0Rhw+3ZafUYQZbkcFfz8AAcH+L54gbl37kAuk0Eml0OW3u7asCFgZ4dWz55h1YMHkMvlae3pfRwbNQKsrNAjLAweT5780yaXQxAE2Pj7AxoNBj99imbPnmVpV9WvDyiVmPD0KV6Pjk6rl8kgk8kgUyiAOnUAmQxznj3DpMRECDIZKletWrAb1swIgrCV5GAAg0lOzPOAMgjJAwAONGzYcFRpy/JfISwsDOfPn8eCbCxPbW1tsXbtWgwYMAAjR45Ep06dMHToUHz22WdZNg7/dlJTUxEQEIATJ04ASEvNWbVqVQwcOBBTpkyBra0tQkND0bx5c5hMJhw9ejTPta7JZEK9evVw7949XL16FR4eHrh8+TL27NmDrl27okOHDggPD89VQdCnTx/UqFEDvXr1Qtu2bbFy5UqMGTOmRNKpGo1GBAUFYcGCBbh58yaqVKmCL7/8EoMHD4ZSqSz2+YG0jeuyZctw+PBhPHv2TKyvWLEiunfvjmnTpqFy5bIRC7lOnTr45Zdf0Lp1a/Tv3x/Hjx+Hj48PGjduDIPBgI0bN2LUqNL56nr+/Dk6d+6Ma9euQS6XY9GiRfjgg+xU+/8+ateujU8//RTvvfceHjx4ACAtleyIESMy9Rs+fDh++uknzJw5E+3atUPDhmUvg/rz589x5MgRODk55ajYuH37Nu7cuYPx49NWbzExMXjy5Alq1KhhdsVGXpSmcqNEILkRwEYgzXKjlMUBSLieP48hXbsCcjkAIHrZMtQEMHngQLNO1XLcOAxbsQJLz5/H0B9/RI3u2W0nJCT+H2IyQZ+YiITISOji4pASF4eU+HikxMWhhqsrNCQePX6MG3fvIiUpCSmJidAlJyMlORlv1a8PS5MJx/76Cz/dvYuU1FSk6HRISU2FTq/HNz4+0BoMWPPoEbaHhUFnNCLVZILOZEKqyYRHjo4QUlMxLj4eGwwG8Wk6AFgBiE//fzqAHa+I7Qrgafr/nwH48ZV2bwAjdu8GBAH7AJwjoRQEqNKLr0YDmEyASoX4xEQk6fVQyGTQKhSwkctRzs4OqFYNUCrhL5ejsl4PhVwOpUIBpUKBeuXLA35+gFKJmZcvI8VkglKphFKlgkKpRPUKFYB69QCFAluvXAHkcrFNoVajoosLUKUKZAoFLty5A6VaDcVLxd7BAXBygrVMhoiEBCg0GijUashVKig0GshVKkChgDuAlFze3qpIC+SUEzUB/JpLe10AO3Np9wGwOpf2euklt/Hr5tJeK73kRPX0khNV0ktOeKSXMkIDQRAqAHhLEIRvkJYpReTfYLkhYX5++OEHAECvXr1y7NOyZUtcv34d8+fPx+LFi3H48GGsXr0a/fr1K5FNdnHzxx9/oHXr1qJVxbvvvouJEydmcrWIjIxEp06dEBUVhRMnTqB69dy+GdIUG40aNcK9e/fQtGlT2Nvb4+DBg6hUqRIOHjyId955B+vWrUP79u1x5syZXMeqVasWLl68iEGDBmHs2LG4fPky1qxZU2xWEwaDAd9++y0WLlyIO3fuoGbNmti2bRsCAwNLZPN06NAhrF69GqdPn0Z8fNovtVwuR926dTFgwACMHz8eVlZWxS5HYWjRogX27t2LXr16oWPHjrC3t0d8fDymTp1aaoqNzz77DO+//z4MBgPq1q2LI0eOwMXFpVRkKS6mTJmCoKAgnEt/wHzkyJEsyg1BELBhwwacP38eAwYMwNWrV8vcfTRixAiQzFbZnMG+ffsAQMygsmLFCgDAoEGDil/AV5DcUkqYJydP4lCbNnh92TLYT5mSVunkBMTEADqd2dOdRvz1F75u0AAT/P2h+vVX4D/wgy/x34MmE5Kjo5EUGQkLEhYk4iMicP3GDSTFxiI5Ph7JCQlITkhA28qVUcnSEveePMHXly4hOSUlreh0SNbpMLNKFdRVKnE8LAzvP3yIZKMxrZhMSDaZcEypREO9HpsAZPeT/ifSNpYrAEzKpj0YaRvDRYKAT0hoBAFqQYBGJoNaJsP56tVhY2GBDZGRCIqKglqhgEouh1qphFqpxJdt2kCu1WLv33/j0osXUKtUUKvVUKnVsNBqMaZDB0CtxsW//0ZYQgKUGg3UFhZQabWwsLZGg7p1AZUKodHRSAWgsrBIK5aWUFlZQWtrKypOJSRKiwKkgp0A4B2keeSEIrNygyS9iklEs1MW1hj/FQICAvDgwQPcvXs3X4qKa9euYcSIEfj999/Rs2dPrFmzptRjQRSFJUuWYMaMGTCZTBg+fDi+/PLLLNchPj4eHTp0wPXr1/Hzzz+jdevWANIsG8LDwxEaGoqQkBCEhISI/x86dAjR0dEQBAEk8frrr6Nhw4bi0/I5c+Zg+/btuHv3Lj755BN8+OGHecpqMpkwZ84czJ8/H40aNcKePXuyXHuS0Ov1SEpKQnJyMpKSkgpcjh8/jkePHsHHxwezZs1Cnz59itVtIjU1FZs2bcJXX32F69evQ6/XAwC0Wi0aNWqEt99+G4GBgaXudlIQvvrqK7z11lsAgLZt2+KXX34pcRlCQkLQuXNn3Lp1C0qlEsuWLROf9v8XSUpKgpOTE5KSkuDu7o4nT55k2+/UqVNo06YNhg4dis2bN5ewlDkTFRUFJycn2NnZITIXF9bGjRuDJC5evAgAqFmzJm7fvo3Y2FjY2NiYXa4ixdwQBGEPgC8BHCaZfcSZwgmlQFpA0fZIW9BcAjCQ5J/Z9N2CzMoNe6QFEc1IFP070gKK5vqEpywsPNYPGoR3vv0Wd48cgXfHjnh07Bh+6dgRwxs1guzCheKZdONG4O23wa+/hpCDOZGERG7QZIIuPh6Jz59DkZICW5kM+thYnDp3DglRUUiIiUFifDwS4+PR2MUFTR0cEBUVhQ9//RVJKSlI1OmQlJqKJL0e79rbo79Gg9uxsWgZFoYkEkkvzbUZwHAA5wE0zUaW7wH0B3AMaemWtAA0ggCtTAatTIZNHh5o6eiIM6mp+CQkBFqlElqVClq1Glq1GpOaNIGXiwtuxsbiWHAwNBoNNBYWUFtYQGNhgfb+/rCxt8ezxESExsVBY2UFjbU1NDY2UNvYoJyLC+QWFkAJm9lJSPybKETMjXUk3ylOmYqbsrDG+C8QGxsLJycnTJo0CUuWLMn3cQaDAcuXL8fs2bOhUqmwZMkSjBo16l+1+UxNTUWHDh1w6tQpqFQq7Ny5U3wSCgA6nQ5Pnz7Fw4cPMWnSJNy6dQvdunWDWq0WFRlhYWEwGo2ZxlWpVFAqlUhMTISlpSXefvttREREYOvWrdizZw+cnJzQqVMnJCcno3Xr1jh37pwY78TPz+9VMbNl7969GDJkCJRKJSpUqJBFOfGqTPlBpVLBwsICFhYW8PLywrRp09CjR49is8x5/vw5li1bhj179uDBgwdisFYHBwe0a9cOkydPRtOm2a1M/h28+eab2L59OwDAysoKDx48gHMJxuRbsGAB5syZA6PRiIYNG+Lw4cNwdHQssflLi+PHj6NDhw4A0j7DKpUq236zZ8/G/PnzsWPHDgQGBpakiDnSr18/7N69GytXrsxRCRUaGgp3d3dRIZqamgqNRgN3d3f8/fffxSJXUZUbHZC212gCYBeAr0jeMZNgXQF8jjS36c0kPxEEYR7S0rvsFwTBH8BeAOWQZoX8jGTt9GPfApChUv6E5FdZZ8hMWVh4BHp44OzTp/g7NRWCTIZBlSrh2+BgBE2Zgr7LlhXPpCYTjtWpg+n37uH7Q4fg/R8PvCUBwGgE4uMRevcuYsLCEBcejriICMRFRqK8UolWbm5AQgLmHD6M6Ph4JCQlISElBQkpKWhvbY0p5crBFB8Pj/v3kWAyIQFpARMB4D0AS5HmPpGdLnY2gLkyGcK1WvgkJ8NCJoOFXA5LhQIWSiXGVq6M16tUQbhMhrl//gkLjQYWFhawtLSEhaUl2vv4oFbVqoglcfHvv6G1sfmn2NmhvLs7LBwcQI0GgkolWSNJSJRBCqrc+DcjBRQ1L9999x0GDhyIM2fOoFmzZgU+/v79+xg9ejROnDiB1q1bY+PGjahWrVoxSGperl69inbt2iEmJgZVq1bFmTNnoNVqsXLlSuzevRshISGIiHg10lHaJtXd3R3u7u5wc3PL9v958+Zh9erVcHZ2xqNHj2BhYQG9Xg9/f388f/4cf/31F/R6PRo2bIjg4GDY29sjKioKtra2ePbsWb5dTW7duoW5c+fCaDSKSolXi1arzbHt1X4l4W5y7do1LF26FEePHsXz588BpLkKeHh4oHfv3pg8eXKZidlXFObPn4/Zs2fDyckJb775JpYvXw4HBwc8fvy42N0gHj16hE6dOuH+/ftQq9VYs2ZNFveM/BAfH48bN25Ap9NBp9MhJSWlUP+/WieXy/HZZ58Va2BcFxcXhIeHo1WrVjh58mS2fQwGA1q1aoVbt27h2rVrqFSpUrHJkx9iY2Nhb28Pa2trxMTE5Nhv7dq1ePfdd3Hr1i3UrFkT69atw9ixjaGXSQAAIABJREFUYzFhwgTRPcXc5LrGyClH7KsFgC3S4sE9AXAWaQoPZX6PLwultHPQG/V6OgkCB3t5iXV2gkAVQKNeX6xzX92xg+r0XNT+lpb8rGdPhly6VKxzShQcg07HuOBg8sED8soVXlq/nj98+CG3jhnDNYGBXNS5MzcEBJDjxpFDhnBc5cpsV64cG1pYsJpSSVeZjL3lchIgAXpkk4u8T3obAboAtBMEusnlrK5SsYGFBRdUqkR260YGBnJ09eqc4OPDD5s148JOnbiib1+enjGD3LmTxgMHeHLlSl7Zto13fvqJTy5eZNTDh0xNSCBNptK+lBISEqUIcslB/18tpb3G+K/Qv39/li9fnkajsdBjmEwmbtq0iba2tlSr1Vy0aBFTU1PNKKV5WbRoEQVBIACOHDmSSUlJXLp0KR0dHQmArVu35ujRozl37ly2aNGCAPjBBx8wNjY2z7Hnz59PALS1tWVkZGSmtkuXLlEmk3HMmDEkSaPRyNdee40AKJPJCIAtW7YslnMuTYxGIz/++GPa2NiIayOFQkFfX18uXbqUiYmJpS1iJhITEzl69Gi+8cYbTElJKfDxO3bsIABqtVqGhYWRJIcNG0YArFixIkNDQ4v0ecuNGTNmiPdSixYt8nXPZseTJ0/o6emZZU2bUxEEgRqNhnZ2dixfvjw9PDxYrVo11q1bl/7+/mzRogXbt2/Pbt260c3NjZ6enoyLizPz2f/D9OnTRdm++OKLHPs9fPiQ1tbWbN68OfXFvDfMizfeeIMAuGTJklz7dezYkdWqVaMpfe2fHuOST548KTbZcltj5Fex4YC07HKXAewHEAhgFdLiXJT6giK/pbQXHn8EBREAvxoxgiR5Zfv2tB8tW9sSmf/v8+e5pGtX+mm1BMBqAE0tW5Jr1zIpOLhEZPivYzIamRQZSYaGkn/+yb+2b+ePH3/MrWPGcFW/fpzXrh3nNm1KDh9O9u7N9ytWpK9WS0+5nLbpX3rVXlI+tM7mC9sPIO3tSU9PDrS1ZXNra3ZxcmJgxYocVb06V7VtS86ZQ372GYPGjOHOSZN4eP58nlm/njf27GHYxYvkixdkSoqkhJCQkCgWJOWGRGFITk6mlZUVR48ebZbxnj59yj59+hAAfX19eeXKFbOMay6Sk5PZvHlzAqBarWZQUBDXrl3LChUqEAA7duzICxcukExT2Lz33nsEwNmzZ+dr/LVr14qb2uAc1nlTpkwhAP72229i3dKlS0VlCwAuXry46CdbBtDr9Zw2bRq16etguVzO9u3bMygoqNg290Xl3r17rFevnvh+9O/fv0CyXrx4kTKZjHK5nJcvX87U1r179ywKAYVCQa1Wy3LlyrFChQr09vZmgwYN2LZtW/bp04ejRo3ihx9+yM8//5zff/89T58+zeDg4Cwb8Vu3btHDw4MAqNFo+O233xb6GkRERLBmzZq0trbmd999xxMnTvDs2bO8cuUK//zzT96/f58hISGMiIhgXFwcU1NTxY12fjhz5gwFQeDYsWMLLWNeXLhwIdM1zm3jvz19fzhnzpxikycv4uPjKZfLaWVllev9Fh0dTYVCwenTp5NMUxwqFAo6OjoyNja22BSFRVJuIM0t5BaAGQBcX2n7Vy1eSnvh8fXAgQTAx2fOkCR7u7oSAA989FGJy3Ln8GH+MmwYWaMGdQCdAHZ2cOCWESMYIyk60jCZmBQezocnT/LiV1/x4Jw5/HrUKC7r0YOG6dPJESO4rl49NrO2ZnWViuVlMqoAKgGa0pUTw7NRTrgKAunuTtapwzkeHuxRvjyHeHlxgo8PP27dmhv79ye3bCH37eMfX37JK9u28d6xY3x24waTIiNpKqM/wBISEhIZFGZ9AKA80rIEdwfgXNDjS7uU9hrjv8DBgwcJgIcOHRLrzPH0MigoiC4uLpTL5Zw+fXqZeDJ/+fJl2traEgC9vb25cuVKVqpUiQDYvHlz/vrrr5n6L1y4kAA4bty4fG3cvv/+ewKgUqnkzZs3c+yXkJDASpUqsUaNGkxOThbrT506RY1GI65dfv/998KfbCmj0+k4btw4qtVq8ZoMHz68TNwHubF//37a2tqyXLlyPHz4MJcsWVKgeyAkJER8D4OCgrLt8/HHH7Nr165s3rw569aty0qVKtHZ2ZnW1tZUq9WUy+X5tpbIUBhpNBpRGdO+ffsiXee4uDj6+/tTrVZn+UyYk0mTJhEAT5w4USzjG41GCoJAJycnAmDlypVz7T9kyBDKZDKePn26WOTJiyFDhhAA582bl2u/bdu2EQDPnTtHktyzZw8BcNCgQZw1axadnJwKba2TG0VVbrTNq8+/pZT6wqNnT76oVEl8WQ6gJi0afOlhMjHm1CnOaNqUlRQKAqAKYC9XV15etIgs41/8BcGg0/HZjRu8uXcvk376idy5k7/PmMF57dpxfL16HODpyY729vTVavnUxYVUqzk3hy/vCIWCdHXlmgoV2K5cOb7u7s7RNWrw/caNuahzZxrWriV37ODtTZt4YfNm3j1yhM9v3WLqf+h6SkhISOREQZUbSIsTHAzgawDfAHgEoF9BxijtUuprjP8AI0eOpLW1tWh6/8477xAAu3btmmnjXRiioqI4YsQIAmCVKlV46tQpc4hcKBYsWJBp81ejRg0CYIMGDXj48OEsG9f169eLG4b8PLU/duyY+LQ+P5ujn3/+mQD40SsP2yIiIujs7Cw+cX706FGBzrO0SUxM5IgRI6hUKkXrmLFjxxb5XsoNvV7PW7duFWkMg8HAmTNnplnr+vlluu4Z1jsLFizIdYykpCTRrWnhwoVFkodMszK6e/cuT5w4wW3btnHp0qWcNm0ahw0bxp49e7JVq1b08fGhl5cXXVxc6Obmxj179hR5znbt2lEul3P//v1FPofcSExMZJUqVejl5cWEhIRimcPJyYlqtZpt27YlANEdLDvi4uLo5eVFT09PRkdHF4s8OZGcnEyFQkELC4s8v2/69etHV1dXsV+7du0IgBcuXKCjoyNfe+21YpGxyG4p/5VSqgsPg4G0tSVHjUp7feoUowEeKUOLIZPRyPObNnGiry9dZTKeBkhLS/7ZtSv3z5rFlGLQvJmDhPBw3j92jKfWrOGuKVO4ql8/Pn73XfKtt3jM35/1tVq6yGSUvaScuJBuWfFl+mtbgFUUCjaxsmJ3Z2f+/frr5LRpvDppEjcPH84DH33Ec198wfvHjzMmOFiynpCQkJDIhUIoN66/bK0BwAnA9YKMUdpFUm4UDYPBQGdnZwYGBop15cqVE3+3LSwsuGPHjiLPc/z4cXp5eVGhUHD16tUFMl8vKsnJyWzWrJloPeDl5UUArFWrFnfv3p2tLF988QUFQWC3bt3yFTfk0qVLVCgUFASBBw4cyLdsgwcPpkKh4I0bNzLVG41G0b1AEAT+9NNP+R6ztIiNjeXAgQOpSH9op9VqOXXq1GKLYZCamsrVq1fTx8dHjC9RpUoVPnjwoMBjRUREsGPHjgTAESNGZFHEGI1GvvnmmwTAjRs3ZjuG0WhkzZo1CYCDBw8u1DmVNnq9nr169SIAbt26tUTm/PXXXwmAkyZNKpbxW7ZsSQAMCQkR473kZily4cIFKhQKBgYGluj31KhRowiAH374Ya79kpOTaWlpmUlJo9VqaWVlxY0bNxarJYyk3CgDC4/ft21jV4C3ly1Lq+jSJe3ynzxZajLlhkGno+n4cXL0aE5JN2mzEwS+5e3No4sXU1+MWm+SNKWmks+eMf7MGR6eP5+bhw/nwk6dOMHHh6+7u/OXunVJb2/+8pLJ5Mtlj0xGVqjAc9Wrs6uTE0dUq8aZzZtzVb9+3DFxIiP27CGvX2fKo0fUxccX67lISEhI/H+jEMqNG6+8lr1aV9aLpNwoGqdPnyYAUYFx//59AmCTJk04ZcoU0dKhadOmRX6SGRMTw27duokbyMIEaSwoFy9eFDc0Ga4CXl5e3Lp1Kw0GQ5b+ycnJHDlyJAGwU6dOTEpKynOO+/fvi64XX3/9dYHki4iIoKOjIxs3bpxFHpPJRHt7e3GN9fHHHxdo7JIiMjKSffv2FV0pLC0t+dFHHxVLPI3U1FSuWrWK9erVExUaAOjq6sp69eoRSAvKmhGLID9cuHCBFStWpFqtzjXoZGpqKrt06UKZTMa9e/dmae/SpYv4Wfk3YjQaxYCnK1asKNG5x44dS0EQeCY9hIA5mTFjBgFw/fr1PHv2rHiP5ua2k+GOtmXLFrPLkx06nY5KpZIajSbPz82BAwcIQFR4ZpxT165dWatWLfr6+habUkZSbpSBhcfi9C+asD/+IElWFASOkMuz7zx+PB/37VvsGVTyS2pCAg/NncvBXl60Tv/yrimX0zR2LHn6NGk00mQ0MiE8nGHXr/PukSMM/ekn8tdfqd+3j9+OG8cNgwbx0+7dObtVK0728+P+jh3JwEBGdujAljY29NVqWUWhoJMgUAPw03TLijuvKC1sAVZXqRhUqxYZGMino0bxfwEB/HrUKP68cCGv79rF8Js3y8y1k5CQkPj/SCGUG58C+BnAsPRyGMCSgoxR2kVSbhSN9957j0qlUvTPfvvttwmAmzdvJpm2ca9atapo9bBq1aoizWcwGPjhhx+Km8CMLBLFwdy5czMF6HR3d+eGDRtytMR49OgRGzRoQACcOXNmtsqPVwkLC6OlpSUBcFnGg7QCkuE/v3LlymzHz7CEAMB27dqVejaHDMLCwtitWzdRyWBjY8NFixaZXamRodCoW7duFoXGuHHjGBISIvb97rvvxMCl7u7uWSxiXsZkMnH9+vVUqVT09PTMEvgzOxISEti4cWOq1WqefOlBaUbsCA8PjzLz/hQEk8nEyZMnEyidgJpxcXH09PRk9erV86VQLAgXL14kAPbt25fkP+9VixYtcjzGYDCwTZs2tLS05L1798wqT3aMGzeOADh16tQ8+44YMYI2NjbU6XQkKQZvzlDIfPPNN8UmZ1FjbuwB0A2ALK++Zb2U5sKjs4MDa6nVJMlD8+YRAHu5uGTteOUKwwGqAXopFIwuY/6NSZGRDJo6lev9/EiNhiaAdQQhk8sHAL6TrpzQZ2NVYQlwjpUV6e3NeB8ftrG1ZY/y5TnQ05Nv16zJqQ0b8sSwYeTq1dTt2MEz69fz4cmTTIyIKO3Tl5CQkJDIBwVVbqQdgj4APksvvQt6fGkVAD0AbKxatao5L+H/K0wmE6tUqcKAgACxrkKFCpTJZJw1a1amYJaLFi0SN9m1atUqcrrBnTt30sLCgm5ubrx48WKRxnqVpKQk1qlT558HNLa2XL58ea4xHw4fPkx7e3va2trmO85AbGysaFnxwQcfFFpek8nEgIAAWllZZZtdJSg961/Gxt7V1ZWhoaGFnq+oBAcHs0OHDqLiyN7enp9//rlZ50hNTeXKlSuzKDQqVKjA8ePH8+nTpzkem5iYKLqYCILAMWPGZFG4JCUlcejQoQTAgIAAvnjxIt+yvXjxgjVq1KCtrS2vX78uZsexsbFhTExMoc+5NFmwYAEBcPz48SXqivEyR44cIQC+//77Zh3XZDJRJpOxSpUqYp23tzcB5HrfPnnyhOXKlWPDhg1FRUJxoNfrqVarqVar81SMGQwGOjk5ccCAAWKdnZ0d1Wo1O3XqRFdX12KVtajKjQ4AtgN4AOB/AKrndUxZLaWl3NDFx9MC4Li6dUmSbe3sCICXsjEZ/MLNjYkA26Rr3y0BXilC+qRiJS6OMRs2cFL9+pzZvDn/FxDANYGB/Obtt3l56VLy2DHywgX+dfAgQy5dYuyTJzQU440uISEhIVE2KITlxuL81JXlIlluFJ4//viDALhhwwaSae4FGZvVjM2kr68vV61axcjISIaHh4uWDRkKkKJw7do1enp6Uq1WF9idIyd27NghKmEyZIzPxQ3WaDSKFh716tXL91NanU5HNzc30cWmqDx69IgWFhbs1q1btpvLjCwKGVkfVCpVpuw2JcH9+/fF+AUA6OzsLN475kCn03HFihWFUmhkx/79+2llZSXKmqFEe/DgAX19fUVXn/xY6LxKcHAw3dzcaG9vT0EQqFQqeefOnQKPUxbIUM68+eabpZ6ad+TIkZTJZGZXeGYEFc0gLCyMSqWScrmcDx8+zPG43bt3F1l5mRcZwWrHjRuXZ9/ffvuNAPj999+TJO/evUsArF+/PoG8A94WFbO4pQCwBTAGwBMAZwEMB6DM7/FloZTWwuN0+od19/TpNOr1VKW7V2Tpt24dAbC5VkuSnNqwYdqPIsAtZvjBkpCQkJCQKAkKodz4PZu6PwoyRmkXSblReObNm0dBEETXkAx3EUdHR7Zu3Zpr1qyhn58fgbSMF2+88QaPHDnCTZs2ifErKlasmGvK07yIiIgQsxhMnjy50Cb9Dx48oI+Pj7ghbtiwYZ4xQiIjI8U4CUOGDMl36kyj0chq1aoRAHv27FkoebNj+fLlmeKfvDpnRsraXr16iVYTr2ZaKQ5u3rzJRo0aZVI2fGumB4A6nY6ff/4569Spk0WhMWHChAIrNLIbPyNAJgC2bduWtra2tLOz48GDB4s09o8//iiOu3PnziKNVVp8++23FASBPXr0yFfg3OImJiaGbm5urF27tllj8mQo5cLDw8W6rVu3EgDd3NxyVeqMHj2agiDw+PHjZpMnA4PBQI1GQ6VSmS+LiylTplClUoluhBnxgVq1akWNRsOIYra2L7JyA4ADgIkALgPYDyAQwCoAv+bn+LJSSmvhcWL4cDYH+OLePQZNnUoAfMPDI0u/aumpqi5+9ZVYt2vKFCoAWgE0jh5dglJLSEhISEgUjvwqNwC8A+AGgEQAf7xUHgHYlp8xykqRlBuFx8/Pj82aNRNfZ8TWAMDly5eL9VevXuX48ePFLCoeHh6cMWOGmIFEEASOGjWq0E99U1NTOX78eAJghw4dGBkZma/joqOjeeDAATEIIgDK5XLxqWZuXLlyhZUqVaJSqeS6desKZIqfsdHPzWe/MBgMBvr7+9PJySlbN4nQ0FAqlUrKZDJu375djC3Rtm3bQiuFkpOTGRoayhs3bvDkyZPct28ft2zZws8//5xz584VLRwA0NPTs8hpRsk0hcPy5cuzKDTc3Nw4ceLEYonDcvToUTHoq1wu57Zt24o0XnR0NK2trYn0WDQNGzZkXFycmaQtGQ4ePEiFQsFWrVqZPc5FUchQGplTcZeR4nfdunWZ6rt27UoAHDp0aI7HJiQksHr16qxatarZFUAZCuXR+dhrmkwmenl5sWvXrmKdq6srZTIZVSpVvsYoKkV1S9kL4BaAGQBcX2krsE9taZZSW3i0aUP6+ZEkv69WjS4Ab+7bl6nLkf/9L83sUqPJcvjtw4d53sqKBBjh4yNl95CQkJCQKNMUQLlhC6ASgO8AeL5U7PNzfFkqknKjcDx+/JgAuGTJEpJpm1xBEOjg4EAA/Ouvv7Ick5yczB07drBTp04UBIGCINDHx0e04nBwcOCpU6cKLdPmzZupUqno5eWVbSDI8PBwBgUFccKECfT19c0ULBQAq1WrxqioqDzn+fLLL6lWq+nu7s7z588XSMaAgAACYJ06dYrFhP/atWtUKBQcNmxYtu07d+4Ur3V4eLiY1tbJyYktW7ZkgwYNWLt2bVapUoXu7u50dnamnZ0draysxCfEMpksy7XLrQiCQAsLC1pbW9PKyooWFhbUarXUaDRUq9VUqVRUKpVUKBSUy+WUy+WUyWTiPLnNlaHQePbsmdmvZQYvXrxg586dCUC8XhkWMIWJT6DX68U0vZMmTeKBAwcol8vZoUOHYo13YE5OnTpFjUZDPz+/MhknJCNF8tWrV80y3uXLlwmAffr0yVSv1+tFpW1ubl4HDx4kAK5evdos8pBp1lgWFhZUKBS5xgPK4Pr16wT+SUUcERFBACxfvjwB8NatW2aTLSeKqtzomk2dOq/jymIpjYVHamwsE5RK8r33SKORVChIB4cs/Sqlp626vmtX9gMlJtJYuzZdAToKAh8X4UdbQkJCQkKiOPm3PfwwR5GUG4VjxYoVBMC7d++SJD///HMCYNWqVenh4ZGnJcPjx485d+5c0VVCmW4FC4C9e/cu9Cbv3LlzdHV1paWlJTdu3Mjt27fz7bffZs2aNcXxtVot27dvzx49eogb5wkTJuQ59stpXjt06MDnz58XSLbBgweLFgzFmREjI3Xl0aNHs20fNGgQAbBz5840Go3s27dvFmWEXC6nSqWihYUFbWxs6ODgQFdXVzEjhY+PD5s0acJ27doxICCAfn5+LF++fKb3MeNaZ7hxlCtXjg4ODnRycqKzszNdXFxYoUIFuru708PDg56envTy8mLVqlVZrVo11qhRg7Vr12bdunXp6+tLPz8/NmzYkE2aNOGkSZOKVaGRwaVLl+jp6UmVSsUNGzbQZDLxwoULYuwSKysr/vjjjwUas2nTpgSQ6Qn6V199lWYh/sYbpR63Ii+uXr1KW1tbVq9evcCfgZIiMjKSLi4u9PX1NYu1REZQUS8vryxtV65coSAI1Gq1ortHdse3bduWTk5OOfYpKF988QWRHuskP2TEBsr43HzwwQfiPdylSxezyJQXRVVuZOcHm6Xu31BKY+FxfOlSKgGe/vRTXpw9m6cA8hUtePT27dQAbGRpmed4gzJ+vAEemjevuMSWkJCQkJAoNJJyQyK/tG3blrVr1xZfZ7gfWFtbc9SoUfkex2g08tixYxwwYABVKpW4KVapVNy6dWu+xzGZTHzw4AG/+uor9u/fX3QheHnx/r///Y9nz56lTqcTFQ0KhYJ79+7Nc/zCpHl9mYw0mU5OTvmOzVFYkpKS6O3tTS8vr2znMhqNouVAxpNknU6X70210Wjkvn372KtXL3GT//K1btGiBVeuXJlrINZ/A1988QVVKhU9PDyyBKg0Go0cM2aMqBzr2LFjvlwzMu67mjVrZrne/0u3Bp8wYUKpZRzJi7t379LZ2Znu7u7ZZuYpS+zdu5cAOH/+fLOM5+zsnCmo6MtkuIfk9nty6dIlAihyIOUMWrRoQQC5BjR9GV9fXzZv3lx8XaVKFfFze+TIEbPIlBeFUm4AcAHQAMBfAOoD8EsvbQDczum4slxKY+Exs3lzygHGhoSwgYUFATD03LnMndzdqQMYmU+TxFX9+lFIv4nmtm1bDFJLSEhISEgUHkm5IZEfXrx4QblczpkzZ5JM2+jJ5XLRPDsoKKhQ40ZFRXHlypV0dHQUF91OTk7cu3dvlo2gyWTirVu3uH79eg4cOFDMPAKkZWvp0aMH/f39CYCvvfaaGM8gPj6etWrVEl0z8rMxKEya15dZuHChqPgp7oB9GZw4cYIAOH369Gzbnzx5ImZ7uH37dp7jXb16lW+//Ta9vLwyxblQKpWsXbs233//fT5+/Njcp1EqJCUl8a233hKVFrm9Zzdu3KC7u7topZJdMNcMMtKlOjo6ZqsIMZlMohJs4cKFZjkXc/LkyRN6enrS0dExW7ezskhgYCCVSmW2bmoFpXXr1gSQY0yXjPTRub13AwYMoFarNUsq5gyrqvzw6NEjAuCnn35K8h83QpVKxTp16pSYMq2wyo2hAE4AiE//m1H2A+iT03FluZTGwqOplRWbWFlRn5xMOcDygpCp/eKCBXwCkC1bFmjcsxs2UIu0TCoRHTqkubxISEhISEiUAQqj3EBarI0O6f9rAVgXdIzSLJJyo+Bs2bKFAHj58mWSaelTAbBevXqUy+V5ZhnJD7t37xYDLgJguXLl+PHHH3PFihXs27dvJosBFxcXBgYGcs2aNbx586aoCDGZTFyxYgXlcjlr1arFgwcP0sbGhgDYqFGjPLMpFDbN68ts2LCBAKjRaEp88z9y5EjK5XL+/vvv2bZ/++23ogLpVTeZZ8+ecc6cOaxfv34mKxhBEFixYkUOGTKEp0+fLonTKFEePnwoZviZNWtWvi10pk2bJip9mjdvniUOxa5du8T7ICQkJMdxjEaj6Da0adOmIp2LOYmIiGDNmjVpbW0tfu7/DTx//pyOjo709/cvsivYrFmzCIBr1qzJtj0yMpJqtZoymSzHDFAPHz6kUqkscvrna9euia5l+SHDbTDjO2zZsmXiZ7ok77OiuqX0zavPv6WU9MIjLjSUcoAfNmvGNf37EwDH1qmTqU95mYwKgLp0X9OCEH7zJoPs7UmAeg8PRj94YC7RJSQkJCQkCk1BlRsARgG4BOBB+mtvAMcLMkZpF0m5UXB69uxJd3d38Wlfq1atCKQFyXzZ7NkczJo1K5OlAABWqlSJQ4YM4aZNm3jv3r08nzoeP36clpaW4vHjx4/Pc97IyEgxE0JB0ry+TFBQEAVBoEKh4PXr1wt8fFGJioqii4sL/fz8ctzYBQYGipukTZs2sX379rS1tc10ve3t7dmlSxdu3769WGOFlDaHDh1iuXLlCm2h8+DBA9HUX6VSiYEbL126JAZJfdW9JTt0Oh07d+5MmUzGH374ocBymJu4uDj6+/tTrVbz119/LW1xCkyG8nXx4sVFGuf3338XYwLlRFBQEAHQ2dk5RzevyZMnUyaTFcmaJMOyKD+Zncg0q5M6L+1lM9JeOzg45CsYqbkorOXGm+l/3wMw5dWS03FluZT0wuPgnDkEwGOffsq66drqsJd+lDalpwzrYG9f+EmMRrJjR7YEaAHw0tdfm0FyCQkJCQmJwlMI5cY1ACoAV1+qu1GQMcxZANQCsBPAOgD98nOMpNwoGImJidRqtRw3bpxYp9FoaG1tTUEQOK8Y4oqF/h975x0eZZU18N+dnkoCaRACGAi9J3REitJBUPwsu2BB0FVw1bU3wFWkrBR11VVEgVVWpQSUqhARXGQhQUIJvQYIhEASQiaZdr4/ZjIGDKSQQvT9Pc99ZuY9t5yZJJN7z3vKyZPSqlUrbxjEihUrSjV+7Nixl3keTJ8+/Zqs1a+iAAAgAElEQVQGkaSkpDKXeS3g+++/91b82LBhQ6nHlxcFHgMF7uhX4nQ6vWEVBc3Hx0c6duwoU6ZMKXFZ3epITk6OrFq1Sp555hlp166dANKmTRs5ePDgdc37+uuvi95TcKBdu3bekrslPYiKuMOnOnbsKBaLRX788cfr0ud6sFqt0rt3b9Hr9TeEoaUsuFwuGT58uJjN5hKFYF1rHp1OJzfddNM1+40YMUIAGTFiRJHyc+fOSY0aNWTQoEFl1qVu3bqi0+lKlCcnPT1ddDqdN9dHQRghIBMmTCizDmWhrMaNRzyPE4pqVxt3I7fK3ngcHTNGpur1knPihOhA6ur1l8lrKSUK5GRi4nWv9aKnxrsO5OORI697Pg0NDQ0NjbJSBuPGFs/jds+jAUguzRyF5poLnAV2XXG9P7APOAi8UMwcfwNu9jxfXpJ1NeNG6ShI0rdu3ToR+TW3Q4Erf0nuTJeVmTNnehM4lmRTnpub6z20BgUFydatW70Hjz/96U9F5j2YO3dumcu8FjBhwgRvCdP4+PgyzVFeuFwuuf3228XHx0cOXcVT+Pjx49K9e3cZP358pZSDrCpsNpv89NNPMmnSJOnRo4e3sovJZJKePXvKW2+9VW7JXlNTU6VFixZeg1FZklqmp6dLkyZNJCgoSJKTk8tFr9Jgt9tl2LBhAsj8+fMrff3y5PTp0xIcHCxdu3YtdTLgwoSHh4vJZLpmH6fTKWFhYdfMPzRt2jQBZP369aXWITc3VwBp0qRJifoXVOIpCCf697//7T576nSVUnGoMNcblhJaXJ+ytuI2GoAZ+NIj3wI08FxvAFg9d3p+AT4syXqVvvFo316kZ0+RqVNlD8i6//s/r+hdzz/FwWFh5bZc/IsvisHz5Te6ceNym1dDQ0NDQ6M0lMG4MQ14CdgL3AYsBd4szRyF5uqBOwH6rkLX9MAhINrjIbLD453RCvj2ihbmaf8EpgM/lWRdzbhROkaNGiXBwcHe8opDhw71hjXUqlXrug4OJeG///2v9074bbfddtU7l/v27fMmOG3Tpo330OpyueSNN94QpZTExsbK8ePHRcR9h3rMmDFuz9wylHkVcYcT3HzzzV7vh4SEhDK/z/IkNTVVAgIC5NZbb71hq3BUBC6XS5KTk2XmzJkyaNAg8ff393rvxMbGynPPPSdr1qyp0Oo1H374oUybNq3M448ePSp16tSROnXqVGrOFqfTKQ94PNVnz55daetWJPPnzxdAZs2aVeY5evbsKYCcOnXqmv327NkjOp1OzGZzkd5PVqtV6tWrJ3FxcaUu/VtQhvtqyYKvZOjQoRIVFeX92+/cuXOx4TUVxfUaN/YDa4HRQHBx/UvarrbRuKLPYwWGC+Ae4Ev51bixq7RrVubGI/PIEVkMkvXSSyKNG7s/6oJfSqdTOuv17mSg1+HWVBQH162TYM/diA2NGolUYvyThoaGhoaGSJmMGzrceTe+BhZ5nqvSzHHFfJftE4AuwJpCr18EXizBPHpg2TXkY4FtwLZ69epV0Kf5+8Nut0twcLCMGjXKey0wMFAsFotERETIPffcUyl6pKenS/369QWQqKgoOXPmzGXyL7/8UgwGg/um0VUS9y1fvlwCAgIkLCxMvvzyy+sq8yriLpFZq1YtAaRRo0Y3XDjH+++/L4B89tlnVa1KhXLkyBGZM2eO3Hvvvd6754DExMTIX/7yF1m0aNEN97Mpjp07d0pQUJA0bty4UqrtuFwuefrpp6skbKEicblcMmjQIPHx8Slz6NFrr70m8GsJ5WtRUCWpVatWRcoLjC0LFy4slQ6dOnUSQE6cOFFs35ycHLFYLJflGSr4bqwKb6Br7TGUW35tlFIdPcaFYcAe4D8i8u9iB157zi7ARBHp53n9IoCIvFWozxpPn81KKQOQBoTizqj+rYi0LM2acXFxsm3btutRu8Qsff557pg2jTWTJzPqpZd4LjiYp8+fdwunT4fnniOlb1+arVlT7mvnZWYyr1UrHklNhZo1yV63jsC2bct9HQ0NjRsIlwscDlx5eWSePYstNxdHfj52qxVbbi61/PwI8fMj9+JFknbtwmG3Y8/L8z62iorippAQzp47x9odO7Dn5+N0OHDa7dgdDvo0akSzkBAOpKXx1S+/4HQ6cTgc3sc/NWtG6+Bgtp46xfw9e3C4XDidTlwiOF0unmrWjNaBgaxKTWXe4cM4XS5cIrg8j5ObNKGFnx+fp6Yy7+RJt6xQ+7RRIxqazcw6eZIvMjJwuU3GuACXCCsbNKCO0cirp0+zJDsbF27jfcHj9qgo/JXi0bNnWW21/hoUDijgeHg4iHDX+fNsstvd83vkJiC1Zk0Q4dbsbJKcTgr+c4oI/kqR6u8PQNylS+x1ubw/FgGCgVQfHwAa5+VxotD/XQHCgWMmEwC1bTYyCskAooDDBgOIUMPp5FKhH7sADYH9Oh0AFpcLe6Gx4HZP2KUUAHoR7/sGWKnXM8DhKPGvWUlRSiWKSFwp+vsBeSLi9LzWA2YRyS3j+g0otE9QSo0A+ovIw57XI4FOIjLuGuNfAvyAD0RkU3FrVuYeo7qzfv16+vTpw5IlSxg+fDi7d++mZcuWxMbGkpiYyKeffsoDDzxQKbq4XC6GDBnCypUrsVgsfPfdd3Tv3p0nn3yS2bNno9Pp+Pjjj3nooYeuOkdKSgq33347Bw4coEaNGixYsIAhQ4aUWpf58+fz0EMP4XQ6+dOf/sT8+fPRef62bxRcLhc9evQgJSWFlJQUwsLCqlqlcuHcuXOsX7+edevWsW7dOg4dOgRAREQEffr04dZbb6VPnz5ERUVVsabXx6ZNm7jtttto1aoV69evx9/zv6simDx5Mi+//DLjx49n9uzZKM//od8DqamptGjRgnbt2rF+/fpS/53u2LGDtm3bcvvttxMfH19s/7i4OBITE3nllVf4+9//fpnM5XLRvn17srOzSUlJwWw2l0gHHx8fLBYLFy5cKLbv0qVLueOOO1i3bh29e/dm9erVDBgwgJCQENLT00u0XnlyzT3G1aweRTUgBJgPOEsz7ipzjQDmFHo9Enjvij67gLqFXh/y6NAAuARsBzbgiYu9yjpVcldlXKtW4uuplALIxFtuERERp90uWy0WEb1eJCurYpV44AF5CsQIsuyllyp2LQ2NSsRpt8ul9HTJOHBATm7bJgfXrZO933wjsnWryKZNkvj++7Ji4kRZ9Mwz8sW4cTL3wQfli4ceEnnnHZFp02TOsGEyoUcPebFLF3kmLk6eaNNG3ujYUWTMGJEHHpCnmzaVu6Ki5I46dWRoeLgMCAmRx6KiRHr3FunRQwYHB0tHPz+J9fGRNhaLtDSb5Z6AALeXVsOG0tJolHp6vdTV66WOTicROp0MNplEQkJEataUEKUkECQAxM+TDPg2nU7EYpF8g0GMIAYQvafpQHqDiFJyjMvO5d7WG0RAfr6KfJhHvuwq8lEe+dyryJ/wyKddRT7RI3/hKvJ3PfJHryL/j0d+z1Xk33vkQ68i3+X5fPqBKM9npiv0GaYrJWIwSB+lxOj5XjR5mhlEzGYRi0VuUUp8QHw8PxdfkCAQ8fMT8feX7jqdBIAEgtTwtEilRIKDRYKDpateL7WUklpKSYhSEqqUNNXrRcLCRMLCpLPRKBGe34naOp3U0emko9EoEhkpUreudDSZJEqvl/qe1kCvl74Wi0h0tEh0tHQwm6WRwSAxBoPEGI0SYzTKCH9/kSZNRJo2lVizWZqaTNLMZJLmJpO0MJtldFCQSKtWIq1aSazFIq0tFmljsUhbi0V2tG1bIX+jlN5z42fAv9Brf+C/pZnjivkacLnnRrF7jutYawjwUaNGjcr/g/ydMn78eLFYLJKTkyMiIvfff78Acu+995bIVbsi+Pvf/+4NNSjw5ggICChxdZILFy7I66+/XqYyr06nU0aOHCmA6PX6G94rYvfu3WIymeTee++talXKzJkzZ+Tbb7+VZ555Rtq2bev9XxIYGChDhw6V2bNny+7du3+X4TfLli0TvV4vffv2lfz8/ApZo8DD589//nOpwyWqC3PmzBFA3n///VKPLUgq2qBBgxL1z8rKEh8fH1FKSWIRuRrXrl0rgMyYMaNE8/38888ClDgZ6ciRIyU4ONhb5aggB9H1hEpdD9faYxTruaGUCgSG4/bcaIg7DvYrEUm85sBiKMldFKXULk+fVM/rQ0An4CLuTVCGUioWiAdaiEj2tdaszLsqLSwWovz92Z+ZyVGnk+zTp/GPiGDiLbcw6ccfeb9jR/6yZUuF6/HRn//MXz7/HBfwSvfu/H3jxgpfU+PGx+VwYMvJIefMGS6lp5Obmcml8+dpGhaGvwgHDh1iy+7d5F68iDU3F2tuLnlWK4+2bEmEycSylBTiDx0i32Yj3+Eg327H5nQyv0kTInQ63jp2jEUZGdhFsLtcOEVwuFwkRUQQJML9GRmstNlw4r7r7sS9q8ixWMDloqvNxv/49eQK7rvrTs/zesCJK96TrpA8DLjSjmwC8j3Pg4CsK+S+4L0j7os7qU9hgoAC27YZsBXSC9wnqcM6HShFgNNJvkdW0NopxX99fUEpQnJycCqF8uitA24xmfi6Zk1cQIOzZ9EDOqXQK4UOGBQQwNt16pDpctH7yBF0SnnleqW4IzSUp+vX55TdzkMpKeh1Ogw6nbuPTsdd9epxd3Q0x/LymLRzJ3qlMBgMGPR6dDodw2Ni6HnTTRy7eJE5u3a5xxuN6PV69AYDA5s3p2W9ehzPymJVSgoGo9E93mTCYDTSrUUL6oaHcyo7mx3HjrnHGo2YzGb0RiPNGjYkKDiY8zk5nL5wAYPZ7B5rMqE3mwkLD8fk60uew4EDMFgsGCwWdAYDOoMBjepFGTw3fhGRtsVdK8V8Dbjcc6NYb9HrRfPcKBkiQv369Wnfvr33jmV4eDjnz5+ne/funD9/nh07dlSJbgsWLGDUqFEABAQEcOLECWrUqFGha54/f57OnTtz4MABatWqxU8//USTJk0qdM3yYNKkSUycOJEVK1YwcODAqlbnmpw7d47ExEQSExPZtm0b27Zt48QJ9y7CZDLRtWtXr2dGXFwchj/A/5y5c+cyevRo7rvvPmbMmIHVaiU3N7fU7Wrjjhw5wqBBg1iyZAlGo7Gq326FICL069ePzZs3s2vXLurXr1+q8REREVy4cIH8/PziOwOrVq1i4MCBREREcPr06d/I+/Xrx9atWzl06BDBwcHXnGvkyJH8+9//ZtmyZQwdOvSafe12O+Hh4QwZMoR58+YhIhgMBkQEh8NRJd5l19pjlMS4cQS38eArEdlcjkqVOSxFrlBaKfUD8IyIXHNXUVkbj7SdO6ndujUTevRg0o8/0sRoZK/NhsvhwN9oxA5kpafjGxJS4boAbP30U3o+9BC5uA9lY/z8eLdTJ7JbtmRLnTrc8vjjmCrQLU3DjcvhwJWbiyEnh7zTp9memEh2ejpZ6elczMwkJzubruHhdAgK4kBqKlP/9z9y8/LIdzjIs9vJdzh4NDycEQEBfJeRwV9TU7G7XG4DgggOEd708eFho5H3rVaeKTAeeJoA7wDjgPHAe0XoOA8Y5WkLipCvAAbijk9bVoT8f0AHoC/wHZcf7hVwRK+nrsHAcLud71wu78FerxR64FRoKAajkQczM9mYn49BKQw6HXqlsOh0bGnZEgwGnjt+nKRLlzDq9Rh0OkwGAzVMJuZ26wYmE7P27uXwpUsYDQbMZjMmo5GQwEDG9ewJJhPL9uwh027H5OOD0WTCZLFQMziY7nFxYDaTcuoULoMBS0AA5oAALP7+WGrUwD8kBAwGuMHchDU0bjTKYNz4CRgvIkme17G4PSu6lHH9Blxu3DDgziHWBzgJbAXuE5HdZZm/KDTjRslITEwkLi7OG3py6tQpIiMjad26NSkpKTz55JNMmzat0vVavnw5I0aMwG63Y7FYyMvLIyYmhm3bthEYGFgha/7www8MHDgQq9XKzTffzPfff4/JE6J2o5Ofn0/79u25ePEiu3fvJiAgoKpVAuDChQskJSV5jRjbtm3j6NGjXnnjxo2JjY0lLi6O2NhYOnTogK+vb9UpXIVMmTKFF198sVRjdDodfn5++Pr6XrNFRUXxyiuv4OMJyfy9cuzYMVq2bEmXLl1Ys2ZNqUJvevfuTUJCAqmpqURGRpZozIABA1i9ejWzZs3ir3/962WyHTt20K5dO5599lmmTp16zXlq165Neno6NputWOPElWGE8+fP5/777ycmJob9+/eXSO/y5lp7jJKYJqOvNCaUE1uBGKXUTbg3GvcA913RZzlwP7AZt0vpehERpVQocF5EnEqpaCAGOFwBOpaJTXPnAnDw+HEARt92GwAvdO2KFRjTpEmlGTYAOjz4ICduvpn/69iR3VlZBOfmwvr1fL1+PQ8DvPACvkBtg4GmwcG8OGwY3caOhfbt/xCHuJy0NDIOHiTj+HF88vJoFhgI58/z9vLlZGZlkX3xItmXLpFjtdIlIICnw8Pdhog9e7A6neSLkO9y4QAG6/XMM5k4YLfT3G73GhUK/oD6A6uA/+LeYV/JCNzZ9HYAnxQhb3DhAiOA47hLCuiuaFl2OxiNBJpMBNrtGJTCqBRGnQ6TTkd0nToQGsqt2dnsSUvDZDBgNhgwGQxYjEZi27eH2rV55Nw56qemYrFY8PH1dcfl+frSuVs3CA3lnZwcns/Jwa9mTXcLCcG3Zk38w8LAZGJtMZ/50mLknxYjL27b+2Qx8tuLkTcrRq6hoVHuPAl8rZQ6hdsWGgHcXZaJlFILgZ5AiFIqFXf5+k+UUuOANbiThM4tL8OGUmoIMKRRo0blMd3vnvj4eHQ6nTcnxdtvvw1Ap06dSE5Opn///t6+drudn376ibZt2xIUFFRhOr344otMmTIFnU7HP//5T8aOHUvv3r3ZuHEjkZGRbNy4kbblnLts0qRJTJo0CYAJEyYwceLEcp2/ojGbzcyZM4du3brxyiuvMHv27ErXITs7+zJDRmJiIgcPHvTKo6Oj6dixI4899hhxcXG0b9++wj1xqhPPP/88TZo04fTp08UaKwqa0Wj8XeXOuF7q16/P1KlTefzxx73eMCWlR48eJCQksGTJEsaPH1+iMZ9//jlhYWHeXCaFDRNt2rRh1KhRzJ49m8cff5x69eoVOUd2djZpaWk0b968RF4XS5cuxcfHh379+gHwyiuvAPDaa6+VSOfK5qqeG0qpWSLypFLqG349m3kRkWv7sJRkcaUGArP4daPxplLqddxxNMuVUhbcN5DbAeeBe0TksFLqTuB1wI77pvQEEfmmuPUq666KjBnDvv/8hy+AD3NyOH7hAjqDgcCAAAS4ePFi1XtKpKWxe84c/jFvHsknT3I0L49McSffewf3nf1JwAygrslEi7AwunXowMC//IUYj7GmssnLzCT78GHCXC44e5ala9Zw7PhxzmdkkJmVRebFi9TW65larx7k5HDzrl2cstmwulzki2ATIUYpkvR6cLkwegwShbmJX61kRX11Nwd24w5JsODxOvA0AzDYaOSLoCDO6fV0SE/HpNNh1ukw6fVYDAbujohgfOPGpCnFC3v24Ofj426+vgTUqEGPFi2Ia9WKHL2epDNnCAwNxa9WLQLCwwmsUwdLUJDmoq+hoXHDU1rPDc8YI1Dgj79PROzlr1nFoXlulIyWLVsSGhpKQkICAA0aNOD48eOMHTuWBQsWcP78eW9CvP79+7PGk3hdr9fj7+9PWFgY9evXp3nz5rRv357u3bsTHR1dpgOXw+Hg1ltvZcOGDfj6+vLDDz/QoUMHr/zZZ5/lH//4Bzqdjo8++qhUB5erYbPZuPXWW9m4cSM+Pj6sXLmSnj17Xve8VcW4ceN4//332bx5M506daqwdXJycti+fftloSX79u3zyuvVq0dcXJy3xcbGUrNmzQrTR0OjAJfLRZ8+fUhKSmL37t3UrVu3RON27txJ69atS5xUtIAxY8YwZ84cnnzySWbOnHmZ7MSJE8TExHD33Xczb968IsdPnz6d5557rsjkpFciItSrV4/Y2Fji4+M5fPgwDRs2RClVZSEpUMawFKVUrIgkKqVuKUouIhvKUcdKodI2HjEx0LAhrFkDrVpBcjKf9O7NwwkJPNG2LbO3b694HcrIge++IzwpicDERCYmJDDz3Dkucrl1ax3Qu2ZN3vP1JdFioWXTpthsNqxWKw6bjckdOoDVyttJSWw+c4Y8hwObw0G+04kJ+K5RI7DZuOvIEZLy8rwhFQ4RApTikL8/OJ3E5OZytFA+BgAfoCB1vl+h5wUEAAWJVwI9cgNgBExK0cZoZH2dOmCx0PPECWxK4WcyuZvZTMfISP7arRsEBvLBzp34BQURFBZGrchIatatS+2mTQlq0MAdmqChoaGhUSRlNG50xZ2+xvsFKyLzy1m1cqeQ58aYAwcOVLU6NzQHDhygcePGXpfqnJwcAgICiImJQURo0qQJ3377LQBnz54lIiICf39/YmNjOX78OOnp6Vy6dAlXoYpEAEopfHx8qFmzJlFRUcTExNCmTRu6dOlCbGxskaEeqampdOjQgbS0NKKjo9m2bVuRceqLFy/mnnvuweFwMHr0aObMmXNd779Lly5kZGQQExPDzz//XO0P4NnZ2bRo0YKgoCASExOvO6zGbrdz8OBBdu3adVk7ePCg9+ceGRn5G0NGaGhoebwdDY0ycejQIVq1akWvXr349ttvS2RsLchdERUVdVnoVHHYbDZq1KiBw+EgIyPjN2FzL7zwAtOmTSMpKalIj7OCyitnzpwpttrRtm3b6NChgzeM8OGHH+aTTz6hZcuW7Ny5s8Q6lzfXVS0F+GtJrlWHFhsbKxXN8c2b5X6QeTExcgxE/vlPEatVxGiUDUaj2K3WCtehvHHa7bL1s8/kjT59ZHBYmOTfdJOIr680v0rVAvG0RkXIVIFcKWmKuyKEEcTiqUpQWymRoCCRWrXkVpNJog0GaWE2S0c/P+kdFCSj69UTGTlSZNw4+degQTJz2DCZN2aMrJg4Uf736adyYvNmkUuXqvoj09DQ0PhDQ+mrpSzAHbH3PvCup71TmjmqulXGHqO6M336dAHk6NGjIiIyefJkAeSxxx4TQN555x1v39tvv10A+fDDD38zz5kzZ2TRokXywgsvyJAhQ6RFixZSq1YtMRqNRe5LjEajhIaGSuvWrWXYsGHy1FNPiclkEkCGDx9ebDWH/fv3S3BwsADStm1bsZZhLzdv3jzR6/UCyMiRI39XFSSWL18ugLzxxhslHuN0OuXQoUOybNkyefPNN+Xee++V1q1be38ugOh0OmncuLEMHz5cJkyYIN98802VVNLR0CgJM2fOFEDmz59f4jERERFiMplKvdYbb7zh/f66kgsXLkjNmjWlb9++RY41mUxSq1atEq3z8ssvi06nk3PnzklmZqb3O/bdd98ttc7lybX2GCVJKJokIu2vuLZdRNoVb1e5sagMz43PHn6YBz/5hFpKkS1CXn4+J0aOpP5XX8GLL8LkyRW6fmViy8lh4wcfsGPTJnx8ffELCMA3IIARt94Kfn4cy84mz2gkIDQU/4gI/MPCtJAKDQ0NjT8AZUgomgI0l+I2JTcwWlhK8XTr1g2r1UpSUhLgDlHZvXs3U6dO5fnnn2f//v3ExMRw8eJFgoKCCAgIIDMzs1Rr5OXlsWXLFrZs2cKOHTs4ePAgqampnD9/nry8PG8/pRTTp0/nb3/7W4nn7dq1K9u3byc4OJgtW7YQExNT7DiXy8UDDzzAggUL0Ov1zJ0711uR5ffE3XffTXx8PMnJyZdVexERTp8+/RtPjN27d5Ob+6v/bb169WjZsuVlrWnTpr/7hJQavx+cTic9evQgJSWFPXv2EBERUeyYPn36sH79ek6cOFHicBZwf6+EhoZy4cIFjhw58ptKLbNmzeKpp55izZo19O3b13t9w4YN9OzZk+HDh7NkyZJi1ykcRjhjxgz+9re/oZQiLy+vSpMflzUs5V7cCT67A4XrhwYALhEpKh/iDU1lbDzub9iQbw8f5jwQ6+vLD4cOEVy7Nu2VYovD8YdI0KmhoaGh8cemDMaNr4EnROS39e1ucLSwlJKRlpZGnTp1mDRpEq+++ioOhwOz2Uzt2rWJjY1l586dHDp0CKUUo0aNYsGCBUyePLnU1RyuhcvlIiUlhc2bN9O9e3eaNm1a6jkK4t0NBgMLFy5kxIgRV+1bXcu8loW0tDSaNWtG8+bNue+++7wGjF27dnHhwgVvv/Dw8N8YMZo3b15hFWk0NCqTvXv30rZtWwYOHMjixYuLDU95/fXXmTBhAjNnzmT06NGcOXPG286ePfub5+np6fTv35+3336br776ivvuu4/OnTuzefPlBU3z8/Np1qwZgYGBJCYmotfrAbcR8quvvmLt2rXcVkwOxcJhhI8//jjR0dHenB5VVSWlgDKFpQD1cWcb3wzcUqi1BwxXG3cjt4p2GXU5nVJXr5cGHrfDeWPGyL316gkgf+/Tp0LX1tDQ0NDQuFGg9GEpCcAF3NVMlhe00sxR1U0LS7k2//rXvwSQ5ORkERGZM2eOADJmzBjx9/eXRx99VERE8vLyxGAwiK+v7w0bujF37lzR6XQCyNNPP11kn4SEBPHx8RFAevToIfn5+ZWsZeXzySefeENKgoKCpHv37vLoo4/Ke++9JwkJCXL27NmqVlFDo8KZOnWqALJw4UJJT0+X3bt3y/r162XhwoUya9Yseemll2T06NEyePBgadWqlTcEiyJC6gCpVauWNGvWTHr27Cl9+/YVQO69916x2WwSHR0tgPz888+/0WPhwoXu8+i8ed5roaGhYjAYxOVyFfs+pk2b5g0j/Oqrr7z6vPrqq+X6eZWFa+0xqnwzUJmtojce+7/7TgDx8+SSyDhwQHQgASBOu71C19bQ0NDQ0PKZvxUAACAASURBVLhRKINx45aiWmnmqOqmGTeuzYABAyQ6Otq7qe7cubMA8sUXXwgg8fHxIiIybtw4AeS5556rSnWLZfv27eLv7y+AdO/eXeyF9nkTJ04UpZQopWTixIlVqGXl4nK5ZOvWrZKamlqiw5OGxu8Ru90uHTp0uKqxQq/XS+3ataVt27bSr18/UUpJYGCgTJ8+XebNmyerV6+W7du3y8mTJ8Vms/1m/ilTpnjzbaxfv14AadSo0W/6OZ1OiYuLk6ioKMnNzZWMjAwBpE2bNiV6H127dpV27dqJiEiXLl28+TYyMjKu7wMqB661x7hqAgSl1CYR6a6UurJYhnI7fIjmP3YFaWvW0AA4CnT19+fhHj1wAROHDtVyTWhoaGhoaFwFEdmglKoPxIjI90opX9xVtjV+B2RnZ7Nu3TrGjx/vddNOSkqiZs2aJCcnYzAY6NWrF06nkzlz5mAymXjjjTeqWOtr07ZtW06ePElcXBybNm2ibt26bNmyhVGjRvHjjz/+Lsq8lhalFHFxpSqSpKHxu8NgMLBkyRI+++wzAgMDCQ8PJzw8nLCwMMLDwwkODr6shGrt2rXJyMjgmWeeKdH8zz//PL6+vjzxxBPk5eURGxtLYmIiixYtuixMTqfTMX36dHr16sW7776LzWYD4K677ip2jbS0NDZv3szEiRPZsmULmzdvRilFZGTkDV/h6aonbhHp7nkMqDx1qjc3nzjBER8fvrVaCXviCW6ePJlgpXh62bKqVk1DQ0NDQ+OGRSk1BhgL1AQaApHAh8ANn9+rUM6NqlblhmXVqlXYbDaGDRsGwMqVK7HZbPTp04c1a9bQtWtXAgMDefXVV8nLy2Ps2LEYjcYq1rp4AgMD2bt3L3fffTeLFi2iQYMGAL+bMq8aGhplo27durzyyisl6tuiRQvWrVvHiRMniIqKKtGY8ePHY7FYeOSRR+jUqRNKKR599NHf5ADq2bMngwcPZvLkyURGRgLw2GOPFTv/8uXLERGGDx/Om2++iY+PD1arlaFDh5ZIv6qk2OyWSqmGSimz53lPpdQTSqmgileteiEuF65168DhYLDZTMekJPYCS558sqpV09DQ0NDQuNF5HOgGZAOIyAEgrEo1KiEi8o2IjK1Ro0ZVq3LDEh8fT1hYGF26dAHgnXfeAeChhx5i+/bt9OvXDxFh1qxZGAwGZs2aVZXqlgqdTsfXX3/NzJkz8fHxYeTIkezdu1czbGhoaJSIW265BYDFixeXatyYMWOYP38+W7duJSgoiIyMDKZMmfKbflOmTCE7O5u9e/cSFhZGcHBwsXPHx8cTHR1NYGAgixYtIijIffR/9tlnS6VjVVCS0h2LAadSqhHwERAFfFGhWlVDdi9bRvC5c4Tb7SyKisKxejU3hYbSc8aMqlZNQ0NDQ0PjRidfRGwFL5RSBi4PidWopuTn57NixQqGDh3qzdi/adMm/Pz8SE9PB6B///7MmDGDnJwcRowYUS3Lfz755JPk5uYyf/78y1zONTQ0NK7FnXfeCcC6detKPfbPf/4zX375JdnZ2QBMmjQJh8NxWZ8WLVrQt29fXC4XHTp0KHbOgjDCYcOG8d577wFw7tw5atasyU033VRqHSubknz7ukTEAQwH3hWRZ4HaFatW9SPh88/JBs4Cf09NJRA4O2FCFWuloaGhoaFRLdiglHoJ8FFK3QZ8DXxTxTpplAMJCQlcvHjRG5Kybds2Ll26RNeuXVmzZg2hoaG0bduWN998E51OxwcffFDFGmtoaGhUHs2bN0ev15OcnFym8XfeeSfLli1Dr9eTl5fH6NGjf9OnINeR1Wotdr6CMMJ+/frx8ccf06VLF+x2e7GlY28USmLcsCul7gXuB771XLvxAyErmfX//S8KsADJeXkE6XSEPf54VauloaGhoaFRHXgBSAd2Ao8AK4GSBSxXMUqpIUqpj7KysqpalRuS+Ph4/P396dPHnT7l7bffBmDcuHGsWbOGvn378tlnn3HhwgUGDBjgdX/W0NDQ+KMQFhbG6dOnyzx+0KBBfPut+5g+f/589uzZc5l869at6PV61q9fz9atW685V3x8PKGhoaSkpJCVleVNRPq3v/2tzPpVJiUxbjwIdAHeFJEjSqmbgAUVq1b1wmmz8f3p0whu4wbAu08/XZUqaWhoaGhoVAuUUnpggYh8LCJ3icgIz/NqEZai5dy4Oi6Xi2XLljFgwAAsFvcOae3atRiNRmrXrs25c+fo378/L7/8MkopPvrooyrWWENDQ6PyadGiBXa7nWPHjpV5jv79+/O458Z6XFycd64zZ86QkZFBq1atCA0N5dlnn+Vq/14LhxG+++67dOnShd27d+Pn51eikJYbgWKNGyKyR0SeEJGFntdHRGRqxatWffjlq6/I8TzPBKL0eu6cPr0qVdLQ0NDQ0KgWiIgTqK+UMlW1Lhrly5YtW0hLS2P48OEAHDt2jPPnz9O+fXu+++47ABwOB2lpafTo0YM6depUpboaGhoaVUJZk4peyXvvvUdQUBBWq5UuXbpw8OBBb96M++67jwkTJrBhwwZWrlxZ5PiCMMLatWtz6NAhhg4dyqVLl+jWrdt16VWZlKRaSjel1HdKqf1KqcNKqSNKqcOVoVx1IWjXLhoDBbuyD197rSrV0dDQ0NDQqG4cBn5SSr2qlHq6oFW1UhrXR3x8PEajkYEDBwIwdar73tjDDz/M6tWradeuHZMmTQLQvDY0NDT+sBQkFV2/fv11zzV37lwA0tPT6dGjBwsXLgTgkUceYezYscTExPDcc8/9JvEo/BpGuGHDBurXr09SUhLgLj1bXShJWMonwAygO9ABiPM8anho+P337AMuAG/XqsVAzbihoaGhoaFRGg7hzuulAwIKNY1qioiwdOlSevXqRUHIzvLly9HpdNxxxx1s3ryZZs2acfToUWJjY2ncuHEVa6yhoaFRNTRr1uy6kooWZvjw4cTExOBwOMjLy+PQoUOEhIQQGBiI0WhkypQp7Nmzh3nz5l02riCMsHPnzmzcuJHx48ezbt26ywzU1YGSGDeyRGSViJwVkYyCVuGaVRPsubm8m5jIOcAXeHrRoqpWSUNDQ0NDo1ohIpNEZBIwveC55/UNj5ZQtGhSUlI4cOCANyQlMzOTkydP0rRpU3788UccDgc//fQToHltaGhoaISHh19XUtHCfP7558CvVVKysrL43//+B7iNH126dOG1117j0qVL3jEFYYRWqxV/f39uu+02bxhhdSpvXRJNE5RS05VSXZRS7QtahWtWTdjy6ac8AYQCM0JDoWfPKtZIQ0NDQ0OjeuHZY+wB9npet1FKvV/FapUILaFo0SxduhSAoUOHAjBjxgzAHfe9Zs0afH19OXbsGM2aNaN9e21bqaGh8cemRYsWOBwOjhw5ct1zdejQga5du3L+/HkAQkNDufXWW9m4cSNKKaZPn86pU6eYOXOmd8zSpUsxGAz8/PPPjB49mg8//BBwhxFWJ0pi3OiEOxRlMvC2p/2jIpWqTrw39dfcql0mT65CTTQ0NDQ0NKots4B+QAaAiOwAelSpRhrXRXx8PJ07d/YmCf3yyy8BeOKJJ1i9ejVGoxGAf/7zn1Wmo4aGhsaNQk/PDfLrTSpaQMF3LsDPP/9MnTp16N+/P99//z3dunVj+PDhTJ06lbNnz3rDCKOionC5XDzxxBPeMMIHHnigXPSpLEpSLaVXEa13eSyulOqvlNqnlDqolHqhCLlZKfWlR75FKdWgkOxFz/V9Sql+5aFPWfjmxAkAmhiNdKlmli0NDQ0NDY0bBRE5ccUlZ5UoonHdnDhxgm3btjFs2DAAbDYbBw4coH79+pw+fZqjR4+SlZVFgwYN6NWrVxVrq6GhoVH1FCQVTUhIKPe5P/30UzZs2EDDhg0ZPHgwK1as4K233sJqtfL666+TkpLCwYMHOXPmDMOGDSMoKMgbRmgwGMpdn4qkJNVSwpVSnyilVnleN1dKjb7ehT117f8JDACaA/cqpZpf0W00cEFEGgEzgakFOgD3AC2A/sD7nvkqlUvp6eR6nv9n/vzKXl5DQ0NDQ+P3wgmlVFdAlFJGpdQzQEpVK6VRNpYtWwbgNW589NFHiAjDhw9nzZo13n6FXaI1NDQ0/sg0adIEvV7Pzp07y2W+d955BwCdTsfkyZMJDg4mISGBli1bMnz4cHbt2sXYsWP517/+xbRp0wDIzc3lqaeeYtasWYA7jLC6URJTzGfAp8DLntf7gS9xV1G5HjoCB0XkMIBS6j/A7cCeQn1uByZ6ni8C3lPuzCi3A/8RkXzgiFLqoGe+zdepU6kY3dxtiwkE2t5zT2UuraGhoVHtEZcLl8OBOJ0Y9HpwucjLzcVhs+FyOHA5nbgcDvQ6HTX8/cHlIj09HbvNhjiduDzjLSYT4bVqgcvF4WPHsNtsuJxO9/xOJ4F+ftQLDweXi1/27sVht3vl4nIRWqMGDSMjweVi4y+/4PJcd7lciNNJVGgojSMjcdjtrE1M9I4TEVxOJ03q1KFpnTpY8/L49kq5y0W7evVoVqcO2bm5LN227Tfybg0b0iwigvTsbBYnJV0mExH6Nm5Mk7AwUi9c4KtffvHKC9odLVrQqGZNDp47x1fJyZfJRIRRbdrQoEYNktPS+HrPnstkT/XsSeiNEVL5KDAbiAROAmuBx6tUI40yEx8fT7NmzWjSpAkAn332GQDPPvssI0eOBCAiIsJr/NDQ0NDQcH8vlldS0QIj87hx43jnnXd49NFHmTt3LuvWrWPgwIHcfffdvPPOO1gsFubNm4fFYqFFixZ0796d0aPdfgx//etfy0WXyqQkxo0QEflKKfUigIg4lFLl4SoaCRR2QU3Fnd+jyD6edbOAWp7rP18xNrKoRZRSY4GxAPXq1SsHtX/l1awslgIPtW1brvNqaGhUAC4XOJ24bDZyL17EabP92ux2Anx88DObyc/N5XhqKk67/bJWPzSUmv7+ZGVlsWP/fvd1hwOn3Y7DbicuOprwwEBOnzvHxt27cXoO506HA6fDQb/mzakTGMiB06dZs2sXTqcTp9Pp7uN0MqpNG2r7+ZGYmsqylJRf5Z5D9nOxsYSZzaw7dozFhw7hcrlwemQul4sZsbEEGwwsPnaMr44dwyXilovgEuE/bdrgqxQfHT/Ol2lp3usFbWPz5uhEeOvkSRadP+++DrhEMCvFtvr1weXiqbNnWXbpklfuFCFEp2NHzZrgcnFfdjar7HZcIgjgAqKVItlkApeL2xwO1nvGFtAOSPI8vxnYdsWP7mbgx0LP910hHwisKCQ/dYX8buA/nuc9gItXyB8GPi4kv5IncbsO5gGDipC/CrwOZAL/V4R8GtAMSAMeKEL+gUd+AvhLEfJ/A01w10r9WxHypqtW0Qh3Js6Xi5Df/MMPNMB95+BNQBVqIw8frlLjhlJqqog8D/QSkT9VmSIa5cb58+f54YcfeO655wB3ecEdO3YQGhpKrVq12LBhAwBvvvlmVaqpoaGhccPRokULTp48yeHDh4mOji7zPE6nk4MHDxIZGcnMmTP55JNPmDdvHtOmTSMkJIQ1a9YwZMgQxo0bx9ChQ1m2bBl5eXk89dRT2O12Dh48SP369fH39y/Hd1c5lMS4cUkpVQsQAKVUZ6Da1DsTkY+AjwDi4uKkPOdulptL24AAvkpO5o2zZ/ELCyvP6TU0KgYRHHl52C5dwpGXh91qxW61opxOwoOCwG7n0OHDXMzKwp6XhyM/H3t+Pv5GI+1vugkcDr7fto0LWVnY8/Nx2O3YbTbqBAQwoGlTcDj418aNZF665JY5HDgcDprXrMl9jRuDw8EzGzaQk5+Pw+n0th4hIYytXx8cDgZv3ozd6cThOcA7XC7uqlmTv4aGYrXZ6LhvH04RHCLex/F+fjzj48NZm40mmZnu64ADd+D+W8BzwGEgpoiP5X3cB8s9QFF5+xcAfwZ2ALcUIY/H7VKWhPswfSXfA3U88vFFyHutXk1tYDvwd0DvaTrP48N79xJmNHLAZmOR1YpOKbfM85hns4HJxJmLF0nOzLxcrhTO9HQwmbDn5ZHvcKBTCr1Oh0GnQymFBAaCXk9gTg517HZ0Op17DqWwGAzQti3odMQcPEj3jAy3zNMnyGyGrl1Bp6NnSgqhFy6gCslD/PygSxdQinuSk+mcne2WeVpEQAB07Ag6HU/88gtncnLQ6fXoPLpFBgVBbCwoxcTERLLy871jlVJEhYRAq1agFO8lJpLndLrX1+tRSlEvNBSaNgWl+E9SEi5Aecbq9HrqhoZCdDQoxffbt6N0OvdYzxqRYWFQty4+Lhc/79vnHlvQRylqh4VBWBghDgc7jx1Dea4XzBFaqxYEB3OTw8GhM2d+Ha/TofR6goOCwN+fVg4HpzIzf5V55AEBAWCx0M3pJDM31zu+oJl9fMBoZIDL5X7vV8h1ej3odNyDO57zBmOgJ+fWi8DXVa2MxvWzYsUKnE6ntwTskiVLcDgc9O/fn5UrV+J0OvHz8+PBBx+sYk01NDQ0bix69erF2rVrWbx4Mc8++2yZ51m8eDEul4t+/fqh0+mYMmUK48eP57777mPt2rX4+/uzcuVK7rjjDpYtW0ZAQAB+fn7cddddl4URVkeUyLXP+56yr+8CLYFduKuejhCR5OtaWKkuwEQR6ed5XeAZ8lahPms8fTYrpQy4b3yFAi8U7lu437XWjIuLk23brrwneH389MEHdH/sMSb27MmECkgAo1F9cNps6BwOlM1GzvnzXEhPJz8nh/ycHGy5ueRfukTcTTdhcLnYc+AAKUeOYMvLI99qJd9qxZafz+MdO6JzOPgmOZmfjh7FZrdjt9uxORzgdPKvjh3BZmNWSgrfnzmD3enE5nRidzrxV4rV0dFgt/NYaiqrLl3C5nJhE8EuQqRS7NbrweHgVmDdFfq3xn1wB7cL1f+ukHcDNnmet+Dy+DFwlzlY7Xlej8vdsvTACJ2O//j4gMFAo4sXycFtXTUohUEp7goM5K3atcFgoNOBAyjP4duo06HX6bgzPJzHoqOxKcU9SUkY9Hr34Vyvx6DTMaRBA+5o1Igcl4uX/vc/93W9Hr3BgEGvp29MDDdHR5Npt/Pxtm3oDQb0Hrler6dH06a0iIriQl4eK3budF8v1GIbNyYqIoJMq5XEQ4fQG41umdGIwWgkpkEDgoODuZiXx/GzZ71yncGA3mQiPDwcHz8/8mw2Llqt6E0mdx+jEZ3RiMXPD53RiHgOpBoa1RmlVKKIxJWg33RgDOAP5OJ2KJGCRxEJrFBFywGl1BBgSKNGjcYcOHCgqtWpcu688062bNnC8ePH0el09O7dm4SEBHbu3MmIESPYt28fb775Ji+99FJVq6qhoaFxQ3HgwAEaN25M//79WbVqVZnn6devH2vXruWXX36hTZs2ANSuXZu0tDT27NlDs2bNAMjPz+fuu+9m2bJlvPXWW7zwwgvExsaSlJTEiRMnqFu3brm8r/LmWnuMYo0bngkMuL1iFbBPROzloJQBd/6OPrjja7cC94nI7kJ9HgdaicijSql7gDtE5P+UUi2AL3Dn2aiD+5wWIyLXDJepCOMGwP9FRbEiNZUDiYnU0Wq133A4rFayTpwgMzWVcKMRfyDt5Em2JCeTe/Ei1pwcrJcuYc3N5d5mzYg0Gtly+DCfJidjzc/HarORa7Nhtdv5uEEDokWYn5bGK+npWF0urCLk4fYOOAI0wF03uSj38HQgBHgJtyfBlVgBC/BX3K7qZsCoFCal8FGKI/Xrg9HIaxcusOLiRUx6PUadDqNeT02Tia87dQKjkdlHjpCUmYnRYMBkNGIyGgn19+flHj3AaGThnj0cz8nB6DmYG41GQoOCGNG5MxiNrN+7l6z8fIxmMwaTCaPZTM3gYNo1bw5GI3tTU3EARosFo48PBrMZv4AAaoWHg8FATl4eerMZg8WC3mRCV80yLWtoaFwfpTBumEUkXym1TERurwzdKoqK2mNUJ6xWKyEhITzwwAPeEq++vr4YDAZOnz6Nv78/er0em82GTjPiamhoaPwGo9FIREQEJ05cWUCs5NSoUQO73U5ubq732sqVKxk0aBCtW7dmx44d3ut2u51vv/2WQYMGYTAYMJvNBAcHc/bs2et6HxXJtfYYxZ44lFJ3AatFZLdS6hWgvVLqDRFJKm7stfDk0BgHrMF9Y3euZ43XgW0ishx30tIFnoSh5/F41Hr6fYX75rEDeLw4w0ZFMmXBApb16sWchx/mtaTr+lg0isCem+s1TtQEaopw7vhx4jdsIDMjg8zMTDKzs8m8eJG/1K5NN52O/546xd3Hj5PpdJJTaK4VuOPztwBFpTGLW7GCSIOBEwYDS/Pz8dHp8NHr8dHr8TUYsFssEBJCZI0a9Pbzw8dsxtfHB4vZjNlsJrB7dwgOZuDZs4SdOoXZx8fdLBZMPj4EdOwI/v6My87mntxczH5+mPz8MPv7u1tEBFgszDYama3UVT+T1z3tahSX/ufeYuTF1Xpu2qHDNeXVL0JPQ0OjitiMOxIsu6oV0bh+vvvuO3Jzc73uzJs2bcJqtTJ48GAeeeQRAG655RbNsKGhoaFxFcLDw0lLSyvz+EOHDpGdnU337t0vuz5w4ECaN29OcnIy69ato0+fPoDbmFLwnb1o0SJvGGF1pSS3U18Vka+VUt1xe1n8A/dN5SuTf5YaEVkJrLzi2muFnucBd11l7Ju4c6NVOdE9e7Jl1Chaz58P27dDu3ZVrVK1Iuv4cfYnJLB/yxYa22x0uHSJg8nJ9Ny7l0yXi0uF+r6DO19BGm4/ZnDnJAhSiiC9njt1OmjQgNCYGG4zGAgKCCCoRg2CgoMJqlWL1p06Qb163OJ0kpiRgU+NGvgEBXmbX0gIWCyMAEZcQ+c+nnY12nra1ajjaRoaGhp/cExKqfuArkqpO64UisiSKtBJo4zEx8cTFBTELbe4MxO9/fbbADz22GMMGTIEgKlTp1aZfhoaGho3Oi1btuTkyZMcPHiQRo0alXr8u+++C+CtTFWYhQsX0qZNGx544IEiPUMKPO4KEkJXR0pi3CjwiBgEfCwiK5RSb1SgTtWStrNnw8qVnH/iCYI3bNBi5q8gPzubQz/8gDp2jGZWK/kpKdy2ZAn7c3I44/q1bsJTQIfoaCKjo+nvcFCjsHEiJISObdpAy5Y09vPjuN1OUFQU/hERv/m8Y4C519AniKKTRmpoaGhoVCqPAn/C/bU85AqZAJpxo5rgcDhYvnw5gwcPxmg0ApCQkIDZbCYhIQGn04mPjw+xsbFVrKmGhobGjUuvXr1Ys2YNixcv5vnnny/1+G+++QalFPfff/9vZK1bt6Znz5788MMPfPLJJ96SrwVs2bKFgIAAWrZsWWb9q5qSGDdOKqX+BdwGTFVKmXHfLNcoTFAQvzz8MLdMmcKCV19l6B+wxJnL4SBz925qnj0L+/fz4qefsv3oUfZnZXHM4cCFu0zil4A5PJwaBgODGzWiccOGNGnblsZduxLdowcEBuIDzLnGWiYgqjLelIaGhoZGhSEim4BNSqltIvJJVeujUXZ++uknMjIyGDbMHfS5b98+srKy6N69O++99x4Ad9xxB+oaIZcaGhoaf3TuvPNOXnjhBRISEkpt3LDb7Rw5coR69ephNpuL7LNw4UIiIyN5+umnefDBB71hggVhhIMGFVX0vvpQEuPG/wH9gX+ISKZSqjZQ9to0v2NaTphA5IwZPDN9Ov1ffBFTNawNXBqs58/z5XPP8c2qVezPyOBgfj7tgP965Jt1Oi6azXSqU4eRDRrQuGVL2tx8MwwYADVq8E1VKq+hoaGhUeUopXqLyHrgghaWUr1ZunQpZrOZfv36Ab+Gn9SuXRur1QpQ7TfNGhoaGhVNo0aNMBgM7Nq1q9RjFy5ciIgwYMCAq/aJiIjgnnvu4YsvvuCVV15h8uTJwK9hhE899VTZFL9BKFG1lN8LlZHJfOWkSQyaOJHZd9zBE4sXV+haVcbRo/DBB9wxaxZLbTYaGAy0Dgmhcd26tG3Thj+NHAmNG0NEBGh3aDQ0NDT+cJSiWsokEZmglPq0CLGIyEMVoF6F8EeqliIiZGVlcerUKU6ePMmpU6d4+eWXad++PcuXLwfcRo309HR8fX3JyclBREhPTyckJKSKtdfQ0NC4sYmKiiLt/9u7++ioyrPf499rEiQCSkBBICCRF+MDCHIK1pdVVECrpyKPgCgtiopYKCot1jcerT6lKj1QRCrahSIgVgUMKvh4HEoVcJ1qEZXKm2h5DxDAIChBgiHX+SMTRCQYwuzZM8Pvs9asmdmzZ88vt65w5Zq977uwkG++OboFSiuW3j54udfD2bt3L3Xr1gVg165dZGVlkZ2dzd69e9m7d+8xZU+EY1otRY7OFQ88wKXjx/PQK6/Qf/Vq6rdsGXakuCgrLWXe6NE8OX48EwoLycnI4O6f/ITbe/Tg4l//WnOMiIjIUXP3B2P3N4WdRcrt2bOHzZs3H7hVNC8OfV5xNkYFM2PcuHEAbNu2jcLCQnJycti0aRP16tWjZcuWamyIiFRBu3btKCgo4NNPP+XMM8+s8vsWLVpE7dq1j9jYAMjKyuLOO+/k0UcfZeDAgdx///0HLiNMdWpuxJlFIvxp4kQ69unDnF/9igHRaNiRjsmuDRuY+pvfMGHOHD795hsamvHJz39OzqhRnNdMs16IiEj1mdnwI73u7mMTleV4sX37dt55551Kmxc7d+783ntOPPFEcnJyaNKkCZ07d6ZJkyYHnlc8bty4MbVq1QJgzJgxAOzcuRMzY+fOnSm9tKCISCJ17dqVN998k/z8fO67774qvWflypUUFxdzySWXVGn/P/zhD0yYMIGXXnqJkpISAAYPHlztzMlCzY0AnN27N59eey0t8vPh00/LL9FINcuW8dVjj9H82WfZBZxXpw7P33ILfUaNoubJJ4edTkREjud1ZAAAFhdJREFU0sNJsfs8oDMwO/a8B7AoUSHMrAXwX0Bdd+8T21YbeBLYB8x3978mKk+QBg8ezKxZ5VOZZGZm0rhxY5o0aUJeXh5du3Y90LA4uIFRt27do5oIND92WW5xcTFt27Zl+fLlB+biEBGRI+vduzd333038+fPr3JzY/z48QCHXSXlcCKRCGPHjuWWW24hPz+fjIwM+vXrV+3MyUJzbgSlsBBat2bDBRdweoqcvfHNnj289sADLJ45k1EbN0LNmkzo2JHzhg7lR/37hx1PRERSRFXn3Dho/4XAz9z9q9jzk4D/cfcuVXjvs8CVwDZ3b3fQ9suBx4EM4Bl3H1WFY718UHPjemCnu88xs+nufu2R3psqc2789Kc/pbCwkLlz59KgQYMDM+XHy549e6hTpw6RSIT9+/dzzTXXEI1G+fzzzw8sESsiIkdWo0YNGjZsyKZNm6q0f25uLhs2bKCkpOSoftc2a9aMgoIC2rdvz7/+9a/qxk2oI9UYmighKI0a8Wbv3rSYO5f5sWtQk1Xhxx8zsls3ck86iWvGjmXGli189fvfQ0EBQ999V40NEREJ2mmUnyFRYV9sW1VMoXxVtwPMLAOYAFwBtAH6mVkbMzvbzF4/5NawkuM2BTbGHu+vYpaUUKtWLU477bS4NzYAJkyYgLuzf/9+OnfuzHvvvUf37t3V2BAROQqNGjVi69atVdq3pKSEDRs2cMYZZxz179qpU6dSs2ZN7r333urETDpqbgToorFjycnIYPiIEZSVloYd57vc4d13mXPRRZzeoQO/e+stzq5Xj9n3389nxcWc9MADoIm/REQkMZ4DFpnZQ2b2EPBPypsWP8jdFwI7Dtl8LvBvd1/j7vuAl4Ce7r7U3a885LatkkMXUN7gANVLVTZt2rQDj++55x42btyoS1JERI5S+/bt2b9/P6tWrfrBfadOnYq7c+WVVx7153Tt2pW9e/emxSUpoH+sA3Vi/fo8+stf8tHXXzNtyJCw4wDw9Y4dPHvTTfzfVq3gggu44MMPGXrOOax6803e/PxzeowcScYJJ4QdU0REjiPu/jBwE/BF7HaTuz96DIfM4duzLqC8UZFT2c5mdoqZ/QXoaGYVFzjPAnqb2VPAnEred6uZLTazxdu3bz+GuOmhrKyM5cuXA9C2bVs2bNgAoOaGiMhRqpgYtGIOoyOpaCrfcccdgWZKBWpuBOy6xx/n3Nq1GfHssxRvq+zLoeCVfPkl951/Pk1PPZWBU6bwQlERPPUUp2zZwmMffcSZKjxERCRE7v6huz8eu32U4M8ucvfB7t6yoqni7sXufpO7D6lsMlF3n+jundy9U4MGDRIZOSk9//zzlJWVAfDEE08QjUY566yzaN68ecjJRERSS+/evQGYP3/+D+77wQcfcPLJJ9OyZcuAUyU/NTcCFsnMZOzo0RSVlfHub38bSobibdu4qkULRr33Hpc0acL8ceN4bscOGDwY6tQJJZOIiEiANgEHr1feNLYt7sysh5lN3LVrVxCHTyl/+tOfAMjJyeHHP/4xCxYs0FkbIiLVcMYZZ5CZmXngbLjKLFmyhK+//przzjsvQcmSm5obCXDhkCFsvOoquufnQxVnvI2bXbt4o0sX5hUVMXngQF4uKOCiYcOwACYRExERSRLvA63N7AwzOwG4jm+XmY0rd5/j7rfWrVs3iMOnlKVLlwLlZ20sXLiQvXv3qrkhIlJNjRs3ZuvWrRxpddM///nPAAwcODBRsZKa/sJNkAaPPQalpSwdOjRhn+nbtkHXrlyzZg0rxo3jxmeeSdhni4iIJIKZvQi8C+SZWYGZDXT3UuA2IAqsBGa4+5G//qr+56fUmRtHKpKPxeTJk3F3srKy6NmzJ9FolJo1a3LRRRcF8nkiIumuYlLRlStXVrrP3LlziUQiBy5jOd6puZEoLVrw9MUX0+G11/jwr4e9dDeuNi1ezI+bN+fdZcvgtdfIGzYs8M8UERFJNHfv5+6N3b2Guzd190mx7W+4+5mxeTQeDvDzdeYGcNdddwEwfPhwzIxoNEqXLl2oVatWyMlERFJT165dAZg1a9ZhXy8uLqagoIBWrVqRkZGRyGhJS82NBOo7cSKnmHHnbbfhsQm3grBm/nx+cv75fLJ3L9+MGQNXXBHYZ4mIiBzPUu3MDQAzi9uxCgsL6d+/P0VFRQCMHDmSjRs3smLFCl2SIiJyDHr16gXAggULDvv6pEmTAOjZs2fCMiW7zLADHE/qNm/Of/fty9Dp05l9//30fOSRuH/Gitmz6X711ZS489bUqXS64Ya4f4aIiIiUc/c5wJxOnToNCjtLvH355Zd8/PHHLF++nFWrVrFu3To2bdrEtm3b2LFjB7t37z6wOgpAu3btiEQiRKNRQEvAiogci9zcXGrUqFHppKIvvPACALfffnsiYyW1UJobZlYfmA7kAuuAvu7+xWH2GwDcH3v6B3efGts+H2gMfB177TJ3D2+d1aNw65QpPPHKK9w1ZgxXjBjBCXFcreTfr75Kl169qGHGgvx82l19ddyOLSIiIumhrKyMJUuW8PHHH7Nq1SrWrl1LQUEBhYWFfPHFF+zevZuSkpJK5+cws++81qhRIy677LIDq6VEo1FycnJo27ZtQn4eEZF01bhxYzZt2oS7f+esO3dnyZIlZGdn06xZsyMc4fgS1pkb9wJ/d/dRZnZv7Pk9B+8Qa4A8CHQCHPjAzGYf1AT5hbsvTmToeMjMymLMiBHc+NBDrBo5krP/+Mf4HPidd8i94QZ+XqcOd7zyCq26dYvPcUVERKRSZtYD6NGqVauwo1TJokWL2LVrFx07dvzea5FIhKysLLKzs6lfvz6NGzemWbNmtGzZkoYNG/LGG28we/Zs3J1IJELfvn159NFHyc3NPXCM0tJS5s2bR69eveJ6+YuIyPGoffv2bNiwgRUrVnynYbxo0SJKSkro3r17iOmST1jNjZ7AxbHHU4H5HNLcAH4K/M3ddwCY2d+Ay4EXExMxOFc88ABrFy6k9tNPwz33QP36x3S8t/74R8566CGaNG/O+HnzoGnTOCUVERGRI0m1y1L27NkDwHXXXUeLFi3Iy8ujXbt2tGnThqysrO/tv379ekaMGMGDDz5IWVkZkUiEfv368cgjj9C8efPv7b9o0SJ27typS1JEROKga9euvP766+Tn53+nufHEE08AMGhQSvzTkzBhNTdOc/ctsceFwGmH2ScH2HjQ84LYtgqTzWw/kE/5JSuHPXfSzG4FbgU4/fTTjzV3XFgkQu1x4yjt0IF/DhnChdOnV/tYs+6+m+tGj6ZPdjYvLFwIDRvGMamIiIikm0gkwosvHvm7orVr13LfffcxY8aMA2dq9O/fn4cffviI9VQ0GiUSiejbRBGROOjduzfDhw9n4cKF39k+b948MjIy6NGjR0jJklNgq6WY2TwzW3aY23emc401JY520fVfuPvZwE9it+sr29HdJ7p7J3fv1KBBg6P+OQJz9tn8/pxzuHjGDD6NTbx1tJ679VauGT2aTnXq8OSSJWpsiIiIyBFVNo9GhdWrV3PttdfSsmVLpk+fjplx/fXXs3btWqZNm/aDXxRFo1HOPfdc6h/jWakiIlL+5fyhk4ru2rWLwsJC8vLyiES0+OnBAhsNd+/u7u0Oc3sN2GpmjQFi94ebDHQTcPDsKE1j23D3ivuvgBeAc4P6OYL0qylTyALuuemmo37vhL59GfD001xSrx5zP/uM7MOcGioiIiLBSsWlYA/ns88+o0+fPrRu3ZoZM2ZgZgwYMIB169bx3HPPVens16KiIhYtWqRLUkRE4qhJkyZs27btQHN64sSJwLdLxcq3wmr1zAYGxB4PAF47zD5R4DIzq2dm9YDLgKiZZZrZqQBmVgO4EliWgMxx16h9e+679FJe3bKF+ePGVfl9JSNH8peZM+nZqBGvr1lDnUaNAkwpIiIilXH3Oe5+a926dcOOUi2rVq3i6quv5swzzyQ/P59IJMKNN97I+vXrmTJlylHNwj9v3jzcXc0NEZE4at++PWVlZSxbVv4n7/TYlAZDhw4NM1ZSCqu5MQq41Mw+A7rHnmNmnczsGYDYRKIjgfdjt9/HttWkvMnxMbCE8rM5nk78jxAfv3npJZplZDB8xAjKSkuPuK+XlfHN3XdT83e/461evZi5ejVZ2dkJSioiIiLpYuXKlVx11VWcddZZvPrqq2RkZHDzzTezbt06Jk+eTNNqTE4ejUapV68enTt3DiCxiMjxqWIOo1mzZuHuLF26lPr169NIX3B/TyjNDXcvcvdu7t46dvnKjtj2xe5+y0H7PevurWK3ybFtxe7+I3dv7+5t3X2Yu+8P4+eIhxPr12fUL3/JN19/zZbYrLeHU1Zaym0dOnDt6NGUDhpEg5kzqVGrVgKTioiISDooKyujTZs2zJkzh4yMDAYOHMj69euZNGlStZoaUD6XRzQapXv37mRmhjVfvYhI+qm4/GTBggUsWLCAffv20aVLl5BTJSfNQJIE+o0fz0edO5MzejQUF3/v9dK9e7kxL48nly2jZefOZPzlL6DJY0REREKXanNulMbOEs3IyGDQoEFs2LCBZ555hpycnB9455EtW7aMzZs365IUEZE4a9q0KTVq1GDlypU89dRTAAwePDjkVMlJfyEnAcvIIPOxx9i1eTPzhgz5zmslX35J3xYtmLZmDSO7deP/vPcepsaGiIhIUkjVOTfGjRtHr169KCgoYPXq1XzxxReUlZVV+3jR2Mpvam6IiMRfxaSib7/9NpmZmVx66aVhR0pKOm8wWVx4IcNzc3lp2jQ+veMOcjp1guJiBuTl8UphIY/36sUd+flhpxQREZE0cPvtt39vWyQSoV69epxyyinUr1+/yvcnnXQS0WiUtm3bVvuyFhERqVyHDh1Yv34927dvp3379loCthJqbiSR/5o8mecvuYT7+/Vj8uLF8LOf8eutW7n85pu5cdKksOOJiIhImvjkk08oKipix44dld5v3ryZZcuWUVRUxO7duys9VmZmJqWlpQwfPjyBP4GIyPGjW7duzJ49G4A+ffqEnCZ5qbmRRFpcfDHDOndm9PvvUyc3lz8XF3Pe9Omcd801YUcTERGRNJKXl3dU++/bt48dO3Z8rwlS8Xj37t1allBEJCC9e/dm2LBhAAw5ZBoD+ZaaG0lmxMyZjM7N5YmdO7lryhROV2NDREREQnbCCSfQqFEjLT0oIhKCnJwcTjzxRLKzszn11FPDjpO01NxIMtnNm7N01iwsEuH0nj3DjiMiIiJHYGY9gB6tWrUKO4qIiKSxf/zjH9SpUyfsGElNzY0k1O7qq8OOICIiIlXg7nOAOZ06dRoUdhYREUlf55xzTtgRkp6mWRURERERERGRlKbmhoiIiIiIiIikNDU3RERERERERCSlqbkhIiIiIiIiIinN3D3sDAljZtuB9XE+7KnA53E+ppTT2AZD4xocjW1wNLbBCGpcm7t7gwCOm7RUY6QcjW1wNLbB0LgGR2MbjITXGMdVcyMIZrbY3TuFnSMdaWyDoXENjsY2OBrbYGhck5v++wRHYxscjW0wNK7B0dgGI4xx1WUpIiIiIiIiIpLS1NwQERERERERkZSm5saxmxh2gDSmsQ2GxjU4GtvgaGyDoXFNbvrvExyNbXA0tsHQuAZHYxuMhI+r5twQERERERERkZSmMzdEREREREREJKWpuXEMzOxyM1tlZv82s3vDzpMOzKyZmb1tZivMbLmZDQs7U7oxswwz+8jMXg87Szoxs2wze9nMPjGzlWZ2ftiZ0oGZ/Sb2u2CZmb1oZllhZ0pVZvasmW0zs2UHbatvZn8zs89i9/XCzCjfUo0RDNUZwVKNEQzVGMFQjRE/yVJjqLlRTWaWAUwArgDaAP3MrE24qdJCKXCnu7cBzgOGalzjbhiwMuwQaehx4E13PwvogMb4mJlZDnAH0Mnd2wEZwHXhpkppU4DLD9l2L/B3d28N/D32XEKmGiNQqjOCpRojGKox4kw1RtxNIQlqDDU3qu9c4N/uvsbd9wEvAT1DzpTy3H2Lu38Ye/wV5b+8c8JNlT7MrCnwM+CZsLOkEzOrC3QBJgG4+z533xluqrSRCZxoZplALWBzyHlSlrsvBHYcsrknMDX2eCrwnwkNJZVRjREQ1RnBUY0RDNUYgVKNESfJUmOouVF9OcDGg54XoH8c48rMcoGOwD/DTZJWxgF3A2VhB0kzZwDbgcmx03GfMbPaYYdKde6+CRgDbAC2ALvcfW64qdLOae6+Jfa4EDgtzDBygGqMBFCdEXeqMYKhGiMAqjESIuE1hpobkpTMrA6QD/za3b8MO086MLMrgW3u/kHYWdJQJvC/gKfcvSNQjE7vP2axazN7Ul7YNQFqm1n/cFOlLy9fPk1LqMlxQXVGfKnGCJRqjACoxkisRNUYam5U3yag2UHPm8a2yTEysxqUFxx/dfdZYedJIxcCV5nZOspPce5qZs+HGyltFAAF7l7x7d/LlBcicmy6A2vdfbu7fwPMAi4IOVO62WpmjQFi99tCziPlVGMESHVGIFRjBEc1RjBUYwQv4TWGmhvV9z7Q2szOMLMTKJ+AZnbImVKemRnl1xSudPexYedJJ+5+n7s3dfdcyv9/fcvd1aGOA3cvBDaaWV5sUzdgRYiR0sUG4DwzqxX73dANTaIWb7OBAbHHA4DXQswi31KNERDVGcFQjREc1RiBUY0RvITXGJlBf0C6cvdSM7sNiFI+u+6z7r485Fjp4ELgemCpmS2JbRvh7m+EmEmkKm4H/hr7Q2QNcFPIeVKeu//TzF4GPqR8hYOPgInhpkpdZvYicDFwqpkVAA8Co4AZZjYQWA/0DS+hVFCNESjVGZKKVGPEmWqM+EqWGsPKL38REREREREREUlNuixFRERERERERFKamhsiIiIiIiIiktLU3BARERERERGRlKbmhoiIiIiIiIikNDU3RERERERERCSlqbkhIglnZtlm9qvY4yaxpbhEREREjolqDJHjl5aCFZGEM7Nc4HV3bxdyFBEREUkjqjFEjl+ZYQcQkePSKKClmS0BPgP+w93bmdmNwH8CtYHWwBjgBOB6oAT43+6+w8xaAhOABsAeYJC7f5L4H0NERESSjGoMkeOULksRkTDcC6x293OAuw55rR3QC+gMPAzscfeOwLvADbF9JgK3u/uPgN8CTyYktYiIiCQ71RgixymduSEiyeZtd/8K+MrMdgFzYtuXAu3NrA5wATDTzCreUzPxMUVERCTFqMYQSWNqbohIsik56HHZQc/LKP+dFQF2xr6REREREakq1RgiaUyXpYhIGL4CTqrOG939S2CtmV0DYOU6xDOciIiIpCzVGCLHKTU3RCTh3L0I+H9mtgwYXY1D/AIYaGb/ApYDPeOZT0RERFKTagyR45eWghURERERERGRlKYzN0REREREREQkpam5ISIiIiIiIiIpTc0NEREREREREUlpam6IiIiIiIiISEpTc0NEREREREREUpqaGyIiIiIiIiKS0tTcEBEREREREZGUpuaGiIiIiIiIiKS0/w8xg2nKQCrfjAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ "plot_sensitivities('y', eps)" ] }, @@ -1610,7 +1687,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -1620,7 +1697,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -1673,12 +1750,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.979183\n", - " 0.192956\n", - " 1.072430\n", - " 0.048621\n", - " 1.944063\n", - " -0.727894\n", + " 0.854770\n", + " 1.145550\n", + " -0.059872\n", + " -1.677553\n", + " 2.485344\n", + " 0.190391\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1694,12 +1771,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.318564\n", - " 0.893174\n", - " 0.119221\n", - " 0.667590\n", - " 2.991938\n", - " -0.606037\n", + " -0.053593\n", + " 0.241636\n", + " 1.593800\n", + " 2.498764\n", + " 2.743638\n", + " -0.660179\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1715,12 +1792,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.998418\n", - " 0.319199\n", - " 1.230149\n", - " -0.398608\n", - " 3.856450\n", - " -0.913528\n", + " 1.171368\n", + " 1.410101\n", + " 1.438133\n", + " 1.021609\n", + " 3.051800\n", + " 0.610429\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1736,12 +1813,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.014750\n", - " -0.427097\n", - " -0.279452\n", - " 1.433348\n", - " 4.788364\n", - " -0.074601\n", + " -0.205662\n", + " 2.391259\n", + " 0.054255\n", + " -1.032851\n", + " 2.960908\n", + " 0.133051\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1757,12 +1834,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.407775\n", - " 0.463747\n", - " 0.119668\n", - " 1.180980\n", - " 3.065187\n", - " -0.101223\n", + " 0.759200\n", + " 0.067206\n", + " -1.456685\n", + " 2.600566\n", + " 2.878851\n", + " -0.193766\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1778,12 +1855,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.481813\n", - " 0.293208\n", - " -0.159899\n", - " 0.218286\n", - " 3.183441\n", - " 0.933746\n", + " -0.311092\n", + " 0.141907\n", + " -0.228872\n", + " -0.193889\n", + " 4.811703\n", + " 0.994076\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1799,12 +1876,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.064053\n", - " 1.484332\n", - " 0.119981\n", - " 1.719267\n", - " 4.822919\n", - " 1.856944\n", + " 0.865276\n", + " 0.838981\n", + " 0.668306\n", + " 1.623928\n", + " 3.328777\n", + " 0.075325\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1820,12 +1897,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.411443\n", - " 1.836223\n", - " 1.359105\n", - " 0.048072\n", - " 4.722903\n", - " -2.202143\n", + " -0.163654\n", + " 2.215009\n", + " -0.771913\n", + " 3.161547\n", + " 4.519341\n", + " 1.115471\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1841,12 +1918,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.805056\n", - " 0.163220\n", - " 0.146697\n", - " 0.425173\n", - " 3.338153\n", - " -1.097586\n", + " 0.395456\n", + " 0.612326\n", + " 0.976628\n", + " -0.055129\n", + " 2.919909\n", + " 0.113068\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1862,12 +1939,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 2.785217\n", - " -0.098704\n", - " -0.560119\n", - " 2.580439\n", - " 4.363146\n", - " 1.110953\n", + " 0.717336\n", + " 1.043128\n", + " 1.064387\n", + " -0.143616\n", + " 5.751210\n", + " 2.882783\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1883,12 +1960,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.117663\n", - " -0.734754\n", - " -0.664079\n", - " 0.541150\n", - " 3.478977\n", - " -1.436971\n", + " -1.204150\n", + " 0.689827\n", + " 1.082176\n", + " 1.904679\n", + " 2.756413\n", + " 1.600066\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1904,12 +1981,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.059940\n", - " 0.499436\n", - " -0.805301\n", - " 1.440611\n", - " 2.165131\n", - " -0.749951\n", + " 0.805529\n", + " 0.522137\n", + " 0.670364\n", + " 2.454703\n", + " 3.018521\n", + " 1.862394\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1925,12 +2002,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 2.044621\n", - " 0.089834\n", - " -0.030406\n", - " 0.931452\n", - " 4.924059\n", - " 1.285210\n", + " 0.667126\n", + " 0.783559\n", + " -1.014303\n", + " -0.101997\n", + " 1.940476\n", + " -1.256017\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1946,12 +2023,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.136111\n", - " -1.453566\n", - " 0.570666\n", - " 1.460973\n", - " 1.416084\n", - " -0.236831\n", + " 0.349566\n", + " -0.937770\n", + " 0.449607\n", + " 0.239118\n", + " 4.411886\n", + " -0.570199\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1967,12 +2044,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.077502\n", - " 1.456230\n", - " 1.537391\n", - " 0.465748\n", - " 5.488972\n", - " -0.039388\n", + " -1.199949\n", + " 0.312773\n", + " 1.263932\n", + " 1.544323\n", + " 3.262497\n", + " 0.091539\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1988,12 +2065,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.736106\n", - " -2.389954\n", - " -0.401374\n", - " 1.470112\n", - " 4.389249\n", - " 0.794856\n", + " 1.100669\n", + " 0.046852\n", + " -1.349183\n", + " 2.652128\n", + " 1.339296\n", + " 0.999152\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2009,12 +2086,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.882210\n", - " 2.627972\n", - " 0.680587\n", - " 1.609892\n", - " 3.058685\n", - " 0.085670\n", + " -0.882725\n", + " 0.565985\n", + " -0.286692\n", + " 1.673683\n", + " 0.860009\n", + " 0.185171\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2030,12 +2107,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.328443\n", - " 0.587181\n", - " -0.485711\n", - " 1.499816\n", - " 4.450632\n", - " 1.079241\n", + " 0.093720\n", + " 0.850729\n", + " 0.528986\n", + " 0.980290\n", + " 6.252438\n", + " 1.571740\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2051,12 +2128,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.655710\n", - " -0.594330\n", - " -1.469235\n", - " 0.276059\n", - " 2.635020\n", - " 0.752944\n", + " 1.995882\n", + " 2.575455\n", + " 0.444333\n", + " 0.765691\n", + " 3.344862\n", + " -0.876842\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2072,12 +2149,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.560821\n", - " -0.423914\n", - " 0.248592\n", - " 1.040715\n", - " 3.336944\n", - " 0.784157\n", + " 0.146899\n", + " 0.926665\n", + " 1.004243\n", + " 1.257351\n", + " 2.845607\n", + " -0.663591\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2093,12 +2170,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.872973\n", - " 1.334567\n", - " -1.307793\n", - " 2.725420\n", - " 2.947031\n", - " -1.336964\n", + " 0.688457\n", + " -0.191403\n", + " -1.501904\n", + " 0.003456\n", + " 3.982428\n", + " 1.368897\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2112,73 +2189,73 @@ ], "text/plain": [ " time datatype t_presim k0 k0_preeq k0_presim observable_x1 \\\n", - "0 0.0 data 0.0 1.0 NaN NaN -0.979183 \n", - "1 0.5 data 0.0 1.0 NaN NaN 1.318564 \n", - "2 1.0 data 0.0 1.0 NaN NaN 1.998418 \n", - "3 1.5 data 0.0 1.0 NaN NaN -0.014750 \n", - "4 2.0 data 0.0 1.0 NaN NaN 0.407775 \n", - "5 2.5 data 0.0 1.0 NaN NaN 1.481813 \n", - "6 3.0 data 0.0 1.0 NaN NaN -0.064053 \n", - "7 3.5 data 0.0 1.0 NaN NaN 1.411443 \n", - "8 4.0 data 0.0 1.0 NaN NaN 0.805056 \n", - "9 4.5 data 0.0 1.0 NaN NaN 2.785217 \n", - "10 5.0 data 0.0 1.0 NaN NaN 0.117663 \n", - "11 5.5 data 0.0 1.0 NaN NaN 1.059940 \n", - "12 6.0 data 0.0 1.0 NaN NaN 2.044621 \n", - "13 6.5 data 0.0 1.0 NaN NaN 1.136111 \n", - "14 7.0 data 0.0 1.0 NaN NaN -0.077502 \n", - "15 7.5 data 0.0 1.0 NaN NaN 1.736106 \n", - "16 8.0 data 0.0 1.0 NaN NaN -0.882210 \n", - "17 8.5 data 0.0 1.0 NaN NaN 1.328443 \n", - "18 9.0 data 0.0 1.0 NaN NaN -0.655710 \n", - "19 9.5 data 0.0 1.0 NaN NaN 0.560821 \n", - "20 10.0 data 0.0 1.0 NaN NaN 0.872973 \n", + "0 0.0 data 0.0 1.0 NaN NaN 0.854770 \n", + "1 0.5 data 0.0 1.0 NaN NaN -0.053593 \n", + "2 1.0 data 0.0 1.0 NaN NaN 1.171368 \n", + "3 1.5 data 0.0 1.0 NaN NaN -0.205662 \n", + "4 2.0 data 0.0 1.0 NaN NaN 0.759200 \n", + "5 2.5 data 0.0 1.0 NaN NaN -0.311092 \n", + "6 3.0 data 0.0 1.0 NaN NaN 0.865276 \n", + "7 3.5 data 0.0 1.0 NaN NaN -0.163654 \n", + "8 4.0 data 0.0 1.0 NaN NaN 0.395456 \n", + "9 4.5 data 0.0 1.0 NaN NaN 0.717336 \n", + "10 5.0 data 0.0 1.0 NaN NaN -1.204150 \n", + "11 5.5 data 0.0 1.0 NaN NaN 0.805529 \n", + "12 6.0 data 0.0 1.0 NaN NaN 0.667126 \n", + "13 6.5 data 0.0 1.0 NaN NaN 0.349566 \n", + "14 7.0 data 0.0 1.0 NaN NaN -1.199949 \n", + "15 7.5 data 0.0 1.0 NaN NaN 1.100669 \n", + "16 8.0 data 0.0 1.0 NaN NaN -0.882725 \n", + "17 8.5 data 0.0 1.0 NaN NaN 0.093720 \n", + "18 9.0 data 0.0 1.0 NaN NaN 1.995882 \n", + "19 9.5 data 0.0 1.0 NaN NaN 0.146899 \n", + "20 10.0 data 0.0 1.0 NaN NaN 0.688457 \n", "\n", " observable_x2 observable_x3 observable_x1_scaled \\\n", - "0 0.192956 1.072430 0.048621 \n", - "1 0.893174 0.119221 0.667590 \n", - "2 0.319199 1.230149 -0.398608 \n", - "3 -0.427097 -0.279452 1.433348 \n", - "4 0.463747 0.119668 1.180980 \n", - "5 0.293208 -0.159899 0.218286 \n", - "6 1.484332 0.119981 1.719267 \n", - "7 1.836223 1.359105 0.048072 \n", - "8 0.163220 0.146697 0.425173 \n", - "9 -0.098704 -0.560119 2.580439 \n", - "10 -0.734754 -0.664079 0.541150 \n", - "11 0.499436 -0.805301 1.440611 \n", - "12 0.089834 -0.030406 0.931452 \n", - "13 -1.453566 0.570666 1.460973 \n", - "14 1.456230 1.537391 0.465748 \n", - "15 -2.389954 -0.401374 1.470112 \n", - "16 2.627972 0.680587 1.609892 \n", - "17 0.587181 -0.485711 1.499816 \n", - "18 -0.594330 -1.469235 0.276059 \n", - "19 -0.423914 0.248592 1.040715 \n", - "20 1.334567 -1.307793 2.725420 \n", + "0 1.145550 -0.059872 -1.677553 \n", + "1 0.241636 1.593800 2.498764 \n", + "2 1.410101 1.438133 1.021609 \n", + "3 2.391259 0.054255 -1.032851 \n", + "4 0.067206 -1.456685 2.600566 \n", + "5 0.141907 -0.228872 -0.193889 \n", + "6 0.838981 0.668306 1.623928 \n", + "7 2.215009 -0.771913 3.161547 \n", + "8 0.612326 0.976628 -0.055129 \n", + "9 1.043128 1.064387 -0.143616 \n", + "10 0.689827 1.082176 1.904679 \n", + "11 0.522137 0.670364 2.454703 \n", + "12 0.783559 -1.014303 -0.101997 \n", + "13 -0.937770 0.449607 0.239118 \n", + "14 0.312773 1.263932 1.544323 \n", + "15 0.046852 -1.349183 2.652128 \n", + "16 0.565985 -0.286692 1.673683 \n", + "17 0.850729 0.528986 0.980290 \n", + "18 2.575455 0.444333 0.765691 \n", + "19 0.926665 1.004243 1.257351 \n", + "20 -0.191403 -1.501904 0.003456 \n", "\n", " observable_x2_offsetted observable_x1withsigma observable_x1_std \\\n", - "0 1.944063 -0.727894 1.0 \n", - "1 2.991938 -0.606037 1.0 \n", - "2 3.856450 -0.913528 1.0 \n", - "3 4.788364 -0.074601 1.0 \n", - "4 3.065187 -0.101223 1.0 \n", - "5 3.183441 0.933746 1.0 \n", - "6 4.822919 1.856944 1.0 \n", - "7 4.722903 -2.202143 1.0 \n", - "8 3.338153 -1.097586 1.0 \n", - "9 4.363146 1.110953 1.0 \n", - "10 3.478977 -1.436971 1.0 \n", - "11 2.165131 -0.749951 1.0 \n", - "12 4.924059 1.285210 1.0 \n", - "13 1.416084 -0.236831 1.0 \n", - "14 5.488972 -0.039388 1.0 \n", - "15 4.389249 0.794856 1.0 \n", - "16 3.058685 0.085670 1.0 \n", - "17 4.450632 1.079241 1.0 \n", - "18 2.635020 0.752944 1.0 \n", - "19 3.336944 0.784157 1.0 \n", - "20 2.947031 -1.336964 1.0 \n", + "0 2.485344 0.190391 1.0 \n", + "1 2.743638 -0.660179 1.0 \n", + "2 3.051800 0.610429 1.0 \n", + "3 2.960908 0.133051 1.0 \n", + "4 2.878851 -0.193766 1.0 \n", + "5 4.811703 0.994076 1.0 \n", + "6 3.328777 0.075325 1.0 \n", + "7 4.519341 1.115471 1.0 \n", + "8 2.919909 0.113068 1.0 \n", + "9 5.751210 2.882783 1.0 \n", + "10 2.756413 1.600066 1.0 \n", + "11 3.018521 1.862394 1.0 \n", + "12 1.940476 -1.256017 1.0 \n", + "13 4.411886 -0.570199 1.0 \n", + "14 3.262497 0.091539 1.0 \n", + "15 1.339296 0.999152 1.0 \n", + "16 0.860009 0.185171 1.0 \n", + "17 6.252438 1.571740 1.0 \n", + "18 3.344862 -0.876842 1.0 \n", + "19 2.845607 -0.663591 1.0 \n", + "20 3.982428 1.368897 1.0 \n", "\n", " observable_x2_std observable_x3_std observable_x1_scaled_std \\\n", "0 1.0 1.0 1.0 \n", @@ -2227,7 +2304,7 @@ "20 1.0 NaN " ] }, - "execution_count": 22, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -2240,7 +2317,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 26, "metadata": {}, "outputs": [], "source": [ @@ -2250,7 +2327,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -2295,12 +2372,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.079183\n", - " 0.207044\n", - " 0.372430\n", - " 0.151379\n", - " 1.455937\n", - " 8.278943\n", + " 0.754770\n", + " 0.745550\n", + " 0.759872\n", + " 1.877553\n", + " 0.914656\n", + " 0.903906\n", " \n", " \n", " 1\n", @@ -2309,12 +2386,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.779197\n", - " 0.208496\n", - " 0.072270\n", - " 0.411145\n", - " 0.692741\n", - " 11.454045\n", + " 0.592960\n", + " 0.443043\n", + " 1.402310\n", + " 1.420030\n", + " 0.941041\n", + " 11.995462\n", " \n", " \n", " 2\n", @@ -2323,12 +2400,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.418346\n", - " 0.414088\n", - " 1.133725\n", - " 1.558753\n", - " 0.123162\n", - " 14.936001\n", + " 0.591296\n", + " 0.676814\n", + " 1.341709\n", + " 0.138536\n", + " 0.681487\n", + " 0.303567\n", " \n", " \n", " 3\n", @@ -2337,12 +2414,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.585149\n", - " 1.157749\n", - " 0.355528\n", - " 0.292550\n", - " 1.057712\n", - " 6.450000\n", + " 0.776061\n", + " 1.660607\n", + " 0.021821\n", + " 2.173649\n", + " 0.769744\n", + " 4.373485\n", " \n", " \n", " 4\n", @@ -2351,12 +2428,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.152759\n", - " 0.252089\n", - " 0.049974\n", - " 0.059911\n", - " 0.650649\n", - " 6.617580\n", + " 0.198665\n", + " 0.648630\n", + " 1.526379\n", + " 1.479497\n", + " 0.836985\n", + " 7.543005\n", " \n", " \n", " 5\n", @@ -2365,12 +2442,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.928757\n", - " 0.405543\n", - " 0.226200\n", - " 0.887826\n", - " 0.515310\n", - " 3.806906\n", + " 0.864147\n", + " 0.556844\n", + " 0.295173\n", + " 1.300000\n", + " 1.112952\n", + " 4.410204\n", " \n", " \n", " 6\n", @@ -2379,12 +2456,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.610923\n", - " 0.802369\n", - " 0.056249\n", - " 0.625525\n", - " 1.140957\n", - " 13.100735\n", + " 0.318405\n", + " 0.157019\n", + " 0.604574\n", + " 0.530187\n", + " 0.353186\n", + " 4.715461\n", " \n", " \n", " 7\n", @@ -2393,12 +2470,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.870083\n", - " 1.170115\n", - " 1.297599\n", - " 1.034648\n", - " 1.056794\n", - " 27.435032\n", + " 0.705014\n", + " 1.548900\n", + " 0.833419\n", + " 2.078828\n", + " 0.853233\n", + " 5.741110\n", " \n", " \n", " 8\n", @@ -2407,12 +2484,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.268776\n", - " 0.488083\n", - " 0.087202\n", - " 0.647388\n", - " 0.313150\n", - " 16.338665\n", + " 0.140824\n", + " 0.038976\n", + " 0.917134\n", + " 1.127690\n", + " 0.731393\n", + " 4.232125\n", " \n", " \n", " 9\n", @@ -2421,12 +2498,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 2.253679\n", - " 0.736219\n", - " 0.617772\n", - " 1.517363\n", - " 0.725632\n", - " 5.794149\n", + " 0.185797\n", + " 0.405613\n", + " 1.006734\n", + " 1.206693\n", + " 2.113695\n", + " 23.512450\n", " \n", " \n", " 10\n", @@ -2435,12 +2512,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.409429\n", - " 1.359436\n", - " 0.720039\n", - " 0.513033\n", - " 0.145704\n", - " 19.640623\n", + " 1.731241\n", + " 0.065145\n", + " 1.026216\n", + " 0.850497\n", + " 0.868269\n", + " 10.729745\n", " \n", " \n", " 11\n", @@ -2449,12 +2526,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.537026\n", - " 0.113297\n", - " 0.859701\n", - " 0.394782\n", - " 1.447601\n", - " 12.728659\n", + " 0.282614\n", + " 0.090596\n", + " 0.615964\n", + " 1.408874\n", + " 0.594212\n", + " 13.394799\n", " \n", " \n", " 12\n", @@ -2463,12 +2540,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.525632\n", - " 0.511769\n", - " 0.083366\n", - " 0.106527\n", - " 1.322456\n", - " 7.662203\n", + " 0.148137\n", + " 0.181956\n", + " 1.067263\n", + " 1.139975\n", + " 1.661126\n", + " 17.750062\n", " \n", " \n", " 13\n", @@ -2477,12 +2554,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.620811\n", - " 2.044795\n", - " 0.519037\n", - " 0.430374\n", - " 2.175145\n", - " 7.521306\n", + " 0.165734\n", + " 1.528999\n", + " 0.397978\n", + " 0.791481\n", + " 0.820657\n", + " 10.854981\n", " \n", " \n", " 14\n", @@ -2491,12 +2568,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.589332\n", - " 0.874674\n", - " 1.486992\n", - " 0.557912\n", - " 1.907417\n", - " 5.512185\n", + " 1.711779\n", + " 0.268782\n", + " 1.213533\n", + " 0.520663\n", + " 0.319058\n", + " 4.202913\n", " \n", " \n", " 15\n", @@ -2505,12 +2582,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.227539\n", - " 2.962483\n", - " 0.450634\n", - " 0.452977\n", - " 0.816720\n", - " 2.862886\n", + " 0.592101\n", + " 0.525677\n", + " 1.398442\n", + " 1.634992\n", + " 2.233233\n", + " 4.905843\n", " \n", " \n", " 16\n", @@ -2519,12 +2596,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.387711\n", - " 2.063869\n", - " 0.632384\n", - " 0.598891\n", - " 0.505418\n", - " 4.198303\n", + " 1.388225\n", + " 0.001882\n", + " 0.334895\n", + " 0.662683\n", + " 2.704094\n", + " 3.203293\n", " \n", " \n", " 17\n", @@ -2533,12 +2610,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.825828\n", - " 0.030947\n", - " 0.532935\n", - " 0.494585\n", - " 0.894398\n", - " 5.766254\n", + " 0.408896\n", + " 0.294495\n", + " 0.481762\n", + " 0.024940\n", + " 2.696204\n", + " 10.691248\n", " \n", " \n", " 18\n", @@ -2547,12 +2624,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.155612\n", - " 1.143211\n", - " 1.515550\n", - " 0.723745\n", - " 0.913861\n", - " 2.530417\n", + " 1.495980\n", + " 2.026573\n", + " 0.398018\n", + " 0.234113\n", + " 0.204019\n", + " 13.767435\n", " \n", " \n", " 19\n", @@ -2561,12 +2638,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.063471\n", - " 0.965922\n", - " 0.203122\n", - " 0.046015\n", - " 0.205065\n", - " 2.868075\n", + " 0.350451\n", + " 0.384657\n", + " 0.958773\n", + " 0.262651\n", + " 0.696401\n", + " 11.609403\n", " \n", " \n", " 20\n", @@ -2575,12 +2652,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.378024\n", - " 0.798986\n", - " 1.352478\n", - " 1.735521\n", - " 0.588551\n", - " 18.319130\n", + " 0.193508\n", + " 0.726984\n", + " 1.546589\n", + " 0.986442\n", + " 0.446847\n", + " 8.739479\n", " \n", " \n", "\n", @@ -2588,76 +2665,76 @@ ], "text/plain": [ " time t_presim k0 k0_preeq k0_presim observable_x1 observable_x2 \\\n", - "0 0.0 0.0 1.0 NaN NaN 1.079183 0.207044 \n", - "1 0.5 0.0 1.0 NaN NaN 0.779197 0.208496 \n", - "2 1.0 0.0 1.0 NaN NaN 1.418346 0.414088 \n", - "3 1.5 0.0 1.0 NaN NaN 0.585149 1.157749 \n", - "4 2.0 0.0 1.0 NaN NaN 0.152759 0.252089 \n", - "5 2.5 0.0 1.0 NaN NaN 0.928757 0.405543 \n", - "6 3.0 0.0 1.0 NaN NaN 0.610923 0.802369 \n", - "7 3.5 0.0 1.0 NaN NaN 0.870083 1.170115 \n", - "8 4.0 0.0 1.0 NaN NaN 0.268776 0.488083 \n", - "9 4.5 0.0 1.0 NaN NaN 2.253679 0.736219 \n", - "10 5.0 0.0 1.0 NaN NaN 0.409429 1.359436 \n", - "11 5.5 0.0 1.0 NaN NaN 0.537026 0.113297 \n", - "12 6.0 0.0 1.0 NaN NaN 1.525632 0.511769 \n", - "13 6.5 0.0 1.0 NaN NaN 0.620811 2.044795 \n", - "14 7.0 0.0 1.0 NaN NaN 0.589332 0.874674 \n", - "15 7.5 0.0 1.0 NaN NaN 1.227539 2.962483 \n", - "16 8.0 0.0 1.0 NaN NaN 1.387711 2.063869 \n", - "17 8.5 0.0 1.0 NaN NaN 0.825828 0.030947 \n", - "18 9.0 0.0 1.0 NaN NaN 1.155612 1.143211 \n", - "19 9.5 0.0 1.0 NaN NaN 0.063471 0.965922 \n", - "20 10.0 0.0 1.0 NaN NaN 0.378024 0.798986 \n", + "0 0.0 0.0 1.0 NaN NaN 0.754770 0.745550 \n", + "1 0.5 0.0 1.0 NaN NaN 0.592960 0.443043 \n", + "2 1.0 0.0 1.0 NaN NaN 0.591296 0.676814 \n", + "3 1.5 0.0 1.0 NaN NaN 0.776061 1.660607 \n", + "4 2.0 0.0 1.0 NaN NaN 0.198665 0.648630 \n", + "5 2.5 0.0 1.0 NaN NaN 0.864147 0.556844 \n", + "6 3.0 0.0 1.0 NaN NaN 0.318405 0.157019 \n", + "7 3.5 0.0 1.0 NaN NaN 0.705014 1.548900 \n", + "8 4.0 0.0 1.0 NaN NaN 0.140824 0.038976 \n", + "9 4.5 0.0 1.0 NaN NaN 0.185797 0.405613 \n", + "10 5.0 0.0 1.0 NaN NaN 1.731241 0.065145 \n", + "11 5.5 0.0 1.0 NaN NaN 0.282614 0.090596 \n", + "12 6.0 0.0 1.0 NaN NaN 0.148137 0.181956 \n", + "13 6.5 0.0 1.0 NaN NaN 0.165734 1.528999 \n", + "14 7.0 0.0 1.0 NaN NaN 1.711779 0.268782 \n", + "15 7.5 0.0 1.0 NaN NaN 0.592101 0.525677 \n", + "16 8.0 0.0 1.0 NaN NaN 1.388225 0.001882 \n", + "17 8.5 0.0 1.0 NaN NaN 0.408896 0.294495 \n", + "18 9.0 0.0 1.0 NaN NaN 1.495980 2.026573 \n", + "19 9.5 0.0 1.0 NaN NaN 0.350451 0.384657 \n", + "20 10.0 0.0 1.0 NaN NaN 0.193508 0.726984 \n", "\n", " observable_x3 observable_x1_scaled observable_x2_offsetted \\\n", - "0 0.372430 0.151379 1.455937 \n", - "1 0.072270 0.411145 0.692741 \n", - "2 1.133725 1.558753 0.123162 \n", - "3 0.355528 0.292550 1.057712 \n", - "4 0.049974 0.059911 0.650649 \n", - "5 0.226200 0.887826 0.515310 \n", - "6 0.056249 0.625525 1.140957 \n", - "7 1.297599 1.034648 1.056794 \n", - "8 0.087202 0.647388 0.313150 \n", - "9 0.617772 1.517363 0.725632 \n", - "10 0.720039 0.513033 0.145704 \n", - "11 0.859701 0.394782 1.447601 \n", - "12 0.083366 0.106527 1.322456 \n", - "13 0.519037 0.430374 2.175145 \n", - "14 1.486992 0.557912 1.907417 \n", - "15 0.450634 0.452977 0.816720 \n", - "16 0.632384 0.598891 0.505418 \n", - "17 0.532935 0.494585 0.894398 \n", - "18 1.515550 0.723745 0.913861 \n", - "19 0.203122 0.046015 0.205065 \n", - "20 1.352478 1.735521 0.588551 \n", + "0 0.759872 1.877553 0.914656 \n", + "1 1.402310 1.420030 0.941041 \n", + "2 1.341709 0.138536 0.681487 \n", + "3 0.021821 2.173649 0.769744 \n", + "4 1.526379 1.479497 0.836985 \n", + "5 0.295173 1.300000 1.112952 \n", + "6 0.604574 0.530187 0.353186 \n", + "7 0.833419 2.078828 0.853233 \n", + "8 0.917134 1.127690 0.731393 \n", + "9 1.006734 1.206693 2.113695 \n", + "10 1.026216 0.850497 0.868269 \n", + "11 0.615964 1.408874 0.594212 \n", + "12 1.067263 1.139975 1.661126 \n", + "13 0.397978 0.791481 0.820657 \n", + "14 1.213533 0.520663 0.319058 \n", + "15 1.398442 1.634992 2.233233 \n", + "16 0.334895 0.662683 2.704094 \n", + "17 0.481762 0.024940 2.696204 \n", + "18 0.398018 0.234113 0.204019 \n", + "19 0.958773 0.262651 0.696401 \n", + "20 1.546589 0.986442 0.446847 \n", "\n", " observable_x1withsigma \n", - "0 8.278943 \n", - "1 11.454045 \n", - "2 14.936001 \n", - "3 6.450000 \n", - "4 6.617580 \n", - "5 3.806906 \n", - "6 13.100735 \n", - "7 27.435032 \n", - "8 16.338665 \n", - "9 5.794149 \n", - "10 19.640623 \n", - "11 12.728659 \n", - "12 7.662203 \n", - "13 7.521306 \n", - "14 5.512185 \n", - "15 2.862886 \n", - "16 4.198303 \n", - "17 5.766254 \n", - "18 2.530417 \n", - "19 2.868075 \n", - "20 18.319130 " + "0 0.903906 \n", + "1 11.995462 \n", + "2 0.303567 \n", + "3 4.373485 \n", + "4 7.543005 \n", + "5 4.410204 \n", + "6 4.715461 \n", + "7 5.741110 \n", + "8 4.232125 \n", + "9 23.512450 \n", + "10 10.729745 \n", + "11 13.394799 \n", + "12 17.750062 \n", + "13 10.854981 \n", + "14 4.202913 \n", + "15 4.905843 \n", + "16 3.203293 \n", + "17 10.691248 \n", + "18 13.767435 \n", + "19 11.609403 \n", + "20 8.739479 " ] }, - "execution_count": 24, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -2669,7 +2746,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -3276,7 +3353,7 @@ "20 1.0 0.1 " ] }, - "execution_count": 25, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -3288,7 +3365,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -3583,7 +3660,7 @@ "20 10.0 0.0 1.0 NaN NaN 0.494949 0.535581 0.044686" ] }, - "execution_count": 26, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } From ddd206e9b1e6838a597dd31f5eae92ef6b79568d Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Thu, 16 Jan 2020 10:10:44 +0100 Subject: [PATCH 06/23] Fix(matlab) Compile CalcMD5 on demand (Fixes #914) --- matlab/amiwrap.m | 16 ---------------- matlab/auxiliary/CalcMD5/CalcMD5.m | 18 ++++++++++++++++-- 2 files changed, 16 insertions(+), 18 deletions(-) diff --git a/matlab/amiwrap.m b/matlab/amiwrap.m index c8d889b01b..fa820871bb 100644 --- a/matlab/amiwrap.m +++ b/matlab/amiwrap.m @@ -75,22 +75,6 @@ function amiwrap( varargin ) addpath(genpath(fullfile(matlabRootPath,'auxiliary'))); addpath(fullfile(matlabRootPath,'symbolic')); - % compile CalcMD5 if necessary - try - CalcMD5('TEST','char','hex'); - catch - try - addpath(fullfile(matlabRootPath,'auxiliary','CalcMD5')) - CalcMD5('TEST','char','hex'); - catch - disp('CalcMD5 has not been compiled yet. Compiling now!') - tmpdir = pwd; - cd(fullfile(matlabRootPath,'auxiliary','CalcMD5')) - mex(fullfile(matlabRootPath,'auxiliary','CalcMD5','CalcMD5.c')) - addpath(fullfile(matlabRootPath,'auxiliary','CalcMD5')) - cd(tmpdir); - end - end % try to load if(~isstruct(symfun)) diff --git a/matlab/auxiliary/CalcMD5/CalcMD5.m b/matlab/auxiliary/CalcMD5/CalcMD5.m index 687f1138e2..80d4d0c416 100644 --- a/matlab/auxiliary/CalcMD5/CalcMD5.m +++ b/matlab/auxiliary/CalcMD5/CalcMD5.m @@ -1,4 +1,4 @@ -function MD5 = CalcMD5(Data, InClass, OutClass) %#ok +function MD5 = CalcMD5(Data, varargin) %#ok % 128 bit MD5 checksum: file, string, byte stream [MEX] % This function calculates a 128 bit checksum for arrays and files. % Digest = CalcMD5(Data, [InClass], [OutClass]) @@ -67,5 +67,19 @@ % If the current Matlab path is the parent folder of this script, the % MEX function is not found - change the current directory! -error(['JSim:', mfilename, ':NoMex'], 'Cannot find MEX script.'); +% If a CalcMD5 call ends up here, this means CalcMD5 is not compiled or +% not found in the matlab path. +% Therefore, compile CalcMD5 +disp('CalcMD5 has not been compiled yet. Compiling now!') +md5_path=fileparts(mfilename('fullpath')); +addpath(fullfile(md5_path)) +tmpdir = pwd; +cd(fullfile(md5_path)) +mex(fullfile(md5_path,'CalcMD5.c')) +addpath(md5_path) +cd(tmpdir); + +% Make actual call to mex file +MD5 = CalcMD5(Data, varargin{:}); +end From ea5db4b87932f987c89309104fe70cd554cd483f Mon Sep 17 00:00:00 2001 From: FFroehlich Date: Thu, 16 Jan 2020 11:57:23 -0500 Subject: [PATCH 07/23] Update ExampleSteadystate.ipynb --- .../ExampleSteadystate.ipynb | 867 +++++++++--------- 1 file changed, 439 insertions(+), 428 deletions(-) diff --git a/python/examples/example_steadystate/ExampleSteadystate.ipynb b/python/examples/example_steadystate/ExampleSteadystate.ipynb index 99c3d9d145..c6717c3c18 100644 --- a/python/examples/example_steadystate/ExampleSteadystate.ipynb +++ b/python/examples/example_steadystate/ExampleSteadystate.ipynb @@ -184,47 +184,47 @@ "cell_type": "code", "execution_count": 7, "metadata": { - "scrolled": false + "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2020-01-16 09:24:10.771 - amici.sbml_import - INFO - Finished processing SBML parameters (6.90E-04s)\n", - "2020-01-16 09:24:10.776 - amici.sbml_import - INFO - Finished processing SBML species (3.02E-03s)\n", - "2020-01-16 09:24:10.791 - amici.sbml_import - INFO - Finished processing SBML reactions (1.44E-02s)\n", - "2020-01-16 09:24:10.792 - amici.sbml_import - INFO - Finished processing SBML compartments (2.46E-04s)\n", - "2020-01-16 09:24:10.876 - amici.sbml_import - INFO - Finished processing SBML rules (8.26E-02s)\n", - "2020-01-16 09:24:10.962 - amici.sbml_import - INFO - Finished processing SBML observables (7.26E-02s)\n", - "2020-01-16 09:24:11.015 - amici.ode_export - INFO - Finished writing J.cpp (3.75E-02s)\n", - "2020-01-16 09:24:11.024 - amici.ode_export - INFO - Finished writing JB.cpp (8.14E-03s)\n", - "2020-01-16 09:24:11.028 - amici.ode_export - INFO - Finished writing JDiag.cpp (3.66E-03s)\n", - "2020-01-16 09:24:11.036 - amici.ode_export - INFO - Finished writing JSparse.cpp (7.40E-03s)\n", - "2020-01-16 09:24:11.045 - amici.ode_export - INFO - Finished writing JSparseB.cpp (7.93E-03s)\n", - "2020-01-16 09:24:11.061 - amici.ode_export - INFO - Finished writing Jy.cpp (1.48E-02s)\n", - "2020-01-16 09:24:11.161 - amici.ode_export - INFO - Finished writing dJydsigmay.cpp (9.81E-02s)\n", - "2020-01-16 09:24:11.199 - amici.ode_export - INFO - Finished writing dJydy.cpp (3.70E-02s)\n", - "2020-01-16 09:24:11.208 - amici.ode_export - INFO - Finished writing dwdp.cpp (8.14E-03s)\n", - "2020-01-16 09:24:11.212 - amici.ode_export - INFO - Finished writing dwdx.cpp (2.15E-03s)\n", - "2020-01-16 09:24:11.218 - amici.ode_export - INFO - Finished writing dxdotdw.cpp (5.14E-03s)\n", - "2020-01-16 09:24:11.237 - amici.ode_export - INFO - Finished writing dxdotdp_explicit.cpp (1.69E-02s)\n", - "2020-01-16 09:24:11.259 - amici.ode_export - INFO - Finished writing dydx.cpp (1.61E-02s)\n", - "2020-01-16 09:24:11.270 - amici.ode_export - INFO - Finished writing dydp.cpp (1.09E-02s)\n", - "2020-01-16 09:24:11.277 - amici.ode_export - INFO - Finished writing dsigmaydp.cpp (5.89E-03s)\n", - "2020-01-16 09:24:11.281 - amici.ode_export - INFO - Finished writing sigmay.cpp (3.75E-03s)\n", - "2020-01-16 09:24:11.286 - amici.ode_export - INFO - Finished writing w.cpp (3.71E-03s)\n", - "2020-01-16 09:24:11.289 - amici.ode_export - INFO - Finished writing x0.cpp (2.25E-03s)\n", - "2020-01-16 09:24:11.290 - amici.ode_export - INFO - Finished writing x0_fixedParameters.cpp (8.19E-04s)\n", - "2020-01-16 09:24:11.293 - amici.ode_export - INFO - Finished writing sx0.cpp (2.54E-03s)\n", - "2020-01-16 09:24:11.297 - amici.ode_export - INFO - Finished writing sx0_fixedParameters.cpp (3.07E-03s)\n", - "2020-01-16 09:24:11.304 - amici.ode_export - INFO - Finished writing xdot.cpp (5.76E-03s)\n", - "2020-01-16 09:24:11.307 - amici.ode_export - INFO - Finished writing y.cpp (2.37E-03s)\n", - "2020-01-16 09:24:11.309 - amici.ode_export - INFO - Finished writing x_rdata.cpp (1.36E-03s)\n", - "2020-01-16 09:24:11.310 - amici.ode_export - INFO - Finished writing total_cl.cpp (7.47E-04s)\n", - "2020-01-16 09:24:11.313 - amici.ode_export - INFO - Finished writing x_solver.cpp (1.82E-03s)\n", - "2020-01-16 09:24:11.326 - amici.ode_export - INFO - Finished generating cpp code (3.59E-01s)\n", - "2020-01-16 09:24:22.266 - amici.ode_export - INFO - Finished compiling cpp code (1.09E+01s)\n" + "2020-01-16 11:54:47.121 - amici.sbml_import - INFO - Finished processing SBML parameters (6.30E-04s)\n", + "2020-01-16 11:54:47.125 - amici.sbml_import - INFO - Finished processing SBML species (2.22E-03s)\n", + "2020-01-16 11:54:47.139 - amici.sbml_import - INFO - Finished processing SBML reactions (1.32E-02s)\n", + "2020-01-16 11:54:47.140 - amici.sbml_import - INFO - Finished processing SBML compartments (2.36E-04s)\n", + "2020-01-16 11:54:47.219 - amici.sbml_import - INFO - Finished processing SBML rules (7.89E-02s)\n", + "2020-01-16 11:54:47.300 - amici.sbml_import - INFO - Finished processing SBML observables (6.63E-02s)\n", + "2020-01-16 11:54:47.353 - amici.ode_export - INFO - Finished writing J.cpp (3.82E-02s)\n", + "2020-01-16 11:54:47.362 - amici.ode_export - INFO - Finished writing JB.cpp (8.50E-03s)\n", + "2020-01-16 11:54:47.366 - amici.ode_export - INFO - Finished writing JDiag.cpp (3.08E-03s)\n", + "2020-01-16 11:54:47.375 - amici.ode_export - INFO - Finished writing JSparse.cpp (7.90E-03s)\n", + "2020-01-16 11:54:47.384 - amici.ode_export - INFO - Finished writing JSparseB.cpp (7.47E-03s)\n", + "2020-01-16 11:54:47.399 - amici.ode_export - INFO - Finished writing Jy.cpp (1.41E-02s)\n", + "2020-01-16 11:54:47.498 - amici.ode_export - INFO - Finished writing dJydsigmay.cpp (9.77E-02s)\n", + "2020-01-16 11:54:47.535 - amici.ode_export - INFO - Finished writing dJydy.cpp (3.71E-02s)\n", + "2020-01-16 11:54:47.546 - amici.ode_export - INFO - Finished writing dwdp.cpp (9.46E-03s)\n", + "2020-01-16 11:54:47.549 - amici.ode_export - INFO - Finished writing dwdx.cpp (1.88E-03s)\n", + "2020-01-16 11:54:47.556 - amici.ode_export - INFO - Finished writing dxdotdw.cpp (5.38E-03s)\n", + "2020-01-16 11:54:47.569 - amici.ode_export - INFO - Finished writing dxdotdp_explicit.cpp (1.13E-02s)\n", + "2020-01-16 11:54:47.589 - amici.ode_export - INFO - Finished writing dydx.cpp (1.53E-02s)\n", + "2020-01-16 11:54:47.601 - amici.ode_export - INFO - Finished writing dydp.cpp (1.05E-02s)\n", + "2020-01-16 11:54:47.605 - amici.ode_export - INFO - Finished writing dsigmaydp.cpp (3.87E-03s)\n", + "2020-01-16 11:54:47.609 - amici.ode_export - INFO - Finished writing sigmay.cpp (2.44E-03s)\n", + "2020-01-16 11:54:47.612 - amici.ode_export - INFO - Finished writing w.cpp (2.75E-03s)\n", + "2020-01-16 11:54:47.615 - amici.ode_export - INFO - Finished writing x0.cpp (1.83E-03s)\n", + "2020-01-16 11:54:47.616 - amici.ode_export - INFO - Finished writing x0_fixedParameters.cpp (5.91E-04s)\n", + "2020-01-16 11:54:47.619 - amici.ode_export - INFO - Finished writing sx0.cpp (2.14E-03s)\n", + "2020-01-16 11:54:47.623 - amici.ode_export - INFO - Finished writing sx0_fixedParameters.cpp (2.99E-03s)\n", + "2020-01-16 11:54:47.629 - amici.ode_export - INFO - Finished writing xdot.cpp (5.83E-03s)\n", + "2020-01-16 11:54:47.635 - amici.ode_export - INFO - Finished writing y.cpp (4.59E-03s)\n", + "2020-01-16 11:54:47.638 - amici.ode_export - INFO - Finished writing x_rdata.cpp (1.87E-03s)\n", + "2020-01-16 11:54:47.640 - amici.ode_export - INFO - Finished writing total_cl.cpp (9.08E-04s)\n", + "2020-01-16 11:54:47.643 - amici.ode_export - INFO - Finished writing x_solver.cpp (1.97E-03s)\n", + "2020-01-16 11:54:47.657 - amici.ode_export - INFO - Finished generating cpp code (3.50E-01s)\n", + "2020-01-16 11:54:57.708 - amici.ode_export - INFO - Finished compiling cpp code (1.00E+01s)\n" ] } ], @@ -657,7 +657,7 @@ " 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", " order: [0 5 5 5 5 5 4 4 5 5 5 5 5 5 5 4 5 4 4 4 4 4 4 4 4 5 5 4 4 4 4 4 4 5 5 5 5\n", " 5 5 5 4 4 4 5 5 5 5 5 4 4 5 5 5 4 4 3 3 3 3 4]\n", - " cpu_time: 1.268999999999999\n", + " cpu_time: 1.147\n", " numstepsB: None\n", "numrhsevalsB: None\n", "numerrtestfailsB: None\n", @@ -761,7 +761,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Log-likelihood -92.752605\n" + "Log-likelihood -100.615231\n" ] } ], @@ -790,7 +790,7 @@ "metadata": {}, "source": [ "### Simulation tolerances\n", - "Numerical error tolerances are often critical to get accurate results. For the state variables, integration errors can be controlled using `setRelativeTolerance` and `setAbsoluteTolerance`. Similar functions exist for sensitivies, steadstates and quadratures. We initially compute a reference " + "Numerical error tolerances are often critical to get accurate results. For the state variables, integration errors can be controlled using `setRelativeTolerance` and `setAbsoluteTolerance`. Similar functions exist for sensitivies, steadstates and quadratures. We initially compute a reference solution using extremely low tolerances and then assess the influence on integration error for different levels of absolute and relative tolerance." ] }, { @@ -800,7 +800,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAFBCAYAAADANgorAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdZ3iUVbs+/HMlVAVRJBAQNIAIBkTR2CiKFMECCiIiYkPs2Bsqtkfd2AsCFpSmiFIVEFECIoiIgIrSpZNAIKBEQksga384czMlM5OZZGbSzt9x5BhyT1t53/1/lte9rmKstRAREREREZGyKaaoFyAiIiIiIiJFR0GhiIiIiIhIGaagUEREREREpAxTUCgiIiIiIlKGKSgUEREREREpwxQUioiIiIiIlGHlinoB0VCjRg2bkJBQ1MsQEZEoWLp06S5rbVxRr6Ok0B4pIlI2BNofy0RQmJCQgCVLlhT1MkREJAqMMZuLeg0lifZIEZGyIdD+qPRRERERERGRMkxBoYiIiIiISBmmoFBERERERKQMKxM1hb5kZ2cjJSUFBw8eLOqlhKxSpUqoW7cuypcvX9RLERGRUkh7pIhI2VJmg8KUlBRUrVoVCQkJMMYU9XKCZq3F7t27kZKSgvr16xf1ckREpBTSHikiUraU2fTRgwcP4sQTTyxRmx0AGGNw4oknlsi7tyIiUjJojxQRKVvKbFAIoMRtdo6Sum4RESk5SupeU1LXLSJSlMp0UCgiIiIiIlLWKSgUEREREREpwxQUFqHFixejefPmOHjwIPbt24emTZti+fLlRb0sEZGo2LsX2L+/qFdRuhhj2hpj5htjPjDGtC3q9RSU9kcRKWv27gUyM4vu+8ts99Hi4Nxzz0XXrl0xcOBAHDhwAH369EGzZs2KelkiIlHRtSuwciXw7rvAddcBZb0UzBgzAsCVAHZaa5u5Xe8M4F0AsQA+tta+EuBjLIBMAJUApERwuRGl/VFEypLdu4HzzgPOOAP46quiWYOCQgB48EHgjz/C+5lnnQW8806+L3v22Wdx7rnnolKlShg8eHB41yAiUoz98Qewbx9w/fXAZ58Bw4YBJ59c1KsqUqMADAEwxrlgjIkFMBRARzDIW2yMmQoGiIO83t8XwHxr7Y/GmFoA3gJwQ6FXVUR7pPZHESkLsrOBHj2ADRuAKlWKbh0KCovY7t27kZmZiezsbBw8eBDHHntsUS9JRCTiMjKAPXuAQYOAihWBgQOBxEQgORm44IKiXl3RsNbOM8YkeF0+D8A6a+0GADDGfAHgKmvtIPBU0Z9/AVSMxDqjRfujiJQFDz4IzJ0LnHIKkJ5edOtQUAgEdaIXKXfeeSdefPFFbNy4EU888QSGDBlSZGsREYmWzZv52KAB0LMn0K0b8OqrQIsWRbuuYugkAFvdfk8BcL6/FxtjugPoBOB48NTR3+vuAHAHAJyc3/FsEe2R2h9FpKSzFli0CEhKAsr5iLo++IBZMo89BsTEAG+9xfcURTmFGs0UoTFjxqB8+fLo3bs3BgwYgMWLF2POnDlFvSwRkYhzgsKEBNfj++/z1FAKzlo72Vp7p7X2Omvt3ACv+8ham2StTYqLi4viCoOj/VFESoPvvgMuvBC4/XYgJ8fzuWnTgPvuAy6/nFkzcXFMJd27t2jWqpPCInTTTTfhpptuAgDExsZi0aJFRbwiEZHocILCU04p2nWUAKkA6rn9Xjf3Wqmm/VFESoNvv+XjqFFA9erAG2/wFHDiRNbTt2gBfP45EBsL1KjB16anA8cdF/21KigUEZGo27QJqFQJqFmzqFdS7C0G0MgYUx8MBnsB6F20SxIREceePcA99wBvvgnUru35XHIy0LEj0KQJU0Nr1GBDtZtu4gnijBmuANBJ2ti1C2jYMLp/A6CgUEREisDmzdwYy/oYCnfGmHEA2gKoYYxJAfCctfYTY0x/AN+BHUdHWGtXFOEyRUTEzaJFwLhxbJY2cKDr+rZtHLt0yy3AI49w7MRTT3Hfa9sWmDrVs9uo+0lhUVBQKCIiUbd5s6ueUMhae72f6zMAzIjyckREJAhOEDdhgmdQmJzMx44d2URm1CjWFR4+DIwZA1Su7Pk5TlC4a1fEl+yTgkIREYm6zZs5qk5ERKQkc4LCP/8E1qwBGjfm78nJTAlt3py/ly/PE0V/3NNHi4K6j4qISFTt3w/s3KkmMyIiUvKlp/MkEOBpIcCxEsnJQPv2rufyU6UKUKFC0aWPKigUEZGo2rKFjwoKRUSkpEtPZ9O0li1dQeHKlcD27UCHDsF/jjE8LdRJYRlUJbe6dNOmTWjWrBkAYNSoUejfv39RLktEJKK8ZxSK+KI9UkRKgvR0BnM9e7pSSN3rCUNRo4bvk8KxY4FJkwq/1kAUFIqISFRpRqGIiJQWTlB4zTX8fcIEYNYsoFEjdtkORY0avk8K33wTGDGi8GsNREFhMbRt2zZ07twZjRo1wuOPP17UyxERCatNm4By5YA6dYp6JVISaY8UkeLECQrr1mUK6bhxwI8/hn5KCPhPH01JAerVK/xaA1FQWAz98ccf+PLLL/HXX3/hyy+/xNatW4t6SSIiYbN5MzfP2NiiXomURNojRaQ4cYJCgCmkK1cCmZmh1RM6fKWPHjzIa3XrFn6tgWgkBYAHHwT++CO8n3nWWcA77xTsve3bt0e1atUAAImJidi8eTPqRfr2gIhIlGhGYcmiPVJExLesLGDPHldQeM01/N/MmBjgkktC/7y4OH5edjZHWAA8JQR0UlgmVaxY8ei/Y2Njcfjw4SJcjYhIYPPmAYsXB//6zZtVTygFpz1SRIoLJ9XTCQrr1mUw2Lo1cPzxoX+eM8B+927XNScZItJBoU4KUfC7lSIiZd2uXUCXLtwQ//6bLbUDycoCUlMVFJYk2iNFpLQ4fBgYMgS4/Xbg2GML/3lOqqcTFALAlCmcU1gQ7gPs4+P572gFhSXypNAY09YYM98Y84Expm1Rr0dEpKwaNAj47z9g/XoW1ucnJYWbpYJCERGJtvnzgYceAiZODM/n+QoKq1Ur2Ckh4DopdG824wSFka4pjHpQaIwZYYzZaYxZ7nW9szFmjTFmnTFmQD4fYwFkAqgEICVSa420zMxMAEBCQgKWL+f/57jlllswZMiQo6+ZPn062rZtWxTLE5FSbs8e4J57gH/+Kdj7t2wBhg4FevXiJvjxx/m/RzMKJVjaI0Uk3HL/pwSrVoXn83wFhYXhBIXuzWZSUoATTwQqVw7Pd/hTFCeFowB0dr9gjIkFMBTAZQASAVxvjEk0xpxhjJnu9VMTwHxr7WUAngDwQpTXLyJSKnz3HfD++wWfffTCCzz1e/VVoE8f3nn999/A79GMQhERKSorVvAx1KBw506gc2fXqZ0j3EGhe/qoY+vWyKeOAkUQFFpr5wHwvi99HoB11toN1tosAF8AuMpa+5e19kqvn53W2pzc9/0LoCJERCRkK1fy8dNPQ3/vqlXAqFHAvfdyOG+/fsChQ8DYsYHft2kT6w7VLFJERKKtoEHhV1/xRurcuZ7X09O5p1WvHpbl4cQTXZ/rKLVBoR8nAXCPvVNyr/lkjOlujPkQwKcAhvh5zR3GmCXGmCXp3gM/RETkaFD455/8CeTIEd65PHSIvz/9NIv0n3ySv591FnDOOcDw4a4C+0OHGDS+9prrczZvBmrXBipUCO/fIiIiEoi1rqBw/XrXfhaM5GQ+btrkeT09nYFcuObuli/PesQycVIYDtbaydbaO62111lr5/p5zUfW2iRrbVKcnzNdW9DWQEWspK5bRIqXlSuBli2BcuUCnxZmZwNt2jCtpVIlBnRTpgCPPuqZMtOvH4PLpUuB/fuBq64Chg0DnniCYysAzSgsSUrqXlNS1y0ikZWWxhKHCy4AcnLYMTsYOTnAnDn898aNns+5D64PF/cB9vv2cc2RbjIDFJ+gMBWAewxcN/daxFSqVAm7d+8ucZuHtRa7d+9GpUqVinopIlKCZWdzQ2zTBrj8cuDzz3ka6MugQcDChQzuXn4ZeOQRnhA+8ojn666/noXwb70FdOoEzJoFvPce0KAB0LcvA0XNKCwZtEeKSGnjnBL26MFH7xTSHTt4o9TJonEsW+aaG+jrpDASQaFzUhitwfVA8ZlTuBhAI2NMfTAY7AWgdyS/sG7dukhJSUFJTC2tVKkS6kbjloGIlHjWAn/8wfRO9xmC69czMExMBJKSgKlTeSe0Y0fP9y9bBrz4ItC7N/DKK4G/q1o14NprgTFjmALzxRf8vVkzDvMdMIAdS3v2DP/fKeGlPVJEShsnKOzeHXjssbzB38yZvAH63ntswuZwUkcvucT3SWHTpuFdZ1ycq6FNtGYUAkUQFBpjxgFoC6CGMSYFwHPW2k+MMf0BfAcgFsAIa+2KSK6jfPnyqF+/fiS/QkSkyH3xBQO677/3DPiczTAxkUFbtWpMIXV/TXY2cMstrJcYPDi473vwQeDXX4G332anNgBo25a1he+9x991Ulj8aY8UkdJmxQo2hElI4I/3SeFPP/Fx3DjuYU7CQXIy98oLL2QpxOHDLLsAIndS+Ntv/Hc0g8Ki6D56vbW2trW2vLW2rrX2k9zrM6y1p1lrG1prX472ukRESpucHOCll/hv745pTlDYpAk3vp49gcmTWb/geOUVnjJ+8IGrI1p+WrTgRtu5s+f1V15x1RKqplBERKJtxQqe6hkDnH563qBwwQKgZk0gI4PdRgE2o5k/H+jQAahfn2UWqbkFbkeOcM5vuIPCuDimj1rrCgpP8tt+M3yKS02hiIiE2ZQpDP4qVXLdAXWsXMkTuypV+PuNNzIgfPNN4N13OZDeSRu9+urCr6VKFWD0aN5tbdGi8J8nIiISLKfzqJPqefrpwJo1rlr63bsZJN5/P8csjRrF6wsXAgcOMCh0bmg6KaS7d/NzwxYUZmcDR46gRg0Go5mZDApr1gQqRmEAn4JCEZFSyFqeEp52GnDHHUzpzMpyPb9qFTdFR6tWvAv63HNMAV2wALjuOlfKZzhcdBE35Vq1/CzYaVEqIiISRtu28QTQPSg8dMjVOObnn/nYpg1w880suUhJYepobCxw8cXcIwHXe5yS65o1C7Gw/fuBSZPYqa16daB7d9Sowad27YreOApAQaGISIk0dy67e/rzzTdM/XzqKQZjBw+6ahSOHAFWr+apnSMmhieLEydyE9q6lTWG4RrIG1ByMnD++dx1FyyIwheKiEhZ4jSZcQ8KAVcK6YIFbJB27rkMCq3lHpicDJx3HnDccQzOjHGdFDpBYYFPCn/5hYN7e/TgFzVqBEyfjrhy/wJgUJiSoqBQRET8sBa47Tbg8cf9P//ii0x16d2bp4CAK97atIlBontQCABnnglcc0105iEB4FDD9u3Z3WbHDmDECAaHIiIiYeQvKHTq63/6CTjnHI5VatiQN1M//BBYvJipowBn9Nat6zop3LmTjwUKCvftY93GCScAs2cD27cDn30G5OSgxu+845uerpNCEREJ4K+/gA0bOIjXl+Rkpos++STvfMbHA6ee6qordO88WmSsBbp1Y2D47rvA2rXArbe6WrqJiIiEyYoV7OrppHqecAL3xlWreJN08WLXDVSA29HmzWzY5gSFAG+2huWkcMAAYN06Fi+2a8e9LzEROPNMxM35EgD3+f/+i96NWgWFIiIlzOTJfExP9z1wfuhQoE4dpsA4WrXiSaG1rnQZ95rCqFu9mjveSy+xsj8aVfQiIlImuTeZcTgdSJcuZc1969au53r0AI49FjjmGOCCC1zX69fPW1MYbHfuo2bPBoYMAR54gDOb3F1/PWos42DE33/nJZ0UioiIT1Om8PHIEXY/87ZuHbMw3eOs1q25gf39N08Ka9cGjj8+Ouv16dtv+XjZZUW4CBERKe2s5b7nLyh0SitatnQ9V6UKa/Lvu49po46EBNb5ZWVxTz3hBGbk+LV7N9CnD/C//3G2RXo6jyEbNwYGDcr7+l69cBz+Q/nYI0f7AEQrKFSejohICbJhAzMuW7Zkt7S0tLydz7ZvZ88Wd05azE8/cXMs0tRRgEFhYiJ7f4uIiERISgrTMH0Fhf/9B0yYwE7d3nvpU0/l/az69V3zA4MaXD9uHDB2LDvUPPccH2NiuIFXrpz39aecAtOqFWos2o0VK7ggnRSKiEgezinh3Xfz0buu8OBBDtOtU8fzepMmTHEJe1DodL159NHg35OZyfETOiUUEZEI824y43BKKJYs8awnDMSZVbhpk1tQmJYGdOrkyit1N20au4ru2sUN/IEHgOHD2dLUn969UeNwGrKzGUPWqQOeOP79d3CLLCAFhSIiJciUKcBZZ7lqHLyDQuf32rU9rxvD08UpU9j0LGxB4ccfs2vom29y8wvGDz8w90ZBoYiIRFh+QSEQfFDozCrcuNEtKPz6aw42/PBDzxfv3cv5UV27cr7T1VcDb7/N9NFArr0WcdgFAIiPtyg/fBgDy1tu4Y3YCFFQKCJSQqSlMeOkWzd2TXOuudu2jY/eJ4UA6wr37OG/wxIUbtoEPPwwcMklQPPmwJ13Av/+6/maOXNc1fKOb79lBb97Vb+IiEgErFjB1FBnKLyjdm2gWjX+O9jt6KSTOMze46Rw7lw+OXYs25U6vv+eN0C7dAltwXFxqBEfCwCol7EcuPde3g3+8EPe4Y0QBYUiIiXE11+7JjlUqcK4ascOz9ds385H75NCwPNOaKE7j+bk8G6nMcDIkfzZuRN46CHX8888wzmEnToxdQbgH/Dtt7yujqMiIhJB1gI//ug7W9MY7oU1arCmMBjlyrEUfv16ZnTG1bAMCk88kYWG8+e7XjxtGjvRBHsM6aZGU975rWe3suhx9mygWbOQPycUCgpFREqIKVM4b9DZF+LjQzspTEpiHFajRgHnKrkbMoQb4dtvA6ecApx9NucujR4NfPkl02Reegm45hoeTz7wAN+3Zg1vsSp1VEREImztWjZou/xy388/9RSrH0I5gEtIYALMkSNAHNK5ET/zDO/WfvYZX3TkCPDNN9zrCjB/N64Vo9R6fTtyPkYETwgdCgpFREqAjAxmYnbr5tobfAWF27dz//E1N6liRXYlDVTfHpSNGxkAXn450Lev6/ozz7Boo1cvYMYM4L33eIfzqaeAzz8Hpk/ndUBBoYiIFNjmzUwJnTUr8Ovy23K6dAFuuim0765fn/c3ASAu7S/+44orgO7duecdPAgsWsQMmVBTR3PViONGX7d+oHkX4aWgUESkBPjtNyA7G+jY0XXN30lh7drseO3LhAnskF0o774LHD6ct76hYkVgzBimynz/PdC/P59/6ikeb951FxeQmMjTRRERkQIYN441fc88E7j3yowZ3HKcrqHh4P5ZcRsWsdCwYUPOI8zI4A3QadN4h7Zz5wJ9h5PNE61xFICCQhGREiElhY/um1GtWr5PCn3VEzqOO44/BZaZyfrBa68F6tbN+/zZZ3PuRbt2rmsVKrBD6fbtwC+/6JRQRESC8vffvoO+8eO5tSxa5Orz4s2ZfuQvdbSgnA6kABD31xygbVveAG3XjndrP/uMQWGbNsDxxxfoOxIT+fedeWZ41hwMBYUiIiWAExSedJLrWnw8ZxJmZbmubdvmu54wbD79lNN++/cP7X3nnstOpUD4d2gRESl13n2XDWCGDvW8/vffrOl7/nneHB00yPf758yJzPQjj5PCf1azAzfAtqS9e/OkcMUKjqIooDPOAPbvBxo3LtxaQ6GgUESkBEhNZROzY45xXXPGUuzc6bqW30lhoVjLBjPnnOMalBiKl19mLo+zgYqIiPgwfjybWZcrB7zxBisWHBMm8LFPH75m1ixg6dK8nzFjBnu/hHv6kcdJIdJ5Uujo04dNZoAC1xM6YmML9faQKSgUESkBUlLyZmt6zyo8dIgtsiN2UvjDD8DKla5awVBVqMBbtlHooiYiIiXT3LnAjTeyPH3sWDaVcQJBgAFjy5ast7v7bs4a9D4ttJZBYceO3HqCkpUFvPUW6wIDqF2bn1m13H5UrFsTaNDA9eRZZ7GGvmlT1hmWIAoKRUTcDB4M3HFHUa8ir9RUz9RRIG9Q6DxG7KRwyBC2Ne3VK0JfICIipV1WFuv9fFm+nBONGjbkbN4ePYAmTYDXX2egt2YNsGwZy9oB1sjfey8weTKwerXrc1as4NjAkKoVZswAHnkEeOGFgC+LiQFOOcUiLmenq57QYQzw1VecIVXCKCgUEXEzZYrnHcniwtdJYa1afHSCwUAzCgtt82bu0LffDlSqFIEvEBGRsuDuu4ELL/T93MCBQPnywMyZQPXqDMAeeYQ1hHPmuPbnHj1c73ngAW5LAwa4gs1vv+VjSPWEs2fzcdgwRpQBNE/Yi0Y5q32XQzRsCDRqFMIXFw8KCkVE3Kxfz1nr/u5iFlZODvDrr4FbaHvLzgZ27Mh7UugdFG7fzsewnxRmZLjunN51V5g/XEREyooDB4Avv+SJYGqq53PWsnl1ly7AySe7rvfpw/3ujTeYOtqqledN0po1gaef5n3L004DRo1ir5czz8y7bwLwnx46ezbfZG2+p4UjO3+JL3GdZz1hCVeuqBcgIlJcHDrk6vKZksKUlXDasYN1ErNmMUsl2DuY27dzj/I+KaxYkc1nAp4UWss6wMTEvLV8Bw8C77zDCNha/lSuzB22Zk3+PmECU2EOHgRuu03zBYs5Y0wbADeA+3uitbZlES9JROSob78F9u3jvxcsAHr2dD23Zg3r4lu18nxPpUrA/fcz8APYldTb00/z0O6hh4Bbb+W1AQN8LGD5cqBFC2DqVM9NeNs2YNUq4LXXGK2+9x7w2GN+239WnTUZqFfNs+tMCaegUEQk16ZNrhO8rVvDGxT+8AM7Ve/ezd83bAj+vU6g6mssYHw8g02AwWO5ckCNGm4v+Ogjnu75ikI//xx48kkGizExfHRv8QYwf+e224CbbuJYCYkYY8wIAFcC2GmtbeZ2vTOAdwHEAvjYWvuKv8+w1s4HMN8YczWAxRFesohISMaP5x61fz9PBd2Dwp9+4qOvbqF33QX83//xfddc4/uzW7YEFi7k1vbRR8DNN/t40cSJ3OdGjPDcE+fM4WP79txsP/kEeOYZLtjbl18yv/Xll0tV4zQFhSIiudavd/07n3KCkIwYwVK8Ro14lzQpyXWqFwwnxcZXGkx8vOdJYXw84zsAjDwfeYT/Hjcub1A4aRJP/jZudG1shw4Bu3ZxzsW+fcB554XQuk0KaRSAIQDGOBeMMbEAhgLoCCAFwGJjzFQwQPSeztXXWusMKOkN4LZIL1hEJFj79zOts08fzhp0gkDHggUMGE87Le97q1fnXMING/ykhOaKieHn9+nj5wXTprke//uPnWoApo5Wr87uoTExnKv7v/9x1sU557jev307cM89wPnnA48/HuyfXiKoplBEJJf76V04g8LBg7nPLFnCx/h4V/1fMAKdFNaq5VlTeLSeMCcH6NuXg446d2axxaFDrjdmZDCPtXt3zzudFStyx23RgrdrFRBGjbV2HoB/vC6fB2CdtXaDtTYLwBcArrLW/mWtvdLrZycAGGNOBpBhrd0b3b9ARMQ/J3W0Z09uL8uWMS5zLFjA0z5/h2+PPsoeMAWWmgr89htw1VXcDydP5nVrGRReconrruojj7Db9i23sMuN87p+/VgYOXo0U3NKEQWFIiK51q/ncPhatcIXFGZmAn/9BVxxBYfoAqz5C+WkMCWFpX7HH5/3Oe+TwqP1hEOGAD/+yJrB++/nzjtrluuN06ezg417Czcpjk4C4P5/jSm51wK5DcDIQC8wxtxhjFlijFmSnp5eyCWKiORv/HiWq190EYPCnBzgl1/43M6dPD0M96B5D9On8/HFFzlb8PPP+fu6ddz027d3vfa444AxY7iwpCTuo2+/zVKMV1/1W2tYkikoFBHJtWED94l69cIXFC5ezI3Pvf12qEFhaipPCX3dPY2PZ+CZmel2Urh2LSvsL7+cdznbt2dE6T5rY9IkLuSCCwr6p0kxZa19zlr7cz6v+cham2StTYqLi4vW0kSkjNq3jzHZNdfwgO2CC3go56SQLljAR+8mM2E1bRqQkMDh8r1783QwLc01iqJDB8/XX345hx/edRdvtD7yCNCuHQcjlkIKCkVEcq1fz/FC9eq5UjYLa+FCPp5/vuta7dqhp4/6Sh0FXAPst25lKWCdOuCGVakSMHw4I8kKFTgN2Ekh3bePRfLdurkVIEoxlQqgntvvdXOviYhElDOZ4bbbfI9RmjsXeP/94D5rxgzWFDqNZapWZTmFe1BYsaJn+V5Y7d/P4K9LF+6LvXvzju348bxerx5w6ql533fCCcDQoZwldccdTBstpftm6fyrRERCZC1PCp2gMFwnhb/8wiyT6tVd1+rUYQCXlRXcZ6Sk+C+sd4LCZcv4WHv/eiA5mROA3WdTXHst6wiTk1nYceCA/xZuUpwsBtDIGFPfGFMBQC8AU4t4TSJSymVnM9Hk+efZLO233zyftxbo35+D4w8cyP/zxo9naUabNq5rrVtzj8zOZlCYlMTAMCKSkzlaqUsX/n766YxKP/2UnUfbtw/cSTQpCfjwQ/93aEsBBYUiImAGyYEDrvTRvXv9z7cNlrU8KXRPHQVczWCcWsBAcnKYaupvH3IG2Dsbdp3Zn7I4/s47PV/YoYMrhXTSJLZ4c9+dpcgZY8YBWAigsTEmxRhzm7X2MID+AL4DsArAeGvtiqJcp4iUbvv2sRfLmDHAE08w8eSTTzxfs3AhsGIFA7rFPobfLFoE3H03cMMNjMOmTWMJe2ys6zWtW3Pf/flnNvmMaD3htGk8nrz4Yte13r3ZAe6ffzzrCcuo0tU2R0SkgJxxFA0buoLBrVuBatUK/pkbNvBE0LtszznA27YNOPnkwJ+Rns5NN7+TQqc5Wu3FXwMvPggce6znCytU4C7/1VfAkSNAr16lrnNaSWetvd7P9RkAZkR5OSJSBmVlAR07Mqj78ENmTKamAmPHAm+8wWZsAOcAHnssA8iffmLzGHdPPcXTv3r12LOlTZu8pXhO/eDbb3Ofi1g9YU4OCxo7dfLsqN2rl2usRLt2EfrykkMnheGJJUAAACAASURBVCIicI2jcE4KgcKnkDr1hP5OCoNpNuPMKPR3UhgXx/IGJyisU2Uvc3p8cVJIMzOVOioiInlMnsy9a+RIBoQApzD89x/nvgPAv/9yfvuNNwKJiXnnDTqD6fv3Z0fRpUvZ/Pr00z1fV6cO99yvv+bvLVtG6I9aupSpOU7qqKNePQaDZ57pWW5RRikoFBEBTwqNYWMyJwArbFD4yy8cQ9G0qed1Z+8JptmM3xmFWVnAwYOIjWVguHs3EIvDiOt/ne/ZFQBv/1arxh/dFRURES9DhjBjxn34+0UXsQeLk0L62Wcsz7vjDqZ8/vwzE1Ac8+Zxi7r00vy/z0kZPf10Vj5ExLRpvHt6+eV5nxs/nnX2oqBQRARgUFivHjNL6tTh/lHYDqQLFwLnnedZQwEwiIuNDe6k0FlDnvTRa69lXeDNNyO+CmeUx2MHYh5+0P+HVagA/N//AS+/rKH0IiLiYdkypnzec49ng01jeFo4bx6wZg1TR5OSgBYtmBaakcH6Qsf337NhTDBl605QGLHU0f37gY8/Btq25Z7p7cQTXek7ZVzAoNAYE2uMeSNaixERKSpO51GApXa1axfupHDfPm6w3qmjADfb+PjgTgpTU7memjXdLqak8M7naacBX32FWus5kq52rSOMOAO5555SO2Mp2rRHikhpMnQoULkycOuteZ+7+WbezLzrLmD5cldqqRPUuaeQfv89TxcrV87/Oy+5hHtixPq8DBnCzfa55yL0BaVHwKDQWnsEQCR7AYmIFAvr17O2wVHYsRRLlzKdxt9s+GAH2KekMED1OG0cO5atTSdMALZvR3ybRvzMs2oVfMESMu2RIlJa7NnDraV3b47m8xYfD1x5JWcTVqnCHi0AcMopzGRxgsLUVJ4aBpM6CjAtdf164LrrwvJneMrIAF55BejcOW8nHMkjmNZzvxtjpgKYAGCfc9FaOzliqxIRiaLMTGDnTtdJIcCg0Jn9VxBOkxl/QWHt2sCmTfl/TmqqVz2htewT3qrV0QXHX9gAmA/UTojUgCcJQHukiJR4o0Yx0zJQIkm/fmwK07s3pzsATC1t3RqYP5/b06xZvB5sUAiwlr9A1q/nm71rNBxvvMGuOC+/XMAvKFuCqSmsBGA3gHYAuuT+XBnJRYmIRJN751GHc1JobcE+85dfgEaNfJcwAKGdFHrUE/72G7ByJXDTTUcvOWMp1DytSGiPFJESLScHGDaM5Q4tWvh/3WWXMb565hnP661bc6/asoWpo7VqAWecEdk1Y9YsHjOefz5nDXrbuZOzLq69Fjj77AgvpnTI96TQWusjs7hoGWPaALgBXH+itTZSTWxFpAxwgkLvk8IDBzjTNtSOaM7Q+kB3SmvX5gzDrCz/PV+s5UZ72WVuF8eMYQX/tdceveQEhaqVj77iuEeKiIQiOZmjI/Iru4uN5fxBb05d4bx5jNUuu4wniBFz+DDw0EO8Y5qaysDw3nuBgQO5YcfGsqnawYPAiy9GcCGlS74nhcaYusaYKcaYnbk/k4wxfiZm5c8YMyL3c5Z7Xe9sjFljjFlnjBkQ6DOstfOttXcBmA5gdEHXIiICuAbXu58UOimbBelAunQpsGOH/9RRwHWql5bm/zX//ceGNUfTR7OygM8/B7p29Sj6cE4S/c0ylMgJ9x4pIhJtr7/O070ePQr2/jPOYDrpkCG82dmxY3jXl8cnn7Bw8d13gdWrgbvv5pfXqsXObFWrAu+9B9xyC9C4cYQXU3oEU1M4EsDnAJzb0n1yrxX0/5ePAjAEwBjngjEmFsDQ3M9MAbA4t0YjFsAgr/f3tdbuzP13bwC3FXAdIiIAGBQefzxQvbrrmvsA+zPPDP6zdu8GevZk0Od2mJeH+wD7k0/2/Zo84yhmzuSOe/PNHq9r3ZpzoyK+EYsv4d4jRUSiZu5cnhS+9RaTUAoiNpaD57/7jr936BC25eWVkcH81TZtgO7deSQ5ZAjQty//mL17eUc1K4snhxK0YILCOGvtSLffRxljAgzCCsxaO88Yk+B1+TwA66y1GwDAGPMFgKustYPgpzbDGHMygAxr7d6CrkVEBPAcR+FwDwqDdfgwO6ilpjKNJtB0iGAG2Kem8vHoCeCYMZxN4ZWXGhMD3HBD8OuUsArrHikiEi3WMr6qU4ejJgqjdWsGhc2bh6mU4a+/OCPj66+BLl2A//2PtRKDBgHp6cCMGZ45qmefrdrBQgqm0cxuY0yf3HlMscaYPmBRfTidBMD9P71Scq8Fcht4N9YnY8wdxpglxpgl6enpYViiiJRW3uMoAFcWSihB4RNPALNnAx98wBKHQJygcNuwr3wXacDrpPCffzibsHdvoHz54BclkRaNPVJEJOxmzeIoiYEDg5spGIhTVxhK11GffviBwwubNwdGj2bnm1Gj2FTmiSfYPOamm4CkpEJ+kXgLJijsC6AngDQA2wH0AFDkhfXW2uestT8HeP4ja22StTYpLr9hziJSZh05wtEQ3ieFsbEMxoINCr/8kuk3993ne/Cvt7hqWYg1R7AteQXnKP39d57XOEFhnTrgRpiVxRQZKU6K5R4pIhKItQwGTzkFuC0MhVgtW3KgvTPUPqBHHuEXjx7N1qcAO7s9+CDQrh3Td157jZvgjBnsuN25M6/FxmrERIQETB/NrfXrbq3tGuF1pAKo5/Z73dxrIiIe9uwBqlUrfGez7Gzgm29Yr374MMdHeAtlgP2YMbyR+eabQbx4/37E9OiBePsRtjfvBKz+HwvmhwzxeFlqKrNFK2bkttbu2TMKfb4lWFHcI0VEwmraNGDxYmDECP8dsENRoQLw4YdBvPDff4H332dwd8stwODBDAZffZXNY+67j/92P7o89VRg4kRg0SJu2OqqFhEBTwqttUcAXB+FdSwG0MgYU98YUwFALwBTo/C9IlKCpKezpODppwv3OdOnc0/p1o3jjZ54AujTJ+/r6tYNvvtoWhqbnOWb2XnwIO94zpyJ2qdUxLbaSSwIHDmSKaLgrKfHHwfGjcs9wXzlFd5FfeGFkP5Oiawo7pEiImFz5AhrCRs1Am68McpfPmoU97N584CxY7mx33QTu7TNnMkg0V8u6/nnA61aRXW5ZUkw6aMLjDFDjDFtjDFnOz8F/UJjzDgACwE0NsakGGNus9YeBtAfwHcAVgEYb61dUdDvEJHSadky4NAh1plPnFjwz3nzTaBSJd4p3bqVMZevO6X16jEoDGaAfVqaa15gQGPHAvPnA6NHo86ZcWw089BDwP792D9kBG64gfWNb73FWU+fvJzGqcI33QQ0aRLqnyqRF9Y9UkQkkE2bWK4QzL7kzwsvAH/+ySzMcsG0nAyXnByeErZsyVrB3r05UuKzz9hYplOnKC5GvAXzfwpn5T7+z+2aBdCuIF9orfV5V9VaOwPAjIJ8poiUDctzp5s2b86sk9NPB5o2De0zcnKA337jXnSlz97GLvXqMQhNT2caZ6DP3LEjiKDQWgZ4zZoBffqg9gLg55/BlNAOHfDZWzvxeQYzaR56KHdUxZ3P8QvymyosRSWse6SISCCDB7OaYPZsbiehBnXffQe89BJr3wONTYqI5GTWzz//vOvaMceofXYxkV9NYQyA962146O0HhERv1asAE48Efj2W+Ccc5j++euvnDEYrA0bOMLonHPyf637WIpAQeHu3UzHqVUrnw9cvJgR6bBhgDGoU4djB7OygAoPP4yRlx+PxJP24K23jmfN5Pr1LPi4804gISHIv1CiRXukiETbP/9wDNHw4aw7//JLoEqV4N6bksJSiaZN85SwR8ewYZzVdM01RfDlkp/8agpzADwepbWIiAS0YgUP2erUASZMADZuDLLTmZulS/kYSlC4aVPg16Wl8THfk8Jhw7h75xYwOmMp0tKA1ad0wi+4ELfYkTDJs1hU2LkzixQLW0QpEaE9UkSiLSMDSEzk6KOZM4G2bZnNkp/sbKBXL5a1T5zIA7qo2rKFNRv9+gEVK0b5yyUYwdQUJhtjHjXG1DPGVHd+Ir4yERE31jIodNJFW7fmsN2pU3lKF6ylS1k/GEzaadOmQNWq3HgDCSoo3L0b+OIL1gZWrQrANeB32zZg1JgYxMbk4MZtr3LQ0zvvcCbG2LFhmgQsEaI9UkSiZs8eZsfceSf3vz//ZDpofl5/HViwAPjoIzZFizqnNemddxbBl0swgslEvi738V63axZAAx+vFRGJiNRUpn26B3Nnnsmavy1bgPr1g/ucpUtZwhdMC+5KlYCuXYHJk3nI56+zqM+gcN06Lio2lr+PHMnF3n330Zc4J4Vbt3KkxWWdgfiOA4DTTgMuuij4nCApStojRSRqMjJ4vxAArrgC6N6dfVpee83/AVxODmOyjh2B66PdLzkjA/j+e0ajV17J+YRSLOV7Umitre/jR5udiETVitx+xO5BoXO3c82a4D7DWpb0BUwdXbGCFfy5evZkDcecOf7fkicoHDqUvb4vuIB1hE7HtTZtmP+ayzkAHD0a2L4duPW2GHaZufxyBYQlhPZIEYkmZ1av47bbuEd99ZX/98ydy5unt9wS6dW5+fVXoEMHoEYNbqQAMHBgFBcgoco3KDTGHGOMGWiM+Sj390bGmHx69omIhJevoPC00/gYbFC4YQM31IBB4QMPAFdfDezfD4CZnMcdB4wP0EokLY31GVWqAJgyhcN327RhVf/55zPI27ABuOcej/fFxfEg8ZtvuG/m1w1Vih/tkSISTRkZns3V2rfn4dsnn/h/z+jRrFq4+urIr++oe+9lbuvDD3MMU1oacO65UVyAhCqYmsKRALIAtMz9PRVAENnLIiLhs3w5O4DWqOG6VrMm75gGGxT+9hsf/QaFBw+y6CIzk5EaXCmkU6awUN8XZ0ahWfgzZ12cdx4LEVevBu6/H5g1i61Ju3f3eF9srKtj6Q03BJfSKsWO9kgRiQprGRS6nxTGxHC8RHIysHlz3vdkZgKTJvGwLuzNZaz1XdS/ahWwZAnw5JPAq6+yCYBTSiHFVjBBYUNr7WsAsgHAWrsfgInoqkREvDidR90ZwxTSYIPCpUtZF+j9OUf98gsDQwAYN+7o5Z49gX//9cgq9ZCWBsRX2w906QLUrcsOa8ccw537nXcY0c6Z4zPqc+oKb701uL9Bih3tkSISFfv2MQbzHsPkpIWOGpX3PZMn83033xyBBT32GIv0ve+Yfvopo9WoFzBKYQQTFGYZYyqDhfMwxjQEcCiiqxIRcWMtsHKl746hoQaFzZoF6IY9Zw7vZt56K08K9+wBkE8K6caNSPt9G+L/+I7vnTmTeaHuTj+dPcR9OOMMoFUrNs2REkl7pIhERe6W5HFSCDB9tEMH9jPLyfF8bvRooEEDHtaF1f79HJa4ahWDQEdODrtmX3ppEHOapDgJJih8DsBMAPWMMWMBzIbmMolIFG3ZwhQYf0FhaiqfD8RaBoUB6wnnzAGSktgyOyuLOaNgEHn11fw1Kyv3tVlZfF2jRkj7tyLiE6vzCxo2DOlvGz7c/wmklAjaI0UkKjIy+Oh9Ugiw4czmzZ77yZYtwA8/8JTQhDt/YfJktgSPiwNefhk4fJjX583jF990U5i/UCItmO6jswB0B3ALgHEAkqy1cyO7LBEpKZYuPdqTJWJ8NZlxOB1I//7b8/r+/Z4DfTdtYgqo36AwMxNYtAho1441gQ0aeKSQXnst79ImJ+de+PRT4KOPcKjv3fgHJyL+uotd0+5DEBurOb4lmfZIEYkWfyeFAG9cVq8ODB7s2vs+/ZQ3RCMSn40YwX1y+HA2Uhs7ltfHjGFXm6uuisCXSiQFc1IIa+1ua+031trp1tpdkV6UiJQMGRmcuvDRR5H9nmCCQu8U0vvu80wtXbqUj36Dwp9+4p3OSy7hLdXrr+ct19x5Ex07ciOeMAFMj3njDeCss7Bz4GAAypIpy7RHikg0BDoprFgRuOsuYPp0NmFr0oQl7RdfDCQkhHkhGzbwCPLWW9mJ7ayzeFq4dy8wcSJwzTUR6GojkRZUUCgi4ktKCuOodesi+z3Ll3Om3wkn5H3u1FMZw7kHhdYC337Lk8ErrgB27WLn0XLlWMPn0w8/sAtNq1b8vXdvBn8TJgDghnvZZWwkihkz2Fn0sceQtoM5OQoKRUQkkgKdFALAiy+ygfYrr3BUboUKHH0bsu3bgR9/BL74Anj77bxDEEeN4sbr5KU++yzTdfr0YWCo1NESqVxRL0BESq5t2/i4dWt4P3ffPuDYY12/++o86qhcmUX27kHh6tXc0/r1Y/rM1VczIGzWjCMmfJozB7jwQtfdzcREoHlzppDedx8ANoP54gsgY9AwVKtXD7j2WqTN5MsVFIqISEHs3w+89x47Xdev7/91gU4KATb8bNmSP088UcDFfPMNN02nRtDx+uvAo4+y/emoUWwk45RMXHUV77hOncprF19cwC+XouT3pNAYUz3QTzQXKSLFUySCws2bGWDdfTdP/HJy2NzMV+qow7sD6Zw5fHzySZY3LFjAm55nn+3nA/79l0eJ7dp5Xr/+emDhQmDtWgCuBqKrfv4HeOghoHx5J7tUQWEZoz1SRMJh82YmqAwYAAwbFvi1+Z0UFtrPP7OAvnlzFtCvWMECxeuu4/iJd95hWcXWrUDfvq73xcTwtBDg0N0YJSKWRIFOCpeCLbZ99SuyABpEZEUiUmJEIij8+GP2fPngA9aq33UX76LmFxQuWMAg0hjuWQkJrIFv0ABYvx546in2j/Fp3jxGn95B4Q03MB/noouAzz5DYmIHAMDKykm4oF8/AEdLDlGzZuH+bilxtEeKSKHMmcPTwcOH2cQzv/FKGRlMCfWb8VIYK1cCV14JnHQS6y/cN7VPP+UiH3qIR5nVq+dtJNO9O5vOdO8egcVJNPgNCq21AQ6wRUQ4CgJgzd7Bg4XfqLKzgU8+YR3gKacwW+WPP/hcfkFhZiaD1Ph4lge670sDBgDnnusqF8xjzhzmoZ5/vuf1evXYkfS664BLL0X9O+9BRbyBlc16MmIFg8Lq1dVBtKzRHikihTF1Kvep004Dvv6aNy6XLQv8nj17eEoY9vESW7cCnTpxI/v++7x3OcuXBz7/nKeIU6eypMJ704uJYc2GlFhB1RQaY04A0AjA0f/ks9bOi9SiRKRkcE4KATadOfXUwn3e9OmsBbzzTgaG//0HfPYZn/Mz+x2AZwfStDRunO3bu543hoN9/ZozB2jThrdgvTVrBvz6K3D//Yj9YCia4HasrOo6ckxLA2rVCv5vlNJHe6SIhOqdd5jRsmgR7zE2buyahetrKwJ4UuivnrBQ7ruPHz5/vv+ixgoVgPHj2W68V68ILEKKWr5BoTGmH4AHANQF8AeACwAsBNAu0PtEpPTbto03Cw8d4o3GwgaFH34I1K3LLp8xMRyDdOAA0z8D1VC4B4V79/Lfl1wS5Jf+/jvbm/bp4/81xx579Agz8c1q+Hm960h0xw7VE5Zl2iNFJFTp6axzf+qpo0knaNKEPVzWrwdOP933+5yTwrBas4anfwMHsptaIBUrHm28JqVPMJWgDwA4F8Bma+0lAFoA2BPRVYlIibBtm6t5S2HrCjduZNZKv37sFAowY2XCBGDJksDvPekkNg1ds4aHfomJHGGRr9WrmTJTr15wLbS7d0fiZQnYvJnpqgBPChUUlmnaI0UkJF9/zTL2a65xXWvShI+rV/t/X0ROCt9+m6eA994b5g+WkiaYoPCgtfYgABhjKlprVwNoHNlliUhxl5PDVE+nDK+wQeHw4UzzvO02z+vGALGxgd9rDOsy/vqL2S/e/WJ82rCBOaYxMexME1QU6UpjdTZuBYVlnvZIEQnJpElsguZ+MHfaaXwMFBSG/aQwPR0YPRq48UbVQUhQQWGKMeZ4AF8BmGWM+RrA5sguS0SKu1272IysYUOgRo3CBYXZ2UwVveIKpo8WROPGwNy57FTqXk/oU2oqiwwPHmTb7UaNgv4ep+HNypU8Ldy3T0FhGac9UkSCtmcP70Nec41nw5jjjgPq1AncgTTsJ4XDhnEffPjhMH6olFT51hRaa7vl/vN5Y8wPAKoBmBnRVYlIsec0malTh4FcYYLCr79mbd6ddxb8Mxo35ullTEw+c3N37mRAuGsXc02bNQvpexo2ZFrrypUcEAwoKCzLtEeKSCimTeONUPfUUUeTJlE8KTxwABgyhGMo/BUxSpmS70mhMeYCY0xVALDW/ghgLlgzISJlmHtQWK8eu48W1NChwMknA507F/wznGYzZ58NnHCCnxf98w9w6aWcFvzNN0BSUsjfU64cv2vlSmhwvWiPFJGQTJrEG6nnnpv3ucaNGRRam/e57GxmwoTtpHDMGN4cffTRMH2glHTBpI++DyDT7ffM3GsiUoZ5B4UFPSn880+mffbvn3/tYCBOUOi3nnDvXrY1XbUK+OorjqAooMREBYVylPZIEQnK3r3AzJmcTxjj47/AmzRhiujOnXmfy8jgY1hOCnfsAN54gzdGL7ooDB8opUEwQaGx1nXPwlqbgyDnG4pI6eUEhfHxDAr//Zf1daEaPJhz470bzOTr77/ZObRBA+DVV9H85D24+27g9ttymJ/ToQMX16IFixXbtAGWLuWcpUsvDX2hbhIT2adm40b+rqCwTCtWe6QxJtEYM94Y874xpkdRrUOkLJo/nxUJo0b5fn7GDI5w8pU6CgTuQOoEhR4nhdbyjmxOTnALPHyYm27jxsyY+d//PAsbpUwLJijcYIy53xhTPvfnAQAbIr0wESnetm0D4uLYybpePV4L9bRw1y5g7FhOg6hePcg3ZWUBL78MnHEGp/7WqwcMGIDyDU/GsKx+OPWKxkDXrqzWv/xy5umkpTFiHTsWuOqq0BbpQ2Ii9+Iff+Tp5oknFvojpeQK2x5pjBlhjNlpjFnudb2zMWaNMWadMWZAPh9zGYD3rLV3AwhizoqIFNaRI8BLLwFt2wIrVgBPPsmSPW+TJgE1awKtWvn+HCfjxVdQuCd30E218vvZma1PH+5vJ58MPP54/otctow3SR94gG3D//qL2TMiuYIJCu8C0BJAKoAUAOcDuCOSixKRyNu2jWkshXl/nTr8d0GDwuHD2fgs6Fm4mZnAeedxyG7XrkwF/fFH4LffgC5deHs2Lg748kse5Y0YwVPDpUt5snjddaEt0A9nLMWPP3KDL0zaq5R44dwjRwHwqKw1xsQCGAoGe4kArs89DTzDGDPd66cmgE8B9DLGvA5AtytEImzXLiatPPMMt5ipU3kf8uOPPV+3bRtL2bt1879n1KvHzBlfHUiPnhRO+oSpNbNmMQPmiiuAt94CFi70v8i9e4GrrwZ27wamTOHm31iTc8RTMN1HdwLoFYW1iEgUvfMO8OabTPs87rjQ35+aWrigMDubDWY6dHCNecjX0KG82zl+PHDtta7rLVrwFHD0aHaCibBGjbipZ2aGNM1CSqFw7pHW2nnGmASvy+cBWGet3QAAxpgvAFxlrR0E4Eo/H3VvbjA5ORzrEhH/XngBmDePQWDfvszGvOgi4JVXgNtvBypVYmbJHXfw8ZFH/H9WTIyr2Yy3oyeFf84HLrmEcy2MYcDXrBm//Pff+YXeHn4Y2LKFC/V3TCllnt+TQmPM47mP7xljBnv/RG+JIhIJW7awDGHJkoK93/2k0HkMpQPp5MkMLO+/P8g37NvHwvjOnT0DQndRCAgBpsw6waDqCcumKO6RJwFwv92SknvN37oSjDEfARgD4PUAr7vDGLPEGLMkPT09bIsVKUtycpgSesUVPLxzyvOefZZ75MiR/H30aJ4SvvJK/jcS/QWFR08K/17MoND5sqpVmXazejXw/PN53zh9OiPWxx9XQCgBBfovqFW5jwX8T0YRKc6cAO7XXwN07PTj8GE2Lzsp9z9NK1YEatUK7aRw8GDO/LviiiDf8MEHzNN59tnQFhshTZtyD1ZQWGYVyz3SWrsJQaSvWms/AvARACQlJflogC8i+fnlF2D79ryNY9q1Ay68EBg0iKmlDzzA08P+/fP/zCZNmAxz8KDnod/Rk0Lsydsx9NJLGZW+/joX48y72LUL6NcPaN7cd8Ao4sZvUGitnZabfnKGtVZDTERKmdRUPv76a+jv3bGDaTDOCSHgeyxFaiqDRe8DvLQ04OefuWH6asudx/793Ow6dOBOWwwkJvIOsYLCsimKe2QqgHpuv9fNvSYiRWzyZKB8ec5/d2cM719edhnQsiUb0YwcGdx+16QJ99e//2Y/NYdzUnhcuQOsrff25pusFezcmQN769dnceI//wDff8+7tyIBBPw/T2vtEQA6axYpZXJyXCMlFi0K/f3uMwod3kFhSgpPAn215t6Q25uxefMgv3D4cEaixeSUEHA1m1FQWHZFaY9cDKCRMaa+MaYCWL84NcLfKSL5sJY3Bjt08D1QvlMnHtjt2AG89hqnJwXD31iKPXuAqjH7EHt+ErvReKtWjTN4O3YE/vsP+Ppr1hAOGhTCZitlWTAFOH8YY6YCmADg6BQya60K2EVKqF27ONnh1FOBdet4oneS3yqlvPwFhcnJrt/HjeM8pj//zPv+TZv4mJDg48NTU1kUX7Mmx0ecdx7w6qvs9V2IgfPhdvbZvBvcsGFRr0SKWNj2SGPMOABtAdQwxqQAeM5a+4kxpj+A7wDEAhhhrV0RlpWLSIH9/jv3soEDfT9vDBtgf/MNcNddwX+uU3Po3YE0Y3c2js/ZHXjYfFIS8MUXrt+zs3mUKRKEYILCSgB2A3CvOrJQVzOREstJHe3enXcwf/2VbbKD5S8o3LuXKS7VqgGff87rzoB3d36Dwq1bWUC/fTtvww4Zwq4uWVnsLlqMnHYaN+1TTy3qlUgRC9seaa293s/1GQBmFGh1InLUsmVM+Xz++cLPbJ80iV2oA42+bdaMP6E49liOHsxzUrjxX1RDRuCg0JsCQglBMCMpbo3GQkQkviqBEAAAIABJREFUepyg8IorgLffZgppqEFhTAwP8xx16/Jx61Z+/h9/cMPc4GOM96ZNfO8xx7hd3LKFAeGuXWy13bw5jx6/+gqoUoUnhcWMxlGI9kiRkmHHDu55qakca5uUVPDPclJHL74YqFEjfGt0NGmSNyjMSM3E8djDIkWRCMi35NUYc5oxZrYxZnnu782NMX4Oy0WkJHA6jzZoAJx5ZujNZrZtYy2d+wBeZ1ZhSgpPCWNigF69eFJovXobbtzodUq4aRN31927OZD3ggsYMXbtyvybwYMLf1tXJAK0R4oUf9nZQM+e7LkSG8t7jYWxciUzRby7joZL48b8fPe9c8+uw6h2HAo2WFgkCMH0/RsO4EkA2QBgrf0TGmYvElXW5g2sCiM1lUFbfDxw/vmcVXjkSPDvd59R6HCCwi1bGBQ6jUIPHOAdWnebNrkFhStWAK1bM+909mzfXdVEii/tkSLF3GOPsefK8OHMvpwypXCfN2kS71OGkmGTr6yso/9s2hTIzOR+6jyXsa8cjq/jo8GMSJgEExQeY631Pkc4HInFiIhvo0axzmDgQNbtFVZqKgPCcuUYg+3dm7eoPRBfQWGdOgw0J0zgSWDv3uyIDXimkObkAJs35waFCxYwILQW+PFH4JxzCvuniUSb9kiRYuyzz4B33+WswBtuAK6+mid9a9cG/xk7dnAq0rPPAo8+ylnwLVsCtWuHaZH//guccgrw5JMAXHWIy5fnPr9kCfbYaqiWUD1MXyiSVzBB4S5jTEOwcB7GmB4Atkd0VSLi4aefeBPx5ZfZ2OT99zlAvqBSUlzdRp2DuVBGU/gKCsuV4waZnMyBu926uVpwuzeb2b6dqTz1M//kcWJcHIND94FMIiWH9kiRYmr2bM5uv+giBnUAg0KAExuC9dFHwOOPAy+9BHzwATtr33tvGBc6diwH+L7yCjBzJpo25WUnKLQ/zkMGquH4JrXC+KUinoIJCu8F8CGAJsaYVAAPArg7oqvKhzEm0Rgz3hjzfu4GLFKqrV3Lu5K//soC9HvucW1wBZGa6moMc9pp7BYabF3hoUPsBeNrhIWTQtqlC8senBRR95NCJ0BM+OBJ5sj89JOf2RQiJUKx2yNFhPcau3ZlQzBnyDzAzp5nnx1aCmlaGlC9OsssMjN5cni9z17BBWAt81rPPJNHhDffjOMP7UDduq6gcN8Pv+IIyqFa7WPD9KUieeUbFFprN1hrOwCIA9DEWtvaWrupoF9ojBlhjNnpFOW7Xe9sjFljjFlnjBmQz8dcBuA9a+3dAG4q6FpESoq1axm8nXsuMHcuH7/5puCf5z6XMCaGnxdsULg99wzE+6QQcAWaN9zAx0qV+Dr3k8JNyesAAAmNKwJz5ni2MBUpYcK9R4pI4S1ZAlx+Ofek5GTgxBM9n7/6auCXX1z7WX527WJSS0T6nS1ZwoG+d93FAb8ZGcAtt+CMZhbL/7LAxInIWMD/ZD7++Ah8v0iuYLqPHm+MuR/AiwBeNsYMNsYMLsR3jgLQ2es7YgEMBYO9RADX554GnmGMme71UxPApwB6GWNeB+D1/9RFSpc9e4CdOxkUAtyU2rVjELdvX+D3+pKZyT3H/aTvvPO4Jx04kP/7fc0odDRvzuud3f5feIMGbieFq1Zh02vjAQCnzHhfXdSkxIvAHikihbBmDdCpE0/2Zs8GavnIuOzWjQd006YF95m7dkVm9AQAnhIecwwL8Zs1A958E5g5E802TsOqZYdw+NpeyDghAQCzekQiJZj00RkAEgD8BWCp20+BWGvnAfjH6/J5ANbl3nHNAvAFgKustX9Za6/0+tmZ+3MvgAEAdhV0LSIlwd9/89EJCgGO7MvOBn7+OfTPc2YUOqd6ADuQHj4M/P57/u8PFBQ+9RQ35IoVwUi2c2fUX/c9Niz9B3jnHaBTJ2yyp6BWjcOonKDaCCkVwrpHikjhDBrE/XH2bM99zl3TpkDDhp6jKbKz2e/Fl/T0CAWFmZk8HezZ03WT9J57gK5d0WzNRBxCJawb8h32jPsWgE4KJbLyHV4PoJK19uEIr+MkAFvdfk8BcL6/FxtjEgA8BeBYAD4rq4wxdwC4AwBOPvnkMC1TJPp8BYWtW7Oxyw8/AB07hvZ5TlDofVIIsGV3fnNx8wSF//0HVK0KGIPYWM6Zx8GDzM/54w80qN4Dn2V2QNZDj6PCcZWxqXlX1I8J5n96REqEaOyRIhKEzExg4kTW+zmNznwxhlvUe+/x/uXEicBrrzEzZ8eO3Bubbnbt4s3TsPvySy769ts9Fzd+PJp9lw5cBSyv1R7HZvIpnRRKJAVzUvipMeZ2Y0xtY0x15yfiKwvAWrvJWnuHtfYGa+1Pfl7zkbU2yVqbFBcXF+0lioTN2rXcIxo2dF2rUsVVXxgqX0FhfDwDzQ8/DNzVdO9eFuxXrpxbo5GczNycDh2Arbn3daxlu7eFC4ExY9Dg//rBIgabf94GbNmCjbuqqq+MlCbFbo8UKasmTGBZxa235v/abt3Y1bt+fXYSPXCApRVpaZ6vszbE9NHk5Lwf4s/w4UBiIof6uqtYEad3rAtj2Gxmzx5e1kmhRFIwQWEWeBq3EK60mCVhXkcqgHpuv9fNvSZSqq1cyYO2QNau5fgi7zuXbdsCixfzJmMoUlL46N099OGHOVTePZ3G+31t2rBZ6HvvAebnBcBVVzE/Z9EiFhSOGwf83/+xvfZLLwE9ehydVbhxbw0cqVINW7ao2aiUKtHYI0UkCCNHAo0b542xfLngAiApia+dM4ezBwGeFLr77z+mlgZ1vvDVV0zfadXKtdn689df3Dv79fPZwaZyZY6gWr6cwSqgoFAiK5ig8BEAp1prE6y19XN/AhzKF8hiAI2MMfWNMRUA9AIwNczfIVLstGoFvPBC4Nc4nUe9XXIJT/UWLAjtO1NTubEc69XZumtXnka+9Vbe9/z+O1NnNmxg19PbWvzmau3200/AsmWcldG7NzBwINCnDwsM4Urh2bCBqaeHDysolFIlGnukiORj3Tpg/nzglluC6xIaG8sbq8nJ3E/j43ndOyjcldu5It+Twq1bgb59efKXns6OcP7am+7fD9x3H+/23nij349s1szzpFDpoxJJwQSF6wDsD9cXGmPGgXdUGxtjUowxt1lrDwPoD+A7AKsAjLfWrgjXd4oURwcP8n/oA42CsNZ/UNiyJecu/fBDaN/rPo7CXWws8OCDzPpcuNB1/bffOPg3NpYBaKeTVwGXXgqccIIrfbRhQ+7GL7/MgHD48KO7cu3a3Pc2bOBJJICjp4cipUBY90gRKZhRozhiKUCMFZDTpdQ78zM9nY8Bg8LDhzmLKTubp4UzZ/IuaLt2eaPMQ4eAa65hEf+IEQE/uFkz9hXYsQOoUIFjnkQiJZhuD/sA/GGM+QHAIeeitfb+gnyhtdbnuE9r7Qywi5tImeDc+fvjDyAnh5uZtx07WMfnKyg89lg2iAm1rjAlxXdQCPAO6zPP8LRwwgQGcpddxtbeCxYAdeMOAUk9GSEmJ7um1QPsfJN7OuguJoYngxs3uoJCnRRKKRLWPVJEQnfkCDB6NO9X+tvf8uOMzPV3UhgwffSll3hjdMwYoFEj/syYwflMLVvyVLB3b26mvXszaBw+nP8OoFkz/vfBL7/wlDAicxJFcgUTFH6V+yMiYeTUCGRmMu3FV+Dnq/Oou7ZtgVdeYeBYtWpw35uayvI/X6pUAe68E3j9dabV3HADb4B+911ua+8nn2cuyzffsNghSM6sQmeIvRoCSymiPVKkiM2Zwxueb75Z8M+oVImBV1DpowcOsCnAypUsn3j7bR5Ruh9TXnQRg7+HHwYeegh47DEGi6tW8fX9+uW7pmbN+Lh0qW6mSuTlGxRaa0dHYyEiZY1zUgiwZs9X4Ld2LR/9BYWXXMKMzZ9+4olefrKzmRoT6E5q//7cWFu35inf7NksF8TChezZ3a8f6wlDUL8+375pE9NJlQIjpYX2SJGiN3IkKxq6di3c59SqlTcodNJHj54UZmXxpqgzn6l8eW7GQ4fm/cCLLgKWLAFWrOAp4sSJvJP74INBradRI6aNZmWpnlAiL9+aQmPMRmPMBu+faCxOpDTzDgp9WbuWG4K/k7ULLwytrjAtjXWKgYLCunU54+nwYY5QatkSLIq/+WamixbgVmyDBvx7f/9ddzuldNEeKVK0Nm4EJk1iZkthbzjGx/s+KaxY0a052/z5DAhffpmnfvv2sZwiULpO06bAq68C69cDTzwR9HrKl8+9KQt1HpXICyZ9NMnt35UAXAtAM5hECslJHz3mmMBB4amnsoTPl2OOYVvtYOsKfc0o9OWDD7hvNW2ae2HAAOayzpkDHHdccF/mxmkss2wZA06RUkR7pEgEZGUxw+TQIdbVWcuxSFWqeL5u4EDukSHEWn7VqsV9yl16OlNHj9bzTZvG6PPBB7kJR1izZsCff+qkUCIv35NCa+1ut59Ua+07AK6IwtpESjXnpLB1awaF1uZ9zdq1TB8JpEMHZqfMnJn/dzpBYd264Bv69mWxgpdjjskNCA8cAG6/nYMJH3iAKTIF4IylsFYnhVK6aI8UiYzXX2fdfKdOLI+4/HL+fuCA6zVLlwKff86Svbp1C/+dvtJHd+1ySx21lkFh+/ZRCQgBV12hTgol0oJJHz3b7SfJGHMXgjthFJEAnJPCtm15J9IpT3AcOeK/AY27hx8GzjgD6NULWLMm8GuPDq7fvgTo1o2FGElJ7JA2f75nZLpmDYcTfvwx8PTTwBtvhPT3uXMfQaGgUEoT7ZEi4ZeVBQwZwvuQCxbwxPDjjxkE3nEHtypr2bulRo3wnBICDAozMjgyyrFrl1uTmdWr2TXtyivD84VBcIJCnRRKpAWzcbkXEB0GsAlAz4isRqQM2bOHKS+tW/P3337zTOvcupUbY35BYZUqwNdfA+eeyyL7RYtcdxS3buVdz6TcBLfUVKBCeYsaN17GL/vuO86eeOstFsRXqMCiitq12WW0cmWeKHbqVKi/tVo1duL+5x8FhVLqaI8UCbPx41kDP2pUbl07WCqxbRvw7LNAixastfvhByayFKCqwSdnVuHOna5a/vR0t31r+nQ+XhG9ZAAFhRItwXQfLVi+mIgElJHB/5E/6yzWKvz+O9Cli+v5/DqPuktIYKF9+/Y8Mezdm43O5szh8yNHsk9M6vqDOMmmw8AC337LofMDBgD338+uMmvWcNfdvp35Ou+8U/ChT14aNFBQKKWP9kiR8LIWePddBn2XXur53NNPc7bvY4/x3uWpp/LkMFzi4/m4Y4crKPQ4KZw+nZu2+4zeCEtI4N/do0fUvlLKqHyDQmNMRQDXAEhwf7219n+RW5ZI6bdnD0/0qlZl3aB3s5lQgkKAB33DhnGD/O47BmHPPcdxFX37AhXL5yA1eSVOOnKANRHuxYrHHAPc+v/t3Xd4VNXWBvB3EZp0BUGQGooKooKIiAVERVAQFHu7CIp6LdgFxQ7Klc8KFkAQRQQUUQGVIiKodOlFFCJIU2rokBD298c740wyM8kkmckkmff3PHlm5mTmzM656r7r7L3WuiMyf1gIdepw6496FEphojlSJLJmz2ae/LvvBjZrL1KETerPO4+bWcaN4waXSPGuFP79Nx9TUzlXV6oE3tX85Regd+/IfWEYzIC+ffP0KyVOhbN99GsAewD8CuBIdIcjEj+Sk33bQZo0AebOTf/7339nwOidpMJx113cplmlCnD++ZxMDh7kot+ttwEljzVAh+bbgfPqZH2yCLv6ak7eJUrk+VeLRJPmSJEIeust3jC9/fbgvy9ThlkN06cD11yTzZP/8w+we7evz0MG3vnWW2xm504+nngi+KVpaXmaTyiSl8IJCqs759pFfSQicWbPHl/uX5Mm3L25axeDOoBBYYMGgXdKs9KlS/rXpUoBkyYcw+XVlmHOwbNQ/fy8qZiW0U03qR2FFEqaI0Ui5K+/gPHjWUDt376AQZx8cuigMcDs2cDIkezd9NtvTOafPx9o2jTgrRmDwh07+FipEoDxE4HKlZnAL1IIZVl9FMBsM2sc9ZGIxBn/lULv3OTdQupceO0owlV25iR8d7AVbmmZhE5Xh/OvvYiESXOkSIS88w7nv/vui9AJDx5k36ZPPmEOQ//+QMWKwH//y+aH/saPR8nLLkS5Eofxz5KtQFoatm/nr048/ihXCq+8kntYRQqhcP7JvgDAr2a2xsyWmdlyM1sW7YGJFHYZVwoBX7/CJ58E/vyT1dayZd8+tpF4/nlfewnngL59UT6xEj6ZWRMXXhipv0BEoDlSJCJSU4Fhw4DOnYFatSJ00l9+YWPDzz8Hvv2Wk+v//R/LdA8b5nvf4sXArbcCa9bgpCMb8M+4WUDlytjxIFODKw1/lXdytXVUCrFwto+2j/ooRAqwlBTghReAI0fY7u/CC8PLm/NfKaxUiY13f/2VNzDff5+PDzyQzcH07cttMfPnAwcOAK++CkydCixYAAwdChRV+zSRCNMcKRIB06czh+8//4ngSX/4gfOet/cTwODvgw9Yefvqq3njtHNnriAuXIgqV5+Av5OPB1p0wvYZxwEAKo1+m30vLrssgoMTyV/CaUmxIS8GIlIQHT7MMtHffAMUKwa89hpz+Dp14m6VULtM0tK4qOddKQS4WjhmDJ/36gW8/HI28wn/+AN44w3OqGXL8m5oaiojzerVs5GAISLh0hwpEr6DB5n3fsUVgTc9x45l3JXLtrjpTZ/OLTdlyviOmXGf6llnAY89BmzYwMaEP/0EVKmCKicDy3dVBoYPx44XATwHVNzxO1AkjXOrSCGljdESd9LSAlMJsuIcG+a+9BIbwAOc3Dp1YkA4eDCLxEycyPSF0aOZMB/K3r189A8KvVtFX34ZeOWV7BeYwcMPAyVLMmfi7bf5+q232JPiyScjW7dbREQkm+6/n6l5zz3HzSxeKSnAl19ywS5iFaqTk3lTtE2bwN+dfjrnyI8+YgGaoUOBZs0AsNiMf6GZChWAYhXLAccfH6GBieRP2ksmcad5c7ZoyE7fn7FjGRACTNfr0IFVrX/+GRg+3Nfir0MHVkybMAFISgrdqD05mY/e7aMAq621b+/LLwxw7FjopcfvvmN0OmCAr/vua69xMN9/D3TvHv4fKyIiEmEffsifjh15A/WTT4C77+bvpk5lnv0NN0TwC2fN4rwZLCgEGJlOn86J+9Zb/z1cpQrn6CNHgO3bPe0oROJAWCuFZlbLzC71PD/OzLR+LgXS4cPMJ58yJfzP7N4N9OzJm4hr1gBPPMGegr/8wirXGXu+Jybycd260Ofcs4eP/iuFJUtmEhAOHMgTe5cp/aWkAA89xP4VDz7oO27GSHbOHOC447L8O0UkZzRHimRu2TLmybdpwxXBpk25ocVbD+2zz7gQd+mlEfzS6dM594Wq2FamDLBoEfDii+kOe++rbtvGlcJKlSI4JpF8LMug0MzuAjAOwGDPoeoAvormoESiZcMGTkJLl/IuYDiefJLJ70OGMO565RVg40ae65ZbAt9fvTrz2pOSQp8z2EphSP/8Azz1FL+wRw/fLOr10kvsX/Hmm9oiKpLHNEeKZG7vXubeH3888OmnbBPYsyewahU3shw+DHz9NWu+RHQK++EHFpjJ5n5U/16FCgolnoSzUngfgPMB7AUA59wfACpHc1Ai0eIN1FJTeecyKz//zFSDhx5Kv4pXvDiDv2ASErhtNLOgMNhKYUjPP89Zs2dPltT+8EPf70aP5j7YO+7g3lMRyWuaI0UyMXIk66CNHu0LuG64gc/feos7d/buBa6/PoJf+s8/wIoVwCWXZPuj3jH+/be2j0p8CScoPOKcS/G+MLOiAFwm7xfJt/wDtQULMn9vSgrzHWrVYsuJ7EhMDHOl0CUzQg1l1SpGpffcA7z+OtCqFZPj//oLmD2bweBFF7GHhYjEguZIkUwsWgRUrsypyqtECU5r33wD/O9/7AYRKvUvR2bM4GMOTqqVQolX4QSFM83sKQDHmdllAD4HMDG6wxKJjqQk5u5Vrpx5UJiSAnTtypjs3XdZryU76tYNc6WwbXMmKYby5JP88mefZZGZ4cNZPvXmm1mmrUYNYPx4bRsViR3NkRL3du5kjmCwyt6LF7P7Q8aK2vfcw1ZOc+YA11zD5xHzww/Mz2jaNNsf9QaF69YxzUQrhRIvwgkKewHYDmA5gLsBfAugTzQHJRItSUlcxTvnnNBB4b59rI42ejTzB6+4Ivvfk5jIFhXeFcGM/l0p3JXEZMXduwPf9MMPwKRJzCf0zkqJiew/+MsvXGGcNIm3WEUkVjRHStwbO5YZDgsXpj+ekgKsXBm8iNpJJ/mqjUZ06yjAIjOtWzOfI5uOO479Eles4GutFEq8CKd5/TEAQz0/IgWaNyhs1oxdHPbvT9/Tdts24MoreWfTv9VEdnkrkCYlBb9RmZwMlC56GEVLlGSzpmHD2ETXKy2Nr2vWTF9RFOCe1uRk4OKLgVNOydkARSQiNEdKYZKaysCuRYvs9crdsoWPc+aw7ZPX6tUMDM86K/jn+vYF6tXjdBYx69dz8u3ZM8enqFKFwSygoFDiR5ZBoZktR2B+xB4ACwH0dc7tjMbARCLNOc4TrVtzpfDYMeY6ePMcjh0DLr8c+O03lszu2DHn35VVULhnZyoqpO0EbruNs+bAgaxmU9Tzr+Q77zAyHT06sJ2EGdCrV84HJyIRozlSCpPBg4EHHmA9s65dw//c1q18nD07fSy2eDEfQ7VbqlWL7QKz7cgR5g3+8Qewdi0n2x07uNVnxw6+JwdFZryqVGGhOUDbRyV+hNO8/jsAaQA+9by+EUApAH8DGAEgF//XWSTv7NjBlUHv9lGAW0i9QeGPPwJLlvia6+aGf1AYTPJvf6O828u9M8nJrMX91Ves271xI/D004xQI9rJV0SiQHOkFBojR/Lx/vuBli3Zhikc/iuF/pYsAUqV4mpgxCxdymbz3v2dpUszkb9yZaBaNW4FatAAaNgwx1/hzSsEtFIo8SOcoPBS55z/WsdyM1vknGtqZrdGa2AiufH330DZsukLxHgDtMRE3vmrVSt9XuGQIeyjdOONuf/+cuU4kYQKCvf8uRsVih0GLryQB+rUYW3ua6/lbdq0NOC997K3f0dEYkFzpBQKf/wBzJ/Plb6RI1nPbPbs8OqYeVcKN24ENm8GTj6ZrxcvBs48M0epfYHS0oDXXgP69GEu/eefcw6tXDnic6V/UKiVQokX4RSaSTCzf3eIm9k5ALz/eh+NyqhEciEpCTjtNO7GzHgc8K3i+Reb2baNRTz/8x9WJ42EkG0p9u1D8o5UlK9WmjNlQgLzBn/+mZPd11+zN2GdOpEZiIhEU0znSDNLNLNhZjYus2MiWRk1irHV448zzf3XXzklhWPrVl/eoHe10DmuFIbKJwxp/37gp5+AN98EevTgzdI2bZhD/+STwFVXAcuX83iVKlG5eXrSSXwsVow3mEXiQThB4Z0AhpnZn2a2HsAwAHeZWWkAr0RzcCLZdfgw54nkZG4H9ecN0Lyx1jnn8NjOncBHHzHBvkePyI0lMZElrQNMmIA9rhwq1Pfrb92tG2eefv2AM85gL0IRKQhyPEea2XAz22ZmKzIcb2dma8xsrZllmkDsnEtyznXP6pjEt6uvBu66i4FaMM4xKLz4Yq7yde7MlhEDBgCTJ2d+7tRUNnlv3543Vb1B4Z9/sil9qHzCAGlpDPjKlWNex8MPM61i9Wp+SaNGwCefcIUwyns6vSuFlSppw47Ej3Cqjy4A0NjMynte7/H79WfRGphITvTsye0ql10GTJvGFcDKntgrKYl3/0qV4mv/vMIhQ7gL5bTTIjeWxETOXUeP+urHAADGjkVykXaoUO8E37Fy5YDu3bmFdMiQCDdsEpFoyeUcOQLAIAAfew+YWQKAdwBcBmATgAVmNgFcfcwYZHZzzm3L1R8ghd6yZYytAKbb3X134Hvmz2e9lt69fcdee43djzp1AoYOBW6/Pfj5//mHQWWtWsDZZ/uCwiVL+Bj2SuHgwcDEiUyhuPxynsy7ZJfHvEGhto5KPAknpxBmdiWARgBKmueWiXPuxSiOSyTbPv6Y8VSvXkCHDgwK58zhhAb42lF4nX027wC++ionwxxVQMtEYiJvfG7c6LcTNDkZbvIUJKMCylfIcPuxXz+uGDZuHNmBiEhU5XSOdM7NMrPaGQ43B7DWOZfkOfcYAJ2cc68A6BDBYUucGD6ceYEtWjCt4vzzgdNPT/+eUaOAEiWALl18x0qV4o6b665jasXKlcDLLwfmB3rzCatWBc47j03sjxzhDdqEhMDvCmr7dhZYu+QS3hyN8fKc/0qhSLzIcvuomb0P4AYADwAwANcBqBXlcYlky6JF3OrSqhXw0ksM+IoVY5K8V1ISC5R5lSvHFIUZM1hgxn8yjATvdyV1eACoUIFLlvXr41BqAo4eS0CFChk+UKqUAkKRAiYKc+TJADb6vd7kORbq+yt6xtDEzHqHOhbkcz3MbKGZLdy+fXsuhiv52ZEj3HHZuTPw2WdA+fIsan3woO89qanAmDGsul2+fPrPn3ACt4/ecw9voF57Lds3+csYFKakMCBcsgQ49dTArkpB9erFXMKBA2MeEAJaKZT4FM5KYUvn3Blmtsw594KZvQaW4BbJFxYsANq25X+8R4/mVs2iRRkYeoPClBSu2PmvFALcQvrbb7wLGtbElQ2JdRwAQ9LqFFxy903/DiS5TAPg7cDJV0QKpJjOkZ4+iPdkdSzI54YAGAIAzZo1C5FpJgXdhAnMm+/WjYHOJ59wvrz/fi7IlS0LfP89F+puDVErt1gx4N13eV/zxRe5HdV/S6g3KKxWDahenc/nzGFgGFZT+rlzuZz5+OORzeHIBa0USjwKp9DMYc/jQTOrBiAVQNXoDUkkfHPmAJdeypW+mTNAKJRYAAAgAElEQVR5p9KrZUsGjCkpwIYNzHnIGBRecAFQpAgT8CPt5InvoxhSkNSqK9tLvPceMGwY9tzzJAAErhSKSEEU6TlyM4Aafq+re46JZNvw4UCNGpwnAT726sV+vOXLcyXvwQc5h7ZvH/o8ZlxtBAILqG3Zwt9XqcI5uFYtBqObN4eRT5iWBtx3HyPKZ57J8d8ZaaVKAddfzwBaJF6EExRONLMKAAYAWARgPXxNekVi5ocf+B/sypUZENaunf73LVv68hoytqPw6taNhc1y0eM2uF9/RcKjD6F2qe1YV6lFul8lJ/NRQaFIoRDpOXIBgPpmVsfMigO4EcCEXI9S4s7GjcCUKUDXrunzAPv25fEXXmBQmJLC2i5Z9SP0pkRkDAq3buVOHW9BtfPO81X/zrLy6LPPMv/jtdfyXe+HsWNZDFUkXmS6fdTMigCY7pxLBvCFmU0CUDJDdTWRPLNnD7eIDh/OVcBTTmFwWK1a4HvPO4+Ps2f7eg9mDAqLFgUaNIjwILdt4y3GypWRWP9EJP2ZPj9ij+ffHm0fFSnYcjtHmtloAK0BVDKzTQCec84NM7P7AUwBK44Od86tjM5fIIXZRx9xh0zXrumPFynCG6rZXQUrV47bKdeuTX9869b0c3DLlsxRBLJYKXzxRVau6d6diY4iElOZBoXOuWNm9g6AJp7XRwAcyYuBiQDsczRpEvvULl/OxPXDh1mP5c03mQsYasWtWjWuHs6ezceSJSNY3XrdOs64deqwr+Cpp/KLhg0DvvySmfgzZ6LuqOKYPzr9R7VSKFI45HaOdM7dFOL4twC+jcggJS4dO8abp23aBN4MzY169YJvH/VP3fDekK1Zk4VqgurXjyW/u3Zl2fB8UFxGJN6FU2hmupl1ATDeuVBtT0UiLy2NvQM3b+bE0rgxcO+9wM03+9pJZKVlS25jSUtj/FYknA3TWdm6lWWzN2wI/N0JJ7BMW48eQKNGSJwD7N7Nn+OP51u0UihSqGiOlHzn5595U/WllyJ73rp1eW5/W7emXxE880wWbgu5Svh//wf06cPKNh98EKGJWURyK5yg8G4AjwBIM7NDYMlt55wrF9WRSdybNYsB4ccfc+7IyY3Eli2BTz/lJNa8eQQGtX8/myDu2MFuvxUqsBTbypXcy9qpk2+vKnx3aP/80xcUaqVQpFDRHCn5zsyZnDM7RLizZd26TOE4coR9DdPS2Lzef6WwWDFgxIj0LaD+NXkyq4zecAPflLHpoYjETJZBoXMuppm/ZpYI4GkA5Z1z14Y6JoXPZ5+xAliXLjnfWdKyJR+3b4/AFpqjR5kruHQpS6udcw6P168fssmh9zvXrQOaNuXz5GTmMka6BYaI5L1Yz5EiwcydywJqkd6RUrcut6auX8/7oNu383XGvP7rrw/y4U2bgNtu47afDz9UQCiSz4TTvN7M7FYze8bzuoaZhbXmYmbDzWybma3IcLydma0xs7Vm1iuzczjnkpxz3bM6JgXHtGkske2tCBrM0aPAF1/wLmepUjn/rsaNgdKl+TxXQaFz3Lv63Xds2HTFFWF9rE4dPvr/rXv2cJVQKRQiBV9u5kiRaHAOmDcPOPfcyJ+7Xj0+evMKt2zhY9WsmrAcPQrcdBNw6BDw+ee6KyqSD4WzkftdAOcBuNnzej+Ad8I8/wgA7fwPmFmC5/PtATQEcJOZNTSzxmY2KcNP5TC/RwqIY8e4c2TTJqB//9DvmzmTdyCD3m3MhqJFfRNjjoNC54CePZn78PTTzBcMU7lywMknsy2GV3Kyto6KFCK5mSNFciVYFuu6dWxYH42gMGNbCm/j+iyDwmeeYR7HkCFcYhSRfCecoPBc59x98DTodc7tBpBFNxtyzs0CsCvD4eYA1npW+1IAjAHQyTm33DnXIcPPtvD/FCkIvviCuy8bNGA6waZNwd/3+edc4cusmW64vFtIswwKnQMGDwY++YSNm7zHHnkEGDiQjznI2m/dmsVuvJP3nj0qMiNSiOR4jhTJjeHDuW0zYzXQefP42KJF4Gdyq3Jlzs3ethTeoLBa6gZgxgyWB/e3cydvpvbvzxuqN98MEcmfwgkKUz2rew4AzOxEAMdy8Z0nA9jo93qT51hQZlbRzN4H0MTMeoc6FuRzPcxsoZkt3L59ey6GK5GSlsYK1Kedxl2YzgEDBgS+z7t1tGPH3G0d9erWDXj4YXaNyNTLL7Ny6G23AbVqscPvww+z90XPnqyYloM9nxdfzET81av5WiuFIoVKpOdIkSxNnswY6++/eRPV39y5DNwaNYr895pxtXDdOgCff46tr7Pn0kkX1Wf/i8qVgdtvB77+Gujdm/2gXn4ZuPFGzqUikm+FU330bQBfAqhsZv0AXAugT1RH5cc5txPAPVkdC/K5IQCGAECzZs1UJjwfGD2agdHnn3PV7rbbgKFDgaeeAqpU8b3vxx9Z3PO66yLzvXXqAK+/nsWbBg/2lci+5Rbgrbe43QUA7rsPeOONHCcBtmnDxxkzmPi/Z08E+yWKSKzFdI6U+LNkCefHxo2ZkvHVV0Avv+oM8+axDlq06rjUqwesmrMH+OZ6bCnzMSqW2Ifib77NZcuvvwbGjwdGjuScef31nFtPPz06gxGRiMlypdA5NwrAEwBeAbAVQGfn3OeZfypTmwHU8Htd3XNMCrHUVOD559m/6JpreKxXL5a1fuON9O+N5NbRsIwbxyIyV17J/Tjt2nEpc/VqRrIDB+aqKkydOlx4/OEHvtZKoUjhEYU5UiSkjRs5VR1/PPDNNwwO583zbeM8fJhBYzTyCb3qJqxH0taSSGt9CbZefDOqNSjLXTZXXQUMG8atMVOncg4dM0YBoUgBkeVKoZm9DWCMcy5SifMLANQ3szpgMHgjfAn6UoAlJwMrVnAlbM8e4OBBoEwZ5s8tXMjtJhMm+PrUNmjAm4jvvAM88QT7vnu3jl51VZSLk+3dyyXJadOY+N6yJXtgFCvme8+pp4ax5zQ8bdrwBuqxY7xOyikUKRyiMEdKHNu+nTtozj4buPzywN/fdRfb5f7yCxfmOnfmppaJE7mddPFi3oSNRj4hAGDJEtSd8CFS8BY2DxyPrd0TAovMFC8OXHZZlAYgItESzvbRXwH0MbNTwC0yY5xzC8M5uZmNBtAaQCUz2wTgOefcMDO7H8AUAAkAhjvnVuZo9JJv/PUXJyHv3cpgmjcPbKT71FO8kdiiBVcH9+1jXnqkto4GSE5mkuHEiYxAjzuOt12HDYtMAmMIF1/MtkyLFgEHDmilUKQQyfEcKeK1YQPw2msscn3oENCqVfCgcPly7rbxLr41asR0jK++YlA4dy6P53ilMC2NS41NmwbukFm7FrjiCtQrexFwBFi3vRy2bGGdABEp+MJpXv8RgI/M7AQAXQD8z8xqOufqh/HZm0Ic/xbAt9kdrORPe/cyrjp4kKt8J5/MlbBSpXhH07ty2KRJ4BzTuDHw7LPAnDmMz0qWZOB45ZVRGOjGjewvuGYN8NBD3J/asiW/NMouvpiPX33FRwWFIoVDbuZIEYCbVtq2ZfG1225j7BXsBmtaGndm+q/MmXG1cNAg3lSdNw+oWTOMFhGh9OrFomrXXsslS+9k9f333NpTpAjqjnoBaAf88QcL3WRsXC8iBVM4K4Ve9QCcCqAWgNXRGY4UNKmpXNX77Tem4V16afbP8cILkR9XgOXLGQTu28eBXnJJHnypT/XqQP36wJdf8rW2j4oUOpojJdtSU1nLrEYNBoc1arDY9YcfBr53xw4GhhkDvk6dWExt8mSuFOZ4lXD2bC5XnnMO72AuXMitPHPmAI8+ykppX3+NGrUSUawYMH8+N9zkOAAVkXwly0IzZvaqmf0B4EUAKwA0c851jPrIJN9zjpPZ1KnA++/nLCDME9OmARdcwOc//ZTnAaFXmzbAqlV8rpVCkcJBc6Tkxvvvc154/XUGhABX3vbt404bf//2BMywMteyJVCpEtPjN2zIYVB46BBwxx1cZpw+nXOlc8B557E101VXMWhMTERCAjtN/PQTP6qgUKRwCKdP4ToA5znn2jnnPnTOJUd7UJL/OcfiMEOHshVR9+6xHlEQzrEvUrt2LP85Zw5wxhkxG453CymglUKRQkRzpOTIjh1Mn7j0UsZcXt4gK+MWUu/rjEFY0aJMu/j+e77OUZGZPn2A339nfn3ZsjzJ4sXMwe/Xj7khZcv++/Z69fj2YOMRkYIpnJYUgwGkmVlzM7vI+5MHY5N86uhR4M47mXZw333s8R5TKSnASy8x8/7OO7ntZedORqoPP8y9NbNn+27Dxkjr1r7nWikUKRw0R0pW0tKAd9/lit7bb7MVE8Cqofv2sS2uf759doNCgNMcwACxadNsDvCXX9gb6t570++kOf54Vr556ilf2XCPunV9z5VTKFI4hNOS4k4APcF+gksAtAAwB0Cb6A5N8qMjR4Cbb2Zv2mefZe/BXLTwy725cxkIrlzJO5uff847nV7PPgs891zAhBYLVaqwUtzKlVopFCksNEdKZhYvZgu/+fO5M7NnT25guftubve8/36m6vnzBllbtqQ/nllQ2LYti7U1bJjNdk47d7K6Ta1awKuvhv0x/6BQK4UihUM4/0+5J4BzAGxwzl0MoAkAbY+JE8uXc5tI9er8qVaNAeEbb7BATMwCwrQ04PHHeet1zx62mJgzh/txfviBdzYnTuQg80FA6OXdQqqVQpFCQ3OkBPX660CzZsD69cCoUXycMoU3BXv14kLc888Hfi6zlcIKFYIXzC5VChgwgOkcYUtJYZXRLVtYUKZMmbA/6g0KQ41HRAqecKqPHnbOHTYzmFkJ59xvnn5MEgeGDgU2bQJuvdV37Morgauvjt2YkJIC3H47MHYsb7cOGODLdShWjJGXfwJfPvLII+wpdfzxsR6JiESI5kgJkJzMNL22bYFPP/X9N79tW+YQfvklb7IGmwuOPx4oUSJ4UJjZqtx992VjgM4BDzzAkqeffJLt6jT16vFRW0dFCo9wgsJNZlYBwFcAppnZbgAbojssyQ+OHgU++4xB4AcfxHo0HgcO8M7m5Mnc6vL447EeUbbUqcM0RxEpNDRHSoBPPmFBz759AwO/IkWALl1Cf9aMwV+w7aMR26o5aBD3r/buDdxyS7Y/XqeOb5wiUjiE07zeuyb0vJnNAFAewOSojkryhR9/ZKPcm26K9UjACHXBAuCxx5hH+MEH+bTkqYjEE82RkpFzwODBwNln8ycnqlYNvlJ4/vm5HNyRI8z/ePppVqfJYaW4kiXZe9e7YigiBV92mtfDOTczWgOR/MebYnDllTEcxMSJwPDhwIwZzB0sUYLFZK65JoaDEhEJpDlSABa7XrGC6Rc5VbUqsHq177VzuVwpdA6YMIFN6NetAzp3BkaOzFXO/fffp+tSISIFXP6pwCExM24c2/ctW+Y7duQI2xJ17pzNSmaRNGUKB7BwIbeMjhnDBEcFhCIikg88+yyri6al+Y4NHsxg6cYbc37eatXSbx9NTua8HHZQOHw4E9hr1OBez9q1OZ8WLw5MncqkxmwUlgmmRg0VTRMpTLK1UiiFz9ChrNXiHGu3zJ/vmzOSk2O4dXTtWs6ojRuzh1Lp0jEaiIiISHBjx7KJe0IC0/R272YufrduuYu5qlbl5phDh3hjNrN2FOkcPsw+F8OGAeedB5x6KiPWo0dZrbtHDxZkExHJQEFhHNmwAahYkROVc8D//scc8yuuYEB4443sAf/SS8Do0cAJJ7BKWp7bt4+5DgkJbESvgFBERPKZtDS2mTjpJDanr1yZ7SaOHOHN1tzwb0uRmBhmUPjnn9xVs2gRcwZfeIHzqIhIGBQUxokZM4A2nlbKlStzElu2jI3oR4zgjcPJk4FXXgEuuQT4+mu2oShePI8HeuwYG+muWcPlytq183gAIiIiWduyhR2SnnuOu2yefx4oVw5o0QI488zcndu/gX2WQWFqKjBwIAeSkMDcwY4dczcAEYk7yimMExMmsEbLyy8DV10FVKoEPPMM88y9O0nefJMT0ZVXAgcPRnHr6JEjwLRp6ZMwAL6+915GpK+95otiRURE8pmkJD7WrcvuDlddBezdm/tVQiCwgb03vzAgKPz5Z5Y4ffRRoFUrYMkSBYQikiNaKYwT06YBF17I7aKhlC/P3PTLLmNweOGFURrM/fezpUSrVmzmVL068x26dgVGjQJ69QIefDBKXy4iIhLali2cjg4c8B27/nqgZ8/07/MGhYmJQNGirIU2dSrQoUPux+BdKfQGhVu3MpPi32qfznFrz9NPAzVrMtXiqqvYPFBEJAe0UhgHNm8GVq4E2rbN+r2XXgq89Rbwf/8XpVSEceMYEF5xBauKnnEGs/Kvu44B4csvc6LTxCYiIjEwYABTLkqV4s/69cA77wS+LymJHR1q1uTr447zpcPnVsWK3MXjXSH0tqMwA3fVPPAAA8KbbwZWreIXa94UkVzQSmEc+P57PoYTFAJRXKTbuBG46y7gnHN4V3P9eu5RveEG/v7ttznRiYiIxMDOndwKesstzLcHmKrXty8Le5Ys6XtvUhIDwmgU8zRj7r//SmHVquAgbruNN1gfe4wV43LRa1BExEtBYRyYOpXFZRo3juEg0tJYueboUeDTTzmL1q/PLr8DBvD59dfHcIAiIhLvBg5kTv0TT/iONWzIGmi//87NLV5JSdw6Gi3VqqUPCps0PAJcfjkwaxbz7h95JHpfLiJxR0FhIXfsGFcKL7sshjcT//oLePVVTmQffQTUq+f7XfHi3AIjIiISQ/v3Myjs1ImBoJf3+cqVgUFhp07RG0/VqsAff/D51s1puOKfT4Ej83hjNWZNhEWksFJQWMgtWwZs28agME9t3w689x63iS5ezGPdunHbi4iISD7zwQfArl2sdeavQQPmCa5a5Tu2fz/n1miuFFatynup+7+Ygv0HL0fVMpuBmTOBc8+N3peKSNzSRvQCZsECTkJr1oT3/mnT+JhnQWFqKntb1K/Ppk2lSnGVcM0aYNgwJcKLiEie++cfYNAgTk+bNwf+PiWFOzJbtWKfQX8lSnCDi39Q+OeffIzq9tGqx7BrF7D+uscBAFVfvFcBoYhEjVYKC5DUVODOOzkZjRsX3q7LadOARo185a2jauZM9hlcvZpVbd58EzjttDz4YhERkUDjxvF+pH9r3EceAS6+mGnsJ57IYwsXAps2AUOHBj9Pw4bpg0L/dhRRsWMHqo4dCeBhLD73HmAuUPX0ilH6MhERBYUFyltvcTto+fLA5MlZB4WHDnHryX//mweD+/prtpWoWROYMIGNmrQqKCIiMTJ7tm9aeuIJVhQtVowpeaNGAffck/79TZuyjkswDRtyaktJYSp8xIPC7du5nLljByt1P/UUqv7dFMDDWHTuvQwKMzauFxGJIAWFBcSGDSyL3bEjq4j+739AcjJQoULoz/z8M3DkSPitKHLsyy95y7VZM0ar5ctH+QtFREQy99NPfPz1V6BSJd/x55/nfPrHH+zw4FW7duh7mQ0bcqXx99+B009nUFi+PHD88Tkc3LFjwPz5jDQnTGAVG3+Jiaj2cX/gZuDXRRyUgkIRiSYFhfnQsWMM6Bo1YgNb54D77+dkNWgQi3m+/DIwfTrQpUvo80ydyjuaF10UxcGOH88+g+ecw4CwXLkofpmIiEh45s0D6tZNHxB6mbGATLgaNeLjqlW+oDAxMQcbYpxjEPj444xKExI4Sd9+O6PSSpW4p7VBA1RNLgGAtdqKFwdOOCGb3yUikg0KCvOh3r1Zm8UMOPtsTkCTJgH/93/cBlOtmm8LaaigcMcOYORIJs2XKhWFQaamAq+/DvTpAzRvDnz3nQJCERHJN+bNA1q3jsy5GjRgWydvXmFSki9QDNvixUxo/PFH4NRTOUlfeWXI5cYTT2TMuH8/535lZIhINKn6aD4zZAgDwv/8B3jhBVY9GzmSuQ49e/I9RYsCl17KoNC5wHM4B/ToAezezUAy4hYtYiDYqxebNCkgFBGRfGTTJmDLlsgV6zzuOK4MrlrF3Tx//pmNfMJjxzihn302sGIF8M47LBBw662Z7j8tUgQ46SQ+19ZREYk2rRTmI5MnsyhM+/bsl1S0KPDMM8DevXxe1O9/rXbtgC++4ASV8W7liBFM8xswIH2j3Wzbvx9Yvpxf8s8/bMq0aRN7D1auzK2jV1+diy8QERGJvHnz+BjJDg4NGzL1b+tW5uuHFRQmJ7M/76RJfHz77cyLAWRQtSpbaORJBXERiWsKCvOJZctYq+X004GxY9MHgMEW4bwV0iZPTh8UJiUBDz7IctuPPJKDgaSmAs8+y4Dvjz/SL0WWLctgsEcPJjVmY2ITEZHIM7NEAE8DKO+cu9Zz7DQAPQFUAjDdOfdeDIcYdXv2BNY3mzePeXhnnRW572nYEPj2W1+f4CyDwhUrgM6dWSlu0CDe9c3mHlBvMKiVQhGJNm0fzQecY4552bK8mVi2bNafqVGDweDkyb5jR4/yRmRCAvDRR9x6ki27d3OZsn9/Zuc/9xxXBdetAw4e5JLl2rXAu+8qIBQRySUzG25m28xsRYbj7cxsjZmtNbNemZ3DOZfknOue4dhq59w9AK4HcH7kR55/jBnDgmzffJP++Lx5DAhLlIjcdzVqxHl26lS+zjQo3LOHW3oOHGAO4X335Sgp0BsMKigUkWjTSmE+MHkysHQpt31Wrx7+59q1AwYO5Jxz8CBw443syzRqFIPGbFmzhv0u1q8HPvwQ6No1mycQEZFsGgFgEICPvQfMLAHAOwAuA7AJwAIzmwAgAcArGT7fzTm3LdiJzewqAPcCGBn5YecPq1cDd97JVhHvvMOaLQADt4ULge7dM/98djVsyMdJk3jTtWZNMHHRLDBqe/JJ7jOdO5fVuXNIQaGI5BWtFOYD/fsziLvppux9rn17NtJ9/XW2CJw9m4HlzTdncwDjxwMtWjD3YcYMBYQiInnAOTcLwK4Mh5sDWOtZAUwBMAZAJ+fccudchww/QQNCz7knOOfaA7glen9B7Ozfz+rbpUoB3boBU6Yw5R1g3t/Bg5HNJwRYMNSM569RAyi+YhEbB59xBrBkie+NM2cCgwcDDz2Uq4AQ0PZREck7CgpjbPZsYNYs4NFHmf+QHRdcwAnx2Wf5+uefWbU0bHv3MgDs0gWoV4+NdM8v1DuNRETyu5MBbPR7vclzLCgzq2hm7wNoYma9Pcdam9nbZjYYwLchPtfDzBaa2cLt27dHcPjR562wvWYNMHo08NRTLPD5sWe9NRpFZgDOt7Vr83lipb3AJZcAZcqwNGmbNlyePHQIuOsu7i198cVcf2fjxqwxcOqpuT6ViEimtH00xvr3Zz7EnXdm/7MlSgB3383iMkOHsqdRWFJT2UbiwQeBjRtZ4vSZZ4BixbI/CBERiRnn3E4A92Q49iOAH7P43BAAQwCgWbNmQZobhW/oUNYle/XV3JwlPEePAv36MRjs25dxGcB+hMOHs8/vvHmcV+vWjfz3N2zoaUex7Cug+vHADz/wF23acDBt2/JifP89ULp0rr/Pu4knAqcSEcmUVgpjaMUKYOJExmY5/Q/+66+zFkxYAeGUKcAddwBVqrC/YNGiXF588UUFhCIi+cNmAP5Z4dU9x/KtFStYXPPQoeh+z4wZQJMmwPPPA9ddxwDQq1s31kSbNYtBYfPm0Wn23qjS3wCAxLLbuU20dm3+zJzJuXXcOA7GG61GgAJCEckLCgpj6NVX+R/7++7Lgy8bO5aVab78EujQAfj6ayZGnHdeHny5iIiEaQGA+mZWx8yKA7gRwIQYjylT7doxIJw1K/P3paVxd8y2IJmQhw/zd7t3B/4uNZW58m3aAPv2sUfv2LHpK2x36cLK3W+9xda6kd46CgDYtg0NJ3I5NLHvHekrutWowcDw+eeB116LwpeLiESXgsIY2bwZ+PRT5kVUrBjlL3OO+20aNmQT+o8/Bq66KrK1ukVEJFvMbDSAOQBOMbNNZtbdOXcUwP0ApgBYDeAz59zKWI4zK61bAyVLpm+RFMzs2VzdC3Yj9JVX+LvPPgv83cyZ3C76yCOsOHrNNYGrgKVKsVjbl19yyot4UJiaClx3HS4+MAlnNTiI8zucEPieqlXZykktm0SkAFJQGCM//8y7prfdlgdf9t13wPLlLJGtQFBEJF9wzt3knKvqnCvmnKvunBvmOf6tc66Bc66uc65frMeZleOOA1q14lSTmcWL+ThuHLMZvP74g6uE/u8J9rmnnuJ3hdKtm+958+ZZjzukffuAl19m88ODB3ns4YeBWbNQc9hzWLymVPbbPomI5HMqNBMjS5cypc/b9yiqctrzQkREJAzt27MDw59/AnXqBH/PokVA5cpcSLv/ft6rLFGCz0uWZIXNRYuCf65mzax31TRvzjk1LQ04IchCXli8pU3HjOHrEiWAs8/mMuejjwK3FMoOHyIi+X+l0MwSzWyYmY3zO3aamb1vZuPM7N5Yji8ze/bwzuU//wT+btky4LTT8mDh7pdfgJ9+Ah57TMVkREQkKtq142NmW0gXLWJP3UGDgLVrmVf/xRfA1KmsJHrZZZwbU1PTf27xYhaYyYqZL98wx957jwHhCy9wYPfeC+zcCXTu7FvOFBEphKIaFJrZcDPbZmYrMhxvZ2ZrzGytmfXK7ByeBr7dMxxb7Zy7B8D1APJtY71x44APP2SOQ0ZLl7LfbdR5e1507571e0VERHKgQQOuEIYKCg8fZgGYJk0Y/N1wA3doPvAAj917Lx+PHAF++833uf37gd9/B5o2DW8cp54KnHlmDv+IhQu5TbR9e6BPHw70jTc4oC+/5PYeEZFCKtorhSMAtPM/YGYJAN4B0B5AQwA3mVlDM2tsZpMy/FQOdWIzuwrANwjRmDc/mDSJj3Pnpj++axewaVMuJq5Qli3j3pmuXVlddMECDiI3PS9ERB0j3GUAABZESURBVESyYMbVwunTGdhltHw5t3V6g7vXXweKF+dOmvfeY7zl/Z1/XuHSpdzRGc5KYa7s3s0+F1WqACNHpi9tKiISB6L6Xz3n3CwAuzIcbg5grWcFMAXAGACdnHPLnXMdMvwEKVz977knOOfaA8iXG/wPHwamTePzefPS/27ZMj7maKVwzx5gwAB2s/XnHEuzbdzIgLBzZyZYlC7NhA0REZEoat8eOHCAWQsZeQM9b3BXrRq3eQ4Z4qsU2qABq4j65xV6n4e7Upgjs2cDl1/Ou7Vjx+ZBSXARkfwnFnshTgaw0e/1JgAhi0ebWUUA/QA0MbPezrlXzKw1gGsAlECIlUIz6wGgBwDUrFkzVwPetQuYkKFLVLNmwOmnh/7MzJmcHFu25HyTnOyrUu0NCnO0Uvjgg2wpsWQJMGqU7/iUKbxF++abwH//C/z4I4PDZs1ykXEvIiISnosv5urfd9+xp6C/RYs4B9au7TvWvn369yQkcF70XylcvBg48UQGkRG3ejVLmn71FVcIR41S714RiVv5foO8c24ngHsyHPsRwI9ZfG4IgCEA0KxZM5ebMfz1F3DHHemPNWzI3u+hfPMNS2f37g107AjMnw+0bcvfLV3KSa5KlWwOZMIEBoSNGrHJYadOwPXXc0/OE08AiYlMzChWjLkQl12WzS8QERHJmTJlgAsvZF7hgAHpf+ctFpOxv2BGTZpw9+axY9zBuWgRVwmz+lxYUlLYD2rqVP4sXsyO9337snSq0ixEJI7FYtP8ZgD+HX6qe47lWw0bssy29+ehh5h37m1flJFzTOW75BLgoos4mflvIV22jHdDszXJ7doF3H03Pzh/PreG3nsvsGULZ9Dly9n9t3jxXP2tIiIiOdW+PbBiBXdieh09ynkvnLzApk3ZJjApibmJK1dGIJ9w1y6gXz/2tbjkEuC114By5VjpZt064OmnFRCKSNyLRVC4AEB9M6tjZsUB3AhgQhafianixbnlxftzwQW8ixlqpXD1agaPHTpw3jntNF+xmaNHOWFmO5/wwQeBHTuAESOYdDFyJHDoEIvK9OkDnHMOk+RFRERi5Ior+PjZZ75jv/3GPPtw8gK9AeCiRZwrjx7NRT5hSgrbMdWsyXnyrLO4VXTXLqZY9O7NbTsiIhL1lhSjAcwBcIqZbTKz7s65owDuBzAFwGoAnznnMtmImf94cwG9uYEZeauOXnklH1u04Eqhc+zNdPhwNvIJnWMAOGoU8MwznNQAZuQPGMBqNps383lE9teIiIjkzGmncQvp228zoAN8xWLCWfFr1IgZEIsXBxanybZ33+WqYOfOzNuYPJlpF2XL5vCEIiKFV1RzCp1zN4U4/i3ycSuJrCQmcqfJ0qXBfz9pEmO36tX5+txzgeHDuUvF+5ksVwr37WMg+N57jD6bNeNdTX/33gvMmcPkxVatcvU3iYiIRMKjjzIOGz+eae+LF3OaOuWUrD9bogSLuC1axGLb5cpxzs22/fuZUnHJJcAnn+TgBCIi8UWNeHKgSBGgcePgK4W7drEcd4cOvmPectvz5vEzRYvybmpI334L1KjBoC8hARg6lOVMixULHMgnn/D3IiIi+UDHjkD9+lykc44B3plncjoLR5MmDCQXLeIN1hy1DBw0CNi2DXjppRx8WEQk/igozKEzzvA11fU3eTLzDb1bRwFuhyldmnmFS5cCp57Ku6FBjR3L7S2JiVwF/PVX4M47mUcoIiKSzxUpAjz8MGui/fwzOyhlJy+waVNg+3Zg4cIc5hPu2QO8+ionYrWYEBEJi4LCHDrzTPYe9K+wBnDr6Iknsu6LV9Gi3P3pXSkMmU/4wQfATTdxEpsxg8mIyhMUEZEC5j//YQ/4Bx8E9u7NXl6g971paWF8bv16Lk2OGuW7S/vGG8Du3cCLL+Zk6CIicUlBYQ55cwL98wqPHuVKYfv2gdtkzj2XW2E2bgyRT/j++8BddwGXX86TlC8ftbGLiIhEU6lSzIBYsoSvs7Pi59+yKdPPHTjAnTWTJgG33src+hkzgNdfB7p0yUXZUhGR+KOgMIcaN+ajf17hnDm8OdmxY+D7W7TgXU8gyErh338zM//yy4Gvv9ZWURERKfDuu48tnYoWZRpFuEqXZlGakiWZbhGUc8Add7BvxTffMLd+1SqgTRsWmXnhhYj8DSIi8SKq1UcLs/Ll2bPQf6Vw0iROfm3bBr7fW2wGCLJS+NJL7Kc0aJCaz4uISKFw0kncPrp2bSZ59CFcfTX7/RYN9f9S+vcHPv8c+N//fM0Rr7kG6NuX+1azE4WKiIiCwtw488z0K4WTJnH3Srlyge+tVo0tKo4c4UT5r7VrgSFDuHW0Xr2oj1lERCSvDBiQs8+9/HKGA7/+yihxzx7gr794M/Wmm4DHH/e954QTuHVURESyTUFhLpxxBjBxInDoEHeArlrF2C6U7t3ZfjBd7Zg+fbg6+OyzUR+viIhIgTN2LHDjjemPtWzJ4mwqxiYiEhEKCnPhzDPZfmLlSrabANK3osCxY1wJrFsXSEjA889nOMGvv3Kye/rpDMuHIiIigl27uAe1WTNg+HBuxSlfnj8KCEVEIkaFZnLBmxu4bBm3jjZowIa92LwZ6NeP20FPOYU9B/v143Ki16FDQO/ezH3w3/4iIiIi9MQTwM6dLCTTuDFQqxZQoYICQhGRCFNQmAt167JQ6C+/sAp2hw5g8FezJreF1qnDfkn16/N1jRqMHCtU4AenTQOeekrtJ0REJD6lpXG7zccfM43C28MCAH78ERg2jNW5zzorZkMUEYkH2j6aC0WK8MblqFEsHtqh1T7gxn4sPzpwoK9wzEMPAb//zjudGzZwq2jVqowqu3SJ7R8hIiKSV1JSgPnzeSf1hx/4/OBB3+9feonzYu/eQI8e3Gnz3HOxG6+ISJxQUJhLZ54JzJvHNIcL1gzjttBXXgmsJNqgQc7LsImIiBR0f/0FnHMOsG0bt3+eeSYrsDVrBpx9Nm+YvvUW8OabwBdf8DPTpql3r4hIHlBQmEvevMJ2lzsUGzwIOP98bXMRERHJ6M03WTjms8+ASy5hC4mMXnwR6NmTqRdlygCXXpr34xQRiUMKCnPp7LP5eFXtZcDn69g4V0RERHz27mULieuvB667LvP3VqyouVREJI+p0Ey45s4FnAs4fO65TI24aWUfoEoV4JprYjA4ERGRfGzYMDbqffjhWI9ERESCUFAYjpkzgfPOA/r3D/iVGdC6ZhKKfPcNcPfdbEQvIiIidPQocwUvuoj5gyIiku8oKAzHRRcBN9/M9hFjxgT+/r33WIq0R4+8H5uIiEgs/fgjm/UePRr89199xcrbWiUUEcm3FBSGwwwYPhy48EKga1c2JvRauZLbYq65Bjj55JgNUUREJCbefBPo2JFz4COPAEuXpk+3eP11tmDq2DF2YxQRkUwpKAxXiRLAl1+yMX2nTlwdvOgi4PTT2Ybi8cdjPUIREZG899lnXA08/3xg0CBW4K5bF/jvf1lFdM4c9utNSIj1SEVEJARVH82OihWBb78FWrTgZFe3LnsPdu0KVKoU69GJiIjkveLFebO0Uydg505g3DjOlR9/DBw4AFSowHlSRETyLQWF2VWvHvDzz8DWrUCrVswlFBEREd48vftu/qSkMN2ifHn2HBQRkXxLQWFOnHoqf0RERCS44sWBiy+O9ShERCQMWuYSERERERGJYwoKRURERERE4piCQhERERERkTimoFBERERERCSOKSgUERERERGJYwoKRURERERE4piCQhERERERkTimoFBERERERCSOKSgUERERERGJYwoKRURERERE4pg552I9hqgzs+0ANsR6HBFUCcCOWA8in9E1CaRrEpyuS6DCdk1qOedOjPUgCgrNkXFB1ySQrkkgXZNAhe2ahJwf4yIoLGzMbKFzrlmsx5Gf6JoE0jUJTtclkK6JFCb65zmQrkkgXZNAuiaB4umaaPuoiIiIiIhIHFNQKCIiIiIiEscUFBZMQ2I9gHxI1ySQrklwui6BdE2kMNE/z4F0TQLpmgTSNQkUN9dEOYUiIiIiIiJxTCuFIiIiIiIicUxBoYiIiIiISBxTUCgiIiIiIhLHFBQWEmaWaGbDzGxchuOlzWyhmXWI1dhiJdg1MbPOZjbUzMaaWdtYji8WQlyT0mb2kee63BLL8cWSmdU0s6/MbLiZ9Yr1ePIDMytiZv3MbKCZ/SfW4xHJCc2PgTQ/BtL8mDnNkYEK2xypoDAf8PwLts3MVmQ43s7M1pjZ2qz+BXTOJTnnugf51ZMAPovkePNCtK6Jc+4r59xdAO4BcEPkRx49Ufzn5BoA4zzX5aoIDztPROLaAGgMXoduAJpEbbB5JELXpBOA6gBSAWyK1lhFQtH8GEjzYyDNj5nTHBlIc2SgorEegAAARgAYBOBj7wEzSwDwDoDLwH/QFpjZBAAJAF7J8PluzrltGU9qZpcBWAWgZHSGHVUjEIVr4qeP51wFyQhE55pUB7Dc8zwtwmPOKyOQy2sDYC6AcWbWDcDIPBhztI1A7q/JKQBmO+cGe+6eT8+DcYv4GwHNjxmNgObHjEZA82NmRkBzZEYjoDkyHQWF+YBzbpaZ1c5wuDmAtc65JAAwszEAOjnnXgEQ7laX1gBKA2gI4JCZfeucOxaRQUdZtK6JmRmA/gC+c84tityIoy+K/5xsAie+JSiguwcicW3M7DEAz3nONQ7Ah9EddXRF6JpsApDieVmQ/w+RFFCaHwNpfgyk+TFzmiMDaY4MVGD/AY8DJwPY6Pd6k+dYUGZW0czeB9DEzHoDgHPuaefcQwA+BTC0oEx4mcj1NQHwAIBLAVxrZvdEbaR5JxLXZDyALmb2HoCJURtp3svWtQEwGcCDnuuzPorjiqXsXpPxAC43s4EAZkVzYCLZoPkxkObHQJofM6c5MlBcz5FaKSwknHM7wTyAYL8bkbejyR+CXRPn3NsA3o7NiGIvxDU5AOCO2Iwo/3DOrQBwbazHkZ845w4CCJaLJVJgaH4MpPkxkObHzGmODFTY5kitFOZfmwHU8Htd3XMsnumaBNI1CU3XJpCuiRQG+uc4kK5JIF2TzOn6BIrra6KgMP9aAKC+mdUxs+IAbgQwIcZjijVdk0C6JqHp2gTSNZHCQP8cB9I1CaRrkjldn0BxfU0UFOYDZjYawBwAp5jZJjPr7pw7CuB+AFMArAbwmXNuZSzHmZd0TQLpmoSmaxNI10QKA/1zHEjXJJCuSeZ0fQLpmgQy51ysxyAiIiIiIiIxopVCERERERGROKagUEREREREJI4pKBQREREREYljCgpFRERERETimIJCERERERGROKagUEREREREJI4pKBTJBTPbH4FzdDWzQVm8p7aZ3ZzN81Yws/+G8b7aZrYiO+cWERHJKTP70cyaZfGeh8yslN/rb82sQgS++6kw35fr+V2kIFFQKFIw1AaQraAQQAUAWQaF2WVmRSN9ThERKTyMcvv/MR8C8G9Q6Jy7wjmXnMtzAkBYQWF2ROjvFYkp/QMsEgYz+8rMfjWzlWbWI8Pv3vAcn25mJ3qOPWhmq8xsmZmN8Rw7wXOeZWY218zOCPI9I8zsWr/X3juV/QFcaGZLzOxhM0swswFmtsBzvruDDLs/gLqezwzwTFoDzGyFmS03sxuCfH/Q85pZazP7ycwmAFiV2TUxs/1m1s/Mlnr+ziqe41XM7EvP8aVm1tJz/FYzm+8Z52AzS8jG/zQiIpIPeHadrDGzjwGsAFDDzNqa2RwzW2Rmn5tZmSCfe8/MFnrmkhc8xx4EUA3ADDOb4Tm23swqmVl/M7vP7/PPm9ljnueP+81fLwT5rv4AjvPMN6M8xx7xzIsrzOyhEH9bwHlD/L0Bf4vf2F/wXIflZnaq53gZM/vQc2yZmXXxHM/yuolEnHNOP/rRTxY/AE7wPB4H/se/oue1A3CL5/mzAAZ5nm8BUMLzvILncSCA5zzP2wBY4nne1e9zIwBc6/e9+z2PrQFM8jveA0Afz/MSABYCqJNhzLUBrPB73QXANAAJAKoA+AtAVf/3hTqv5/sP+H9HFteko+f5q37nGwvgIc/zBADlAZwGYCKAYp7j7wK4Pdb/e+tHP/rRj36y9+OZS44BaOF5XQnALAClPa+fBPCs5/mPAJp5nnvnkgTP8TM8r9cDqOR3/vWeczYBMNPv+CoANQC0BTAEgIGLHpMAXBRknPv9np8NYDmA0gDKAFgJoIn/+0KdN+PfG8bf8oDn+X8BfOB5/j8Ab/p9/vjMrpt+9BPNH20DEwnPg2Z2ted5DQD1AewEJ4SxnuOfABjveb4MwCgz+wrAV55jF4CBGZxzP5hZRTMrl8PxtAVwht+qYnnPmP7M5DMXABjtnEsD8I+ZzQRwjmesWZ03BcB855z/+UNdkxRw0gSAXwFc5nneBsDtAOAZwx4zuw2clBeYGcAAc1tYV0BERPKbDc65uZ7nLQA0BPCL57/vxQHMCfKZ6z27TYqCNyobIv28lI5zbrGZVTazagBOBLDbObfRzHqCc9hiz1vLgPPSrEzGewGAL51zBwDAzMYDuNDvHPCcM9h5/8rw92b1t3j//8GvAK7xPL8UwI1+f9tuM+uA8K6bSEQpKBTJgpm1Bv/DfZ5z7qCZ/QigZIi3O8/jleCdxI4AnjazxmF+3VF4tnUb8xOKhxoWeNdxSpjnDVfQ83quwYEMr0Ndk1TnnPc6pCHz/84YgI+cc70jMnoREYmlA37PDcA059xNod5sZnUAPAbgHE9ANAKh51d/nwO4FsBJ8N2YNQCvOOcG52TgmQh6XjOrjfTzYlZ/yxHPYzjzYqbXTSQalFMokrXy4J3Ig548gBZ+vysCTkwAC8H87AnmajjnZoDbPsqDdxZ/AnAL8G9QtcM5tzfDd60HV84A4CoAxTzP9wEo6/e+KQDuNbNinvM1MLPSGc6V8TM/AbjBkzd4Ihi0zs/wmXDOm9U1CWU6gHs9500ws/KeY9eaWWXP8RPMrFYY5xIRkfxtLoDzzaweAJhZaTNrkOE95cDAao8n/7y93+8yzmH+xoIrbNeCASLA+aubN//OzE72zi0ZpHrnOHBe7GxmpTxz3dWeY/7CPW9mf0so0wD450cej/Cum0jEaaVQJGuTAdxjZqsBrAH/g+11AEBzM+sDbnu8Acwl+MQT9BiAt51zyWb2PIDhZrYMwEEA/wnyXUMBfG1mSz3f670LuQxAmuf4CABvgfkMi4z7S7YD6Ox/IufcTjP7xdhu4jsATwA4D8BScEXzCefc3567nV4fZHXeMK5JKD0BDDGz7uCd0nudc3M8126qJ5hOBSfIDWGcT0RE8inn3HYz6wpgtJmV8BzuA+B3v/csNbPFAH4DsBHAL36nGAJgspltcc5dnOHcK82sLIDNzrmtnmNTzew0AHM82y73A7gVgSkJQwAsM7NFzrlbPCt63hukHzjn/LeOZnbetAzvy+xvCaUvgHc883QagBecc+Ozum4i0WC+XV4iIiIiIiISb7R9VEREREREJI4pKBQREREREYljCgpFRERERETimIJCERERERGROKagUEREREREJI4pKBQREREREYljCgpFRERERETimIJCERERERGROPb/sgGC2r5BuxAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAFBCAYAAADANgorAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd3SU1dYG8OcQSqRLiUoTkCYdBDtKVVARRb2KIAp6rVhB4H6KDXvFrohUGygqiFSpUoTQpDepCSABQm8JOd8fT16mZGYyCVNSnt9aWcO8887MifcuDvucs/c21lqIiIiIiIhI/lQg2gMQERERERGR6FFQKCIiIiIiko8pKBQREREREcnHFBSKiIiIiIjkYwoKRURERERE8jEFhSIiIiIiIvlYwWgPIBLKlStnq1atGu1hiIhIBCxZsmSvtbZ8tMeRW2iOFBHJHwLNj/kiKKxatSoWL14c7WGIiEgEGGO2RXsMuYnmSBGR/CHQ/KjjoyIiIiIiIvmYgkIREREREZF8TEGhiIiIiIhIPpYvcgp9SUlJQUJCAk6cOBHtoWRZbGwsKlWqhEKFCkV7KCIikgdpjhQRyV/ybVCYkJCAEiVKoGrVqjDGRHs4QbPWYt++fUhISEC1atWiPRwREcmDNEeKiOQv+fb46IkTJ1C2bNlcNdkBgDEGZcuWzZWrtyIikjtojhQRyV/ybVAIINdNdo7cOm4REck9cutck1vHLSISTfk6KBQREREREcnvFBSKiIiIiIjkYwoKoyg+Ph4NGzbEiRMncPToUdSrVw+rVq2K9rBERELmwAHg6NFoj0JyG82PIpJX/PtvtEcQnHxbfTQnaN68OW6++WY8//zzOH78OLp164b69etHe1giIiFzww3AwYPAvHlA6dLRHo3kFpofRSQvWLECaNQImDMHaNEi2qMJTEEhADz1FLB8eWg/s3FjYNCgTG974YUX0Lx5c8TGxuKjjz4K7RhERKLo+HFg0SLg9GngjjuAiRMBf63jDh0Cpk0DOnYECheO7DglE1GaIzU/ikhut3EjH3/7LecHhTo+GmX79u3DkSNHcPjwYZXQFpE8ZdkyV0D4xx/Ao48C1vq+d8wY4Pbb+R4RQPOjiOR+SUl8nDYtuuMIhnYKgaB29MLloYcewsCBA7Flyxb069cPn3zySdTGIiKSVdYCzzwDVKoE9O7t+Vp8PB8/+ACoWRN4/XU+9u2b8XOGDgUuvhi49NLwj1myKEpzpOZHEcntnKBw+XJgzx4gLi664wlEO4VRNHLkSBQqVAh33303+vfvj/j4eMyYMSPawxIRCdqwYYwZBg3KuAsYHw9ccAFQsSIwcCBw551Av37AwoWe961bByxYAPToAajF3NkxxrQ0xvxpjPnCGNMy2uPJLs2PIpIXOEEhAEyfHr1xBENBYRR1794dY8eOBQDExMRg4cKFaN26dZRHJSISnPXrgccfB0qWBBISXLkTjvh4185fgQLAkCFA2bLAyy973jd8OBATA9xzT0SGnWMZY4YaY/YYY1Z5XW9vjFlvjNlkjOmfycdYAEcAxAJICNdYw03zo4jkBXv3AlWrAueeyzSKnExBoYiIZNmpU8DddwOxscD48bzmvpFz4ACwYQPQvLnrWvHiQJ8+wKRJLEADAKmpwIgRrFJ6/vmRG38ONRxAe/cLxpgYAJ8C6ACgLoAuxpi6xpgGxpgJXj9xAP601nYA0A+AV/gtIiKRlJTEua11a+YV+surzwkUFIqISJY99xywdCnw9dfANdcAlSt7Ho1ZvJiP7kEhADz2GFCmjGu3cMoUYPduHh3N76y1cwDs97p8KYBN1trN1tpTAH4A0Mlau9Jae5PXzx5rbVr6+5IBFIng8EVExEtSElC+PNC2LbBjBxdL/fn7b7awiBYFhSIikiV//w28+y7w8MPALbcwD7BNG2DmTCAtPSRxisw0a+b53hIluFs4cSLvGTYMKFcOuPHGyP4OuUhFADvcniekX/PJGNPZGPMlgFEAVJlFRCSKnKCwXTs+91eFNDWV8+ANNwAnT0ZufO4UFIqISJbMn8/H//3Pda11a2DfPtcqZ3w8UKMGdwW99erF67178+hpt27qTRgq1tqfrbUPWWvvtNbO8nefMeZBY8xiY8ziJPdKCCIiEhLWuoLCiy4CqlXzn1c4bhyQmMifYcMiO06HgkIREcmStWuZH1i5suuaUwPEOUIaH5/x6KijRAkGhH/+CaSkAD17hne8uVwiALf/0qiUfu2sWGsHW2ubWWublS9f/mw/TkREvBw6xDmuXDk+b9eOJ2pSUzPe+8knQJUqwGWXAW+8wbz9SFNQKCIiWbJuHVCnjmf7iIoVgdq1WWxm1y5WI/UXFAKu3cJLLgEaNAj/mHOxeAA1jTHVjDGFAdwFYHyUxyQiIplwDmE4625t2zJQdAqtOVavBmbNAh59FHjxRWD7dmDUqIgOFYCCwqgqXrw4AGDr1q2oX78+AGD48OHo1atXNIclIoING4B69Tg5eVu7lo3mvbVpA8yZ4zpeGigoLFmSK6ajR4dmvHmBMeZ7AAsA1DbGJBhj7rfWpgLoBWAKgLUAxlhrV0dznJGiOVJEcrO9e/noBIWtW3Mx1Tuv8LPPgCJFgPvvB9q3Zy7+66/73lEMJwWFIiKSwc8/A2vWZMx/OHyYu4C+gsLWrYEjRzjBxcQATZoE/o6GDZlnIWSt7WKtvcBaW8haW8la+3X69YnW2lrW2ousta9Fe5wiIpI5753CsmXZu/eLL1z594cOASNHAnfdxWOmxgADBgCbNwPffRfZ8SoozIF27tyJ9u3bo2bNmujbt2+0hyMi+dCsWXxcutTz+rp1fPQVFLZsyQltxgzuMhYrFs4RSn6lOVJEcgPvoBAAhgzhommLFszBHzmSi6mPPea6p2NHoFEj4LXXgNOnIzdeBYU50PLlyzF69GisXLkSo0ePxo4dOzJ/k4hIiKSkAHPn8s/eQeHatXz0FRSWLQs0bsw/Bzo6KnI2NEeKSG7gKyisXx/46y8WlenQARg4kLuH7nOmMcDzzzONY/LkyI23YOS+Kud66ilg+fLQfmbjxsCgQdl7b5s2bVCqVCkAQN26dbFt2zZUdi/zJyISRosXA0ePAhdeyL8bT5/myibAoLBQIf/HPtu0AZYtU1CYl2iOFJH8YNcu4PrrgTFjWEztbCUlAeeck/HUTKVKXHjt3Jkna955J+N7O3Zk7v3YsZHr46udwhyoSJEiZ/4cExOD1EhnmopIvuYcHX3iCeD4cWD9etdra9cCNWsCBf0sKd5yC3sOtmoV9mFKPqU5UkTCYcYMYOVKYMqU0Hye06PQl1KlgEmTWHSmW7eMrxcpwsBw3Die3okE7RQi+6uVIiJ50axZPOJy/fXsJ7hkCVC3Ll9bu5av+XPVVSxGo2b0eYfmSBHJD5x0ib//Ds3n7d3r6lHoS+HCbFPhz+23A99+C8yeHfi+UMmVO4XGmJbGmD+NMV8YY1pGezwiInmFk0/YqhX7Dp5zjmuiPHUK+Ocf3/mE7hQQiohIbhPqoDDQTmEwrr+eR0/Hjg3NeDIT8aDQGDPUGLPHGLPK63p7Y8x6Y8wmY0z/TD7GAjgCIBZAQrjGGm5HjhwBAFStWhWrVvE/x3333YdPPvnkzD0TJkxAy5YtozE8EcmH4uOBY8dYSbRgQVZAcybKjRuZX5hZUCgSCpojRSRS0tJcc93q1aHpEXi2QeE55wA33AD88ktkqpBGY6dwOID27heMMTEAPgXQAUBdAF2MMXWNMQ2MMRO8fuIA/Gmt7QCgH4CXIzx+EZE8y8knvOYaPjZtysIxaWmBK4+KiIjkVps3s2fgtdcCJ0965tJn19kGhQBw223Av/8C8+ef/XgyE/Gg0Fo7B8B+r8uXAthkrd1srT0F4AcAnay1K621N3n97LHWpqW/LxlAEYiISEjMmsWm8k4eRNOmzBHctMkVFNauHbXhiYiIhNySJXzs2ZOPZ3uE9PhxVvE+26DwhhtYdCYSR0hzSk5hRQDujYYS0q/5ZIzpbIz5EsAoAJ/4uedBY8xiY8ziJKdRiIiI+HXqFDBvHo+OOi65hI9LlzIovPBCNaUXEZG8ZelS5sPfdhvbLmUWFI4bB3zzjf/XffUozI4SJZhb+PPPgLVn91mZySlBYZZYa3+21j5krb3TWjvLzz2DrbXNrLXNyvv5X8SG+79umOTWcYtIzuaeT+ioW5cTpRMU6uho/pFb55rcOm4RiYzExIzXliwBGjTgomfdupkHhX36AD16AKtW+X49VEEhwEB1xw7O0eGUU4LCRADunWcrpV8Lm9jYWOzbty/XTR7WWuzbtw+xsbHRHoqI5HJpacDEiezNtHo18PvvgDGufEKAAWGDBmxov369gsL8QnOkiORFq1ezebz7cUxrufDZtCmfN2oErFjh/zO2b2dKRWoq8MgjnEu97d3Lx1AEhR07svDbTz+d/WcFklP6FMYDqGmMqQYGg3cBuDucX1ipUiUkJCQgNx4tjY2NRaVKlaI9DBHJ5b74AnjsMc9rjRoBZct6XmvaFBg2jBOggsL8QXOkiORFc+fy8fPPuQMHANu2AcnJrnSJRo2AkSP9F4qZPp2PTz8NfPAB58f77/e8x/mrM1CfwmCdey7Qpk1oit8EEvGg0BjzPYCWAMoZYxIAvGit/doY0wvAFAAxAIZaa1eHcxyFChVCtWrVwvkVIiI51qFDwEsvAS1aAC+/DOzZwwpnV16Z8d6mTYGvvuKfFRTmD5ojRSQvWryYj9OnA1u2ANWquYrMuO8UAjxC6qtp/PTpQFwc8O67/Ly+fYGbb/YMIEN5fBRgTmHRoqH5LH8iHhRaa7v4uT4RwMQID0dEJF966y1OWhMnAs2aBb7XmSgBBYUiIpJ7LV4M1K/PY6TDhgGvvMKjowULMlUCCBwUWsugsHVroEAB7jg2bszAcNgw131JSfzM0qVDM+5wB4RAzskpFBGRCElIAN5/H7j77swDQoAtKmJiuOLpfbRUREQkNzh+nIVhbr6ZFT2HDWNT+CVLgHr1ACcVuVw5oEIF38Vm1q4Fdu/mcU6A73v2WWD4cAaXjqQkfo4xYf+1QkZBoYhIPvP881ztfO214O6PjeXKacOG4R0X9u0L8xeIiEh+tWIFc+ObNWMOYEICMG2aZ5EZR6NGvoNCJ5/QCQoBoHdvBn8T3c47hqJxfaQpKBQRyWOmTuVE58vy5Uygf+IJoGrV4D9z9GhgyJCQDC+jnTtZwq1SpfBn0ouISL7k5BM2a8bdwnLleHw0KclVZMbRqBF3BU+d8rw+fTrzEN1TrsuW5f0zZriuKSgUEZGo2r8f+M9/gP79fb/+6qusZPZ//5e1z61RI2tBZFD272cixkUXMeLs2TN0CRgiIiJuFi9mgZhKldhu6Z57gAUL+JqvncKUFAaGjtRUYOZMz11CR6tWwPz5wIkTfL53r4JCERGJorffBg4e9N2cF2ByfatWOST2uukmlm+74w7uEH76KXDeedEelYiI5EGLF3OX0Mnzc9pIFCjgKi7jcNIl3PsVLlnCyt3+gsKTJ11BpnYKRUQkIo4eBY4d87y2axfw0UdAoUJsMZGSkvF9O3cygT7qEhM5e776Ks+zVq8e7RGJiEgedfQosGaNZ3G1evXYhqlhw4zVPWvVAooU8cwrdPIJW7fO+PnXXMPgcuZMzr3JyVnsUbh5M5se+sv9iAAFhSIiudAdd/DU5apVrmuvvsrJ6OmnWUjm338933PkCFc5K1aM7Fh9mjyZjx07RnccIiKS5y1bBqSlZay4PXYs8OuvGe8vWJCtK375BZg0ie+dPp1tK+LiMt5fqhTzEmfOdNVMy3Sn8ORJ4I03gCZNOKE/8wzQowdLokaBgkIRkVwmKQmYMoVlsa+5Bli0iIuMgwcDDzzAhvRAxiOkzvMcERROmsSB1K8f7ZGIiEge5xSZ8S4oc/75wIUX+n7Piy8yR/CGGzhVzZvn++ioo3VrYOFCYOtWPs80KOzfnwn+RYsC773HXlGJicDs2cH8SiGnoFBEJJcZP56rlmPHsmhMmzbAvffy2OiAAa7joTt3er4vbEHhp5/yCGiwUlJ4RKZDh9zVxElERHKlxYs5N2YlfaJjR2DLFmDUKLZmOnmSqfD+tGrF6c3ZeQwYFE6fDgwaBPTqxWjzmWeAhx4CSpQAvv02+EGGkIJCEZFc5uefWQn01luBuXO5yjl3LvD445zwnKDPOyh0noc0KPzjD05qPXvyfE4w5s/nOdYbbgjhQEREJL9wjnP6yp33xSkyk1WFCwPdurHITGJi4J3Cq6/msdMxY/jcb1CYnAzcdx9Qpw7w1luu60WLAp07Az/95CpjGkEKCkVEcpGDBxmHde7MTbYLLuBJk7ffBp57jveUL8+Jyd/x0ZAVmjl4kMFgrVr80h49MjZ1SkzM2JR+0iQOMNDsKiIi4sfXXwNt2wKvv575vYcOscB1doJChzGZz53FigGXXcbdRSA9KLSWC6FJSa4bH3uM+R+jRmWscNO1Kwc8YUL2B5tNCgpFRHKRiRMZd3Xu7LpWtizw7LNAyZJ8XqAAg0Vfx0dLlgSKFw/RYJ5+mh86ciTw5Zcs0/bmm67Xx45lwNiiBc/dOCZN4pKqM2AREZEgJSUB/frxzx9+CBw+HPj+pUv52Lx5eMcF8AgpwCCybFmwAMBVV7E6Tb16rBL3/fdMWPQVpbZuzUTHKBwhVVAoIhJFo0Z5nh7JzC+/cL644orA91Wo4HunMGRHR3/7DRg2jInyl10G3HwzcPfdwMCBDA5feAG4/XagShV2/x040DWIFSuYTygiIpJF/fszEBw2jCcxv/gi8P3+isyEzOnTDPRSUs60qyhTBoiJAfM9SpTglmblyqy83aIFfwlfYmKALl2A338H9u/3fC0tLUy/ACkoFBGJovff59zgTFqBHD/OncJOnbgbGEiFCr53CkMSFO7fDzz4IJs7vfCC6/pHH3EmvOIKBoE9ejDPsHt37iAuX+5qRaGgUEQk31i1ijXJundnKt1dd2Xvc+bNA4YOZV2W++7jEdL33uP86M/SpVyfDFsz+d9/56LosGG44gr2NyxXDgzifvuN893//sf578ABYNYsplD4060bkyV/+onPExJ47YknwvQLkIJCEZEoOXUKWL2af3Z6CwYybRob8LofHfWnYkXfhWZCEhR+/jnzIYYN4+znKFuWfTFiYnim5+uvWbLtgw84Q/bsyQmyUiW1ohARySe2beMaYq9ewNSp3OWbOTPrn5OaCjzyCDfcBgzgteeeY0/eoUP9v2/zZqBmzeyNPSgzZvBx1CjExgLXXQfUrg32i9q9mydpHDExma/qNmnCyHn4cC6w1q7NALFs2XD9BgAUFIqIRM2aNVwMbNuW1UPHjg18/88/A6VLAy1bZv7ZFSpwQfLYMT5PSwN27QpBkZnUVAaF7doBTZtmfL1TJxageeIJV7uJMmWAzz7jruG4cWpFISKSj8yfz0XPGTM4D91zD+enzBZCvX34IbByJR+d3Phrr2XK3ttvZ6xz5tixg4Fk2MyYwTlt7lzgn3/www88TYrx4xkEZrXStjHcGVywgKdxOnRgGsbLL4dl+A4FhSIiUeJ0cPjwQ26c9e3rWY/F3f79nF86dmSJ7Mx49yrcs4fx3FnvFP76K8+h9url/x5fq6CdOzPHENDRURGRfGTRIuCcc1hfzBigVCkGcL66Lqxbx1YT3lau5K5gx47ALbe4rhvD69u3A998k/F9KSkMRMMWFCYlcXCPPMLBfPMNihZNLyo6bhyj1nPPzfrn/ve/TMGYOZO7hNWqhXzo3hQUioiE2LFjzHfYtSvwfcuWsYR1nTrMLdyyhWl5AFc2hw8H7r8fuPhinhpJTmb+eTC8exWGrHH9J5+wSeKNN2b9vV98Abz2WvbeKyIiuVJ8PA+WFCrE56VL8/HgwYz3vvwyD6K4F988fpwpe6VLA0OGZDxo0r490LgxD6R427mTO5JhCwpnzeJj9+6sHDpyJL9w0yYeB+rUKXufGxfHM7HBHA0KEQWFIiIhNno00+gyqyq6bBnQqBE31tq1Y6z0yitMH6hShYuEv/4KXHQRY6l584LfZHN2Cp1gMCSN61esYFPERx9NL6uWRWXLAv/3f8FtdYqISK6XksJCL5de6rrmBIUHDmS8f+9exlT33sv5D2D7iVWruFAaF5fxPcZwQ27duoxHUnfs4GPYgsIZM1hd9JJLGBhu3szJetw4vp7doDAKFBSKiITYiBF8HDrUf/+ktDR2bmjSxHXtvffYX7BmTe4crljBCXLCBMZSV14Z/Bi8j4+GZKfwk094Buj++8/iQ0REJL9YvZo7fcEGhcnJPGbavDlw550s2vnxx8BTT3FH0J9q1ViIbe9ez+thDwpnzgSuuYbVRDt35rnRkSMZFDZqBFx4YZi+OPQUFIqIhNDWrdxM69SJAaETIHrbvJmvN27sula7NrBhA4PAp58GGjTIfj2WUqU4NznBYGIidyR9rbIGJTmZCRtdu7JwjIiISCYWLeKje+P4UqX46Ov46IEDDOAmTgTq1mU3o4YNgTfeCPw9Tsrdli2e18MaFCYmAuvX40xzwuLFgdtuA374gbuF7lVHcwEFhSIiIeQkun/4IXu6f/yx736zTpEZ953CUDLGs1dhYiKb3gdqjeSXtUzWOH48cIEZERERN4sWcR2xenXXtcx2Cs89lz9TprB+y48/srtRIP6CwoQEoGRJ/oSc01ejVSvXtXvv5YpvWlquOjoKANn554GIiPhgLU+NtGzJEyOPP86q0lOnZjz2snw5A7R69cI3njO9ClNTkZhYMOPR0bQ0Du7IEf7ZWm4vxsWxy6+1nI1HjmQ57DZteBxGREQkCIsW8eio+6kXf0FhWhqvOcU64+J8F4/xJdBOYdC7hNaywXzbtq6qOIHMnMnBus+LLVuyFy/gu21TDqagUEQkRBYuBDZuZA4EANxxB9CnDyuKegeFy5axqmhmq59no0IFYOGsY0DxMthZaT9qNCjqecP48cCtt2b+QVdfzab0d90VnoGKiEiec/Qocwq9pxnn+Kh3UOhssGWng0Px4kC5cmcZFM6YwZ6Cr7/umsgzu79lS882TDExwKhRwOnTua4fr4JCEZEQGTmSdVhuu43PCxcGHn4YeOkl5grWquW6d9ky4LrrwjueCmVOYOcuA4uTSEywuNY7Sf/HH1kRdOZMTmrGsJ/Gnj38OXqU0exFF4V3oCIikucsXcogz73IDMADKQULZswpdIJEZycxq6pVY76+ux07srBhN3UqH998E3jwQc6P/mzZwiICvXtnfC2CbSRCSUGhiEgInDzJ3PJbb/XMXXjoIbaT+Phj/gDA7t38CVc+oaPiX2NxAl2xq25bJK8phgoXpOFMKvnJk8Bvv3E7s0GD8A5ERETyHV9FZgCuP5YunXGnMDmZj9nZKQQYFC5Z4np+8iTXN4PeKZw2jYugW7Zwt/C99/zf6+QTOkVm8gAVmhERCYEJEzih3Xuv5/XzzwfuuQf48ku2oACYTwh4Vh4NuXHjUGHJeABAfPsBAICKRze6Xp82jWd1nG1NyROMMS2MMV8YY4YYY+ZHezwikn8tWsT8el9Vr0uVCn1QWL06sH07T24CLDIDeAWFmzaxr+CcOZ5v3ruXR3juu48/n3wCbNvm/8t+/x047zzmgeQRCgpFRM5SWhowaBB7DLZpk/H1t99m9bXu3YFTp1yVR8MWFO7dCzz4ICrUKAYAiC9wGQCg4ppprnvGjuWs7GvAEhXGmKHGmD3GmFVe19sbY9YbYzYZY/oH+gxr7Z/W2ocBTADgpyGKiEj4OUVmfCldOjzHR1NSXK2YfLajGDOGxdW+/NLzzdOn87FdO+Z8FCgAvPCC7y/67Tfg55+Bnj1zXd5gIAoKRUTO0ldfAXPnAgMHMsfcW9myvGfFCt6zfDlQtWr2J75MPfMMkJyMih/1BQDErygCAKg4/0dGsCkpbKzbsSNQpEiYBiHZMByAR+anMSYGwKcAOgCoC6CLMaauMaaBMWaC14/7evzdAL6L1MBFRNwlJTHlLlBQGI7jo4Cr2IzPoHA8T9Dgl194Wsbxxx9cKL3kEr7hiSdYMGbFCs8v2bMHeOABVhx98cXsDTSHUlAoInIWEhOBvn2ZVtCzp//7OnbkiZQ33uDJzbDlE27YwGaJTz2FC1rWAQDEx/OliknLgPnzgVmzOPvq6GiOYq2dA2C/1+VLAWyy1m621p4C8AOATtbaldbam7x+9gCAMaYKgIPW2sMQEYkCZ97xFxSG4/iov6DQ6RCBXbtYJrxDB/bd/fVXXreWE3Pr1q5mvv37c5Ddu7tyP6wF/vtfbnF+802eW1RVUCgikk3WAo89xiOhX36Z+SkS54hpcnIYg8I33+RE1bs3zjmHx1aTk4FixSxKFD7FiqNjxwLFigHXXx+mQUgIVQSww+15Qvq1QO4HMCzQDcaYB40xi40xi5OSks5yiCIinhYu5AlMf5U/fR0fTU7me0qUyN53VqnCedg9KCxbltVOAfDYJ8B5smpVBnYA8wy3bWN/Qse55wLDhzMxsWlT7hx+8AF3Gt94A6hfP3uDzMFUfVREJJvGjuUpzLffBmrUyPz+UqWAoUPZBumaa8IwoG3beNzlkUeYAA/2Kty/H6hY0cDU7QD89BOQmspBnHNOGAYh0WatzfRMk7V2MIDBANCsWTMb9kGJSL5x+jTw3XfcJSxe3Pc9vo6PHjjAebJANresChfmrqB7UJjh6Gi1aqy43a0bK4zu2sWjowDzCd116gS0aAEMGAB8+inTL9q0AZ58MnsDzOG0Uygikg1HjgC9enEB8emng39fu3ac+K69NgyDeucdLpM+++yZSxUq8LFiRbD9xM6dzIm4/fYwDEDCIBGA+z9rKqVfExHJkX76iZtvffr4v6d0abbCTUlxXUtOzv7RUYd7r0KPoPDIEQZ/N9/MebJrVwZ5P/zAo6MXXuh7dbdMGQaEixfzaNCIEdmPWnO4vPlbiUi+N3AgcPXV3BQLh5UrgX//5QJiwSyeuShWLAwD2rULGDKEPTHclkYrVnR7dArLxMZyp1Byg3gANY0x1YwxhQHcBWSoiHUAACAASURBVGB8lMckIuKTtTydWbs2+/b6U6oUHw8dcl0LVVDoc6dw2jQ2LuzUic/r1AGaNWOQN2MGj44GygFp0oRtKipmdno/91JQKCJ50siRwLx5/Ps+HJz+R9Wrh+fzM/X00+xp8e67wO7dwPvvc8m1Xz+P25ydwgoVwESNRx4BHn7Y/5keiRpjzPcAFgCobYxJMMbcb61NBdALwBQAawGMsdaujuY4RST/2r2bsZU/U6awwnbfvoE31Jzq2+5HSA8cOPuq3NWq8UDMvn0MMs8EhePG8cOvvtp1c7duLCJz8GDGo6P5UMCg0BgTY4x5N1KDEREJhc2beXSlUCG2GTp2zP+9hw5xXti0KWvf4QSFZ6qaRVJyMvDZZyx9+uyzHMSHHwJdumQ4/uJxfBRgovwHH0R2vHlUqOdIa20Xa+0F1tpC1tpK1tqv069PtNbWstZeZK19LVTfJyKSFXv38pRl2bI8hfnZZ6650PHGG5ySunUL/Fm+gsJQ7RQCXBQG0oPC1FRgwgTgxhv5DwPHXXe5+ki1bn12X5wHBAwKrbWnAVwd6B4RkZxm6lQ+fvYZVww//ND/vYMHA99+68ozD1ZiIuu0nO0Eli1jxrDk6ZQpwLp1XJK95BKfjXY9jo9KSGmOFJH8ZP16Tj0tWgCrVjHFrnp1TkGHDrHj0Zw5QO/eLPoSiHN81L0CaSiCQuf0zpw5fKxcGcCCBdw6dI6OOs47j9HtVVcB5cuf3RfnAcFkwiwzxowH8COAo85Fa+3PYRuViMhZmDqVpanvv5/Fxt58E3jwQa5uujt1im0iADbazYqEBK6GZtaGIixGjgTq1WOOgzGsoObHFVcA113HOU/CQnOkiOQLTq7eoEFArVpsi/vWW8xiGDECOP98zrP//W/mn+W9U2htaHcKPYLCT37lDqGvNkzffceCMxJUTmEsgH0AWgPomP5zUzgHJSKSXampwPTp/LvfGB5lOXIEeM3HobsffuCOH8CCnFmRkBCl3bdNm7gc2717UBFpXBw3FM8/PwJjy580R4pIvuBU9bzwQk4/tWuzzVJ8PFCzJrBiBbs1BFNMzTsoPHGCC7Vnm1N4wQWsp7Z0KcdYsche4KuvuCNYsmTGN8TGujUyzN8y3Sm01vaIxECywhjTAkBXcPx1rbVXRnlIIpJDLFzIYyzXXcfn9eoB993HitKPPupKubOWHRzq1+dklJ2dwhYtQjr04Iwaxez9rl2j8OXiLSfOkSIi4bBlC/PUY2M9r19yCfDnn+za0KRJcJ/lfXw0OZmPZ7tTWKAAg9YNG7gYWvid19j74pVXzu6D84FMdwqNMZWMMb8YY/ak/4w1xmS7tIIxZmj656zyut7eGLPeGLPJGNM/0GdYa/+01j4MYAKAMNUWFJHcaOpUTgruOeMvv8yFwLZtXcdfJk9mTsSzz3I3LStBYVoadxgjXmQmLY1HR9u2VZJgDhHqOVJEJKfassV1PNObMUDz5sG3aCpZku9xdgpDFRQCrjFWjjvJ4gI9egB16579B+dxwRwfHQb2RKqQ/vNb+rXsGg6gvfsFY0wMgE8BdABQF0AXY0xdY0wDY8wEr584t7feDeC7sxiLiOQxU6dyYipTxnWtUiUWkjl0iE3jN23iLmHFiiw+Vr581oLCpCQeU414UDh3LrB1K4+OSk4R6jlSRCRHChQUZlWBAgwMnaDQeQz6+Ojp08Dw4RnLn8ItKDywgl/00ktnO9x8IZigsLy1dpi1NjX9ZziAbJfosdbOAbDf6/KlADZZazdba08B+AFAJ2vtSmvtTV4/ewDAGFMFwEFr7eHsjkVE8pbkZGDRIt+55JdcAsycCRw/zuIrM2cCTz3FCmlxcVnLKYxaO4qRI9lf8JZbIvzFEkBI50gRkZwoJYVzX6iCQoBHSLN9fPTLL7kDWKcOK92kpJx56UxQuH0+8MQTUeodlfsEExTuM8Z0S+/HFGOM6QYm1YdSRQA73J4npF8L5H5oNVZE3EyfzhOWTj6ht0aNGAw6K5QPPsjr5cuz/1KwBcicoDAkJzhHjACGBfFX2fHjbEVx++3BZfFLpERijhQRiart2zlHOi0fQqF06WweH92/HxgwgGW1W7ZkHkiTJpxPf/8d1U6sBQBUjk0C+gfMSBM3wZz87QngYwAfALAA5gOIemK9tfbFQK8bYx4E8CAAVKlSJSJjEpHomjqVwd6ll/q/p359YNkyTkROIbLy5XkS5cABz2On/oRkp9BaHml55RVuV3boELhE6JAhwOHDXBmVnCRHzpEiIoGcOJGxYEwgTj5+KHcKsx0Uvvwy3/j555zUx4/njuB99wEA6qA+gJWocUeTKDUTzp0C7hSm5/p1ttbebK0tb62Ns9beYq3dHuJxJAKo7Pa8Uvq1bLPWDrbWNrPWNiuvhpQied6xY2y90Lo12xEFUqGCZ86581dEsHmFCQlMpo+Ly/xen9LSWLf7lVd4FDQlhcnw/hw9Crz6KldEo1LyVHyJ4BwpIhIyEycyVho6NPj3OO0oQh0UOsdHneDQqUoKgD0q5s7lHOhYs4blxB96CGjQgNVqOnViudE1a4CFC9Hgj0GY9+4CdBzi1axeAgoYFFprTwPoEoFxxAOoaYypZowpDOAuMHFfRMSvrVuB554Drr6ak8v27ZwbssoJ7oLNK0xM5NHRAsEcwPeWlgb07Al8/DHw9NPA2LFAx44MCo8f9/2ejz/m4F57LajehBIZEZwjRURCYupUoHNn7hR+8knw79uyhQuuoSx8XaqU505h8eLpi7rbt3Nyr1yZC6E1a7LXYGoq580SJTK2mChSBLj4Yh4VatMGV/a+AgUKB1kKVQAEl1M4zxjziTGmhTGmqfOT3S80xnwPYAGA2saYBGPM/dbaVAC9AEwBsBbAGGvt6ux+h4jkHTNnAh984Pu1F14A3nyT88RTTwGTJgH33pv178jOTmG2j47++ivzHgYMAN57j5HlM88A+/axB6G3AweAt94CbrwRuFItWXOgkM6RIiLhMmMGF07r1OEJzGXL2HA+GFu2AFWqADExIRjItm3AzJkoXcp6BIXnlk4D7r+f25Fvvglcfjlz7qtWZRGAiy5iVPvSS0C5ciEYiLgz1trANxgz08dla61t7eN6jtSsWTO7ePHiaA9DRLKhXTtgzhweD/WejJo35xGYqVPP7jucnoNffMETKZmpVYs57aNHZ+PL2rYFNm7kWRznF7IWaNaMv+Tq1Z5bkAMG8OjosmVA48bZ+ML8xxizxFrbLELfpTlSRHK8RYuAVq1YKGbmTB46ueAC4PHHuT6ZmcsuYx7+tGkhGMxVVwHz5+OFKsPxWkJ3pKQYdG6RhM3xe7HidH2mVzz5JLvQA5wjf/0V+N//gHPO4S+TWZ6I+BRofswsp7AAgM+tta28fnLNZCciudepU8C8eXzcutXzNWuB9euB2rXP/nucBcdgdgqtPYudwnXrWCL1oYc8I1xjuFu4bh0webLr+p493Cb9z38UEOZAmiNFJLf46ivGUX/8wTmvbFlmLnzzjUc3B7+2bAlR5dGlS4H584FOnVBq/2akpRkcufI6JM9fg3MLHuZr77/vCggBzpG33gqsXQssXqyAMEwyyylMA9A3QmMREfEQH+9Ks1u3zvO13btZjDMUQWGRIlwBDSan8MABjilbQeEXX3Ayu//+jK/dcQcr4Lz/PqPOYcMYDB4/znM+kuNojhSR3GL7dp5yOe8817V77+W8574W6cuRI1w0DUmRmY8/BooWBYYPR+k3/wcAOLA6Eclla+DcNk25JemPMSE6vyq+BJNT+Icxpo8xprIxpozzE/aRiUi+N3u268/eQeGGDXwMRVAIsNhMMDuF2W5HcfQoMHw4+wy6z8qOwoV5jmf6dCbX9+zJX/rtt5kAIjmV5kgRyfF27ODU4q5DB+bUjxgR+L0ha0exdy/w/fdA9+5A6dIofT57YhyctwrJ51TEueVUGCaagvmvf2f642Nu1yyAELavFJH8Zv58nogsWtT/PbNmsQXRnj0Zg8L16/lYq1ZoxlO+fMag0Fpu7nXt6uppGHRQmJLiecTlhx9Ye/vRR/2/59FHeU62Vi0mU9avr2qjOZ/mSBHJEf75h2npN9/sed1aBoXXXed5vVAhoFs3ViHdt49HSn0JWVA4ZAhw8iTwGP+6dNpPHDhocOAAq4hL9GS6U2itrebjR5OdiGTbggXMM//yS//3pKQwn7BlS26U+QoKzzkn48pndp0JCv/998w25NKljNO++MJ1nxMUBizL/fvvLJndtSuwaxdn5E8/ZU+lq67y/76SJfllzzzj6r8kOZrmSBGJpK1bgd9+8/3aK68wE+H0ac/rBw/yCKiv+fLeeznffv+965p3DcqQBIWpqWy91KoVFzzhCgL37uX41Gc+ujINCo0xRY0xzxtjBqc/r2mMuSn8QxOR3O7w4YyTC+BKkYuP9//exYtZjDNQUFizZjZ7BfpQvnx6TuHDDwPXXAOkpmLTJr42caLrvoQEV9U2n+LjmQtYsSLw00883/rUU6we+uijCvTyGM2RIhJJr73GmitHjmR8bdEiFmbbudPz+o4dfPQVFDZqxFM7zz3Hzg+lSjGbYcwY1z1btgDFip1lF4jffuNAHn/8zCUnKHQKySkojK5g/jk1DMApAE6DrEQAr4ZtRCKSJxw+zMDp+ec9r//1FzBlCiedZcv8v3/WLD5ecw2Dwr17+eMIVeVRR1wcsHevhZ0+g7uF06efCQrnznU12E1MBM4/30/xs02b2E/wvPN4Pnb1au4MfvSRa+dQ8hrNkSISMUuXcifQe1H14EHX4unmzZ6vBQoKAeCNN7iBd+21wH33sR/hq6+6FnWdyqPZXtO0lgVmqlRhydN0zvFRZydSx0ejK5ig8CJr7dsAUgDAWnsMgJa6RSSg9etZW+X11z37Gr38Mlcbn3jCdY8vs2YB9epxB8+ps+LkEZ46xUkkVPmEAL8nNdXgwOH0vxa/+w6bNnESPH3a9Tv4bUeRlMSs/bQ0lnI77zygRg1uM06YAPz4IwNDyWs0R4pIRJw6BaxcyT8vWOD5mnurUSfIcmQWFLZvzzaAI0YAH37I9rgrV7rmvS1bsnF0NCWFc98jjzAYnDmTuYQFXeVMnKBQO4U5QzBB4SljzDlg4jyMMRcBOBnWUYlIrrdxIx/j4lhobM8eYOFCxkt9+gAtWnDx8O+/M77XPZ8QcAWF7qugp0+HdqewfHk+JqE8cNNNwC+/YNOG07jySqBMGaYJAj6CwqNH2UaiYUO++NtvntGqMdw9vP760A1WchLNkSISEatXu3oKegeFzs6hMb6DwpiYAGkPXrp04YmY997jPL15czaCwl69uCs4ahTQvDkwdCjQu7fHLYULs9icgsKcIZig8EUAkwFUNsZ8C2A61JdJRDKxcSMnpwkTgORkHkl56SVWN3vsMaBJE97n6wjpkiWMtZygsEoVIDbWFRQ6O4bhCAr3VL8CePJJ4PBhbFpzCrVrM56bNImbgGeCQmsZDFarxomubl1ub15xRegGJbmB5kgRiYilS/l4zTUMCt1z9hctYp59pUq+g8IKFYJv8VekCFP/pk7ltHb0aBaDwkOHGAx268aypj//DPTo4XMApUu7xqugMLqCqT46DUBnAPcB+B5AM2vtrPAOS0Ryuw0beFSleXPGTpMmcZewd2+geHFOXGXL+g4K3fMJAc4jtWqFNyiMK30KAJB08TVAq1Y4Ur4adh84BzVqcKNvzx72TTx4ML3y6K+/8pdp1IhJh9OnB266K3mS5kgRiZSlS1mk2om1nBM5AIPCSy9l7p+vnMKs9tZ9+GHu4j31FJ/7DAqnTAHeeivj9Z9+Ao4fZ3G1IkUCfk+pUq6iOcopjK6g6vZZa/dZa3+31k6w1u7N/B0ikt9t3MhVS4ApBbffzpXKXr14zRjuFvoKCmfP5sZbXJzrmnsF0vXrmbLn5COEQvkdXIJNurAZEBODf9o+BACoUeEo2rfneAcP5r2VKgF45x3OkpMnB24zIXme5kgRiYSlSzlvOlOOc4Q0MZE/zZtzWvK1U5jV9k1lyvCEz4oVfJ4hKLQWePppoH//jFVvRozgPwAuvzzT73EPBLVTGF0hKuYuIuJiLXcKndQ6Y1jeev16z1orTZoAq1a5ciQA/nnuXNfRUUedOlz9PHnS87NDpfxyZtQnncsP3tTgVgBAja3TUbYs57aff+a9lZJXcjZ+5pngz+OIiIhkU2oqc/CbNuV8WLq0Kyh0YrJLL2XwtnMncOIEr1nLtIfs9PR9+mlXxdEMQeGCBcDatfzzSy+5rm/ZAsyZwwaIQZQrdYLCIkXYe1iiR0GhiITcvn1s4eDsFAKcG4oX97yvSRNWU1uzxnVt2jQeJbnuOs9769RhTt+mTaFvRwEAReZMQ4kCR7DnMGelTYaDv2jOMAA8QnqKJ0xRafxnXEbt0SO0gxARkTxj5UoeKgmF9et5IrNpU/bnvewydj4CeHS0YEH2G6xendec4i379jFAzE5QWKMGeyJWrpxx/saQIbz4/POssr1wIa+PHMkJ/557gvoO58SPjo5Gn9+g0BhTJtBPJAcpIrmLk+fgHhT64qvYzMiRjLc6dPC816lAumABuz+ENCg8ehT46y/ElTyBpCRe2vSPQVzRIyg5azzw77+44QbX7RWnDWe1nGLFQjgIyU00R4pIZgYOBPr2BZYvP/vPcorMNG3Kxyuu4EmbQ4e4U9iwIXfanB095whpZu0oMjN8ODf+PBw6BIwezTKl/fqxz9RLL3HldsQIoHVrVogLghMM6uho9AXaKVwCYHH6o/fP4gDvE5E8LC2Nq5WBBBsU1qzJRHYnKDxwgPVbunRhqWp3znHRceP4GNKgcN48ICUF5S8o6AoKNwE1aqf/FdmuHRrHrsMFFwBlixxBbBHLoFDyM82RIuLX8ePcQAOAYcPO/vOWLmXQ58x9V17Jo6ELFzIovPRSXg9ZUJiWBiQlocTWlagau9vztR9+AI4dAx54gLuFzz7L/Pp33+UX33tv0F+joDDn8BsUWmurWWurpz96/1SP5CBFJOd44QUGaKdP+79n40am2mVWwjomhsU7naDwp5+YM9i9e8Z7ixXjwuMff/B5SHMKZ8wAChVC+WrFPYPCBkXZU2PXLphml+CRxvNxY8qvnPDOOy+EA5DcRnOkiAQybRoPoVSpAnz7rSv9ILuWLOHxUCeN/bLLeEpzxAhWxW7enNfPP58tnJwKpFkOCv/5hxNzkSKs9tawIXDRRawA5xgyBGjQwPWljz3Gvk79+jFI7Nw56N/LOT6qoDD6gsopNMaca4y51BhzjfMT7oGJSM5z8iTw5ZdMWncqkvmyYQNQtWrG3T5fmjTh0Zq0NB4drV3bNc94q1OHuREFC7ryJkJixgzgsstQ/vyC2LOHK7wJCcynQIcOHGDz5hgw6SqMsN1ZYEYkneZIkfwrIYGF1Lz98gt3wT7+mHl9EyZ4vn7okO/q276kpfFe5+gowNYU9erxFCfg2iksUIDzr/tOYaFCntW8/dq5E2jblqVMn30W+Ogj7gpWrQrccAP7Rf39N7cmH3jAVUimWDGekwVYajwLqRXOTqFyCqOvYGY3GGMeAPAkgEoAlgO4HMACAK3DOzQRyWnGjQP2phfcnzXLlRPozb0dRWaaNAE++4xt/v78E3jtNf8Fy2rXZjPd6tU5yYXE9u1cgn3+eZQ/yd/vn3/4Uo0a6fdUrMgBvvsut0hDXeVGci3NkSL526uvcrG0UiUe6QRYRXv8eKBjRxYpq1CBR0idDbS0NBZwmTsX2LWLefSBbNrEAmzuQSHgyissVgy4+GLXdfe2FE6PwgKZbQPt388Kb3v3cqHUfXW2ZUvmCd54I7coixRhs0R3jz4KrF7NYDILdHw05whmp/BJAM0BbLPWtgLQBMCBsI5KRHKkIUN4FKZaNc+TJO6szXpQCAB9+vDRe55x5xSbCVlM9u+/QLt2PO7StSvi4jiZL1nCl88EhQDP7PTrB/zf/4XoyyWP0Bwpkk9Zy1Q6ABgwwHV9zhzGWJ07c+q45x5g0iRgd3pq3qBBjLtOnWIefWa8i8w4rriCj82aeXZH8g4KMz06euQIdwI3buTqr/dxnfPOA2bO5I7hzJn8xbwj2aJFGfnWrZv5L+RGx0dzjmCCwhPW2hMAYIwpYq1dB0DL5CJ5WFoacyHcbdnCHImePblo+OefvM/bv/9yfgk2569+fR4HXbECaNUqcMEyJygMST7h/v0MCBMSWA2gVi2UL8+XnN5PHkGhiG+aI0XyqXXrgG3buLg5YwbjJYA9bYsWdbVWuu8+HjL55huevvzf/4BbbmHw9uOPmX/P0qVMx/COt5ydSe8Yrnp1Fm5LTg4yKOzdm0dCR4/mjqAvcXH8BXv0YBuKENHx0ZwjmKAwwRhTGsCvAKYZY8YB2BbeYYlINL3xBo+brFzpujZsGI919uwJXHstY6pVqzK+d8MGPga7U1ikiGui81Vgxl2DBpxoL7ssuM/269AhoH17Dnb8eOCqqwDgTFA4fz5QtqxWLiUomiNF8ilnl/D775llMGAAF0t/+YXp6EWL8vU6dYDLLwe+/hro2pWbbF99xfS7P/7gfBrI0qWc/3xV5X7nHeCRRzyvO0Xe/vmH6YEBg8KdO9l34qGHGKkGEhcHDB2a5d3AQJx5NrMjtBJ+mQaF1tpbrbUHrLUvARgA4GsAmfy/RkRys8mTucrYoQNXGU+f5jzQvj0nl2uv5X2+jpAG247CXfPmnDxvuy3wfeXLc/66/fbgPzuDY8eAm25i1v6PPwJt2nh8PsBgV7uEEgzNkSL51+TJzOWrXZubZ/PmAa+8wjzBW2/1vLdHD+4srl7NGKxcOeCOO4DUVFerJV+sZVDofXQU4EJtnz4ZC685QeFffzElImBQ+OGHHETv3sH8yiFXuzbw6adZKlgqYZJpUGiMudwYUwIArLWzAcwCcyZEJA86cQJYtIj55IcPMzAcPZqrjQ88wHuqVuUxT39BYaFCwIUXBv+dr7/O3bkSJTK/t1Qp/4VoMnXyJGfqefN4jqdjR4+Xneps1ioolOBojhTJn44d4xzYoQOf9+zJufHllzkH3nij5/133skjkk89BVx/Pa81a8b3BDpCuno1j4Fm5YSMEyQ6Tef9BoUHDwJffMGV1osuCv4LQsgY1qhxcgsleoI5Pvo5gCNuz4+kXxORPGjJEia/P/AAj8Bs2MAk+bg4brA5WrbkhGOt5/s3buTc4p70npm4OLZFCquUFM7KU6eyYs6dd2a4xdkpBBQUStA0R4rkQ7NmcZ2xfXs+L1yYfXwBHkDxzpErVYrFrt9/33XNGNcR0uRk398zZQofnfzEYJQqxWOZTlBYqZKfGwcPZjqF005C8rVggkJjreuffdbaNATRykJEcqe5c/l41VXMNx8+nDkSPXp45jNcey2QlASsXev5/g0bsnZ0NNuSk7m82K4du96fPu16bfVq5kdcdRVn3CeeADp14hmdjz/mL+NDbCwLkQIKCiVomiNF8qHJk5n20KKF69o99wB33+2/lW2JEhlPuvznP1yz9HeEdPJk9iMMuvl8umrVWPgN8PPekyeBDz5gBHvJJVn7cMmTggkKNxtjnjDGFEr/eRLA5nAPTESyZ906HvvMzJw5wHvvZbw+dy6T4p1ds7vvBtasAQYO9LzPV15hWhr7KYU1KLSWzXTr1OEq54YNTMyoXZsVcq67jiVNR45kWdM1a/jnadOAt98GevUK+PHO762gUIKkOVIkDzh40LWzFoxJk1gxOzbWda1gQeDbb7lWGaxAR0iPHuWYnN3IrHCOkMbGsnBaBt9+y+THfv2y/uGSJwUTFD4M4EoAiQASAFwG4MFwDkpEsmfPHh7DvPJKVz8kX8aN46TVpw9bQTjS0phud/XVnvdffHHGZvHVq7PamntQmJjInMSQtIzw5dQp4OabgS5dmLS4eDGweTN3CsuVYw/B1auZpLhjBwe3Zg2r5pw4EVRTXSevUEGhBElzpEge8P77XOycOjXzezdt4k92gjVvzhHSadM4VbmbNYvTXna+xyk2U7myjzz8PXuAt95iL422bbMzbMmDgqk+usdae5e1Ns5ae5619m5r7Z5IDE5EsubnnzmBbNzIyS0hIeM933/PKp8NGjDQGzHC9dratTyV6R0U+mIMv2P2bFdeYXYqj2bJiBHAhAnAm2+ymWDjxkxevO02Pv/nH2DrVjaBKlfO871BJjmWL898DJ8rqyJectocaYypa4wZY4z53BhzNnV6RfKV+fP5+MADTLNzt28fp55jx/jcyfNzisycrTvu4BHSsWM9rztHVP3OydayibB7+kQ696DwjJQUHhmtVYsLqgMHnkXlNslr/AaFxpi+6Y8fG2M+8v6J3BBFJFhjxvAU5fTp3Cls0YKnKxMS2Jf2nXfYI+nqq9mD9qabeIIkNZXv//NPPgYTFAIMCnfv5nccPw4sX87rYQkKU1K4A3jZZUyK9w7yjOH2pfeWZhZ16QI8+aTmSQksHHOkMWaoMWaPMWaV1/X2xpj1xphNxpj+mXxMBwAfW2sfAZBJ508RAXhKZtEi9hJMTPSsu7J9O0/fdOwInHce++mOGMHTJKEq2Nm8ORdq33yTU51j8uSMR1SRnAx89hmTEc87j/Nenz4ZPjNDULhkCdCwIRMeL7+cx4S8S6RKvhYoGd4pH7E4EgMRkbOzezd37Z57jvVVpk9n2evatT3va9+eq5FFiwL33ssKo1OmcG6YOxc4//yMPY/8cfIKL77YtVtYvDiPlYbcqFHcBfz007BGbHffHbaPlrwlHHPkcACfABjpXDDGxAD4FEA78HhqvDFmPIAYAG94vb8ngFEAXjTG3AxA+90iQVi3jruDDz/M+fO997h7V7kyT1ceOsSi1X/9xWyFAwe4eBgqxgCvvcbsiOHDgf/+s8psEAAAIABJREFUlwdfNm3y8T0vvsiCaZUqcUI/dAgYNIiN551JGa55vHJlMJB0GtOPH88VYa18ihdjvevJu7/Iyegta23GJYhcpFmzZnbxYsW2krd99hnw2GNsvF6vHq+tX+9Kt7vgAgZrzolLgEdNK1Zke4kff2Sye/PmgXsmubOWfW+TkoCSJVlZrVEjTqohlZLCwjJlynA5V5OZBGCMWWKtbRaB7wn5HGmMqQpggrW2fvrzKwC8ZK29Pv35/wDAWusdEPoa28/W2k6ZfafmSMnvhg4F7r+fKRQXXsh58vhxFui0lnmGjRvz3pMnuYB6ySUZ206cDWs5d27fzlSMYcM4p2eo6F2/PlChAldzjWE1msaNeYR0xYozJbRTUhjY9utrccVHXbgavGABK9tIvhVofgxYNttae9oYE+p/3olIGIwZA9St6woIAe4SPvec//cULszjpJ9/zrlk2zbg6aeD/05j2Ig37L77jvkPgwYpIJQcI0JzZEUAO9yeO8VsfEoPKv8PQDEA7wS470GkF8SpUqVKCIYpknstXMhc8lq1gAIFGCS2aMHNuGnTPE/cFCnCLg6hZgwzJFq14pw8axZ3+zyKnu3dy2JqXbu65sJixbi92KIFi6l9zjaphQoBv/4K4NvvgNGjgVdfVUAoAQXTS2l5+lGVHwEcdS5aa38O26hEJEt27mTZ6hdfzPp7772Xu32PP87nweYThs2hQzxHExfH3oJVq/J548Y88iKSs+SoOdJauxVBVD+11g4GMBjgTmGYhyWSoy1cyHT1AumVNq66inNqjRpMqYiUli1ZGfz111kw+957vdZBnZ4ZbsdEAXDAzzzDc6+dO7t6Ymzbxu3Gq64C+meWjiz5XTBBYSyAfQBau12zABQUiuQQY8fy6Ml//pP19zZuzAT3OXO44NioUejHF7SDB5kjsXAhf6E+fZgQsWMHS6tql1BynnDPkYkA3OsHVkq/JiIhcOQIsHIl8/ncRWuB9LXXgEsv5Z8ztKKYPRs45xzfO34DBwK//w7ccAMXU6tWZdWctDTm5AdZgVvyr0yDQmttj0gMRESyb8wYBnYXX5z19xrD1cg+fYArrmDz3ag4cICN55cvZ/Wbhg2ZED9uHCPXTpmmRolEXATmyHgANY0x1cBg8C4AKockEiJLljBuuszvoezIat6cm30TJ/IoqYdZs1gKtXDhjG885xwGhV99xaJsW7cy4v3yS1cpUpEAMu1TaIypZYyZ7pTINsY0NMY8H/6hiUgwEhOZ9J6dXUJH164seR2OPImg7N/PEm9//81tz06dOIk9+SQwYwaDwwKZ/nUlEnGhnCONMd8DWACgtjEmwRhzv7U2FUAvAFPAiqdjrLWrQzV+kfzur7/4mFOCQoBFZv7660zNGNq/n1ua3kdH3VWvDrzxBhsSL1jAqjVduoR9vJI3BLMn8BWAZwF8CQDW2hXGmO8AvBrOgYlI5tLSgFde4Z/vuCP7n3P++axUGsnciTN27mTvjI0buUN4ww1RGIRItoVsjrTW+vzXm7V2IoCJZzNIEfFt4UL2GyxXLtojcSlZ0kcqx59/Mq0iUFAochaCCQqLWmsXGc9cntQwjUdEgnTsGHDPPUy1e/rpjP0IsyoqBQjXr2dAuG8fj71EbatSJNs0R4rkUtZyRy7DMc2caPZslj51Eg5FQiyYoHCvMeYiMHEexpjbAewK66hEJKB//2VSfHw8uzSEsoluxMTHc1fQGOZJXHJJtEckkh2aI0VyqYQEYNcu4PLLoz2SIMyezYHGxkZ7JJJHBZOk8xh4LKaOMSYRwFMAHgnrqDJhjKlrjBljjPk8fQIWyRc2bwYGDGDdlZUruUuYKwPCRYuA1q2ZMDFvngJCyc1y3Bwpkp9Yy8KbP2ej3u/ChXzMEfmES5YAhw/7fu3gQRZh09FRCaNgqo9uBtDWGFMMQAFrrZ//xwbHGDMUwE0A9lhr67tdbw/gQwAxAIZYa98M8DEdAHxsrf0zvT/UT2czJpGc6MUXmWZXqBArgv7zDxcKCxTgicuBA3NpLLV+PXDjjUzgmDsXqFgx2iMSybZQz5EikjXvvw+88AL/3Ls38OabriraS5ey7spVV3EB1bur0V9/8URm48aRHXMGmzax7GjLlsC0aRnbR8ydyyICCgoljDINCo0xpQF0B1AVQEEnb8Ja+0Q2v3M4gE8AjHT7jhgAnwJoByABQHx6sBcD4A2v9/cEMArAi8aYmwGUzeY4RHKsRYtYQKZCBVaeTk1l4vmrr7J9RKVK0R5hNjlFZYwBpk5VQCi5XhjmSBEJ0rx5QL9+bOFQoQJ7ty9ZwkBw0CBg9GgGfT/9BEyfDgwfDpRN/1ejtSzQ2aSJ7w4PETV4MAc0cyY71w8Y4Pn67NlcIc4V51wltwomp3AigL8ArASQdrZfaK2dY4yp6nX5UgCb0ldcYYz5AUAna+0b4K6iL4+lB5OhahAskmN89hlPVq5dy2AwVzp8mMu2KSmsglOrFvDSSywqM2sWULNmtEcoEgohnSNFJDhJScCdd7JH+9ChQKlS7On+8MPsuVu0KPD88+zBO3IkH5s04YLrkiXsdLR9O9C/f5R/kZMn2YPi1luBYsU4T157LXDNNa57Zs/mGdeiRaM2TMn7ggkKY621z4R5HBUB7HB7ngDA7wnv9KDy/wAUA/COn3seBPAgAFSJSllFkezZuxf44QegZ89cEhBam/FMzunTbH44cSIQF8flWYArnRMn5tJzryI+RWKOFMn3vv6aQVytWvx5/nnOl3/9xYAQ4EmaRo2AX38FHnoIuOACXn/8cfZ8/89/gB492Oe9bVtuyHXrFr3fCQAHu3cvB3zllUx0vPtu5hCuWgV88gkLsz2vFuESXsEEhaOMMf8FMAHASeeitXZ/2EaVCWvtVqQHfAHuGQxgMAA0a9bMRmBYIiExbBgXDh99NNojCcKyZawget11wEcfuWbm/v2B337jZPbYY0yS37ABOPdcoEaN6I5ZJLRy3Bwpkhv9+y/Qvj1bLT3jtcySmso58dQpz+uDB2fMB2zc2HeO4CWXcMr6+2/+Ocdsun35Jbc727Vj0YAffuBWZ/XqPHFTpgzw7LNA377RHqnkccEEhafA3bjnkF5yO/2xegjHkQigstvzSunXRPKVtDTg8895aqR+/czvj6q1axkMAsA33/B4y8iRrI7z7rtAr14MCAEGi82bR2+sIuETiTlSJE87dAjo0IGbY+XLZwwKN21iQDh4MHD11VxjLFyYQWRWlCwJtGgRunGftQ0bmEf42msMCAGgaVPgiy94JrZHD6BLF25tioRZMEFhbwA1rLV7wziOeAA1jTHVwGDwLgB3h/H7RMJm3z4W2LzyyoyvrVsHvPUWcPw4J7jTp4HbbuPKqDHA5MnAli1Mks/RNm/m2ZuYGODPP/lLd+vGymkxMSwm88EH0R6lSCREYo4UybNOnAA6dWKbpfr1eWLS25o1fGzaFLj4Yv7kCYMHs1Rqz56e13v04I9IBAXTp3ATgGOh+kJjzPcAFgCobYxJMMbcb61NBdALwBQAawGMsdauDtV3ikTK/PnMZ7j6amDbtoyvf/wxN9WWL+eG2sqVzIG4/XamFHz2GXD++cw3z7ESE4E2bTiT//EHC8Zcfjl/qYceYu3v0aNdNcFF8raQzpEi+UlqKtPnZs1i6nn37mwmv9/r8LUTFNapE+kRZtGRI4xwhwzJ/N4TJ/hLd+rEiV8kyoL5V9tRAMuNMTPhmS+RrXLb1toufq5PBKu4ieQ61rL8dd++PPpiLVsNPfCA531//MFNtAkT+Pz0aZbQfv55ltbes4d/jnp5bH9On2a5t337gBkzPM+4Fi/Os68i+UtI50iR/OStt4BffuH82bUrMGkSr69e7XnMc/Vqpt0VKxaVYQbHWiY+jh/Pn1OnAhcH+O47zqUPBiyRIRIxwQSFv6b/iIibkyeZtD5/PvD774yRbrmFhWLq1csYFO7YwfSBhx92XYuJYSB53XU8fXngQA6fHz74gNHryJGs/S0imiNFsmH7dqbS3XYbG8sDnDsBHiF1DwrXrHG9lmMNHw6MGgU89xywYgVz6o0BHnkk473TpjFgbN6cqRgiOUCmQaG1dkQkBiKSW+zcCbz8MjBiBANDgCuYH3zAic0YFhGbMIGFY5zc8enT+ejr7//Gjdk3KSkpBzemX72ak90tt+SAGt4iOYPmSJHs6d2bj++/77pWuTJQogSnG0dqKvP0r78+suPLktWrGQS2bs1/IKSmAnfcwcDvxAm+5hwBmj2bR0Zr1+bWaIFgMrlEwi/ToNAYswWuimpnWGtVWU3ylYMHgbffZvCXmgrcdx8rn11xhasXkqNdOwaNy5a5WvL98Qdb9vmrKlqkSA4OCFNSmOxRsiTLZ3v3JRTJpzRHimTd9OnATz8BAwcC7q2kjeGOoHuxmc2buQBbt27kxxmUffvYALFkSeDbb3kEKCYG+PFHBobPPMMt0TvvZAP6Rx8FqlXjbmHZstEevcgZwRwfdT8jFgvgDgBlwjMckZzpxAkGd//8w6T4gQPZQsgfZzdw2jS+z1pOgm3b5tJ46vXXgaVLgbFjGdmKiENzpIiXQ4fYRaFQoYyvpaSwmXz16kCfPhlfr1+feYbWcr50iszkqOOjb77Jld41a1gZxxhO+O4FY4oU4S8yeTKPlQ4dympyNWu6VolFcpBM96yttfvcfhKttYMA3BiBsYnkGJ9/zoDwt9+4EBgoIASA884DGjbkHAFw3ti9m0U7c4z4eOCFF5js6M/p08BLL/E4TNeuQOfOERueSG6gOVLE06FDDOAaN+axT28ffcQ2t4MGAbGxGV+vV4+bb3v28HmOqzy6eTPwv/8xl+S661gtZ/583xN8TAxw441sSP/vv6zMPWdOxuNFIjlAMMdHm7o9LQCuiqrWvOQbR46wb2CbNsBNNwX/vnbt2ILi2DEuCgI5KJ987VomaCQnc8Wze3egXz+uYDp272YgOGMGX1dlUZEMNEeKeHr9dSAhAShThnVURoxgm6X164EBA3iq8oYb/M+nTorF6tVcYF29mkdMS5SI3O8Q0G+/uR4vuij495UsyWOmIjlUMBPXe25/TgWwFYD+Xy35xkcfsQDMq69m7X3t2rHdxJw5rnZ+7rkTUbN7N9ChA8/1zJ7NGXrIEB5tufBCoEIFrmLOm8dEymHDmEApIr5ojhRJ988/zLvv3p1pFrffzgMmbdsCM2dyZ3DAAODZZ/2nUjhB4apVrNuS4yqPjh/PAWUlIBTJBYKpPtoqEgMRyYkOHADeeYcrmpdfnrX3tmjBYmOTJrExb44o2HnkCI+yJCUxIGzWDLjmGjZH/OorLuXu3MlZuFo1YPBg/5VxRERzpIibvn2BggV5uqZCBeDPP/H/7d15nNbz+sfx11UpFYqSrTohoRNOGtmyiw4Oh/qpLAchWxQRspNTyJYl0maJKJ0WkpQWuxJRCknIiUKh0jbz+f1x3XNmmq275r7ney/v5+NxP+ae733Pd675ynzm+n4+n+viqqu8W8MVV3gB601tpdtpJ59lnDvXdzDMn59CWy+WL/exs0ePqCMRSbh4lo9WA9oCjQq/P4RwZ/LCEkkN99/vieFdd23+19aoAa1a+STc6tUpsHQ0BOjYET75xO90Fu4zuNNOnhiKyGbRGCnipk6FUaN8vNx1Vz9WrZoXrH700ZKLzpTEzO9FzpkD33zjhd5SpvLohAmeqZ56atSRiCRcPM1RxgCn4ctiVhV6iGS0777zjfBnnukb5rdE69aeEJrBMVHPJ0yY4M0T+/b12UIRSQSNkZL1cnOhWzffgZDff7CweBPCfPltKfL7FabM8tGxY32qs2XLqCMRSbh49hTWDyG0SXokIhGYNMln8ho1gv3287uRH38ML7zg9VWqVPHim1uqdWsvUtaihS+HiUwIBQ2hrrgiwkBEMo7GSMl6/frB7NleXLN69fKfr1kzr2I6caJ/vu++5T9nua1b5/tB2rVTw3nJSPEkhe+a2X4hhM+SHo1IBQnBG9H37Anbb++Dz/r1Ba/vsYcnc+ecU74y2M2bQ+PGPoZEasoUeO8975FUtWrEwYhkFI2RktU++siLV//jH96rPRHyZwZffhnq1/fCnZF76y0vvqalo5Kh4kkKWwHnm9k3wFrAgBBC2D+pkYkkycqVcMEFMHKkLw0dNMj3PXzxhddXadTIy2gnosl8pUrw5ZflP0/c1qyBDh283nfnzgXHe/XyiqIXXFCBwYhkBY2RkrX++MOHnHr1vFB1IsZNKEgKf/rJuyeVy/LlvvRn2jQvB/7HH36TdHObx48d6+VTIy8QIJIc8SSFf096FCJJtm6djwfjxvlG+CVLvKpo9+4Fg1izZskptJmoQTIuDzwAY8b4Y9UquPpqby0xZYq/VlKnYBEpD42RkrWuuMJ7uU+ZAnXqJO68det6/bOffipnkZncXC+qtnChV3875BC/+3vttfDMMxu/9/PP4fnn4aijvHx44fEyBE8KW7f284hkoHhaUnxbEYGIJMv770ObNr7qo3p1/51+9dVw9NFRR5ZgixfD3Xf70pZq1eCaazwbnjrVR9jCM4cikhAaIyVbTJnie/B32AF22823XTz7rO+7P/LIxH+/Zs0SkBTOmuUJ4YMPwuWX+/aJm2/2sfKCCwoqwP30k/+h8P33/lqNGv5HQosWvp+kcmVYtMh7aohkqHhmCkXSWr9+/vt83DhvhJuxN/muv97vij70EDRo4OXebrjBX+vdG2rWjDY+ERFJO6tX+1DyyCM+G5ib662awHOqZHUz+utfYfLkclYenTTJP551VsF++ptu8mpyl14Kn37qx844A37+uWB56YQJXuVmwgTIy/P3VKqkyt2S0ZQUSkZbvdpXfJx9tjegz1hvv+3LXm6+2ZvOgy+NqV7dR9XLL482PhERSTvvvOMTal995U3oe/f2G6urVsGPP/oe/MqVk/O9W7f27R7l2tYxaRLsv//G+werV/eia23awD33+Azgu+966dQjjvD3nHSSf1y/3vtTLVzoy0l32aUcwYiktrhq6prZX8zs+Njz6ma2bXLDEkmM117zwat9+6gjKadhw3wvxC+/FH8tN9dH6/r1C2YGwUfqgQPh669TpHSbSGbSGCmZ5scf4fzzoVUr34Xw5pvw8MMFK21q1oQ990xeQgh+I/f772HbLf2/afVqv2FaUmGYE0/0Pwxuv90r5Nxyi1eeK2qrrfwHbd26IGEUyVCbTArN7GJgJPBk7FB9YHQygxJJlJde8huEydjvUGFWrICuXeGDDzz5K6pfP2+u2LdvyUtE1U9JJGk0RkomWb8e7r8fmjTxxSc33ACffVaw9S6tvPOOZ7SlVQt98EFfD9uuXfkaEotkiHj+WrwCOBz4HSCE8BWwmXV8RSreqlXwyivQtq03oU9bvXvDr79Cx44+So8aVfDahAleRe3UU0u+yykiyaYxUjLC4sWe/F17rd9InTvXh58tnqmL2uTJPtNX2gzfLrvAN9/43WPdPBWJa0/h2hDCOovV1TezKkBIalQiCfDqq756JKVzpfXrPWMtrW/FokW+Zufcc30p6Bdf+Ob4I47wamlnnun7JYYNq+DeFyISozFS0t7Eib73/s8//d5jx45RR5QAkybBoYfCNtuU/p6yXhPJMvEkhdPMrCdQ3cxaA5cD45IblkjpVq/2fQbffeedFvbfv+R9DS+9BDvvnMLbANatg8aNoVOn0peu9Ozpyd7dd/sdz6ef9hLZ55/vt3G32cbLqmpgE4mKxkhJK199VdCjt1o12LABRo/2Kp8jRsA++0QdYQL88ou3o9CyUJG4xTNffgOwDPgMuAQYDySpALFI6SZP9t5INWv6oHXCCXDggbD99v68d2/vRQiwcqXPFLZrl9yN8OUyaZJntw8/7Gtdi/rwQy+b3b27F5EBL8N2xx0wfjwsW+YJYf5rIhIFjZGSVnr08OHn2299v+DHH8PFF/u29YxICMGbKoZQ+n5CESkmnub1ecBTsYdIJH7+Gc45x4to9uoFf/mLt+L74QcvLvbOOz6p9sADcOedPnG2Zk2KLx198UXvm7RihbePuOyygtdC8GSwXj3vP1jYtdd6abi//91nDUUkMhojJZ3MmOGzgnfcAbfeGnU0STRpkm+GPOigqCMRSRsWQtlbH8zsM4rvj/gNmAn0CiGUUCM/teTk5ISZM2dGHYZsoRB8xm/cOB/QDjig5PfNmgXXXAPTpvnsYL16vnE+JfePr1kDO+3kDXPnzoXff4fPPy8IduhQbw715JPQuXOkoYqkGzP7KISQU0HfS2OkpI0TT/SxcuHCNC4gE4/GjaFpU29ULCL/U9b4GM+fy68BrwJnxx7j8MHuR2BogmIUAXyb3aRJnjPle/ZZL7jZq1fpCSH4UtIpU/y9TZt694aUTAgBXn/dE8H27aFbNy8gM2GCv7Zsmc8SHnYYXHRRtHGKyKZojJSUsH59yTsR8k2f7gVlbrghwxPCRYu8P+9xx0UdiUhaiWemcFYI4cCSjpnZZyGE/ZIaYQLoLmj6uP56uPdeLyBz8cVw8slw0kmeDE6ZksL7AzfXWWf56LxkiU+F7r677/KfOBH+9S8YPtw3evz1r1FHKpJ2KnimUGOkRO6LLzwHWroUjjrKx82TT/Z+g+DDzJFH+gzhggVQvXq08Zbb6tV+c3XBAk8AFy704jJ//OEtnH75BebM0RgqUkRZ42M81Ucrm1nLEMKHsZMdBOT/ab4hQTGKMG+e7wk8+WTv0nDPPQU9kp55JoMSwj//9CUtZ53lFUUBrrgCbrrJi848+6w/12Amkg40Rkqk5s3z/oJ5edCli+dK11zjj6ZNvVfvTjv5/vv+/TMgIXz3XTjvPE8IwRvQ7767lxvfay//o6FJE//hRSRu8SSFFwGDzWwbwPAGvReZWU2gdzKDk+wRAlx5pReIGTzY9wMuWgRDhniboUaNoo4wgcaP9zU+7dsXHOvcGe66y5eSNm7sSaGIpINIx0gz2wO4CagVQmhX2jHJTHPnwrHHenuJqVML8qBFi3wf/qhR3tEoL8/zpk6dooy2nNauhdtug/vu80pzr74Khx8OtWpFHZlIRtjk8tH/vdGsFkAI4bekRpQEWhqT+kaM8Eqhjzzidzoz2plnejWcH37wKdF8nTvDU0/5pkrthRDZYhW5fLTQ99zsMdLMBgOnAEtDCM0KHW8DPIzPOA4MIfSJ41wjiyaAJR0ricbI9DR7NrRu7cPIm2+W3k5i6VK/F3nAAdC8ecXGuNlC8KWgH33kFXHmzfPloMuX+3aLX3/1vSV9+3o5chHZLOVdPoqZnQz8FdjazAAIIdyZsAglq6xd6y0k9t7b+w6uXOnLXA44AC69NOrokmzlSnjlFa8sWqXI/3733gsdO/o6IBFJG+UYI4cCjwLPFDpXZeAxoDWwGJhhZmPxBLHozGOnEMLS8sYv6eftt+GUU3yl5OTJBXsHS1KvHpx/foWFtuXWrIFWrTwhBN9esffesOOO/vHQQ70U+YknRhunSIbaZFJoZk8ANYBjgIFAO+DDJMclGWrtWvjnPwsKbe6xh/++X7zYa6sUzZPS3p9/eqL3+efek3D9ej9WeOlovtq1lRCKpJnyjJEhhOlm1qjI4ZbAghDCwtj5hwOnhRB647OKkuXGj/fcqEEDeOMNaNgw6ogS5J57PCHs08ebzjdrBtWqRR2VSNaIp2D/YSGEfwHLQwh3AIcCZdyTEnG/FVlEtXatb3ifMMF/9z/wAOy/v68Uuewy3xqQcbp2hTFjfBp0n338bmfnzn43VEQyQaLHyN2A7wt9vjh2rERmVieWmDY3sxtLO1bC13U2s5lmNnPZsmXlCFcq0ogRcNppPpy89VYGJYQLFnhlufbtvQx5ixZKCEUqWDzzMvkd41ab2a7AL8AuyQtJMkGvXnDLLd5q74ILfHbwwgt9X3jhfuxXXx1tnEk1bJjvEezZ03f6i0gminSMDCH8Aly6qWMlfN0AYAD4nsKkBSgJs349XH659+SdODGD6quE4MUEqlb1u8UiEol4ksJxZlYbuA+YBQTgqaRGJWnt4Yc9IWzd2peFXnyxJ4EhwGOPFSSEGW3+fLjkEjjiCLjjjqijEZHkSfQY+QPQoNDn9WPHJMtNmgQ//wwDB2ZQQgjw8sveR+Ohh2DXXaOORiRrlZkUmlklYHIIYQXwspm9AmydjhVIpWIMHepdFc44A1580XsLzpjhrfeaN0/zctjxWrkS/u//oEYNeOGFDNwoKSKQtDFyBrCXme2OJ4MdgLPKH62ku+ef963nbdpEHUkC/fGH/9Hwt795v14RiUyZf62GEPLM7DGgeezztcDaighM0s9//uNLRFu39sErPxdq2dIfGWXJEt/csfvuvjGyYUP45BMYNMiXjf72m2+e3K3UrUAikubKO0aa2QvA0UBdM1sM3BZCGGRmXYDX8Yqjg0MIcxMevKSsDRugUiV/5Fu92sfYjh0zaKvdmjV+A/W//4WRI3UDVSRi8fwfONnM2gKjQrxNDSXr/P67J4Q5OT5wZcygVZLly72P4Lx5Bcdq1PBRu1o1r6Zz2WUqJiOSHbZ4jAwhdCzl+HhgfCKCk9S3Zg307w8zZ8Jnn/nugxNO8ObzsQ4njBsHq1bBWZkyZ/znn15s4I03fO/9IYdEHZFI1osnKbwEuAbINbM/AQNCCEFdQ+V/Hn/cc6XHHoOaNaOOJonye2p8/bXXBa9dGz79FObO9cqiZ50F228fdZQiUnE0Rkq59OgBjzziLSb239+HkpEjfcXN2Wf7e55/3heeHHlktLEmxJ9/egnVSZN8g2RW7CsRSX2bTApDCNtWRCClMbM9gJuAWiGEdqUdk+isWgX33+/7HHJyoo4mifLy4LzzYPp0H6H//nc/fuih0cYlIpGJeoyU9DZtmieEV14J/fr5sdx0mvguAAAgAElEQVRcb9HUrZuPq2bw2mtw1VW+Tz+t5eZ60YFJk3y7xQUXRB2RiMRssk+huXPM7JbY5w3MLK4dYmY22MyWmtmcIsfbmNkXZrbAzG4o6xwhhIUhhAs3dUySY/Ro7x87ZUrp7xkwwCui3XxzxcVV4ULw3kkvvuiNdTuWuOpLRLJMecZIyW6rVvkk2Z57eou+fJUr+7i6YgVce60X51y/PkOWjt52m++3799fCaFIiomnef3jeDPe/F9HK4HH4jz/UGCjOllmVjn29X8HmgIdzaypme1nZq8UedSL8/tIErz8su8Bnz8fTjrJewwWtWYN3HcfHHNMhjafz3fHHdC3rzeJ6tEj6mhEJHWUZ4yULHbjjbBwIQweXHzbxf77w3XXeUXvu+7yJaXNm0cSZuK8+qr37L3wQm/ZJCIpJZ6k8OAQwhXEGvSGEJYDVeM5eQhhOvBrkcMtgQWx2b51wHDgtBDCZyGEU4o8lsb/o0givfQStG/vVUO/+gr++lffSvfSSxu/b/BgL8SZMbOEI0b4Op28vIJjd93lSeEFF/g6n/yd/yIi5RgjJTutWwevvFKwbLS0fYK33OKziN9/77OEaT30LFoE554LBxzgP7iIpJx4Cs2sj83uBQAz2xHIK/tLyrQb8H2hzxcDB5f2ZjOrA9wNNDezG0MIvUs6VsLXdQY6AzRs2LAc4WafESN8ADr0UK+lsu22MHkynHKKr5qcPBmaNPEuDPfcA4cd5jOFae/xxwv6JDVpAl27+rrY226Df/3LK6RViuc+iohkkUSPkZKBpk3zJaLz53uSl5cHe+yx8bLRoqpX9213nTr5EJS28ltP5OZ6BZ3q1aOOSERKEE9S2A/4D1DPzO4G2gEVNi8UQvgFuHRTx0r4ugHAAICcnBy10ojTzz/DRRf5DOFrr8E22/jxWrXg9dd9suz5570/e74nn0zzO5gAw4dDly5w6qk+RfrQQwUJ4tln+5Ro2u/wF5EkiHSMlNS2fLnvOBg40KuLHnGEz/7tuacXkdlUte6jjvJi1ylryRJ491147z347jvvpXH66VCnjrdpGjgQ7r0XfvjB+1U1bhx1xCJSiniqjw4zs4+A4/BS2/8MIczbxJeV5QegQaHP68eOSQro1csTvoEDCxLCfDVqeJ2VELw3+3ff+Q3AtG9MP3Gi34Y94ghPDqtX9ynR99+Hjz+Gzp2VEIpIiZIwRkqGyB9afv7ZE8PbbvNxNCP88YcvH5o+3T+vVs0TwREj4NJL4eijveni0qWe2T7zDBx7bKQhi0jZNpkUmlk/YHgIIVEb52cAe5nZ7ngy2IGCDfoSoYULfQVlp07QtGnp7zPz9ny1a1dcbAm3fj18+KGP2n37+g88dmzBshYzXz+rdhMiUoYkjJGSAULwWiq1a/uqm7QvElPY2rU+G/jOO1445rjj/Afcaiu/kTpiBIwZAwceCD17+g1XEUl58Swf/Qi42cz2xpfIDA8hzIzn5Gb2AnA0UNfMFgO3hRAGmVkX4HWgMjA4hDB3i6KXhLrlFqhSxWuqZKzVq31n/4gRfqezUqWCGcJataKOTkTSzxaPkZLeQoDu3T3xu/XWjV+bN89rqzzxRIYlhPn9eidPhqefLr7Z8cAD/VHWZkkRSUnxLB99GnjazHYA2gL3mFnDEMJecXxtic3cQgjjgfGbG6wkzq+/ej6UP9s3a5bvFezZE3bdNdrYkmbZMvjHP3yGsFMnbz5/7LGw/fZRRyYiaao8Y6Skt6FD4cEHfV/gdddtXD9lfOwvnJNOiiS05AgBunXzfST33pvm1W9EpKjNKaXYGNgH+AswPznhSDL9+qvvFWzdGurVgx139I3ugwZ5g9w6dTK4Bd/XX3uZ1NmzvQHjwIHQtq0SQhFJFI2RWWT+fK9N1rChN6F/7bWNXx8/Hvbbz4vLpJUZM/yG6QcfbHx83TovvvbII3DNNf5Hg4hklE0mhWZ2r5l9BdwJzAFyQgj/SHpkklDvvgu77QYXXwzffAPXX++/17/80quNTpnivQYzcgXl++/73sBff/UlL6efHnVEIpIhNEZmnzVroEMHnxl86y2oW3fjHr6//+7H026WcNUqL7I2YQK0agV9+vhy0R9/9H2D/ft7MnjffRlQclxEiopnT+HXwKEhhJ+THYwkRwj+e3yHHWDcON/fkP/7vE8f3xc+a5ZvE8g4Q4f6bv/69f3W7d57Rx2RiGQWjZFZpkcPX3QybpzPFLZtC88951vWa9SASZNgw4Y0TAp79PCKc6NH+36SG2/0BHHBAr+p+sILng2LSEba5ExhCOFJINfMWprZkfmPCohNEmTcOG8hdPvtvv+78A0+Mz920UVeOCwt5eb6kpZWrTz7nTrVb+Vec403VmzVyvcRKiEUkQTTGJl5QvAdB6GEDsdvvOHDTdeu3pEB4MwzN15COn68r7pJq+LVEyd6+fGrr4bTTvPia4MG+XLSqlX9jwglhCIZzUJJv/UKv8HsIqAr3k/wE+AQ4L0QQto0nMnJyQkzZ2ZnMbjcXDjgAO/AMHeuVxfNKHPnekb7/vuw774+kq9b5xnu+vVw1VVw//0Z+IOLSGnM7KMQQk4FfS+NkRmmTx+fJHvgAc+R8v35p+8TrFQJPv0Utt7aj2/Y4AXajjnGc6nddvN7kYWXlKa05cv9B9tuO182lP+DAfz0k1fSKdq4WETSUlnjYzyFZroCBwHfhhCOAZoDKxIYnyRIXp6v+vjjj4Jjw4Z53tSrV4blRSF4f6TmzeGrr3ztzty53iV41CjfPPncc/Dwwxn2g4tIitEYmUHGjPEq3Ntt53vvP/644LXevf2+Y//+G+dNVar4EtJXXvEJtSVL0mjpaAheQObHH73BfOEfDGCnnZQQimSJeJLCNSGENQBmVi2EMB/QOrwU9J//eA2VJk1gyBC/q3nrrb48tG3bqKNLoNxc6NzZK+OccYY3hDr7bF8Lu+22fhEee8yPiYgkl8bIDDF7tg8bOTl+j3HHHb3uyqpVXm20Tx9//bjjin/tmWf6nsKrrvLP27Sp2Ni32D33+F7BO+/0H1xEslY8UyiLzaw2MBp4w8yWA98mNyzZElOm+Cb3Ro28Dd9NN/kdywEDfLlLRli7Fs45B0aO9B/wrrtUBU1EoqQxMgP89BOceqr37h092peDPvecJ4Bdu/oMYc2avhuhJEce6a2ePvoIWrSAnXeu2Pi3yMsv+zrZs87yjyKS1eIpNHN6CGFFCOF24BZgEPDPZAcmm2/aNDj8cG8/MWwYVK7s7YZat446sgQIAT7/3JvPjxzpmz169VJCKCKR0hiZ3tas8foqLVvCsmW+fHTXXf21Y46BG27weitTp/pM4U47lXyeypWhXTt/nhZLR2fOhHPP9Wo4gwZpLBWRuGYK/yeEMC1ZgUj5/PwzzJnjxcHM/MZfhw6eS6X17/opU+Dpp73G9w8/+Mg7ZAicf37UkYmIbERjZPpYvdp3Gdx/v88SHnKIzwy2aLHx++64w2+0Vq7sW9XLct55MHhwQXKYsmbN8husO+3k06JF9xGKSFZSBY4M8dZb/vGoowqOpf2S0enT4YQTfMf/ccf5lOeJJ3pjKBERkc2Ul1fQgm/xYh9Wevb0sbOkG6hbbQVvvuk3WDc1prZsCStXegKZkpYs8W0XQ4dC3bpeGadevaijEpEUoaQwQ0yb5jf7Djoo6kgS5Lvv/HbrnnvCBx940ycREZHN8NVX8O23sGKF919/6ilfOdmihW+zODKOjpKbc4M1ZRLC2bPhoYe8NVOVKp4NjxrlLZu6d/fksHbtqKMUkRSipDBDTJvmWwOqVYs6kgRYvRr++U8vKjNmjBJCERHZbCNHwv/938bHdtvNOy+cfXYGrKYpSQi+hrVLF/+DoE4dr9i9YYMXGejdGxo3jjpKEUlBSgozwPLlflPwttuijiQBQvBm9J98AuPGwd6q7C4iIptn2TK4/HKfEXzgAZ8Uq10bdtnFl4RmpFWrvOfg00/7lovnn9fyUBGJm5LCDPD2255LFd5PmNI2bPD1OwcfvPEmjhDguuu8Z9Ldd8PJJ0cXo4iIpK0uXXzJ6JtvQrNmUUdTAd54w3/or77yO8S33JJCa1lFJB1k4uKJjPDpp77io6hVq3xF5fr1BcemTYOqVT3HSgvdu/ta11NOgaVL/VheHlx2mZeC69JFPZNERGSLjBwJL73kuVHGJ4TffQdt23pRttxcTw5vv10JoYhsNiWFKWjMGDjgAGje3DsxgE+ivfwy7Luvb7e74go/Bp4UHnwwVK8eXcxxe/VV6NfPpzUnT/Yf9LXXvJb3k096MtivX5r30RARkYrw5ZfQqBG0aQOPPOKLUPKXjV5/fdTRJdnw4bDPPj6G9urlfamOOy7qqEQkTWn5aArq18/bB61c6eWyTznFC4ZNnOg51PHHewW1pk2hUydvOdSzZ9RRx2HJEu8veMABMGGCj+YdOhR0+v33vzVDKCIicbvjDl9wUq0aXHWVH9tqK7/nWCVT/8IJAfr2hR49oFUrb7D4l79EHZWIpLlM/ZWZtubN8z0Q//43XH21J4i9enmVtH79fIVlpUrw22++CvObb3zlZcrvJ8zL89nAVat88/vWW8P++/tt3TvvhCZNPMMVEREpZPFiXx1z++2+gibf/Pm+Bf266+Cee2DBAp80a9gQ9tsvsnCTKzcXunWDRx+FM8/0ojJqPi8iCWAhfw1iBsvJyQkzZ86MOoy4dOnis4CLF8OOO/qxlSv94zbbFLxv1So44gj4+GO/G7piBdSsWfHxxmXZMr+ree+98MQTcMklUUckIhnMzD4KIeREHUe6SOUxMgTfMjF2rHdS+PjjgrHw7LNh9GhYtKhgvMxof/wB55zjF6N7dx9TM7KvhogkS1njo36bpJDff/ebfu3bbzzAbbPNxgkheAI4dqyX1z7ssBRMCH/7zeuAH3kk7LyzD14dOkDnzlFHJiIiaeLll32s69gRvv66YIno/Pm+pa5LlyxJCL/+2gu05e/L79tXCaGIJJSWj6aQZ5/1WcEuXeJ7f/36vp8wpWqy5ObCkCG+yXHZMt8/ePPNfqv3b39LsWBFRCRVLV8OV14JBx7oDef33NO3U5x4orex3XpruPbaqKOsAJMm+VJR8P34xx8fbTwikpGUFFaQ3FzfEzFvHpxxhleQrl+/4PUQ4LHHICcHWraM/7w775z4WLfYBx942bdZs+Dww31zR4sWUUclIiJp6Prr/d7iq6/6Nolbb/X86OKLfQtF9+4ZPkuYl+erbG6+2auMjhnjmbGISBIoKawAeXk+iA0Z4r/Pu3XzxyGHeIGYQw7xvoPz5sHQoVFHu4Vefx1OOw3q1oVhw3ytj2YFRURkC0yb5vvrr73WZwrBq4oOG+aLTjJ+lnDpUjj3XC87fuaZMHAgbLtt1FGJSAZTUphkIfhy0CFDvJHu7bfDF1/4PokxY3zbXX4j+jp1fD9h2pkwwZeH7ruv38atUyfqiEREJE2F4DdOGzXylhOF7bGHDzO//w716kUSXuKF4E3oly6Fn3+G77/3PxhWrPD+vRdfrJusIpJ0SgqTaP16byPUv78vg7ntNj++996+5a5nT1izxqupffABNGuWhpWlx4+H00+Hv/4V3nhDCaGIiJTLmDHwySe+j7BGjeKvb84Wi5S1di1MnQqvvOKPRYs2fn2ffXwFzv77RxGdiGQhJYVJ8Mknvgz0+ed9P0TXrtC7d8k3+rbe2guKHXpohYdZPrm58Pjjvn6nWTNPCHfYIeqoRESkgk2Z4gWnjzyy/MNACD47uNdevgsh4+Tm+h8It9wCS5ZA9erQurU3W2zY0Ldg1K3r06RV9CeaiFQc/cYppxDgnXfg3Xdhxgx/fPstVK0Kp54K558PJ52UYSs/5s6Fiy6C99+HNm08+91++6ijEhGRCPTr5/0Czbzg9HHHec5Tq9bG79uwwd+7YkXBsZwcHyvz5c8SPv10BuZEEyZ48jdnjhcTGDDAL1b16lFHJiKipDBeX33ldy4LW7/e9wsOGOCf77EHHHywLxVt3z4DJs7WrfPqN59/Dj/95PsdFi/25lDbbQfPPQdnnZVhGa+IiGyOF1+EDz/01ZBTpsCDD/rxvn2Lv697d39u5jdVAe680wtsgs8SNm7sQ0vGWLPGe2sMHOh/KIwY4SXINXaKSApRUhiHjz7yu5n/+IcPXn/7m/dP+r//g8mTPQm87roM2U6Xmwv//jeMGuUzgvlVcMBv2+64o4/W992X4bXARUQkHlWrQqtW/rj5Zh8iBgzYeLYwBB82mjaFzz7zvuvr18OFF3qriZ9+gmOOycBZwoULoV07Lx5w441eba5q1aijEhEpJlN+7SZVkybeMLdvX2je3G/wzZ0LX38NgwfDBRdEHWGC/P67j+avvuq9Mq6+2jPg/faDXXeF2rV9JBcRkZRgZnsANwG1QgjtYsf2BboCdYHJIYT+FRnTddfBCy944cwePfzYpEkwe7aPmfnDyFZb+fa6nXf2hPGppzJslvD116FDB38+bhycckq08YiIlMFC/vqNDJaTkxNmzpxZ7vOsWOEtJB56yAezUaM8d8oICxf6xo75833Tx+WXRx2RiMgWMbOPQgg5UcexKWY2GDgFWBpCaFboeBvgYaAyMDCE0CeOc43MTwoLHasEPBNCOKesr03UGFnY8cf7zoNvvoFq1byWyty5BZ8X9cADXrcsv81t2vvuOy/Ctvvu8J//+LJREZGIlTU+atpnM9Su7ctHv/vOew1mTEI4frzX+P7vf/3OphJCEZGKMBRoU/iAmVUGHgP+DjQFOppZUzPbz8xeKfIotVOfmZ0KvAqMT174pbvuOi+u+fzzvnJy0iTvPVhSQghwzTV+4zXtEsLp0+GttzY+FgJ07gx5eV6BRwmhiKQBLR/dArVrRx1Bgqxa5bdmn3jC72iOGlW8mo6IiCRFCGG6mTUqcrglsCCEsBDAzIYDp4UQeuOzivGeeyww1sxeBZ5PTMTxO+EEb7HXt69/3HZbuOSSsr9mu+0qJraEee45LzEO3lQxf93r0KF+g/WRR3ymUEQkDSgpzEa5ufDmm3DFFbBggSeGd93lTRNFRCRKuwHfF/p8MXBwaW82szrA3UBzM7sxhNDbzI4GzgCqUcpMoZl1BjoDNGzYMDGRb3R+ny0891xfRtq9e/EWFWltwAC49FI4+mifGTznHL/RetJJvh//yCO16kZE0oqSwmwyfbq3kxg1yku9NWjgyeHRR0cdmYiIbIEQwi/ApUWOTQWmbuLrBgADwPcUJiO29u2hZ09fRtq1azK+Q0QefNDXu550Eowc6cfatvUlo3vt5e2cBg1SYTYRSStKCrPFqFE+aNWo4QNZu3ZeCa1mzagjExGRAj8ADQp9Xj92LO1stRUMGeLtbRs02PT708KgQZ4Qtm3rGybz20uMHu3LR19+2avmNG4cbZwiIptJSWE2CMF7ajRpArNmKREUEUldM4C9zGx3PBnsAKRtk4bjjos6ggR6+2247DLfMDl8+MbNFKtW9WMzZsAhh0QXo4jIFtLahmzwxhte/u3665UQioikCDN7AXgP2NvMFpvZhSGEDUAX4HVgHvBSCGFulHEK8O23cMYZXjimaEKYr0oVOPRQ31ApIpJmNFOYDXr3ht12843wIiKSEkIIJTZgCCGMJ6JWEoLfRD3vPC+b2qYNtGoFp53mewXHjoXtt486QhGRhEv5pNDM9gBuAmrlN+Y1s32BrkBdYHIIoX+EIaa299+HqVN9j0P+3gcREREpbvly3y/4++/w448wbJgfr1TJe/ruvXe08YmIJElSl4+a2WAzW2pmc4ocb2NmX5jZAjO7oaxzhBAWhhAuLHJsXgjhUuBM4PDER55B7rnH72pefHHUkYiIiKSuvDz417+8Ms4rr3hSOGOGt2x64QU48cSoIxQRSZpkzxQOBR4Fnsk/YGaVgceA1nj/pRlmNhaoDPQu8vWdQghLSzqxmZ0KXAY8m/iw09Tcub5E9KCDfO/Dzjt7RbRbb4Vttok6OhERkdTVp48ng48+WlAsJifHHyIiGS6pSWEIYbqZNSpyuCWwIISwEMDMhgOnhRB6A6dsxrnHAmPN7FXg+cREnAb++AMGD4YLLoDtttv4te7d4csvvSH9U0/5ZvcaNeDKK6OJVUREJB2MHw+33OJtJdR0XkSyUBTVR3cDvi/0+eLYsRKZWR0zewJobmY3xo4dbWb9zOxJStmMb2adzWymmc1ctmxZAsOPWLdu/iia6L3xBrz+ui9zWbYMxo2DCy+Ehx6CunWjiVVERCSVzZvnewhPPhmaNoUBA1Q9VESyUsoXmgkh/AJcWuTYVGDqJr5uADAAICcnJyQpvIo1frzPEu69NzzzjFdDO+MM3wdx3XXQqBFccQVUq+aN6U+Je+JVREQkO6xcCW+95a0lnnvOWzXdfjtcfbXaNolI1ooiKfwBaFDo8/qxY1KW5cu9WEyzZvDee3D00dC5Mxx2mM8Szp7tVdKqVYs6UhERkdTyxx8wZAi8/LKPoevXQ/XqvvLmxhu1okZEsl4USeEMYC8z2x1PBjsAZ0UQR3rp1g1++smXhW6zDTz7LBx4oO8tnDsXWrSADh2ijlJERCR1fP899Ovny0J//x0OOMBnBFu3hsMP98RQRESSmxSa2QvA0UBdM1sM3BZCGGRmXYDX8Yqjg0MIc5MZR1oLAV580ZeL3nqrJ4IA++7rldK6dfPPn37a+yiJiIgIzJrlq2nWr4d27bwYW8uWUUclIpKSkl19tGMpx8dTSoEYiVm92vsiPf64D2zNm8NNN238niuvhHff9TudxxwTTZwiIiKp6MYbfWXNjBmw++5RRyMiktJSvtBMVpo40ZeCLl/uewgffxzOPReqVt34fZUq+SyiiIiIFJg61cfSvn2VEIqIxEFJYap5+WXo2NGXh44ZA61aqTy2iIhIvELwWcLddlPPQRGROGkTWioZMgTOPBNycvwu5xFHKCEUEREpzYYNMGIE/PprwbFx4+D99+G221RIRkQkTkoKU8WAAdCpExx3nLeY2H77qCMSERFJbd27+83UJk2gf39Yt8733zduDOefH3V0IiJpQ0lhKvjpJ7jmGi+RPW6cmueKiIhsylNPebuJ886D/fbzpaJ77AFz5sBdd8FWW0UdoYhI2lBSmAp69YI1a+DRR9V8XkREZFOmT/ck8MQTYeBAePNNGDkSqlSBgw/22UMREYmbCs1E7euv4Ykn4OKLffmLiIiIbCwvD1atgt9+84b0bdvCnnvC8OGeCIIfO/10yM1V314Rkc2kpDBqt9zirSZuvTXqSERERFLPJ5/A8cfDL78UHKtdG8aO9Y+FVaqkhFBEZAsoKUymEGDhQmjUCCpXLv76xx97g/qePWGXXSo8PBERkZS2YYMXYatSxXsObrcd1KoFLVv62CoiIgmhpDAZliyBp5+GQYNgwQIfuC65xAe2evX8PWvXwg03wA47QI8ekYYrIiKSku6/32+gjhzpy0NFRCQptMYi0Xr3hgYNChrn9u0Lu+/un9ev703pd9gBtt4aJk70WcJataKOWkREJBobNnjF0NGjfc9gvi+/9F6DZ5yhhFBEJMk0U5hIy5d7Gezjj4dHHoG99vLj3bvD/PlePvvbb70X4c47+yZ5VUgTEZFs8uuvXj106lRvMj97tlfgBt8jePXVcNVVcNFF3nz+0UcjDVdEJBsoKUykoUPhzz+hT5+ChDDfPvv4MhgREZFs9MsvcNpp8O67vud+6619b+Bll8GBB/rN0kce8dnB3r09URw8WHvuRUQqgJLCRMnLg8ceg8MPh7/9LepoREREUstjj8E773jSd/zxcNBBxXvzHn88fPQR3H03bLstnH9+JKGKiGQbJYWJMnGi9xy8666oIxEREUktf/7py0BPOgluv73s97ZoAaNGVUhYIiLiVGgmXh984MtdSvPoo7DTTtoMLyIiUtSzz8KyZXDddVFHIiIiJVBSGI9p0+CQQ+Cee0p+feFCGD/e205UrVqxsYmIiKSyvDzfU9+iBRx1VNTRiIhICZQUxuPII+Gss7ytxIsvFn+9f3+oVAk6d6742ERERKL03nteSTQvr+TXX3nF20tcey2YVWhoIiISHyWF8TDzCmitWsF55/lG+Xxz53qT+jPO8L6EIiIi2aR3bzjmGO/J27MnzJu38et9+0LDhtCuXTTxiYjIJikpjFe1at5Yt2FDL6ndv7/PIDZr5hvotU9CRESy0fDhMGwYNG3q2yyaNoUmTaBLF+jXD956y3sPVlFtOxGRVKWkcHPUqeN7BwEuvxz++1+47z74/nsvrS0iIpJtatTwLRavvQY//OCJ4F57wZAh0LUr1KoFF14YdZQiIlIG3bbbXI0bw9tvw5IlvmG+kvJqERERwBvQX3mlP9au9e0WtWt7z0EREUlZSgq3xD77+ENERERKVq0aHHts1FGIiEgcNM0lIiIiIiKSxZQUioiIiIiIZDElhSIiIiIiIllMSaGIiIiIiEgWU1IoIiIiIiKSxZQUioiIiIiIZDElhSIiIiIiIllMSaGIiIiIiEgWU1IoIiIiIiKSxZQUioiIiIiIZDELIUQdQ9KZ2TLg26jjSKC6wM9RB5FidE2K0zUpma5LcZl2Tf4SQtgx6iDShcbIrKBrUpyuSXG6JsVl2jUpdXzMiqQw05jZzBBCTtRxpBJdk+J0TUqm61KcrolkEv17Lk7XpDhdk+J0TYrLpmui5aMiIiIiIiJZTEmhiIiIiIhIFlNSmJ4GRB1ACtI1KU7XpGS6LsXpmkgm0b/n4nRNitM1KU7XpLisuSbaUygiIiIiIpLFNFMoIiIiIiKSxZQUioiIiIiIZDElhSIiIiIiIllMSWGGMLM9zGyQmY0scrymmc00s1Oiii0qJV0TM/unmT1lZi+a2QlRxheFUq5JTTN7OnZdzo4yviiZWYT8C4cAAAnbSURBVEMzG21mg83shqjjSQVmVsnM7jazR8zsvKjjEdkSGh+L0/hYnMbHsmmMLC7TxkglhSkg9j/YUjObU+R4GzP7wswWbOp/wBDCwhDChSW8dD3wUiLjrQjJuiYhhNEhhIuBS4H2iY88eZL47+QMYGTsupya4LArRCKuDbAffh06Ac2TFmwFSdA1OQ2oD6wHFicrVpHSaHwsTuNjcRofy6YxsjiNkcVViToAAWAo8CjwTP4BM6sMPAa0xv+hzTCzsUBloHeRr+8UQlha9KRm1hr4HNg6OWEn1VCScE0KuTl2rnQylORck/rAZ7HnuQmOuaIMpZzXBngfGGlmnYBnKyDmZBtK+a/J3sC7IYQnY3fPJ1dA3CKFDUXjY1FD0fhY1FA0PpZlKBojixqKxsiNKClMASGE6WbWqMjhlsCCEMJCADMbDpwWQugNxLvU5WigJtAU+NPMxocQ8hISdJIl65qYmQF9gNdCCLMSF3HyJfHfyWJ84PuENF09kIhrY2bXArfFzjUSGJLcqJMrQddkMbAu9mk6/0EkaUrjY3EaH4vT+Fg2jZHFaYwsLm3/gWeB3YDvC32+OHasRGZWx8yeAJqb2Y0AIYSbQgjdgOeBp9JlwCtDua8JcCVwPNDOzC5NWqQVJxHXZBTQ1sz6A+OSFmnF26xrA0wAropdn0VJjCtKm3tNRgEnmtkjwPRkBiayGTQ+FqfxsTiNj2XTGFlcVo+RminMECGEX/B9ACW9NrRio0kNJV2TEEI/oF80EUWvlGuyCrggmohSRwhhDtAu6jhSSQhhNVDSXiyRtKHxsTiNj8VpfCybxsjiMm2M1Exh6voBaFDo8/qxY9lM16Q4XZPS6doUp2simUD/jovTNSlO16Rsuj7FZfU1UVKYumYAe5nZ7mZWFegAjI04pqjpmhSna1I6XZvidE0kE+jfcXG6JsXpmpRN16e4rL4mSgpTgJm9ALwH7G1mi83swhDCBqAL8DowD3gphDA3yjgrkq5JcbompdO1KU7XRDKB/h0Xp2tSnK5J2XR9itM1Kc5CCFHHICIiIiIiIhHRTKGIiIiIiEgWU1IoIiIiIiKSxZQUioiIiIiIZDElhSIiIiIiIllMSaGIiIiIiEgWU1IoIiIiIiKSxZQUipSDma1MwDnON7NHN/GeRmZ21maet7aZXR7H+xqZ2ZzNObeIiMiWMrOpZpazifd0M7MahT4fb2a1E/C9e8b5vnKP7yLpREmhSHpoBGxWUgjUBjaZFG4uM6uS6HOKiEjmMFfevzG7Af9LCkMIJ4UQVpTznABxJYWbI0E/r0ik9A9YJA5mNtrMPjKzuWbWuchrD8aOTzazHWPHrjKzz83sUzMbHju2Q+w8n5rZ+2a2fwnfZ6iZtSv0ef6dyj7AEWb2iZldbWaVzew+M5sRO98lJYTdB9gz9jX3xQat+8xsjpl9ZmbtS/j+JZ7XzI42s7fMbCzweVnXxMxWmtndZjY79nPuFDu+k5n9J3Z8tpkdFjt+jpl9GIvzSTOrvBn/aUREJAXEVp18YWbPAHOABmZ2gpm9Z2azzGyEmW1Twtf1N7OZsbHkjtixq4BdgSlmNiV2bJGZ1TWzPmZ2RaGvv93Mro09v67Q+HVHCd+rD1A9Nt4Mix27JjYuzjGzbqX8bMXOW8rPW+xnKRT7HbHr8JmZ7RM7vo2ZDYkd+9TM2saOb/K6iSRcCEEPPfTYxAPYIfaxOv7Lv07s8wCcHXt+K/Bo7Pl/gWqx57VjHx8Bbos9Pxb4JPb8/EJfNxRoV+j7rox9PBp4pdDxzsDNsefVgJnA7kVibgTMKfR5W+ANoDKwE/AdsEvh95V23tj3X1X4e2zimvwj9vzeQud7EegWe14ZqAXsC4wDtoodfxz4V9T/vfXQQw899Ni8R2wsyQMOiX1eF5gO1Ix9fj1wa+z5VCAn9jx/LKkcO75/7PNFQN1C518UO2dzYFqh458DDYATgAGA4ZMerwBHlhDnykLPWwCfATWBbYC5QPPC7yvtvEV/3jh+litjzy8HBsae3wM8VOjrty/ruumhRzIfWgYmEp+rzOz02PMGwF7AL/iA8GLs+HPAqNjzT4FhZjYaGB071gpPzAghvGlmdcxsuy2M5wRg/0KzirViMX1Txte0Al4IIeQCP5nZNOCgWKybOu864MMQQuHzl3ZN1uGDJsBHQOvY82OBfwHEYvjNzM7FB+UZZgaeYC6N6wqIiEiq+TaE8H7s+SFAU+Cd2O/3qsB7JXzNmbHVJlXwG5VN2Xhc2kgI4WMzq2dmuwI7AstDCN+bWVd8DPs49tZt8HFpehnxtgL+E0JYBWBmo4AjCp2D2DlLOu93RX7eTf0s+X8ffAScEXt+PNCh0M+23MxOIb7rJpJQSgpFNsHMjsZ/cR8aQlhtZlOBrUt5e4h9PBm/k/gP4CYz2y/Ob7eB2LJu8/0JVUsLC7/r+Hqc541XieeNXYNVRT4v7ZqsDyHkX4dcyv49Y8DTIYQbExK9iIhEaVWh5wa8EULoWNqbzWx34FrgoFhCNJTSx9fCRgDtgJ0puDFrQO8QwpNbEngZSjyvmTVi43FxUz/L2tjHeMbFMq+bSDJoT6HIptXC70Suju0DOKTQa5XwgQm8EMzbsWSuQQhhCr7soxZ+Z/Et4Gz4X1L1cwjh9yLfaxE+cwZwKrBV7PkfwLaF3vc6cJmZbRU7XxMzq1nkXEW/5i2gfWzf4I540vphka+J57ybuialmQxcFjtvZTOrFTvWzszqxY7vYGZ/ieNcIiKS2t4HDjezxgBmVtPMmhR5z3Z4YvVbbP/53wu9VnQMK+xFfIatHZ4ggo9fnfL335nZbvljSxHr88c4fFz8p5nViI11p8eOFRbvecv6WUrzBlB4f+T2xHfdRBJOM4UimzYBuNTM5gFf4L+w860CWprZzfiyx/b4XoLnYkmPAf1CCCvM7HZgsJl9CqwGzivhez0FjDGz2bHvm38X8lMgN3Z8KPAwvp9hlvn6kmXAPwufKITwi5m9Y95u4jWgB3AoMBuf0ewRQvgxdrcz38BNnTeOa1KarsAAM7sQv1N6WQjhvdi1mxhLptfjA+S3cZxPRERSVAhhmZmdD7xgZtVih28Gviz0ntlm9jEwH/geeKfQKQYAE8zsvyGEY4qce66ZbQv8EEJYEjs20cz2Bd6LLbtcCZxD8S0JA4BPzWxWCOHs2Ixe/g3SgSGEwktHyzpvbpH3lfWzlKYX8FhsnM4F7gghjNrUdRNJBitY5SUiIiIiIiLZRstHRUREREREspiSQhERERERkSympFBERERERCSLKSkUERERERHJYkoKRUREREREspiSQhERERERkSympFBERERERCSLKSkUERERERHJYv8PIkm3i5o1lOoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -851,7 +851,11 @@ " ax.legend()\n", "\n", "plot_error(atols, atol_x_errs, atol_llh_errs, 'absolute', axes[0])\n", - "plot_error(rtols, rtol_x_errs, rtol_llh_errs, 'relative', axes[1])" + "plot_error(rtols, rtol_x_errs, rtol_llh_errs, 'relative', axes[1])\n", + "\n", + "# reset relative tolerance to default value\n", + "solver.setRelativeTolerance(1e-8)\n", + "solver.setRelativeTolerance(1e-16)" ] }, { @@ -1404,9 +1408,9 @@ "name": "stdout", "output_type": "stream", "text": [ - "Log-likelihood: -1205.195087\n", - "Gradient: [ 1.13739826e+01 1.23993091e+01 -3.54960044e+01 -9.76603519e+00\n", - " -6.22459540e+01 6.68794579e-01 -6.46531682e+00 2.13965462e+04]\n" + "Log-likelihood: -1088.566890\n", + "Gradient: [-5.70730678e+01 -7.76339486e+01 1.27121046e+02 1.42311847e+01\n", + " 2.71899987e+02 -1.64169706e+00 3.56056940e+00 1.91288570e+04]\n" ] } ], @@ -1460,16 +1464,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "sllh: |error|_2: 32.261882\n", + "sllh: |error|_2: 28.864869\n", "\n", - "sllh: p[0]: |error|_2: 0.010290\n", - "sllh: p[1]: |error|_2: 0.023725\n", - "sllh: p[2]: |error|_2: 0.035811\n", - "sllh: p[3]: |error|_2: 0.007622\n", - "sllh: p[4]: |error|_2: 0.095420\n", + "sllh: p[0]: |error|_2: 0.001781\n", + "sllh: p[1]: |error|_2: 0.002541\n", + "sllh: p[2]: |error|_2: 0.026482\n", + "sllh: p[3]: |error|_2: 0.003422\n", + "sllh: p[4]: |error|_2: 0.085271\n", "sllh: p[5]: |error|_2: 0.000280\n", "sllh: p[6]: |error|_2: 0.001050\n", - "sllh: p[7]: |error|_2: 32.261730\n", + "sllh: p[7]: |error|_2: 28.864726\n", "\n", "sy: p[0]: |error|_2: 0.002974\n", "sy: p[1]: |error|_2: 0.002717\n", @@ -1750,12 +1754,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.854770\n", - " 1.145550\n", - " -0.059872\n", - " -1.677553\n", - " 2.485344\n", - " 0.190391\n", + " -0.414816\n", + " -0.876073\n", + " 1.227374\n", + " -2.444445\n", + " 2.570303\n", + " -0.957382\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1771,12 +1775,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.053593\n", - " 0.241636\n", - " 1.593800\n", - " 2.498764\n", - " 2.743638\n", - " -0.660179\n", + " 2.451814\n", + " -1.136215\n", + " -1.698820\n", + " 1.238130\n", + " 2.486213\n", + " 0.362012\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1792,12 +1796,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.171368\n", - " 1.410101\n", - " 1.438133\n", - " 1.021609\n", - " 3.051800\n", - " 0.610429\n", + " 0.471712\n", + " -0.151082\n", + " -1.797739\n", + " 0.288818\n", + " 2.313434\n", + " -0.686996\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1813,12 +1817,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.205662\n", - " 2.391259\n", - " 0.054255\n", - " -1.032851\n", - " 2.960908\n", - " 0.133051\n", + " 0.704033\n", + " 0.896003\n", + " 0.451385\n", + " 1.046007\n", + " 5.043385\n", + " -0.671759\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1834,12 +1838,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.759200\n", - " 0.067206\n", - " -1.456685\n", - " 2.600566\n", - " 2.878851\n", - " -0.193766\n", + " 0.901247\n", + " 0.895383\n", + " -1.412566\n", + " 1.901419\n", + " 3.837156\n", + " 0.147422\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1855,12 +1859,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.311092\n", - " 0.141907\n", - " -0.228872\n", - " -0.193889\n", - " 4.811703\n", - " 0.994076\n", + " 1.242644\n", + " 1.337338\n", + " -1.103457\n", + " 0.432559\n", + " 2.887246\n", + " 2.096051\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1876,12 +1880,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.865276\n", - " 0.838981\n", - " 0.668306\n", - " 1.623928\n", - " 3.328777\n", - " 0.075325\n", + " -0.808071\n", + " 2.087179\n", + " -0.791739\n", + " 3.218673\n", + " 3.837424\n", + " 0.190466\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1897,12 +1901,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.163654\n", - " 2.215009\n", - " -0.771913\n", - " 3.161547\n", - " 4.519341\n", - " 1.115471\n", + " 0.083943\n", + " 1.977401\n", + " -0.003218\n", + " 0.692508\n", + " 5.517687\n", + " 2.463217\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1918,12 +1922,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.395456\n", - " 0.612326\n", - " 0.976628\n", - " -0.055129\n", - " 2.919909\n", - " 0.113068\n", + " -0.678246\n", + " 0.868593\n", + " 1.344468\n", + " 0.650529\n", + " 3.649025\n", + " 1.408445\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1939,12 +1943,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.717336\n", - " 1.043128\n", - " 1.064387\n", - " -0.143616\n", - " 5.751210\n", - " 2.882783\n", + " 1.623963\n", + " 0.095821\n", + " 1.552055\n", + " 0.295860\n", + " 4.188810\n", + " 0.128069\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1960,12 +1964,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -1.204150\n", - " 0.689827\n", - " 1.082176\n", - " 1.904679\n", - " 2.756413\n", - " 1.600066\n", + " 0.035316\n", + " 0.673437\n", + " 0.068617\n", + " 1.458583\n", + " 2.803158\n", + " 1.455018\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -1981,12 +1985,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.805529\n", - " 0.522137\n", - " 0.670364\n", - " 2.454703\n", - " 3.018521\n", - " 1.862394\n", + " 0.912310\n", + " 2.633523\n", + " -0.515745\n", + " 0.620131\n", + " 4.286741\n", + " 0.179958\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2002,12 +2006,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.667126\n", - " 0.783559\n", - " -1.014303\n", - " -0.101997\n", - " 1.940476\n", - " -1.256017\n", + " -0.036992\n", + " 0.530859\n", + " -1.114001\n", + " 1.962801\n", + " 4.852431\n", + " 1.744331\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2023,12 +2027,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.349566\n", - " -0.937770\n", - " 0.449607\n", - " 0.239118\n", - " 4.411886\n", - " -0.570199\n", + " -0.402563\n", + " 0.933044\n", + " 1.046995\n", + " 0.395994\n", + " 2.288115\n", + " 1.817704\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2044,12 +2048,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -1.199949\n", - " 0.312773\n", - " 1.263932\n", - " 1.544323\n", - " 3.262497\n", - " 0.091539\n", + " -0.505098\n", + " 2.559202\n", + " -0.145338\n", + " 0.352249\n", + " 5.320218\n", + " 1.215976\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2065,12 +2069,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.100669\n", - " 0.046852\n", - " -1.349183\n", - " 2.652128\n", - " 1.339296\n", - " 0.999152\n", + " 1.538138\n", + " 0.302181\n", + " -2.137766\n", + " 1.630837\n", + " 3.806037\n", + " 0.093093\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2086,12 +2090,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " -0.882725\n", - " 0.565985\n", - " -0.286692\n", - " 1.673683\n", - " 0.860009\n", - " 0.185171\n", + " 1.764999\n", + " 0.527020\n", + " 0.853451\n", + " 1.278411\n", + " 4.361549\n", + " -0.308099\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2107,12 +2111,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.093720\n", - " 0.850729\n", - " 0.528986\n", - " 0.980290\n", - " 6.252438\n", - " 1.571740\n", + " 0.723098\n", + " 0.539088\n", + " 1.028430\n", + " 0.059518\n", + " 3.805920\n", + " 1.652130\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2128,12 +2132,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.995882\n", - " 2.575455\n", - " 0.444333\n", - " 0.765691\n", - " 3.344862\n", - " -0.876842\n", + " 1.761027\n", + " 1.024605\n", + " 0.443612\n", + " 1.453533\n", + " 2.976122\n", + " 0.269625\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2149,12 +2153,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.146899\n", - " 0.926665\n", - " 1.004243\n", - " 1.257351\n", - " 2.845607\n", - " -0.663591\n", + " 0.075774\n", + " 0.587967\n", + " 0.095493\n", + " -0.258109\n", + " 2.943583\n", + " 0.289256\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2170,12 +2174,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.688457\n", - " -0.191403\n", - " -1.501904\n", - " 0.003456\n", - " 3.982428\n", - " 1.368897\n", + " -0.002435\n", + " -1.179119\n", + " 0.299502\n", + " -0.345324\n", + " 5.717243\n", + " -0.411100\n", " 1.0\n", " 1.0\n", " 1.0\n", @@ -2189,73 +2193,73 @@ ], "text/plain": [ " time datatype t_presim k0 k0_preeq k0_presim observable_x1 \\\n", - "0 0.0 data 0.0 1.0 NaN NaN 0.854770 \n", - "1 0.5 data 0.0 1.0 NaN NaN -0.053593 \n", - "2 1.0 data 0.0 1.0 NaN NaN 1.171368 \n", - "3 1.5 data 0.0 1.0 NaN NaN -0.205662 \n", - "4 2.0 data 0.0 1.0 NaN NaN 0.759200 \n", - "5 2.5 data 0.0 1.0 NaN NaN -0.311092 \n", - "6 3.0 data 0.0 1.0 NaN NaN 0.865276 \n", - "7 3.5 data 0.0 1.0 NaN NaN -0.163654 \n", - "8 4.0 data 0.0 1.0 NaN NaN 0.395456 \n", - "9 4.5 data 0.0 1.0 NaN NaN 0.717336 \n", - "10 5.0 data 0.0 1.0 NaN NaN -1.204150 \n", - "11 5.5 data 0.0 1.0 NaN NaN 0.805529 \n", - "12 6.0 data 0.0 1.0 NaN NaN 0.667126 \n", - "13 6.5 data 0.0 1.0 NaN NaN 0.349566 \n", - "14 7.0 data 0.0 1.0 NaN NaN -1.199949 \n", - "15 7.5 data 0.0 1.0 NaN NaN 1.100669 \n", - "16 8.0 data 0.0 1.0 NaN NaN -0.882725 \n", - "17 8.5 data 0.0 1.0 NaN NaN 0.093720 \n", - "18 9.0 data 0.0 1.0 NaN NaN 1.995882 \n", - "19 9.5 data 0.0 1.0 NaN NaN 0.146899 \n", - "20 10.0 data 0.0 1.0 NaN NaN 0.688457 \n", + "0 0.0 data 0.0 1.0 NaN NaN -0.414816 \n", + "1 0.5 data 0.0 1.0 NaN NaN 2.451814 \n", + "2 1.0 data 0.0 1.0 NaN NaN 0.471712 \n", + "3 1.5 data 0.0 1.0 NaN NaN 0.704033 \n", + "4 2.0 data 0.0 1.0 NaN NaN 0.901247 \n", + "5 2.5 data 0.0 1.0 NaN NaN 1.242644 \n", + "6 3.0 data 0.0 1.0 NaN NaN -0.808071 \n", + "7 3.5 data 0.0 1.0 NaN NaN 0.083943 \n", + "8 4.0 data 0.0 1.0 NaN NaN -0.678246 \n", + "9 4.5 data 0.0 1.0 NaN NaN 1.623963 \n", + "10 5.0 data 0.0 1.0 NaN NaN 0.035316 \n", + "11 5.5 data 0.0 1.0 NaN NaN 0.912310 \n", + "12 6.0 data 0.0 1.0 NaN NaN -0.036992 \n", + "13 6.5 data 0.0 1.0 NaN NaN -0.402563 \n", + "14 7.0 data 0.0 1.0 NaN NaN -0.505098 \n", + "15 7.5 data 0.0 1.0 NaN NaN 1.538138 \n", + "16 8.0 data 0.0 1.0 NaN NaN 1.764999 \n", + "17 8.5 data 0.0 1.0 NaN NaN 0.723098 \n", + "18 9.0 data 0.0 1.0 NaN NaN 1.761027 \n", + "19 9.5 data 0.0 1.0 NaN NaN 0.075774 \n", + "20 10.0 data 0.0 1.0 NaN NaN -0.002435 \n", "\n", " observable_x2 observable_x3 observable_x1_scaled \\\n", - "0 1.145550 -0.059872 -1.677553 \n", - "1 0.241636 1.593800 2.498764 \n", - "2 1.410101 1.438133 1.021609 \n", - "3 2.391259 0.054255 -1.032851 \n", - "4 0.067206 -1.456685 2.600566 \n", - "5 0.141907 -0.228872 -0.193889 \n", - "6 0.838981 0.668306 1.623928 \n", - "7 2.215009 -0.771913 3.161547 \n", - "8 0.612326 0.976628 -0.055129 \n", - "9 1.043128 1.064387 -0.143616 \n", - "10 0.689827 1.082176 1.904679 \n", - "11 0.522137 0.670364 2.454703 \n", - "12 0.783559 -1.014303 -0.101997 \n", - "13 -0.937770 0.449607 0.239118 \n", - "14 0.312773 1.263932 1.544323 \n", - "15 0.046852 -1.349183 2.652128 \n", - "16 0.565985 -0.286692 1.673683 \n", - "17 0.850729 0.528986 0.980290 \n", - "18 2.575455 0.444333 0.765691 \n", - "19 0.926665 1.004243 1.257351 \n", - "20 -0.191403 -1.501904 0.003456 \n", + "0 -0.876073 1.227374 -2.444445 \n", + "1 -1.136215 -1.698820 1.238130 \n", + "2 -0.151082 -1.797739 0.288818 \n", + "3 0.896003 0.451385 1.046007 \n", + "4 0.895383 -1.412566 1.901419 \n", + "5 1.337338 -1.103457 0.432559 \n", + "6 2.087179 -0.791739 3.218673 \n", + "7 1.977401 -0.003218 0.692508 \n", + "8 0.868593 1.344468 0.650529 \n", + "9 0.095821 1.552055 0.295860 \n", + "10 0.673437 0.068617 1.458583 \n", + "11 2.633523 -0.515745 0.620131 \n", + "12 0.530859 -1.114001 1.962801 \n", + "13 0.933044 1.046995 0.395994 \n", + "14 2.559202 -0.145338 0.352249 \n", + "15 0.302181 -2.137766 1.630837 \n", + "16 0.527020 0.853451 1.278411 \n", + "17 0.539088 1.028430 0.059518 \n", + "18 1.024605 0.443612 1.453533 \n", + "19 0.587967 0.095493 -0.258109 \n", + "20 -1.179119 0.299502 -0.345324 \n", "\n", " observable_x2_offsetted observable_x1withsigma observable_x1_std \\\n", - "0 2.485344 0.190391 1.0 \n", - "1 2.743638 -0.660179 1.0 \n", - "2 3.051800 0.610429 1.0 \n", - "3 2.960908 0.133051 1.0 \n", - "4 2.878851 -0.193766 1.0 \n", - "5 4.811703 0.994076 1.0 \n", - "6 3.328777 0.075325 1.0 \n", - "7 4.519341 1.115471 1.0 \n", - "8 2.919909 0.113068 1.0 \n", - "9 5.751210 2.882783 1.0 \n", - "10 2.756413 1.600066 1.0 \n", - "11 3.018521 1.862394 1.0 \n", - "12 1.940476 -1.256017 1.0 \n", - "13 4.411886 -0.570199 1.0 \n", - "14 3.262497 0.091539 1.0 \n", - "15 1.339296 0.999152 1.0 \n", - "16 0.860009 0.185171 1.0 \n", - "17 6.252438 1.571740 1.0 \n", - "18 3.344862 -0.876842 1.0 \n", - "19 2.845607 -0.663591 1.0 \n", - "20 3.982428 1.368897 1.0 \n", + "0 2.570303 -0.957382 1.0 \n", + "1 2.486213 0.362012 1.0 \n", + "2 2.313434 -0.686996 1.0 \n", + "3 5.043385 -0.671759 1.0 \n", + "4 3.837156 0.147422 1.0 \n", + "5 2.887246 2.096051 1.0 \n", + "6 3.837424 0.190466 1.0 \n", + "7 5.517687 2.463217 1.0 \n", + "8 3.649025 1.408445 1.0 \n", + "9 4.188810 0.128069 1.0 \n", + "10 2.803158 1.455018 1.0 \n", + "11 4.286741 0.179958 1.0 \n", + "12 4.852431 1.744331 1.0 \n", + "13 2.288115 1.817704 1.0 \n", + "14 5.320218 1.215976 1.0 \n", + "15 3.806037 0.093093 1.0 \n", + "16 4.361549 -0.308099 1.0 \n", + "17 3.805920 1.652130 1.0 \n", + "18 2.976122 0.269625 1.0 \n", + "19 2.943583 0.289256 1.0 \n", + "20 5.717243 -0.411100 1.0 \n", "\n", " observable_x2_std observable_x3_std observable_x1_scaled_std \\\n", "0 1.0 1.0 1.0 \n", @@ -2372,12 +2376,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.754770\n", - " 0.745550\n", - " 0.759872\n", - " 1.877553\n", - " 0.914656\n", - " 0.903906\n", + " 0.514816\n", + " 1.276073\n", + " 0.527374\n", + " 2.644445\n", + " 0.829697\n", + " 10.573821\n", " \n", " \n", " 1\n", @@ -2386,12 +2390,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.592960\n", - " 0.443043\n", - " 1.402310\n", - " 1.420030\n", - " 0.941041\n", - " 11.995462\n", + " 1.912447\n", + " 1.820894\n", + " 1.890310\n", + " 0.159396\n", + " 1.198465\n", + " 1.773556\n", " \n", " \n", " 2\n", @@ -2400,12 +2404,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.591296\n", - " 0.676814\n", - " 1.341709\n", - " 0.138536\n", - " 0.681487\n", - " 0.303567\n", + " 0.108360\n", + " 0.884369\n", + " 1.894163\n", + " 0.871327\n", + " 1.419854\n", + " 12.670683\n", " \n", " \n", " 3\n", @@ -2414,12 +2418,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.776061\n", - " 1.660607\n", - " 0.021821\n", - " 2.173649\n", - " 0.769744\n", - " 4.373485\n", + " 0.133633\n", + " 0.165351\n", + " 0.375309\n", + " 0.094792\n", + " 1.312732\n", + " 12.421583\n", " \n", " \n", " 4\n", @@ -2428,12 +2432,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.198665\n", - " 0.648630\n", - " 1.526379\n", - " 1.479497\n", - " 0.836985\n", - " 7.543005\n", + " 0.340712\n", + " 0.179547\n", + " 1.482260\n", + " 0.780350\n", + " 0.121320\n", + " 4.131129\n", " \n", " \n", " 5\n", @@ -2442,12 +2446,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.864147\n", - " 0.556844\n", - " 0.295173\n", - " 1.300000\n", - " 1.112952\n", - " 4.410204\n", + " 0.689589\n", + " 0.638587\n", + " 1.169758\n", + " 0.673553\n", + " 0.811504\n", + " 15.429952\n", " \n", " \n", " 6\n", @@ -2456,12 +2460,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.318405\n", - " 0.157019\n", - " 0.604574\n", - " 0.530187\n", - " 0.353186\n", - " 4.715461\n", + " 1.354942\n", + " 1.405217\n", + " 0.855471\n", + " 2.124931\n", + " 0.155462\n", + " 3.564042\n", " \n", " \n", " 7\n", @@ -2470,12 +2474,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.705014\n", - " 1.548900\n", - " 0.833419\n", - " 2.078828\n", - " 0.853233\n", - " 5.741110\n", + " 0.457417\n", + " 1.311292\n", + " 0.064725\n", + " 0.390211\n", + " 1.851578\n", + " 19.218570\n", " \n", " \n", " 8\n", @@ -2484,12 +2488,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.140824\n", - " 0.038976\n", - " 0.917134\n", - " 1.127690\n", - " 0.731393\n", - " 4.232125\n", + " 1.214527\n", + " 0.217291\n", + " 1.284974\n", + " 0.422031\n", + " 0.002277\n", + " 8.721648\n", " \n", " \n", " 9\n", @@ -2498,12 +2502,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.185797\n", - " 0.405613\n", - " 1.006734\n", - " 1.206693\n", - " 2.113695\n", - " 23.512450\n", + " 1.092425\n", + " 0.541694\n", + " 1.494402\n", + " 0.767217\n", + " 0.551295\n", + " 4.034688\n", " \n", " \n", " 10\n", @@ -2512,12 +2516,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.731241\n", - " 0.065145\n", - " 1.026216\n", - " 0.850497\n", - " 0.868269\n", - " 10.729745\n", + " 0.491775\n", + " 0.048756\n", + " 0.012657\n", + " 0.404401\n", + " 0.821524\n", + " 9.279264\n", " \n", " \n", " 11\n", @@ -2526,12 +2530,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.282614\n", - " 0.090596\n", - " 0.615964\n", - " 1.408874\n", - " 0.594212\n", - " 13.394799\n", + " 0.389395\n", + " 2.020790\n", + " 0.570145\n", + " 0.425698\n", + " 0.674008\n", + " 3.429569\n", " \n", " \n", " 12\n", @@ -2540,12 +2544,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.148137\n", - " 0.181956\n", - " 1.067263\n", - " 1.139975\n", - " 1.661126\n", - " 17.750062\n", + " 0.555981\n", + " 0.070744\n", + " 1.166961\n", + " 0.924822\n", + " 1.250828\n", + " 12.253422\n", " \n", " \n", " 13\n", @@ -2554,12 +2558,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.165734\n", - " 1.528999\n", - " 0.397978\n", - " 0.791481\n", - " 0.820657\n", - " 10.854981\n", + " 0.917862\n", + " 0.341815\n", + " 0.995366\n", + " 0.634604\n", + " 1.303114\n", + " 13.024050\n", " \n", " \n", " 14\n", @@ -2568,12 +2572,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.711779\n", - " 0.268782\n", - " 1.213533\n", - " 0.520663\n", - " 0.319058\n", - " 4.202913\n", + " 1.016928\n", + " 1.977647\n", + " 0.195737\n", + " 0.671411\n", + " 1.738663\n", + " 7.041457\n", " \n", " \n", " 15\n", @@ -2582,12 +2586,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.592101\n", - " 0.525677\n", - " 1.398442\n", - " 1.634992\n", - " 2.233233\n", - " 4.905843\n", + " 1.029570\n", + " 0.270348\n", + " 2.187025\n", + " 0.613702\n", + " 0.233507\n", + " 4.154744\n", " \n", " \n", " 16\n", @@ -2596,12 +2600,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.388225\n", - " 0.001882\n", - " 0.334895\n", - " 0.662683\n", - " 2.704094\n", - " 3.203293\n", + " 1.259499\n", + " 0.037083\n", + " 0.805247\n", + " 0.267410\n", + " 0.797446\n", + " 8.135988\n", " \n", " \n", " 17\n", @@ -2610,12 +2614,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.408896\n", - " 0.294495\n", - " 0.481762\n", - " 0.024940\n", - " 2.696204\n", - " 10.691248\n", + " 0.220483\n", + " 0.017146\n", + " 0.981206\n", + " 0.945712\n", + " 0.249686\n", + " 11.495145\n", " \n", " \n", " 18\n", @@ -2624,12 +2628,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 1.495980\n", - " 2.026573\n", - " 0.398018\n", - " 0.234113\n", - " 0.204019\n", - " 13.767435\n", + " 1.261125\n", + " 0.475724\n", + " 0.397297\n", + " 0.453729\n", + " 0.572759\n", + " 2.302771\n", " \n", " \n", " 19\n", @@ -2638,12 +2642,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.350451\n", - " 0.384657\n", - " 0.958773\n", - " 0.262651\n", - " 0.696401\n", - " 11.609403\n", + " 0.421576\n", + " 0.045959\n", + " 0.050022\n", + " 1.252809\n", + " 0.598425\n", + " 2.080936\n", " \n", " \n", " 20\n", @@ -2652,12 +2656,12 @@ " 1.0\n", " NaN\n", " NaN\n", - " 0.193508\n", - " 0.726984\n", - " 1.546589\n", - " 0.986442\n", - " 0.446847\n", - " 8.739479\n", + " 0.497384\n", + " 1.714701\n", + " 0.254816\n", + " 1.335222\n", + " 2.181662\n", + " 9.060495\n", " \n", " \n", "\n", @@ -2665,73 +2669,73 @@ ], "text/plain": [ " time t_presim k0 k0_preeq k0_presim observable_x1 observable_x2 \\\n", - "0 0.0 0.0 1.0 NaN NaN 0.754770 0.745550 \n", - "1 0.5 0.0 1.0 NaN NaN 0.592960 0.443043 \n", - "2 1.0 0.0 1.0 NaN NaN 0.591296 0.676814 \n", - "3 1.5 0.0 1.0 NaN NaN 0.776061 1.660607 \n", - "4 2.0 0.0 1.0 NaN NaN 0.198665 0.648630 \n", - "5 2.5 0.0 1.0 NaN NaN 0.864147 0.556844 \n", - "6 3.0 0.0 1.0 NaN NaN 0.318405 0.157019 \n", - "7 3.5 0.0 1.0 NaN NaN 0.705014 1.548900 \n", - "8 4.0 0.0 1.0 NaN NaN 0.140824 0.038976 \n", - "9 4.5 0.0 1.0 NaN NaN 0.185797 0.405613 \n", - "10 5.0 0.0 1.0 NaN NaN 1.731241 0.065145 \n", - "11 5.5 0.0 1.0 NaN NaN 0.282614 0.090596 \n", - "12 6.0 0.0 1.0 NaN NaN 0.148137 0.181956 \n", - "13 6.5 0.0 1.0 NaN NaN 0.165734 1.528999 \n", - "14 7.0 0.0 1.0 NaN NaN 1.711779 0.268782 \n", - "15 7.5 0.0 1.0 NaN NaN 0.592101 0.525677 \n", - "16 8.0 0.0 1.0 NaN NaN 1.388225 0.001882 \n", - "17 8.5 0.0 1.0 NaN NaN 0.408896 0.294495 \n", - "18 9.0 0.0 1.0 NaN NaN 1.495980 2.026573 \n", - "19 9.5 0.0 1.0 NaN NaN 0.350451 0.384657 \n", - "20 10.0 0.0 1.0 NaN NaN 0.193508 0.726984 \n", + "0 0.0 0.0 1.0 NaN NaN 0.514816 1.276073 \n", + "1 0.5 0.0 1.0 NaN NaN 1.912447 1.820894 \n", + "2 1.0 0.0 1.0 NaN NaN 0.108360 0.884369 \n", + "3 1.5 0.0 1.0 NaN NaN 0.133633 0.165351 \n", + "4 2.0 0.0 1.0 NaN NaN 0.340712 0.179547 \n", + "5 2.5 0.0 1.0 NaN NaN 0.689589 0.638587 \n", + "6 3.0 0.0 1.0 NaN NaN 1.354942 1.405217 \n", + "7 3.5 0.0 1.0 NaN NaN 0.457417 1.311292 \n", + "8 4.0 0.0 1.0 NaN NaN 1.214527 0.217291 \n", + "9 4.5 0.0 1.0 NaN NaN 1.092425 0.541694 \n", + "10 5.0 0.0 1.0 NaN NaN 0.491775 0.048756 \n", + "11 5.5 0.0 1.0 NaN NaN 0.389395 2.020790 \n", + "12 6.0 0.0 1.0 NaN NaN 0.555981 0.070744 \n", + "13 6.5 0.0 1.0 NaN NaN 0.917862 0.341815 \n", + "14 7.0 0.0 1.0 NaN NaN 1.016928 1.977647 \n", + "15 7.5 0.0 1.0 NaN NaN 1.029570 0.270348 \n", + "16 8.0 0.0 1.0 NaN NaN 1.259499 0.037083 \n", + "17 8.5 0.0 1.0 NaN NaN 0.220483 0.017146 \n", + "18 9.0 0.0 1.0 NaN NaN 1.261125 0.475724 \n", + "19 9.5 0.0 1.0 NaN NaN 0.421576 0.045959 \n", + "20 10.0 0.0 1.0 NaN NaN 0.497384 1.714701 \n", "\n", " observable_x3 observable_x1_scaled observable_x2_offsetted \\\n", - "0 0.759872 1.877553 0.914656 \n", - "1 1.402310 1.420030 0.941041 \n", - "2 1.341709 0.138536 0.681487 \n", - "3 0.021821 2.173649 0.769744 \n", - "4 1.526379 1.479497 0.836985 \n", - "5 0.295173 1.300000 1.112952 \n", - "6 0.604574 0.530187 0.353186 \n", - "7 0.833419 2.078828 0.853233 \n", - "8 0.917134 1.127690 0.731393 \n", - "9 1.006734 1.206693 2.113695 \n", - "10 1.026216 0.850497 0.868269 \n", - "11 0.615964 1.408874 0.594212 \n", - "12 1.067263 1.139975 1.661126 \n", - "13 0.397978 0.791481 0.820657 \n", - "14 1.213533 0.520663 0.319058 \n", - "15 1.398442 1.634992 2.233233 \n", - "16 0.334895 0.662683 2.704094 \n", - "17 0.481762 0.024940 2.696204 \n", - "18 0.398018 0.234113 0.204019 \n", - "19 0.958773 0.262651 0.696401 \n", - "20 1.546589 0.986442 0.446847 \n", + "0 0.527374 2.644445 0.829697 \n", + "1 1.890310 0.159396 1.198465 \n", + "2 1.894163 0.871327 1.419854 \n", + "3 0.375309 0.094792 1.312732 \n", + "4 1.482260 0.780350 0.121320 \n", + "5 1.169758 0.673553 0.811504 \n", + "6 0.855471 2.124931 0.155462 \n", + "7 0.064725 0.390211 1.851578 \n", + "8 1.284974 0.422031 0.002277 \n", + "9 1.494402 0.767217 0.551295 \n", + "10 0.012657 0.404401 0.821524 \n", + "11 0.570145 0.425698 0.674008 \n", + "12 1.166961 0.924822 1.250828 \n", + "13 0.995366 0.634604 1.303114 \n", + "14 0.195737 0.671411 1.738663 \n", + "15 2.187025 0.613702 0.233507 \n", + "16 0.805247 0.267410 0.797446 \n", + "17 0.981206 0.945712 0.249686 \n", + "18 0.397297 0.453729 0.572759 \n", + "19 0.050022 1.252809 0.598425 \n", + "20 0.254816 1.335222 2.181662 \n", "\n", " observable_x1withsigma \n", - "0 0.903906 \n", - "1 11.995462 \n", - "2 0.303567 \n", - "3 4.373485 \n", - "4 7.543005 \n", - "5 4.410204 \n", - "6 4.715461 \n", - "7 5.741110 \n", - "8 4.232125 \n", - "9 23.512450 \n", - "10 10.729745 \n", - "11 13.394799 \n", - "12 17.750062 \n", - "13 10.854981 \n", - "14 4.202913 \n", - "15 4.905843 \n", - "16 3.203293 \n", - "17 10.691248 \n", - "18 13.767435 \n", - "19 11.609403 \n", - "20 8.739479 " + "0 10.573821 \n", + "1 1.773556 \n", + "2 12.670683 \n", + "3 12.421583 \n", + "4 4.131129 \n", + "5 15.429952 \n", + "6 3.564042 \n", + "7 19.218570 \n", + "8 8.721648 \n", + "9 4.034688 \n", + "10 9.279264 \n", + "11 3.429569 \n", + "12 12.253422 \n", + "13 13.024050 \n", + "14 7.041457 \n", + "15 4.154744 \n", + "16 8.135988 \n", + "17 11.495145 \n", + "18 2.302771 \n", + "19 2.080936 \n", + "20 9.060495 " ] }, "execution_count": 27, @@ -3669,6 +3673,13 @@ "# look at the States in rdata as DataFrame \n", "amici.getSimulationStatesAsDataFrame(model, [edata], [rdata])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From 9e3f31cd34d360b6b1619704dcd4089f4e4d6140 Mon Sep 17 00:00:00 2001 From: FFroehlich Date: Thu, 16 Jan 2020 13:12:23 -0500 Subject: [PATCH 08/23] change to cxxcode printer --- python/amici/ode_export.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/python/amici/ode_export.py b/python/amici/ode_export.py index e9ea048586..7ca251de1f 100644 --- a/python/amici/ode_export.py +++ b/python/amici/ode_export.py @@ -21,7 +21,7 @@ from typing import Callable, Optional from string import Template -import sympy.printing.ccode as ccode +import sympy.printing.cxxcode as cxxcode from sympy.matrices.immutable import ImmutableDenseMatrix from sympy.matrices.dense import MutableDenseMatrix @@ -2564,7 +2564,7 @@ def _printWithException(self, math): """ try: - ret = ccode(math) + ret = cxxcode(math, standard='c++11') ret = re.sub(r'(^|\W)M_PI(\W|$)', r'\1amici::pi\2', ret) return ret except: From a41d56c16aebf7d19f0f35a90a39a310a3b352ca Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Thu, 30 Jan 2020 22:34:42 +0100 Subject: [PATCH 09/23] Fix(python) Always recompile clibs and extensions (Closes #700) Also fix swig interface generation for 'python setup.py install' --- python/sdist/custom_commands.py | 15 +++++++++++++++ scripts/installAmiciSource.sh | 8 -------- 2 files changed, 15 insertions(+), 8 deletions(-) diff --git a/python/sdist/custom_commands.py b/python/sdist/custom_commands.py index 6aee6a70e7..6564da8d7b 100644 --- a/python/sdist/custom_commands.py +++ b/python/sdist/custom_commands.py @@ -34,6 +34,7 @@ def finalize_options(self): install.finalize_options(self) def run(self): + generateSwigInterfaceFiles() install.run(self) @@ -75,6 +76,15 @@ def _single_compile(obj): class my_build_clib(build_clib): """Custom build_clib""" + def run(self): + # Always force recompilation. The way setuptools/distutils check for + # whether sources require recompilation is not reliable and may lead + # to crashes or wrong results. We rather compile once too often... + self.force = True + + build_clib.run(self) + + def build_libraries(self, libraries): no_clibs = self.get_finalized_command('develop').no_clibs no_clibs |= self.get_finalized_command('install').no_clibs @@ -181,6 +191,11 @@ def run(self): copyfile(libfilenames[0], os.path.join(target_dir, os.path.basename(libfilenames[0]))) + # Always force recompilation. The way setuptools/distutils check for + # whether sources require recompilation is not reliable and may lead + # to crashes or wrong results. We rather compile once too often... + self.force = True + # Continue with the actual extension building build_ext.run(self) diff --git a/scripts/installAmiciSource.sh b/scripts/installAmiciSource.sh index 65caa5ab47..b07c792d1f 100755 --- a/scripts/installAmiciSource.sh +++ b/scripts/installAmiciSource.sh @@ -11,14 +11,6 @@ AMICI_PATH=$(cd $SCRIPT_PATH/.. && pwd) #make python-wheel #pip3 install --user --prefix= `ls -t ${AMICI_PATH}/build/python/amici-*.whl | head -1` -rm -f ${AMICI_PATH}/python/sdist/amici/*.cxx -rm -f ${AMICI_PATH}/python/sdist/amici/*.so -rm -f ${AMICI_PATH}/python/sdist/amici/amici.py -rm -f ${AMICI_PATH}/python/sdist/amici/amici_without_hdf5.py -rm -f ${AMICI_PATH}/python/sdist/amici/libs/* -rm -rf ${AMICI_PATH}/python/sdist/build/ - - # test install from setup.py set +e python3 -m venv ${AMICI_PATH}/build/venv --clear From 3f35bf2e63ac34404fd739b02cbce32ad6f1c6fe Mon Sep 17 00:00:00 2001 From: FFroehlich Date: Mon, 3 Feb 2020 09:58:09 -0500 Subject: [PATCH 10/23] implement getName function for models --- include/amici/model.h | 7 +++++++ src/model.cpp | 4 ++++ src/model_header.ODE_template.h | 4 ++++ 3 files changed, 15 insertions(+) diff --git a/include/amici/model.h b/include/amici/model.h index 21733ea9bf..4dba877e8b 100644 --- a/include/amici/model.h +++ b/include/amici/model.h @@ -418,6 +418,13 @@ class Model : public AbstractModel { int setFixedParametersByNameRegex(std::string const &par_name_regex, realtype value); + /** + * @brief Returns the model name + * @return model name + */ + virtual std::string getName() const; + + /** * @brief Reports whether the model has parameter names set. * Also returns true if the number of corresponding variables is just zero. diff --git a/src/model.cpp b/src/model.cpp index 977c569372..decb8376d9 100644 --- a/src/model.cpp +++ b/src/model.cpp @@ -483,6 +483,10 @@ int Model::setFixedParametersByNameRegex(std::string const &par_name_regex, par_name_regex, "fixedParameters", "name"); } +std::string Model::getName() const { + return ""; +} + bool Model::hasParameterNames() const { return np() == 0 || !getParameterNames().empty(); } diff --git a/src/model_header.ODE_template.h b/src/model_header.ODE_template.h index df0523811f..a3f8d7f340 100644 --- a/src/model_header.ODE_template.h +++ b/src/model_header.ODE_template.h @@ -733,6 +733,10 @@ class Model_TPL_MODELNAME : public amici::Model_ODE { TPL_X_SOLVER_IMPL TPL_TOTAL_CL_IMPL + + virtual std::string getName() const override { + return "TPL_MODELNAME" + } /** * @brief Get names of the model parameters From b3b6bcdc8a96024ff56beaced3dbab5c1fd21cfd Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabian=20Fr=C3=B6hlich?= Date: Mon, 3 Feb 2020 10:02:51 -0500 Subject: [PATCH 11/23] Update src/model_header.ODE_template.h Co-Authored-By: Daniel Weindl --- src/model_header.ODE_template.h | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/model_header.ODE_template.h b/src/model_header.ODE_template.h index a3f8d7f340..3f72923a50 100644 --- a/src/model_header.ODE_template.h +++ b/src/model_header.ODE_template.h @@ -734,7 +734,7 @@ class Model_TPL_MODELNAME : public amici::Model_ODE { TPL_TOTAL_CL_IMPL - virtual std::string getName() const override { + std::string getName() const override { return "TPL_MODELNAME" } From cc9c34e0ff4ce69dcce946a26337a28775e57e79 Mon Sep 17 00:00:00 2001 From: FFroehlich Date: Mon, 3 Feb 2020 17:44:21 -0500 Subject: [PATCH 12/23] add getName call to example notebook, fix ODE_template --- python/examples/example_steadystate/ExampleSteadystate.ipynb | 1 + src/model_header.ODE_template.h | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/python/examples/example_steadystate/ExampleSteadystate.ipynb b/python/examples/example_steadystate/ExampleSteadystate.ipynb index c6717c3c18..f9c37c07ac 100644 --- a/python/examples/example_steadystate/ExampleSteadystate.ipynb +++ b/python/examples/example_steadystate/ExampleSteadystate.ipynb @@ -282,6 +282,7 @@ "source": [ "model = model_module.getModel()\n", "\n", + "print(\"Model name:\", model.getName())\n", "print(\"Model parameters:\", model.getParameterIds())\n", "print(\"Model outputs: \", model.getObservableIds())\n", "print(\"Model states: \", model.getStateIds())" diff --git a/src/model_header.ODE_template.h b/src/model_header.ODE_template.h index 3f72923a50..48ae0028bf 100644 --- a/src/model_header.ODE_template.h +++ b/src/model_header.ODE_template.h @@ -735,7 +735,7 @@ class Model_TPL_MODELNAME : public amici::Model_ODE { TPL_TOTAL_CL_IMPL std::string getName() const override { - return "TPL_MODELNAME" + return "TPL_MODELNAME"; } /** From 5b32260cce0e290f4882075b60acc405ac27ac63 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Fri, 7 Feb 2020 19:04:56 +0100 Subject: [PATCH 13/23] Build optimized AMICI and sundials by default (Closes #934) --- scripts/buildAmici.sh | 18 +++++++++++++---- scripts/buildSundials.sh | 43 +++++++++++++++++++++++----------------- 2 files changed, 39 insertions(+), 22 deletions(-) diff --git a/scripts/buildAmici.sh b/scripts/buildAmici.sh index 49bcb5e17f..e50eaa95f9 100755 --- a/scripts/buildAmici.sh +++ b/scripts/buildAmici.sh @@ -7,13 +7,23 @@ CMAKE=${CMAKE:-cmake} MAKE=${MAKE:-make} SCRIPT_PATH=$(dirname $BASH_SOURCE) -AMICI_PATH=$(cd $SCRIPT_PATH/.. && pwd) +AMICI_PATH=$(cd "$SCRIPT_PATH"/.. && pwd) + +mkdir -p "${AMICI_PATH}"/build +cd "${AMICI_PATH}"/build -mkdir -p ${AMICI_PATH}/build -cd ${AMICI_PATH}/build CPPUTEST_BUILD_DIR=${AMICI_PATH}/ThirdParty/cpputest-master/build/ + +if [[ $TRAVIS = true ]]; then + # Running on CI server + build_type="Debug" +else + build_type="RelWithDebInfo" +fi + CppUTest_DIR=${CPPUTEST_BUILD_DIR} \ - ${CMAKE} -DCMAKE_BUILD_TYPE=Debug -DPython3_EXECUTABLE=$(which python3) .. + ${CMAKE} -DCMAKE_BUILD_TYPE=$build_type -DPython3_EXECUTABLE="$(command -v python3)" .. + ${MAKE} ${MAKE} python-sdist diff --git a/scripts/buildSundials.sh b/scripts/buildSundials.sh index 173e7c7b33..c9908e8770 100755 --- a/scripts/buildSundials.sh +++ b/scripts/buildSundials.sh @@ -5,7 +5,7 @@ set -e SCRIPT_PATH=$(dirname $BASH_SOURCE) -AMICI_PATH=$(cd $SCRIPT_PATH/.. && pwd) +AMICI_PATH=$(cd "$SCRIPT_PATH"/.. && pwd) SUITESPARSE_ROOT="${AMICI_PATH}/ThirdParty/SuiteSparse" SUNDIALS_BUILD_PATH="${AMICI_PATH}/ThirdParty/sundials/build/" @@ -13,6 +13,13 @@ SUNDIALS_BUILD_PATH="${AMICI_PATH}/ThirdParty/sundials/build/" CMAKE=${CMAKE:-cmake} MAKE=${MAKE:-make} +if [[ $TRAVIS = true ]]; then + # Running on CI server + build_type="Debug" +else + build_type="RelWithDebInfo" +fi + # enable SuperLUMT support if library exists SuperLUMT="" if [[ -f ${AMICI_PATH}/ThirdParty/SuperLU_MT_3.1/lib/libsuperlu_mt_PTHREAD.a ]] @@ -22,25 +29,25 @@ then -DSUPERLUMT_LIBRARY_DIR=${AMICI_PATH}/ThirdParty/SuperLU_MT_3.1/lib/" fi -mkdir -p ${SUNDIALS_BUILD_PATH} -cd ${SUNDIALS_BUILD_PATH} +mkdir -p "${SUNDIALS_BUILD_PATH}" +cd "${SUNDIALS_BUILD_PATH}" ${CMAKE} -DCMAKE_INSTALL_PREFIX="${SUNDIALS_BUILD_PATH}" \ --DCMAKE_BUILD_TYPE=Debug \ --DCMAKE_POSITION_INDEPENDENT_CODE=ON \ --DBUILD_ARKODE=OFF \ --DBUILD_CVODE=OFF \ --DBUILD_IDA=OFF \ --DBUILD_KINSOL=OFF \ --DBUILD_SHARED_LIBS=ON \ --DBUILD_STATIC_LIBS=ON \ --DEXAMPLES_ENABLE_C=OFF \ --DEXAMPLES_INSTALL=OFF \ --DKLU_ENABLE=ON \ --DKLU_LIBRARY_DIR="${SUITESPARSE_ROOT}/lib" \ --DKLU_INCLUDE_DIR="${SUITESPARSE_ROOT}/include" \ -${SuperLUMT} \ -.. + -DCMAKE_BUILD_TYPE=$build_type \ + -DCMAKE_POSITION_INDEPENDENT_CODE=ON \ + -DBUILD_ARKODE=OFF \ + -DBUILD_CVODE=OFF \ + -DBUILD_IDA=OFF \ + -DBUILD_KINSOL=OFF \ + -DBUILD_SHARED_LIBS=ON \ + -DBUILD_STATIC_LIBS=ON \ + -DEXAMPLES_ENABLE_C=OFF \ + -DEXAMPLES_INSTALL=OFF \ + -DKLU_ENABLE=ON \ + -DKLU_LIBRARY_DIR="${SUITESPARSE_ROOT}/lib" \ + -DKLU_INCLUDE_DIR="${SUITESPARSE_ROOT}/include" \ + "${SuperLUMT}" \ + .. ${MAKE} ${MAKE} install From 5156c8c4ce3e6babe8bb4836a725417d27f8b93f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabian=20Fr=C3=B6hlich?= Date: Fri, 7 Feb 2020 23:42:58 -0500 Subject: [PATCH 14/23] Add logo, fixes #628 (#935) * add logo, fixes #628 * add CC0 license * change wording in graphics readme --- README.md | 6 +- documentation/gfx/LICENSE.md | 121 ++++++++++ documentation/gfx/README.md | 1 + documentation/gfx/banner.png | Bin 0 -> 138875 bytes documentation/gfx/logo.png | Bin 0 -> 85197 bytes documentation/gfx/logo_template.svg | 344 ++++++++++++++++++++++++++++ documentation/gfx/logo_text.png | Bin 0 -> 97163 bytes 7 files changed, 471 insertions(+), 1 deletion(-) create mode 100644 documentation/gfx/LICENSE.md create mode 100644 documentation/gfx/README.md create mode 100644 documentation/gfx/banner.png create mode 100644 documentation/gfx/logo.png create mode 100644 documentation/gfx/logo_template.svg create mode 100644 documentation/gfx/logo_text.png diff --git a/README.md b/README.md index 3270e6608d..5d869087e4 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,8 @@ -# About AMICI +# AMICI - Advanced Multilanguage Interface for CVODES and IDAS + +![AMICI banner](https://raw.githubusercontent.com/ICB-DCM/AMICI/develop/documentation/gfx/banner.png) + +## About AMICI provides a multi-language (Python, C++, Matlab) interface for the [SUNDIALS](https://computing.llnl.gov/projects/sundials/) solvers diff --git a/documentation/gfx/LICENSE.md b/documentation/gfx/LICENSE.md new file mode 100644 index 0000000000..ccdb359217 --- /dev/null +++ b/documentation/gfx/LICENSE.md @@ -0,0 +1,121 @@ +Creative Commons Legal Code + + CC0 1.0 Universal + + CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE + LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN + ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS + INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES + REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS + PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM + THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED + HEREUNDER. + + Statement of Purpose + + The laws of most jurisdictions throughout the world automatically confer +exclusive Copyright and Related Rights (defined below) upon the creator +and subsequent owner(s) (each and all, an "owner") of an original work of +authorship and/or a database (each, a "Work"). + + Certain owners wish to permanently relinquish those rights to a Work for +the purpose of contributing to a commons of creative, cultural and +scientific works ("Commons") that the public can reliably and without fear +of later claims of infringement build upon, modify, incorporate in other +works, reuse and redistribute as freely as possible in any form whatsoever +and for any purposes, including without limitation commercial purposes. +These owners may contribute to the Commons to promote the ideal of a free +culture and the further production of creative, cultural and scientific +works, or to gain reputation or greater distribution for their Work in +part through the use and efforts of others. + + For these and/or other purposes and motivations, and without any +expectation of additional consideration or compensation, the person +associating CC0 with a Work (the "Affirmer"), to the extent that he or she +is an owner of Copyright and Related Rights in the Work, voluntarily +elects to apply CC0 to the Work and publicly distribute the Work under its +terms, with knowledge of his or her Copyright and Related Rights in the +Work and the meaning and intended legal effect of CC0 on those rights. + + 1. Copyright and Related Rights. A Work made available under CC0 may be +protected by copyright and related or neighboring rights ("Copyright and +Related Rights"). Copyright and Related Rights include, but are not +limited to, the following: + + i. the right to reproduce, adapt, distribute, perform, display, + communicate, and translate a Work; + ii. moral rights retained by the original author(s) and/or performer(s); +iii. publicity and privacy rights pertaining to a person's image or + likeness depicted in a Work; + iv. rights protecting against unfair competition in regards to a Work, + subject to the limitations in paragraph 4(a), below; + v. rights protecting the extraction, dissemination, use and reuse of data + in a Work; + vi. database rights (such as those arising under Directive 96/9/EC of the + European Parliament and of the Council of 11 March 1996 on the legal + protection of databases, and under any national implementation + thereof, including any amended or successor version of such + directive); and +vii. other similar, equivalent or corresponding rights throughout the + world based on applicable law or treaty, and any national + implementations thereof. + + 2. Waiver. To the greatest extent permitted by, but not in contravention +of, applicable law, Affirmer hereby overtly, fully, permanently, +irrevocably and unconditionally waives, abandons, and surrenders all of +Affirmer's Copyright and Related Rights and associated claims and causes +of action, whether now known or unknown (including existing as well as +future claims and causes of action), in the Work (i) in all territories +worldwide, (ii) for the maximum duration provided by applicable law or +treaty (including future time extensions), (iii) in any current or future +medium and for any number of copies, and (iv) for any purpose whatsoever, +including without limitation commercial, advertising or promotional +purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each +member of the public at large and to the detriment of Affirmer's heirs and +successors, fully intending that such Waiver shall not be subject to +revocation, rescission, cancellation, termination, or any other legal or +equitable action to disrupt the quiet enjoyment of the Work by the public +as contemplated by Affirmer's express Statement of Purpose. + + 3. Public License Fallback. Should any part of the Waiver for any reason +be judged legally invalid or ineffective under applicable law, then the +Waiver shall be preserved to the maximum extent permitted taking into +account Affirmer's express Statement of Purpose. In addition, to the +extent the Waiver is so judged Affirmer hereby grants to each affected +person a royalty-free, non transferable, non sublicensable, non exclusive, +irrevocable and unconditional license to exercise Affirmer's Copyright and +Related Rights in the Work (i) in all territories worldwide, (ii) for the +maximum duration provided by applicable law or treaty (including future +time extensions), (iii) in any current or future medium and for any number +of copies, and (iv) for any purpose whatsoever, including without +limitation commercial, advertising or promotional purposes (the +"License"). The License shall be deemed effective as of the date CC0 was +applied by Affirmer to the Work. Should any part of the License for any +reason be judged legally invalid or ineffective under applicable law, such +partial invalidity or ineffectiveness shall not invalidate the remainder +of the License, and in such case Affirmer hereby affirms that he or she +will not (i) exercise any of his or her remaining Copyright and Related +Rights in the Work or (ii) assert any associated claims and causes of +action with respect to the Work, in either case contrary to Affirmer's +express Statement of Purpose. + + 4. Limitations and Disclaimers. + + a. No trademark or patent rights held by Affirmer are waived, abandoned, + surrendered, licensed or otherwise affected by this document. + b. Affirmer offers the Work as-is and makes no representations or + warranties of any kind concerning the Work, express, implied, + statutory or otherwise, including without limitation warranties of + title, merchantability, fitness for a particular purpose, non + infringement, or the absence of latent or other defects, accuracy, or + the present or absence of errors, whether or not discoverable, all to + the greatest extent permissible under applicable law. + c. Affirmer disclaims responsibility for clearing rights of other persons + that may apply to the Work or any use thereof, including without + limitation any person's Copyright and Related Rights in the Work. + Further, Affirmer disclaims responsibility for obtaining any necessary + consents, permissions or other rights required for any use of the + Work. + d. Affirmer understands and acknowledges that Creative Commons is not a + party to this document and has no duty or obligation with respect to + this CC0 or use of the Work. diff --git a/documentation/gfx/README.md b/documentation/gfx/README.md new file mode 100644 index 0000000000..a7956ac702 --- /dev/null +++ b/documentation/gfx/README.md @@ -0,0 +1 @@ +The graphics in this directory are under CC0 1.0 license. See LICENSE.md file. diff --git a/documentation/gfx/banner.png b/documentation/gfx/banner.png new file mode 100644 index 0000000000000000000000000000000000000000..a88c2da489bd2c917e65641ca6d514faf97a968b GIT binary patch literal 138875 zcmZ5|1yq#V_x5k4``KskR#K2WNlHzMKp;*^ONpr<5GRZfh`%R} z{RRILGM6w8|NG~$l$I?5ah)Fj-yx@DQ3nL#GD2GH4$A5M%z*xb{}S;f5nktp`IcVwy8*3dt$LQRK3#U)9GRSoQ?*PA|wP(!JMLQrolC@{suP zc6_DySo4}-)W%MEg}2W4=(P!s-St}0&O1}a4Cq}B|YJMA9 z!X#twK1|CgH;<9?szW)o7+s~}c{RDgiY;jDkE4lh^ENr{!UTuKe^RN9RBq2ku~VdE z@37SIh>qF?{1`1;z(fkJN#E&sep#-|nzYBi;KnJ za1`q!B<12q$6aIhW~|wWyakJoN)s=Nq$z+Q=-Fus;_psN$&seY*orHuCKeTuha5wV zl|;v&%i%wCOS9jq1-hYgvxxY+IrU$YJbfsu<7HI61Xa6C;`s_N1(vAW`79mp<-Giw zCdIf@SMD7m{PqVq_+^rPbt;tPseKCx<;Zznd`G&mzDK}w}xdy*8KBQH4+!TDTCO>TCGE;|29m&-g zNZ0(<(!ViYGm+wti){&w-{8;-=g!1?W3x@SU)6+SU~;=_NVS(-d?-Ow(QiCKv@uje z-ha2}WL6oN>NMuXJeR#H@iby!pim#`R~QM~Hm_9fH0_ik@$uIQI30POa1Wo_7irEB z1HYO&9yEESCu}&{+uJYQFtJrmV`kt}-DEsjuv%AiS&pACMRhi^X54Q389rU$qjVgW zW$+b9z{%-GmvWxJSyknXN4({c@{f8jtCnf(^xVV{ z%J~c-o2B#~4yF6rj$qfzb4xkY2@0uJKAFhLeL7BD)7ctDmnjCO(ZGmH#4oL zaapNG$YX7}@`N=I$dCwf%f}y+joQi8qL6ZLUG+3H3aj28L&cQXt2RwSG%>x9$By@? za8V}|Rw46C3^NL5ItLV^>yHvvP}=yKWI!K%VKN{=S=l?p{N$4Oz0IgzZhWqfPv17o zeWyS8kNB9%opsHSTAx2|Y=)-}M_r_iy0GEO5J`rV;Ssmmr5MPR)V@z?UOZp9nDYa5 z$H@wBByNi4ein%{U%GdV7=rGo>J)IvrIg1u6)HFq9a9_uY9k%lbWjg5Y5A1VS~M!pkR@RWv8hax-7R<+}u-Kl8$BnXz$qdm;N>4V)cNm zX?3vJEdiceQPCG^gKn~fZ}Hvb;>j{gpPEYDY31h0HS!MO>&v!`NpB3WVd!7OC%jM6A8UgQ43l#_jS*HO{&wi;;O8sn#S<2jL z3+}Z*Qm6CBPP0-jDqPYmfI2cnel6&ZEXD=0#{_8?Mm*VZcxAp4+i0z=Tg}v=^d#_r zSxMpSl+3lm<|hcha~ckx{s0bdG-^A^Z16~oenVT3jHZT|JCDh@SePrk19!axTe9_M z;@BzpR~HzA?ikw^V})sWL>+#%snYDa$7@4`SWNs3lMApp$o)4F{ z4Cc5jcl4(*l)ZhVf+#oo*-+PdC0R>JIYgFNR2spDp-_fLipoz4Y0bsnM?Fk~{WD40 z>hIYyuiAY0^|zq_GJNp?(WX&=NevLxGJ?JdgH^AZKej2w>QfpPk*E2rG00U%qKnZyqoVc8S*1 zllMbN^08RLLHvF{7f~0S*1${2i)vZq^+Uul*94U_XmH_HPu?`(YAC`M92Fq_gl5cWo zjN;|PF(8xpPvxsCj3h&ErV?w8G>2eF)!Z2Izm~$I7I9&62vPV?#>qdwS#z0@geG1D z{VdWMvTXsjSEV#G`di8JoPn}O%fAkntm>A(0{h(mqkI)Sa#Sz|hv#`}AfcY0M?UZ!3v^O-dC9yI2m(g?36d&wd8m}Lu2ymyX1t~OCw`7v^p4>A1#;;Ve`fvQgDPh!mom4L_6i^r!295eKC-^IyF zHhDZbjY+f%sdK(f0`RfABRN;+Oyn^c99%4XQ3MyTPAF)Izhst?1XCoAw)L+N;!w1L z5l|Bl+}lJ6K+FHs!*_on?_Z^IEm`v7Y74TK+1v=ae-UYsTV<4wv(q-3ll$aTby$ zEM(y4Ev=l%DET_;y`Y=okJNOKEjo*4H#|G&_8xG4(ux zezy6%_8Ki^7|}DG5cM4<5bb=AG29Jd;}YYK1_q$O>Q!{p*-H*Avx@svd9QtDdc ztCaMs{g3~x=~#6D2FNqP2{!U?m-VN%K5!pa0b(teVtL# z7GfG`+Ke#bQ^120`lm4?I)v9E8t56t8NlMjHaI(m!s`$NLaXG-iQ3$bTgh2aRW57@ ziMWw@ilfmD1#_ak?P2x?geNQO!E;(jzRUJQ_uKnB0m=*uN}!6#4+Z=G#eCk7SZhA8 z!MVtju~qX-Daem^rtVN-Qw7mb3-=E+wBoz7=0=5Jy~ai)!x`@)$fvV`liJ{xow5qG zW5rKnbOg!3n7}Z_29%-moKZuB^mGpB3YO?AVD270PS_7yC_MPE0CkZ@XzBH{fb@iy zERm!-dBTR6lB}%j)L9yAqsG~P8QABWIQOp6Q5=Lon3$Z8{f*e^vi7w*V@Hz+am(2^ z&>jZ7N#U)l2-gof7Yc-hj3&OVhmYo2E|$*Eqrbo759FbwyYFksFDn4Z_zN(G8c#28>0AuBQPzzPZ{;}U}o#sol#aK(t%HaGM!bB zYsuwgNQZhoFdO#(dt@w7N#F>%&u)Z@o<8mQ2};zE$G;41=lX~ch>nRMPfvfVy84_` zw}K_2JPe40adbnV)R8_1`+SE>2ML^Am2&8>oC|j%277jF01F=ypSS&*q$zHEm`-2B z!`Taq5#xSPx7^P3Vj+IeCRB*TusDBd9%AE$qmS2peX1cUPtw-*u-ThVLXo7x#P%ii zsXZJw><7wlJy;cv$og~-%B(i`06e789CKavEsM;3*a~1-tL0*^!%mA0RIiF#>+mv?d@SZjO3vw0EExhU5+G8bkD=K_K${MX=P58 zgRF$Wfa3`rP!)Mtx(VForKrfBD2AlYI=?ejeE$%3-%)k|q7S}9tE=>FWyf&Xc%()1 zE%Qc*)Db`ZqchNi6nVD00;>G_HIbmKBo4d?a>76FBVpIKT&PY#U>)s~e1qj}|az3HjQy%;hT5h8!9V{l?IQTB#8lZ(0GiUk6JfpNE0+mHCtHPvN-45&n7~gw zPi7C&oAu!80-k2)p6ok!j+iQiBB?Me(S)qKjsV-8$vCG2V6U*5K zV&2E(UjS?B^e?J^LF&4za%!BT$d?G+*{<_CCH`_D9DtthaOO-iqj+f;V}N@m_9G!Cm5uzMKwDQ|DiN!M}94u$;Qw-u`C4 zi$RN{UV1kT*pXw!EhmT%1I<2AJ7smuJ{zpRqzgQZ`33Kq%K}g@#|j}Wd;v(_#x?(m z3E(-?YGd5%OCG87OqcS}O*_*A>X{f9o&5d&J~ILGR@hoEimjjjk$P0|o&f5D33BG9 zlWP-q6k%tT)UY#Z<*VrH)D*f7ZugAGzeWEXIf`7pUUNjG+;w+3k6s=y81gJ}0Zrh` zJ+FtL1XWo&Zae-2cZ1-A(!p@HoBz^#Do(#N&iEU;YSyHDQ>bK6fc(cnyeaxicxmGB z;K^InIGzXYme2YEJZ|v6h4Qee?T#Du?J9q}EA(_My18i5;;Fb*MmE69s*s24v%R~- z>Vv$>s8(b(RO&pP{&O<@3*M58hZm;%OUvkON1K`g9KJdrtDvMo=?Lp;3f_;%D~)!N z8$qFDGrqEzsxZrzd$q`u9yT%(XoiHgsy& zz1bFVEatf5h-xublLpcoP$M&jqmiZq~; z-QE!W8denW0IkP!*h)3+R{cNTq`AH0NNhrnhw?eKr}UwxSBmW~3gPC6nnWtvNM)K$ zMoeCxHda(-E}mO*&~m^rm3!`iQPQ5u(9wotd>{gTv0Up?ZP|=594UIj^?psD zjBxz=$pTdU`K|>dyhgr-lO57Yd&p z{i0l!kkj7&zzTzUi(y8`88IY8eZiL)aiUFBj8rUUSDVtoIc@r&oeIiW8=llD5Zx#% zMB08I1dBjF4=rtO%xkEyfB!VDt_p|bXMV{8J!6e0YM&+nO)wJl1#M)Gih^GUxr+;D zvbaVMZIvH7;blUqgR)+l(`*Aso$VomEMXw!xx|X5+z0BQy%+l#J!!GQeIyAwc*6o0UL#?R z=D2cK+?Vb}3C{CAGWn(_nvK8sYGXhfey++k=)Y6jE<*&zjx)j96p%cdR{HJ3v(Xw2 zi)Tul^#*#D(3VekpiK{NiMvFz?zEusqdn{qx`Ia6r)Emr5CbGTob|(LKMB$s1L@}% zsKED@Z;{x`a!jg*#u1c0&%fP&j4pl`(3^7c#1n{~C-a{igo#$ZYNRsuWP19FbDRD^ zOrqoT)Z?c^rRDJpb#uEr^pkG6F)P3mIb5C5fzRUiOS=X1Lm>J96>s*6^zqt;6sZpq z*W7R|drc^%s8B{GXbEy}4eYC?R+b9UG$g)U;FMCD$W5C~?Q#i;M|n~Z{xeRi53W+( zKX&SJQyc;D#TRXQu{zuYVC8**{;=`BhbYq{No0gmcFUaA1aqg z>}*gXT-dR#wY6Q$%+ktuJ3o(^e<_uS`{e@FGhol*mOaB~tUbkBxW{EsmdcxhV`8EI zGm`eWK@DWk(MLhN3?Sfls{b= z+TA#szC4b%=EguFb%ABTEb86D{ka&d1@uQ7<;Q^`5O6CO37dJ)LH46$g3E&y}=OvSkw{9o}_bd{&edH{YxHt3XpDj; zy=ODBprlr%q<}!vwQd`X<-}{Mk(h!E>a(e50HZ)i2c{lMwwCk*7>MAhONyAgibn`> z4~k8@O^Dksy-#bmp<1f(Jm9b*K(1+I9_R!6RHW>Bg?21~|C!dYvSGxKGGYM75NH~c zN(}@lHYIBm8dMJBD|FMWfhQbi~pB55I*2hkaWe~aURna1505T4Kc}C_DQZ3Uq`$g!JXTmE#1RdPukmm)a~i zan9FTs+N$-l>!i6c{cL>F4qP&M%M<@2Jg6lvCoSLuYAz&bZJQuo`X)>F2zRqwifyEjfMMoWv~?Ek8bVVsA|TA z3tuOAOY^*uimZB=w+p@$t!=vGj-_#J*I|!_N&$&U@I-;y0#qLU1#sd-TeM13YiUup zBI+eX;g?^*M_XMh3A(4uokJEG`w|gq#ja;VtcKT-aomuCHZ{f&4ma zv_9+_ueZ#g7a#76;Q(Ql`LddB)_YO6jsDkUWuvLPX$)<%U46G1z|z_JrP1M07be$k zr%7FTgfQxM+t16^6D=7L(%a z5{lOjEoW(zpP~j<3cJa+AD;}9A_Hzw7e zpqT*X@Jp1a>}&tQmc=d{*aA6YTkXQ5Ifr0W5-_pZIFjxPB9ev2>VwQUqD+KY|JmIstB9nN)qZ88CfyW**_(~qn{J$)-0&sV!A%q6 znK49rF*64*sB@a%x;C{?Nl=ove$gBuc2|{C(%U1VyNM&ZZ~OSO{kKI$b$>?B+*|A7H(%A5yU$wz!sgO~6bEJL z>$eHW#Rc|GuS3M4R}S^pB+4=TQ>!hanstI9=`vINqFbWYqeqPzJj|9>{qaj!QXwwE z=$4>w!bI$7*{l42p^NTpK7Wy@N{0AGv?s6$O;~Y_Ye)}lqSqzd4fr~bh4$y|++kM= zNLpi` z<+jiRL=kwKF$YUUiry_MuXKa~7Qh*f)m=$7rZNrVZy=bLUQTL@5XU;q$GNbtSsT8V z<$FsEEXB8M&kum3Esr87WsBO2p-9CHZ~%!#ZxaWZ23}v2E?I#CI%PktRR#~arBi2L z^z=!%j~>9Q5pZB?QR32?|G?5ZKfji(f-SMv@L_CaW6PwHjDHLU^Y zlhTQv);Z$22saS$lKGBN1v~=tTjIGWt%z4=)D`5=S7;1=4Zi+BC;xE@0!3|zRfB=0a0?w-)$);YNy2_LFL7Z@uE*`o1J2$k zOo9D&1`oNgx^CZ|?dL#Hh-;!(V5)bHBj#NQVV|BZ?ap#jkjq5@yS0AXw=K=-`#P4; zTX4GpcPOX)&m_mG0JY3qpFT3Y5GL0mQA|&KU3`?kv@Y1jXl^Ta%+C^19||PDXs@!W zng=q6PXB ztH;_DOYQEe5Lmk>wFWB}7O-1yeMOOU-wP2ipQ*q2)K<+p6BaYcL1+qBshE-CYMyoPG|4jJSFD~|RzW0HLRO7s@YHEvFr(ts#yiS6#)xErb`O7vx4jb(6gAYG%| z@+ux>1$loKbq!f`=arQ@I)ihEcBccZb!oHG)A59`opq1g+ z9w4y_teS#cC~c3It2>tA$}mUG!b)15c#kei7HC;`{c!j2I5%DNoU=ps20w zEiBm#Y-VP^^4RjFYl+j<1h(BjEt&~Rk=}8{bRv)11+d-d?{`c3ub@eSG&ezJ6tfc2 z+%viN7#Fr-LbSAf%iS*=py{Ch4Id$prHYB8H}i2 zwy_05=?>^B&;jehbj5PmxW#kFCbR8aHoZRJk(CzzRS8rvp(?#7K3kM+g6xOTvtNMF=_l(U!?JB?tl0%I}8Xp-_A(pJE zVxpm)-fbSu(4eHkdgafF77y>b-3RERyz%UJpk2yaasxkVjA$+TB;_iE?Mb#3}py%*?+dbRyF&*>ouUurw|MpMuwlX z##IAoZ4PiKQmY@^H|g#C^xu3~SRmkJtRMT5dF=L}4#?J*oEdKDRJ7Jn)LWZ?5Dxf~Jzt{4Cthe!Zat!*uX7(4n7Q#GwtDN<4INX3l7Jptmh$yMr%q zyHNQGt=;W!h&~3qqS^S2k4(MA+XR(w>V?B0gD(Ptm%zV_k=|+N}X@o06d`{zlufpB0r}p7k_2+rw zmYz_Y4-N{{4(fD!U4BX`lbM{N@Y@}CL{1>Iyr5;m-H_O+DnJB$Dv{_DN;ZNbCC^9& zIK|Fv#jd6V+D$kJ=Q-Auhr2zatT~=g;Gw@hS2z5bgAkLRq$(_2EL2$1*5WxOXdCj~ zNfAmK{4lc{TS_sP6*phFd?&*FSMs?a;@BVM|!}@X&Je)AXU7C)!423dAPC)?tZ!)^sUFnX`!3db%!Df7JObTAkb%Ez7?l5E_C|t)^vmf~7ydtS-Fy%9TVj{Q zww;$86cTj~Cp%EoQ zh6btGTg%$(>(9Dvo^G4&U>?!7+~4tN+4Z=wS0qEHyaDBf8mF6i?ucj9O8Cm2DgOSY z>djkGTO*dUyP|$Ba9!D*KSp#bZm4&2wwqXMGQ2A8C%0Un5!&k0XS;!qDVSXu=Z@K+ zyYt*28qznc+sJprumkd!Z;lqxDRCMT=QJq>0#>t2b9ZGes6WwC1i-E= zPUYBotp{`$D5^I*N2kAe0LVV&e3H4)z0-)&yaCA!h{sfLbodkONgX`dVlFs=2+;yj z44N)1yDdn}a1C}OGd-PVpL;3)RJSCeth#cfu}V?E;3XO%8Xdjo`4^9@NjVR}25B~A zq-B7{hum5;14pJB;Z=d-ZFm9A=*rx!&W;Ya0w(Tp(CrwohuZ!gtiPcG)jo59^An6c zjV-2O#3)b2g6Mu1gq`;eSCArUiUi1~xoNyfyiI6<72?7|C5Hz=p@*L1Yp1#f_;vFY z?@6<2d|M8(%ZaMPo+n}G4X`^0w?_g`2u;8ZLr`J1>sStwrBjZ|2wyGmtOXW>^7V7X zf;QMENF_HvUlnL0^ax#R)CkY~)}YC!fT(vO90rx`EG>r{`wuPyXsWULNsCiqLDn)B zlr7k36`o$qC`=MGwy-dPbOXGd1n$u}{TITMm-6K#lb!%v{|tWtmu7suw$E2Mr)Yiy zhQA;39~#xkgOSD(X<1n~yfoaa4KVAbE5hIJGK|$w=w#}8I!cGgsUfJm;HI9>l7`r! zoyDXBL`r|Ov2U4*oh1);4g5maixi$D+k2aXQ@r4Bc z@l^Y`9nl`TL|4=4gs(G96>I9#<@b(PoIs?Wfr0MamMC0Qa~cL7Ip_XV<)EKa%WI5i z$4~NZT4hTRp#u6yd~v9Zn}+HPpwMm8#6r3FXQM%;HAx`u(&`vr!7G1jn~Koj=2luD z;9xAFm_jshje=2?0m>7BaoE*ki?JS=rcV5o2)5nvGim|+h z1CGDz=E@o9Nf1IPLK6TjvmafDQ4sM8P7BSQ&sbgi3c{1L~B>k{PXUAfpCPBlJhIBLN zff2bg#5jC6r9txM|71zMQ5_dHx8tpJCi=*9x%$XCe(O1>@uPEA?*Gyk97g2)4WbZO z9Yo_WGWmnk=4op0cYEsg*9U?7LsOhPriNN=?*fzn>8~fp)CEL5{AFQ-p*4?okh{hb z@hvUBO(s@=FoTC&Sl$ON#n6daKFYr@vS;{IRUe>2c%@#ngNeo%icUk6o|OJ46|ZV-_XyRxdiULmdSX^ETDL4&~pW z>AgzTK5p0?=2NjXCVc=8VUIu|1UitLuNDaW9}q{|wSIQdRfceH0~A9_xD>}64Gaw= zoYb+Tb_h800@T|BiQ^0V6-Il|!Mc0XB8r4}`t-M*)I@(RZjd!}yakyB4=?!X1^jx5 z)@jU|+n(f|h^(d;?D7=uaFOXC;@Q3!8LNN+@mzvEI}CakVBFb1qJfK-ftr;&Hr8EQ zHWEo!3iQ#RSC9(vp$2Xez>XfkH`vCx2-NjY5Z`0tW3;!=WW+U5(Fm1LOJljqXaBEH zC>Vl113UoaVVmy7f*QIjcHq@yEtDJ@?qTpb@fDO#B}lb_f$!6yYTmZPm>$w7ZYtOh zglf-xFzGt{6M88X^fZWLF!laNNNMK<-#Dx5f|lhYzqfDz=wyJxvR<_0SB+|RTXxX0 z8U-B@hHzB>9z|r7z_ip#hPTTs{|8(%f&q-#Ya-s{pgb08MRynCMHlDhcAD_*yah!jtaWg+F(b|B%3g_nY{us# z6gLHKYc~L{@}#2a{XzZvQwb!R@IVON;_H&4xVXYCkXAsX6`xnKmJ80?P%t| zJ$v<|76LJyp!p3ZL2z9=JAVXJ#qzm5e2M;V$@0DFEmk^>!n8}$juO@$z<U>G0*?0?p4^sl>~)?l^lAM8E0cF761vIZk8Bmf^OT#S1?J&_3* zPX1~?Twzms@soIUfzmpj53kzo_KEIYE+`EICK7vVaUAYXl;1_%R>S8#T;0XQ8vg&z zF!;=eWt~v0?c~b7z8VAJip7|WkC`q8jwbijB z4X2hhrI?DLIqdh4^O3QA?H5l8O1E>h#`IeLnLUeMNA(*out+A-UN2zqb-TgTT-Q{< zwqeNzl&t)uY zk8|$SrKJtcRiR@Y?Yo?Z&VM2C5Z)i|RMM76({5+CoX0R;9YePFY<=zBrJW2rRdEI3 ziMCl7efD{6Fayi_NT=}W$f|B2F+=jN+n4MFxZ9;ta;x~!4op`pR7_q5>n5+p?k*zA zdy57e=qfzMhx;rF%T8+%i34VUkCB%2Mx-YD5?Pdj!p(0lL;2XHkv%)()W4d(Pqxrqk zGBLN-9UPu&Fm_QKyiS6_x@Z<@#n92)v6jNIGq7pxDl0*XNTrRu--WTpovM=aoB0$G zw>_USlpUjafe<@Q-C5uQj53u)|j_wU!DJMKw@ z2*2%DEG{=y|Gl!kBT%X+PxyPqNXzbcoS;kGJPj=(RVzO%q}XBi>#&QpL_J~s_5_`; zNfJlgDY0rfomu6gThSiceHC9qgb|+FvNF0tPltci9X_x!FOxDdwEWWqT!kIp+iuj*V4`yst60G~^dT@MkK8N4q?FyUIY^Jn08Jt^QU+*QE{LiqOEn5bH9$9jf>* zxXqXG(-U(NT}@Y=)J!|56W@1Tv1bc}os`b3!EaX)h(dK$X{;|3*?pm>msO7J+vx+N z>!o1iD3gS!0Lt41H{RpwYzQ&(ZvKp~Y8M-Q zrfD(r8yr{OxwPDX<(xJI z*?Y}+S8SxmBten?9{Ivrl4ws<(NJv?Cd>bAzzOwwbq#Ab9MRMG9dSzL2Zt0pEml?s zAH7OEZ(7fsvC4%1O!^!70*95INm-A=U78_oQ!<3X=MDvxsm9NRpp^glZS@2cvZJGe zn2Ntj>+ED}Arl3_Wo!jT?u&S5t*|7>Wm$mtjv6xN5g6@lisDvzw3C5H;|&$E<+=5? z@LdH6a)W=`r4+Fc7m!x|2mVsvFP5ftn-9`{G*6)3o$6tuyQ?SCy{Kt~$IS=N8n3B0>nuI`n`gmZ&aeqa%0zACo zE)uf;wx4Y0CIt86^V~&QetnK=3({k?5{i4jnhth>gzu>#Ds>;0@5SS49n}}Kba&Tx zAaunJqU10a%-C`2E{Y!ZOv%j`T?Iw?s96XVR%ziYygtHfN7naSB?d$pC@;{M-jEDfG$F_B6y&0(> z6SM2p>Ou%_HE}sogy*d(cUN=9F164U{#ycekTeJ25(?j?MR*qVEjJBxM1@d`tm5*Q zm=3}b8MMFX`InLML;bXTV`+;gjt;qejEH-C5KKZwpxZUdo;KsN8lrd^IVD&F(AY!2 z^=E|u{0d9p#YdatxHLJLKgXrTA6F9rDBSyq12ra1eP9QY{U2NaSRV+O%P9ZC<4m}I z@PQP*Nsh=d=yll?+=|U8U;6WdAMnL@M9#ZTE0_4Pl!{IN_TPjXk)A&LHv4OuaCXxa z^fI91-^f2TOUK#V?g>VxtR1PRX>^;@}4i`#(67zqYKQzn|yyyabOJ$>U94-O;mV0-ofh zT?B}^mAFRuA<_qLFyE}Lg&4qD-k7ET>t>^UcO~b*Cca?q^U~%YxS2u>zi9I5myr;$ zB!(EY!dCCbIjExtIQ@nmACqBHj9vM=(}L-f|F&G}(fAMdzxw0fE1Lp&p5LdJ8g-as zoaui{Ha{%gQvAiX1&sGZR3Hg zonWaq$M=&gl9(_f+pwJ{z*G(rM)Nf6cvuhr;P@6@nm_AJ+xb}|cWxpM3=iUCVE9rW zxVk$e{kabFI1`xUJaJc#=k_-p0Cf@w5A5x^?}h)H95}B1_m=^V%odza8@Y)= zFC%3t0s;7E0^JT$cI_?RRa|HHU9I-n?*yHTqmA7Gz6}rJ&wW`hYR=;UeqX~X|GO{3 z4;=)yVl8zFi+;?FL6DqRy!3{c&!3L&zd3P5e~5~247r1bO8q}U!p4g~@-OCNH)smy z(w5Wf0{l*qZL<+AYJlB8l`6#T+K3?Qj>GOwcgaR>>w!ZU;7ikp+pdrhg^&}=BmjTr zr^;!GHpxlae|0`Y-?!0XHpxXuL3@TWqv@iFYS=2 z;X;AjUH-2cmFxda&XH7PI&Y{u>rX+QHdNO(cIYih# z;)f!^j%8y#q;4DA-KnqOSMeWN_!2k5le80#(pTI>vAGN0)BO)Y*x;|ez;<=U{0CXb znf}*&^ZRGCyc40dw-Q59?ByZ4n)PSV+xSI&x(cjp&4+?RKOO(GlUMjC?=V;iGY6z& zuo62kI0Jn38*!WWSXE=qYzguSJvH&hJ=-Dt`_se#;GCyzLqDBAScx)ve!02fU-0gpBCOI6xBhdHB$n9Ufu;Sca z2wAoSTglZJ;nKoi3QjAX6Y7ti@*QNsp`?pfZ&NUjGSx^PY1q0@@woUV@51ZsqsKkg zH_e!*vWygc*#~|A!CIfWM=e;aYFMyszgpAfSEW`d1T1DI-1nmptE{Ra30xGla}rN2fBFt`@MUirm6Hz3E*d8u7Tr~- z_RDQkBHeeMK_FznSMgiN)o>*CH}>qVi0s7uVq1CLj=CkLhLdEtL(<;Sagxqu4G1ag z^tI=lOH6`#T?Y?;hRkNmxA{Bm;_FQ|>XqtNC$^A9y9&DoA3NFC>*Vd2kuAOSPpvM0 zYLH_xS#gX)5}pQpM_*$p@OUvC*SJd)V-8&KHW??PCVvp zvWgONH-5W1+ge0*)8}S;M&q@h8{VUHqS)(P!N=QO|GU>+VnEIrZ;q4-TBC^fk#diqqZJf3PF|8SA~;un(rFG?Y|G{gYH0@6^R_ zr7jEu{o5P9UWUk+-Cw?c8%B_R=_}K|#~3V^e07W?IyNGLWzZp@?cBL!QN5UA=arAy zzSWTn*y*;q$Bcn*T`la7yeSOU~mESINcPJo9z%mkmzP($G=epJ(4T^w%>q+!9ZYj&2x; zuRpwqW;(UPa6Hz3Q)Vouz5AO~(H82~oqQfTVMXY&`;Cxm!^V(!K2GMT$AF~@LyX8g z?SopiwlR00MKnGKA4vnkxrX^`&qq3co{JWzu;TNN^3G^ccxs||>rBVHrcTSNQ@&v$ zwD#s>rR}3*4P))7?b_939RV8}I#x-{Ro}`C+M%^xU=ql&{!8u-j!-WT)RBI6E|w2} zz16?4J^JNdA|0*ve2p?zCH|sclzBtyVp6G{tZb1ys<`OZqSVRb&rNJ~a!PM7PNoX3 zyXm1#u8n`j+W2C}$V57OJJPGk8+(AqR|Zt5vP?iVTY}rW<3ebkCcz+LX?53_7yi0-r6lj?Wte1f)gx*40e35CIyOr*ed#MqCunBKQi zS2ucGokHn!C6p{0q*;*VrS4qYELbed35Hh3rR zSid%x=q&)1(OL=XB5M8^H^r=h)#vGd@1t)74HwI0O7Kko4DE_&_6b^@)HUfaGZ9}2 zhAFchbKQG<(NKPp-$>(XIfkdp^F&Bg=U{~|z~@)<|T_QDq3?($Zk z%|#N!aYcvHOE2>m&Dr)}P+0}t6E4|C0BvHhxBhMTd8tG~7V1)}hN!Ku7WjWi8hL^y zuV>z@E7i_+i8gjrHmGOZMCW>s_H^P0tG5#+c37c!Yp`WrdHZPc@b!Zb`1LQoOZ+%j zcR)(Bp+)RJ3~`F&_m>IHYH`3oSgH9-Bv*0fHPeRnNsbAeUGc|JTJc0tU%Es?RW#v; zfd!k16&A=|ZHmzq%X(pO3XU*xHaG?7mi%#eGIdd|tcTBEhMzx0N83s)kvq}^Nuf27 z{*aDWr)^|p>|1;H{Jij6xjNa;v+o7-=4O7D6>7Z=hXyV`vu}nGBnbGJLE+J~+xIX3 z4`q#4{!M!y&)O%`Or}P{e_{gzyZ@|e@znE_J(VdKdp;K9ZHGy4d}3XFg3%|^+p|5EW!x=!c3rGNwRjyjaKO9gDPXtaJVH5p!2zfI+?^im(gm_LCCPZTH?C|( zP6t-&SbQ_P(Gcb>!TtshAZ2IXr5%5c>{f8?U;2hBPNpwh$n_s&qSmmJq>L}PFX-`W zy}S!))DTd4VgZkpPe!3n}~#c8<#;fiCki>N;o_o=a?^$%O-)$Nw;4CO zbRJlhaOrdOk!u;YhU&-xQHX+s@KzLrQ{gkaXG_e4Bu(Gla=A;?nPIo@L{($ljFa%O zCQ$+ni6DVLby!Zi;oV9`=67PIg4@nARurv1nfl6d^`jliBydAlOy|00E>fAp)?tn! zB_+GxlFR<-g9j`+a*zy=37Nf{?+snsqX@Kse>YmMY^6v|C-$Ik{{$FifCFX}D_H8d z`(*`uZzBK*|Ax(7%dCgnFOgFA^xqAF!H;eo!aBj`CxhEkYG1t$&#MOK7p{BZ zElR2wYFb?k)hb}i`*!ye)jQHK$4-)GOK&SC7Zw`$_pPR#7d|`VX0%aLYeObNsr3wP z3;KX4)UJ^VENB7+Ys&`;YJXG&Ip=X85Fmf^3FUaiz79iDO!>C0+~_)I@3=|NOz|qx zv>|VH_N3M$OG-aa6obxYpevM$=0PR_=QycCJ2A?5XQ;h+NH;2vf!^MEy=UN{IWB~J zcFp%f(}l7%@ifYHwa78a-UzI2;Whc#v%1=tXIeAGo+fthLWX9jWs};%C5!sd_;}We zt%0DiWT+TA`C~yt*&&o2x!n!t`+t_WTSgr9uq&Ee<;h=zbVts3weqKBd9-e%X%X2XhMQi z;}YFS7tSVM3g+_IW9QhpeC)=-a{6F~?Lc5^^oO@V)evl1RX$lg`6_ao_SLksBs=dR zEOmj&Q!LCLAa?~^;@)K378f9t7~|b>P_n*5mv?aD|3}t!$5Z`(e(%LP1X!OfYH(#S3i8XA&n+_|uSyvevmw6ZqgX4Y})NL`2)yQf7SOnzk8+{;qv?aRZ7Tdt@ccphjBd@#L zY_Gx^)=m#7H@{0iEC9q+s(d14YdvHbq$?%E%il>}+#o%oWPgNUa-3rnr<-U}CMss7 z^;j!9#Lc!NR@MOV9=f^~R}MX`bfxe3>omItqmC`#Cr9$H%<0OUGdIuxr6!A{S;gX! z1bgRiFz2=dN#DUYkb&2>Quoa>b-Tw`!BSKafp@BQ66@v~Fz^h4jz-+w9C2(l3n^4i@;7S_z6 zvoqjd$2O5b8v0^J0AK;azS~IzfC82Aa>={gNP?O=GIl@(fNhQf>9>}pRBG!pdM5}i zESx@xzOoJ>E-u{gFWM7%nVNA1$}J+UPS)>6Ry!yRNMh|s4@nCaNi&SWfZM41cz`Rn zx>`g<69=ln#yOZA}2s%0~_A|H=s*&0bAcd}U-{9FBcVP>EVs3uFP;MG(q=9A)LVQ8N{ef8?kd>=oS{%Drtxi zYoi9dTj0id6`c*F>|p46f*x+GT_`+H80oKRpbemVoNsd^tZt5o^f=Z^u>%daTsnyW zCYu({4opM_?d{6YKS=&zPNB!jlLHA%QS;j{=PS+<`no#ggn`*VI700CB&VlzgMF_ zsXhS$Zo}(d?;E5?wd)M* zddibCTnQ(rfvHms41}VPzePToK<;R!?npoIn;=6Mh~#82EsdDHnW1C*VcotOF{pDC zXPoqJgBA<)=qPRU(#9_5C=jt}IK&LZdT@B%;RGsz&zy2#fFam67>`{8uStY264nb8T|0r5b!U4j&KDNO>1YX?w(16A%DS{!0W9< zsl^qmxVA?%5j4~`ewokAe2d0)^~GOrn~jb4Zn^i$Dy3vRg8?>Lx>@WApu?d~`{8qSprsV5TPFe7OaD<~ljr~d!l8Sa zQqcAR+<^Vi)+rjo0>?znuP%zflZd5A3#+@?Gd&ywJT>vBwBfsA z+2)hI=Cw9903z@gNFhQ@{G+ePWzQ({my}XOh5HcQh1L(C+y`cSa^=E+FCwc%yu_@j z@Ob8&F!NNkZz}JE@=UCTn1IXYMUe!mC8(cDVfz+z%hjAtvCDh|&-UKCcv>M3x8L3* z0iB&I5}$ztY%`<7A@%u2(0o_)|7{R71@k_b(g4jKmPs z6ywu=Dj@oaH~}=zO3pkq^10&7~^% z*o}53A~`VJ(F#RkekSL~Q`Y-U@^2oXD#__?4Kg{eu{Xvo~aILNkZvv|; zte)08v#2fi&ag*p-4!;E)l5vd!vjR`78`Wx9QOiHLmOS7iHqCrm^VITFq4?GN28lL z2;(-#i)aZ?t>xbCNb2126ofcV3`gVNnXybr#1{1S4G*t>#yyE3yVf58_MNk)<|V_= zFS=V^;|B~b22=l=U%VLGfZ-jy6=?GRoTeD=w5^UU6Smo&l%U@G(@yPSlZpJ4dn1~o zCCoG0%1R$?D8<$ll3{b|mf84^M_Fk!dD7xS_A|R3$)FTEd+4&o=?zppT#J~bXTL$X zWWhqlKThkuw07*2*yo=VaecH19!{V}TDX`0k6kTusTqE9tMRq7wf%kT7kkHFX=SvE zDLe~jA`s79Tz+pZg^-A|D66!sJfspSbB*^Xedc5Jv{?^q;lJ$}iN5e1FD_Tza9WNN zfD**yAKV%vaSrA1^f_Rg5#3p_nmMmTWj-(#wxDwGXJ35g`yzG|67Bt|jt;f-3Ct+g zWP#$cHOp%J%&IL+LPC)mV#sj-p`>TRBTPJWUTEfst_g-{52khtrM3Tfr7@f{OOqK` zt@l^$1ArcX{WG45igtf!v<4!6%Zd#22#Kjw4gTn+y8k?vyv-M(qrZLYuNlX~vjAOC z^NPx4m%?QpaefGhZ{ex@KIbBNdbJUHw+WPKxYl76j+AWcLg zE{eJARvHw%Cc0NpjA%X%R95xH4g-XsT^&n`MIh2nA$w_X9KM9LOSAwM%8{l1 zVXUrXoM7wrIpHBM0`ji#Y<>(kDmLm<{cnCLsRUPY_g~(dYKJGVC@M9tQ+Xqn(AAGr z*=hq`7~1oe5nEppqTO z&2AM%0`%>FqWkbxe#SuxB+X`^sTrx5s;!Z01-xweA{oPhTZM(Zm{ENfzrXqO3%ium zN`Dac;g=vxVUwzM1CxU#muxw!@4lv9LR?}CneWf4z4_EH2E)dC#fa3~#W(IrsAXhj zHF4OC5J0A@v014ZRa0Ej5*sD16QPL4TROQe4~^1B0yX;DEZOuOyE77TpFO;J=c(I@H6g40o%4 zVhxGz@~i7Z_m2S%>VJH>y8Q(%_T1rRV~&40HWUvAy}GE{&BUd*J^#fU>%JzTSabmV z3?wf>5wUV0!B~=rCi)}E&S-of z(D;xE;2iS|#=lavzvkvJ(AO~p?iIxTh<&So0kcULxYZ!H6+b=aY6E=?x`*1Ts@e-p z1NZJAsr#_qyUe+9A{EwYPu(@{TnG#3ua@3x4q7zRD`eXE=?#gZsEm(%_5yK)V;Nrt z4eUj>o}OB7j#6-Nn`LJwX(Sgd#`7)87X+jL4n(IyZ8Zo=zidzTGUqz1iydo;NS>jT zpBo@G>`oY9f`#}(Vz9Q)glOu`wf<(z5UlD9d^R*&hyuUp354rbIx%e!)mIj5spw{% zx5trF)~7sjqY^}ygE2QX(wCqYZG7v%zPw@pNCn>QZ;`ao4vP#V%S9M-`}jks6$mlA zUn#tNhK%LROgTSOfzkr8S^w(hW<5R$)P>r%&LO7f7(AD%N*vZ?H8SoU5&g}%%KzkI zlHC_V-}eA#+iI!uuy%X&w0QC_@)gL+?rDCP&dfY@Yp=|YbXqYx0rzR=?tlW8xIj;> zT(ou=9o61iu)cp=o%fBx@l?9wb^~>|O*{q!JIpFvYF6yM4%}sjAQTdGzK~3QZiM7l z7$VAG*9a;J-x`OYp5*bHYoCAU`{+|4^kNaX?$^mn&?E-D&Gr}(;tuw*8{rN5Y4HBe zNF1;t>}Hm$gcAhy)_WuJug2;v{i*5Ky}o=VTwa#oQ+Q$$w0Nao4~bgAK~MWPF<{I+ zjkjW&m-#|u%9xayLhZpNp|x@*--__i!CMgB3}xG ztx60XHUn~KI_7r>RMi##irV{NiSg3wrc;NrS1ON z(|@`PpkK1WX<5>Z`19aluU(?--}3iJ|D~YDMg57$=8H^_!TcMxUlK4e;5B!G;u=gs z%K>C&zMj{?&U2p2;I2>qHv;wR68zh{&N5@AdWPU{a_W~avp(3@E-#~Xo`_CsZ7tnPSqk~$xwBIRh04F~CpAJw zgLU*aS}3Mw9d*eh65!>cw=-Q+waJ!AtG25QXd$$ISdYwLe@qZMswht8OA{>mwq=|? zShXJ(*XIH+?{9vKjJww$nV=j2#+DzppLW5^ zs4|rRRDm^ObEpsN_HZ$$G~_%|`~wi>dMgg9|e~Fvd_AtJQUbC$3UlpYB?Obzh!a&1vuT zOtrth$(^{%RA|xfcKXlW`setO-PsL-t^Ssv)C)!RSxI4~hn=&Ma9hxOg>xix60l~~ zU32^Qg!Fb-fv`liT>7Zl0z+jKXglHd@1hd!BcA=}u_TVQx#?_vq+NJrGBe5WVJQ!m z&}vZ0cZE~t2K&^y!FtxGDG~Ks{63#q-SP@aANMTw^Y_`lk54*z+Fk|)*>3&@15UP{ zr`?-UedLq*eP7knt=M+DWbw{Xdsw%WVnCzDH7w3?@f{$Y%sxpZy{TD&ON09%`F4Bf2KpX)>Ofn?4#+DqR*M9!C2Ytb9 zKGR?|Dc0j>vcWTDgdt6`-XC}MLEYc=e)c{mtWtdV2G7u;$HNX_9~zonsx5(c#W+S- zgbo}Z$~(4B*-Ig@L>IZ5bDq_>)W4-Qa5)>zL8Fk{oN|0x7va+=S{{b-dD|DGp zL|Vk4HR!GZDg#k`{XtC~s4(oVlbNZ-91M2Qm&n$s97-vNcAoT&fQ(DrcEb+3EU}+V zXuJ-`Li2WyCoOHCM3$pfRJ2uvIJq$oO)P&)wjVw=7bVpAVDnJY0*{D@#A2Y>YCw15 z16dlA#|qa-?EHxLR|Augg!fi1@4KPD^ zDln-K`%Hxb&PeU`Kx zqt?`n(?$rS?-HSR)o!|VFjSiM2B6QVzuKv$*={z5Z(dBS0m-&}Mx8OFHAT3$Of3=d zD1vi#hXiA2Wl0Q`6U>A`mF71UX^jkIso%u+2NpM>=3Bi82RPu9$OgC5pTGt~cXLNW zGjhx&YT#wFV?+&Q>+$iBd@{@;W2J@Fsuo7et~@Q2#DgKb#JjMS7}ikhJFnJA3GCa1 zg=LaA(e_clj25(DlHeB>5$CxGWUxP0QqR@=zMDQDa+=2^7Oxuy^!Brl9i8k#D1DDI zdZiBg+-@rVX2p?ja*uh~ceW`D`o9UQGoP916?-RF{~j0r^Pru@kB_6X1|*b}#ydlh z$Gk=t=^!$NznUxzr$R0Is5zM}KI-C4br5P+QNP~ zXzqo*^)(j8*!am$bw6F0k+K>R>T=!00DIUVtAS#`m|`7j+CEII=brvmiNGpF|M2yA z%bU(LM@ME88~>I+PXQI&7%ABqfOR$3oQIuh*ba?!1-x6CvtPhMt0e8gx1`$CR9ddG z!pWkRDgkjP4qZBg* ztXLn1g8N6zq=2s7iFY<8W_VnG=QKPE`Ij-ojMp{gv(VLw{U9&jWL>BPo5A|=f&s%l z&9dAZ{Wo|jK^q#U;+O708Gi{-Zq!u8@7kv0mE5yi%oYqQ;N=e5QtS_GG-zw)>;nNmCb+8Px{2J-joe7jm2SYk8WLAQpZ0$OW|Fq#QRwl~uygxcA;g1SBT9pC$>IgPrm|JF}DJnq*1 z7UtyTZJhGUJZp$6o^Emea;clpg+RRG&WZQTZPG3~Lrpl3y~oBPFBpKlUd%-jeXmhS^} zV$NxunkRn7zQx6j^jKw(N3Hk#?{uL1dJSHFCl0SGv2e**HlJe~Z@P^7vb6MB_J@IB z{NHhNqeX#)J@?}!z`ktAujVm!31Fhk`p%4bA+P@u<0D@% zbE6>gGA0j#D@uQ8g*Fel?mIE59!hSeVvxZM-r_-ww!0KWv74ln`T5}vOrHtaPn!Cf zu|xU50M5I&e-YtQP~fX#iZ0)nYp6V4sWl+cI)2~eQuQB^hQOvNlP@UL$yRkwXW^*k zn~Hi^8Qn%?a`M#-R#vYljyf}`9`2RtP58?8QEo*2`_Yi5$j2$dn!J>*!|R@l*(<&+W+&Lon7WhSIWmkW?)98#2z zmu|9}{Yt!ynsSks4G2n48QzC^gyRT)v?V1?uiB{e-Y-r;@|gRUy0*m+5+2(zoD1n@ zW~d!~Ip*INO-N4i^KWH?QXA+fO^m$C+Wj%ca6uoHSMWBP_4B%>po^ zM3-x+KV*4B<|IbW*=`u0JUr>-r9ltL54A7@pUsxdHF83WbZ==yWk;yV;22IfBWpK5 zj40mf@N|J>7O-uzM=63Sro7vY&Vl%LSn~4{TeztgMNZBBAB)<*$_2+#DtY8mGA~A7XSmSk#ADnMv zW+X;7OI>}B%DswS9;(?#uf+ZxJn5I(WjSo;=0Wg4Lk% zF0dRv|0DFp6EBWtn{y+mwe6nrzMIMSz*)P-+WkEyDXFWFdEc z_NiiLsO2AZqIX$VOgtyqLLaLRKb1$7)1mb^exKCINEq(Sl_hPcyS`aiUj_$cu%B!N z#Q@wU(I{bQS+n2E<689R`;?ivtw<6_i9^B~({4dV5;P7L}i+$M)gFqid-LU*i>Vjj8s;BMO7! zkZ+n@vbSXeXfBuFw~GQy`qkBw*x43LCD)8w) zt4)3d@{J>?dn*Pw_tX?lJ_}uDEyhm#2@O5#T7R}VVQ1)bZoXd6g`FV1-{G&4j?%=t z7ebBTl_fc}ybOGT;=^L1)P2g60jng~=`^=0DXzYHO*?hEb?{S+^9?c_dtJtq!t@RGoYBJnxusR@fmC<^vQgqloc zx`E}KjoDEr{YN+iv|eyS%(?v)a-_eI8)5NqkXG{U-*saE>dCl_sR3Jq%!^fr_9C@6 zNhRvI*dH2w41WFa=B}(mb8#FfQx{?&gXl*>lHfER4m+rQt($6kei6c#>G|;#!JTqchrc5ygJmhZi5vmLrI!ZxvC zO_(1Y5|EDIMx2ttzf)6x;W;;s5~t9Or_*;NgiR5d)l6YX8O+wmleydCt~Ol9F#+Cz zVxh@VK^>=dOP1{-fjwCjhe-+qbz+N@PM?I;tl_T0bVo6Q7tZ3L*QZ+72t*{WDfrkNc&if| zS)X!!pzOosk(pH)98*GuNG_6~V7e(etab0&2&<+wy0r0fGpYZtD*{Z{YI2jL88eS$ zJ>rANtCz|pm86O(wFP5j0n}lk9C|{ClRY{3ReGdPYh0i_s%>Zw4pUyG=)29g_72_E zx7KxR&7838->$c|41UsXKz!}h2&T|%RC78A$X72eD9Ga9$;Oow5t6tWLVYP?*Q;P! zVMP0>X%I~r1%XezMEo%+i;0Z7m}GR-al^YLaBELTT)Ow}_$%bbpS)KW%l+f9ZaE}9 zwscow`ySRT#~KF{Vk+<7OI9Gx&X;F}Q&QNER}aLWDKMf&uJjE(zbO~iHF_!nA7Cu7 zz|ZINt^y5GUehA*S|<&v=R$88^U~(-exn^iqi={^W>MqA!t3W+-3Dm*Ja}HVv|?r_ zOe{vJZNB_W$XZcXpoQQ^T9wq(T>9rM{373XOrdVxJ<*;6-!Nv4c24vja7xergb^Vk zP9L@1I7U8ldZz9U@-$}l>7~DjvzY@+pPGtY2n^CiQ~TGREdT5~_0x1ys~UmxF+aYe z14}lA(JI59Sz3Lb#aw=Gs3`-P-V*5w9cv}nrn zJ_8r@c&_nJFM#AC5v&m1P$?~oEi!1HN!=;_ti|Cjn8M41;!GWuhb&yIMsS03vmB@M;HNE`W@+aEm-!E;Z((SQO25WjW7ltl!wy5AYQp?+zet4&qS!g2wS5h8q zXrj;G^7ilUIOcFEsw}v6EfsZ-)dm$BEFsOFx{2n|pvkA_Nzz?7&Pb-SGN%&TwL41e zhGLy)LJqrvbN!^pn*iau`#yFPm`4US-Xzba=KP9GQe}yddj-4NM?B*8`5k596`Z(3 zuz9~M#Wf+oggFgkGRp|z`Z`{Gbi}enMKRO+B4KGc-F^eQo=T4kSSf6&90$MKGy)jZ z+({kU8{WyI56=>wY|qE06c;mF(omaEkuFg zdMe^j@x8d4A2NDwe;u-;I{5w(|8GI*x?tYcFd62mLII42X z%HbKtkqMdcT%J|xu$RkA<0@14`Gc)RqZdPHxpKmI5Dm|tljc@jfOWbUWCh3iu3QYL z8=GWedcWl4V}1`CaQ-;t=cy#zWecMgmK4aHaasQz57$9sKc-NXp64nT6mVS`awjRw z3Il`iy`AL5#^dw_QiF z+~m18(rJhKt40}j%pUw}TIzqx7hxR)+@v!2W|_XQzAh_96b2<4PB3@!xnD~I4@8%j zz|g-7ICy<)o%`*2cct?=H-6~U7UD%)?x9dR-r2-it`*9%aJRfSN(_dQ( z8@b?acaSa-`t<G&fP}a5E-YAm_x!ljf%tpDyTe`P@#@qQ40y`#@yw%3ydGJh74y z|8(83)5A7BwBeKePQQ{IyhdtCn<kDB(EFG>Px z13#6)?C9bc7P3YOlGnlYKu)jcdCO%AK(OsOab;?b%K94q>67DnmaEkqbDe~tL%ffs zAW?cdb@?CWi8V5&LnEssVZ(0b?hF+MPzQdV>pd_5cy#!H`}uX(v z%|TgTgvn;a_RRJoGe4Cr<=8MX9Em)+yn$SedPuY8pM!6Be>SX4tIJtjHi_{BE<^b|=(yI=FGd++~ycn7H`6pOtr0Q=#UxQXI_cEAHFW3GSg2?Tc1 zBmvvFZ#xO$G6%w33N(Ot)dbd!LDap!l`B!^F1GT3P1Trg&6;Hma((HxH^*A<3Tdbr ze(-{>K@7$&7}q~1@+}vd;GWDsF3#1b4q5FG{|QMS7uh>1o{O&Gi`J{dS6Abmi}p3O zU&|jKK;{*?iHeBS8#G~468z`^W>1_QiRt%T(8c;UUio*hc{3sRaRtD_YC`r2TSo~e z5mjTZhA)M#7TKuq^n`NrgXwu0Gck29^HXxp30Wv11jF_D@Lwj*q!O}>z!h^%h{v}Dly)6p`Mw-$l*9Bin zqn;l45BMS$3@Q2o0Vj}}73Dhs72_0Ju;z2W^cNla*gAMFDqWkcxR$?J$CvYH0vF;i z_7n4W6p~OUCc(qbHFuvNf6Yj9x~atz63UCfR9wI4KT5&LC z*K4FXZIX7ljGU#gaF{1|K`Zy*-U%2`Vgq<}CV}R3 zqMsKW1bRl1a$eXOK=y^8%9@D}JRd&GFLhFiqTRtOuKe2q5rBH9rZz229M3bhruHIRT!;=N3 z@B*1^laXhxz#u?tn~=cg(tpKx0VYQW64alY!PGcrrT|#+9SZ5?6Oo;=i|X`3$i=8G zV@U;pBPtRNGmD3`J#b4;hZWdveV~D7u!PW!H`JHT%;D_}M18`?;dAgXq6bprL=$Xf zU=Wi)9M+$+FOSl4dpM>4WUc8K6O19o8Ude&z~oTgf(7|a`xk5xa_4}~^%1U9$gla9 zza=N|(hhWVOh|~z*j31NjMp?KyUpQ76@`%rYhYT@!R-+yV$DOA63>M1wc0Sxen@ER7SCk3t%p* zq;9vx!S|E-$BRCMzfOmovURF*=1Et(*zusT-bA@hTS5WM+Q4m0ar9?x;Pc8v?hezG zJM64DGub9~cCZr!xm{D0m5j6EcDbL*E+}2Yf+_&m`2(|0WCZ~8t*oDC#By`@l>}fp zbr3f6RYOciKoBd^!08&9X4iZ*oE0I=oT|aSg8FiB84T7!vHR$ix-~6UH*X)loL}^7 zLShWnbr4(e!UN6)X|dx_R!>#3Wnu>Z88j0!Q}-Np&^la93R~G^W9xze5TM*R49}i0 z4fB3I?CQ4TlGyBv9GYAJF)T^dbnV{=kOtgy4!kA8KzY%L0oda2Kx;eI8&<�q4vZ z@g%)zOjm~?A$?3SdGhgXz#n`4mo@^ZUrk4EXO|?s5Nc)y+#}dwG2{)$M0L_yizj7C z{dq`|<*cjJPbKCP-*n+p9m{G*?1ANTiXSXe`@63xF+b*7939J@^-|p|vOg6W4btAZ z2<+%34zD+E&@h0|ffGBHfz0Hvec|BGaNI(pkSi`uv)cTXD}P1zx!eSbm3^tCz5{am zYeA)ViPEX-^CiQ2F9l7 z_oR|cyKbLszeddKl8Z&7%|gl2&Tb)W_VA=D+3%R zEXYonvf)!!mhfVpOngBm4tBV-b=fcIKeK1#6C@|_flYoMbU1?`*sWJU#v&&qhL(I8 z6@2=%pB+AiTIHph82JS+W81_IS74dsgr$DnMT?`9b?B_0+L8x)BPY^v$BETx zpKGeL(T))M+|FuCaM=ESs8K4(D`u8*w5VWnBB#)@00Y^c-eL_%;LBZHaYd@XKp6sv zz6@^SlemN^5Sqw_%ZAEq91@q$RJhEDt;{qHXB>;9EpqUvIR_&ybTOrY&XBhMSEIej zRy>E7xPg%N@#4hXhuJ}l^bxob8}Dj2>5@2@Vr`Mt4W`ognYV8s2>6v*Y;&Z1Ch6TML?Ub!5ibyAsz^%c#->o#l zB1-Q|a&DsfnxYOA+N0P=38~usW@WTa^J4pYBIF%8k;P>A_4TkshSI*WAEGooE8jtEyFcv>%U0=W-t6!%tf&Y%x zhFjKZ(LehYt_hDYl-^!*#YqeYPH#&VeBhSYyxK7W+_GoIiLi}l{DHzK_88zG1^IDTV6pn|BrM<3Ln60%TSTx=9@AH6|exd;CG{Y1MBBnAu+ z)@-r@x8g=j?Ze=;4E))md!olu-i@26(*ve9Z$^fHUnxM7Q@W?zpN zCOcT;BKd4c0QNIOl^|1^jX)@X`-*?l2Ry?;!pAvFM#owU}qWdQ!e-VYOc|@xSOs;JH z2M7hytaKIfSUHN4T0aGjU3m5M@Cg49(3lo1r74`Ip(oEZ7eIZV0W~4xk0|M}wDJH} zws35^Y^;{1ZXPnLGH^}UXqjYC@!PR^*1>X8LlOd8baMRl8|qA6MGejlX~gl~K+j*$ z68O`ujmv<#WB78%+V^6kYvi*MjyZ9?FUp{OC{gTdc{!9*bN;9T9_vHF0G=~-Idi~} zJpM7ldyN=w)Wm*}w-qx_1o-IYC48|OTX#{33jpTBO|5VDv}@)>J1r!*Z>JV=eyc(j zIrqE#xy_vnbH$kw_mp_CQi{IAuK#v9n9m=eqedRCJlBIsm{1=D#xWxFIDBo9Ghme)=G74Dj8i?02*NRl9!3O zzGLyvG8OP|S!=5~NP@8Ihr#<254h&Ib4$yJ;f)^K+#i~Qso;2>z7U#O0?DyudEF2M z@U?X&NDUtgzLoRT+mXkSq(Kg=nnC&s@m;dC1qe&eJkDL8aMN8UmW$d@hB?M|27meP z?(e&H6Z>7oP&#!l9kZN*OiI<8;pQ_EuVN4*E>Y6u{`m%p8&yV8sp`N6ykYz3**;IWQ&Vm|s1;=t4mIAz4;WbBWybi!d*uZ_znP;8t+7g;A z6i1r=P0!y(A@`2VZEXf%6V@j1s}XZ+k2OC*9K-j{#o^P5oHAoepk%X)7Cf+tV`FRE zWGB<$U^`flcI4NT854))O3PmR1FylimINA?FHNuNo9r*kPzlcWF}qVU=Ni2FRj6#& zrmXWVV$Fg@ee$yB;fg|UO=c+M;9zI7_B1-K`D33dR=&_DU0#1-xU80VW{^qL?KO;Q_YA;fJh3q6{g>V?j334IEQf@E@|e z7QpMVfnMD4;&4jJtjVPALT9prF-XGAnlqzI^Rolm@{9^wH1+ef7yK7SM9 ze(sA938)KRMCN283@5D*vrZgdu&EX@!qPjA=#H!_W%>$X1S0y25K|LRt6yQjlk}Uq zOp{%a)OBFft_nT*v0a7r8yCcYNwRF%i62u*!>=i33-H~wy8@JCcH!v3B?XA1*iia7 z16nR|gzLBb{Rx8Y4P9(>n%W#7zn^t}Qx?n<~>p0Ht(nMoKb@nZ?CLZwdT*$^%47-py2s=S1g3VKgy{hHal{#APgSGptVT9ldGf?(iZ`nWP zj}V7&xkOp?_PvARAZ}vkF+e1Wq$DASj1VyOn2gz1{}Qe4_F^@wjy1%4WZ%*ZP>6?T zTRbwzu+wh;W}f?mrAS@uA>y%*$v*`t>~b+yy@Oad=rXF88dpF6gi*#)CVBKa4Gqqe zV24x1vM+*1V4p+PT)=;LyB6*#2@i_uvON}b{l5-g<}1h!@5(Qt0Pg)-v)gg~g9f7O zHK4QI2W$kz?06bz>kT=ch?tPji%D3Z+Oc|YcjxcA;NE$yb3<4>@iKm6pgb8#Az=M& zc{hE)stZIBv;a@JAk@Bq2;I5<^}^6|nkvJA`fPtv20dokMv3||#1J#rDG%I4TA0B5 zWer4#)&~r{}dNaCQyDUgA>p;<0}It>_Xd+z^?6SVr&x!#otOjv=@&6T6icz zBEJ~#v%)vIL>o3BHPe NGIBd+xYL5X9WO{lpXv=p9h9Gmh@x2=194Okh zGUy=!^(BA%Ts6CB(`tPGrLsuZvYYN)c?U5<7_QJO62&|bq6t@OE1fk@k7~2@k8|%H zOj&%a&&FqywDVi0a~tO-ijA=N?T`6o@D*Zk)~0hf;R0b$rGiqF`>FVJ3-H-jwEkCn9Gp?)>(FF~@e|)5s~N$H4LjWK)cpXNl;e z!KR=4yW-@bz#mAg^~zUwJgHeqylwoLNeHGSYj5XpR%Oj3D`udIooD{&p2$uev`!{k z;AQaWOOw~v65~#iZNvm~wRy5pbYIX%kH}R~cRO10@Yx&9mAfcClU7=`ScDKc-FMa*_p`$t3xz!RPBpM9@(obwqRMS&Bg5RV^*s08u^xf&{eEuCG1VJTknoW)9v1>3?>!+ zURUo-k_Kmj%b9jn)AqOP^yzk6J-JusN5Y+bD#H_mzjublIU~|{#_x}YEbi-XG!Q-y zlFWwC1@4qik_Lz~->ggph~bM~DUWyifw)_h=kn;b4}bDK$iKJ7KRz~hh2L)1pTeQM{zEG!^pNmtyxvnQbMBfQ20azLea1$Uq zmb<5RmjFjc$@9-GMxxZ)N$sAyBYQGCdqX>rL>uhQso;*sz-hp;`%&>6p280syc_BE zUU_V6oYYC|be`$UbTis)CfWb|gd_vI*D!AW9o}|(qerXdRgM!u601e~{O!tIA84ch zLbh%O$X?~{9>o@PhRb?rRZb2uP_*v;BoWyn<++KP>FdEpE|-c=1!Iinj56+!J3f3k zQrw4=r|u^Z#zv;Gu)Au256kV1neePy>GTwX?mUY9LQL^+{aKpiIPo|XDu@)6`R{ayNDz0K{c^>uVU`#7b1_NK6_va9MQ2T1ZVCr>4bpt!UZ*RtZP)kq z>F!Fjj{>RNm|9;`Ht^Y74XX55+Sm`jd`gvU-bDd51JOfwdrxA$xzpyyzE3wpDDlUB zLAI3#nLK_qHfP+qcJ2~+Ogf4g7AJr*U^`~!x*;`B<+_)!8;NpKceX&v`134%dSH4RC+u;t_`!mRrv(<)odZqbGLis z8h#rS$a$FTR9k(mrr>5Lvqaag{+>T{J%lR%V3a)e9X*AhrK>nsyEsAH2`2-C#B<%`L3PURO_?VpRc#*poSw6QiL35tz!!FoVD|WT zyw?K_Fa?lRv1pF`$&zr}f5a3a7a)I&43sixml*lDm(Ih76`r86^4VgvrpQb(9gAl% z){9;n_~Qay8kX3fvED(im8BC3zJ#7KDASvdPcsB+!juk{!6EKa$ekx1G;7sm8g5Ig zU&8J%&1b%Q?eeGBbAJ}If!Q=#c$lk8-J!iC1KBB^=UPbuX2{@rn+gSCzf-0}Pq(F> z&b_U1w3M+G+KpjbfF?W)`1A{C;K~lasKofalS1g`l=ulRnsEIJCv;w3XN0vDJKD6$ z7ZDw8(8bAA^mc2vKh!n1V#)7$&}T!)1h9P@-GdYwi+?wc_%Dj>X+v0y5dSM<(7S4X zWu)2N;tMgfSnbttVc2@Yv9&AnAt;*zVG-M$mFRsr_B38RigLSkk-(I{l-La%Ev3cc z?wu{ESnY3I=~YoXn@e#CV(vHA#;s{<%Xh>Aiz5v76Fdj6UPcwzAZC7>W1je(+WDID zIukgO7y|?7>p;V~xSw*r4O2Sp6$iQO{?h&)sQJI9j_(CPJgLvtfuJ(LFI^p$XBt7@j;6$pS~^wM{3 zAeYl+C#e-mmF{+vCK`Jz=%^j1)iqCJgi7a3A2!(hkj#Ih1J*0PTPyocQ#hdPevA7O zY`5p;xIt<%#LHy#ZVi5((madl>q>R3d+Qnr`?N5S?Y8xef(r zIU;hO6baGdQ1zV&42mbJe|=vIr|;f1N<9OeEa1!eZ_EorryyhNVrB}b+y(`Pv1*kB z&RE+)iVLWs{VkJ6?4`0Q$8Tu3Dt`T|5MHH)h9pG%Idpv zQsz!^^kSujB65wks!BDfhoDc0^Xw-EJ*HJ`kn3)R+9zP+yo+7l(mWa~OTG&iEQ2U` z(8!V(mB)S=#pYtSvpwNh_=JsSzj`J_zNvvL9fHU@04{px%Yc50DQ&Hr6>RPTzBT5T z=N<*Di7|zUX@Sn&s5rOWP!dc>+-%&R$lR!|5K*+P`${h`BWTJQx<3E){u9-iYj0OsR90PYkyw7y4!z2YW|J9P)06ZDrspr*`#M zucmA;x6~14-C=6U)%s>x9Q?zDm?8$?bq_+1js8rMg@Kg)?c1gXac>AILWL``nVZ+) zB{;S-$i&k{Mj(hF>4%5(45d)ehc+;w()qjTmXm$n+h_q@y4R)?b?OO$-FNuKpjvFj zOwAg{G_*v+WoBsTf?z-2$A&G0cQ%Fc5GDSn zTd$Hu3R+(cC%0@~t4!nfeeY7|6*DTx|`;J29I$UwA9rd}mVqCQ9nZwqh8|xMTSnEqZ8&I}?_q0l9)XAx?N!MN$~* zx8x8A%(La@YnsiItHddBn@%NZ%S}((F6Hq`?0qwk=PUl*Q1QgcaHx?Xw2qD32I|_F zsW>_+b(Kj#W9SI0+)1)F?}}(1PlG1@N;(T8gkSy*vC^%waz}O)sY%;uGgYb4oRo1q zug0}kuQe{2dD^8bDdSvo@jY2IgFTrLH=uEA0NVMsUOY$^Eps38oBK$#r)M?~LaOqG z&Qac~58iXXEC%QvX8oxy3%|n@gy67nD;-aE+=mV=G0*aj=Kz%zC$d<%Hgt+M%>I_A zk#%V@>8V!$0|3@?cYOoDQB^7=Ck%#wd)axuNWp=x20wvf>_1^RQdVeDHaPl|MavZ9Mj>TKX0{4=v8>Yn3d0OWEhgML=Un z+75Rdhpi`DIZLA&Df)C_i;d1k&xKIoyt!Y4##Kd7h<3B=jY5K+bpX7UE-@>(`+E)Pbe#zgAC^12%JHG)JS|anljeh2hS(lVFtK{P!|&l-+_p)jYMT5Y zyrfqB*L|dKUgU~aN<3yY`%-^v;8Iz=faoyyQ?YxEi}`{mkerCjSOAtPpg0ZLZ1^sM zU#$1^2&+7Ck2RYeuOamf>Q@@FEuSkTss1ck4Phr)DIwxZBWCx$Oh3TK!i3tiaHYBo zzRL<2w}i`NJv6sD51lZ}{@Fbrdv0jV95`W(2B>5Y&AA+O-hs#k{o5>3L_X#3{7-q+ zWISCMZW?WZ{xEIDq4#$odp3K@p?cZ@+Jns*yU+24y(a<_vjU~I=l^KB%DAe!r+WYi zK|%!SQt9pvK{~zC-Q6h-Dj-TcB~z~dDd6xAgP1SY6a-jqVvXSo#C+(kxYN=M_+d4;jE{X zrWN+zXUj-Y)NzP#zKX& z=KsAVP@d<|bU9P0Wf&RGaUs5+1t> z4oGey3E&NQY?6b7a~_pH$itT{2>!mue}`3^Ym)HnbAtMw9OOm7S%mW1?`r4E6(|^h zMMs#6xW+V}joXDFEi!<*TNbx4$X=j#b2S>CnIlm~=QGr#dtml9@$_%h(3>(eK*QEArkpkVk*psB0OB&dLT zv~`aU(ooN=JO{;anccKdZ8H3!qVyaAmc!M$ky0@%`oPbhi^Y&>_fU^8$}V`D%LNyT za&-10KOk_-?Ut(2^jj1` z&a(#8T*n!K4kkJc(3oZ=oj(YhSZP$9-JzrewhgdS`gzP2u}F*WnbI3;S)~?S0k?MA z)B~=@Do3TKNQ;AiZwr3?E4vwh9=qP`s<5~dA?3xG!$Or#@*%g=+LxRe0yJza3t0f&d#)J zaiLnrpCwEa>Ts{gdkH6l8&z zeK-*-v3f}I*e!sZ0|D(oV0!_2*{g)iR|Uwtg<*fbzVko}Dwe}}0PJl{^?4J@e4r~s zvz6%hi|@egb^xJ2xlm{Xl$5IiSx_zzAi-sDQH8#%Z)o2Y(k#N?eR*vZUs z8^!1Y;9Y4$lzz~>BgSL!Yn@*d!NJ{z6sE8%z2sYO@2sDfGk~#e+{@ZMi2k>i9bLns zP`1KlR~K-B(k59DzoOO55_h;IyB~S4>oc z%8Ndt;+&n%_a6U#M|b+6(#~oMpqHBnf@YkM=7V2kIt8i z)PdnEK1T&`$3fddI@7bwregHV6=9c3=Wizxyg4j3C64?4wYI|kgh3y`^2EWu!9f+H z!ESpF)&!(dP^eG&+0_-#--r9E@tVSX0aE2} zQ+7wV_5FUvPw{kzj$I*U!n}1=GA`USjjDKLTVo%ke5J7e7X%#-^ zEHZGodCFlpQ=JeW?#pAyv#kP@S>W!wF(a(jKSJFR1^5K;{&Tfb8$L{)qcA18dpMox zTr+RKRzd28+CPB}?GnuEJbqxCx6>)Fh&BF%uDYZw@Lty>X5-#t#b;p8vLBp2+B(9x z7nDle^!jVu#{u?&s*kJ_icOAE2n{EgwBqo-tIY1_e9$rzVzuC7tAhbjFw&vRrmOpP z(d2=IG-$iPV9lBaiY+~8l!Z7=gLA<5=sl~aUy6fTU0S|Zlcovd(XT66mvV!$xdFVQ zLuh0t-L>WDw#uxDe{PXT=Faz239tvMYXLSThiD>Ln$HVI(w ziq8pnQe;?y4ONedYmPWKM6x|)^|%xv6{jpj@`y81*-;$(z;!+_hk~;XT74Z(U3CD| z)2Sd|AVfBSzKsi}h93Tio|RiYHhB!ECcx4kgfW`}J6AyrKKg zJ;LSpsE;ExVI|)wdVx3C)tFi>v;jfu3IO16H(iyW-^BLxIT%mt$pOx+sV?vCiM19K zoV?^A58Pttj90Bf6-Dshke=Zf$oD>17q3vrNW|7;x-2F~di;JJOIz zo^tPqa>3~KN1i<~VDv(T#&iRJ56mfIPnc~|;+ZcSmbl>}qsJ)^SrFx$*>I`^pj42N zFc!A%$6{$x6e}v(Hgbp3#<| z2b0=cGz>6E=?N8919!&@FE3iHPkk5_VW7etN0qUqdD0`J!@W5)SXNm`%Ot6ZgR=kQ z(}zwTL4-HsLE&nPH=u(@Ev&VYuUy{~3q3R|e~ST=NTCYZWS z80&!tlk!ON*iIv5ivf&Ac=l-A!n_1bO8{>CpMgdwD%{uMX>0l*n~*$2F2N_d;r%wT zg5$=`ivZFaP-$U)ii$nPf7Y-TR{RKlIfFz8z9fupI}9zcRk=dh0bu;6bhW{qWcuW~ zN9m&bpU2CcoTS%tdHx>G_MroIzO^UdbU=NdyVv#^Bz*sV)W~sB(1ojKC67%qrPn2q z6Te54J)SpU99B&hBs%3Hy9BnUBk!7c#}dvS>~&thSj+}!=mRPeL24=<2c*{{_nccU zonsZVSao*8E-g#vK-A^nwMBuVx4|<@znPX<%6kodS;zusAK~;!sZre3rK&fAJ!@$ zC4qD@CkVw4%=@Xz6z95U5N`=_R-V2G7LiW;tMrh5_JZTSk9y40KXkGJ)V0ogKCF`g zh(ULnP?n{WRwvuYRQBb|^*Vpav^`A{;zfGzSjzTigdK1JW=<5#0D!Sb4O|l7rkGJKBK#m_u)xtx zY~Nym>_lF@MRv6>^Y&ulwrZ!d$6=&!TQ@ap{%?&04Unf2xTk;k?ORkb&24%0JST2I zucihsxt26EW&zG9Q@g>{P_K7O#UGIjL-3X@*8@(N)Aq(!GzpEW4m;1sxrI{6iRI4D z&m*D~l#zxL0YZ@kpU`k8L8|Ey0hU*OP%@K*{IP@Hf+`LO?LMo5>>>gz!2=D50i?+E zdY5t2Z-uT;if1vlJEwNo@1`q;==m4Uas02mY8{wrbAaxfcm!74X1Zt&tnzei0g*EX zzPM4(^;t=?uj;HKHZF)gfsxH9ts6fR6F~51v9o{=c^7`*d!o~dt>WOGLQ1hmLb63g z_9z88+W{CwfLkm7;=&)dkam3^>C|M|P;VwV>(rR(uMK+}<*!k3BKW8K7W=;C$P$IK z2Uch6jftN^fOIi0>Pq9XylN>_OzY_D-DPwUc~~2u$Fh+RXvpbrI&DTpHjV6?=0Nv9 zD!H|k@rVxh1)a1Y2Ofiz8JIyYo7B@axVf8d%v$_5C~|i$M~;GYuksyg4a;)k9fL#C z>XuE(<%R;EL0LRek-9$IpfXj*yf~@Ve!uv@k}qRmR@upt@A&uXzAN(=b#{GCEk2hm zE!s(US@qdi)+4H*?XTs6}Ui4e$B#?QK`eme{cqIG_w-Gl$gz zyUgI=cR_Wr6Ab9}kKvCCH-UFu5%Jt1Mh~Q=;Z?akf*xr59gjwr!nZniC66!a;f6g0 zuY|V<^XF^dEyI-Ckp{mf$6E!i%*PbW(`CzVZ&S;sK*bD}7!|=I#e<<00y~tsOlE1b1y{&!k9Di!@ z3Cvw)9<==B|7=MijrGoSqg)2=mfNE<*fDk;IcMD^$Uh|0SD@v3zUG9zo`Zh*j+3z} z(l?Taab0i`;_YCtcib2C)#MSeI3Q#5mn%+C0Jlj9@IAh}80sF%c=QDs3UW)?o$LGj zSP*SOy*K}9!90E<60QB5m6C#`-gy!+9NGEVnx7|q#wRfp9Fxt+SR+dCUGdqs;x`*A zKGLTK&Y==Kl#R|F*Vh{JY&E$TQsL7foxAP*A9Jtu&J$hFlgufO;H6p*opHMI44r06 zs-0%dWH8@aZu;CFuKYUQ;9dFgXq+r&k%rO1>2B|A@8rn!dilrSp}_sqi+8|bx+vg! zvLDj5x6@Xpc?Dl*1 z6?hOvsS(pCn@tdu+mrWri0zvBQKIvk(={>?94Nc8y{iK~@Deu@`RylE$?$2fl&Eb3 zYEt0Qz1(7+Ogo0{^zj>d$k$(}C}V)v%DGHd7tHeK)hHg1q)|1f>s9=|(jCH^eIWEe zj-&(s_G+N4Y;9tKI1w2VSlAqkPvI=`6UuizFl6+4%}YaF%fiZsneBxuK{S!n>UW$G zJuUcPLPd!7`@nKzjH))mhm6$b8b=xe6HDS>a~txA(3IzW2ST-ea%CE)Y6v( zvyIfL;JtHqMYj@mRJ4TTWMmWS3(Qlcmc$qIs-9V*ubfwmuoaaDhF*1`L(ZR9dRAA~ z)})+BEtGzeV9mK0nbu-;?-fDD{(j_V&>n2fbNz5cpS6^Md zvE}|>cnkuoeVdKnlC!gY>9=P8&Am?%_thqDM_sA;>9tCcoj+TW$?aZiP*OekkVC|c zc!BoJ*$XbOXd~UdNAJN<*@l_evu{SGo-~||YJ*mRf7g#^Z)k}^6hq|U$d@u(oQzWJ zEu<6_UnWC$c$b*iN9xdj$9s9zPE0&75IAZVrFLS`r4YSXA}=w zWLU8pN+p5!7HE-Q-IwD?%p=0xq#`{Zi&bXj0_m@?vPilsk3(XoYS$}UAj$H%*# z6{qNt)!DQIKatdQjio^$O={9C?}O2*NX|n&5FqJUxt~!b2?(H@+!Me~FmB z?-HHLwj>6(DKptSre2q9XVRD`tN7$poSjZS4euP95BN=lb8LPO66lnBVzM5(y3am< z@ewEI;*CgJkXVk3Dr3m5l+QUtPMDBE%mOlvgifg8HBg&Z4r`H6U@G7=7nJLRNcEws z{@cNyCG4&Jp-VKoJXB+TzRVvRW8UYtXVq}{qjpl`ufNXDF0=0J17sAQ`=<1J8Tp@{ z{C3hT2P^Tt zM4~m4Zi6lGWO^++UZSY~XHkZGF9T6p z;6BIG{EM5^1$Gvci9&*pLzGfg4&3;9@Q4*J6>PlG z?J*T`jBC=!>MmG@z^#r2!D1X?@~p=bkhaVmCnG%4_l0~;AUKV_HI=5DLcV_L;|gns zM@QQOY2yk%3~I?C>Xg_Q?K{U5K3TmNrQGOryClY#k!iiN$mWugZ&P2-BDn`sQB+V3 z2|;QT+f;X1S`YCnCQ`h_ZpWSOv`jsN{XL4NE=pQ2_W}o+&Wof%^V=Uq$RqjZxu%Y( zM*8ZO?In+qMabvirb_#Q2sCx`18q-O79;1jV$uxHbC@_TR_&L2QhC`Q{xO z?_nLvrsV!SKGM4i5(7mj`!l^)%WR-MfhLLa;LUdJ-RZh8mEA2~+O{VsB1X4;RD(^& zUmp{%=E}zt3_E>@lILyzQ^nr#Cv1n;shLTC?T2*g*&tisV-@T#2@5?tGNYtwsqvX8WhGa^>;imv)686l*mCYW`zls4qOS~hM! z-FQ86K%p@aN@;UD3{K&7U*N6OZu|K2J=&KriB?7-KolHsBuwPE9Q<`L!QPb5*Y>Na zgfX6x+UipLddKS_YG@eXe#M9C2L%Na^QO>AcVc8mu--N^N9dqK2CrQ=6l<_+mhv&7 zu@`fhYoz4#R|u#mk3?c(g`$`{zZW#1*Q>Ualg&Vke}aT<%_Jg<<1pS24vo ze29SouDiO?8j?x_OS;|i`nD_Y#3OiBvT)nPh)4AQUVx+<3cr!n^a`{#h2GEdHz$rk zJd9Jh74`MiHC++vcZjHN`TOZxGwTio$Rvq95{w{a5Q1Fd68fb#!ZlV<5Hg@%L_gDR zb$gqE28|Q@9DdKbeH%8%wDk9c{q6$yog8ES^ml&Sl}(s{$`<9Y5mS`>Uf!#6v6{1q zl8)0<=L9q(2Ab&5k0| zh*5|IO-MrqQ}X5U$2y)kH!|Ba5QFt;^xa^Oh^FANseY&=4=U=X!#=8;+ue40zD@<3 zV7%uR60Jo7bk(gcs&)%?R+S>C0@sYS;8(^w6esk~mA9C7AVHp(QIX#MEmC*wu3|gi za*b|dL4L{h4gI2T_siNfis3Jc930u+Y~x~bDPH`T> zDuaP-;8V=xwuqljclt%=8-HrL#}&o%1N-+0%PDA667`5m_P7$)=*Fs%r^rP4IOKhm zRQZu==82h1@5Y!+wQ#~XmB13*w;p7g!X zq9+>;?2VLfrli%NI2sEn;kozZp$WD?YWw>7;7Ygs4ETBw*ye%4X&%O+C?#lWX!s-M zXL;TsmsNo^Bm~Z5Q!RP8XdZWSZSoWUrmE#SU#XGoeHY0XTF_wc#V%YJcJqhoeHB(# zKS)yR^g1Z$A@rmqW(6DNSV<=zQbgL&z|$S}uBI9c;?;9qoa~jfQKGUd>U)Bs9&sQZ z9X7dvmHHaRCjKM9LG4@+34`F%Q&*wjdC}N6L+HlTpIixHyLnpg{UpSBLhILhn<5PA zm`af#!(&hp$t+anH+%Yhvoc#uZ}1+NyPol9>4U;yhxM0X4#hs(I8}XnJgfP%#tfDx zpF^}ZXCUL2{uZ&=qB8jRxdWqfk@F>2K1)_W$zQ+BdpDGe)x+(TzTsGh z9OfiOG!bOTYl^cb1f$F{z?*;|@oD)2hU2}E#~3$9Mz=AGYiM*4bXI|&NLpz0vu@-d zoejs&Y=Dw-7tex7l=;t(uXtOHv=g6ud)2~NZnarR8w?o}Y-M(ye_fB)rY04A{NPfO zM#n2xmFdUw`gU==*Ff{F=hYdRnVF>|m`&WA*&I^`X-KNoXJ`J-b1>Z6Fi=e!WjNAR zOz$UC5+RX)0-f|uWcGBUEH8@j+o_NeuC>~=efEsC0`yY4X%7BKU&xsOt=u;URWeEZ zGGdZ6x!^(y{ObnMN5C`fqHJbSc5@~Gv|%V(@^Pp$eDq~GmR+HD_!QuZh1%LaFh3Mh z##?@|eVMvI_5MXN7iX>|F(~(Y>q8t8AXyCRH+H!ZL&M^ZN^oRj!k!QIN&`(m~E#0gk_x5-X+x&S`VHbG{{vXE#|+iOHJAea7J>h zB+=mQI^5dT6P&C0zV4?Y=a6rqMnlrVd5r|f9p|A0ZwdZ&S7LfPI>5mPzV#7%LBbfD zvlB8fFfcye-PZ@sb+aGymcy4Xqzzv#*#uyqwfJ*7Ij$gm3Z@=U;9K%V@gV8WRc?=y zkpG0^s-_cu`6PszMc5|sbF#6(_#^YBZS#gYNpbV$zn!&E3<-F}2y7Oi;=`^?_uHp1Mfw#vKGrIZKYg>UPUjQ2k9ee?;h;HSz$p!YXC#No%M(J$Y8k^@x=_ zRj%w(c-Nz%oj-jN?vmOl#-brzdEms}dZEqxXw)gZWhWq=0N)GwYb#;9ak$cQ)X-kjCYyS0EK9B*`Y*}1ZB%{Q;TbxsYyvSHi6f>OsGU<*0FdAcE7lV?fx z)VTHKR=~X;qPw@xd-5FRYt9jGgC1(=_ov{_I#6)NR0i|$uj?GeyOT!l13$kpry^9z zU~7GCw12O3MioVRH1<1EzMfy9_*=6>N6=WnfJu=RGxOLV-kRm_C?+H-@p^iF0M<#N zK$~FzZ%%FqpO78I(4qd6u8cv0<8;c(KVCB>1ZC0p=VV(#W2^b5CS9kL4gl`Y8h7AY zVu(Y_UdA416Yq`XVy;Wgb39+rFZW#+(V4Dz6AH8+E3}M?L)|cICELLI@QD_ep@VkL zqEr+6FJBzLe3{{+t~Sco?hiPh1E20dJE|4#oR~@N^;+^Mb;SEnMRY3r+h%zwWyh~$A>K-2pf39m z>rP7h_|I2Y#T_s6kB3k?qo-jF-n|>?~3tK!Z(trQ4pEZ{p3qaM&s_NyDwZg~jbjJ>K@>c`q|KhtnZ}go#KeAHf@;; zD;v$5C8Vvct~t9Nd1~U_mMQM@t-5CYo8Gv%9xmlipUJ#hxC+3i8vX!xX=42cFE?Yre!c=YbJ1%kc?_fh6Sr5| zp6>w3;l}ml(iW@{uP<8uA!yQ=L*8ryyk3zCkX=+N3Vuv^Usr_ZbDUu7S*3`kH)Hme z_jV`u3*f$>n-3k_P}z+0dkI^4A&(?M_CnqRw9n3$y&jWu_H{FW&p;F*UJ%{vm#6EX zTLZL8%DEU=yNZ+#HZZVj42(qi@`Bzn#YIhxY0bV```{X*$z#<_j6UZ_#o#`p8xDMa zj}KLt!LZn#+IPGXO!ZexXGI)@#c=k)bYe{u9M|kBdoCB5%L$3 zIVQ@F5-GYbxM9i(rZ4y9i@=xviei#!o12wFw?(0#>NlVUwiw->YFa~I;Ek<$>+~ZO zI57Oyzd!$`@V1f|Lnlq`PlpP};O4#?1?X44lDqhf4GZ?)wHZr)~ ztiov>M~2k1JCnzPxlgNgckWTQu5{-q{QfN*O@-ALr8z%0r>o~S>A<&gkt;jc8p{!m z_^oUGN(v-vPpHh0_ANH0d5?o}D4xeS$$ZDplSev>agBMRct9B?*TTTainol727N;y zpxXL-tmy`SpNVj?enElaKXoRn(_H--&jR1SBPp`n%B)zY4*lXJ`g(CyZ%W0)ZB+Wc zwj}`{KeM!LW`1Q-51@~W50IfYq0cD!Xj#~J5wsz^P*~sGt8Xp`!w>JZQ|fZ{ei$4_ z;)7RuvBPzF+{HrMAO6&8j!*X2(nf(^r*4=z<79e&#nMtWs^3r4!-6)c))da0swX0S zQy0oFZrUr~+Lx7$N7Qf|;?!2x(2eT9oJUGA1Z_t}Xr_pv;TKJ&T^gtj|LI{}iqosv z*9@i8%E##5{lRSZjDkmiu?x%e5>8EjG_jZi@@QmyEH?>qzHw^&xZ>e7stGnUTmh(B ze-3%9cOcfr2>A)2VW*>Lc?tp9z@MW&bjeO&G7Y5j2Csg*R#2QnzhL!w zk~tnL$xH&)`f9SZ5=?h00;;6nFYRXZ8vnQdWwVocy47RzU)Hm)Tvvbe{|R2l{ecm0 z8-hq!Fv}U2dj#t}lXXN(lB(Ed+xI*qBvMc6G$0CJ4-RN~c9vRXGd_hV|{LBJ2EB~Eb z1bFzT^@#ZHmGD%>52Q()y+81K#oQoa`RT^i@=4`TK~kaQ1ty5G$rT+@!idUcftak6@1JHB1*ru;5B$4pCe6?tr3q+0|w!O;WU zJSJ-?r1s&dVbImjq*3Fzo@9n!c{4AoN*-2Z#W(xzc(o8rK!@H>O#Wz_o*96J|MO%u zd4awE{tIwH(eYO@M@FcP&NgAc`eWSDYZ0-6&+;SORm`QKw-3HIU9 zfn0k;!Cufq1kLCeC2~Bkpep>00=<7m1!roSujAJ*zpr)J^j1dMaEbn^`~`uR)R91Nv`Z{i7^*fMUI4)*bB z^Kp>#At(_e6(b(35CI1g8*I>OEz{8+fIplU${yh@Pu3zN4=|_0$cG?%yexmM76-PC zs$M$MWi`-c9VH+i8zMt9JqnYRGxSzOVmXeu5OtiNk}ZA4%w5*J?#?e!qn|nDu}9MK zy!9^EC3RnEO0i*$^xQ1Zvq5W&|1|tviqq4D!v_+ky_8v$2tq%MxV0^3U?SNSvgb%m z7u|L)U>p$B=Qkj=A1#J31 zxJzviv>vXZiCdNBx2RUvMuo51^K%{}8P3MYntkBm@i#k0(<+ce^qcPJv?z4v7?7PRY22DMsTdA-FVHEC;N8&N6Oo|I2QOjkpivc{ zbLK{ZP^gcS)pNh+UB7x8UOO-3PmdRlVHfr1e9ysZoJn z34)9hw|M?F4dIw%A13lW{L|yOz4ZP8Jfh=_FKvaiFF?zDC61QVv3iXzG6oIfJE8Rp zhz1(;+P?&1i8&>l$-c?cFrYDxtDA4Xp4n-uP+=&madV>KD=nUAu_jY}HLvGGXc((} zXahG4_Xh0>Ma_bcRP{*x&As>=4j&#t=F$|&14Ci*DX_1Z$%#i(#I(YAWec$tF3~1- zkabbTVTAOG%>gelu~h{K3h5D{^T=*7uTxHqUx-EEM*|(Q^Hkf=rNsB26~0<; zHdH*gZ~#OHv^fnL&aeQiT>W@4&CVTMOuL|~)%_k#D>K;SsLIKHbw@mkF)rh%H6S$o zPHi_s;=B9Ih`!(>Aw#S#T_GfhM6kZ0^%9cM;{qwTke%dg>|F`Z-#02Embr=)wBxIZ zn%|e#KUeU*o^R-X<&Kj>gz1|Sfj~c-%EO>oe(W%C+j&q=)66ZNHNF7~>Rw zLxSLi;+o%?1jH8<5OXR!e0hXzg1xN^4yJ;_#4jai(}2$7qrolQvtLwNm=cc$#cxkc|e9bBc1+|cdrwO48Wf?x4 zFvlZRB~8Fr<^1`)*DS{JM8I4EEOt67&J;CXWZ25+(cTGA-3EFL-alw&Fp@NhemVnD ze+9xtuKw!7{fGup05$R`0Kl1SPz)9ESYpC%iII{b>ch;FAAgVwbHBV2Bt0ic($fPJ z8=~%JqtlJ%nGX=;*x_=$tXV4T7Nqw%pLto+@vve#FHZ+~#|tC=jqHR{Z0Bwx;I6Vw zJ{mp20rJVC7x>5!&Qm}E2g`UOD25*^Q=E(*>#phI*z5gW&0VWT&8MqWEVb~@Oc>Cx zCavR^Rn(O9U~brq9yl? z7xnEHLFk{Ba>5{j>N@r8MCm+OHaj29j+4MIM-FXZQ4X_q{1@nb7I&9ge4zAVaRq% zwEFTMCx}{27GpftQ7rc{kN*hzc0M3k6r-lU&NPqq{Kb4kd;hzLR1)_~mgg9>(6{dg zI2jLVQ6Uc1dCsC;J2P0v>0=w1m@MCZ5fDwHn!5wNY*!57nqK=8@|HWn-@40?fL!vb zVdL=i$#p0oC?3|R-*C*tbv4t)(abDGIJZ%9GFKjwTLTp*^LekX(Jic{F*DhqV!Ig~ zk_+u>miq5$gP?%CgaJN+e7f%Z6DJ3IseB2HN$~7TEM3UwUuT}xFcWSFnmY{Xux#0H zi*Myo5R@cYatt->FB1A`D!*d*>a}U=d~+hHtgw5OC*;pB2(p;+;LoXgGu+Q^=(|PS=4qj}r7y!cF7IqC<9ctmYmo8)dJVP*t-=H~g5ioB#h%WtO(GF==kgbIaAag?Z#VB1&%OtpojU`R zt-4AMpOG&(yR&MviIaHtq!fvLi%ElOS#1btlhDaxT19bIRI@rON7zhG11El+kof`FEpqMCoP_Q$9tk!4Fd{&RWm@9|3Ioi z0A91Nuc{VM!9z^t8xIJLA13%>Uyj7ef|mfVz=!c-1sEq7y?p#H6iu+X;9Lr}Jc8W< zywJCf1FU}$DZr%MOCiibw^pVVQu5l5W<%w%U2sqZ9jnx&-k`Kiz+K-RD)PKmV2w*q zDM(#gO&ye7dG^&wJ;@?Jv7t63I-}?BbOIri&-U=xwMbv(!|4!u@;)cpG~GNKjEd)e zo+eg!ueNRy8(ZBq+3`PRM@2*&sJ@Rw4)W~1V96r#z>881qyPNd2nUkD!Uw@)J!_`~ z|Asl|a+FMfCMKpaKSwx`-Oy~$7jXFLUyb-MxdCw1xI+Fhk)lq6)h2D^FVVVJf?2HQ zgk_wSO)lj{(~aG-*Pk*@6a=$qrBOC(0TYUQOTg7zIj&E-W(qLDXyS*Td5_n8X~&Ui zGTWfxs9u_GOC>`Z0HK}D!Apd*uOoJJ%vI&;IF_@FRwC*#7M=8?goSOQqv5U>8wH>8uLa zQ2eY!Kw~jxQ7V2s4N-?R#b5_(frI1d1xXM+BZvPoqJrBBJ{?alemIeCstvDt@U^^@ zBCELOQd2G6kUOSP==B4tqwyrtjmi}_|v(+B;`)-`Cj?d=uiAFWU>RkpvM$vTe?O7uzDC8dtpkuP~ z9W>&AIOMm;&AXhbJKw$n3y$a)L;*(?-EyJdGB7x2Bve9lUp+>T&O@=~il~4cIm67t{Inz>Q>vG5=g%#^8-Q=_Pt#c%vaS8Df3VL(lg$vZ9jeI4B zSL)=escqjPLoDW%H5#Ae*vk(hyA~%6RqF0JHvpRaP)kwzr21ck)3f9r2FsX8jTFna zsRUd5@d(ndCEih+DLgie<=W=rY?Qc13Vk!%l(uMG9C&|vSE~gDm6|ipF=K5k;QH$J z$3F0GZcnWOSp<+|tAEI*8;3hz{Ot_CSpfAY0aj#5EZ*|>4q)#RO=ju)L-Ca_`WPin zq6dM@m5mN;4LRT6aVcBgGn4PiTZDn2Pb-boY6b?Tj@FCLy>n#emcP4i;-??{XIlEM zqW~HXn3zqsgZBymiDj=m&NumB>N{&%uE*wEmFL>J*fT()1=0Rsp8?gn))m`rOI zD?T^tlau{!9sH}V$XWo6XaQ4$+>`H=C{V*90?9mKM6rJYyiya8Y+s&Z(FHU;TsKKz zrBoa_+niqobn+XbM(5M-S(31`B#T$I#PGOZmq$rQb7c}dDtH)>dyHzqj8UOb?=0vD zV;q!`+E5hw-Mg3X4rxmndki029k~ z(tdk)GNEU_r_GgNhGN99iWTwK=E0uyUsBvB zI|pjK>pLg~6$X8x3yDx;D)tE=}Y(SoDY=6gVteD$cKU-5`z zMdJ>DM{{$oVhh(*%yFA~T&0r)QZy|~=HKd+uP>vPCpKAnBnCHfnX z3sEl}d6-|)AWa#A1IoC;+jp@Gyjk5-qNxe9uonH9>n;>XpZ?Cr8|Q3gk`}B*sKt!L z;RB8`ON>d|Jf8b@ID}xqrKJpH@x@%)ZTK1S!tXta-P{@twpOnjuGbaoL4ty~Q|`yd z?J{7D`#L9;=AkNCPEFTMc9OL170zB`Ovx{!*iVnKnqWItx3HMR$3Mo{9xj&qe=h*- zYcdF;a8ZyK4z^Agkpyq>j0`@5H=+CI@@DxHH@2Pb>Z*M0?95XVmp?bITIdUE&2*(X z(Zvavzd>eAP2m|pVg1FncFIkGdJbYtW&DsJ4ai8h`RPcrp_K#CK?BGmbvKVboq-}~ zfytne0=!vVgUlnf2?8uMzQ3l+nBg&Cg18sCiT-DQ9J;Ns68mF7WuCzq8=+InNVez!8Y) ztTqCyT^{w$iU6>lA;=>*1?l-rZVhM|gp0cJ+)b2<*Y1TkcID+gh<62_OWb*Fr!ig& zZa_NcfYXh;UbY4*)VtrcfGeIf?&OrT(a3ETmoT!PXGAN4^1~!fh9nHg=5IlBIzDIG zMlIi8$s@zWqCnxXkcWmr)p*|BH=d6w32d9=UP#a|H+Uo_+2_F~FEA_1t=8*NTmM$# z8UFhhGe%LlBu8W5`0-&wkk+3tC5kZaY1+N0MsmQ_>`Sauegsh5H3`oYT*3VYS# z6k(nwc2Sxn0k$p$t2>`wgpQkH8mjf`tFJn{d~@>g}Kj>L}7z;b|L0_Bj_) zt4GDJfOmfN)Y%p`U}IiM13o2E^-x-E15HX9 znC@^ukG)F={nH^I5i;a_?pSGY7B6vtml!Pw|y zB>&AVwz*7(Sj&r)``{d6axkvEC!kp~0}O5${p%6*AgR?+=8W>}(wC$_33(iAqtrY0 z{aJY$*#dIxPvC>8*u{y3)1$<`S9EIXcnN@D(8uKa@mwcwfIlTV-f`AVBKZ+$FYr)M zrlgL;@Z)Z&0Xg?Tzv1P6OM38|re%~Mk`U})dAc9zHgo}3@2t*MAdfw+7r$@gNC~bd zy)WP|o zCJxZ%oLxbTKSRI-Qa06c)j@AVIe27jX|%57e4sVhX@&C{8ZbU=Oy~{H*-~ytqO!Ro z0GpbV7m_q4)Ac;9;s9QMbo>)D$y_RE&}StK7BCxxPOhW63o~n}PB}mDPLeZ?d{E(wfBQ$ZpUpae-~Tf<^tK(#OA-8! z2`@Vcy6WMk1FD8e8S4G6Jko+XgQm?ydEkc;=Hv#l8;%;MaTS&%xxc!daI~d+pT=4WC3h9@R1y422Fgl0`*pSlmD{>r*QgVy;O$UEgyJkzCnV3jj*P#TRK4XLYftkz% zdoUr^MQK~w^_j9f z(bn%#H3XRgzimmNAV;})y8QWf9#unZAY7b#7QsfIugd{%KLlNNuO|Ce+ZVr_Nol%G zqNk5g8vLXFremaTgM8&^z3xPA+KSOwJRD1cq|O~nhpOlvkTi`|O4iAFViYi-iWm{V zq=!G1ht;%3W(o5L?5F2m-U9*uyYXyRfH8j@ux=B%zzs3{6wXc?y1&d>H2k{qBJ2_O z0R|B=PF!Q_ib-kCE}=dcu$po5p_1JjK~j4Geq^p3v}LJA?a^x> zWEtk{Y0k3kii-Z`D>^RNYN09ISABi* z7M{k21UW7Ng0wk5T?}K&SaB(aQWoHik;X|R5SR}5M`#LV3-vUm-*wFWBc2V~pg?vc zJ|jxc-n{{mJEE`{GXnUkODO}a2e_rL4Fs-C zbNe+$+Q5n3*Owg6+P@0qs9|BPg3_y}5%S+rfk!u9RCV%ej&h!SwORbfUX@cMKCBlj zl{F2-Yo?*rLg;{)%J;K+;vz`~X-9Q6djbIy(pF65VVoDbrUF^H)txb5E6$++JQd9w*HF%qWUGmYuufH z=02f6oj36j^jHD=v%nXA$Zf?^+5segL`YwJG$I#wlbN9GFj00}sgf??q#O6LJQ4>C zbpPrwYgQD}4g8fra`%!8Vxgsg->(2rua*1fAOp6OqB#LFg^>ysJZ(|#L33MZIG{5i zZI#qt&0+1NhPGW|8R=?qNIehor%Av!Mk6l6x=w z^3{t;Sl_%yj+F!MBBBSyk2_D7BelL=n+EE?<6$KG3ua6pxxC8S@o3>k2>rM1IVt*6 z4Q06N>lMS%zZWG;-TodijkV^R(gW;PM8t~>|23T!_jRA9?$5*CL{QP&T)*Z&T&mgO zI0uvelAMmhBdhvpieORWn(}>5ALskNmOj2Bd#YBTDyy0mWz;anCRpUni)xien)943 zy@U*4t{q+zl0*{uXH!a$#6go-R?0za(&10?#d|#ag5s{yIpWP3>2NSaInaMtUFQaGpd)UK7nQ%|0n_Q&? zPzAC8Qa~(A>A#u-{#+WhgzL7tNmVwY*%Z#|uYbtBJ=yojb~SotTm=%8uEgM<8bsoM zt3p-4U@sD1X$lgRtSml69{xJ}k#bWu1hLTfB*z#1YUYDWNGNusu4C07tW=nw-MiWX z6yaL48w6=T<+-hN85&l!XCyC7A5zfyWFE>)dY;-f1PYUGl~?(iG*miHJRN^-HFC)n z3{#=mF{5#zB!f=mHM)=|<|BWB6Ss+Cqj(-PkE%b_STHUJ-+o%(0RmRVtV8Ga(osdb zN+|)Z|AieYXlACQR0Oe<&H- zMxTi8bmv_^{hAc`zVjVc@b_GoA;MK0m#x^|A(J*sFr(!>OF`o&YZ3pk-Z%a=jv*Lq z2|d3)Q|xbHUdTWW3V+?mE;+X)kmb7l%^*R*<+U!KIe$j85)0X zchrjxw30=#mR??iS~*~X0}g7 z9qZ~J6mTohqp64{(g*d*x#*^F;}Jm(0AhMYMx$yg(S*<1DSz=7W?wze1(HRM5NwZ< zUQqV<*MmW9e;ZoqChgi!>?KPkinuJ^w>1rRY;JtzyOh-%VGfmDZMi0;3rooTG5SS zb8g4@W-#)M2)P3G+Ej=LG`R1qnWZUJFHx};mBC8TRWx_qZCjOF6Mh*Y6p_zJ7n|oavOk&Cpnwz$yeEz#Vhff!y#+k z2z}_uA7>|XA^@|$UHPGJ^ZUq5OB5ViTCrhBjb~&w9R!!7Lj(*sFFzX+xJ+Y%cL2@} zccF7mbU2qqZs|_kGjCGI@7^rPa$lfJRY+#(%Ts_F0AOKtaAvq)uCV>~`-0~kcSVr+ z#~APy&=ywE9#MbFiUDa0{y{iQ=ZgwKSNg!o$eoFeOnJ~X^|cs@LwKv}D!c~u%Wy$C zf~#Q}FBCD^`~c$2Mekm}D|T(9w>4I@@eRuMW-9{)H%_}ws~Zj&^E-bN4eYC*B358l zbtS3$Wy~=~UD3QNq|L+y6X1T&SW{%?DAu)v1wD89=&7$&rW3-u@?JIF8DS`o9*41cwt{L!@L)zjB!>TKOI=vKs zUsJ}LfWi3kb4sM_8sUyV7$z(Dgu>cWCr4rWw>xI{@?L8n4V6;4uvBWw?92|x;Z>y9-qsl875dQ6wCd5vhesHGZ;Lyhm-IZ4l zl)A$qwJ4V=MlpQqcHoege+cN27otPmr{WL#BT{MLm%EOZnF@{Sff=ab^$rG9`6 zV6w-xcw7&18+VVLn^#NX3an6&sonM8_oTDK)Md*0tOAmb_6eq-B`1>WpQJq+v*IoO{k zmhgNCN}BD>=UuY6A(sO+7S?rkJMAo)~UNIi97E)dBzrGC{d#fl%^6i51LaP&xU zt85{V$9lu6KV#_sw zN($-yCGfi49T-JiYLFq5ILjT6gBeL=JtBFNq{9u$)~2L#_`-cpT_8c=Fe+u)Y8lDDikF5ZF?M^e4$nF`PE|Rb}9Ot1yW+?^uJl9KDEGRJT2gV#`54}a;6K;h; zDA0NrCxg;6_@qxkUQ03j;P6?wF>nRESu1{gU4wBgw(oBfXt8gfstoL-;y^^dp4QMB z83RlDnM~x&^QVB3WG7jNUZoIhD~M~oTZcHF@9?yij>%ERe&-Z!!jUDSkTwVp?rC8L z9c^)an%`+R6Of7=?V{BDxuOcQm)JmTQM@|k6Kh1i%_muF@?P7H6ecOH5i>t@YwRa?@QJLb?dtnMcVIqpY4vW^lcMBBp3m3r_T3P47U3quYEk+ zT|l}ZX#xSy{aox)#wfz6vLh*cuMM>Gs3`;CM5UvkxZ1@6=%z^8Q}q$~@}HgoGXA$# z93pY6-VmDffj6pzgAuewf0Q#B=G9oQ%&(t?=dC)hP);ec)jqu1E1n zj=p0dAwDSntA7rpp<7k*$d9iIfMBiv00I`vT9w}atU8Mxt2_>93zx4=`vwW^OXkm^ zd5wpdReeZlipoG`J0wU9(2wH#A+IyhPtAK$&8=bu16CvTQ!%5*n0}B=Q-kVd)>||w zjhh&~y>nz z)q!s3kxGaMBq@2TYZ(Dx1VQD$3%`MS`gT3&eBZ-9xl7#s&xLnqCJ5nrni!983%iRm zTa@6unUwV~52GtuLTiCF0s`CZbj45Y$0!#>?_2qP(9S*3x)rIg;LQ8(VOkB6TJ?&_ zv8kpobP>kb0;c;($P5Qq+>^4TUE3QIOQ)iwR+Yp1qU36O{r(brHnW7|79idTulUuJ zQ<+v1{?)t7Lal=`HQ2a(rjWo|gRSA(=p(2%MzWvhSz&F0k4oINmb+wbN!!J)L-r=+2 z!JSk>)J;ggl|dd@J|tk?N<2Kw_1fxl^(5(B@t;P6JbMeSg^)15+b4Un#y|IKwf3IB zP%nJ3c>;kjVRgoK7^uBePi>8%)1LO7jZ8pAmml|h%H28k@fBbx&=Q`~2L~qum{k0< zHO@#wFr>cq2akDNtC*#Q~`$a;NIh&7l%yA9(v8j{z-%2Y#!!3r!5@l^YItNqInEN|g%xA~bFXS!lK z8YqQ-IxS~KW{MWAKF5GCY_%n8aU}9EiAE{#zB*6|G6Ix3tFsp|iNGLxBSGn=MZJ50AH+;g(AqiM zXEAL6TBetq`dgaj6i-2g(Jl}AFbPug)kW)*i$O_vYs9Hi zHJSIzPJm$M4)UEwsorcDd2}-uqg;EKSy}0gq&M|+**!MJ!5LGuJYMb3pAYDB1a}NM zn@}_HsH%|D#3-;1*X82^;TLDG3>_SjrjTA1XQ^Ds4EFuxvFd;^38>A8W^*I_=m5#oOI6$O{4(_WEG-2A8``+*nZXe^QlKrvZ0Tm5gq(c3z(l zpeX`BE&x)+A4*g2c)sIgJp7uk7OIx+yxo5|=FNZy)Ptb&%(0}zqlF9t*#!pQbXx=S zcY5|DU8qpKSYxL4)V*4e{XX{lUT!ERsNZ*3lf38kHagjT#BhHSX@nAtbnMZ&AT2*9 ztlPJG*PxGlBosWdd=9Wie%YV7`91#^YmGEZw2&=%IWx6W#E>A&w-w95?FBgpQIV}r zirGUt<3ubu7j3J8;MvoN3}LTz!-0|##Pw#8oy_qLDx^C)t(_uTnCp%<$ zv4hUb5_Uock2)~&L$x)`(3AmGrXfMfAb&0VL;nEdUx;MaV7klS7ugPbbM?lzLIQjz zo8s@x&D|&hz&%(GbVb%d=l=ABv1S_vTdY+ zi-!M4K+#A7W)xuE^b@^jMb`pIawYb1YQ`yoP@~_k;H)DebnZ06-50nBP^NPRprX_( z>%*QrXac<7mG4bwLg|Vrw|ejE{-5RI@?v6YHc-ei#^AsQt%%5)I?O3PLd(aqCO~e0 zq2T>A+7$BH%RgBj8I6=ul|q-@D|Q9lpuM`<%uhC~omvqK8p)}d;-_226tCNKfdw@C zxY@r^L0Z7Xr2obBO&VE>pVEBavFj4}@<3Ro$i8;^Fp0b#bt2Fz#i|lQUFNnYl}<@kU*+RM`A(?x6d{bLxqEU z+0>wz8?-;&Wop6DR|;rxzVus935-mUw%#2IpJe{Yn;f zb!E3e7*%p2JA2XuC_PIRI6L&1w$-$ zb&W0e<{qc_pW&c9ZxjsyIG0bJJtbrlM4n6FaT))jLFz&#Ki!>&R1GL# zxh9OTl~DL{T-5Y*NTkf4f4gG8|0EvSnvZ~SZQ=q>tN1vtsRsGz&jjYsHVC%;>#Ic> z?iT{rbe4Nx?mS>g5@~_%{MzE>UKhI&5t|@GZB32uAsv_@0nz1P61S8C?>x4o;`l*+ z16CiS$^9clV!q&+&C8`Z6eJXI<)`Ifc<2K=H6r>Ae{bmlrtXkhK8$z(6wiv!!jYth zge6F}-*Fb(f)EWTE%e4)(0N;=^!PFHv!}oV_y2hGz2N*jv-$cY`@SD&x*bd7_Zmjz zy8tpL`g%$OU=UDo^19}~d=bT2&^rfc^m1cROO~Tmq5iu70cQ{l8Y<6R#ZxfQON4tl zWgZI~W7>251w$af@0Efuo%SjA&aIkM5(ig41yI@{yjb^kG40p2kB&A#P2y)NUt5NV zPC`DbBTveAPuW6SP)6sTuX$Zi?0#1n-l5E44kU52P0xx1fv(xRQUwicktjyvS}u z{3JT16mcM_!L-L2quR5-1^l_-^UmBMdO$dV3K*~o^{3lK+DH;&%3t;Rr+E71aT#8e z|E4N;t{sohS;g`;q7g)W9p(e*kY-kIX)5ySBCjM=2#Rx}<^F>H-H$vA- zIUFo+G7(qn<`flM5eT&w66%G1?i0t$|FAq~` za=cv^14&9e>NdSgF9O-7pd$DIU@x7psv+d_f`Ff31SqD9-H=Q^Yoa1GA}3mwAgmrw z{FwsHd!>s-kf8wo^gQ(yoCFh0&$0W@B?l#)aHUAqQsZafkNZ}hx_jIvUCNnZ=qO`$ z#-_4QrpGg_4BtHX2`$&>tNynAWu$JRT>$6hPQk3^Lu|$EAKI)OC)P3w_*a`hA#MlvRyQAVUez!InLNm zK}btVLU!7gI-=~V3TY2mhgeR4LMzY?o$r!B1c=2wP(aHW6C5U6&r*ysFcz6WmXS&} z&I5DI)!}YBE-c@cHp<)s5mwY~Czbsf`F1}t1c<{fcciL{LF2-_|M8e=L)trF4@c3f zSbTHzx(y0(b^+SXeuaX*9mzxvHE?GJRnT_2mo8WfRPksDw>yw`1YeSIyWnpW`x%}w z(Ap;xX9J3mK5K>qGNj8DsgQDB+zu*TIC7fY*q*I2v zot+J(_>}h1rLya+-VNB;Io{Jr&~OB@g=^3n7XpfPqPW%!q& zKS{5u^WsBTuSDFFMbqUM`$zYdQ(bkslJ1iwbEQ-Y7o(<=pFOd*4DL5q8(EpeGbl~b z&GB{CAN4{-t|CQh#xc!SFr(Ya1|iQtRRHsgS6LwpyG;(Sb`qle?rVd+ztBVEo&&0 zsPYuD%LwMfd`v4J^XyiCoD)R@WC9x1zxU)Cjcbu%LW*|2FDHAfk)K2Tg{Lwmz9PjB zsLmE54mH>k@eBG-P-$!O7I2Ew_^VIk+MHY*pvqbUY|(w@DN8di*r`E?0wm9 zVyM>gt!YYEfe)~;ZR*s}rzt183JPYH-2@^`2pIAIp`*sm@8R5Yc*KPUIeKa8RdhoU z^LAm_#mlHM*F-M?>t@Lo8gexLYicW9^hjlT>YX!aPKX(AlxsBL?x}W~yZ-1yC1D&D zDcfnLi?@guBC@Rt(@_8)H$3Ss_zqA?D%-K}&HpRI{*^0qm^e7`?@-Zam%kdHl?C2? zurRJ;8rWLQU?s|@z>3R9$4eX`GY1=N=^@{9k@-8`t9bFc`yNHhrcy+Kvh) zi686b)-ASdPP>h}gH>l`M+jgD)i?7LY!iIW-J6yIb)HhwT8}su z?1Q0*B+|_sQkFRZsjhhZv2%SbQAG=-r)>G8HGlt#dDxaai4>Bc`L&D*C2~5 zC+7!S{A?BD-_$|LyCoPI z@srataE$AQ9Id+F&Km7ab#$1}960z)o&9-yauQJIW_=Q;_Bt{I*idf3)gNyyZK){> zt~6ywac|1|sMd2Zb`fEioggJ7E5EWJ(N{?1MF665;PIxU#%s&DFtQe%I@(OW1jS2C z3GqL5`T8I7ek3^--_}nl=J&z*B0?FVUJ{uyYfd*uWw*IR_nWXPypx4KmPK`}df4Bi zu`?6)+y5ZPb*PI6MCVk?`gD*Wj|YYgYh>fBX!m%w_wUUG2>&~of%}QwZfcu4mG$l0 zIvw-VJ^qsMJS~MZqQl*O`;DvT2|ppBIHFN^J|sUsQE^L2Nt42l!(%7aaph^_)2A~< zMV-clk6qbnt1By;8_4QiX%FUL;8xDIMO5p7v@^(xL&HghPD;{LK=I5b(M?Zsx`I6? zqhQ*23+@m_*j|h0K}?=Y8SBw5sgii}paf&q?cDWx#M=CgMmJjK>&s3m&H|Eof4Dx~ z+l~81M9A|Z5Yqkf>&39B@9Ar6^?A>;MHy44=o8VtgNtiWuv0Z|y%`uQ%J!Pumxo$M zk80|OB;?Jb=Q+cg%_}DBJ38PS7Gg;ZaGGhugl;Gg6$md!ze2?U72_Tfk7s>Jb0#oe_j3p&%19?)KN!9G@II5d` zD83y%F(hQCLL3U^#e(#wx~OP0{|wrerwwI@Z}C2iA&6Y+I`p;+>uc{kP*6e`hl(AK z=h%wSwJM8DqOfYzgEGI_>63}(W-~f-{5YY>=|X=I0?cbGvmgAN?HbjTW%Fe+d5Y(L zoN+PSDW3MzG}Yg{f3vp&_f?_C@+9nIYQ(S`tl6#B@l9DNFt9BBb7qYFvz+E;tW3Yf zwB(^g-Ji-uMa@cF1@PhV-rij`@eD(Q;_Dm;L}QG9*S0F_pm87fWQ^pCg4h+spQ1qh z{sYId=*(+%;M)l6Gwf87&7*gC-UUv}?R^P0u;Z?+>XC8D8kCiNfr{6lRO~!^>}J z=_h%6YsR*GpHlstkDRcjD_ze0eC!|2WN)(Kxh#GN9;+zd%h8xW^X4EsM*kgcH1%V& z+P-Cf-@304XH90TyMFd!80uhZ>grijUVG~2Q~xfr-xC}_yW4L=^eB*G+BD@a7v8@! zp5?>`@Cx^elg_|ynjMQqY`MSXE>S_x-Tf|d237n%2cd-GwLUa9CGb~ndQo|8?d_G%so{ILUw{|5F>~o*^PwsS87+(Ds~6cr@(j76LNbX; z=T{op>b+}y;n3d}N6{Co)w$mT`4C2Bd)~j3C-x>#p$#g}>{y7?uNtyK+|aJ_JtL*b{T)z&Z_uBzy3LKK3S8r_lm@7 zy-_OOdd1AFSfD->0R2we@$+Zx+qlQ4`u!(TnD@SKsPER!fsk*5!idoE{>jhD>9sWu zB7m>?&$IIMhL`L%x9h)u05q^tj1uHMI&5rzxttjZ%yb%|WGtXFSyIChn#X2u4iCDK z7jNEM?riRfh>YD-KU>5Z{AkR$`sREcR_vV&deonMT)*nS^C;%PqsWdX$5XGx+0U;N zM+9w@BRxvG?EB>Sc8cRss^~5c#routXD!|?<<(<38EnkGH-~HIx@C0i2H!lJ+r>VJ zlC#R`DG`2Zx!nEdJ;{wYTElt{e2X;+Ng%gaOLe7L`%==}B*XTO;rTW%4$+el?f}T;M!Bg+n{IQO+ zV0jvW#ebXgnGk3-jU! z^T|bfn|Xlaal`OI>NaV|-A*OlIcL9wdUp*#>+4_7P^W?)^fZFP80jjk@#YHTj`2jJj>F$%UmL_<}zDxDFDsyEwhLn9QZIa)=tNvO2gSmxd* zjsNIW{}IH&g2yvq1WqsPoy!Bsnz$FOkPtezZNj*>&Up#X!m-C~M1{ELh|#SGs|tJk>+p-?cIDfd_@H4q zoL$h@paMCBXNC*5X3OyGdMIoms*c%?K0$vA3%+}Rt!{Cnseu=0wqlRqn(5ndScRr7 z?j%iy-2rnO+0V(NdU4-8{FMuf1#11(p6=y#Uz20S!;Uw{E*ij~dB_unF=59t(1%>o zoxluMQy>@pQ4m#PFW$9Yi~>RUE+^Ndt|~dclmFGuw40I`f-H;PW_E;CDy{4Dw^wes zx96znmMnbib|bI$IXv)Z^utZc8#gVV(jD_uMN$fFH=Hw%W>Z~z+Pq8^vFrUP4gbd1vo-kJUp56;!mIQ(yJ?XZl*4vNL z-5Q@DkcfXD{i)-#`GxhEh}^e2bamo`2i=%f4lf5Y)dmJO$J@vY(clBhc+IpfExr~k z#4|>Q+Df!aqD*&iQp9U3(Gf>TV{%4Q3BGwt@!Xbz=Zg9@Ue59<3=QQDRf7Ey_$bG< zqmU&=1m|60be-9Yx{j;x6WUGmgK`+icU5nSW=#yM+007SexDPi4}3v7QM?MXFKZ%$^^Pr}aV=;T#Ue%K@?Y(Ez~v^t0*!rrn!d;KW2rRj7Vc5A`= zJYhZxBY*WQQJP{~2sVln1+#i++!SNb$lTeI%vSB0luR@fNZvz{(aN}~sp-0t<|Te1 zSv#2s(vYdTE@X3f2M81C)S#W|ftX4m+1?Y^M&?4tiWk7aX#BQdsm!m}EzAA$r)|b* zYrG8|X@_{j;E1l*fjDAh1Ss?*~fi!{&Ztc}2|irpV1U5rH~VO0}RwHOV$CG|eQ zHk3Jh!T=&3d&%hf#fdNLmijO={9-g-@BDRSvX-N@W_M?1%%2A+uOQ{|;Ln0ALIFxh z(A*;$x)pNUi?ycSq0dDJ7fWVz+ys~#e2+94GsP#TD@RLr!~?|$Fnwsg^40v3C?Hq3 zKFb-~JlX82Hvl`5Uurl~(q5)T?{s}M5+E`+QuS(bhIxAjPA=*SYhJ3DTn@o{tv~_M zNb&Ay5F>h=o~pU>b~<3=3zW&ml#$g7m_M+wI6=V|K)F^AYCeepuHwCVkFxeU%?`gB z5weo!;V#;P0E{3@Qz-r@s2INH2Pr2rg96(bDSsj-?7aHcamwCO*2~c4rC}6*|z)p-PFXs)~Sr070%Chk?0MK{;0F_Vt9CZX9l>2 z;`HxmL!VnrtMXOff4z#Uz?D^~r_DT(@mokf;q^#^tSSk5UqxI0QUmLJl4jbru#?yZ zxjtE%kMKRy1Ysv}O4*|jo~0H&g7sF58Wr-(6W@3V8x7+7^6G(x<$AwZ;$xXwBV}M2 ziayM9bo#$7T+56$h<}ogX56#xHNe=fdo||JoRg?{@7b|p{p{h&N@%Th&i`*HdYPu1J;JO%|)dn zVVgzQI|g#0lW#it6dG@>3Kh((`)!+HD!ORvDR!-Phot8N`t0Z#8#)#lPzzjG6(=%ZSq@R2IxM&5Ext z9*>+-p7tHtK$mAt_#UJs-X)j8)LgOu@8r!7XprI2xm>jv(Mo3IbKTV)fL&y4E?hy9 z?e7czqrHbBO1pXWfjDM^Gh@7weo{51d*OLfTb4IXYg^Us_MBc4Fkk>!V*Udx<-DlH zI4hoY94L_Who)xGM~KRaQPWz-l)vC}GFCcF`Li%9W=2?so@5S@%y0?d@g)D|!C0oKbd)q5>O5Zd$SQQ*du&d6s!2S5?n)j;I^*M*UM3In%y=LZlE>!7q4@th8r(C{Qkrf^pYzb?O(j4b$6Cn`Uc2E&)1#sh zwYdL$VKb(B(c>>X5G;==q{xI!wZD!&gcN_29sQ6DT9VcuxtKxGmkP!fCeYyN_;E~D zTn&~w77+!yHnKkFRZ7}mbwv(5sq#y0xuYkWh0P!2dB0!(ZNC_fjUppQSvdCjt?$pE zi1|Uy{a-Z$k0FlkIlcLGzCAZQXs%~Rpy4VaQcF!{)d{o7%Mb||iK1x^A}NGrIS84J zw-Uol0NGU!wa=*e9NM|uM)9B!1%^TwpQZbfKEu*)&&Mo88(AQKDo~M6r2b=r+Lq9d5$)_(VQF|@|bo}$eSL=vI)M4MU@cu z8PUR)o)k$T^3;}X*Ltp*t^cqZHp6@j%u_(+LhZ1zG5_nYq&AP{vkQ#5% zUeYKYM|uEbAo-9P9g;=z`$Fooi9DDg=KC@|Ill4SVe{Z~(d2uBckkYa+2-h9@}QdT6n^dco2BIV z^f!$nx{Qy%munpd`}j8;2lWiA?FyfK9axO- z`2{!wy<_|-;KKpDoA^;7yH@)7!VonV6v(o^1TUI0)mBaUi3X7qoK5w}x=}wCbZXq! zE%~-uuJ8~osG3uyFne}DEs7WoGW0lD@ia0|p?OLLc0X(y_>}JxXvDC(q<_7a8;UX9 z53&J~I-Zp1z`tI^3P`rKzCN?P7bY$xSCG^valm(+|EQ2`*wOF-OG(-BV0_}K)M9r$ zH<}LOgYwr;&Nh#tV8}IbhSnN^Gmz10`)^G}UrD^)DGA#hI&@045W)XDRR^?2Kl<|R zDKtWLqYeb$IQfy>)YalX)SbMF%0jZz+GiC40ig9z3&fQ;7$47gc z8e;x%H&|wT!;=9Kl?dBwsBTRhSNHrA)+Mm4X$*DRYYVsxs~s)n*`Cbp~g zo+}Gh4Kluiq{qb!3%m(L*|OPR8z|a8GZW$(#tK?Lq_^ zRF%873=IGcJ`WzpkwqAevBFfIyV_GsI?lyT620=gpeh&VCH2}jzn=z3C=9C);3%N| z>18O`T&9n^(AkvI$lmB1b5RfLYAAV4AhJ8Hsd%*WwbnC3wA0FW0Sm!(bgvoK`Rpd{ z0rn6`;zwP)0MUG${}QmA!>oiT3nq~A5XeX_85Pno-OvC2NBhHv?|2UUP7llL6cu#5 z;?ij+leoE|sUSZb?+th43?gS*aqVw8bA}sS3Lv4AKRs9kIO>Fl@Yf4iUEhnfZ8lx4 zE?w3ISneNvinE@KjFiPLTs9T@UqV6|OvqYL?d0CaA{}!mDR${2d!+%um)(85|=uG{1gYHVrz|!eaw(Y^Ky7vC1Z)ez z1qqTNbzc=AMT0{id4x=KmP4vg7o0IMx>WP$(&P8C3pe}fUYv|-0gq^er-%7K?^8>2 zgD<|<4LDmVNIf`)@%J0AI4Q^puWPt2lHRh^S3LMY2T>7+TC*3 zvVs}*DWQl~Zf)zK7i5U#cnv;jhP6Q+id@p$E(Alv_I^3crroT&-7P7_V(Z zAp)<|c)3_$1^ru2zP%>Gijr;O^v7BpW>w-^=bc?1eGba32@GjPwV-CjR>=Ud3?2evbYFyS;Se#c66HFeumqs_nV{K^M zkWUoRaQwF1P}y#BXPot&p|)aWL)_n^YPKg)(<|9_4*WO0lT|C0*UBXHAPtCuou&s6 z1ZxB1`UeW_&ftjLm4{5o z$WGn+hTK5Jxm%|mYAaiA@kFEUb6dtmZX;eNub5|ikjaOwUwCqf4wW13Lz0!icie}4 zoW{8bXW7!he7m6hgvEpZl_0^%S`kU7Sq*6))qPazgk5BQxPMZKs`^=lPBWTZ@R|YA z>~0o6>Jd#Nq? zO>BI(rpQ0Q=YMYVuvLh_iB~K^i~-+P<^nO1L)R6|*ygwy+6V;_5~e?9(BM_w1g6&6 zEMpxagyKt3OFNl42<-W?O;_g8y`I4kRN;T*wh;!^s#u>Mo>l-H~rb zm!r>)S~f4fy+3IqmrO@X1EN4dA(~ecnqwKih_HP`mu-%8QU#Q)_WEz|0-dVdG5L@% zd?|9(8NMwn^lDS16qaw-`|)`D#CKpqT~(6d;gQ z0#-U+vc^LFlh;1${R2#u#ro_I=FjS)Jb!sEl?{a>g9pL0LShxeMyqQK+Xxojh#Fnp zH~T>63iGILA;S)OwQS%BDwmAsRJtp_l8WzNh`v~T-+ky&l>-<)`cA<(aZb?x?juwRRcR;76gi?@`}9e&m&<)yoB1i|iph9o;tXb@?IXjA6FWC?Y(~ zSunJPBgPqE3}Zb&e8a<^#>L9YdGxXL@^hLdg@$_;H1;Tp^_kj-@Z&!KTw~zpnA5ot z)+#uZ4e+%1=ElB?tO?z5D9!4CmD9M{EageA*MsGg3Anwitt32t40~;F)Ch-V7u5eg zF@HmlkglNF96DE_b*Ora#IqxwQ+9=D&7jTT6DaovA-M>?J(`JKrh^`oqIW(|I@-mt zM^xDV?V>`q!-t!#fN~R(EdM<@-bMfA&V?o;`(O69R6zgCz`gePf91ZDr(p<+E>E_v*68U z;&VDWYTZ)3lZC0T#O048W9>)^xY`UlEF_^3IIR}fLz?euD@%&@Cbk^nRWV*D{KL-(6JIf6qN zI#B+b*5a%{!Sx!DkUyC-S%#o_tJvxqFOLA}^yA`Sua9`?-$8MbP{$&+Uq z+*yxg6;OiuNex!qE8m?-EGqtCra1ybeQ;#N)Lzrj#)g~}TV##>TCOiL60&At;W zU4g`zEz#OKo9bpSSo4p_*kMWW21|ka0ARR%D?BjMJhvZNFXuX<6L#$V9^{AEW?)?y z-38Z;9T|XFVzXIETrn&LQ3gGofj2d{bTCqIw$YzjLY_GSAgF;SVP^Rm4gUUj&?kV$ zZumeQJEV=&alvLA$PvKsPp~$H{@Wn~W&~l2my^4dZ0&DJS;_1e_3qwid@IH^?oG$o zpHtx#dcW<)U~9xAC4x(ZXrRt(S76Z?D(Z|KkE)za!^hkqx&Nc%l+}PwzS1qjk&MSv8?v^@uv|DeJBUZ{hxq7Z*w0*A?Rqw{#=eqcFOYc z+z1_joKgkI9UBpEXN9Hc#~<`3HawlA(uEyKM-Uud-h({rcyWIIrXm|H4>??R@zI`y zFHNiUula4f-4)|lQ@G?yuk|ve%};5wTLJ5XR4hL26Z{W z<(N7-sYkbiGTmhleM1Ld4TY0aBqkttXJ3l24cl;LIWcv-jh!65sWv+l%&W$4^@)Nx zNoq_}egp6uWVrz5{_350EmZhb64dWM&K!~%9<;nh{V8-kjZ@p0q{>_&%!>@oWbc%mYxg>6uh>nhRe@1YI_Dw<((G0^;Le!C@&o6ID6i$D1UDN_*c(XMB&0C$8vq5GNNu%?3&RJzOVn`;k23 z>hmv-_t5Pvc({lgnU)pS4;}Jn2dvnt3-ldeBNUvV$?n%90k`0)DfKE+K!JRh`JEi! zdS1ePe7eQoSYpiKG}!NR{jLmtdT|{`;%&ZWlVJ7|NrW(bS5{I~@&EU7{-y&|)_~-~ zfQ^KdQS+I)!GrHo2!(j=%j3);mJH)kn7y4MfTj$L#scH*3z)RhocUIDK?~;fFl@(-G#}$8}akUx8VDQ^&c1$w^HsEur_?kaK{Q0jodBS7v}gWl8C1l3k4(XREvYG z`C!Vr`6)9H>oi}iB$-zvJ4R6g(HSQ0i=nTI64@Mm8Pgeb@Pys_`D@dKn`qOL;Et36F*QGwERu{{EpWVmAmEall)Bziw|jbiKHv(5 z%s870t0Ci49WwjjCw8MyK*Q$iN2-3JQDFS*UiexCt!Oh0C#`u+ zge;)wMjU6ZrDj)p;|mkXW>PxfK&y8^Z21q)rh6Wt29Dg@j>t4NDZi7~aSvs(iBM(! z0+KY9b8S>G;wb0CA!YhD<$w9W5U;5@6kX81nvHI3dmw;HI}QpIv%YH?Ej#H>W^YSH z*Y6-=k$$A6H(D@|22tGXdI6EskP1%b%+?s4d_SUL1?Xo=NH9qm2{nu#q$?^o@NFk1 zfS|-Rv7a_<+$=}7NLmp zR)*@VhHb+OAd!?@>F2KZN7^PsjB?Ri9>0kOB#K)<1 z3X#PFRbk~MgUb)^Fek|r*&`ns@t>$^Q!Bcl zL)ztSIi3eVGEt-yqV@>MX?W9#05o6Qpw2ZS>HLqXgFYbWmXl~*(wNlQ% zt-(mQegPPu@5+-vDZ*1=Cuu&p!^qrKMH2m^O9N-6&BpLK8w5N2z`1m+w{rcP>SUuCn<5?<5`(N+k` zBpz?6eu@B&>OF&MR>Z3#Of7xu?Q7GE($ZsLA zjGGpY&_I1Gz8nq%yvd;ah;iXq_QVAInO=kL;GO7kWTGs(|F^r~RS!SsBOu!CzTAt8 zk=z2v3ckLc*^aEOTWwIhc}rxcsDeu*bf~L{jUuY89S~qQL<35f?tKQwPIA0?v;4-) zh!HO6@pHeDC*oeB|A(~G^d?#!n6OcS#!!q!Ytkny8n9E}*IOxi=ZdwzPr!+OSb`eV z<|}0JXBU||xl4iXzprv$9Uk}LIfLp_Ozt1A`HYr;>x?2@slBG9WB#b546q#l6Vh2* zTN4w{eMx&k8B$XKfc41VVJf-os2Z)cEj2-+U0}2W0~M8h5q6R}{Y}Hi;WI&7sq*H_I>{qt@2M7*Gg;`?Y*61cQd> ziMY9hHeKuI4$ehlM}4y}ZStTj--I8Y3Rlo={gL1s^Hyw{*@EMjAi1%`Z050#bJh0G zq_SiYDv75fon1@cG?WWPcnrud#&$3}L;jR>0~)gCKxN=rSMIp*nNW6tpkP{}q$yCW z=mRSNBS1Kpp=m%C{qAu}>r`XA5*m=It$Ok`20Hmky6%)h9sbqKju+Yr_I`j!xB~@- z(MJLN3glpSARu*BRmIJ<ZHRu zn+Y*_exaVfRhRFPQ<|kDlXgixlSa`Md7C;YB*YoR`g>!3Q#k>JXxY@~T$A@{^?&ry zL!yI5v_388oW*H+H54=8D4oU|^Y4;s$<&q-hXYADP|nGBY1hA$EJ_J;n*dR#dJqwK zlJxqR+=QAc)Clq^LGL^@4i7u=8)FJ6hc{Rn0|#Z*lX*UC&UVM{AUd; zL6z2Bxz}0D?K~-2i!<&|$-N=tJ2YoLhxsnO*E@1o65Kz%*_T-O<-&>g8Lh{&xQj6! zP-|^+j5`^{`?P5iA3r_<7DPW_Sf*NgaN)ic?6~5|7n1IcBA~O+kuZ}jOZX&r<31;S zgY9#nhK>yG)1p_>XTvzDYA9_FMPlc@Y5pHgR~=Mk_jNCzpfm!~9n#%hA|N1KN*biQ zyG1~{yQN#CTL}@6?rxBlZurji{e3fzGtT(ObD!s&z1LoQ?X^F3IS7Jndz_SDGR|qL zu1qD2DH&)CNX7Kk!h+OG!($Y<+uP}Y<-M3#13sH(jiIT3o@xmBOQP*;#TcTV<4Fp) z9&Xi+?&Wi`)^EK&9%&;E`g(=7eI-CcK(BU5$Hxtx&u5jOC{yJOF4D{2{i+EOae(Uj zHE7))j)%v*Qy-tmg7-HXVKgH@CW-t6@mG8XoH#wLd@G!XSET(Q_xXpk14tI=P1S+! z>uj2Agp`;m4|e9NlTE4U6b1rX|Rug}soLXOu%m24E^LG3m~JGB_c z3aj1kQ+^7c0hO=-1TjjxAs`_9w;uqrGN3&*h1n0ovov#mT4F~({~&9FgM3VFm69(l z(Xost04sUWpOMCMG;(*W5th;v5H9_}$azdi7H#0m?n*@^y!?n|T7e)otQPik^EHv5 zw*}a!cH<)7&$)Kg&YJf!td#q(#F40~2v9^II6s~=?X|NpSF&l|?D!PStn|Y9SHM`y zh4p)?L2;YU)l)zH}9r34)MQ zIyo?0+Fxx~thv5)ye!?64;)wuOWzFpTHj|Y8EeLFVx#QE-=u*)ee*k;cN8R5L0=@s zlVJ^G3FKh4CN|$gNi`NwinqraH0w$aK|ZdfJz=x|LTma0)+2V2_|@d5EMD{(4w43I zW1Y7%rG~dc{4c=U03iQSLCz%f5Qy=@JeHF@>(Z zn@2w3L0uyQD-@fL28xfSQ4|N&lBws+7vevzb{;12gfi6JyWcH@G%NVqrgCG#`%nHI zM?=jh4kb|8nk>jpQ(rP80jZd@WGA}?4kGczZP@=m{9~TH!d|k@_)f!RK(B1E9}v0s zZ4VH{g4S$xxAgh}{v<61&|)P#^!ayMAStpw1gzWhC{w)UE|ooJR;Y4cv=d6wNz@n@ zt?tKrhjo{|F4|a$!BgFv`Hi;28&HC17@$@q8`4PrGVPmm07!U)jsVGFUhBAopT;w!AQ zTRiFlPKh&)AC&*Y?|GtG)p7A-`FP7;yzHaq?2y``ImFv<@jUN+koCbnB95ChOG#(9 zL;^t7lL9hPvZibTR1a za#*&($9l#$d;)8*HlRXQp2gz|? z&`Gb-v}L6N)Q%|G#FOi9U;a!X;OFl`qK#i62z9IUZ*J&RuG)?^n)wGn3)f>hEfTKA z*?a%Nx~f8isZAUM@eh)cS@YV)2X_2RpAkWSOz=K@fn}2zwL;F?S60#)AQameEHw$Vcga7 z>aC>a<jW5Q%OGH`U7D=eFpqG+Hro}!% zrh&9YIiW&+uf^UOinqAOk?5Z6@7FNddW!!}HH7%TRM5L|BW6J8t7`$8pwn{*q;>Uk zO2T8rsLf5?{7p3S(?vN*U{QO7#))P~_GjzT<6EzW=>cal1mj;2=kkAa6^UQ7h@T&q zH!yhQT*JU`R}fb7>Cm(Hti17zeQ$R^USQA|vouzEd6DfS>U$x%NGqlRw6H@zh6O?N zF*O%R*Lby*&?2_so!kLjm-kr&9_hD7W`>s^M(u%Sw~F65ZKBn7mIypfct}WdA~3F` zd&q}6JI6Qxd?6l+AH&`^%;(8@e2=(YT;ER1Be=8}Y%{bw()Y9NzgRf@P}4C{KOJ_u z8>mtQ%M#Y27ePiaW?b(w$jCdoO9zn6YoFoK#k&B}_wSVB31};^)Xg3me+H6^AgLYN(;fYyzRgM)CC*|);APtFf4&@EF^+w3WPtCr~@ zf$ZgFS(2}L-Oj*7C6N*iI)X3m6SuH2x$o?2ccC=zz+>z1%I=Z zE)k*HbZn9~022ORX9^YR}+#yA;~eQ$qseFhO)Sdqm z)o!W^ErDUz_8!TAe)GPzdEU7;t{8poIM_=XQjAMXgN-#1__sgR$K}=NrXFa3{W=K^ zy0L)%JW|xIe%xoRtEi1p(H_sgTb%(>zK$KxRUobt($0_iHqpM26zc z5{K)O5Jdg~QXOIj4!?L6J3vwVC2u!vd=B}(L#)#5w$=J$#KPrIa!SJClpjPruRS6e zV{C|@88On!h!ZGd_~`LhL6;xQ8zdZxTTi-baGJi{U4BQ3)}iKrmigXX>G|RpExOXA zSm-8CGyLMxGO^!b$n9`DhT?c5QanvNcEvuT7^C_86GU5Mt}!3t<&Ro^o)!(c!#9n@ z;85YUyLYWPzTy(S-xGD9hCmQAUc_^>o9LI6iI3{f!W(e+4`eg;@KipTp9AxFH6g

zPO-;|bS+(xAEx~16)++SQ6ESgw`JQpMHp7R6aEkEq+X2@h zOl9ObzmFN`+-7#GCGq$$LM${3oH)~ z6?=RN9-3+kb%;iG(=@>OudZO4be4ZiBS&wjY<6BXVW8|Zvi^R@EB}*^;Cr7tBBXo;R7aRc zLbV(Ua;+Xo|10e6o4==?0)DxOENGmr=MDtZYYL{4=(A@yjj`9*H z6S45E@_zidbplRmVm;`a@OaivZCrTLF9sI>JL!f~LpwDUZ@SQE9|?LdwUvQxFfy)` zjKzh49$$T9_fI)swe%~1;}RSj5QX{2AEQFv2Nbt?$##(!x}P$2CEEfykTZaY_6p(n zp*)M>iB&+I{Sj~~-*I4{PCvF(A)b={>5NRld!-kYZUV&CHakgeKeEh6csDKz(I zBCv-6l6%7W3+Fts+z&D0TW2dFZt*vtO7bc6#!EBv_Hz`CoqS>VubEy6<-?bYQO>_M=?k=sm`!?~wnfxHBO0mQ10nFXeK z`6;xMVb&Z??X_p%8P9$OpOaPefD}lfrq9Q5yLFf_IQCqCl!$=I zFS5`A(!gH$fIv7%@pd_knx+RTdKad9HP~ad&fqZ7*LBntXm5>4-vVC9IsAA|T&TUh zwzj?2IEGVFd#Lr26bbbsJ=vKt>T2lP*2#!{#dy<_`DsI5MR8=@7{|Nbw+~}CMJ+Vh z844Z34aNOW>G7v3keXprHfY0${oT5Qb^vC;MBy+W{S(B!_tJ!IC`iufD4L z8^3Y+X!=3I>%k)F#4tgX^S^0Z#1KM~7Bz)|5RZ07bxDOA6A4Ryh&2Gf~)b4<$HM{HE7rwl8T_mpOQ2xg zYy|Jy1-x(O=(nT#oA3r0rJiT|y$wTc(~tQHS_~%febx+#3bZI4S+tI&a~DX*?l$uV zT%}2JXreCOubi9V=f61tgD|c`mnqcp3KPErwf+^LeU1uav)e(<-UN-NiJ{@WM z1$f+^eAn!(2-)W^CrCj}`}mXy;-3ba2mCE-If&8lcpG5o2NHd572~FaVXynv_wcUc%lWGG$@9^@81?mO3ckB3Kk$sxR3o(*3ViR_ z&;Kab$PhGxDEi9Gj6V#sZ?uMtk){bxkor-;co}pE%TP$q1M`3^XWnMvG{gu*ug8P6 zBh{uH?dQ%`$v~sFyDtJ5B-Ew%)=MiGxjY4|$b1o1p|yeIDA{{phwsSDStlNA`)!z4 zl9sZNe8uB6#?fQQI$a`ESc^GCTbDI(XrYT5X6)?OJZbGgEQ_PEz zk>>>k{|$=ZOQp#dO`aaNY4&dd4W($Sj~7q}azNX#n;c(H=mv5E+Dxum<2VN!sA_l* zfmqc_k{Ji&rFQ%B#h=2FQ;m4-t;O01&XseGMJ=Y!zxTyix#6akaerTVp4wDGMn02egAF`~->M~MdySQ-_HWj! zs{_gOy|qVE_D(S&(7CwZUV!nII2DvFfU32`z@*5itr%_}{BVbDW*T7`AcMb3dm&h>XX&bGk0qJ0=DzWKxWaA$48YVH zs`_h!vSegE749oM1t)Kd%R5%sNbfn%%ghd00!&czcidlH5`Ue#cfQPa5=?jXsD=2G zI_T^ym4G+hMXJ%1PX?fy9_V~ewQoD}{t?<01Ls3eSHaF2^^UE$0P1N()mDuaAq}RV zoD`Atc~TejbPt#^UxNNjv+E$yvql{j(11St8N5G{p}7Y%3~bG)ov`M{fcw$KR`;#6 z%df?+4tBrU%E5B=xTxv=lb^#rGY;!n83$@QsESEiEd$p`_MM00x8M#p_W%dpe@sUF zhc;+Y_EPrk=DKe6i&U6M1v1CQL5Ou!*IuOlc!u$K`gr^p^A-{E%4v;@K6-;!MsAWf zA5bCI3UB3HL{&2V^Wz z0L|_^zowBdW&o~l)bnm7AO6pxJ3EybDH3z`2@}Wixy4668ep%Zb17SLFgZzf zxKOPnR;tI7>g~K8Rm|-TBB>RL8gX;m5^x!51npDM>#g%w9emHk^D=x#SjgEFY=Oj#}8?`3{2o9aE>3xYM9t-2m+rgK3VK3(@%j+QKt2ucyqFeAJKD)n}@ z;Q%(38~Qda2w@&@srm?p7J(xBt4c0fZ2y5Z5Hd6;y1ur00csIYcB1{16k|=EyW2Sw z1=`o7`1x7+%EkNZd9aA^knx5R4x7K)`DkKE*kop1q&-Rf?%V)4qfa>8!hQ>wC`h)f z2a{>OLZsm0Mm!e-vx7Isy+ftPwd^vWBkW+f0Q?R@`tm{ZU~1)@ex}h4_)Q4bd^PZ< zh6`6&d&k(LUL%z`%6pg?Lbwoy`8ngrG_4^+0h}^{f3R2)7y)PjdIs2=kp4ji_KIn; z-j~2!-5>W3jI&jN07MCL#`rDlmQW7XoJCxSnm>TeNoO+D}xyZcLM6**w(~ zJ+Jj|t4mLS0vm?O$%(u-&D=@qJ~J4k#NF#);@Srrn@89L#03z0k>F^7Twjk>LBE&PF?rKur><7U`+^wa(ST0}nXBg{O9 z3a;~wm!7Vw$&p?Fa6Rn;TD&&RMtXsH zFi_kquBn$eQq1#F|foUlHT$xvUpWum-w1AXa8iKi-ABTwYdhNa#t$ zK{?Y8EaO8rywej06s%cU!tlRNia#^Ks{)X|vY1&>u%Cb_Juoy?@4ms9E?>#Y3`~Sv zUdA+oI0MeCAc~B|Kc|@24Gj*GFL!}>8~ooP+IV8z_xiA6$fp#-_|WW7wUOkU-q>un z03?*@d|tYVC?vdxZNit;w!$M#pqo*{;PeXr-%R24L%@`2kDUvjvX92_X6-fQga#qe$LAo{~8V`rK$!<^bj09x6S8}{Zd0HkjDaRl()j3)H4=pZwr7O)4tX>Ra-Zs_0dd0@cj;c z+JfIRfkXz39AIMAWgd{xntEP4UC23GmVn$*+t$1by3FA!YWJt!M;R$Xb9q18fV}6{ z;BLXCVPoEFNqQZYo$G$K?bZ};j05g>XjSq9s&C$>aj8G%YzbF~R(X?fGJzhk$&Xn|HCNdwvgH0MJzjQk1mFiz76zEWnf#gf_nGc7U-* zZ>o!aw0yi_hMX%>7u0U_ino$2$|D>DvmR(u5`ahlnZ7g#?v%caNdw6_;a@_KhJrg~ z2y^ivD6a$4d0>W6t|`M7%>eFxPzDHW`a8fD9`maT0J<6y_a^uYi%JKh2t_XqK}Z1# z5VP^ovg||ATRp~o1bMJ>c3S3V4z2x`P@5NGV;}C<&wmSuvam$Wx-7q(W_wZ(p+LS9 zb|?n}Yf z?yfvQ6ZM|y;=wE%2znJ4_rL%UhTGvYVwO)n|6t%G``bl9FwMtBK%>@1JlSIseQ#!G z`UcdGx5Kb5PmRR^_GR|H$=bflqGyg1*WuHlXKK2iSQJ>jhbXMUINh2jg27YRjQnGQ ziXrzn*)cLagl!O*N%S)dlZ?heNzBy!>szl5%lvLx{j%S>Jfwf4bYc`7;eP`>@cgE2 z_4@ReQytd`@gZ=kVNX5QAH7bNA6xzs(1WmUq$CRqign*kK%ohK{{&RFVM&IK5Xfu! z9ygQY+lJYI$BnZolmS07>)s?Ki5IgG=%#?UCue?_x}wz4%A{b?3HdAvqy@8^xkMdN zr`k0_1~lFw2SRx^o7bkd#_M`}*=5{^k=ZSklLw%PbpjF*#}lm0qanT@SJF&;t$EmA z(O>YZbAq-n*jwt~1iNghWU~YX?`_1W=!3GL8+RCw2V{QDx5K&*REtvO5IzA~6CHmj zDIp6+n}`Tt2iE8rgI(9U62D0*+C9cY3v>>zPfoh#8^Az^3ua6j0KCASLgY!l zC2>ju;I@AIp7ezVsZ3V_anfY}N+rmRiYY*AtK=5HdG9PrW}&IP+i@M81{_fyIz4P$ zRgogSCaI|K0DNo&-S!cjNH5T#1P&kHiGK2a2mpYK5+E!@KlIm+$5B8+1t#%+wUGJz za5%u1r9V@&H9K8?7+5|<;b5~@jFu&Mq||CzP@6g0Glqxw{I&FHOBilpv|ORvt1L$6 z-|%@W2MRwhECVx6TACTD5CRA7qTehVJS=X6bY#Q+(>F8)K-e?5ru4)7Y&TiI-Vqrf zd=O2*e7&=k{{uZ){$%pKZGh16!{1+vD{uNX9f4P4shx=-@so4=Kx* zR3zdqei#SFbfBIBe*)d-V}t(g?*oyWP)p+fBZF|(I#4gmycKr?Ssi(kcm=YjAw>d&1*m^;%)JaphQ;ZFT%C;A}# zrhy2Sn(rF?RE@WnC=jvf9evN=JvQBbX~WL&Mxq*_0Y5a#>v9WpS5< zgSCA!K9!rD`^U@22Yuj1$N%W>0-Uop=Kw|>NjSL%(>3>139mAMNsxEDp@hs^IgbIw z)Sy!k^UEnbK$qreK1kRDAfC5j0V_An_pn+3+^M=3vpYq7v$HP)rRuT&lhRGO4f3)( zY}O2G?NBB-HGvQRZ-6|9SG6uJ7K()FD13~gMF>*1D)7bwV0Q0i!(G)KaJR?Z1_ptE zbjuNe@i8B9P@}V3^knRS^aXUqwn5>X>D{3Px`=_P-S&;Ll+J_nJwmed-zjCb-@_fz zK_G3et6R$s5iLNd^Dysse;as}R&fa*2#_U=!Srjqj~2e+oTC_J%u$IP5GSSqqEeW; zdqd7D?@L4ZV6B5r{yUBZcn8Zesj)>M0^AmwrYVA#-d^GF(vgY4ncZipeO zKBcCfps}|%NV)|4J%|ccP8#L9;AxG{z{qf=@3jdpJ9(X|-2Ii&?r0u*>D0e+udeT9 z94`V+g!J;`ehs+rQoFh!_Rjn;1fvZA>;%Tjc$;iajJMsdi1VZhnWfGeU{0-YKwoV| zlu90+D6M;8G-uF5(@D4;>gO7P%uu>PRs~cXXS>Um;*8&QT87XCVgdsKK$_h1vu&R{ zcFkTe!zVI$3OE|zMsR3O#w6ek7MZ`~b9z_|Vg-gLJ+X(u(BD-cYYqYBswe7bQsC7b zxa{A#IKHR-a%!y2R|PsJ+v>N#bHM=(t%+goob3a2P1(39rSDfrNRPa9?56AGy8&ff z&eXXV(bOLIzVtXC-n!@itO2gaz%M7;Gs!OxCwKvOmieLSznMUw93HFS*Zo)eFGlwY zK9hNxH~P!#D6(gteY%_Ina=fo4VZ(2)h~%WR8QgYM6UDG@xFl*X23NkXUmi>|6sp8 z1Ta%ehWX5}gLEmB33WGMdYFKj+pq7>Nq=wIxm_KG9`B*>gF1LYq*cS4j%~sX?!-x7 zRG*qcH@t5`Yltq*)g+z%dC|=7v!cp~w)u$%}((= z<@q;GNu%@7IK0BHuP-EWUf;6)<-jY^W*(F?i;XhXzj^daN#02oc{7(JEjYISJ67>h zr2M_h1iU)X-+Sps)c-pTj7L-0KUh2Oeu17#As`CA$ zZ?+F#a+;m9F>q;^yq$2ADi1dMf|WZJ8SFT!&SoGjhmOR zx>f}^peF1%iBZxTZwG1JGjEWjbhLY)#Ii&Ui5 zFg4q@TZ*{4uQSd6jUKYs`E)u6B`$mj)uXKv1y6?Fjmm{Tb3K`boAhGS(dgpXVJYpt zk$A}x_do^WV(@XP7NrCgntPL~_Ge@HNsWyD0!0-r1@X6L&j24CiR``Y}UJ8My5V%F9JPC%Cy( z2V)}#RB1knFQo;}{`?uGC@9R~AS6;vZH2fOvWyB7Zth~z;_KAzSoETG&T zlAYf1kvxAN)$G0pNBA++tJMTzhxPCYu0Bgtj1MA4O?;Sokb#HPu8*3?6CdG|{#cJ`x=1y*> z+pkRrj_mx}uqBm&e+xJS!C6A|nIlLxHK!*g6+wp0#5TWan^MzH>Yb0W{;toXKk;s` zyR}`eiw4PCp9!E^H2alFZ_iA_a?mC|)sf8DejV6XH{H#||VMr{!>b10QQ}L_ zcqj%LZP)4;7C%XBXs_hEEPFTU9nln?HOsc$E8jUGtKYQT*Ti;_EPS$K9eE2f4DTkj$!DTlq1PbdvT2_V%xp?cOpSugS~5%yh3ri+1~Kip77s+uUu^c zyc!C(IR0#|j5Eg(syp+c8Coh9YoxinJdRO9&EI$(z=?0Pq&tkB{3GH^TZaq&mVQgv zSfzBi2w72aZxH&%szlRrE99C8`MrpM`Mhm%$pDUF0*MuDjTag76%t(e5mvfv=eO!?y|pq)H~6}VJg4gN59_}w3`3tT|o#?q=7(&?cP=J$V#j!q|u zDgZZQ0b@Sk`v)!o&qHE8>0FVfgJ&&Rf3Ak+!Ha0{eHW-1w$?3Ni2^$lUsclz#(XME zz81yQVEu-CKVMm#c3^&gQecI(?aeS5u=SW(j`bbvo}f znQ$rhy=0nvZ&BfbM%6`BWS=0F+Jqp_R=cN~&>++_#Attk-_5FU|2f;)S%iMGF%eN& zYab~?s!pp*8Ptow-+#gNlSh+|hflhF==Iv=7jEN%qj{O6k8)BUSTCga&zlP69^J_+ z#pT`-Hb-ZNwp|qtb4M28aw(g>NVF7V?^xcLANAUl%kbp7yRe0k3L zyO*YNG#&)fjgWV#70{ROt?zSkb?PT?%W#Q+{q#fegxjU)?Wvvb*ldJq?tt8n>Ikp+gXK=Y4r{1KejhTGHi{TY|8-?&t!{HII{S$BoY}_DYf~*~X^_ z<&``S+>@nuhO`w^Tl6+PoNLhJXNdQghc-yN7MARS#BW~F{zgZ#i=?z4goYZ}TUpSL ziMePl)(Yr0jL$x{9l3lhkS!ZWd#8|kaPfU%At3%7oHe;8fkxXy^wf$-k=U}*mdkf0 z>J@_}1Nx3521#G=!#HL#5YsvN9^Wj{;u3ge9-kMX4@VbEJz2lV*`} zRB?G+;2N$}#D;X<7F-*M1}6v z`x7M8$ECJ2@xgHLW*)W%*Hu((SlZ#~U%ZpH)Gwpc<>#AUNsaz$m(()4oyKstChQl| zAp2S;J)z44;G$+m@=OvLJhu79S3#F#Ft?9eVgxzk76j`O#R8KtCg9K z!pw4_-X2t7@z~~daePcsmE7>cAi9_XT7Z4oSgO24>$QJKu=LGRIaEgATXM}l2$Lkw zl|p3_{gS!n$720|Y*7#LB+2C|Ag3`lHI;AdZJepMl=yuDZX%x-h2v2vJe2e}RQd7^ zCh+|6G4n@Pvr5iF>9~?f)PN_*hy{RBXWPqn`B1YbT%Y^$)erqHPWD(ali~fnn}zTn%HxE|_pr5WKr(UhVgK<`yocSNNMM2ZXTz13mK#InmG>`|HsNaS%D+0sh!&&d5=hotH4dLF`%+UP}}_OVxAMxo)3lXB1^O*1l5VS^yqVCpK^;w);?VRWy>-`v-C_< zjit@zG>xx%7AThZ`OY4W{`Ru{RVN}SO1QDTHRqHLGXYjB$?`;*8=$%KwAY>QY<3g;@t1>o;PpMqO z9-u)66iV8sHQs_V z!O(*!^+E8fz5I?SqrWFPZJmCd(bojEX0Y$BS5mXB-h!PLXUKc@F3QIoUP_qOJ z$q#w3qd9SU=AXJ%dCjrOwW1FNpabq(R&o4sk81l-RjxB^fIQby;q!HND}#sS+N; z=w2B?ot{M6DS)IJKc1u?Ncweb|EmE3`_q z;^ZjKlqm5tzO~|*^>`fOSOgEf`L~r$5}G6E{BvsE9K|Q0hnN(|*;~)a8G_bv^^UY; zSH^U}{*@@U^XQ27OSlW4bQ`2CACS($?{nUH*U|IKDE70E-`|a8KknP*N86psGhezt zpAd>MK0r;Ld4EowBxFPik)cG=V-tpU-PrGdmyk0qRqN==JO&dRyREzmnMLp!X^ z{a54+)gVvcpr&eXCgn-9-M1zxF@r4dI4`Kb+j^0}RiR;3(>{le4k)?WpXX z>0|G*aMLxTP8UKB*Js&8c6;?=MDp8arLbJOpl)X=8GZtK^f+jp<#2Z!)KYCJMPYXq z)h?2{nyZcE*{}6#|KhW#$R-vYfW(O1i(dR#xf@J(CuQi@la@<>rl6+nZ0E18i6JBR=s!JNYG-DQW@$x(-dUa2rB;NSY)*ihtM zu(l9z@8}bJE{lfj`lqN8c$Vp|2#fDDvE#_ObSEuWefKAfgL3Dt9Y=ZV#|`4AB>cNj zS%6R@5JJYJu!Us%c;9_*`8ie#V8mn-{}N#g1-n_kBdUru-R~0ah_n@(Z$+{3WK4-H zTVDWxe13cAGzgviN-T`4?>EQk4GNC0#4eLQWDtf>Aq_BnwJI{Kji`k1yZS}pUn*4p z8S=q#c+!zL2xAm_*?)d`{7cnx*@w9a0p9FTPs7yL51xSVR zQ}whhGyY7lKCbp=i&i84^wzvJmP<08}=@f)Z3PeX_ zVKHhEreNvwtPE6^g&td`@ID-o3h6jhF>32quaX~(yF-(V4@#Gq!b&;7Yer@Y8 zmZ_%>g}Td7MW4(L+dR~mk66PsP(y%l@#GeOKXccURCyH=GKs*KiGUxN(s< zL&21;sCuN?aMA3(A_)0+ip@Fmo>J`Zmc%^Yz)6c8&Jj>X1% z1i&2a!w=jQirHBm1T)rwomCKRm{M=vNH5=hznpw^bsYAFqc#JTxoY7tVuYwAgS2dX zar2Cv!v);T6ITOYGhV`i82v6c_)}d)UORTkGobx!?F@l`^@?h^->qYuFfLry!E6XK z-V#F~F|4ATZZ#J9ZE#oqWSChdB=)zl(C_>@LRv}Up|XkA#IcxXL74F$lg4(P0lzdw zCaULmCUbTBmFxb4D-RYj;8?VDdoqw^&}-^5!e4iLR}qBuw~}svm;@hkwuD%kAJ#-S zX1yokyVWx52i^geMLkH7|A8Vmcl%5MF3sHd*3Kg-H+g?Zif`vZ-1MvSlMP z=W!!LN<&gqU%Ot)7pTDV*9EIt)p@8FKuy*hg1#a` zucA+ir@^)@#pJv?O;9?-{DHI|h#CCa+hj&G{{~P3ppxE#=0{)tUyZ1%dr%*oE%2kR z#3Lk`d|VC{qEdSnku>psY%c8R@=V=}iW~pOwctV|;7?Q;)MnhW8$vOeEdae#<9y@> zYNIDS2*r{G`k!&&LEH+(6vX^)3@1tuI@6IY2=g@mVGkR0^SvTD=| zVcC;^YWEorT^We$(a}$M0!+d8{+v%KL)|H|j1~O`)Qt87Up!0APs`cU^J_gzPx@R& zzr@K3q)w#D$F*#e^9N^Tfds4fd&m|EzVkBkUv4El0hV3st%>9$OzA$yHX`vaA4wG7 zlj*(Cq;4T1M;+W*eTm%%I@j?$+NQ?%n1GnP81&K?yPQ<+O)e9Yd9wzQyTp#!hm!3fYXYQMwP%5l}DL z?k_ZrtgYRw_cAG<_zh1sH32D4wbM46|GTgg&9LjkCRGk7Y8|hcW{zCx2$tgohn;2} zIPL?ZD*3Z7Jp{D(H1PlG>80PE%uGakSV0KC{0;T`v@`?GIVAgF!?@soJX*oXG9vj4 z^vmC4*$+))b$Lo{pg{iG05cfRFvNKI>Zb$*k4@9UYnZ5d-1iRfw@QsJ3R&L{9~}6GPtNa{ZV2Wc&ZM58zQ7` zC~28>I%MjzGglgFh=PyLn9s9{7$bZKbTgrZ0n3_DE<+qTDy&>7x`|C^xj*QE6SKX& zgXq2e`_|Q+MR8JWe14}}GfhsWA$gs&5yR)DqM7BIhg=ioOHhqy!wL3_@!pnQT3=D*SuSFjOR;-G(Y z;4m=)tls2$nim56NKYxVzSD94hqdGJDaSYmxF(6a$?`3cFrxCkK+k4z za`gB4z{uzs9z-5=!<-;(tp+XNy3U|a&#AqMP#@N&hayRElPA$O?2iLzT*bJP)J+gsTXMuI^jN-A^djRw=~HfY|{cx z&74sDu+BzdIR4tQ9PGgCp1?aq=Ip=yz+N?z-sb z!doA@d_j_a@B{SmOG(2=gb76U5`<^jmtX4a6ql2--Ugb^YU<){L%5GYBjnk)gbxLn z@2MRl=+j3w&6fyA4K30NXzWGBlbSPz#*eIg8z$7Hm|v+*}4(3v)VuQMob`SBsZEudfr z(3gxgHP0?W(FaWL{RVp|$C{@LUgyHAL0inChX6Ov2wwNVYnOizs>ifsmwy4o)mf2g zXB9GGe`M@S`w#e9PY#$maeO!6Fo{CE5INU(Y5#g~0L<_y<>rkJp54kTu-}X$FlFM$ zlOf+~OXjjE#|DBhiIkisS9OieGkdKNz&j_iZr=Q{1ap3>OdfQ}+~W?Eth@bOzc~V< z1O?bvo9zR*QqfzfusZyXrVA(TgR)JEb(LH{w*n2Nbb5RPX^wK=pb01%InSg2zC_?cl5mHQ%Qb;9>A1!| zyTN&2hVoZ1XeZ?3`2Skfu<+NSpmq7mQlz~yN3V5TXh2?F{X-kWMIupE0Tj3?ioaqP ze3i;hep*9^+h5pJ;Lwz85d2E~*9j^a@USQT^eMd757{)nIisn^*Jr7 z(NFc$jdKHRpD8FeBk#OE5-Q~=jtjTIjj6H(-sO{UJ ztYybZO2rU5|gM}=@+k(3M+z?HY z2;rL;Y3hO}fE&{Epn=q;115!{3>`iXPzw-hWbn9<80_x+Qc8RDa{CAQ)2%xK+1mR0WJ(_spMb0r=`q4NFIi2KI%JFTWG;5+;UiMG+YZDSC$fC$_pCbWJ2j9*8BM}w!aEw5n1|jTt5Bx)hU>TJ(_PkzHrNH-mIJiMpcgcV-SQkU;82MF6c4 zFTDIplN8bcF0Q^j!C*SCyEmF1m0m{U_TLOv>B3U+G@Bin93`4M`=Z+`3_`DR$R@q_ zS{53&=*Ua=!skj?%Fo0;J*gylDiV+jG9`q=V3$lBiY#W0k6a`Qu~a!;z}O$(bWY!= zYVGkdN7HPLES3xWqYBD%S8^qeH32?Gp1Zy>5uo6cG7&LwGZ-aF=J zeHGgC0T4ShE+k&_=*76Z&t39DibYUBTe!J-_ZC*cLK8TZayY>+2(1+X-w+|M7RWXK zj}KGmq0-645p#N-CHlQvcDL;E>e67&9L$2&(o1{|$Ih z@>hiqv2LPwfnqJ-UHhj{(5fNK_l0E}ZGpRbN=vUM)QjjMMh2xC8!hf^X?zAPzLN|? z-~3i+{n1#t8c}IQmHVMybXNg9ovO5OKY|EL zU&7^}#XOV*_lb=CGOz{DYe6Bi4vuMT0zBsPS`LJXC+sDJ`+9m zZw%J-)^U7qvPV!dXOigt!C->ad>+;ia(FSu6cY5|$ueEV?Erm2l1P@NW?U^DaBSx` zR6_U1U{N4Frn_q9SBgf-)6#sHj^OxU^GlSwFOI$+p}t@Le7+E~g^bNp0DpF5AZpMN z%Ghm;6nVL7uLgTH)WQuhBCstRN)RtgFI4xOoCj2@TVtfp>Jq?$XRap}-rGglUtC^@ zp(fm=l8TXlATaoSb|A6dY(h%$-qi2Ig{F^Q&j)Dh{Fjg0Svpw!KNA%G%xYMw>A{W$ zafKo;Se_d*t!+v&yt|O`xFn3aQieV7jVNG0-0rltJZ|tf673MNf(E84xX)rKDvDK+ zB0BZku;p9WwknO|xDe1}IQW|p{ja|_sEsl51Ub8L+6!dm5%t0cEMxR1ba$VhkV^m( zmMlzSJ+KMXruhSarng5(#sLe=Yso%9>qfN?bQRwfbU+2NY1*q}jqsOf?fribMg2vz zClBIvB;mk!A21I3-v#WyHH4oS6cG{e-HFRB+WyY^mE_s)<<`_^h#ppR6j-Q953h2` z_%tYcY-M*uG(fitZ@DQ^5xQlSe@6x48Pp^A zBIbyrCL*&esO{@@mni&sCbah?M*&2NCkz+4KmNOjZq_%=duwPC(a942QM1o~8*L+~ zMt^TFo%FvvaScLHP6Rur8FK zWWbSoljqDq&qkQYl?pHt=+im7rIVmnDAJXW!!ZrmR`#*}A5~ugRn_)=jewLON=Qg4 zA&oSWN^|MUB?JVe8%4T9x+E?LNOS3sZcwDVJES|Ln{T7P_x|rY!|?{=$?%-B_g-tw zHP>A0P_+O|xNOx=n)p3c)w-M)N<;Cr@#oB6M!G|b?Gr>?(*5+HeP}{oMdT4+2CW_% z5>@^hrn7AZhX+t%-y7J16KajcdLDb4{HZ)C+hl8wdlKQFfY>uYwnGx-w$#z13zBHa z9H2p|oPkH`w%3DNm&dxr_2mt}?s@XY%Gw(UkQw!$+^-~aU+XaN(IKK-5?~J_^t-G1 z5VQ;hI&b+1JUKw1pU=rDOicv<4_#sO*6|BGAQo^?Ft#b|eGUHYKXU;%eyfd!Bh~}v zk}-TMP`nr$G2n904ufLt&i$0A5Ihl*KF+c%(;! zz+A6P`Js*+fCqirQ}L(PvTQ2j6T|hH@v&(|#G`~5SSJ&C*+fi9u$Hs(21;T|<)r*^ zgns9`tO8-&P&jb4qHyQmEWWS91f;fu*-W>9lH`EL?q-2QkD)>gP91zlWqG z(_+5-%Jcj4>%nRlYza&*NhHcd$nTg}LeXS=Lk~XTVIhL5NL*WNjhIYu$v5_VP_xxz zhn#9^{s|@{t8t%by??+bCakZIbk$c^NYCQeO>FI~tgct&fiy)6om;>BK^KSDDgbGn z+<@1nZ85=6D_Aa=6I%-n)uyI!;_tfMYjmQW_d_RtqvPA}E-&~z&`T9kB#0RiOFTJE z%|hbrDPp8?%Zx4&#<;{-$#_TsApOheTK}Q=X%~nyW&turq6JxHbGa^Vn!&@AZ4QBi z@pYsTF}Yld`zL1*eEW}PIO$IK1JV{2dpur2B>^(r;gM0$PKM}(Y}K=$a+A^W51jle zOE7Z-zaRy~^cs*h+ODsiGJ09=@V=`F>1CGEX0AsSHZg;L^t)w{IC3 znQnKu*4COo0cqJSN{tQt6RK)Y9233YV8ZbB^P5g9R2Va0h?!a# zb417AunbF$x4%gJbxFR{>Ip_YIy9a$GJto0Jzd!Qs+({zIG=NRji2%ge8W6->5WOz zWf%F&yzL}yDQ;N_tYma7Dp3##!Za_a_(9V0-B^JAtXENldxAasQHuQYe##U&V3MW) zBviYUNye%)P88?J+fJ+A6FZ5Q?hrWm+%%a1A@4NonW#$Y$yRlm?c`qv0R1(n`2&$u z?bluuN;!VgH+6PQWmWB3Dg%JpIpDRf0B;p^PZrcxGNV{(`9B%Pl`l6%*N0p#c414< z{(QGn@g5F~9ZIj9`~z}L3n72gdh?IEqlaSvhhLnM6b1%W;-z5T>ZCj(z0ok%__}BC zJ*!>7KEae2>PL3Izas;ojjVp;8oW>ok}#-kK55R_$f%sOe8yzI82bnU?&O!|nDE_w zT($?X^d-7C`;bvRvggY>UkA_p98fO&VnO-L_-}0MxzYvc!(6SyFC=09TLFvt)d2Nu z{3wuWD4KQKs0PkxGs#T^OMnK*LWvDKNye*3sdkp733U{A;GPYEdL(nNJHKrz7;#PkK#W{g5~PkXUcSk6G)2`JSefw4u{zrf$t zNuXzA>Oqel^J%f)kvHua6nW%d?TOT!5g(kIP4=^W{h?|&m5et{!qEr~q@Z(iLVd+T zJ63>d=}CA05Oo#BOJ|U10I{O#!Sw8X)JN7ccxwR*B@jEgHFK<(%slWG43*>^!YvlCO|gANzR;8@jh=dv`;Ib7J6K84r;$sQ@?_gF>RFGPxQv0YA@VE!4Xrq^G! z=M7(Q>|AhZ(6)?79bqTSSl%_ujnrGSO*ZFWNU(G4Js1T^GTjcKw;hA;OcoFsPcX^) z#c&Fw2IbvJ!LRvhB^NKI4Kk4wXH?U#RmYoPf0UW-_G8sXrTo6b@e&7c`~lzLZMGd9 z6=Xj#Y?YCo<^7UV45qJ62`mg6MrCS^NNCRQpqAbnX0R|}#WmsaRbh)r4I)N`1GbVRK!mS~ig z)@M~fRH@EnWDqren`29vn~~Bo+E6%e${@nma_^}Z55qgGWE?Ci1&~EBU2B6mdAYs5*FR-U|V0h@fxYmtc*8(wtXoH{3)jy)d$zQ zc?6U3!dsKe1hhM_4s>C)m`otwI@_JW*OClUaf6z%Q7yZC4OSJnl8*rlPPM;;xowjw z6lL~YAKG%Bt(li$zu0RE3T=#dps?7Yh1pNmAukbL!Z9Jm_~sC~-@TqbI+vM5Q^AVS zL6F|l1gv`6I1k2H%i}5?N^q2{vf;=kSpF_6Gq^XNAq2PR+bsH)u5SMbGX5<0QvYC| zH%OB{3W(^sEL?SE+;j~fQSEKT#g>iR=KFvFVP86`Vb#tyLZVcsr&VBQ8?;5Z z_6fLes=@=N|2@4p@flaRu0= z#T_O3yHuKm!8a-2^<#eu=?i#SFaf|OR;8KKl=1wM0#!*M%FO^2L)&*yhH=<)Bp+rd zza@}e59IYr1B`(+{&@PH94;66$`1M3_iw@E`137_>JAd5RN(6DYDSoc*Zs8L zjIP$Aw)2z1y;pFwI(0_hL?9zV=xYb9E_o`><1eHT%DK6X7oh{$BO0B=(%d=k__D3q zP(BLPGoWGuSo-rA(|TKUm?VHwK_1Mg89IXCqgOmc;lC?Xv*iSJ?BK(4Gbq*B;xr&V zP?dSeFD9=F#ZKJ$DBm`gJgFf68+aD^_w%e#$~(STw}ta6biE;v%}wZYF!(+bxFZfS zVd#r29?bfOv0LCxxQJenO3k_4BqqN@qx}A(iopf>E-O+G?c$spI3LK~TxvCIoJG(f z&5~0o0thCRbjdy>Tk1F2H@&!UvLBpT5KvFn=P@;iZ21N|>HmDX%kz?HysfQ`?afnp zy7iqIP-wBI`aBh8kSxTCngRVVOBbXTQm~s4-VHJn{@cRJkuu6`*N-z&tmi?h&_M26 zzk;ZUCg)o#*n3R&5*_%+&$Ia7j<9cKcBF2*ZvGsS6G_)oH(kSQQ(Za0<@1AL6UT?` zF<(9#Urj6|-%T6m=Y~Zi?=O`JQaQzxguF^kqK^v>aj_7LPYy-x?kk};XJAAQYcbcg zC;@z5^^G8>Lw|vSJ}x!O_;QeTYWxeqi5Fe+P-$Fy^0lt>^6MnE^Lux6=_vY|Pi*wd z)acV@q=)28;RL1?A1d>JP~PORA4CE?@wY^AIjm-r?^-wC)F;Fe2=>+suIdc?Nx<1L z5DfELtZ_t%l24(2pO5mPi4$Mb%e<2$sUhqe^2>+nCj8(99N8w#GOv}LL|)SSet`kj z{TQMy4;VZyYc%y#C9IUh{A}@D@(6tkqc>K|Q`7e1W+&t+re*vyd&9#(`GYB+Otatp zjt;1^NoSu9SR-MB4>@ zVd;Hxn_?zj_e@^k777y?!MDIpKr?e^4;wTVUTvusIL;_Wk{D6G%)6j2m5D7daJ3NZZQf((o?CSnl@)8Bike2gR3`b zJwWq4rj|};?lZx2UR=+kod3nF@Wl(m(uYXRlV|9UJWg zK0Rk5`hn5GNE6C(p1wyL>1(Gzq}vl4$l0o<=GaA00FbiR>4g_*KJbIRZDY4g52$IW zZGrT0+k^p~T`WY=vngTEEKT)$TP^+Z10c75{1c}x_R-_|5#bNp`cs(Q8@^#biWO+0 z_x>)v5GW+$kGTthzx;%Fsa*3l2}Ge<*4dZVx(QFbi|9ctiuz7co_|~rAw(a&K+W=K zmct~V_wD!l%yqd(N2yA=bcWuB%n88~B@J!e!CBRga?=i!DRCO{VRw=BrVwVTNd^om zJnuT`fbO)Q^MGeUMKcL?yC|}ROh{D`KHSNBA6MbCSQo8WXQ&M3<=E2vpSMW_cn7@3lS8!& zuu<~b7u>9Sn;02sClM!YD&SRycI-Nqbu&n~f0)dIeBss*oZDKzHRfehY8=8jgR5a* zF$Mc>(d1qBK-_4mg_BY)mLzm%Q15uoaIZeySQlOpz97a?n|-AU{Zq3$4+5?x=a#-g zDxmJagH1(&VqEkq>kiJK)`el?y@&J!rL0*OAWl-vjA`$nj(|!f2DO5?0_H26ue5}i zv~}M`QHz@T-7#dn>OT0;&0X!Ctg&xXfk%E~cy*1=o>AfkBm=*xtx!#E z-_$*+{uuXZmQT>_DlyqD2p<-i@(JT%U?u88$|s`H_+P5T{CD3me5TyFS_LLcF?M7} zCi?xNU4R$VPowN!%)oULz+&f?TVDr==2V(ur0Sq&qtNxhMN?tiW?fMqqE0V8dd_d+ zr@~USv6h~ZhXQT`oic`}Z{s!*nEoPMlW}bg^14 zX$vERALOxx0^+6&Nwd{}@`scH6=A^Pt3?BkC(Oc4F`pKy<$gD!f*LqLy4-xuzd-0#L|@wn{5on1`t=CAFm!5 z-Y^!>;&NKYs{=d*>fv<-(X!UX1PK%=A3o`1vxu2uL~fCiPD%zRq?qMqobJbQ9oW1^ zjF>UcOzQY+h8yvH4lF<*!UP{!CJ9BS<1Uxn$`eZ{fH>I2v1$evFbhSIgIe2my4=0c z_4C{eY@TQEfcL6UAVQpV_FPffGVD*^b^8ub2^3TpCdYJX#JW!Jyqc-`y0iWAEIiA= zv;VRDTJh(wnJ&moIwz%glF+#GHR!?da@=vASNDvH0-}i|WjwPj_$k zFAnqRkNO{cJZ@LD7s-H(f6KveY4DN}qyEF*7W~dGVa7pAX4m?C)=$w5MD}r8)cfx4 zPw7TnwNqge4&7yvQn{QhrAdIvkAzB?h?udm9IsAw-eK~E~XLtdHYtRxaN5(90@$r>!fq~K7qEevFBfD}*7@~@O+01IKZ)RYMHl`#o*jS$rxDkE@k ztBk8g{kOk2DZF(T`1W}M)6jm>jUugUeL(A?pmwq1Lw(io>%^pAO>e4&`N=lLC1%<3 zxqooti%VFS1LsGK08$$Pki1vixZMQ>rq6gUoEj_h1GjW{d=&^@&7fi-=nE)(p>Q$| zQdMH{alwGZ?er%BAd~2idRE7+H2$K8F=2u!7MjB~!xLJqrN6#niA;5eSw1U$Ky6O3 zoKaU=Y8h)iyT*7!brJ5Z4+Uw{Ib%*uLd|Q&diI+({#+23Lh~ZAdgn|HW+{;{K$M|> zj^43uQ)Bt;nZ!sn^5EdIExvQQc2VwbLFF9+alNAJ`J=>%`^*H+?|Ea#XN)auK32b0 zoLS)RZ*9Vfnw<>Sj_w{;P&jXh+)n>ltN>fO`s4p!eZnYtAVebQLc4$YV{$syFo79~ zKloyg1$$0Rc8(HbL-D&8HlHd}@wkT#Pz3o=jFPvrKrnVL%AXxj z#u->r|5R_oK>iv-)^6%~2yO-fLBe2}L~DZ`(TDc}kYTjZfs0I1&L&MkH zKJh=uP;Sl9Bin42Z2h}$&47a)wAbS(#n-$z?*eD%lH;!4_cwLwCwFW5753e&UklZb zuwKmda@EoHlOY>V9&?ibbw`~3q-_jr$yQQ-$cHot@dRV5yCmPoho4#@vc3iIt2Oa) zg7U>$Kk{#iKv{F5;H_|Qsy`J@pi4JX&b9#^~|x?>!_LbrP% zblVfLaU$P}|dtJ5N5Sozoe7wv3MXFw9G4-Nv?9 zxuhrhHGTO(jqo>wDim0W&24Jg1FopJa6OJX~tL`cJPTY@DzPLMh zMgr_F0`P5$UNgCNBg294fYFVI)|5{c2MJ;EjLy&r2gyh>__MaIhPk&fopdnJwVzwx zdjbcZo86IU66lTNs*ZmHN_OgVbp$EM_2>QXiCV*&*k%G`%0GXZ?dM)>v#xjW?5&q+P~?-Cc&~Q;i^pYnSyhDdu`}@@6qjS(45aQ5iZx z(_vJ0)+^HYdbwO?1V*dsFoX>c_~dpHtO|uaZJH8qf7lo9ec%A{QsgP5GH+4VOyFhu zn^8EPpU+-Y?M3_C`>{#2HxVuVVww|FfZ~MckxamMQoz@pefdP5X=34G&c|WmAu1=) z`*fU6e$F)l41->;jv+)kkfI74?qAe9Yxf&1w+A6R&vxQtTtuJx0*^iC(S}V8lUsD4 zXbwb^_e|FG0Uv&5r3L^lsJzObKmp;tTGjGGv7Qdr!Rbp2Gs~z2sr1PgDn+DmiR8*N z$!cBfau$ZZ7jy-MkqcIQg161E2 z47$4EtgiJKl_w;rylKtINT*b2ReC276fb&J`Rz*y$Cr6N3pT zleK{g7dV-fK#dqd59bHlRD2ZyG}2G5dPI#wQa*qH4A}XYD~@P2k1sMrH&yjDW?P%o z(vg*^B@bw1KGUSvwFYPYJZ(Y&O-tE{i3WVk`xg`Zpl@aKR|@ft3@e37i~g46%K~1L z8cR~y%Ja{IxPIEVGSd%Ejf@b0Q(u1*4j`f)BFeo}|l!#?^v5CjNJJ;gH7M zb|elc73UxRtQhFpfv%YT*f@B|#!i68%?;>Du~}pfuVX<*iSpG3$+JX3_iC-L@eDIc z2Cl`x4!qg>e0WBG2k7nh9q)P_Qy)tDUtEGJ6rX5k z$mW8`CE(PQenre5j)W7~1d;+{21f@NQ%M%3NoW|%nCndYLkB1`ZCF-uUV(!@tCxL; z1FE`k-NL}hfZ!yp_4juQ7GO@6DShlEssoWS>z?tgiymOE5SYNS<%kQD1RXq2i3xf| zG3hHPX&tACot;5Z4HV(}XL@EpxKe#$FQyzX${)nyb~hGPqUBbi?#ech#Fzt0XF8W2 z!Yc(tqVblsQHoip6?aS+fNm@0q!V=YE>$K-8P8G*=Jhkxy=n!y-MO{MzT1(^gd(wl zHSyRYk0(_qSd-i4*Bp-~fwg+?JJCo=m_!UQZN@M{h+^ms6a?eZNjYh{ zZ9Fy7%4*m&zHHpACqCqIZ#9s64n)9S zEtGy?Y`8O!t1sJbQgWS&U1<>kft#oq|(&fG$cVxnDw_ z3JHeN#&7aCM`XebxJr76&BwUSSm;|*GT2W8%HmpMV5%Qz!|~`h@QK071O;7z4D>#7 ztV?|9??Ha7`W8JAxA;o<0vIwd#BiuJitALX$-u}!iwGH>!lFLYk;-&rLIB~J_;X;L zz&tkdLd^JCIYzj-ZpEIqMLhUjE1c`vbnw26tDBpfXFl4)!dOmr^gUXfq)#O<4DZZ= zY}l@iA?d13q(z6IVc>-IW`By!JnuH=GbG_N6y5+o+_H{pHV_DoqAum0j1ix0!mFLKqeWFRuU)aAHDF@wY`X7yf`&=AlhHomc8PervN zFtKcFzq^7c<0rR92rhH33(6B-CqtG>VM*?sF*~*B9D=*qpHGP2CGYlNcZ$V))%-bS zph&GQ);gAKGeGaZD#Z-Hf3b7G^U!AB`dYYQM}X%@-^&td(k~U-P$V2-JKHp$^uo_e zJ4FzTN7&u*s389m`8)9D@{ncYqh&~d+# zn800B`#a=K8MdZQJ0GzC+)yx7h~RaK^gI{15S; zVD!g6M9mqK;=k(m8$=llw1FZ$?A>U?8C~1+I_~$+<)-rzwxXaV9n$rN4vfhr)GB}5 zf*)a&Ipyn6|7i?n=yK2DP0b$Tbxf%9`VuV;q|^WmPrGGt*QkH$e>Xpa>!ItAy)eZl z5>_NK66rVaQN-hz@}^mfEdvzC1}#21_C^^cd^bX}e574fdzj@BGkO#O8d(6F1b0n& z4;nW>*X)vmTj{JBWulX==@>_aywS5m@Y;-o$-&~WL!7_rLspTHhC>BL121Vyy4GLt zxYc*9uM_|%+kCqijM!9f1-^a5|1x)68hY=q=$rB{oLIYG6iCx;j`(xMfhcT|p3WcD z-^~#*NuJzBC{7rkrXk5k(Bcmk!8b{;qj_=KjR=$u4s}QXL3s@(#di4c!#l=lU z^YhJTH!HhCT6v(412nwY5|2H*0q-O}OD(?^3RtQgfAhtEv;ez-G9m6r^nU{f3ds^e z?l{7$RDBP(4u_Z#G|b~`Rx#z8zM6i1PrDEYsi&#FWybmXC2To|Z?q$l?=P@=Spb?} zI(iU^GwlRu2QuWTypsxYnu!!s9WpRdFn;;dqFSBn-lcYE{VyJSTpL!-=w2C$5?dU1~ zyN#y^4`*&sCCd3VT=6WN$Yu*~ysRiLzTS1~0|map3-$Pb&J0!N1lbm+$0HWo^J0E! zq&NI&HWtto^*b?=Zvd9YsQ(QJ6s41*+Iu(09$D0P1}z=~)%__1mi4@wFxKzy5)u0_F%l?Kf$)lwSqkdpmWYT57 z5s0MuSjOD3;gk2fcTpelAAOw<+iRV1dgO?V^fLH;TMf)4P5=?APhO_b_P_Nj1v=&_ zue&=$>;&>M0ozL%BkQf~56ox_JoazfP$v7_@`J*-?(0Do^1Z2 z0tf3=DvUh3pI{ITTf)~(n4dOkOJwDF?lGbKIu2t&Or=Ennt=@vkq5|4wPOY9_%DJY zJE-awm?jSrfMPm5wyCA$)7<<)=+lYMZgRQAR$Y0+n2EGSP{6Bk0*>ZZy|9oAKx?(h zZHm>vb3zLbfZaHhXUu~J164-VWb^n+yq6iEzqGs8$mp4P{j~&eJ1jLiX1vdSuW&L9 znvH2~Upzv7Ne+(5w1{!;5`N&)ij9=QBuM^SGB{59>TEFsUj624RM}UyUPQlfYx}4_ zziI{8uHO$?kZiF|&c6VWy>27bf(Cj)f7)M;q2C=5TSUc8%cw2$qOjR#h4I1$EYoC# zQ2j1^X5(;=NEGN}Ex`%iyx52;nHy-Q37k$iCdGM0_S=y_m>5MV^ zl+&4wi=FBqt`}7YIB7Jir^EauN?a{hWADeJw@{#n$%iqMmi~;ADVpT|xil3ecyr^~ z-=Mim){$#PD;(2!6G}@9-CX zK!~LJ>vKL7RVM!Y9MHW&oBf|*JGnF(=;*i(4*qV!f%j)YUGgw2jM3HAnAUgQf(sGU z7PNVynQ6-(I;-I}Lm)ep_wgeZrt}A(6k#K_5M*vS5?y}nCoBHpHNDk)3hSxf{!Z2$ z=G|t4uy;Yl6?G7KQ(t#iz!NDsNSbYL)}LqpD2W10Pyayg2 ze4!oh$H(W2_DG30`yT*R^8(Z`vMLWRjgu6;_iKc9L9`#0vy>E$kPzTOlvDFfDvJVG zb|lj!5JNe*+s6u~nB@a?ySs%V?qr(U2BtNGW6|ua%wReQf4xp(N3%!D88c#XhO=d9 zNaw+Z9V_H=>ExVgH>eXptFQ?dd(F`Mtm>W-5dkKeag3Szd za|2_DY`GY(UCdwDH1qQX;N`S#qh-xrGinw{TEo_DhndWd5~Si_nh0p#uRCzH5oA0KE)K)sg4!;21W6{{F0|H>y%1Kvi1~GTU2pNBL*P~d2 zh2I8z`FlZBo4?+2ki`rIZrr|e-b0#+RT~i96Gukm1X+6pOxM=eDJWtb-pTnFGne9r z7UYBe$pVP#`DnrbfsW#Yr~xEVJ?FLj69Kr2sf}4E4aIBrGgwt3Q+48;z;W(@lV#HK zRlWCkdNrzyJuYrn(RVrPV(F)3uW6wTSJ7Z?7c3#qsYjL%hi8iAXrKO=VPpUp3iQs^ z9T9%$V4TWfh=G{Phynf6zt=Hv{9CN_2RTOU+%3M@RgdEm<*f>q(qMmDqukum_p&=? z-uY_Z!?ga04klH0NLmkMlB&pHS!E7JjabJ(5Jr&ta04F)^K)Jk=37pEiziD^Vm`e!T0$G^U#))`Lt`f(JU#>R`TF#98|NSV(?ir*U!t{f9|8i&@uks- zre^x0<$f#R59$m@&aIAhtIg=?_v$8aI=_YFr%9j7T==(O2bN8R* zLIG}ENDhk2P1BpsB@Bwodb+*IM}Quxgw*d2GLzQg^-Vx;UV4>)w#U&m+ZQ!eU=oD* za}#p1=o^I`pt}JzHgT=_p%1=W_xIT?Vc4<=9^PR6B>tA+F=KL4Q6E^|GO-_1MDFed zkh|&8t;at4z@IU2)Ongwwp=yrB5dJUFTvn5>o}SYx?NQ;2x>c$F-Kh!#X5=?txqSXw&ulF zZE_eYj1kCjZ6;DX3_%M>Y#2lW*~geIcIsCB|L--4#h#-8e2MaLt%|0NZYqq9LQyKc z4hIf6PyNWQ^$nu|E#??%siof<84AW+n&{}^j)L+YWPd^#0K90uU%^A$X4FCAY_Ln0 zPrz`M=mzSICMDQfM-=E2qIH~`(_34QctxOUUEI#0q(%A^WC34m7N#^ouUAgX!AoZN zN^S<|ZkNeFGdmAvhF4&J-4MP;Vdc2{??Zwg5`F0+6#(~D`!xy7jBB{~te(T!JpWU! z#`c|sp@elYeVt&Yi{lrCtaVsWrDQ6YaRYC-CoY*HEM;AcVf}r8B$TwEV$Z{yisez_ z56{l*uy%GiFeXAO0nM_g5PXzjcP%?3xfN8BGm>IBk53L_WOVpRStyjNc@>buO>9@( zzziE8ZTogRoCI)XZ_h+L)Q9G_Kgz58Zb!<^`0t}O-!YyO=(hV!d3~9XyuXW5Ft9!x z4NADN&k5idXazn#b(VzUVh`L{$67C4!`?;LQ3inyQy|_67zprxncM1qZo5wT5nC+l zB<(Y*jGj$ec7F~GJZoEACg^U%mN*IvgH+z_86K-V*hknV<7!irTNjrt6K8VON*HoW$ zk=S#30hE7oXvoh)42rVHm8hWGx(%9snx=3;PTtCP%vg6UqwICOY$_XilFG7=nQ z_l2CiLtsP8#76q=!X)qZI6`xX_9 zWfh;PjF7f0bB3>&i9}2$WDzm(R&O*oCgrWI^@KU-`DYTpC0PN9OCXL`_l|`!F2}7hZG+Uved0A{9z43p*zxKN*ED@^%!M5#*7{6r zQGy5bApE_4IfC8^%r~n=U$OnRr6ND@;jlNlwQNk2B`V}+z}_gn;@3W!%|Wn#@l)O^ zWw>yyAT_&3lCz-^D!F;cU+X5U>rh#sJv1$>yI3AMIap>OnB=BW10Vi%ku1A^MeR9exBZ)LrC41nq(f^>Je*;*89(``qY3< z>hJYZo{COY?3~UDvV;7DSS)(zK6}xZDf!e6C)M)#C@5=qmH?Ukg{xOYM2SpJG7(XS zE7?8HIObFH8NkN8Gsp;&P1JFUZBrq7gAET0t9krTLyd!?Z~My^yyZIkglcEDHz!G? z-{4Gm9^B^g6Dt1Cjs>g~apX^({Vc(!YyNi)qk=94@kk+`T@Rf-$E_DX@S^w}W8z(`ph=+L$?K+A%5f2gR>4zUR&U`Goa9~o!sV-%axvz7?z1!E>bB8jb z)m6;}8J71Q`O(oWmuq4#tUCC<%4ik!Fn4UPCsdg-sc%d;oE%T89%GxAMqNxQN5dO_ zKd!hH+yA}HK%2qjpxt$6$J=pt=}fW74;4#RFf;>u?k@CPL=g7?0u zb+B9xB2FkqNa^15?jI1zlsF!PbdGUOyW4lG{hN}$!~r_wkJFZ3*P>B+9QTbO-IO!% zkhaZY+_r%a5a??EXHu+@3;Bh5t(o+6%li5XmPWJP-CZ)$61WF7T)OUZ-X9N>f-DBF zU`89ON5U-ZQQ%&6HhJEFNwJYddHzR}wWT=D@{gWslDSVl#yS0DuWW(p=C&-Xz}v&7 zWb;|K%%zmo&{*e6;Qt!2k``E{w1&WhoeIyZ?~!Q&i|rmAJTWmQ0g+PcYisxYXM~e2 zW!;qc`4x1llsbO9sFqtm8TI3tI5}xV!zRNDi7s&zWX$S%S&yvT+#4vwUW67X_?Ux- zZ*jg>jq6%`;WjTSW|VPjpp+Wv{WqeouOzO0a+}W&p8ZxYRa=n>-)5s5arvzejE(7E zGfSx;sPFrXUc$^QQp3PNjXBfu?Ma#(dk3CJfQ+?%76KVr z)X3w9GS9za%F#?ODj4`wgk~tG5-h&Kezd7NqQ5(DKrXf}f@;^v6%vX-Y!w@mDf}FL z&Dk~cXpLz&ycEw=EcwE{2p&xuui{r{Q{$Hyj16H?Tu;&U~)UiG%`CwQn zZBcen!8-8v<);W16?q&9#vfxdZs$#RfytdlHfd8RPCQ<6`A}mLoiRMXKpJJ%yuy0a z#f5Ey;0FI?!OLl*u59?^HZxPfBGpUEtwl{<5Y}YI75_L%Hs~2}NX2t1%z8S3L@Fmk zeyo+}p*`d7C)@R-6`<%Z(W}ZA@E<2x%KzUETa` zn;1DfJ4Z=OUSPyAxP4&f|FisZY@1~{bc!?aZsfvi5DJp9lPdpssXPg~lWVdIpV8_1 z&Lf?g!c(7eyZL{OPzkgrPSSQH{WuY+q?}C%`~(N?Znwr&euSXoc&Tuc;S8D$W7>>aj*|920wTge6npV##2 zzCQasl}wa*pwRwcIYtgLEx-DxV88{Pcw$sA{~K&7juTTpn2n86Uxg%#hGBc#(zusw zhukWQ=B}h?cUj0^===G>=L{v z%5_$?lO5uDL?r9_f-IzK(R6#q>eqefYp2Cy?197&1UM)Dw;qjyVO~$?=2Tsuldkf7 z$S;ZK@M#{_W7l1^AN>C=rko6Pvp zNzlcufK{6>&7RstCTC!v#G${E%hJg?-l6NA43UgzKP1<_-?}Kw;E!=!0X?9zvqks0 zsQX2GtV(2EE-6^nEe4m{$D2JIU_Q6o5IHHlaoC;gBplGcCmY`I2=&JpXZQcXFi$@z z-W<(Ut9ys?(_b%+bq~UZY^D9^yVmDEapn)Wn9&b!sTXj7ogN&BUBHy2A5l5om5 z7VXQw9bu~LYuO4`ts4Y}cA<=PaOwQ+Zd6IhjY>n=ZD}hD0>PLP&IiimAyat*9gczx zbz7S|g(vtQE?ljWiw@-5q^KzrTNf{!nQ8bKt(K77 z-Hshe`)Sq-%;LmK-`XO>_G+72g*ChlL2sj#FgUAoMSttFr$;MDLnkXP8R62*ii&xu z4@{FPqX+NJsjN1QA`d+$u2c^P4izA+pRNJ+hFQPkJyo!cfa6zn&9w)F*H6asM{vQ$w51O?X zl_#m&pSZacxt5)MxQ!KNDWlwd*+2j|NUP-VN3YP|mS34{ZkMMK=7{S_jrAA|x^hBU z9FUYK)_YjCd1o3Y%~p>q;8%=^(HuBGHy9*RR=)$x$_yJzqpu*%EjW}y;%3s1-#j?* z8W?DG35@5tfdvAa19*?&(H9Pj7bMsxI(1e|>NJ0VN?nq>$x%e^bLy7=91wnq$V_2J zMVv#$>95I`m38SeA1b!^v@|&cZdaK+NH-NV0nD(_3N~6gK0~IaM$`uX2^JMxJr#GC zmwUQ9CBh5!D}_bomef;bEty$fUtRWN?~B%(`kMqu{LBQ~Gh=y2tNLkC7Wf?5af!Q{q54^wWs?Wx;{s}r1fK4>Zva*m|2z)3YCa7@}yat>Dl0%i_t0}77kPHfI5buKlmj;1#M?_T%7y#l$N``o|#(I@nR4??-5pQI^IX>u{dwhfWrkHy)^mrSp- zJkHbLWr&3yqKV{E>Bl<_)hcCu`8tjb4Q%cU4z7M?7GN{^aCEK_VZ>&pD3%{Y}tkLvrR~zo(xcBr%taf8Yx?tiDthQ|& z?FPgDK!GHX=!o2v+C`A-{dgQC!p8c@+|Gw?DLP~4{dit3LeWijNG(a2Ru3A8$2nt= z+@~f6H<06OsOuiFA_g!wA_XV^S5^I+AIf_nb6^<<(~C}8w{dPbtop_{$pFmO()j+% zrSiXKwF@v2B}g!SFeOjm3NX~%3(FdK`f#7MeFOkS9tHr})QyZBSEE&*($RL56!(xl;c`U{AoRz@HctC0 zA=&YvEfTEuVx3>;a1f+2u1+t`ruAhyptabuG8Iq+c{QSW74Wpo4 zLql5eMpNEtGa2G^JLLFomIWI2I5?huP#l1}^ZWW%lX?n&Ne4X(O4J3WEF=8(@~~yt zO`mgRlSCn(H3R33)sfZ&!&H-Nkci{?Lfe1RqYXm#obw8Yv2P0lE**}p`lcP=#vn+8 zySm_Xq$x*2oq`NA*68d)@akkAYqoM79UU1pVjWqt)c`wjAoW}8<-@wsopf10_iEcN z5b;Qppp$qVp>;JHT@P#}u*7EPC!588a>L@L%5)_*n(965c)j!!cOC8S$L~=z;*y4l zSfk~Sf&Dx6h{S6L7D})pUaIhtaSuH|EaztZsIQ-`hoX_3+!q`duh8+}9`8I8k73nc zR1ENx!)Y$JRngVfmm{&)KD#p|=L-J^LEnM(b-A9apK@8Rxnjl&n=OrGm1Fi!REhk% zy1$nVGkJ}+*L;n6WJhJ%vv7R-+0X+n$;}8vPUm;_BO=#%(R+N>e z1+)|R1-90hOw$OAceV8umX9A-#J_FH072yE=-f@OofR6U&RPu|LbLS-Q#NF3Gr4MA z2!2DU;Hx9-{=kD9@C_2L0oX~)cjWhhhfJwl{`miM-VL4k1ZXxJt>kW8FEWeeVR`xK zen|oL7A=C`->;Jn0shCI?6$>kr+Nza%>{7Lf9C>BT5yw9!=5T{5x(+~XB<=K4elibjQCmKR|Yo*;MY65<)WSu1|>E~^X4pq zY0jA?GUJu^CvHyY*{u|9T!0^V3nIAXnuyy093G+Re3`Nz5?vm=fIHdw&uSx?pf+ca zO6|66KJ%Hc8v-l=@X46o->12v`$wmyfM;~AeM^go$;wLLv5pOCvn0eS zq(cM&V(W3u>cNB=pQhZjISs~_VE>0~pGE;65)CihL%&71 zhAl%RA&v1YwM7fK$DwoI{x4td=L7vH1Tx1V*VoBg#$_yo6!lp}1ubz}pB8SRGf55& z!^kHm-^8c$&tsp7s%2FMCiwZ?Npf*{$hoN&ym#?%){=GF0=tV;zb-m%VeoM7mXaAL@MRLj{ z0>dF**}H3T{l0$}kBnxhB%o+4mi^#^N8VYIyg3`3I6o= z;fXF}=Q7{#NeyQha*<;zSGjbv8k#$8hs`aPLRwpGX}QfFtzME0F+XCpP{wkw`Z)kX z^N`+-PN*y`-mwT4Ex)#XVk2Oyf(o=BvT)?w`qFhQk8g)-=E`cWS^i9>w1`t5w?*Fn z-aG|4m4pk)L5s?E+kVz*3+w(HMzW8w}@S1&Zks6f^>tke!XUQuUE zW8Q$a{*F%>$_kFwVu1qSu- z|G9l=2)O;n%DcdjRulDG=ci+$y`LpPXw+6$EDWiV)m6Lb5FDA+9GpX+8DjK0ushyV zDPx5x1l|cSK`X=0<8HZ*05D?k{(#z}IE z9`X49BRdx#FoHfnHG*#yuOzMj2l(J#W&Oa|D9A4V-n;haI{>Bp(pw;q^-ylYJaIZP zqcxq80eP$zz2NKyJxd1pEZAP-{f=z_5?MOVEZLYMcn;%4<_J+!PZrvWvTove4rhZY z*@WDc?A8CIGQRXgy}|!S%XxwEl~@48DWd&!GByj?@pdCeeRb;e;e+hZ?IUz8Vupl7 z%R@{fq^axEAxk#eSSK@iEQrk>yQXjKJUk%!;j-Wrdx-7)F``evsemJJn@54bqdM6S z2)Cp0GzzUXEZvc(DyHd|M518%0kHdz13m=~ICwy@!M5_QjiSB!dkfjl!e8``cL9sP z?ZAIWfC-S<1PynS%1J|8V`BlOU8X`4yBM7@7|2e>4*-IjdB4RPohmi>{d*0MTCOM7 z>TT;cFA2dzfL&0t3^-laqBrB`ufFRhVB%Gv#bBu_Ha~@hQ`086Pb3eyt%E z?eLYQq6Ey^zy{Xz#}l1_V>i9Ai{-HgY+(WS+*wr9pk%9|A!+{qM;`HjZKqoh;(kzL zFR<&XqM+Wn&gl41?q~nghgu}`-x*{8?_b$xJQr;)J48ywpvoMt!b9&Trp{dAXY_Nc zWf5SW+lBJ~7TfyhUPdvX%n}vR29~Oa{((?Lxjnx&DIi9)`BuVMz z2?`&5i^oc``}28WQmtGdhuWIk_o}O-3F7q>amm4loZS{;lS$S&!=}iGhE<2Hjs>AFV1PPObvYO|BU=W zJAiNG)Awt;XKrx;1R6`Vso>x?fc;)jJ11Cp-F73AG_qlU$Lg0W>7BF3hDxD3lu`Yw zh|!cc(v9=Gsz2?-2-FU$Q>K4Zr))Im)TE&}JT^&5G4&sF54=#9L2g3#7r{Gc8@^E< zwG~BrTz`;^4MDFk@=KFi?=y^^>BPuG;8Jg?>% z9Dqd8L~w1o`Z#By@)+kI)pMqrz)KE$D!jdtjfs>+!f42GQ^|Qg!y$yz=gXJ!(c6#D zlkMK63IIa&@eV_PQ8ujD_kunEAo+D;fHVDtyS-LF!*uK^SmnPLNcQ^c97}_L>djYC z(ZomZ5Xw3{%kG@O|EFbqyh_W^kzAH~vLADeo4Pg{lO#ripE`wy@2bLeoo^~U`R*le zPd#Wy?P{&)?rqb1Rya5Mi#t9Oeg)8IE{JN!0N5R4>V`}&Mb$CYy*df!sS&$>0_@>@u5Y$RN%L=tHvlcz3&5kqW#`gBfek}rx(M(rdfp`?S)5y~!vix6?9X_j)f$rEmt*cQCJn3W(KESV9vX$=7AIHlB!!K*q3EcrY zeLbVc(!9Z(#>fb0^_N9-|7`=F9rOgJ(3y)nW773IF~_A**930VE-wAhr+OhN!fJ~| zVbK}NT)NF%00HI4vOq6fkRMM1^QHE@uPHc>htX`@MQeuF1=e>>3dc!ZZ#a7IY=l9u zC%!Wcsn7b|(G(Q|7snRE`vy0SSAudS*{YFB8*Vn~2gn$&schd-RJG%m)_@nm{Z`@PY?)yv z{kI$^uQEIngz5-n=ht!)ph;VPus(PIx!GNgdix6C2?)c60u_*)F@C=K^RB=*oYKE> zn+r%r(rJ3L=XMQ~4J^q2@R>j7uK6kmu%a51P!eHIfHZaETb?O(@4?57r_;^xhAjTV z7rePLd>A%sY`Wvl{JWL2&!tAxpj(%I)2q)+hIg6@D9#W=G#ck!OEZG;aCT=0edc_xD@q5Cwrk+ddZ@%S6h+Rv#-bref1C*o`IjoUPkc%KoqkamnKL0`sFMVv z({poBp35x=8PGCSOsm#WSg43c@wB242z4@nDE)FqkuGbT($pw@X;Xg4BZ7MwV5vq+ z8t_Z+kWPABoC|K7BiTbAGre%KiG)xIZNtg=eZho8MCN4W0(6%Ft4IAv6kmwb^Xe=V zbI6}|S(Sk?X96OTxbYpO?kpYL#rqDgPu~UcUI3R5lO-vCv1ov^n(Y`Vj7iPY@)`;G z3C-IZSveP{FIDC&uRp@2;tyz({ejAWRIRBIpknS^he@3SzIpZc$MoVAiI+&IAZ~c| zj=fUI!s}3PPIizj zv6fZ{E=iw(`=Ou?vh&xa%7w+2BZ7r52a0xPx`6`kX%A;&F-GzzZ9>U{TwS~J->u*w zX&Ih*3@ROg-AwJ*uNi6A5-5CDiQ{W|@xYeAji5gc0;J}t|IqvE56&{L9FJ3`2bzJh zNZKfge#0j6RsOl#ks}~F7G-AE<;~AwSt%ceKo^-{*3;S*1sfayo?`~Ox^7xp)<7(* zD1?*3y1ba6rQIKCkY~g09%6hl0Xsa=DeIfh8WC*->B-f)NU%~pzVN2P_R}~bqAD*G zg&ni(RL~CP!`Vp@BoAwp+-A&r;T7iRUB#TWh5^1H?Ox9>J=T>MZl?*GHK{#%=Q~Xp zbnx`1j{Xrhe_^Huq_s(Ueu9=6vju$2^6&5MHGLG*yXozSUB8&(7!(djedtEfvU)2x z|Hotdg8*pLmaG5ZQKX#&5uRhJs5oYrQ@4J{*mV982TId$5lFyl>gDw(KpqgvGVR_3 z^57fWdkP6yk?LAc-Zxw$} zx(!<`j;7J7Tw}Y(^(D6h?`=?~coKcZGBN95AnhJ?UCYp3*joETD=Syf(3>ktQ`euE zn|i?b2#?>}tn0EmP(Bls_%1EMuODcfD2iwR)Z{;`E zbEXc`-FtIe+kx!>C5iznwSWKeaa^k`@4xlNd(VzuWc#S={an6c`Iy)28AaQ6xvW65 z$XD%0!aHwqIxK#D9V)#_!4HrjypEOX8I=zE`a3x(J7j2Ppt=cutRB6_V8Oft!QlR(~5h*d!BW$OdpaS zw&~9`zsAo;BL*5IPdo-#s%kCXK#`$#otA5{h00>?AFq%1Uhhk?!a3-KWy#@J8&>Q2 zi#bx##b|*1vO3fNZUAV;4##Vd$cSH_cF+Bdc11M`I}`*RmJSn%O$I7|axESF_;EO* z87`T}fdcK3P*(k7I$-Vv+>Bl~H$8pvTa%tK$v0%7j@HjiUiF#V00SJxH^H}#hQaYVXf!>6?O@+1`eA*Fl9zS`+9@Ow&_4Nf z;W-yCZT$K+Jz4qFC^^5*a23X~p)F#$Nm}ZG9It;Vghv$kiexnvVghD(BWIAC`$9u` zo->}2LX;6oMIOP)3ZPX*RoXEtgC}JBv%xwnr^X!3J+hjS_JIt5#xno-kmt(FvhxRQ&+bmB#W@*vb*eD5_oS67N^{n!< zdthKZdK3oU4FhgO0l8{jvfQg@NpzK2t~YPPoc_kjlPv#_Xl z=`YL)1m9Ku%4($U6A=@1PpeM|l8)#%CP8t*wLdENB7)^eY!~Yy_3n}|wW_%Jk`Wyb zEeu^X#({w(|7uAP$qfXhwl1n6R<2>vaMA?g8ie@F)5_++MS*?H?ZGoC1W3FIW@vup zh;fyU&N*v03M#6$>oQf>2St-meor+F@o2sSXROkZQhAyb5fcKGY7Cp6t~fKWd{`4= z!MIsSy~)sk1(ueosXI_cE}RSdthEupH{so*=^E+jb3SFRAsH!r6}BGDDy#KETw2(d zD>Yl)O-fHoD?VQM%f}ae6BhjTHM2`Sh4+S5e<+kxEHRJ(RZ1*HbVco+LwNH&dggjb zdd)I3-&a}!UjmiQ?H!?-_u%8-MAaD22zz?eLNj%TcZ>f04G#mf%X}sN!^XQLEG8WF zRaDwIb=e+rK#R{71s10c)8*$31qdoC*!a+EeT8q+0?kq!2AAt3urEV7CVP!3i1l*fRsVd&!FBlP9AaNkrBmmnJ9g;#&1|Y3B zz+QKYGdaH~`&$#%c=bZ!F4)w-DUkC5jJFWi`S-ztLpwE!|G~53<1f=TJs%YF#%E4Z zXOzQ)D)@eY`LfbdzkCtCneg}5enlU}OX(_wc)&B;(_?qsXi$d^{W}sG0r2%bQdXhY z)QT-afa#{B{Ca7l>-4*0iZwB&;T^n~o-Di|d~aD~1|4mLT}dH5te(R~1aOA>j*kvR zD+WphQB&to{LZYr^Vc!*Uf(CK86D)Bg-j4(dDH$Y_4t@nE9rAr7M_Sh=C zAW3&`;VQO(bUNCCQOg$ekcS49jyQ8^y_@8L)lmV6>x*DV(9cH4#b)L<&#!K@D?C48 z#QQ$b%sfPrkjTNJELpjRQ>g@KN~gi(q@WwIKNnrJ{b`B^a+{-Ye2|s&chSR1NnjXJ z>(2@eR0epZSq7tvmTMyp*lu@RJGfxL#`7A&f~he$er|8vJsDMd{=!9U7tNt~VQr?F zsq@)Q9!o&L39Xf}8Xqo&=E7uTzYx%aW(zKK8sAQRF_f`iXh|C7yWak|!g*-i@jZWJ zAW$5HtQ;z?;tevB*a`RlMEpz0x)EB$vr$xxRQjfy4I{Reg?NPp@zosD3B5MI60qo^ zNm9MSKw+e{cnK6;E?$>&9V1}xNJ`S45r{BMcEYb!mA0rE`Kn69Lfb)F0c0ofMMMA- z3zT-n?K^!-|BwQnZ}2OUAW>|A8H{WjkNN&G{BvJlYd(yLoovaiEeSq%3l|siC`2#X zBr2+orj7E^f%~Z5t`XuwT5)wt5KN=gdb))XEhM0(LkgC478i0_fkDzzoVn!(Ox>2_ z?>SIl>b9x~95YVNHCVS>qd9<%nE|IKg+_(*-Ji;m!OYClz~YkY>FUPEXBV968629Q zo-2&VV2zMWb`Z3>Q2*jZcvh60A|+KST`@`ZKqo^(?zC)WTG6%&G+|e_UR7}=1(B=h zq$gc`8KL>65jO$5a#(GrWYZnkR%L1^s#il%ykrHp+?ug7vu)4F179%zAavyEiTQ0> z6>Gb%HBh{nSadOrpT}!TWL{XTKi|eQR6z7%;wxHuyS@(dK50-@ditty^1CbHSB{sH z3m1MyRSMlaaG7@a3K*{@fizMo_npsOo1uHhWSK4oXA5|0#!SrOcB^ple(te}*)l0n z4f|z`XXsu)-vlV;tZ)O?@y&%hzi&8a-%=SdP?2E%Drto)9751QrvQutYwNx+3jE2@ zJG^TnWN%3O`x-hp;lYOaBy! zW0}aZwtwp)1BIig$TAVUYFajppYmt3=y;X*86MgWs)`bU9R)iCpq0qW!ga>UqS&b$ z_=%sh&?h03&ly#(di+=1@NRR#bs{Kv5goU9(;OVS3-R!kFOcx+ZkaO`@bJrbwfThf zcS}yX)o@x#V?H6I*u)+b75L@OxV5okxU;RE4LE$iPNyLx$Xzq7u@k7g-C+q_5a=bO z-tS@T$Ij%j?-(2W`=^SEA`V8dfrQM-4*U1X5Cyx84@VT_Is(s)TK=H@`#F|LTb z*rpvD)7I5#skL}95v)0R)lZC)fh=3w5j41&;!~q1Gr$gD+^D)2K0Wqt5ego@BEgtX z&o{^I>g}->=iEh|^p(@oYNH7$`H+=bTk~!>1Ul1%EN4S>l8KfUJ%ri#!gI*&2%b{R z9iWUZ8VG$dw-vDNP$=@*iktszcE-Q++u;~UNLZ89_9q~$0mu}0 zR7TbI25Owi3qf#k-T*3jb|dBfwaEXx0RQgpp*du``OOz!hISoHEXI4h!cY!`cg!4b zJZRP*e;IV6$$;y*T~R?n+3UAz?2vUiXfv>U&r&lE>W0bpL*)!ly=j`VyfPu*{#|r> z@;glAM&x5g$zVxiVlmu5@T36mQXIJep#XsBTf$YXi``3$^GbM(q1*`s3U=8OzQmPMZDGO8vZ4gI7sQ6sg0+uw6^eJ;>2!~Qhc_#Kh zrLuczZ`S{-q7N}Zg^h;9gcCcr#l^DvDzs=R;+nPP%u52IkDP%~@^QA~*I>p&_?Ko{ z**qVN@lq_Le_?50HVM2_3g7t8a4Ov%OQJU+Cv{2(K(w_|x#(tjAJ)6$yXbbuJDgA? zd#MD=RpT(?wV05_zbY~}tT#n8)6UqxWxmY?9VF)#z@za6u$W3BuSQiArijtVx=X$L zcR!p<&6yOjkVdzvfYKg9R@U=hN?({@pQ-&;^@prFLBlE2egX5i99PC zr;L_gkttkTDyF99Ovw%ooP8QLX1(T|<}Bp4OcxQrLF!L=Ij>JGE{oKo9i9n;J6!~_ z(CJaO3GZ40n9E{@rl)vd3Iv%<5MJ~A_h;*AZ3@bS>GtOdJX68Upu;DB8r%zXwY_1C)9%01DMIyv{d`g5lf%^yNS0z)H03 z24PZ&T+jHz2NE&6Qlt20G*jTKes-zIatsoMQ7mwB=IPilma+Hr+P!x%9ZPQua^2HX zse$mOS0#TZgo^t%JUOy}l?uXEM6s5roS49-&J^&Bh6#0ib2ywXD)ECrTqMsVQ?wY> z$+qjdLawcNjE@E6r1;=S!;&EZ9A4tM337s^)=8Hwz)atv_V926YyB$+zqn%vE2fMR zz%BJpH8)AtXL?x}LFEMc5?JT|?&vmalE?{jv7s-r#jIyH8mXP}eYrfdKPR_CtjW=| z+~PFsJKUZR^HQBqJeNYS+SK@keAP&a`l`fTm$!^Bv9zOxx*h+n<4M+}pV zcRjk0Lcl<^g3GY$JeVwmOMxB%OL$B%sQa5}aCc0@G);c=>aMvH+yfWq{R1P-+n>Cy zQVL1{(Kmeewwpuy4Cv9oBYaMht{H{XCZvV^c;U!>h=Z9{f3t-jw zWShBhve)L%jG#ONO~cmiz=C)xX?TFAwZM`4xs| z(W8PZKgs5I!%#T5#0PGMLcD@HgzDyC&7%S*#~W?$@AJ~9&whPv%-i<&i~`#=c-0U& z*KV!%pbd6*|F*qh4f_iRfaaS%QdI(f5z{0IBspnC3HKhI)pqEN^7b8&FH)96g6Hz% zsqzlwszMSFQ)I64gxgiZyLmj<-w$B{dsJ#_5!Q}Om~}bnI$QH@;%VN8KTmXW9?^4l zuJRqk(K=uO>5Kdf90{;Qr`TAqh7!<>W`9w;3+^c3C^76wwpj}L2LEi6^_Ar+OK~`r z^sbf+^sHwwdodkK`%N;9JZNA*NB3GgL!0C_Oe%${akrl86cx`lBr^-kz(w7?D>DOq z3Ucz7LEQ0-)fpARjp3`@aET>pw8+a}CZ@x%S##N)Eu4+{qeYraVW z?a?q%qnSyT85lmcN_mZzYiXi1@g1Dk0$mAsbiv(WC@SM}o#&0{aXA8_KiI5b@I3(7 z-d^Tfq>|wDfqEL+SGxRb+Dhu2Ou}LuYO^=m>_Y65CxP4+#~gY58)3>f=VfLKo`Azx zj$JmVHA1g#m6TpucLPNZSJor>gH-L@2RD|p*4l4>im3jD<54l-Z6tdQcADWucz5)< zX%leYQN-l*-*E>jpW6Uth4chJn&$oeYUlHrOAx|V_By@Y59Dl8HjQRUiv~_`kZkyE zYs>w<$KrYGzZ9uf&itiE0%@1Ac)h!}h`?OpoRk+fP56f*Y5V*5@m4V=KS?hhFe=be&s-}z)H5esEvyJJaunttP8y^In1CUiE z=eC0P&OudcGW;AN6?=Wflgi26+uOjI=2MLO-Z}8t>Si6Cub%>E7IcLsr%uA#lfM*1 z5_|*-aI>*8uW54wmJ}&{T-6|1{-?l{et~+w(*2l;1%xk1qiJwVfEr~~Dh?I)CVJxA zKx0a}xKK&e+x=t0?fm+vG)66N@6{sVfm`ZWmL0&2oZp==LJK{mj36Cn-mkoMQ+?{1 z`pdeW4{%XTv6#UR8qn9T%7aI2YI|~75pb{of(>@RkRF|k6Kg}Yc5t=jJJ<*_3YI{n z%PpU$@rt?4bEPJGL zIhf+4RIVj#+{+tH)e^x|KSXiR+n6PZ0(_M$HiJ(Lx^SFTjXTxqrD>U4I(@C|O>Z_C ztyg9H^H~vM!K`0By}{T1PK*Kn&ad+IoXcAIUWLzdL#=2E$g583y{L@tFgW!mmWZ3- z`yzjT?eHd_G~twxS8#p@4k2ZJh*_PnoCPaQc=ESTchE^yh4?St>i(RAQ?B-=b*kcA zuY7U@1a(|bQBx*~Qxz3q=lw^4L#W{`s|or9Vy0es4!F>ar*6T#Edwk`FP1 zT^er$>{EbHQWYP7IRIMVYBLQO4puiTjg+N4n@lV<32#|9V^7!hs0rs;NlD$(Q5By8 znaE9^usbq*5qRu~=l(dOh4UY&pPK~ABUf;`CGC^-N0GBn0nEZ#>qfQ5e(nYLa5Q8;9O5WUPf&Q` zxC=c@lMdy|mVo zG;>mqi`xJq9!wbEM`c>g-@maP8ir?^g)3_&-dk<44tCQ|(~At9RvpY#hz8 zxaE*dxcjBKj2an>= z4MaP90_JZoiM{Tq#!xWSW(HWx(Ydc7&7gqN+pO-Ez9YawEZ$!16iTDOom1gy<(CZ* z4PE$PC9MdIsObXO#qON_6Xn+mbKm0ZdJsH%-n*jKEAbV}3yl(IfHV)4t`}NfIb8&2 z)*+_)r@%ZE`Qr?k8}i?3y*&rXM|=Inm;R!?McB;o{1G{u`L#g65`#nXcIf+HWQs_Y zw^*`#KHd@j=hOuXlLF13pEA<0_=X%~grsRmT?NCVls8$)4*F`glGe>|X5KlrQeO-8 z7XvDlg9=g;wzTiMa#PKluK3Mj(qE#(SXzLdzbHEB&3$$_@%{kr2z2`1aIc|Bpc)+$W zKEATys#Q!P;=m|YbmjP5;m2Q$dJyp8>Te{1SpfsE7j1U^j0fWcuxcsG&{X_|O)YC$ zed72{<%3zl^80>qU$MSz00XJd;?n0}`MsUWIqOyH>v_Da-@eM{sg6mY`)7gEMK#4m9HqCm!2!T(}G_5vf55 zJGB6r8sk(^jhth%=~d@@XAI}w3Kn-{!$bi_q%@zJsLR4Hanc%mM)Tk9MIXI^;EW!t zX=wA_v)P!rFli2OnZMjRH^4lgH5I8c7N_g^^QUV;K}%#gyb z*k;dYytXp#`by;2Z(i~Wp+;OJ`gnRr(qh@};Ew+nMktDy+bb9>{gL^OyqP<6Y!(hL zC03WR@X{5T{N8B>Lq-lOg4y|d+?C@4;5CcN1Ju*A0&c%AQ+J)d!)c4D-X+F^SGR{O z_bFIjpN7kKU`a`W*JYi5c|b)I^Q&7w!js{I$M?i{t0CchY}WDY@CJl=6F6|mN(@%z zLRNJ0n=C7{?D()!*6ZL}1P=f`*#xZqtWlnBlkvna4L_zkX90AC zWBadrcxwitG3}P?NNwugu3qfs<_RU?k7mqNQ~-UFwWbCZjP-E3dBQD?axflxvIR3< z=RnO5<=4At2Z(Z{nDwEMD1rOWbFUoVwV(IF9(hGpGX0@$>d{~HngHy~P?paeF79AI z4vP?%ZK56?@rTra0sG*c+=4rK@|Q2!TJd&qDx~~eF*GYDg%Y_6=EuIrZg$!|cBC)ZUtRg{SouOAbg9xy3(ty`Mu4>mOW4mfZZVA)%y=0yXE588Ll(x*ubEn zRly$qgi|<{s~NV-6j!ig8+e65fU=TC{8!uRXD{yT2*;j|W6$Ajh68aw*w;AZ0fPb} ztfkg=TXuBvV`72gW<^6^w23n+$8G&Sl~KJfh<(q82}0w`?x^?n^4|75isolSGLdZq z#G}3K%Q|Tt{%+-WPvF$7In$RfHJd6s+B$h=58*qLuC4}VW|evfM5={WZ;a~%Zjc*j zAeg-vlLJ6&&1*hG1FPjf1>omZsGhXk>SMk0M&~}sqp|eXUSH|ZEAB;s=FxGC ze%Ot`X0&Arj|PXxPvf`zRL@V`v%T-jq4MB$?yVl-A1R0{_jaEO z&qry7EX-Rdu@T2DOT^nS@NhZu7MHZ8Tn%~d=twmbsO(uOrHa0NM^G#LNhn=`Ua{k3 zAN8hqVR#IsY%pN}c;e)JVnTb;6+@mAC#3ZnDAJHld#!C$@tZ4Du4kSJEF8=nB>NXI zyedGuIV@;zWyJ6D*w5_!VsW~SnP3-Yy~B9>Q!ZJ&z=F2(kTA0Ddi0>1bO-0qi6C^M zRrB6Y9y;`@ng~tHa;H}9+Geb!(?UkJ(^gR;iGnW14e>TD!M53b$gk3~gD1B*blPJj zm|CSG`?cMYaiU3GQ_QqB_A~X|Miq4|sC$>1GnS^ySfb zx!q;?Cyl2X%+rJTuVk3Fp{3mnlID-r*4r`UaSE2}-A{jcUzDHkuFnYnrv=s3vW=nb z6w|(K$~Ccf8Pn@dixGnCJX{5D>euCTlb8rjP4%cCzJK>vaNb>+_f2f-Ywl9d8=cG< z37zf^Kyam9vMPt0<4%i^lnQOXweAJC%d>x1Z_I%`L;B%+pkM0|G*)lUJsj-rc9EHTAxh8L(J4g!eh*{N7kPnk@Ier0RzH{09P=Y3l?QCKDa841<=zJa_6+*S4k@ z`mPq52O-gmvQh=ah-SxD1Lqfog8@UEx4-@?>v-y*^vJO{7sS8VUimyRbjFo^TI-`k zX1kx_ssLk@eN^Ph$bzs7Pcdd!t9bjmFL0brv`hVB#}F11t$#?*^YMr+tkx&nbzWVM zo~6h*;i8{EJs7hU*AfM5W&BWS{bOlleik7g%3t-Sh%yiI^DYes#qjVG4B1Rpj$Hc3 zl;T}E7j~F#sc}nwcQ^RS>fW0 zLb3jZ^_vW`_hSUmT#lIL|9?WS9{}pnQhn}S}_-nWg zvR8oyT^knVwRS`>ZdrE!;_9FvzC0Y>NL&3OtV^HxT!l@r#()rf9PA z_ud3J=k(k|+_uLgysxnfWx5}V$C%}0v6bhvI3FGsO;9y=pWx$5oSp3pqEvL>s4qdL zy?sh2D#oJuoi>R%dk z{$ZoH^1{;E(=WWGGsD!)+Ag0v-P8@8fT0LW6y2ZkyJ^8U&G40dULHP!qtdrbJ^S(< zMmCBKz6JT_SZ9BK>(Yc#Gyk}-m4-^v?5wy&#{AfYZfQSdMIy5HybRQ^c5dZF`Oqn` z7*E=mv-BwXt{mf9QdyfBiudG7kc8%k5XgOf;GrkDX}Y!Vo9)&I?>^aDCT}n|YkL&? z{n8}^9UV-{gRn%jr9}E@9(y)u1yOqkxGUXN0jX*jn z9g!k_U+XP#ZbiG;<Zfk3N{WZPBs+RA}RI#C;wL@zbP6| z$;a>RRI)d1^IhrK3#Pw7#G_L}a@yCE5l=3@leG(qSQy{4wN~d^{eqB0QyYZ_`;03F4^2(J*ulB8f3RoL_P_ocg z<1_in)JW$Y@3t=fPU&=b(&N&%inXZ_Z<4aFh8&L<_Vze}66@35p2|qH+LF`FR;3~J z=UyvYi?y$>h%IC0xfLDbG4@kdkp_KiW#te;tW7Kk>2Y!T@^i;ZeyA~O4s1Jf1UYku zhPL+eyqgQIF2~9)5W6`-?UGm7(@3Sn#oF0{=HcFy!+UevsJSt8id_j}`f(z$0+;;n;W0qpe27QRrza{ixRyTug^Vme6UxO!=dl9K^B0_^~aac%p z5f5h6+RUC{pdM$CI4>v?`(!@Ab$`9xK^5$doowFKADI|ZQk8Zuwz*nm>NcG@8gmox zy_Oueg$aiox4X>z8;n^GxO8$X^XHRj%G*lcmagEDpi*{Q62vHjJ0&KD9uz)d2pUmQUSXst%c^M z&94Qb9HZ=ly_#o@Jf5`skGBfpq>wrhzq9eVxsowEa?S3DimU}Z-pl*zu)>BC0_^my ziYAvX$$#`w$XWYcy_`R9D4{K8AMqV7Lnnm{9`M}#{cZD^TMS398?0k$txskTyewmX z6A7@F5O&|qNT=TYblCz;C)J9}&za#Pa#x!jPerb9#IUNX_ACv~5FYob!gVbd{oEM$ zo?Nw)O!zDB$Q7KmXpEYIgiF_Q3{t)@muG^Lm2U9XdIcAM$mLRt{1qpnitO63iv5y` zx8?JSi+T2mf zpY3l~_S9NcML*1Vs*NVr8Bpr{FsZUKmsqY+XRDmZ2w_GmDEiv)sglloY;29?3mWpLmvjf9vlaXs}s) zJ4YIuiA;v=y8r!*hiPf{KCwD)CDd832A1kExmWJ52x829@dIj5D;0RP# z>+%a^$LkJAw2G2O=T2nuTAZWIR_M-m#t{3usSu)7cz&fvJ5g}EYuejOH^+C8BUlK= zqA+ZQGqKXEdL^s(t2P2E(q+dOB;p6Qx|?G3E#lORCQR~I3YYboW%?UsgKA0$_y~re zoE;4BCt$?tmPdbHY=v%Y!=!Ae|dJ8pcVa((;L(By*Q#PF85R<_N4ANu%-h5>)3 zlKgyplgA<>3%l{!`nOyRMP_D5B-v*a-h0x&S<^{2k*yg1B#W3>YxT#xb~)5Yk(Qsc zdZ-iCCEoy+nJ~cHle7cA%vQIjXswdS+RRp-3*;1pP^6QBQo-ov3%4&?sVCQ1#_II71x@tw()!`_5+t&Gdr=@@$jgu zq(tv1|9xg(NN(HV+{(@RuZ%;iq>*d8FCeR?r%w9l?d>fd8cx>yW*C{0D%h1dx|E50 zl$coTU&xG4C&d>vGw(XT=9FvH98KlzG;dHVQ(Z#P{x1}rs{GZLebX(>m?`a4lxN6hx6yw%nIR&wwse~`a4Ex~qZ!EcaxK#9RBSVuDDX*oO zh}}jKK4bUX8Y*1YS(3FHdzEgoCRAu#yW)Z(oLbe#jPX?xt1qf5WnZ9SCQ1xOJQXbrPASi7>`l*Q!YH}sYsQfiABQ| zbYj$z-1S_*kSLmWy$UF?~{owY(wPvGinEz*ce=|TcAnN;3 zxjit`yxUkYGaRPUVQTdvKmTmxVOtcb6+a9yQ4hm2o|b*=Wv{2Q?qR|8cGx&gI$b-e z>|d6oFQF`B%T$a<`2VL=+FXXmB4i?soY)|T=vUNRt*T>4e0t-AMc{rtHUDV>NcoXJ*`QPXR==|Fv3d7;m$B36}cinYrh4Ok!=$ zAN1!xN5s6)Idb#>LN#~_38L)c#J!WZXTG~AvE?X;y{}VSm$9n}h_eVHvdQZS7ys@u zwUFJ?Pwq)3sZjlaBYtt8Rt}{@S{^KFihxFVHT$12rc>{P>}+>!IjUg)nuhynN!Q#G z8iFo@nmt?UJzsDfBNRHhD$7csh?qGPL)x^ZlDI!VI@nL`B{Etu$uv3&Jv+gZj5Yjm6gDDzDW7#7p|CFNDq34d}TBjs+KG?OHPOlK|cOYIf z?1OY4dWJSs;nLKq@&n!huGFplDR>O95lTr z+q3jW+Zwy#0|SF$R#Qn%#4m9T)YjPJ3k#nXI_Y4H!@b-h$1RpNqcW9uBr+5tevT5 z5W?efobOsPbQB}Xsx#rv4DOY>-Ov;RRRJE6M0N-xgbbwC#QT^q~gSUld5hPa|P^DjiMEm+a>`{_g_A4p$lQ->6rU z+vn}ARZe(qj6TfY+xw~_dp>5}&~YhN15YmWu~E;dQ!u<{2`SyWq82$_{|R+_fy#@O z#A=SRWT4f#$vKyS=N2=Ed|z@BofNTOT7P@e*Y)RgQczT2bn;KxI(F#a1>cB65}*I3 zgESG^^IDA(W+PuDSdh9z><2v9)hfV4ysJ|g!M*qS%oz`*fBhoqX8B=^51!}`#xk2e zr=ujUWmD#Sz2)ZE!G*#=Q8%em@dyIL zp^={e5FLpIh{R%e1e;`o05=Yl70W&ePn?9Nv@rOoe=O#rKg+gt!atPKIe;9 z@d%#PjTK$&@^HJxkb#*$3*D!~u3QD7AT6;$RCL~-8;ZR3WNG1K zAZ{>&&SpK>&x~E~ckWj@ce3cD{^!rbx5n@!JH9?GzrI@kdBR)in=G|WcFsR1Ma3VOHxPp~pdP~AkEZmPmL zD_jXVwzAy)o{K;3*G2y|qFlZGlhYqB!?oZ0eQw=eHt{azTu7f8Bg)do5M#b`mgn4f zBl$Aw@an*~HpTIW+Ss*p7M*YzhMQ16@039TtRw|2rdBuUX^Gx4>Y@ z(Dqhu!Iqn%o(DP?mU8!z60gX(9OkG*& zp@N?k(=l^hEX8t8=A44uGe4U$TNS6LlfHPBtFPToG`Zd>ID8VnziHZ=Gev(BHVZeNI<7AHOHfFC!6gB$r%4usAeGGvaW?QY_%8j6>-ba3%Y% z%Emvi#qcTGV*-^a1pM`{SLv`~bW(nU2`J8HsPOr3GVLd_4QRi3rK>b6F1riAe`N0#Y3klm(mf$buw@~t+VS$f@*)b?m+gl+ znR{0owZGLH2Naff)UxA;H)slO1d@0Adh>3nP=iv_)fCe%v47vZh7i~7QsL4~0v{lz z1IpU3_SfIzrIe$?F&dt}AM4dvf)=%%+s>5g@vn6DRR}TPyb=2P1I!?>0|lFaFzv#E zAtfP@UFP4mbWR`K2JDRfQ5Va)x&C$z(A!oT9uE*{lunN>RJ~D+6nf*JpBZPNf$i-Q zIuVBpI@8MM+cV5eE4urgGXYCutU{4rWrH;H&KK7!;zp2Gngw-dv=A~G=uP?M(+qAt zB(iHw`yc{0tKS<+rrvW{XxxG;wn5?~jH8*wxL&-7zOQiO+4&T*7rptsNYNx@#1Ezd z5(STm6{tF}{xI8g*zP9o$@Z6-$@MqN1zGD+17j7Tcgmm&TH*3(dbeXMF0BU|A)YTl z@`s+P>d`!vWx_x`mWB(Bm4&ChYE4uWB!dadnTXO+tdC7SQaxj$vi(Vb_=&!2U14;H zn>X}>hVsaj^tuO95Ln z?C9|Fo8u7=9V9F5p{mkzs93$G;dqwx)qdcyQL(hN926ZVaKVo@rNF^QDpwy0po6j6YQHrES`$+L|?yvP`QnC zkdO*BY?1?P^g<_M+zm?uU)j$jN>Ye-O77-@CiXdYFIT-W^x;->dUh3EMYZy(cds-n zU$I{x%835SPq2zH?TauCHzK{(Sg9ay*~WrTBCo23{`hEcwkstGhVSBf35d#}`$nm8 zF+9Kxj@FAd-*Y@aJOzGE$+*=9fWj1(IlS+{A~Y&if_Ev|3*`lVd9P0>xjEPq8+L=iE1 zH=9^s`c+#`dW)?R#~^<&OmLHD!yZ} zVm`^lV`Coj;qrW4vy5S?c!8uq%gqbZm%jrscYtdDh#f6Iw&;7gdM^ZQO)sJJS>jPr zvgNPq!X;&&B`S)wNy;Wf259EYCXSL=xmU5C^Gib-DWiFjLSHX+e)q^Jp6>-Q52jZO zCmO(rk-su0Y5KKPR1itvSSn zHmA6>DOZ*|K}waXN>(7thEd*`|2;1OXiC;bPcUi*D-8LzW|br<%Q~~RMN=_S?a!aX zPXXZ$r?FgXQe#Q+TA<-796@yyl!d2;OCOqivBP~zbqN(Q9G(?GP;riu5x;R!y9h<5 zG8@3`KDZf>J=+2VCr?BGW_$e1vr!v8E4PWMV#7*|)uLL~7++61k`FYDDgJlKNuOow zku@2=+FKPZJNL1S?PF|KSOQpt3$Iu2kf+y9v!om~Dp20Y?&VlH7LaoEu~O|bQ-3J- z=IP4nnv2?9_5*}nx>o+7EYiz{1=s3*%Oq@``1}l@p(^Om6a*D$4i>ZDnF+^?&5^Ri zqDEZk8KAlWE`GN)P?L2?tj&{szm7f(1HAgsz|3{TjEkc{syh6Nf6AD-AySuh>)V+a zj2R6(eFnz(LT=*ASUwN@MtE-jQI}_rCrV%~^geIqrrF(IJ&ds#d++xn%`{hd_gjZ- z0AOglugca_icWUzHuT=OInAM13u2?42clIyTVT%xzP#({j zu!?@JN$!tQrQhgy^3Z0gi8pG-#%)3mcxM|GN_weKE`GMosbW|Ast`~jYs2Wf6gkVs z_@Wgx5~E@%S&QX>cru;#b3C&?xL+pmasSXG+5mqsh#nlm5@w}j>bGoJDk0`7Mm>Q1=WVn zVv@Qj+5;nC(ATkhy({BqVj<&W1@uE2sYCLrji~WPE4_u9=cdY>J~qvN-dgyYJf11ptLQ(#{JqH}5=RXhYv6@Wv43~RISK!p)Td}i{z zm{J3VTwOni}1q@=2sLN@A|O^ zi}AOoz%UN+kjQ}<*{*I9uejrIM*G;8}=PDtn44X`MTP(KJUsO_P%+>^PQq7D}q zHX0t!)-iR^f+b0`xBiAwpJ-B1vH1py#_GUb%e!z zcTy-NWjkE$Q~Cp;CM~TO#?id{@vw@Rknlw}EPIqR%7f%tF|K127 zY$A6?U8EIq2SmZ7Im(Mn@XRP;~Dh_1Lw0kRxRG@E}CK!l35{bGn$2Bb1xcZjAr z=6(MAC_+znHEC6=_j-gX5!Q^ZVb-bVsa<;gRy-9WV%_)~#jwpkXu^bX2Kk`fWm4rN zGMLfgg#y~Kg(+LzPaI@%D7n2^`~G;m+n#{jZwrc6hnI5h(X4!c7NQOrf=vMjtm^iGG-@q+c5bZ%+tw`SmtWylniVFv&e6GTQ60u5!y=Q6~ zb}`#2bqkk{a|M05fRy{oCY2i!88F^K0gR-w9F|Vlgat(#-EbmQwr2oq=|y)R(>@ z=0^YmTAi2`sf*p$_RR*S!pZ%_{FnfJ4bQjMes+8#HPHdn%Ukfi?01CP`;BvyY35{@ zgvjS8krAB^(G%eQ@JVDYhKAp{nTV6Ec$URFR3}}l;pxH0MDDhd64YCBU?H(D#ly!V z_#cP-%`>7blgRw- zmI9_56X~QtU;rOMi^DlzREDEM;cL{B67_Ou;H<=FYQx47_alAy7f1kj1ky*XMRk$w zr_4e=P_!5IHWq#gXg81w6@82$OT!3xPpPhVJXR>ccWp7;+hm_+;IP{0InnIMO(>?K znH1>43fA{TQCSdX#ZtpBXFpBsPC5|m66ayvU5)@XeeTP-bOf}}0V_w&Gk%m2bW+mU zkCpTbhB9hv-$qPnbImSKJ&1RCD;6WRo?b!as@3!I`J#V>u-IeSV8&`Efi4cQcBuf) z2!D2+Mv??3!MOi7k;A}=o1Tg#YnShnN1Qaw@ZbZm+HY74Z1QBC^;5xoF#DBT;r1mYH?{V~seEbmJ{_6~9A5w4m7N=;WVh6H){$Q}PDqWY0w0jI%B!wbt9VYz zU3Tc>lH6rl+`mm?Ip>L5|Mn{`aK9t(IqB18;e#HNRXmUWS#+ZL@_MuLveL&tZ(8nMd8p$TZTvXNbY6Ig zi-1?n4&dO4?YuQh=H9A0vb^lf%Ugd19W^#u_#avLWf`CA<^Hd_NSWu204VcV0uzMP z{8djH&wQ+&q@p=X&+LL}8Gpz=o_V4xl|Qa@-FoSlb-@hY&_{=|?(ET&T6jeDX}bE6 zt74zKx5idHtl0D|<*Dk`4ZwQ&$kc8(jongnxWYFlJ-T~iI#P03E(5Yj7pQ;LR2L~= z^FCpTr%lBF8?z+ixxFO|&zEM!`c6^-j(TtIt5)3?Yj9~xW`O6DEx^58o|B$iz1+Ba zYr^E&>sb~8r&U%h>wbOlvFFxVi&yE&uep}-_18UVMAB~n?yzNGm@UBl{+fM!k!*V5 zE&HAGve&9^ytZ0rTeWD~tuA|)rEH~tOV=ZXLxQ@B=db^>Zv}hI7YkMb8RqHg=d#Wz Gp$P!M6r4T) literal 0 HcmV?d00001 diff --git a/documentation/gfx/logo.png b/documentation/gfx/logo.png new file mode 100644 index 0000000000000000000000000000000000000000..3f22c92a86dfab8ef38424cd523326b375f196f8 GIT binary patch literal 85197 zcmY&=cRZHu`~QWck{KD0*uuLW9UjimSa!Tp71f)Y%(9^Q^^f6uG#y&W}&Sc#phSEi8&L zi|%_bYdf=)b?Sqva8tfKUX_gH3i+CBl_;H~=T$Dx9;NGwWma+Lstk;4Mc?TE%z0aE zC!t{bQ0}AdHS>|$d>ke0+e-S3{NDO6`0IU=e@B+R$GAA!xO=eWW|q~o@V#Dijj(3l zZDQSNYI@ob4WUU$ozk}wEuXi+$HAJ}!sBV3WMR*ZkdKODv0xCUF3WKKT~5)U+!SC_ zmA%HCED^!eiXe-f%_5jyYPoHM;e}rN_mgn5!wdFZT&%h(`P4PsI;Piq{W9`yZaA3d z>bcQIF=rDJAjl2FNer*x`u@e0s*kU#SokOmEx5^X^D6NQ5BgcOA|)cm)vFuzSl9Cy zO0|a`p&>cL8txwX=l|Hy#>7N;!;iFHfrOM|#@J_0pksP6vfA zvl=J0qK|^BB1+%o4KN0l@>NFq%g07(lrG%S46piLl}3PY5)@&1t;jP3FLjG!_qj1m z*Y}WoXpE!nc6Q99w`NZE8caM2HycU7v6N0?=yaaDt2<0)<+A;GYpyb*Ro|9M)(E0N9>X_DopNUS0W^05izP<(>@ zfx(>N;u{9jfIti*>7yT>)qeO9{A$rnOf2hDS-4GfakI88tOQa+#Ase_w62J3`}UAN zcO?;TpX^XyI{8Q%?Z{4mefUs5&0}Ns!k7sDFN~VjB-AHTW(1cd>j_^j*cIr|$x9lW z9Bqne4o)FRk@pIkK1TP87Xmh8PbVfhH^`U?IE_tQ-A+?Yq{ij*S3mf+O|nulMocmp1Xnn`23MQ0Q+UNEhv=Nav^^T*78( z#Bk?&lL}2Z@uUh-=8mg{P7^Kikse-ZY`7X;Si8MQliXq8=D%gj;)}3}X~zMoI7zO4S}WB3ts@Ll3M%{T@~wCm)JDaiL|fm6bB8n5RSZjg0YXr9U@b zl#*JX&E=3B;yn6_L*uVrhb1NFFH0ZCr|`G0RE=9yB1sTQd%J?BH8z`TdB!|-$*(|s z!pqvf?y&^}YZP-)(by|}XC`A8R!$M#*oi#9#h9D6mwby58i67#eUr#%3E`)c0R}28nJq#a z;&-`Z^1lw$Y?9@!98{#J-@czf5s~(8$8Y!HAKl{*q(v#(Pua+Ee=ShwQEWd??_x3h zz@8F#h>w(N-rGgmg4seUWv~9cMm>EkxjV8gP3PdEf7#OHne8DKG5=?lCb^X%2D;#( zI081D`qoGE2FljhCDQj(Mc5Lxiv)#KhNnc`Ettz%wP2{6Z>&(4N%<-%f?+oqu8u30H`cAx_!QBQf(K=ZY!yQ> z>+NyV>S>!((Z!k739)))pK~S!{A#3qdrcc*eY1i_idmI~L{ks1BX_}; z%C2dC+N-I!PKGmfwno0wg4|(Zjt3oDBc&L|Xc8n4V6<@;pW^pgArL8g zAC1eUO^sXyc^L8X0^1#5(@VQS$ zUi#O8^}Nl@@V{Npo{<(}k@^l!HuGLWBw!tf1$95NB!|MXOIrh!nbkqHV~*@GQ>SR8 zw!FCft?~0~A}#O{XPI5(j^S!k3eF9%-rc91B8cZxEhO>T*ddR3f5**H10$OZW@jU=Sq@Rufh2XFt4YjVu}`*`kcn z2Gu`${a0n)vV^Fi@zR>UVdZOH+&L7wg^d=bZj7goL1(M=IZ@*Lq|!@H)pKnmzhBwW zOEsn_pyj&x#LBCS68qk6n21+NX84OQXAwLd8oADC@&(E=`pE4Rq3d2&G_Hsk&2pB+ zNle?Rwp$gw`sHihRMNQ^L-?aKh`r=4LKW!qCgoJY)MoDMM0nQQrNSS7^*JcB!RoE? zk#cxlK?s@p@pQ}4PTn?+SzIkld7@le0L$yE07IFrjF7~ABn>qA=#GO_qmNA11?DC+ zV+_=XzAI=#gw&1g-@9oqp82zdME!ZmBPhblFLK?_=S{ECn`t9&%q$IrG)^MoTM4Dg zF{PXbIy%AM>J?_cN$fnmDEhK`*wKl#!Hl(|ny_h0j-s&a8X{iSNRQ>hF7Bf)FqUpfw zM?8d|UsHG)IG-fh*P|C)8OG26)lczOI9sVP3&=$X1el$^GP%qsO_Y}wy)~MnA8+-1 zXXzw{)E0m_fLeo9ZCyu0xf!o?ztj-Wnhm|atfugxX)PWTVXp5I%<8P1d-z_~a_REp z)$}Z$9q1@rP=L;rJ-VN1q&|zkb^29@!jRXwA>>)~T{$mrFC<6&{p-H3)%VcRtO8fi z>=LMMP=G}C$(aYkFUczN>S&wSm?r^>@!B%9G&cOm;xW36&|D_Gq%UWT zN7@ZRi@s_>QS;JNruC!8f|9dZ#S<7v7$JPm1>Xm9S<=>%=IrdU69(r>TJ$)Upd-ew zFQ98(9LA6)z`>Gn>5Th=uEVU(Og>uG8l1c4>D2zaP8z9Qk)`p%3=;|S1Z+7n$V0Hm z)!RBzJ`i|qQo~>Y>_54kmJOHq$zD)amU7^jP#^41sj%pRn7jr?jFkOPP78ad!0LFKxdly@Fir zP#x{*da0=4R{6*)JX|D9=#yr}>9A*aLGp~$WLA7BNn*q1$$E5$MmIAF($?^2J!jNO zl3D%LBw|G8N<(5VY<%-nx_hrO+AK<^dx#1L>oy%0Qk*^M^!4)&CRhAruM`l*6EN`Y zVX`N<+UnfwJh1`UkE&kFr1~WW<01v5z6>^<cakF4?f^-!jHCMjeera#HgPJn?hy z#>JCmH2!XI@^(Pe@FId>eK?a4NxdeF|f|MUJ{v+(+(k_Lp&VdsrM8cm?Y@ zn9xN&xj(spw|M{9X)e?9C6O2{izpA_htRPEDoTKq47SKGaWX;u3-JE!$W`2P-(jeF zKfmyeO6IinlA;<#0N1kgS_x)dggkMk+Dq9Yoelq>a9K)BOiYL=n-v_NWw0_DFFNC) z)e%b3yidV!219$EI`z9fhtD^a18ziv#A^dW_p8?A7!@g{l==- z&P?}|FVZa;r){QlFk6oxzpNaJqcm}7=wcPdjU5Zogxj7%;TRK*CZ>t1s}Ta^{$^ae zCkq!(W$H#;ee$W`=a8rc7g&MJQTe_(_W*DsRTb}%(Op*^_Z}Xai(2_Dk>i)`mjK-CQ z9&{BfNN-(;pJ7;aG&PvQg;+l)i=2r1TJfVk+W0LO3mu9G#c@9_Hg#{!gFA}kEa22g z`7RG($rN~ZaL!l8f@<2ElZg=-LJ_C*h2KthNXA!Nk8{E6sNoI_xj03%8RP?xPuHq?G69F zaFCO-bzn~qZK>t7g?-u{MJ9cyWVla`6-fn|+$lz@u6%<6lH<#+bx$K)MA2sL$9~)R z)a%#ibIm8x9&B+W@AIwnqtfLl4I4jyUVT@ep;N^etiM&ibX)m}!b|h0ik6sGdVC0( zeC0~!(Yg217IE}s<-0?6UltSu{Mz*iF}g~3!Cq#UGdWgJ=&tB7&5)R#(<|m7>VyP! z$JIS*kI~y@!3U4;O!9%pZTOL~@?aVN24%Jd4!Ae)I4uDjdC~&jks@)LZ~xrPleU3P zPKc=lZkJd*3ZjrZR-xe4Iq;IyTM~Y}H2_)U{&Agp;Icjc#@THi!uc~jP8wf^!F3Up zUPnJZEJ#4=C_cZ&xa;I=+UWai4YxB0FW;@B9c%K-q-$S6K3$|c#v}Q>eWChiIaZ3x zFJy}@@ydy=e-(K^#o6H(95s{yhL6ts+aYD|1e6pB0j^Ia=8deheG|gU>siqnq?t zaF)9hJ=B=th4&247}DJ?rFoOv-{UaG`y`u~MyNwkST;PXoHI7KyWQzw(q^ZTN=h%c zKF%PiJQ48AF;k6T@|j_QOyd?Qi;ku_dmgRxHG@nw|8^Pcr#MALWx2W~PmUvMQo>#7 zqU-z3wkK9&$%%Dt851r_F{{VpCUX9qlCJG*qB>wO{PpH{ZQK6eu{Rs-Vv&dLG6|l? zKBmL?fOUL1lI7^xUY#TvnodGS3-GlZZ(XM(rby0$fdY3s&&4V=-*SYYwNmn{tPMAR z7)j~}$@fW$p}2&yVg8^x^9#y<7pTH`i)57iErN&V$T!qYZY0dwm!0@d@|r4Se``AK(PL?pV{7>R!d;JRg{r&g4kLOprC_U&$4`AVJvkE#N^LKZ?Y zY(G^UqDcKMiiok}kJ+(dGPB33@K^`s3i! zh#2FYJix?~#28akR=KI!>r!y=nR5?-1B&ihf-PH zoXlDO!1T56(Bi{mN<-2z^2?gsr9w9kPIE0?R&S&YRx#taSUUkw-j(JD0-~Ob`DLuU z9p$}J$+{oIu0NX0^mm_zi9X&12r|4gt)u3JG>41y@Yy--Z;2h>ah;sp$7lryV;+r7 zC^hla(>G^daw~hOQ2be8j*X=PkSqyG^l^&M^crZJ1y9}7tjzFv5eb4wX*wgc?&?s! zMo}|wOh~B1t5a$`->1*;DaE*UW@iLBcUTZ_3|hP@*gJI^98(ts7YS&%-uE}?>e+Y+ z;CJ_o^_#mYwszln^Q3)6h3-24iJzBm0kX+?+ZL5_N%dL12)e@g4l@sP0E>ju4)iX~@ZpW!z ziI!-h5vboBLeK^zc4bwgadlT0g(te4b&IVS;ZS;9l^UnKQd0qci!?rw1Vw~!xVbY` zt2#QJX$jQbU4Dv!EJ@sMlV`*iXLp=4O&B=i~$Zt8?!u&0?J3XNywfEzK^Q< z@T#d0+|8d|s;RuX-78I0<~@70>L=Bo+QmF1imk{YA{ko9_$X^>xTPl2hbI42C6D^f zSolP>dtVV)Cf+)~793ta#L9>N{mos8?*^t!EY&EF!z6ZZSJw9_R$h>Bf!keP)>V8d zY&j(ZG7Bmx#vhOb0oWEPIh8a?xkTk(@WWmVF;}qi0dir)#WV5eKB@SnQ5G84G`ScI z&Ag)J49{H_RqmcAz1u@5e5JK+Bc5NQ`raak{KE6uDW?(Z0381&TE@5>7b|XxK6dnb zKJ`jX0ACWD?%Wpq`*XgD>UQs++NiU?qx0h%v6r^5>WO~R_7GMtKt))`%3*()rriJCX$zQmULYT&gDz|49UZMCoYJB%E%;d=%eWic5n2}#8(mw(DKe}!x2uO-tFl6|I zz1AbKav}4|WM#wwAJ-CoD37lja2jd2?R5`~s*=eAXs18SU7n`+h_0{LDt0KK*6S$y z{+-`7?MlsGB+E7YBD~-KG<+Mn@0%MYqH@>HNh?Mkk5X9&;^EnH{yLj_=<&8@e4tAY z?g7AR$iT2y$Ys{YmE0b%Fe8jNm8!r2zr`Y(?vqUFtp;t@YrKe-|0Po+Il5B^V<{rq4p_84%<$D5;H+;l zj-Mtg-x(`)j8gwb;h|HUSoD`q^ZCghb;;Sl@rto-Qm&PYh8-s2g`U9>bM)A91XrE6 zl;fAtvf?YQQ@>F|{J;$vz_qcVV_SWtL;~N2P8@4fhxTN}=dtqahqwJQivda2_>+h7 ztUB+gmE}9+vLMKDt>j1FEc;JW$Hc5bD}~x|)ZcruduFn0s$(iU^Lyt!*4o7cZ+@GH zDvKpPCM|F+i4Auyb?E)b;wO{@p08=Zziqu||w3~Q%cJt71E-7cAH-Lgu=Kb6%`$M?LG9F4!=if=F=2U(>VQ&jrDddWz`Y!*Xe5|v2 zH>K2y5{CCHtt8|1mdrZG7XV}&*C^Wj;K40;@K)w?m)#Pm{~(C5eDGVyfxgIeaDoY$Tlog)k5oFUxOV;kbb4b1TW^nOWseoVbM-YX!fZ*OUXxJ40 zmRxlpgA!nowTl&JpQrie0MD9zsQ`oXUMo|ksIPXINJN?4&hf)N896F_!Ir!e<+E)~ z4Hqc{sUu9M*`96p{*1v?d8*V}qo{=p8(9Oa#voBzu)XNq!A0OU&)n3rNnEGmRMR-6}WgN9pA`b+yWzCab_jI!Unjcv9 z78362agJmLkJ^GJs?dhM;gq#W-;3oiL8ixK_dIotK_m$_OyGYH?=pkJ7g1lJ9HQS| zEcZP=L1uGv!=Ba|P*pC;~3iRw6T9)@Htrvxr z{vrq|8VqCRfr(M%uuHlm;JUEvTw(3Bk5|+FRvhu_4!c+M;c44l{G#C0{nOZeJF{Qk)ipzVv{7>K?K13qQ*f5&X{lt8hCeVG1p$3^x;+{wz+ zGDGdos)LsrZ)ElpSRgToA9xcFzF`qE%#DtIc1A+ekckRTbf|XRDD7hVPel*$iyuO= zgnBbij})o(i1p7SIR~Gg4v06K%vTd^ISavu4M*SQY42Xu4ZqfIS{%@fhzAuO?T!Lsl{AWSL|Arej#q z6Ge379wG1>X?tT3Y7g;#T=b)E!p=@AE7HLp=TZMwT`*vK2%FJ6*%2cYlHEB9Aryww zWnih!2uVx?UUEqU0IV}h56x}}>4`T*abLA>?&HP0MsF%F$XiAkVJS`U;x^T9+pFF?=Wx6U{C znrWM1s#eue!+>Yl*SJ)7W6Ok&A@u4L6QRvjmx|<{^7fD7t3LBB_oOCY9MC;LJDd7u zc_)tn3hJT!ucLhaxu0GUYtlILqDJtZe>_FwW}j{G#z+ezvnR*@^#TkTN3;B=)d&)c zCsUxJ-s|`U&_mgWyFqOf!*70vC-%;*?bnFP9ftL<>57Q;orIe@yBse~pFI8Uj8{&a^H&&rHMj93`%Ke}IJK z+#%7}Nl)%w!m-C>OmXOm3abBU9R5i2kQ$9OViz}V)cv5^uCsV*H36FJrAErM@6k^EH zHlb2|_Uspm?XkOqx0H>I6ku3%@rBN7HoX-umihg23Fk)5eNfPJ z=B=xdJ_GUL7lGqUxU?O#{lN&sSmIx-Bs-S-85K{768KP$-U@zQ?WLwTmBXIss28wTyf zvuYqYIM=cT1Q80%?hc=@1Dii(k-e|swml&w9~1#IUYz>pEZ)arAT;rRaRCNP{~Qb2 z!50gQprapSf9?CSZ(T$lyzxD#41cZOWOwM7gH$m8%rRigd?@XB-L-9uvKmx5h>Z_j zQ+vnG#=~l_0ztek-k@o24#+<^xTZ)|@3UFCF8-JE{rnr7p_A(fQgFQxO{IIN`WMf! z<=&gi8$%C8_h2EFXIyflxKH_ zhRBAH(a6Cvbv=q?=6}?IJ6Rc7pBR~C&Su{$VH_}8&LLenq2cEwUU{Z!5{Zf`r(9Th z2r|U#^D*Cd-?BKPz0@d!fKg4zk*`fay9M^(-Mm#1s&r6wtMmw|?*eFZyJG4nbs1w=FbB zlC4>T_Pu%LxLq$m%)qg?jONo&8J`t9-eueq9JoflNOgF$F7U48in{|E()5sb2c|6 z|J06?MYMrxSrZkP1216c{dwZ{sNe&946wrU*+MxScA_t)QOquSI`*gWhKRwam&SRPnWpxVSiO0KR-F?`pw@@(ILU?29f45+?FtB>GuM&3dNw z6crP|enK%Tc9vm@3!z^thSwH_KP1q-_0c_%mIk!)KKMR4=v0J6M6#f55m3lZH^uAm z$X^dfpYBkp{_qB$N^Oo6O3^vgVcg`x`(BOjw(?qM4_{16mehc4ly!PN1+K;AW$Lqaj{50r&w-?C)Ki(*yPn5H-J>317KM zDDXYcsD$OS5^O!Mf3eUk?cle53i@L;;e-t)`|+$_9s(}}fN9^{#Yhow_P`FMX)9@$ z<+JVa)fih+p)0@cE$LhR=D{I`iH6i(mpo(9-q>)&hGc_6su+*52<3vh?tL>Apfsr- zs2n?pSY~X0%+CL0O(g$A>KqY*lmez7(45FM7pfm+cNFsx6}pCl#iOY&9%qV2`NntX zbyv>Z{ihz25zC*S=^b(EagZU%tfoX`Aw&p%&zn~^fSS5J?MrF=UPRiZW0_Pq+O=kW zVI@*%;fU%y(tJqmWXUVZs){k4S39Zx8ia=UaNwbYY?7pPmTe`X`Kz9 zJ(cn)DFQV{2iMRQmkqWSF{u7;)cx#f0}~jygOvyH$F{(G1{@tKuYpRU*ADO>s;A+8 z)bS=-;_<`u?~@*c##PkCm*_q$P85Ly*{yU5IG<6VMeG8Xsy$W|-gLWOv2kgW0 z(Iaw9sURjHL&A?ve{6>W;N7Tm>1n0{oL)>sNOb{=+p-KCPiN1%O0Ub`;X%=~bbutX zmwUzhsH5L2?UJqvm=&jv93vju|55_My3Uj3QdHM+@CL0xNi00 zrA~b`B{Pk9yh~aYA2m>(4d_3^w&$-!+Col90@c^A&|s)Nx8qb=y_sj7-8o~i{ii00 z&Lj4*#W1}BJ!T20cw--{MieV?o}1lVh)2oI^H&6DeDFp}4~72~DRhG^@@gqmny6B| z*K#!C^0`4Ykhz#@^MUvsj!*x+Vzjjn6pP;3D$zz=8a%AMELHL0Z##>205zAxZgx#& zhC)c{xg zqvk*vIqHAgxrR(YH0MXvtzze|T(vGfq7sgm&nJ%^`oB`0 zYe5r-5MK>6a~LoBE)lV_vp=5~IGb_GpR-;0#jF%F>bY+X^`Ur{1Y*@^GGI|Ex=+_E zEf(+v}S2 zOm_D6?VWoLOZl<}J)P2E+pF5%Z1dHlrJED>yip?6hksnB5;VD64<4zELz(tVk>#0B zB)91rZYZ9;??v_{6^*Ag>t+%QFMm0~07d~mZ}`Mc?ghVH-97dDrB_PnYRG=$84x?8 zN6GnS(Odax<(XrHj8WEX!y}cO&BB*?x~2%`072(3Wp zn6%nWnpxe<)x`Kl+a4+P_cZO|JAhXp0RU3x+XX!EAQn)4?^_qL__o*ep?{Y#Vx=w0 zAiJ&j$CB;f`jcg2ld2eqd{)5!-E}(%%6%$gogc(HT4Pg z6*GSR?YOGxXn%(6J<_VII-(bE04ZC*QIM+OB1n$>d%e)@55=9cKj1t8YWA;+q?WxF z*5O0psSjk-1FSlzql1I58FXBr0jD(%1s`Z(&ApgBxg^A)X`OFoHK;2tn(I1m@wKxh zfr=*=3zhbr@8lY9&TCRAKHw}Ql8%*^%vYW5L3#>KW{E2eL^7noP4TsV%~vh!9MLWO zD%`D>G5a{`@}q9a_6V=0YN3A;mBx9A3|sF>1iwYG;HG5G#g4nA)QbZ-aXP>TL-yJT z>F#j`$Ye#a9#4B?c$P{r6enc+LoX}6*Z{vB&z}A~cCpm1XC+KsDjR=~6zwF}TG7veE$R?iXR@TgQjuy8y4Ks+}8xI6w&Ni^8X43Dm$A z@{quM1?)Nvp%2d*;HQ2`fx4`|>^c!4Qd+21!S1b1|H zfsz{8TD}bs{Prq5)AZJTT1Gc`;&>b5=&BRn`}N{RwHNwpKfY^!_y#8}y8jClsEHQB zA@XF1$pb*PkVYJ{0sG{$&<$?|Q|Ea@S?809Pbhu?kxh1=#(GEXyz#0UBE;%Rr)JQZ zeXF}Q;BhN*_qI?s^Qah%9#q;56GWd%y{I^ei9z!6teSVPQ7tfuk5udp!0OaKJ3l=Xqi0 z+27X0@yVzZxrl(D;uVp<#KO(Wg(?!y6jS%XhT>C6ZQ7v#^%lmeOBJ{?z> zWDdbM5;DU)1yn-yp}>0qi_YEJ)jRVTn%1Ec2tEW@Q&MLYDa?Fl*YU?k^6** z3))pIeX}c}l@F|5Rr0vtZxwhpr#wgV=#(4Kb`3d*f`%I?sn)(Dl**yC>$A3xD0Ewc zq|d~rL9Il3}56X`AwS>nwwdkgrOGu@kVxt@WN~q`@eT0 z)nz`|Z8F=P&$rl?Mc*ml97TIBsqJUYac>eUTky|k)i(I|*M)z7O@+-u=|?O74?9zS z4|KGGa7z7BsIOO4C05Gc`1cG0i|8MR@snp~QapqMtdJI?gkl^6h1{C;FHz5Jb%SyB z=4aJg&R5b@US1``I^f`RPOO4#jsJa&2}7WY)_KxAty(1K0}B*E0;!T|7*|25`DwdS z{_?+1|3_k{=T$)c1xS<6+P_BrjX|ls!6RmqS*i*3I)3L8=p=)M%&GxRD$&T*I%da1 zSY7u$wEf?)4}v9VXRfM$IWt5Zg%PxU!PA=`0SH8mJbh$eP4@3~Z;1$}8n>Q14h!IC zUQ*xqcaUPBb8YQ4b|nhIZ+Tkxsm_f+`16|E=0FJ) zQrquPo$D=4C$tL`D2^ZeH3{e#geG8+?Wy+XHC-UT$@U6y|E;G}-eCb66=k~*;?Fn9 zd7-s0N!7lZ>ip}VpRg{Xq{echMx+`wb*GP!RB9its!a7imn+J`}^^PH@P9H`M$TZ!&r=?%FO8w>o!e!l6h& zc6V3p&Gw?ze?!^>FBT?GtXlKH>9C{MCgyx6pRQqGwV(1nvR6Wh#p|-x$G=9v!6)pE z-bC3^Ed}eteS@uByz@OMegcl-^9T6AqvCuKu|Akr#H5ePtw#Sh++8Tzp>V;(H^tz$ z*8hDPnK|lO4;0&k(`xbw$!gh-`1xc9+?1Rzr%;Z*Y$RQ~RP=m~HW}#dNES1g;A8Le z?DqL|u^Ht{IMbnqkzdnWxjt@|yjuFt!Ek1Sn*g=#VG<))EFAqJ{%?Sm6*i~U(*Moj z58cU?Y);UWVO{dSkILf8=hkG`1={0H&K-!p%e-~j4OBr}B;LgGTGtN=Z~rZ}~5JcvUQc2@Miv81@gYz87Vd4~_74;aKn*EVW9$fyHR5B}2fg{Fni zt6^k%A(a1Ha>4t8#(CqSN;a4$RaSTUQ`YJQM6yU$bPpb?cUn((P$W zWS85e3b^q=eMB274VAC^-C3D*OX z+p(|tOCTL#h_WWu3zJ5$IcJ(#6rQ`I7D@@6M;X>kv6HVHc{Edx-_Q-HilpA=)K}3v zU83Y6*A9{{7Vp9gb zd*`pmPDI2;G~&XYD@(JM?#Zj#gd2v!o zZkv{NNtH!IsGWJaH}q)}@Iqli;6uigmaaSroe_WZmX9-rwEXoeF&&l-*hz(S8I-BA zsTz`!1T6#Jm3PORSpuz50vu`uB0kDD)AsL3gLdXzY~gRMASNY6vWMZl+N`ZEBKc)Y z=ItXE8~0^$%vwLCvbD;T=KRZi<|jtf)+|lRFNJYHo}>>x=i0aj%lV*M$$n&buTN41 z)HU?-Wyw3boW-c5Kp-bA@56xHxd*`z6|L z%tn~SP=xTx+-ccdYQLt_MGtOcLzPo<$0rETr?M>pu^ zF1KwMw=PxZj8|bI1x3W{`?N+bqXTT{3f@;ssj#18iA|1s^vsmXldED|RC;|fw6n8u zVd2x>dcw&LBWeanZlN>6D7E6WFFX>+vG$?^kdM~C@^i%M2@U~o!1bAsxij;;Kld(N z)zlvDX?&^8ZY!8ez!q_9Q;qc`UswB#*78U+Kv9X2S5dLbn$A|XKksC&ns-^kYo)B) z!2<5xvGNV6j&8yf@g`f~?>VcWwn4>868J3BgWlDEKAfxG`-@xBo0dyh`CHo01$c$GWK*l?jP>Z}H#CiCx=~J@NysHJ8{BsEuuPch(E^)42dlfT z#nvXNK*TkyZ*(&=sg?D=WlEt=4uxJTAEbPLQ+YksY^*WV22 z5@^+x*EAhhGwxiF4K4fS4uR_Nw>>}8VMTB%SLGGSs3B$h79g==!%sq;?j9@8UFZ-M zB@i8|G@N_iXzNN~dTLJqUHXV*IK98@t*=D)8JR!8l7PGzwUsYx_#7{R8{xiQd?TJVfgtgdM@op=`WvXM*;bm5KXdUXVd#u zK9WpK^eJH}seb(7>fCX2QWOSs zi*JYDL!D8ShKJ4T-Z_mAV|pc)HJh^@?NUf6j@#xRh#UbG2Fn6(V8_lMZDwVyURr6t zdfyYyOmKH-Og15jPmtHfqwHn$EuGHwXunIe{ka?k*U-)4zARRz7P+KAYkva1Su2_nVvBfm;8u?dra%vO4r9&b;8yvIt-%vizFY!a+ZaPjDZY zcDMqhpO?B7Uy7+t7sDQIw4~NQ-IJO1;Ce_T-?q9It3c@haa4lq z=O_bziaQQRjtoR9&rEI4xXrt6 z3WjwBhs;sjmcor`oMC2hO-+5x<$3s+d3oq@<3^Tnz(kFh!_lr9XY7oGb}DlfWd2v~ z>r23D_{`4*p$KhFpx97PdFD~tQb@`XlAYjBVHh~$-y$EPwiKF*JLBKksf_t1d}E_o zpED+b7MjM&-DUU#F)O$fx(^^T$^!m`^#(ayl0CeSFsD16C5vbrxCBLGVu$xjCg1VhMRt={ zrSja(Y)>EZ1yR_Vq|a_NMMbH-G`^fZYsxKl_b%DhfGay=!tRHLKSY7|7+(^yIgYU` zH$~yj+g&D~B!bY1+--SCYBXo<%Y{EMF|*7CTv1Xt!ON^eulLVso@);qtBeQ7HC=ttk?%bc;d zVRLV^WLn*G<5|4Q#uo*7M0m~q#&mVP%mE~5I{Xn_%>dMs;nK?;YHY1a`vQwh^}P8O zBgqg7dWWGf=m)c@Y2Q^Kc>sE#_d@>bYcHuU|D5&j{07~2M=)3q{rR=OW|Id{>tp<8 z;`~X1Eu@o4K#3knlH9Wxa5uZQDOC-eN7 zJDRDy#+Pg>E$V_p48Q5D*mg1SHBzlRgb9A6eY`zU^^!i@?mqZ$V0)JQFjcX4^q{NZ z*b76)!Psa!#iyyH>xq*yI6QUnodsr>S(K);Y*G})L{-+xd6)47_cOe7@N z0bGJ>wOiVQ#D*3Naakw^%8TnuL+&~bL=wH&%YU!C#$CY;+D>dw`|`=`rFcMRF5f4K z#9ZbLm)i?X*dtoBb{hu=f4@zd?yz1LaW;_twf=4Nu%)7Cx|j6^HY`67_~OO>t-CXI z<~2_j3>9GjZ5j5*bJ5R7e+_3=KiIIMNX2LP;zeAIXjy-5X=95 z7XXH-hGC!wLs7mtkYql6e=NQ+J79dR$9i;8CrVF>xTS}dMP4Wj6E42&2jA#E+AH2T zxh?JM|G)6EvgPn!cwvR>!9{m$^wqTrZZ-5zf6o$m+92&KPE>BZPEK`(Ug*- z@y72$>dJ_+5G(1xVt<~H`vT6%W=c@x!=dq< zUEK6m(%>v`o%9fLJSktpDwL(+{0IyYMcdZ#D-*qvaq`TIrbRti+-C)Le$)D)( z077ELBvx$Waa-Ha&YyC;izy`6ugH0asJ4L*AgOj_?+8b+HZ6;RFo<;G{+FbMh65Fy%HXKDvrGp2s34HE&bJ}KkvD0N(@4u zKtB8_;oLluuIy&)2@fh#+M1Xwm0G9aVi;Cn41i|;%F`PZ@kaI5p}@(NFbALU!!Y?M z>XT#lcH2`JU>DAfIb^5v)PT}=w)(p*U~;;ObStpCF{TAid~YXl?l5}ez}yP6Y? z#uy#AmXNab9l*LBW)mH~jXO~7c{%&stM-M2n>;5wX%a(5+7*y-3k#mcPfGBd?I zB3Lchen2B67}^^^B47%F|1X4}zjU*1zAU8SJIiTUp8-2}@$00e5BCz;og@}EAphpk z^vZciKgDsj9fG!=%XPkOjOMgp_3r7{M9C~q_r*CBRD8PyC_1chq~OzrX&oCRC2G}EMOcQ6%Ug*`(BLzj-vnj?jYf_-2>T7OT@!sRGG{|56@)4;tav3CKg zqNpnyx6s8k$Q=LFnZ1Do_}+xE)<}x=2Zd$Mcj@fq)lAq=ipFg&guSo6T#qWih>Spo zy&YzkufaD_=;p{Bb(Jhmvf5tWQ}$@|bU0sW0X81NT63UsJ_viO-$H{j1JbQ4QL$-mZb$qS|J>l!x9 zZM?Uh?69&`y=C9ramd)AjTYC%=goQf!mvKfEpa|K#bq3OypxkX^BBkPhIrR7=al5K zM#>`l46aKN2NZwyw$t!pUvocN1v6Z3Q=Fd+60Ph?f?Wrxz63t2h&@t5BU@f5F+#1> z-PM0E+nMHSOJRGX0Lwk689h%C#}gMf578}~HUieg)>s|tUzw=IYBLCGyARs&22Z9I z=ywyl#>NtB&Dy(^TC?P4-nJFw34KS<-Fc-cYybEdTpEm%467 zTD=@bj5+st_67f+cA>njh$WVO~qDX4@r|uH*f-&AbR1FwP ziSqfM-R5Ys=`xCQswaxA6XqXra+5EiOLKxVWtXCX?DK5OGvgxV65Qm6cJ~o8zWkIK ztp}sD?Y2sw@$L{xALM@?DpMcIodT1xlyR|gjkDKOk&pR zZ^uh%otKs!n+F)%iD}}1vbymkBSM&l2LinOfCDsPuIYHRf-eo;a3of z?+mZKVC#S1>7T!3Y~l#`LFF%^ujJzJ!w};_!uDM91pE+(#CWbSE{gg{fNXRh>iRLi z92;A%mp43jQn$OCl%v?LJt=7-ppO>*aIs=y;wlzF5!&l^&ffzvP{V|d5wmDJNY1QS zSBEM6S8;z~K1RFSiq=Y2;o-j0%5m3C9hN7ddG@zv+M>lTD8--N#0 z{^oT*X2t4N(F^P)f`Xil{2HnX50OZ6`;6A{;~BlauT*`yXji5!wgZdTNiF{TKbpQf zkm~RM|Dq7;Dl>7FS=nVJ7o|v6_TI`~*{+!+^M-7tve&iu%t*$y$F<4k+FYC8x$n>S z_xF9hUgtc|d5*_(URERgvP}%8YgjEmPltz?!uqe1og0z23M)<9Z&-JtBMoc(6FC3T3#01GsSa3^HOQ9&X^uprtx>jj zi>KzkrUT7q08`#=Z#i1YAjhE9`91O~MOv94u|g#DVK_f@T(L;7JVAU=mKE4by^!pu)G^3cnSRe`6c)kER%##`@touf)BF<#)>a*$i6j8)7LpRwzU<28Li*DgKt|o`*-P7GwGSQL@XWBD+$W6 z1$!QY(pS(}f_`67v_Qi#fmB%fbss7#hjKpbdqqBo{lie)2*d)U@0+W{*)vEi74s>xYPQ-w(mAqKtYB zsVp84%$Kw(kLA5yhndP=75$XyDbU-rd(7bKJOynkN9(4w?-AZ$63^*#Fa@fYiREFM+w$4w~xb7DQ}H6kK_PcI8)&fF0b^}Cv* zUVVDtcV|_YddZf71AK(eDz)@|8*^yMZYa}J@rep6R7*E04Dtx5{u4~RQRexU^F?Qm zz00>pO2eQ4;%sGk%OfiUIj{0X^JW*dz5HV{abOj1Y%$X{+ zIF#p;V`pFWq3bakOB@(5Nzp2lY3_H7Bu2%+jeS6W)a4npQK39)6KGX-Bn!AKi;0T0 zsoJoqGyP6ou!;S*MkwL)dl5wOJv+V>s#GBQacMAg!OWT>z}-! z+91wyzI5sBaq1@_cOX>r51RT}(na)JXN)qi+G$~^VM=kximc0Q?CaMceq{wJMnA)A z4$(9RzpF}Y8kbn|0UJE-DbADaC;2Zoelkx*!)>#)>Bu0d@H(aRy{GuZ_&7c^AZ`2} z5UBH}+>|`e$I<0smeX!S#F<&oqBS; zPjPEmscx^Mm+tXD`2b>54|pGpoe#(l*ScpN-suhx8)zj!(`d*1H>Bmxa>n8khGvY2 zR&c->Uw##D9T3cQ@g@>2mJ$g*!<$z)svmrOQygMGgY!9cleqNuB9bz7E*-t}-t8IQ zOX4cxD2%F*03O9){wfknAg^PcemZ*Cu>K@@AncYiQQMQe8jJ5vp5jTtO=NK#@l@bT zM%BIX9mjc~0|FG5fm^=;T)Yg`w!3_SBJC(JVdaL(?9B#G_6)5B?eO>><)?I}|59iM zI}18>W?C2CL!QLU9p?d$_CON!ykG(<+oT@%I6LCcA`FyurK`-|Ya7lWg!bs@d@F6p z$)3C~sZD6ioS4#hYmr&uvPc}Dz2#Xv&6#l5m39J z!m(Tk$V|PQiwExrgLl9%I)-aDaR*>}#OhVv6c~WE8Coi3RkOZ=YIXdLf+Am>HRF~r zOROG{zkE&?ug9t%*IN|tk5100o!Z=3GR?!I4+ZYb9^VV6PD#pJ5iXUYWc9v&ZIMh# z>qU{j$l6piTJDfFk-E9K2)enXyI-s+%^ZUoS=b`8=G*MhJ==KiFK}Z`fTScZTlmy? zwjJA+7clt?ae3}r@9ck+;~n4{4uD%AGOFdyS(luWQLkSQcqq*!%RA=*uC_rnkpZj< z#)Xu6;ZIBLRvMAo39B}>$E%%cV6(gqH$jwTk5XGUDhueYCjW)b&MCfn_07GEouPMs zz^X^_>Zy95!36|n_)|eZC^wCW>M9JN9rcY#xq#quni_LZc-Zounr_Sc;&`0-{C))I ztAlEd+qwThmYgn0XbKSU2!JopHI=oW0^Bu~S(Wqs!S8kxf}S^|J9ngmX?dH4P;cZ45Hc%S!z2D8d=FxrJ;R}~Z+ z3)$c)SOKBuoE~m>?mzJlyTZuod?l~Kgy-@d{!{b35dMOVQ=E`n`rzv4BNKKo@*~zo z__qs4zw4|42i*T>5OIy#by!auMm0dTIOZA*HqKJd;Ba^d3YN}M&Jl5gp%y!|ih1?0=U>XMQT3rYET z5)05bRd^Bo{wXc}mngA~5@40C>5IaL&Q)IXVQBpBKkTY3F9$SJ$)|~1Ghlt`AljeP zsxX%^srR3{XYNF=)Y}mJxxEjnJ^LL&`R;=flJNV$TE3R7J09(Ruc01igK9}4yY$0t zW>iKzHrR)^J=E%`>tJDDHw}}waNrM z&UrnI`B^G1Mg3B-w3Eo+;rf(M!{yO5PQ=d?hjM4vx}1%E$vmG>CXXecD~|J^5R})l z8tQS6bFgh)S`M0+(_1T_5m2G?Z_Id46_W8gK5zyg#Z`H2REl0M4({d^eTCwgBEaSvSM#mr^!FtefHX_Q_k zij2?hJJ@bOM=2pPAkJe&sD;6*e7l1)yo`*RSdW18$IoCR4J9Z>d_`q%{c`OSiPAKY z@8j0--L7|@H8@;nCmCx2p{&Y~->*hSDN3D|!cU}<`RKrp%-`pu*#m{rY`4-4OrZ(` zKWw@RbZT_#lRC}cp^WJ4gL@5LU&iOi4~-I#qQKE>3X72VoM;|7Mf-415*~(jXB-@* z+<|?sk8ulu^9zhnN*!-ar(`^BZ0LEF2T_e1Q0w==A4!uQ215@HpT@W7Xi`tV#Jq1> zuC^7H5I#o;wTauLJa^l!DZSVoVv&@A(7(lP{>VcJ=-ikt5YUJhP|3O8Cz;3*chK24T{UvA1DZ+YZg^pJ_u3JWJ>+)==S z_v}d}y?cdtm@5>=*>V2P#OI1x!+AGLsTF%}d0dH$);0Hg0@*h%xVU?^%>|dBOO#hW z>$n}1qVo4zd&^y%zw{?k@%)W|z4i4gu-}40Oe%34m*jL1{T?z&R65B;Q1v-F_4~yE zU$eku8=Psmd5r%veD>orBIMHe`w9}`_+R=bEAu~$u0Xz|S?VtB^#)_akN*80B@!}e z_5>&Mu&yj?F%Uy!CSo~jQoy6k&2!V^%2>v}-_J%y2=SxIe|yh@m77hxynC(>q9Ri# z26vxf19li#wu?sMdQm7c5tjR3^G3B5i72V{yLLKQHA*5 zo^kR2F{i&t!E{Y|N%fNzPAcE3#8h30&v1TTqN^~qpTq$q&qsujekT^FE0Azg6SMg= zJ)%Zk_A^JGc<$R}Z@Wl}N&cAjHL;$cUd;yV*}>vn@DJXP?VzCZJ@fe@r0*DhrxW!T z(UbvB?5j*f6Orv67!iA&&Q}~<49>Ue3;5aA>KL3UnpB*haac zKP#1=ep(jTka1QcboX5djfcK!W}L+N*CwL1gBbyJI*6_8(cGO54Uw+~5#!((2qv(S z4Tt(QugY$FaNF8i_Gddj{qR!fwX&k}#Rel}o4pz8mvFvvNaY7xfX~trU2ng;EtTge z_%ofhnhnA)@sU}A|FoZ(!_ZC03s0S`)NH`qgV6WqtSDwk_?@|6C|jI^!kOIHNN`9h zS77v4rCkY{1f+wR+eUjonko1LddT=>tpP<%uaruV*TnhD98KeX)<9;{=bDkhm-CG` zeX9cQjH5dc#-^c#sqkZ@U;No7+NtJ0ZX(s;>MlHwA3*2*f79gaX`j zI}vSe0mQiE6S-tX<8h4DtMhfFfRl8sr^!bi=2jSef>qt+u=H%ePZhhX5MKTlM=IhT zmrJa3?F%oK2E4rOOOQVWpO4WLlMtIRY^kA0R3B&&LS0^z(?F`O%mvdaiXRBP#vc?h z_{L5AH&D@?=5dmzwm)RmfvVe|P7N{>HUAgm7V*62{=!GI2Vl*nv5yXf(C`n|ToA|9 z#blA?M~MNj5vhrKV?L2GZ;EdxfE~Dx(V6HbR$)oy*#J#-Jp%uyfJ=p59PJ!#HBd(i zxP^jdtFhsJlp{wFhDg=$Z2N#RK-Rix#&lZ*(A$ItO7OeiVa7ri5ys}Bup5 zoRr@watmI6NY_D5BOreTwj!nSHRD>LG$CZa!fSmbcHg)$ud?x2ZF6)h$Si!cbq^+8 zcyt#hg}>beaxuQ-x8?RS(Q<^)G8L3za!opUI|Sl>yfRYo>d})vX)zm;x640DC;6@1 ztKy)h(0$VlN~}|`W<0t?v(UQV(%Me3>Sh3KB*)hwQ=mB^9s$3s)+-&L)V|tWymPWQMFqh~&0IVZfvfm=N zW3wLP16iEp-&kset#psyyMGM(MB|ZNqclsD!nP9z|~6Cp0^*eS-9#2$lj-ZT~Kh-LyB6dTj}L|vjC*&@xQPz=BXN? zzO=Wi!DhF*sO*pLW9`T-d?*pKA7Zd(9kw~+{Jlg-g?D`>-lSLXtMH{iN{mIL1HN|* zHeMv=)ZR!qw;bSM4n%_cZXy8}_x-HBu}hyaLnW;4Y4Y1BZQW3GFL@==J@)dy&!Ld* z;Gl?z0L|}@T}K6Ccxo9;yMa~e=};chU?^Xy{imLNGdVTYz<|b{WV$lJsQ!;D1TsVK zviL;J{aaL(a0e#s9q6i465RxBxXd<_nm{I$-!yLNBk~WIOMk+l?jP&5$l#ad=UV{)~DD8SF8Wu2=53&wd}?{xCCdNZpFP$iv2 z1`o*ex(S*Ni49InBI11+OS7LTpLr*je z;(zzH%NlCI;|_&&2@f-ekk$&%;rd~3<7vsV!SjNyE)4^VU%XysC|<~wFTbo33EB<6 z#TxXv+gElh!HIQu!1;*A4iY7XTR6v(P`Ta&24NbDxN#MwvNI-stu6F=VGm90hwEhide;_02zauh$~%#2*0>hK4b!W zh6;Jma}ehw&Ygcj2@J*ogQO>fwB%X4Ar16<@z$hah)oQ4ZL~6A7D(}^!#OcYejcgVX%!e1;jAryywjv^V`$_Z6_?zP#ldb2I zT{q4f8y;SL@w|$>FA^|`zhz&;9uRz>smmS11KJ7|e=N2nZE!XI3&gZ6150^|x@mh| z+;nd*B!hj9*MGbHQ#uLcN7%E|p4916@(AX%!Fj49_v$AGT93}|;rSw|THjT)gxxIVi+G z9mq#~$KRRMKggRemo&As%!L1cEkMd;rsi~DQr;|BfmCFz-~HwK{OXGj!qC60s|1iQ zl>nCYohAcXOj(4qa)q0+xlEzVYZFTXG}bS=qlGY?x~%snudalHvogLLnh9(qd!u8~ zd#|QH$e)VoQ+0_uU*rJG9ihXR8#cjfb`9mkdO9{&R{4U(@j~_N`uI^X@SiT`5zPYW z3Ty`^K5C}OrUwnaz;qjVNv^NzzRc4qKo;ib7s*iWz5)%$pPbph!7S%yfwrxF?{$|k zt?^n#G99iWNN@Zm;waea>&cC*T6Mpy(T5}LgCVWm2kXrS{;2=n6n--w{6D)z*1qDv zvav+F$BZCGfa^qN9bV{*uLv>xaxJ2T2McL8Y&(F`np(+8v|US4qXu^f znE!!>yWMRxEF|(4Bd(&v5aatv3ecCQ75z!k5l&t{P!7K?nk$6!fsh z*XctrS=n-@t!=SaBIXi1UFg@B&dH(1r#Rh`iq{!%F;sJe*TPhARPA8M3qV~JT_3Z- z66i&`W4XZF)x+KvKgxMffH$LFf!hI?l?06er|_a6g-lajUr& ztMw>l#@;@MHu7UB^fSCJ-Mu_^AX_n+`2?6G<${81hlJ_(ox>{$A)*iWj+fO9$6g_o zGpFhfLjgkUT`{m5u8`@|9g{An`Sdtr6-#vmBC60|h9tgSJu&ZkQ~&8&D5mAHmzJJl zGTpfNEqVFDkdKahQe*)@;8{@VgS%ZlIdyAxs%a=MJW}2M^uIk1=b>4HqwMWb1GUHY550Cdk9H#k?*WH$J&4E7QMBjk1EPN z-`EA+6wsxE%n}o67#?`U3(qnt`FuIt4umDPRtQ6L3;4xk)(Ih##y>i_N>#@%mKw?1 z6M$0V8h-##US$gSS~;Dhw}JS|2$P0{(4TZXAIdH-i(%2YDl5$@%`krV`rw#cG(G&+G z;OFZ`-LID$pWE5N)b)PT&Q)LKWrH-qi3{qyytaCqoqoJrGN+PtE8c~{86-c$^&bMD zQEeoab%Sqsru;u5`-9R#a^%J6Zb4=r0!lX|8{9$E1T57u7ksecrEYi=Q56L+{Pd}O zI|;4*5MMIgbGh6C#;o?Z1>$J%a>H0XJ0UY@$1 ziMmT75oGdpe;II(*qQZ_ZezxwV#$Zux8HId^cP?OPq+f-vEHN4^JR}q!NADUO*szM zj&w&^WB$2TZXh|3QC$q?Ghe4tfZtBb=+tz}^}9UZ-|xx+G%-ADD7H3fuY{cwo60R1 z`jj*Juz=Gj>TJv+I`wxAGP8B}`kZZDe$b~yUc3U*U&wDeEBt2BQf{{= zn%DT64KQ&tQ$Rrf+Z&MWkAS{Kc{JX{uS;-;Zmv8Hm$^7km|D}Di=!+Kt`)C8T#h7% z?|dkIHQtG86=22!_%=`C9``>glDr8L2W8?~$nS4qKyLN$c#C z%}Wk9=6w023v>a^GKFSlWN;N)ib=}T@)VL=n8_AaBV26+=z`Zu`iO8Wp!3;7C2}~YQTG^(tHA6scJhb(YYbAW)}<~hsJ2oDPc>(fXfK5)Z!0;Vzae-za7TUYd!{XJYl_J+d+o9`)L>^r$O?6g@_*XA0UzGP;ys>Nr|5J5a9q!gE*Dfwjg zpoF&qFlMG=aj-QZ>4M~c(!bgmaV!A;Y?B;k?!{o!A`vNpO>+XZBlS?WR`O`xd(XNd{5DI2k_uic&BXbep2l#@Ej0}cbb|Q@KqJZtB`G~ zmxFk-@BN(5_ed-u2ii6k2Yrd8L{zm6HdbtnVm0lAzP-YSm(7gXs6p4Y_d63a;G~;> zj{#t({?K9$bNTDRvMO_?$|i2(Gd#sD+9&07@wCEWym-9xwHK*H)2sVcgpi|wwF13p zWgEb@PSeP(Cw2eQHUc?Jp;;k3OS<*o*@wcCz4`{2$PZk=>usZ>ThudeW1*fY#hpL- zv&Mf@E13!*iq}u@{}+x2eQIZZVDO%`tOR7s2!93vEJ6c5;Oj-RU(9Pu!% zVzf!;ot9Q&UYHZ9?CM=WaN;j3-~>l2zu|thvlr{+_QxK5UyrD8ye95i;vXRKP%?I~r_O6R{8W*4#y6lpITbN04t+ z4A@xCTiwHL3H)|1wrV^DV}@-_mj$2ZrfQ{s z(5WuibCno!r4_G@sC_JPPg2|%|-ykm!rV%3hXFHFj{BZSf%|EcPKX{@HmVoP~1g&>A0-EKKA<4L@cA+3rsi#Q9S0b0%M9vl4O)Y2N*bQNCyNJU=`g4n$|Dqu^ESqXJi#GzkaK*xqFGSVBE zKi4-%n|HsrN!9 zQsIT0lI5V^Jfgu>YQn{Uyg2w9{)pdx$VIi|<-h421sEytBV_k`EfRdp-gcT2X9OGltG_+C zL<8%9c-RrY#>={)C{Fxkt@!UODXa-}@P7T#oV2M@o>ohQS9@W%5>)gP{#lmeA=wFv zdw!1jqjlAtMM4D6u_j2cxZD5{3h#~hM^Y;$cbSV#4WR78DTxPCP!nR?0D-{3!YhwB zR|!P!0$nX7LeA_rxfthmA@2iXwlOX3SW*1%6APt7!Dj1M+e)}hkt%W=@aI4Kx;sN1iNo85%AC36fep#d8!%ud z;dwgg-Sk>kwCVoBcmrK=`zrvSzL_%%H9kkC%i8)H4!h3L)05-xWQ8kQ;q^#MrO=_5 z!O(Ak+J5yKp;KTpqetGJvcYHZ6=#sU(hckLi_l9o(LicbD55OFdoyYu#NuChH3_IC z!BnYHB4DlrP|+D`%$HUS>~okHmIuMpRE6aVRV9=Nime~)+u+a+@pcH}>1<>3=un6& z!>7^3M|5OMMPl48IR{u=w*TGO@8Jxu@`=&@U;V3BuJSwHhydvBul(CbUfdkcha(09 z-!t2n84*Wor=nT-beTXp2umc#?$sra^AFdIZLGJ($9;Tk9Ns*r!pjFb@7Zc4#@9CL zyE-u7b_8-q`fK1~aCHMD2#U5h(W`**zfDrWu?WrV@ct9PXNtVWf}@vNm-y|NrZhmb z`THXnt3jM$Io|x|Q#U6#K^h}Ts>piIV(*rKcKyz`^Ihu&oUO1HkFkN(e%95Sni}9* z>Cxa?DV~+g*V(lZdfD_;|5~#4h#d?B8`VpN*$NedjO{eL+KFKIGn}|@Tx%$85QOrh#&iI$ z)#k{T(Gx)Uqk+nbJKG;Qmi|89?F*Gp&nWzcksdka-P>#U<(TFRaPI`?pQYv71z{n^ z_-(SP3MzVGHvPyfR-}d{hTc*l{#u{UXAIYJz*io%r}qIT-Jgdocq1wH7E$3z$v7Il zb{zf86sl9e^isEAT^9-BOZ_zopC3d>dVmQxcN?nclnoz?jV1jWH$ zW3cn@o!ec4j+U{5xMXRA2A2;lp#vFxX=w#t52&4~WBT84xy5aQ`PSXsxL_cBD z8hxtM+sBZOzJ{VijLrTAV1ST|1_~P*xi=mD9ChGkio8fNc%k-F2H9T|WggAztUz`Z zOq9U@X+5c(*YD>gx4`AmM&=h)l3Q(k z{rzY7$(PBu;O05P0GNW``KDv}^EmZTEw!=8q4^B*8ogTh1{j!zXaj4hh;w19ZpK2gO!cJ>xm+>Th1> zD#kD{aE?CsnOIM~n5}!hLfYiXVhFq@HwCuf`veI;aY>_meno`+C@q$L2mU5POF0*V#EJT}oMk zeZymdup3X4Ya^3-tT?X&ZoDnrO7G@k<&+>FxJ(j~`xvKf}%u0@wZW zjpML$0ZDE595J^L2w_aprqlU=z&2H+lZ0(NCM__{NS9OJb?cEbht7IHNb?}d+IT?exz{N*$&?*Rs8A4L-)vmNWjd25d zsCi6Vki_~XqHMy?yEi{&D`>UQ?))U6b0g9>ma8i1 z+x0wdmzIU7L-4@u&`deE6lPDmjvr>9;k^72Q1S;L1OPz7VH$8?Ano0qJSW?)rvs-x zP>txOX1OVQrO@c#L^Lts)zU0|M;(ZEda|5-?v{fy-MNX-zpLX&lblM|S1lV$`AXwZyK+~6RjxV!F^jR4d|4M$fF4mTi;BEADrnOSf3p)3i zDrvM24D$2A!Wb|9)oTHxnxIXD20}KeO-suXfY;7&)#R_XG$b+o@b!T#t%n zLAI4icWT-G-GQ`W5N2NA=C=ki_5-#4Zw)bF#8)Je{PdKwww7s-`UZdK%QS8Aj&}w5 zue_ZE8jARnmGs`~0*CrrZzn3{1=b1pMjonNU-EW$cKQdiILGo;xNDYkhH{5vY;kPK zQ$E{L$Tpy+a>|7+U<8o59_6=MN-Q|ikgHm7O)^!-tCcylVI-303l(3|Siwq|aWTv| z3n>9uz@Za$Yt%lxb|#IcSQhweYf1aSdT*+Tpm&o+3jNTud+fdE+DXq|u_fvs9hq@C z^GuRMAcw!O)}pO23#C$I67yjKstZx(NHoY#RtVBU(Dh86YHD&t&m#w?)5BO2 z=)1wyJZ8UcBLNVjcok>x?Hw}}LaARN zn#r8#-qg)a&E4Y)S*>K%vwbQq?3TmU)_O5!7oD7=AXCKzfzU;9*8*JyBs9$6{M%DM zH*~gfK8v%}dRNS$XtHGAnYL9z^Tu*E@$VPf)scam%B@W;h2f?j79gvwfe$Ls)5o9XX=U*lYAZ5L z4K+7BtXlh<+guZ^lqDjfqeu#Iywl;{9!g@tCz@qJ`%&)$d*h*VpAAY^&A6UJAKgP{ z(WI@ud#r_o)q7slxzFCb&pC!oD{L4?92Gezf|;C3s)8G#`ePcKT4FuY`w0D40Xb92 z@cUICi1JzT0Li)RTLoChrfH<4{Zw_!U2cefUU#Qrt(e_|U3VIdFwtX2LMB8?1e2)8 zJD*9!wc-4OWs0kO4mbBs59RzJ5dG)ETRUBcnR9;*X_+>K zpf1?{@wccEVBSH6j6EQeQQXs%fmlmd#@=GNU&|;8LI9}(l?2g+G(;0lAhm!-5-}kd z&mRgI#DCxlM_SPr!r)?KQ;Q7HbjDB zms_g;hn|O5!{~x1CekQMAGJJ7jk0TV089vz>(&H%UIFM3UIEhS{I39aUu*w;YZ5cR z|GZRoG@S$uD>9f8gjQDOl$OXB=$>y}oKKNJ&vslu%#Cf#X|tzl@85UZOPL{o)9(BYMA3c>omk@};2lMGPkL~VnF>Xv$eVBQ$r^9rT^=^|i z>l~M&^0)I9yE2xqMajkT&I7lJAhY5f+pI+~Zaf4LaJFRle&X#p3i?kQ0qv(#A3_~J z?d{aMq!K|GIdt4;FmknV{(oQvH!Z-4F2Ie$oIt(F?==ZdFce(WN)ueNw&-5tJ9#-u zGbE^N08(j1XFt>uQR5i@MaV!T|4|Ed8q0P9bu&mi#Q=}#-GKe#ev@5{8`Y>isfDmj zFV~J-yh%2bnp9jHk8fzCD9O?5} zm5$|t!=*drOh3H}T~{6&A+ z(LYlYzs5spVXh1SCAn7pZrblOf~D!Q*4=!pR=PgqS?BEI(8<<0>O8RuEtK|KQp2u1 z48v3*0H3~jF+GRFRnd{&LQt#$UBbs1v+qOz`SY3sS2T_cffN1|+WP78plVkq%@e53 zjUA_Bbn?CFPa@Y_1SxFPl5^KV8fkw`Be&n{>G)Xj``3=i8@2AE4l^9!B*KyAUF~wX z9m#9KF}LIjL~-8&L7$&Yj>oo1woYYT@JYkUD^XlRjTJ5KFs#r>K2wwp^<70=oErwq zt%22g2{lyxr7(?h4f$wR^}ImW=VYVuj*<6IO9siCkS0+OSf)|T)5xoDtjN=qpoX)g zM93F)3Xl7CzfR+rWM2q;2OZ>(baQiK78f0xD(Bj^JUs!{triLc3O#&&9idgO{wr&2 zG2GPYbaU#55pc&u<=j(9-j2uqGO+h$%>N&ce&F(XCnLJ|smAJigU8NVKdZ&G7at7P z04&0^xL=Q8);qsyM~cx0%*>L0GhP6TiM~=EzusAvw`BUeX;|MN0X2~^+ga<01eP*+ zx%Zp$iv^?lhcH-=e&cs--COn)U(&LaI|w~r+FNio6g6SEz!&~5!zTxK=Mo@`@bM&g zjZhMzcr496N%rYeAoej{8+syWk=|5hanD;Ax|y~X={#0u!yUjFXMZ7(c}n19FpvjU zFS1G%%OXl;r#R8DkzHGneG#qyl<(E;gA^-zhwqYfk#la!jpr2(e0L!b=^u+}$&fZ! z0UGu?O_;`-)cu+#YAns$+qSr|M!4 zEjO+*#{gcnL&N5Hi-Uuc;Gx06_ONAZc5`oLU+uuQk7gbn4u@N6o>w77@#bB!I|piW z-OC?tA!40P6O6KRA=%;x|3C&zOAGcRe)|PFv)Jyo;f29Ya>Q5j z+q~ViL_bx6VvL>I9s@8hmHAN1znQK;Jqyd_JT$!D`)UW2CY_j)Tt!PN` zF}NE?3d#G}tIxOJhS$VOOG5aex&fBby zLfZmUeg8cqgvexBCc(lE&L7#+m)=o~a4PpKGDTLrDbY)-P9{g4sbBebz`FsU9A9{OW1#oL~m=?e-(>^lcm1G}u%U`d7{8(7mdmiTB zWBeY^3d(RZf=xuIXpCm`6sRlDJYqMM6R>w9u)RM!&kE ze=lf32E6RK%j=SG+z52aHTD28@gU*%dsLB#C zUhlFgQ!7l6&@%pMdwN?ts_j(WgMxz;Zy2KN<(H`wc-de2(Hx2bZ*Od~>|0joTUWp# zSSpIUY1-V_Es}FEn^eYGhj(jk)Xh0>D7WKKNQ;i;Z{!wLUJY>8<~(*O8r|stpBIKl z>^kk-@p|gDw(R~B0=WT556wI{mmshbIdsO}8?)RTe}}y5B8*_ER1;C0S^m+dXm63F z%k5Tu69Regh==)^rO2TV*2#p$dh`RA)*slg>I2f365s!Be4VMg*`xn+qJ#mnt|;6^ za}^T)!EKL2vK{t)+R~6GKIk#??hE^69yz2j0{sgVrdV2vIP5wDQ4t=s`y2c84%+57 zCe=Vh@vwLI*X+aDaMLJB5av{Q1&X(_e5XxQs+JDVVQn~qS|)3h{)8n67J#%$$Kq|6 zd*h0EW3cp!CD12J|f$$`!&jt|c}Z_U_96guzN zVf#n&scyJN!g;Gp##rAJ2Pe0CCVrY*Vs2Fj|HZTX#_cL7omns*t|(z*?xS)pP;Ra) zmenhbRNd15_8dLjT3tQUvS?P7UH$&nTP-|wOYpOrsk)9vPh^;6bq=pVHOhdSp3%Ms zQRjS4!7KXbKCR9pQV4yLLSt}aWwOnVy1zB*t4uIm)gWpTOK|9Tc@kwGp+HX(M**bo zXS=D7u{BQRZ7Z$JdhMMau3oyLEm!ae*+-3s;W}66*k#^Y#w)h`-0{=P)W2!Ftv#-y zIYo`V2gDExo`$OXd&+Vk41yV+xz;|dDJE9Pv~7j$7hcGfHwfMQm&C=x;Ch+7SyB4E z-&u`Sgv%phB{AP$LSPX_TF%QSgp&8`~Oq})@`0(-KjAwTgY&))Tc zJ*t|FE7XxzpDIMoQZP8Xs8JbTLK6v+Dne`j^U1Lqn#rs3K{C^iMiN@7 zxHL0s7WVl$9A@g~1_&XasJ2zKKvC$koa!}E4Y5 zxt0v0^br0liYz!v3y$Lus2OyJWJF+VZug!RH{3vwJ&7nRosFphjnM5*Mh~| zn3v!b_i!sm|GLiu(=(|;{>}Y##EQtL`Z8#04Du_qWZ(XzlcUXy_%%Fn{i_T*#q?2t zGok1i1H_oFLq#iVOjc_E)W#wbhAlS-lk&n^2x@o^9sN{dBpy?J#I&3|b5Yn845S1} zgdSaq%$gaBT6_qHLh=2ZTB{?R53eLHsZuD(o#Dzth<)f^EH=t<<#GKbu^X2-D~DBv zp!L@C_>X4c z!f`9#4(ZkT&7va{;o%y`M+qCC(rIp`So`M;=ZS5bY{5xI_0*(8v1}H#MzGA@1HJ`# zeo3B4?pnx8D(Svo{gFREY@9L0xP+qwH1SqII>uJS-J{!n^*&e1n4I#FAda%7HIkgN zt^_`xkF|CiDP&siKlYsKR)L#F$NQZoJ7QH^VLf>`J@Ts{Zv!Ilyp{U1+X+)iDzrU+ znjKEztw2?|dbh1AJ?7#v^vn(nRTRUm{Bcg!5F^IWGY1OPLi|l0BysE|X3^bAfIoEF zkeMJl)B}QJTsdL-3|e2M?mAUo*e?rer=fYa8AT+(Rzm7nK&ZJaRpVl@S6BS44;EPe zZsm}$tMEfq1)mzTM9;D)vM#tK8)VSJC**L&sVJw?(Mdl~WLClD17etAIQ%UB1RU`9 z(+5?z&D@yYQGzI&%-xt1{_B1hdh>gAvh9a~^#hjE)^4uD$~3P*B~A0~PwfdHlEl!2_RvVFX@Ib`mg@@3C03! z*p8FQ=!<8i#{=LH)$cwmulVDU=kx;$l0Ai=`M9s(EEe-HX&ei1v4Oh8!=j`fH5;4e zVv85i9j_j(hRCj0LqbYGSlatfF%9$LWK~>}tlDY?l~Eh)pX#1tmZ7t9Bk-#^3O$^~ z3MvUXd#`4P*APOQxF$!oOf=iehbGq!Uvc|k_*Y6X^R5#iqGqEc20f2Q3la7U_Wu?5 z=TtDHMzT(UiNEf0N-FQGE7C(7z0mB$_fE~4RUgLejHJ&FjVIB`-a(K8fq=kR%Ku5D zlAFr&(}Q(*MCiy*P^0?vAM=MMjJ_Pdt62xBAT2|5)}z~nWuAhb0;(*)$!bz=wI_72 z5=N|COZ@};bwfyNaIm>v{6T&$$oOxj)+BeD*HwL;3R^U31-T)QpzethLnJ(jdgJ|` z*<~xN;dTJ`7WdiF0+mQ($)V+}6K(m!P{$=VCQfiJ5IT?oS$dZEDYy%jl%a`Ugh})w zKFc8w<(PX5mu+G?&Gki(JI|d|9ES9NlJpK!f{HVlY8Sbsn<3Y)&Kpy|pFb+m%+U~x zwg2Y4m|87us{2rsuMITCjZ%fQY;4r5hO$F-1=kLic8f^%VEIRm;S0$c5QxisZe?+9 z5bIpGux7hwjNdNo6D7iBVXEyzJt!O)^}R%hoIO$E=JCviHrzo<_^JYb{0LYVwJnL{ zSGm$AO0zhgBagO^<Bf%0sV@pg?Vgm^HSgVkc>o-}RwW*aAD9oCp zh3=VRpVd}B#tYI9K8-zB?7dqEw9j6gw}Xksw`yN_L)D7Z71NhYJ8ds7*}rC5yaVRd z5oK5p3oHKz!%S$=Y{m_veO~nh(`un9r;%|~}z5?EMbDq|4 zH2TR?jnR2|c~Fhe7+3rNrY|iA78W!GIOQ)(hdGG+ULP&~+C^qD|1VW5;?d*3-laqO zhT0ltdwa#l$H4U$6VG4RVz`E&T~{kV(s6wVg-oKJHbsfQ0jhBV30 z)hqUP@7GO53=#7%&u5Tu9Dpj(z{stlTBFkbI`87dR>|6{Z?6>1n7MpUer&@!6?jjl zN(D+j{Hf?B{;v`AUNs~xN{z*W9z%;X)fqle>$h0J2g}D0!CmBih6ouE9-uoyuGS2n zlWL;f^n7f?SR9<;^3`sFet=9~acTYWnRDR6HKsMN%>>E3yd=K#Wt{BiNafv1hgEjH*`!{$783hZ?y{yamr z(Z9b6aZJdXF`*O5RCB(%?=%+pKxG#;FNH6N=1VN$N_59eWmXUA<4YFJJTam+*cYp6GZ5?zO?u{x>C}|f8-#>wSZJUnKaQJ)YTF)3|Q)uacMA!pHYb3l*l$(b4X1&+2vm}|W1lE=P8*aT;4FVB) z9Pv+^*`VM=Q}m9;zwzrf#XoW@3#~Gj$W|Q0qTaYp>CvsJo_}-vG}lH)TLr4`5FPu# zuljz?;{Va~6;M@m&)b(qTBYNHf{K82!v$%i1f;ouba!*5qy$L;kp}4o=`Ilg>25Aa zcQ<_7_xJzSaxHYJ`<%1So|$K!d1g-96FYK-v$lF@SqU>RG*W(!vK*0)2*LOe-Xz6Z z^9XqKuml^s`eX^kqiY5NWGo9i;HP9aU$N+BAzzS(gIAYsf+(#Y@02yp| zhc*^YSqTTK`XsE@S1o6!_c>4zw0Hntdh*1KDOjV|6b)vaaDK}1bTCJR+|@LJ`Ckq6 zc{lJSMpf+S)&-uR?+Y1VhfEY}?MB3y{Fr^_lvkh(x)+2`{N^oLV+}h%7D3H`l^E{Y zoT1%Z-qZgprm=A1Ns#!CKcOuCDbGsvu9HF|rC!)SIht=Z236KNEJ+A9^PLi)D0aW! zJH@qbDWgXmPhq6SIdl*@e(5M!u}g@`Z>gZJk0PP4lwyC0wjgz$imJbv)*0MZ3Ntia z<58k#dja56eV!U8M#N5GZrV3%KA&KC^;5=zF+>9nVzo&{y_*F9Q3Kxpn>2;+zrVwt5$sckslK9)IBF`%mg#47 zPfh?G(=T0P1xjfCl$M5t?70-^pY}?m^8ai1@XM#5(TIvFbr}=bL;|P5aIM8}y`DL8 z^I)Xm1d&qxA+GyKW^}vCVvJdFJx=e9Dz~kv^XOwjPz6T-3BF89g>{aQm9#)h6YCr~ zj`BjllmzB2RN`B`&-~-bS9AIA+@67U#emd*mm+#hTw@{*M3sdTmo&CkrG7Di>O9po zYoXS%)9MCZEYf-4+4yIkMhs)^=xh>H_Nju_xZj-k0oLP+42f}b_}toYdZ*Q1+h6-= zp8x_et9u>D_@nMt5qN!1&)P8NG5N+n!Ms2RVSVdS*pH$GP}c(;25IgUDK)LmSC~uDWt2b#3^d^Z0l%g7nexf+PZc5YCjjeNB$xpK|8Gual2Ua805t(% zSd#%y#`nKs&hP;EMiuaU$v_9V&9(KAUG_&|O}Mzy=e!1Q%nB@4khO1mh;8sB{Jr}{ z*jw6ApkCBE-+F&@cgtD}$_(Z@!s=7A(A5Vz!}0{6NFO)MG0V#YP`8?ZmJztn!QJzo&YL;|F_@5)&9hGEN;K-wriv0h;Tldx?XqhTx zM60b_0T~T=w(B_nYX8gvZV1u4y5rs2Y9@6n2!z&3kKV$R$?MOrcta_gW;AkeEGj@90w74C>w%Yz;Jkq` z37~ygp)P0s4R53Cy3*x^Rvq}j&3(Bb_e>2w!B3_-PMrFm)l@K%s3|mZGQJR6lytZF zg}HEs*gigcGm-nI{r9fF_E8}>dG2mT*b}VIz;*-&8lQk8W0+%|uJF$YheE(sa@{Cz zo7Jh1MWPv+I&;PMXbqmo2{!v&yDhF!Ti@&fKhy!Lf8mnPt3_bW>cH#k?!?r&8OLRZ zoRSp(d6T`KMr1??AIg%-)Hi-H&t7HW;^RFZLC6wa5LK@LB*0mx3||z$un5?Bltp$( zKuJl7kh=vaIZer~rN?h3VjykQY~}l9?9VI+rtmGw1eTznXd$gmIx@+36304fB#8QC7lw%m0u9@>qK z2fw7g)~IdEvNSX{1{-=+T|Tv0Rl?_6DsC5G(4odN-E5 z$j*wjal78r`}dlfWOvTVbJlw0+~b_5Er>wC-)Keo_0u-CjJq{Y1i1D@u?AZ(o5ED2 z=);FU7vKxNWYyA?07=lFCF#B)tkjuUeu?~ryTOB%k}H)3_=Fkb>~FDE4e5Ln=evg+ z{{QZl_HiY3)}N{B5t^Xp-GzuXkto=fq=tlwYx7E;y3*SqEmYX(6$ z6EIMd=6m$U#>Z!wa6W-%owld{&#wG%6=;I)`%utvcL&PK|H_q1KDHGh-}P8&BC52? z?HjT}HP_o1Ko=M26P!LHOm|Ju?O#4q;?|#<(rWeAHM`jZ1^sX^MyL+1`<0$E0m`xe zWRU}OV<~8XOM!!?Tae84Vbl@igrb+rxQS2d1H#x?eXi{9Cu(myDO;~^?!33kfFSXW zSzo+mGD32e6t_?(dsp(ycbTMn1Fl}qX+ncZc+k{72VPF!=l5&GQBmXGtj7&*3OB=! zBH$!~i6>n~9k0%m|Fch%U;ArrZvT$qhWt@P;nX+}(uN^7`kXza7a{p>bL~DM@`qRJ z6HT8*YiLXP1R7n7)YWRRWBIm7W z>hBxo{ale^L1qM%u$O%E+wzUuM=Zc?t^brJoX5Te!gLxXzkFA&xqRGiyIRo90&033ErLaMPka9UA~X0MzBqqSVY_P8iNmm3fa$*FUK@=UL{Xc>NP(&I{x!% z_6sRv^i{w1S$)qE9poFqVE`|+$`{o8Wyk5kA;m zB$>$N&x-WlIafk&@n+TkMdWv8n{{aaS`sK)t%*PDy6=I~A$BbU^07#VMeu%3Hx_EX zzxt|-uy#%&YLMcx5*~6S;uQlwY%g+d8wcE*weLk|d^`!3TzRfI{yE`nYM;qJ6OX0f zUHx{ky!^u8!;{C@w{G_$Dwc9Oe`;HV`RrNgJP3mR!SG84 zz(ChCrMSLVX5;?RVCi*3;V}-HK0!Ww4Y-mz+SX*Dfs&`p=E2(da-X|+TP}>0zAw&G zwhG1YH9#Ol2?#J~V!UIRh)nu(-oHM*erQm$ZQ>KnmQWaJV5PH}$CvHz&GMh!^bLj3np?dkXEqSJQiI$_c2hyvD{=KKoxWp$%$f z8lB$yFrnvQ(GSOK{AY1dZynBlo@fG{ zCuG0kX|(nzsBNqpH2>g3RoTv+Vec<^aPM>g9|Owq#rey#*^avwhZPJE8iC;I>zjC& zcT}JU zsJVfs(~37$zr}O(GMpPPzvO<0dvZDiCW7%P|I^aF^dOx({Ed1q^F z=NU;Oj4CL;0*-2I2B^PwH~VlQEl;?-8QfeI`KjJmFGzT|#u$I1XpE_Md6`fh43Br7 z&UZQMd{H4|gLLl#Ao}pS2X^14@9e3=J#!djqi#ouMh)OB5FRH7t9YCidU)`AeFCF; zSm*MEgmVNz@6v~x!+4h&zWsi-#U_fx)Z3E9_sm&Zb1ewI=K5)O9z=;wKM+CPZRRat z=)u75^>ufHIyw+V0(}=-Zak3mS}>P|v6a`|Q&Cpk`iMxia6u3u$whF^Z}jDahnal2K)r ze!}OwVo=hq?Yymbe`~dJpTvyBYyK7t^cBo`c{Ka)de#ZkgdY?Yl16NW29kyn<swFzbYX4pkVOgj3B~V;C-9lR*4+Lu#wb=TUj$4S#`RT2CXMIw4HuYxd zc~M4ImVLj<0GN&zzp1ROWuzf;yeN}OfN9@gpvCh}m{*jx*~=AVihCb>M!yeNroP(O ze5@g#V^wdHlBOe23XKBF41Cju;Sp}0z{&^mJ=r`aFPConk5=4k_ZRf;b}Ijgu_?Zq zeqQ4==MaSGy<%#I#){4JQn`r)Rp1#rg z)w5ROb^atF++@TW^3O)u7vlTOa*Qa0Per$LL2_M2L1L)GI0M{e`r(}Ef^(&w=*HsZ6o^q1dj|y{Cn>DNhb2~s0VYT*G z*Pn0D2;Nxou-u2nzbk+3?}>Oglvj^m$38!@|1$3U!{?e82?~R1iWWz6^RxLCV9 zuCUws-Rh+-BBEr<3Af$1dR|7%L%h#-O%k9pJy$g&`ux%R6AclOg%&XE3k?D{YPc?% z6RQrQ2!m2Q-8A%G)-F&t8em%fV$Ur~mCKakp&FGQ)+vMo-?K1Zw=nPaC-Da|NMTQ> ztK}dET;W`|D%!&Fi-PIB|6qKL&^ze~0wN?iWXaYxM%w7|7g0YHOrSfh6b|N{lJwC} zz>)&GvoztCP^jSLhqrF-sSjM)rK@MOFZ?+`4hZJn4Ayg&#DPo;aiI)G=uG80IM5yE z*rZhGl2Y~;0U}u6d*e`GyE2&EX*GQ+tNU%v#E6|;cxGq&;{nvDk`hO5j}uVa2P)F1 zHwWCRv@6CDi+a;@E=c3q>%;EY9rk(;h+hO)Z&vXAWEkv-4NKn&nkb*(qzx0v+lT?2 z+0``(?a_xvh$*4VDPN$&3r_nk)L>O0d4aUe7WrlKKXebjXq%gkS$iKWW z;rwcbxC!4jUlU&bQ^s8iaqDcu5(ax+XI6>NdEw%AcfVR&?oafrXX1qct-s|mR_x*t zG*1Z_z_E&C7DGa0v*u?dvy!1J^edYN9Qm`T<#j4`sc{0rF z%H@+s7GIVYx0{=jkdOwo)3a2il9I!1;sfpw-{V@Te+h`a52&P-i4<=(XiRoHJkz}^ zt1nda_9!r!B(N`YK!z89tp)nj2?DQ21yP3%&Lf>huJqAY8|}SL)Hf%wyH8|fq$@ni zt6j^hbGnTR6wK^wBNVWgq&QnSa?ML|%q6U7@~mC0FpY!5?w=uk_a|D0eEAcyonbJ!fJr#ObNqL^_7g7iBPtU*ha5zrT~Iw=UNbHA zZGWmCE?d15>dd`me~*iW&$D&<=k6Q5A}XBRdSTvMcUam0z0lIWLyi{eur4!Fjqjp)V)vkcDGW)y5PM#zz$J(WzFGK{g zJUlkm7zSg6?y7$gZP`0TxVIPTQ8QcrEPMgoiXk&%FbC@P_49qvt1adPbf}_q#RX88 zMYUdqb+Pzezj-d7gYKmqUFZyXyEo@}JkB20m1^HQ--4LDbXQ0D9UBf)o3F7e zoseDep8eH!4~bZ?fc|WfA<_{6v31WkDM+&{kjtY}dn=3cPZ`xG94xGkM0ss_rjIvV z00oNPZ51`s`kwrJ)b>Bj4-iWE4MOm40_OyVCP}uBZ$zxMgu%Q{l9G{x zo>4jwqo`Va4{zmH@$e}e!Z+2LYA#cqx@Bwg^^jo-u!_xMGeG|fUQ?E*RoP8OYo4U_b06sU;W_gPnMwU)4ZCCkA%ZV4CqLu$ThB&Jr9OMT zTx2Avdzy8uv4f1CAVz>ne=XRDOX|N+tMM%$#1?7wO-ILGVj{S|vyb2&$Wz1DcP4pL z0@@FY-ZrPqDzYpR?Tw_DS(P^A?o znm{XfXOZ&zay1ly$78p)_`Uu=0ag**CqL&LBuaIt`a`VG4s>@6_h&q#yfn`gp7_jj zUxo}dQpP*onk*UU9#rX6>zwKg4>JP&-CZtAn*8P)+Q}&gwfox3S4~l%|SN==xh9YUIWHrLeu;9Z>bY?H@)xeKtUP) z=KiyTTj|53M*}wnTdCk|h>Q7Jt3}MH5K%#Pj6BNGxk1ONPBr-Q=*tFr&{E(9u9ugN zy5#z$RbIW>nXf%VhaTWC;PefH;r*!*tF~tagp)fDGn!<)zBp9Q!m;Vqz8Z<>@%3rB=1->Rg*d>C*xdz<{l7 zeRa~dDiv?m6s=idwFlH^y?~ z(OI=2$wjlh27pH`^C=EOi#b2|?q`#9UQwwY@MkuN4c+z;F%paYo_hUC@~NDxMs^iVwycB_BzB`|G#T&hu-9M={yl<^$cFY2PpGIV|IzHDzMx3b*=- z`o*4Oi~5B+@b3?UC8+vKLe-B3W=0L}Y!HV{3Lz+drrvBjJ zgh!u|~jL+uK_5hWYvZ{A~j>NLYLh1hG8C9SRW@z%0SaEmL zPfzSPjse{nWz+E7j1g2Zb=>-;mt>tc#J?AD&_GR|Rq5GCvahITFN`NRZBtIPqor| zp3JISMdhuu2fTzaDlB)>D_HDiw)UPIJQ79eGW1||+a5%fG^Iw?WyYv$iA|4o!-{va zMnB^_XIFp0d7gb0Yi--RfdHWkhJuE@(C+E%$849litA{h;NBTymnt*cTr}NXzVtu( zf?}+WI4`|i9S;`JL(JX`PGI^&z0r>V9Ll8Xf0boVQguvrjWjPm$5mAlX(%163( z^hyg89*d=uwY09ye(iY_Gf%!sflA7Z{k;@@jM4h`F1R~^67NJxkh6{a=GPL*8se>h zxHmD6M0<;kNCX(0`7HUb6_JHAP*r@e|42SZ6uYJ?k?{9W7zYVxPdUKjS#BH>r zcFw;r_p>?8?_%jU0TNJHL{>qlR~%_dvx{EL7h*c+%7+gvWD2>Jksk}TtlviG;%G#r zUmN32J-aGTK2v5>3Ef=d9cV9yQ?xr7J=h3+FBp>T+z)T|nSWFpi-T!v%x%8yIyIx| zZ?63fbai#2St4qSR@Nz(CG`TQvbl0>o(^HyaZk=VKT{-WVoxG8Ide!mySSt<-JNwd zebt9WuC{~2kZRpc8=+&QXipN69kkM~IJf;kR-kWnz=>TDDA!P#8p7_JUM|b2cS&Y^ zX3g@Xl_(W=PW-i*^EV&5pFzus%{vAy+;vQVY1&3s7R}F5VQc+9LXjeD9I+f3^2|vM zB>8$ux`qEPq-2tY%CHm{TL{a~&@X&Vq(xxZ&h^$~fSv=vn2cRT&y(~nlbj?>Jt}?s z_DS~SAQyL1k-Qg{QzE@hK1^+9CHrk*gghVXfRz%UJW2 z?h(r}jCWI}0${YA5S~lt*!F=IiXZZTMQGSgr78SSOOT`|8l`dMj7hC*$eQ~Fqo^v| z-M45a*&ySoXAKpZXUbHS%=N9jH6H@a%*u_;eoA~9ayGTU=!E5oq9^Np4}p#4u{y!5=RM(*$l+ zz-P*lmu@~~eFm%@Z!mY1a_o%OUBU7e;-zH1iZwHC+{8MErg<{zf%ZPE{?;BNE7nfJi!v9T6oWH+M@1bW!o>l8M5Vfuz|+t4djdmm+(dvTaDG~?pf($ z)14-}Z#tpotjUeh(-QkGdLNIRSt5Sz;Fv{4qnHuSS`o&N$gHn7+SuKeHp>++r(55byW7TmoL~wuekex^ z4r)Z#scY=b>Q&b8GiRYCSFwaXB9jGLg=T^yGzezqXtv5ueArp^1dP#i`-ht{xd1AU zqI%Q`{uKUT%bT-&nqA4ScE$-O0kCSB*V=4y>j?!-s5|W^M?XRs6g@O|s$y|0PzB3Q zqU(Kqca8!MyvP(cMK_a2$=F!D`ubl#fWjafRB7u@qTliPr9CHgt+@HJ*X4j`n3u30 zBq0gYLrmc5i@s&Zfmb)P=r13% zV3ceZLh%yi_nB7c5byR?pPljqT&2>NkGF@_PuL6B<+ziwa$gqQN{}I^NwU7ch$6S^ z#be!u$WOXx^6Rohc`TFF!6m!6~O0 z-K=`^T+UOLGmWFp2}|q2M$-t|2!y^S?K(^4`T=3)hNFWY4cZBcqBSIg>@Qn_Pwbab ztu1W!T%_E0ZskHcy^(WX@-*Ftv9OI1|0g|A?0*NRhI#YbJa4z*x~;5{tLx5Dr^J`g zarKQFC;nY4j1kQ000lDozT0ndIW{kamHUX?@P@GTSS4mjAQmzw37^X&f=Aq2dERS! zp2LMybNuB9BWw_pZtjd@;K178<;&`Vl1-}2a zARgU3iFhkQVYMZIL!umn@hMc7IHhpnH?|M544o731`I z(r1c~VCNg+j=RJENR^kIDO0#UyMm4JM}= z^~cxzn28}|^jK{Rx?%ZzR=ifdk7Gt6jyC@G)~n)ED)k;)P#6|n&V2q+S>&f8=Y#wW zBc}Kyxf~^T_b5I-d`G43kFK?@ z!){_-cukkqa)*;<_;N|~y!ADJ`iwp+gS zku{;h_;vaiPEcmeJ&NCW`z^Q!nC7d&z>DguBX#-_H8GPZiw(;<@gAr`N!%YFMp=xq z_VlruaVS{_2jc5&2SHKm zp7}lPxUzSCx5*MIN_i@il_~i&PGP2HXc&V(8$a9433Uby64wSUZyOmq4wZOw#=ix` zl3Vpp8AZECMBVjaGKm|QM&`Q@72xkip!U=KRQOnK=rP3cb&gs3ENQgVzwbEkKC)4# zDdlC(q2!MmQj{J%7BFwSF6L5U^7=VqX_=odO6e-=E%6{9LH_BWu+g=T*B#J$f$Q}W zUF6I;(#fU4%&vWY(vmsIs2uFxw+T+*XmwUHS7*srcE6?al^iETtEfD~W)$_+%POVb zmd5_I((W<$8e3ee>^uUmcwv`7E zIR_awA;qp|B3VP0BkJeM6!F;)KXjG z8K{d^FVoQ>A(>ljWGb9V?&GjADz_@S>iF{nCi0{{wW##0{Z$GbJbpf+WNSi_zDVwN z{Y@SKMSokY`fOaD;nT(afd)?EQjN5g`}6Wbh>$p<1s8o%CJ}44wK5Har7c$DpVTZf zrt7@=q5n{si^(P|SA#P6z(IUoqQt8U!J6(Qlaq|*_Xg?7dQLAaprc%f@H=Qzu~I_2 z`W3C<4Jk*tvCPyP9vfhoH5gsx)ZCvK{xr5TEHmFpE1#LpE?gOMTOHzcDrZv}Tg?sh zvPLrzOzD$+I79wJt3O7T2`Nh*-VXo;Q)k9#zU6(}mr3Xse&?+4wdLp{lt0ix6(-qT z3#yrl#5vK%PrZNvqPl!)7FbW$dAZV@5kehAcV6)604JgJVD+!HcA# znk@^lLhh&X;({`!`xT|>L}~p)Iq;KZgi6&VdwJ{GH#yS^;{@4s*MCUn4bgI<4yXMn zM7(E53?tyqf>;O-f{A8p<2PDQj$byP!PwZ|?<-_nxjuRr?QII46w{@pLaN`~vtT3L(*WB_Jq80Dr3ej=P zM(Vh#l`_6PP&LNj-0dSg#UP_8&rYy+%C-BS8s7ChK!>!|EfE-O6_2N9VGE? zrqQCmi!+3stAh$gF6t9(uKjEmCa zxbJSv-kpvvs#%nXpCZr%VrCQi)?>HS*myo~$lWe<->?v~VkR6c*|4p96ly-fEPiT? zB4o?}?t_6u*)sd__={PKDggo^pu7HtvM3;4u=f!7r!U2i%HP=Y9~hxg2bJH)?>p~( zFHZQ@{Rg_G`&TDgL*VJ>{nKFw^=X8-vX3td`1weW+Nd-BT@_Z6TM$j7sb6E}kHwvCHh zuh&rX<)gHI;6Uhm+AFwE;1r$Ng}KBu>+dfikkOIe+oiu1nsQQv?1&TeiQZr03NB?S zkhW5XdRifydkJO7O050oKh>-sy6XNQ#pFg{^Mz+hICn;HkvWE)DNn{3&Boi@fdL!2 ze(OQ)TS_#D9FsG;CjERwzVow3Dlozgv?}T)qKglu^W+xtlx2t|*5h_WX<_%ERHcl` zX0u4{HfQy_ggz3zCcU|7@~uGTz;{(4L^I!0*sIAb_&n-F z|4tq&a}Fo*Uo6PCM7ON1whB#``afgaQ-);Ra7&cGiT*_TY*Xhbvs|BA;phf$mmSx( zf=wdge3eKfH>pSboL?ztTIOnmu{3v&$@yzpp%0b>RE5ad$#<_}_F+M^Ft8$v3A}-!xg}rPX>i{C*~G3!4DWH3%dKo54{rp zb&7YK2<3LVVvK6`YW6wD(*YDU>h}mtVD?L{z!vtFBuca8(58R7Cc-)@nY&W))z}N5 z`xlvehAizxlWj*RkebZ>IBn+dYUh4I8PZGsoH(N7=P0^db*{s8vQe9?L5=Ay||tN5**>a-UVrP zgvC$Vh>sF8L;x`InmPQli7!8cLd1HY334E$TDH}bV(*g>o9i$53V+;ez&5ueEdK!U zD_Qc~dx6&Aq!_8%Ny38e$`MZ~#pd69D3e8GMKDDo0f6U)+?Uugcv*WYm!2K*KP_4U^m1f9>@XB3)f?W+^2;MEYCrtXKK&>j@)qp~ zxhDLd3(|W%JHFH=Pf*S*ecAVry3^s0uBf7h2cF#-5%9I2-3uN@NPb-?0(nq>L_V_D zaYmx~KetoPxGUFFdL;42!*5!G%%-`ewE`$yP%Th`3sKy<82{~5aGY%&<=oB_rU-D_ zuZ#<%U&<)oeco(%`~5S$Rh?5koO85gr{84DY%|0+q4_gSLh^C6NwP$Q*THjK2egaeg24+c_({M|4Y#~(=`{Kj^!JKKFcQHZdRTe48r;STxo#^JWm`D_~(KSgQEndI+YW%e|Q+TL&^-VS{eD#P!#BpiFM zd7&?csOyRB+jVnQ-lQjwGEM*^zO3qQ-aZy-o#ksd;!rA4&QDDN5GCv#`~i0}I9ONo z597zVzQG(kK&yL^{{PnkyxQGs@j6pjbws;D3xoRI5(Rb>Nms2zaDiLevgL=h=WT18 zxpKp$zS@zwL%(M>D3oyjP!kJ$T-|NLqq!xgW0}=GKIId zVVYM!AMjSFZ1E0T*{V+UP0A>$h+b{6b4UD?1J4gxv4sML{#C(ld9M zfXE3~_5nE;pevZ_=NL7c>4YVxylz2yR@L}96$Q`uY~qy%JBmZH_isNPN7p2q4+?Apddme*1LfGZ}cl#+LhHC2#^wI+yyJt?9};wQe=0 z9DQw6N$fJRr$`i`Vau_LoASGx!-jKq%2JPD((X-tUic;;;K}S0&S^h?H~opPNiYuG z(AFG*+Scano_Pq`W;$pT_<@OHMIFa;$iC2=ZPt(M2heYZSuZG2qTuGi6qSOF>NVlFg*xmkH?Pn-}Or!gEgHs$dap#Rx zrC~x;4L%*@RHZ3Juw386c4U^QVF(*?F1xn#>8+rEXjCeANJ?y4F0ye#iN7J!Gl*|q z-uA{T9?qizIDcK-YfqM?XbS;lWW4FJeC6t>HQF&V^GRs67<;5v$(I;1>rnB82hX=& zR&!pW0BP0M5HjTuwEX9k7oN$c+&O-8ook_ksj$}qXf=ofc z^%4~^2vq32qxzpUE&SZFTE03h?MHNMr#8E8FAdZ02>I~=zL^G!-^L3F|_Sh5+UMlD-<=rpQ%ij%ZbwoepFOs!A;?YS@#!QxMlp~2-bVF zx~zoVUk=7umbQ;e$7)*+}B`vY;xY$7=6;dwMvUr?L4bvu`yOi|~w(*JemA&`MF)z{m6Eq(C2ujFL{6n6&q~ zyL1sOVGt&g-`?ILgLJ=5-xKzL^jrGnSfPsSHDdOs;E9hfHs9@(V=(USX*kvAoVtFF zd_kGr`6^CfV4)$W`Dmp%KjQUzykNDs;dUQe$#obiwNjqSV;iVMZolKmW&_}iYLHeA zl_4e_{LZd&bN^MtI}IGw)0{8uUdK~sVQy0^;~~yj&;l=Z3RKzvj)Sa zpEB+pCH9lZwZxi49i=6hdV6!+b$Z$o!3y?y zZ1A`YLZVbtTibd!^Qepw;*i;{QBSMBaDe}}y5@ln)?p|3Vkl+ zvjv+1USf4@>$M=r!a=HCmjCXPG|HbrsScYEQ)y?3O*yF>FAsdp)pViaD~mdu!P2;M zS{X9?EahX4<&DjXcLmAWY;8PLQxua@n*lEMMCA3;M>3l{8O{eT_T6c1Qq|$-2e&PFI!qXs*rOW@T?IQFf5=Q4IW+T;ywknw6z@ zN_w|3sPvfaEgIbZef)~XBIol*k`oNbTHxTiH2ajCp=6axaxVKBdx=6dUZBwFsoaIrjhNfvHTVhw;wLW)G=#Exc`;b z{QH-^3=GExR;xND;H}|!<0O=&pjd#@Rent0wHZ1OAjH(={?u?fQuy)XT~ZwWb@JeB z#vL$|hD9Oo4ef2~{o8sq=X#oohXD)|%fH>vWdwNLUk?SWpub`Y0(AQ`l^21N$t{R; z6T~%$TX}NA9w!?+OLX|b6m8VuX5UMRt0ajD0bKx?pPb3u7s3+mU5RArqGNZv`Fk;c ze6*$!;Vs_b{CbFJwf9W%us&Nub9nxq4-NT#@%u(!45~z1E?9@aU&FGsZ;7Cv|_$*@CdF>b?-n?mqahOqONOV&fhA$A|m( zD+=m7YeMdQg*ONnxZQ#x5ltq2N`Z#nKeQk{_PNVSWZ$WNu2d;Q9qZDN<^PCP%dQF+ zud|5~lsrxRkIsKXz8t*HkS<>7?@x?&99e?eXKPVfvF6wuLK7w*U%F+6*)CFIR z`5&Q4c^RAIErEE}ilPBtg_a(Vo1gk3w*QmRpJ@VkR}$iS9(34c?uNGbFk;ws8E_2N zLE=|?^Bh~!ZJFV3JTg@BmqoS3D+GLrvIG_!a;zIzIXxIEX}`Mh8m-vXq3$9Zs6D^d zX^6(`6M($?1KA83zCFROm8oYCh!$R?VVIDRUM)pW)MU1SC2M0pzt2@14mw_y-7$;q z%)IyMj<&C{bD4fC;MNsaDP9vQ?G4ilNws{s$WqyTYRDAd@Gt@=%N0TLW5emP%)mEQ zN0(|#4NRLB|8zt?E~)p@HvWz^E|*1K`=x@AyjRj;3Fci1DI}jKKH>%CRcY z1`Zhc9tSoE`jj3foiOw4%!D^bL@*EMU)9u-dVGa>p6!?*8l!jwT~&NIb_HDpQ(GQI zv|OCcilE0QK6n=EHIH0)PjqTPBkCQN`T-Xkf+CIQe&WQ^k!4L_^*@L%4~KOYBSyv@ zp548}_1{!;Tt^B`F9JFYkbP)-$8COR4yWOXU{@K_{A-wJN7w4is%O4$u3ZXrvyW7e zP#y+#F1+^3U_1#LrB$wU^6_AN6|(|IT96fNkX2C#5kgHwL0=cfQ_A=1J*!vBG?^xx zj<*e8wM$np`cvj-r`Vl^n^-X&O|iMUABB43Pyh2QI+^7k&i6L*Fd&g1g}elM83|wN z;cLo0E>-@<er~Y={%Sx#}=vqCS(!Vo#kG<}Mnq3>ilH zkMoNBNaJFdSy3O5WxZD1v;TYK>dMcHEl$CT*q9OW(1P%RpNPyj3o zz&kU^^g?pGr8Bi2>*%VJsqZ2cHu|z7(G%mme#g9|$=(It?Pa)9G;Ig@+^+3zk%T;9 zIVC!`^BM5`cYD`UVwd5;!WTpk)Nd$HBo4-h$?ZQ?A;X>#8!Ut-pO+g8GTL|tuqv5} zj?Fp*^*)cuIcGvdNjOvN{Ph6b-<#z%7+}wWVuNx-@u6&ra9(2l9cAqwhiKMuf3M(|6N2o^UVjo=5MtSuJY!S>ROQmmp`-@)Ka6r-zrt52DVxltVgQsqB4tQBP zvxT@n`ZK2+&%VxjLmyXfWi^v(pih^oCg)n?oA{;y};e(i*CA3nHn3%Vz zgo`v$=P^%6Sc+Wx;cI>$c^y!QqwD*NRfR#g(J98rM+Ol!Vd0lENR_eMTbhv+u$-}$ToCD2d!K~Ztdmf_cWr2#U7VT&1+!e$m%45< zMEd*7S6AcPll^lac_tWgxNk8Y=OH09p zIpW8>Hp0A1NYlT;s&W!;P1xn0|P6o>(cNbi%)4o=jnozRb^uVOrLG2gt6Q zKCNCN!O7@e{cXN-ctLzL>^3h#^m!%isW%rM)>k2WzZ&LbM;{NZ{`C-(XM8wnXa#G> zF>(xAPi$pLzm#)0+D#ciOXLDr@Zo%>Ck@1b*pJ<`no{XNVS>GdkMWXY7gN zg5kI0bG@sa+z!z-dW0O_%QJ6$l>`(cS*lE^cn53zM0Q!5?- zpYdNl7+>cz-=kz?&t6y8(o$X%OnnL4o%|(^5iq*xV&mz#)2zS)!q^~71L;;A z-JlT_exzZB;$lh)E%eOrB`=6}JgwC{)#dC0qW1UemVtQsC(+`E;d!GzidXTx4JpAn z-D{Kt$Wx`f(a}wA-7-z5dXQ8HGl}QFcK}saeSO~XBUqe*ndm)S9)b-@)ZoS*r13=^ zy#D<9#C3L8CG3>E99j6|oSX-qDW(pxpqW=I$m#fBmIOf=S?PXyoJy||O+k@0MgIp% z!ee>6N!;E3ti0Th0#0u25+pkK%M(OX(wzqhKP4MiEypc6huje5u}UcT<(!?;jRJ?5 z0Uds2hKQjVc2Tnb8N1o;i#IL!Xz(xj+>wvIu_9rJ4_ z*8{>`)?@z{aJ@ATkZqqMIoBx!)3n+4ge42;a#5>f_O!+b(^ zwv@8#sRbdIa{oH>^>s~?HK@{SWTD76w`4NM8{UU8Q!9GZO=j0OSmFaL|Gd;7Bw<;( zV*9ITuXrLTVMB;s)2=;+GX7P((aAwFfjpdH{Qi-OOoTuklb3x7fCiu6-Fk1n z^O`a7&s=LO0Q7XiequzZuSG5;Kfi!t_NK@tQ8hm1nh zSt|8mKCHPPPJYtL^C&q3-NVTCI>n3)t24R zL;727E}K`#rO|ET{#;PkeN#w3FoHi=s+_5{Sx=B4@P)b}{c=&<)oLG?FxniQ*7R`ks1o{lWui=cMilt{TrhH>j#fRP*$0P+0E}AH13!lCq626 zQAUVl%54rR4nzPDc`fMWB)K?5J0Fe79gP|r`abA*-Z#8ZD3MHXvVg0*9M-TRfqW}d zUVs?$QBvRg_5P2`XzLE>vC(f;D&^*-=-De#^``6#q59F|xmzyALT0W4&DvnGH3OUmv%tXrlyHZa2XXtPjVDctcIoGue*O?P< z%YU3Rq}2zc^5JH{{yuqGoe;_0>BMcO@jB3!d&iblGsKo#$)HKO8Qmc>JdQ(zfbrJ& z`+Ud$G1H{GFhZCa6T5H_76-QAtiB`u&JDJcRQ5CM^t?vRiM0qKzL?z%7M z`|ka7{BxeY)_P;kF~=BlGNg;`Q-L7GSkch%eK0sMrQa#&&U09hu&p7@&rfr8D8R|m}bR}QWZ&8Ve%IKG-6m{ z%Yu^7+Y7#eF7sJ%a6dOSL8(qX@?VBFbt_h$a)?&-g7FkW_rQ5}GZMa@I5>h#k{@K@P9eo69U#Qq<@B0jBFW2PS zA$d8UhvRA!x-~V=FO({q_@A%)7R5WU|I+>)tHtNOw~8!`3hCy_RCd6I0NDi}Voq`S zCzJ*@5W_o}x0bHznvSP_xd@$DK*(#skV*7yFi=c2 zhQfC1=FDfcGFHR`u_+>FVQ*$A(X?n72fp?FS2@<&J`j0KA<-kD1T$#s_}@zsLfj5F zpPVA=lkaabX4eKsBz5~0)(xQX`V)FXkFjIk$px{W=vp^>RT1bl#AFJPz(vLZY4uHA zFCXixlMenVmt)&WR3{hqCYRoTU3>23H=+#_t}`LlgJ8AF@|tg4kX1{63PkZAn8WUJ z9J53vvfD>=HIuLRS_C`Zk0Y3iNLM^D7)`Z`HC#U$pvuZADlcj*!H0|Z!PP}SP0nw+ zkx_1R=6xQP3QAx-Gk+rL?W$k(ihv(9SYsMnw7r)=pwUM>+j8>-R~a2rK}u4wru_u! zm`7VGJ{}EaX6ep)Zytu(1yr+!D4=h9rCYU}DGi+B=zu5uVcA@Xxpe~4&l_9!xvS+I zs)KZ{FD*U@nL0*qluo<^a;|iA1ZN~sJ%E~(2TXZ97Y7a)kYzn$L~+)4oUbpsOa{md z*rPqN@THg<1_C}|Bs)fAy{9h$*e_kbsPaO0Mc`=?b$UP2pBG=H%3mv@*~UQ&(E{Xc zsKyz2@F7TmXXu>KM;WmeT<4I?y_Lwd*sf=%144Z_3MM2cv^}ep8azp&QQvM)WT!l3 ziy)z4Krc>*lKWjAcV^-9u>@_fWL(CoScS{>&U=53?^mXxP@ zHyvWlmI!9vfY3}Gqym3l5?xbo!$&bSDQ+@>i?{| z!ka0@-T=wR`odN|c*`&2f zN$GR*6kkUxqc2|hC_%gCRnF_mE4(CGgV<}dq=?{Ka{f^#q6P%7%;`?aA|Ze}K8t8Q7EQx&`{LwuxI9HAu)DpV; z{7C8pCJ+P&4_p9({39$cVxxX8PMg=~z5HJ{W|=qyqxFCC#Xjq}JuT^869l2h0?O|9 zx_y#)o-*S8U<8b(Mwcr)RSj0OwG;&7FB)ZMuv9l{S~&z!xF>jega}euTY-Q;LyyGh zQ&mj#dJ)T&t;etF-#zzGFuS|!S1shHVw^&uMdbQDR;y@6HL>%9V7SFfpGPO$)Z*9_?jW&eU z4Rj@FgGyVI>6=3py9P@Re~Ii1o042KTfBfm%P-zn@$geF8qShBm(LT-*akmwEHkjG zzo+y<5Q1Gp5XHZNBDOWV=r5p=$q~gP!q0AgNdMBJ1Q zR8?O5lJpH#7x&+km04Hd88Vx4UKF3Vcw;PV;O~QuC~QqIR~nn`@Npq*KTf*b0%EF8 zJUKb$eINMKuqb`|-mjuigG({-7qBB(I`^_a|5O22*Fi3()~Z&Qg4DQ9j&!;K<#K z=HMj8q4k>0Yk?dD!^qV^{~Npqy>kk^(5KaCv$g=0muR~ zBKb2K|G$Y9czd~%FE>o6j>=-oJH6n>tWjZf`9`OL%=?R3n&(h@Z?x^Sv5e>M2i7#F z%-ub~;oFR?uO3dS0)8GryjL|G-un($Fk3t$PPhp6KhOMsx_c6;_Tg^A%Ue}ZR+BW%xD}Ud>NNf?`HR>uV5P1>}tw{DX z@(tBwl1+63fWB|x(-lI;cu(v-#zkdEB3 zd+`fQeI@)MDORiqG(b=WV9*h$gul>=5RCT3LND z(A|-zSJFaOQvCV3;KRKQ!^FlURD*@qTh7Oeku!5F>$$vYAcGhH3k+*=4^>QXk!$Jv zxo*FvF{nguZ{=3V|9Sz^CsE}2^4_>zeCCOcvBf0rqIe(y#AVy|M{WoxwBJ6grTSA) zM8wT(=+#s;3j3jSWD~#Jjg6Y5Ehm;?^()-K_&!Xz{b6(eeaR1!mIqmXQ0JWe$)B5> zDF7%n5ou~}5MmoAszzPYuV76-l8l*Fz=vp!XW@FhvNaIM1GvX&V%*!(i7j9oE8J}7smhNA-~rX#S*c=LnOyeIx?nHaI69%o$FAQvj>_kHzCwHA z#n7c~>7KN;(2%_Y2&eHQDFie+kw=tw0|<4IzPKB}jMYY7P;@OUFCq( zvdVe+Mqs4`6w%ci7!fu)o9gT>ZX27UI?T~3#UP~ynYUhwzq;|VGSfcsWeTtjLEAH9 zVncI?!zj4kmFeXtahxc9bGr1327ezoAiyVY<0zXeE|(YM3l7NScP+h>&I0%0WzKH} z>Cev#MHlRulc_AL*xkJGA2r83kWH>jb*-ti#J~VIq^chA!aC8fvW#2(m90Ku2vftm|JKbkjzM;K%Wp6NIR zVT#{BsxzUWMnFnv@{K$F?Na9Eoao((p@Z5}PYmDa)BUo0aTx#ALJoUH^)1h@^CEHJ zi|{Lj82rOQ1sHVr{y0_SfD#ijy*Rb0zevAq7Qsu~UyiJ`jAG!qXgwqROn$-VoWWNYVj9=9V@qJ^TTrUKiok$5rvdLYlRYgPH&GzaLFkZuky%&1ZRTo9sm)l zk%QC7z8NpxozIq1pnuQ9vKy5OsB+#Vp$3#C@EdP3`{5^l?S$K-DLkl6r2`SdenJRqpRs3z~ zUsee&MGkoF zwHv?)UCJEGvDMCRBAGRDE)n_@fC;Qwj7ln5KjCa`!E(jv_LUzhIp2a;mhNB>iX?$O zV*tJdh3mTFLbU(34VsAE*~XIT5rgg^@V%tjri7Y*)`pQ~?k$A#X^k<*-u~wk+Orxx zvA^im-w78_J!YnSbuv~=8#SUl5Wel70y}(xxp3Zq)%0^ zN5VNMQ!*n*&B*o-8ESd=qZ8+GwG>!3ACXX%S__|Ms;HEn`c7)KLum$?Wv-*MN8j?;q8=S`a1 zujauR9uPNE!UC3M%63e*(f3{1#D+u4708YQdh7*BPei!^>a?Z1I4b)PyDwJjS249N zxLdwbt~v@>fbtW5gsRA+!emi&m!37^2aNnUc2hfa?Bp#Ea_CalDU+Y6hi=61#uRlH zrd9m27+~pgaOZC^l4N*!Ylw8F?U~-|Il3;`pib7`%!&7m!%sCQ%_wZ3@$o&AR^58m z_CK$q=HtDf$T}Z~a?z9vUSV0q+dQ;WH9P8LwhUwHX6ol~Rz|R_uA#s2v|x+`@`G^w-gjfx z${5t^nJ+SU-?SC1#h67F%e_ZI9>iCBI;eWB+Cza}n1!~~PKl29N*TCnFLALy{l4-= z>auTC|K}!#=^XzSH^Ll&IN!^SdzT{inKp_6-|8Ca*NX4Ym7N>OoByl;&B=UYf`%yw z_ET9k(4PdH2<#_J0jFp_c{s>X&`O}dzrSe%5_6}IF0w$cT~75+jAq?nB9JdT>m~|| zw=v}+r`>rgzT@5aP;+i<&|k7WlNPe_;eCAL+}HYzXXt&y;|d^w0xRChK~Pj?Ed^X8 z;(ek=_iJi%JUZYJMha<&eER9+bC=m6G<~3UlJ!?xOQbCOASx9Eo)y zRFzgo^fYc~QDUg96Rc#`Yt)xO2v4O$hA3k5l%LZG!Q5OGD{Vrw11uSF^+1JX+H1;} zO&u^AR%938E~OlozAN{L>;#L#P6B!pnhyOU^)0!VD-S`;gBK{dUoxdwI6B^C*aUfgBuJ>Sw@-m zF4cm=kchr!UFMB$d0db4e(17jr$Cn`Ch76TVvjhfVd;S8Jg0nek0oP>9Aboq?jH4( zC)FoKX3{K(LDHxBpKHesXsJ7V6GK|rncx(=`9?Z}+Vy!ddz$@(8pT^+X#KL!7n%!< z{`>)c@aD~smW!FPK!dqyp9_}7V9=G^ZEe*&baExRFRt&tMeJ$F zS+3aAmtDAsej&#R#Gyxm?t%MLv2u8?o@wh0o@D(g)gI9`R-xI&RRR5m7w-r*7)RE) z4a)u`V;Yq4oC#fvd1<*6nvPIl=RVxfKUsc&zdD7B8vO-5=2Sy}mN^*EH1`JNGgiJ| z!5Yl+Uib~PK5U%_-Ed6#@{MQ~`&b*Tk!R$b^FksxlN(+p_hqfs98yneUE8`FmZ+uy z3l_TvF*Na1YRkg3Z8zu1YK0g4mNVlpe#}|Z2y{IS*9Qcu(6GLb7e{aG6D>dUD^Z2B z5H%R`zbSv}POES4LVYTicW-;D!0=SznM73KAHIaiy={CF1*9z;9ufgf+pKJ1n{*)A z3ijoqMKJ)+L8Ekx_hgX9w7=V)PODaZw>3CJC<6ATIdjj6+s>AETe?d6q(iUqC55%Yy1m;~!G8O>AOR|qz`406?+7HAA3m1XrShnD$`(w`iOnf6p2 zA1~eqmwqhyA$Fr+^61=`%!dBbrhLR;Ty%a(qL%_1=QET#(~H#S<*!dx;-r}wwpNiR z5kewZngx{t0m(s}!OdC`4mW==mnR)641Uvn#za9~cx zWPGYoMCg^Hv00TiBu#iu zK*tnILku^88k+c#m0jQO2MTjUoibMH5ZKH+>c$aiu$_#l{%5<>Os^>$Ot;T~OA<^G z=-7$*s;+^BbxuMHTeKV7v(EeT)rghF;~K#$N3SHxW&KCbtXFZ2C)M1Rglgc!X~&~~ zcw^!{>wM|1NV>t#pfpp!tjkIRG8Iq=;Rg>y51!Z(zP_?EFZHJv<7~L6!iVU1d5~uE z#9#~O`vugW^zhLU1zhX73i7~k z?80fAOi?CT&}E4EF`H3txMFDO^H27fXed}I9OF~*Ey}4Y=r5j~(=CMK&%&4^(7csQ zVUu2ayrxsoM6VR7)ZPg~VauDT3fdoGOL4koPr6|5Y^-4ndee)wCjHrW@8n48a3$vT zEYhd?CwKBmIDqwQ!iF)Otl}v+<&RF1B5b!D_IIevDNpRlVR(Evav{WOn^3@g0yrF> z`(LkX*!QL!I|j)r;D^(ko7QdFp^2_Xw~ZSGWY$1gz%zryPiz4LmOsH_n7f(fT>Who zx|P@r8yWbx=KQk=7&?qwA5Ocl0Le0#d5ntqEz_P4J04d;Y-%r`-Sa&MXJ{h2K^e7+ zbBbdU1-;KdEEHzaCcisB*31;^4ZreBngnm`#Soc$*QXR;Tsb8I4fqL=H;64hD@ikzf-jkn(cQVMlWP9f+{&u-M zMxaIxRlg{^#m6kp*8vz_xX{pJiOjV6FkR>iJ7t+ZT;A@p1YRIp{U8LH5Hvmz+n0@@ zXp~U{M`}}jx~`EDm>z1663UA@OdE2vzGG(If1y6>A`YwyQT?bXaG)=F{bu~i!C8Aw z=B3Lb?{aAYsAJD?j9h3*-vYtLI}9%bFpC-39q;dkA9eft*GFSLSM3PWILhp-f-oaKeH}(u~FUKuLf$XpzX+cy826qJ>)a#>LB3Fe0R|-4wRq zbB1Y1O%7T}4A;B=uiKl*p`B=pQU$18XhdN1a?&fvD^dTxD{~xHcfk5J`+9=YF0`*fMY=IKQ zERwIC#{-BROqqFpO?d)}Z=Clu8a$S&>Kg#v`H>v-oGS@G+&%mX;@CM--~YzjT=;ny z?VoET2UXiyPUi1$l;Sx}ED3eZf897B)9xM^SP_|rNik)g6<(*Gl5u+$}CW-wOR z9KWuIxm7j?G}YS~30wu!%%6d7i16y_*UztI1d`y4fzIzGtFbDQ%<6CC!#nx08me9A zk@$-9%GA7gyna(~Q-d`6Eg7_6Ncvd-0VuEo`8C?ffv|IFDVSVfLF0R}FzOxjJ-g{w z5TDfL*L*xezRg45MsSJoxHiaxb9+=lFILN&I&CJ+6W>p@rr|c$&o(xw7E0|{Q_t7z zWp0ZG?axk^3iZlV>ONqkHtwBQ&1ZpKZQQFb+TE%WDeVv7stmZg_Rb5lIqS%NFkmAr zw@MfcM0)N7lhhD`8U>W@YcdNbH+-O)MAl#-VvmCU-j!=$T}NI6rV=2nPbz2Hagl`J z6&#h{?kqap_lx~&{e0%r>>RP#G))=m+bDTI^w0dKet4R@Ck<}Ul#jfdTcBu?Viq|3 zY+c{zNaLiqx619@zg!~Hgg;m=r1}Vqx;ApO(5Ss;JD^?oqP~wrMyAfTyzlXqT1Yzb zlSrxZPkj-;TOWI~cI$wS1@Shi#G0$q3fEC7A)Qojf**2&AFAFS9F$w=OSpTE!kIxR z3VtUyHcjmQWCXfm#_Y)h%ozF9_f!viO2-QDGwnmRfmy~E%rGAJXCE*T8xF%eaY+j4 zk*ax=hK4h~qauE{;6-1HouAJt@$N{xGk5N#u%fGt*nqhNAe)RUu3BMyFE))_Orm)+ z_tY~-NB(qhx*frY9k}~v?P7M~q#X%79R9{(j5E;PYXp=!AFnrq{;DZ6CD6~Q16bbZ z`tw}0r_jR5Wy}BKWJSg8PAiyW@FioFy+-dBJ@DHNZgdXeIswd5&~GKY#zu-oC?fk& z7YX=K^hL!=b-qP1bn@^lVN&31L`HV+2Yb9gn|>O#W=aurJDHM+Nu!giHfxL5_^kRb zCW@|Jc$)|!>AS*jH#e^bx9NQSVZOGSR+PlFLQ*0NWu0D$^D`&nMY|56NZ z_`ZCZ^jT{)O1{qC7b?ot+L~Q1TF{m?v!XHpc8juhkn3X=#yMY(bv`MlB7S)4a7n=D zzjIFE+fZOh`KIqy*JX&T?Y1KQ!XCex*>Bdxx&ZE%+j&vb{NEUqs#47Ncv!HfD_s=m zK1d$hwwh#WKllsZZToS?stCWJCzF64m=X5{jbXcK zRPjR-RwBmJ`_k`RxQ~W1Im$afFOiWGJvL@m(^I*7ssyX|Q;TQ*`dlc-c1I!#gA zaoHLe_HDTBSAot&vYbvP|7yqF&zDRX^&^f8jrjHWdhsTB9psgx-hclT`5VDPWGbVr zxZ*?US8fl>>wY42{P&V@!NPsd)H2tl^(d>6ACDp?U!veg4B)S91 zAXx?`t?zLoudR^@d`@vgNE;fpX*)eW1`OZs*r44TY z8FYOn03nr(3Nb2Dono9RsX{SzG9+=4=zw526?&mz^2hsF{qcx>;9 z-E)@NQnqhuXYn@c$;E6J*aLYiiz7{ifhCn4*@ z^?`i$fHVHikyrkz7fyv2D`?>P))&FTC!-H zM=XFiG-A>}S_*6_G$W$??hcPEyy6doXO2}XN^dAVZ_OhIW7!%-@?WeMZiawkv1am6 zdQjgGULqDv?7sJ6{XO^^a8QB3Iz?81G}Fo2eGvneN%O+W6+l0 zuXagIb8T?m^=wuY-U5PMD+m{&U_U(yEs5%D07n2)DW={g)A0M`l+>=&-j$0x! zf&~7-DbZ$T5;benRprj)anmR^3wQyL$V&Rh7=Qhd0xHbp*FQ?nDgQXni^vq`RnbGF zN)@q=6+#Y4v4{f-01#bYJgkhD9qZbPCi%Ap`V~Ly4Mbtva>==SflCABD0X z`tZ@;2lE0SUw5p`nj9xopgyi6h59|X6=O5p3kmF2_|aFR-X@?!SK5B9b46MInX zz95P!GK2sDfC?0mbZPPFl5BNFu=$&7z(8G&69S~qGyP*Q*8s%KIsb#@0BvBpRk=dQ zWT2NV+6<8$H0=pK(wLi8v;Tx7D+?fFZWtGg$71G64cKAti_AP55Jd#z1{k0TMVd7( z(JwVv);MJKf$8hi%K-d0k;E)C7_g56?-ThjQ!hJg>0jMF5$8kLc_!}p)|^zS-0vai;^~ z{_aN533*SS(Rpq}s|xUL%q4p7|8o(W=6U;6y;QctGDYkV89=@^cypa+s-Q|zF}9eH z4*o~?gJyy5VR8?o-G;%@v+uTvI)_TS2?IT?2eamZm-9Nnsu*srSn{=Y+5T$ZrNSZ@ z2Db7wz$QhS#I3%S-%jjB@nZTbL3aHWLjmT5T^W>j@bG|N{kvG2{6;`W$3O5;{P5~f zmDw+NvC|Pau5!4EAfz0UulhbelU?Npb@z7{B%H9Ka15X+oL>})yYMZ3@2{d1>3%=jKBsJA0y z>|*d)OVYyADDmNB-@^5ik+-&Pn{Lw$$+w3C0|19qc0bRVbG@m#LqwK23=yi_p+?@q z0>3B%Dk_eaJEW)3wY#2%mITbM^_*D+Jh+HrjQU*Uk1a}}GCy-k6!Tpr$-5R2orZXr zAa+uOA(&cl0&z*yUfx}5Ye;^Zn5(+8tNL&ru02a3aLT`_A6x3o5&`!S$nkiNjd3bo zinrTD4q7D)PGf>)9W#)eC>H8ZWVU*O%Cehw8>Fz8Gi+;NnKh??QEYu0)1fbyX$pgW z?8%t0cX}%fXOKZDGsgL~5)tGG;4z4K(*{}`#4jT%yh(50tJ$vrw&euUWrpS2&O?}Tt&5!}pqmJ=?M%d4f*ip zssitK*N6!kTfmO-v-wn$cBnkuA5@B21MuBV^@KS0^YClAHOM+}KzH+yQNYxkV)Iy% z|AyiGx9keXcKwe2pXqNmypE-xF&928E#xs1c#qtWbPcG8V*w|oIy14!EUrUuK z9X`1B%EfRmPlKX@v{v_x=$3Ffvz=ieFe0xNNLDDkdh@8$SA@sWdv7~yes+Q|A?cS|L1PvSC& zRn$QMMtfTKg`Cfnr;q;O zAb-Vjtr@jFfz8@__!#S2@n;xeDY?)DL+wLzd$S*Seg|N5uRudpsng>U(N@y2Hz!)m z2#N8biO73gUckRKP*cfdJCGnERAw3CZAAIDhN$?nxoEFraq7c4T2>CojWK^HpF+Rt zd^!)F)((R>X!Jkwv90IRfIah^H;sTln_(SY&PRJ00j!i@*c{kb&{BiH6DSG4UjoD& z^mwH#C{ww>DgA>mV$!ySF$n4i+xcQ`t5e@jFh}J7T9X|-``kx-(j{yHTFwA~k(_bT zYG!&AcDgO&ydTaFa=;o8dNP){VS+uZ2?jx(}W1RZ5=s_Q!G++Jx=h(DD4stEotb#xhN{3N*219 zrFm`g)=}!$gA%n9rordsq=hG#t%FJ(k=|1Ols*N28clYq&jC$W~JKRztsc5SZY03hwe;KMo32T$CmUjx?W36tMc;z@04 zL9hs5@m+1?{B(ray+5f|rEx6Y2uoQTY;D)jF+Eh9NYo~CfkkEh4;XFU&k`JauL_j` z>nZjxaS|Xdi4<`DjFAm=z}mLnX8O&uxXR##P5MOjw48C!p2+%W8t4~+e;W&TWto9V zYft!9Jp0-&XBOUB1^?QKZ7XSISSx?kp9a|L=7b%P+wtXM2dZz zFo6!wePEsM#zhK1oayWU=lRcqZ@5Z41i~N&hBAn($$^)yp|Da*IK^ibWC!wA)8A<# zU=D8X<$r_yXM%ve$^}2_;ETdfuc|kv^Ew_cB2Q6=M{EmAiT41OKlt&0DvW&^H-Jf0 zjt>^+@#`9z6*6^9Zy}Zvzr(hVkrL68Rg2KugXdkj7;!Onli7V{`G7>QzkQU-w_8DW7Fg>`$m?2P-d2Q~1b^Rr>>$TRq z_BA)gpVY}0;nRHf26??fFC#|a>RBPT#7zs=MqrrFAn-nX~@iQ7je|+G^y_ECWWHp>~pbiDs-iL z`(U_KdM@Kt-{b}o*_f>Q6oIjGOfTQ`kYZNJu?fUb-*`0a9ia_LsXHh$8>eCwV6 z#Oq*DaFqxisXqbJ7oNth*huu=2#^jfF#rh)UYVLG3X8rM$XJ*;H=M1Y3W@4F%rdh6uj zJ-0J9U~zUiO|ju3yJ6~6^<&w*q+$>vkaqPG(c-dTuE)ji+eIa0+77t&t&fj2n z{K2{N)RvlD&lz*#lYdt)sF{kXq!X77dPO9zs<9_P=g+`n<25NK_6W2_l7IJ$H^E24 z7X&eL;Q{pG7)h|gH^)ySpX0d=KJ!v+10B~r!8u4QY6S?LUM1l_2Bq?6?GJMrkk?eK z#iaGt!FkY+f+DZAo)<5gMYh7`(hzw8BlfQ*%jwHgE#z!dAVeh@!=%2Oia^b?4 z`$F12ITKkrK^4p(BosvtH^KaIz`t!I1bU!MIx{5OAw~HljgA z1X!BbmYeT>w{wr3GFV-ikxXQ&{i;Ugz8}FdpG!|(w)-`KnXJ2aT`V~e8kxLX&_pc! z+*dV!x)Te@OD;C*fV!NEva@g(5n>%|K{~fiD;@vj_~4U9k>jG2XQLxn<2d&D$uTDs zJ7^wqRiuany|?R1kAr&4iNbja0^}=vwLOd7J_+`os)m*=9H9}KsOh2xrXDX0AqXP- zY%9g?uCF_cam+f&Tq6pIJ`4lqbBX^^OJ|zQdmg{erC^!m(*^~R&fxy+pkY61Y3FnN zVgo>OAS_IoL43k!#6b0v2uoX>=@4^tj2Lrf0raOz#!6BaZreF8O>y5Z5S;!6Wq_|# zC+S|YgXRtbRid!zLN|JFCG%`Cc+esV+zuY#JO;vm=e$IIxqE8Ar`H>Z$RBZ)Zx0XW z`)oBO!ozri9CEPJ9C^L59M1yh*cZR>N!0exr2Jl)Qy^e}j7fj)vS4p|oD_M@81S2L zc8^Whw4sZT?OVx3&R(o==8*Fj8S9^3lXhNT2QBv!1l(4hh)l*b%zTxPCXDkfl=@B+ zG=$M91*L*6;I&dChe$(>^5k!i9~!^Fd@XNn!w18<>`O;>)%<w@FmQ`z91RfpU8g*P2rCl8Z9zjl<68&mFb0|3IyI$S*^%b zSZ$;iFr}mfXuVwuMFtJMjdAxd^0 zR(Pz7)-Pg@H=I@_=;~57(Tai-F^SGh{rbJOHaCfFBul}d)W`4?(ME}U4F`9DqQ$Ut zjPE}y=Pq~tj;yQs_d>h>2AV6@A4yrQI&(u8jr7&$u;a_-_x4`~=r@;r=EwUEQ+H8k z=7Z|m8~gjrGf9CsMIexYt>$Z&_F+FshuLXn7_nFCYp@;#CP5`XuAS^(bY*LWO2y4|=AfBQ ziA#O>QOcZ+tLkzx(mZGZR)UsrlQJ_Gp)s8=G$$A=cl%GB%@X)|yoi3+Wri5*$Ynbv zi{L75zy_SEt;BCSp0b?o^RV{N*VZz{&8B%Tg0{cx z^T)x1_&2kyGT&}&I#67QuKIxf6?&GFD6A9DSY@*qQ!1jsIgE%?w4h4~;}tpURd$Wj zBm(f1gu&&_ldCFLQGtQ&ICDIYT`H=mS$IPfn|?@2XiA)He9<)f>FfKpG3_^P-Q9>+1STE{o@a*15=U%-mv)4{1=iaxXrlm1vfRtU`tKs+ zh6r@F^J<4om(h19okU-XU*4|^?>#?$-OlHCI*Rr}ZS&0Nqw`g`s;SR4Gh_T*Ejuaa zh{*yvSpK1jE-4!`Haz4dO?D61~!LSduRZ}KK-{8kgXwfJRDr;hBRfJYS zJmZR%p4CeaA95#*-xTgIO(WvT@Fw2$lchxe80e24I9bqtxor;~a@|iMu^gFU>Ii;& zJBAuX=My5~pMYb_jb8Z#VUygh4U`9Mz7}(-Qhb;_o=gsn6lO^(7yuHA_mlzaQ~3;$ zK*o%JclY7|NBhY8>;9JuE87?9K`(po)=HkR`cy8T519t}hKZls%1n31U7TDGX_1Q+ zz9v<95#m+aBFYv$oWUDNc=N@{_Pp?A^0k01Uso1k@b?)!)aOVB8!70eNj7(vX-}sFC}d8d!cN73!{0v!a8=ha4m^0 zs2c)Pb>qBqnGQJq-)`!eQ##4~Lu@V~aQ;J*@8^j}K95TjNi;**$B%~zy}s`6(gokp zW6~Qo)=pMByNiVdd*mSX8VFj(*SfZ$|l$|XD zt(JrsGwZLwv*aObVv0crTs#4ZZ^sYMG{Y2vd@K0z=I_>CsKM{nI{)Yh>@Vh$9AEbf z%N2y)>s=AQbfod&{oE19og>3^Gqe@2d1Z)_Lr2y%2$30GmpHo|HOxTMf-ai&YVA>d zQ!hDZl;UE3aFOgPLXIwoDlDcPpXd}@(1$J8+;h+Si^ z2wr!{f6LE!(f8X?*o&D2zn;Eb|*c`d5`qC?T?g+e?dFV%RuYVb%L zP6YRlw)QzpG8)PB(!I}A%GpIXvpxN7%rovcCv)E-^!WeMWfF)QVIy^%NQ)PNx3!#n z?MkVdiVCm+cfUCX=kfjR=3u1r3(mKeER0X1X1RBn>JSSBEaPUT0*| zA{GTfhb{l~l|t{QGs9;o54I=+oK_YhOYbo@f(5+GiF*8XpJ!9RHnqUV==MV6$^7#_ zQge{9Th$QXtiw!9dd7{IFuL%-CWHkBwY%Su zrCfl=>Vz^2Qx1BN11Bq7b!k+NT3656=X!h0hJ!$U!IY)e`w9wtvNMiPX2!D$Z5QU>sLIVhSAkNKt3O=wPQVfRpKAs#x$YxC zy1#L&2{_d>nPLtk9ve3V&hZr0UD>`+)4kr6RUkwiHeArFv*1owZa&+enH!vQJ~m$L z0;_yn{Nqyr3Fp-Jc3S_o+6bG4p$rMybh6~|FlGyOh^7ZNuKhHuuDKk3tlP@2`468M z3o$rkR6`Qw;U7sx{IsyI@r7xz9CZNAJH#-XGUU5-Uu|%-|E@bnRm8tVP#RA*$uFm6 zL_v=0j@(69hz+8OwE0l< z^bExWV?C`>;@!hf)cd2M6I z?>r(lyVJ<@Zt?`xAYWSI<&^zyj6+)CEMdF|4RxoG^25^IT!l_otcI2DHNv&+G%U@x zrNoRMkGQzL(%XZ{8B8_~g)f@0`g|SGwt75SU+(X3u2Bt8?tcE4-{OiFUl+p!1DR@z z!k%rfvtPV9Q&IIynHA3S2^x71ZcOkwfki>HJsA{ph$ic3qLe=a-D*xs2DTnmb1)5@dvx6jS_K+*UpnG~zOnMZeR z)DV0E)7rSvS?Qa#g=i6Q}ifhCsdV0zq!$GNe6BZG%i(sFm z;XQFP6!-QsGMp5vv#!|~B#j+D{XMvR7Z1NbB)GlsuNuiN$6paO9pg2L_OPeD$MY1v z#juXz6JM7uAz#IDC)r-;n|HhBG}&))CcK&B^xVzXUT#hX9Dgk?Q@JbA>K@S1s>rq{ z1Z$8`h=%vOgXyN<|M~DvMq$QN6#X?WSb*or0-JB7={|EDxIF;K2t<`DL)-Iw!QC1C z@1W#U>;H@FgNZ^sGwJEU20DxSsIFvJSSGAN1uqKee`@WK5D`u~;v51)Uv#=#JRf%n^Moio}mjkkXnB)kbn)lUy z%;qE=3Z4RuFqZeR7kY%w`blVH@|yA8g8vllR8zc&IDyrzyuM@ZMCozOdur8KuiD1p zjX#yXs_2nK7n;TuQh4BS@Zz2=lEU|U-L$QOd|wvBQVtg2RH1}0TVLOOQWkw&k67gw3)H-1mUv7tZYeTNB_dARHxiP!!EUx6sS_r&lJ9$ui468b zLW>(ZHRd5}@IMyGt)nk~YQ3CNxWH|P2YG>oZCXlbY%*l@88MLfso~#?uBvK$%QW>i z1?>o_Pa*>?4rZpBja4MY4ONlO`(T@7%yfxM+Nl4RU_2NluXKrmb%^%0hoy~mpJPmI z^~QXmf267LA)Lf54B#5X_RhmM`Z#{4%2|t8th=z=q=l3~fokesnhQi-arFHc2$+4p z;{FuG%^B8HV?RTYSd1e>!R8`QmR4KiaD~Dqi^`;VqfA~vuEFQxDy@@Xr(VpNr?-bS z@GY%;C0P#@J32j@VPyr~!}rf|pgS~~B@ zX84`F^kThXg+6N`>MKGF23yzBbVQ+8p!9U_3;FBdw6 zd@-TTEm(L#M;xnIg~^6wu!w>(Iv>)HSBHn?6Rl{fs1H42DJyc{4)~KzH89S+3#@#e z1Y@#QYhm{{G#j5O2j7{#aS3R??J2|V7rMEgnRmX`)G>T!f!-m(Z^wXw;F$q;zMOkG zakI?G*1m$$xfWBY$^X`#;TA{}IvCeUnFlfMONK;*&?%^AMn?hRTkI2(VeP@|dC5Nc6!l?0#HDGxV|1D&)9#XSyKf9*0HF3M3;#%$^qFB^w^9zsZQ}>k}__>2xg@s+ll}Wxn6fCd881Rmbp7pQH2!Cy29J_>o0)E+wCQ#gnVdV(E7_@q__6R|K ztxPP4rD6R~QCA%m)%SfLQc8=Iq;xk3Lr4k|!qD9vqI5|s2-2mfG}0m6AR?_WG)PIq z&`3-C?)dqx_4|{>nmg~Ed+s^=?7iO`sTtq0Mdqi3=m?p>R5Y9sVhMXkn_cq~BqkwJ zJg)S|XvuBbGW2P54i?@(eL}6+uz>2#H*|aw@?ioF=V6BA9QdpXk7*X!HB`5EvW2M~ zONZ7wbNVciq!IvpiR0FTN#aE9`E2{^-@}Ih!NM)T9+AJH^OPxD?DM&NKm|jdUDd;= z6WJJ$HKKTp90~)^d*zZ~&vRVPJHkdVG2?0*KOSP zHF$Xgr$&^H)5Caqxt!cZ1uVjrou^x}8<+&2JlHtpbP3lDK_kR; zkhnMh++CN?$0J5nNeQh3Jxb;zxLEo!*e}xMxuUKf)y~WUiPTKYDC(OjQlAa1;ZyZE zoVR^ucDS0C?D~n|K-ib(@%yao5OGQQyjRW73Yr*~8irkbP~Oji=~;3KNd(kRdTSh9 zfBgcQvEkuTL~6=9h|^tA6(>xaXXd~hCl{cMKSJqZK|$3sEiP8dG=vH!uyTZrZ?G?eRl zsxg0fh{Oa04m&>?v1~|-i2T0&Q?Rur7fXt`1gx)dl;v~P+pn9@+H=Xm@B8f3epq#E z6qayrOZZ6@rQ#?*O=2>TZ(F_ELyo&K$~ivqPbu-|DNUJYaB-*1r$UkbIa6>)Y6%9;KPs7X z;LdZ5-paD^opjeuCAA+qj;TS zzI4Yz%533JV&7C8@hgavO=|PAtL-%MRYvE%-laN{fz}RuSt6kJVO_a*g+@@|_Wi|( zOj+$VYoCBcQ8rGz-bNEnq>}oPFW1x2cFgCw5>dyedU__Bfw;9p*}kZMIvmkq*ja)$ zT5d=*Ilg-0XLQw^<=d@b6Q)?PXX)Xj5&asVd@|Xs#*WUN^g9)U109|HZtNOgs%A?T z{No7ZvTVSf?QFcIqsX}ZOIW3=JvBG3+Zo?ZzpkU;j>RvXk`B7tI~{UWe6IN>fwiB0 zS3dL}-AT{>;tEC*0O;4qbQ>>NL0k??JRnPfG$IM`p7d#S$EU>0W>?#-R|Nwg&iFqy z-P~W=7h1jG+v`?v!mqdeqi_ta8bbxk2p^~X0XBL2$`58?kint#2thrs`Tz-uW;?Y1%`{A=dxJ z+heRvxJCKl`uf)U*{oFfi`u^{eSv(14KTCMp*;ZnEspz&9hf`M0tN_xo|WJ9d+hHj z3a9~5px1tyk+Mp%M`(Dr3VSSM_iQ+LW;)9?Yr-tI+X3uej5>N4TFqI4&rX=)OA&;y zSgq@x-2Wp~aWT-GQ&y?xXfX)kvM0e8Y^;GEvC-yvci6J0^0O3Nz!F>+_IHI%-;csa z5|56C8M%8}Nbk`88^^){a=u{oB6Hyk12Ag7@XuC3m*l zLtgiMTNSiw!u2A%*Tb@lYPXddc7G3x`_B7sHZ2u1=E*ODS@Mfo2ALnod@)6{Tw6j} z@4o4E0L+kv+OE_ki&|#u)J9vTY ze_jCPj$%jT#6E{o_cAya;g=)Q6YdutxYu8uW@+_{e$#i$#z~#u*;>)ciDz%1Omidf zdABzo&ugCEl1$=8D7{hU7eF3SP{A=z2UTGUL7=Zs+?D#`OLSQCB*N9jNtDKwjR#GO z({7l|!d>*@Wt;BbVkc^eSN}%hqjMgBNxSrWchZ$2L;Fv@{wohTl41Hr1YHmOrR5Mb zsHLo(%wAgbKF9KWCFmu-<#xXcWB_GQr(|+2X7dkWo&z`*imB{gxXcCtlCLMD3p%{# zo0sBmsSq9h4^c6+QN@R0w>k=>eW{}!TYOF-gaIZIFglJ;OGyc(fvlulRy0fu4V2Oi z3QmAKHT+z(A5b8mcG|G@ZrtV}k9~yK_l>XY#L3KG%E)wo-?V8S48gABckTUu|4tjA zI(-gnl1$I7z`SzrUu--qsp+DgL6^b(qvrPBS?;>Qn88Ma%T8*is=mlSK z=nM>B_3!qpD2%wDf9t|$g2b!2b<%lQ)OJs6k;#`e&%ZmrWI zq&M{PP|JB-$gmD?Y8U&zq+Vs?F1ar*X;^LEn)>3%;t5%}>&Z!7FL_Boo{s6h`8EN# z)l1HG5R#2V0NB?-H)JRnLdVhtX0Z)}coIw+u7`M#?VIS+yBKR?Gn?UU9 zNm}irM=IUR9|>vgFNN{3!ltX>@jn-(rQRph3}$1;)Qr$dnDS9$68bB~#s14kfbrIJ zhaCwf`qp_40B2oQwQz@4=(f}THYo-n+Z~XIIVbnhx=H}Q^tqc*ETdbEABy+H!(S8~ z<1<`ASV>XLn(8A2RP+dFkKFu+rligbZYsxq)4#ga-h7NE>|?$3J#8S3;0NGJFc0^Q z{Zc|Bl1aMf8y?2DQb>zi6WYUl4;URP9WEtC6Kg;Pn(q!@qJ``q1N3@vv7b2)fiGdK zYASY3burxsWSUJe*3?M&GN1BL|Fbgolluk3gHP7#23a z^bZIxXhSA!Id^6z${$BXKd!GM*Zc62?sBo6Q}|!Ct$tD9WbJ6T_;70lu$*;Z-aLKT zIlL3;!mU{WTP30=F;BmAdVX`qb~E(R`%2uW((@8Ns>IHlc_->qYcI0?ws_jp$xS~n ze5Pg}U@`AfZKdyJ-rq~LrHtefNmFf9@7tWBeNX%vKrcL(8J6J1`K^k2~TYuA8i$Rm7W;|+K3Jt~fOl9tIw(W#r`BEw9Y_(EO4{SyFh6Cmw;V7g{z+^&M9e6RZpy z^0|3{`#D^Awh`83zo-+_vJIM0?96gTU#K1#BN!^A&Xr8VB3i1#LKSy${(v$?PZFQ_ zt*Cx}hg$e>_}&KlKapR*VWh`uaesWpSMXqyT% z;&uX_C;SJ}K`E-V+>w{;XZn@>-UjR{>{Nxuf%Ir-muohAJcN4hen#7encp(CI+k4W zyha9tpub<(-KX*foq6~-8fnNj+EbRw)1$5Svt`hSpKXR&C7M4>*+-8)A?$R@NhNF^ z7O~fxn3~#S0D2<4^j(rX|Hi3PMYVET881a_sG|SS``85C0q^Hel<1jp zYC3WOoAi0erPoteTPelJYZaL}WzevL%oGJ>sIWRz8Q|D8#>j(;p!1#~bli!~UcYFk0L^)M zDb9=;m&_({v4O5w&)P7itX`AZ6~)S$l{D?cBxr@>ppPZ>iOGgLUP%Pfq-&FCs0Tk2i{ zN_8=vd}(>5iMEJ9OrDu)}^$*2}a~?D_CjUwJtwp*Rzglx9f; z;M@0B&Mo!Gk|%!;Z#91bCr>{NyT^ZaelzB8z5OIMr9>7bxQ|9jLW#=@-fJ6<${{6J z7L#Aq?;l2V?i?>Q+Jz~pjI4!W<6kE~RGX)i8RdTEAZ)DnZe~k(gxmy)6*p_p6fIfp zT%R}S_UpHWKw9BoF{;$={ha%4VFT;#?&}DP6$R)M2&M;<{7=Y>F{jZ#%wJdAfc`um z)MSiYlMzGg(bBC0^nNORZ)Rr7r>$-NOJ@6`UY;@ zE%k>Vch)E{32D+-ExBr5o?>mSbe8;K*PxK_e;gfNxE8hIm1<<*vj1bXw?AxSV(IrZ zC%PRE=RBP>Xyw6od*{|qv_qdVD_=z!2LymrjQW^uAbd8AO(03BsP!qaHvduP&=WZs zWl8IS^v@-^)e=<#?bR=O`rU@hy0$}02V`zO8QZ0J&&s^k_mFi1r@-XuUeqZzT&b7V zoLVL5ui3-hfI_Qd?D2)>R@0gw3WZMHKg)>R;jFzDwEOIt@5G*nJkLvs9Xtf>b}2iU z0ynafXltcep`ec3Wx!JxP~uv5{c1rJJN&^)z5f6sEwVHVD_-&|+>17_>8M^x^5tD_ z&l8?;v&L3a^oqe}!eGP@yBqWH7x|p~g-~EOWegDk_SLoS4UZ5W<4y?ax5c^7pA!?y zBu1ht#arH$|EWm+5+cNm1Lh5LXJa2>!Os41sg9|JSusw%8~K+a57y%Wl3B`zur_65 z=>3C-Q6=T#UC_(@ms{_dlEp6jtp#Z4D3KJ@+Ov2+3(y7}q9?_jC@B2LA4Ch?QtKg8 z8Fp0H-x>S8*y_=mH+TrPVXf83Ej?vM{N9}5kFshv5C07wu`3EufAF9kH#>WDdtjM6 zNkk=F97Iui?7EWtOu1*<X*~uNdP7>3&-##oulf0>X`t z%kc)me~I&_B05hdW2js9DnGcW+0**{3sa;-$q)LnX$C$5Bo}XO2V?yp2QyA<+go;x z-jeE^c|t$bv>W{zZinglY8y>KVTW$QXDY)ldwJmdC8rfYFv;(qjdKx6A-_>9N^mPB zjE`#u1+EObb?>4?Uz$@@4jy*p3_DVTG`n<(9sFb~1=Dm=ZmtE>h8SO6xEZ+p7d2OM zvnO;(uQZ#7im!V>^c zNq?6wKvX!{!O0}{&mU~9cvm%svTc4FsqFg$ApGBjXE50ortZw}%ZuMGm` z)`3z?LG5vT%)T39t6AX~h!JO-m#YGP0!?8baj?Z)-;q0pPb!X5CBz7ZySahJL%`Gq6lejpFt(l~vo5(%IPpWYI z3U$a4cLD66Ota1{;=||FbM|o$P>g!Unq!0Cb~aL_m~j9OK~fHxEM(78Z6GrNb^2es zfz4}e&)pistHQ2{zp@(ulb<9Dt)5*Brxh`LErY)SNGegt!4bThY#9D@h|7I80LZ;kq}(C^TZj^Dj>Zr=A>Gws z+^?mMx}%V`Jt$-5VK5F0QF+P0^khV$gq*U<$nHoY5kdWhNDlFT;@HR2Ka(O6(%$JQ zL^#f~?T_bZN|V-o2uY3Ed4z`fI0G&H{+O~90__B7G}^|u;6Wg4O@-GSm4}4R9NBvx zgVBkso~Voj@=*|Cc}mp({NnsK@*Y7wl^soZeSPHtP=3bSaaT8~?>o$=g*2&u^_Vp1 zo9W+d2Q8!7H84`J^$xH#=&Gob{RD#8QA%zn7?%8bLZ-_GR9_qv03&hl?)S! zhYKlUSe6g+9*~qA);AmD4b;J?jrGVG6jhYub7k7wrwFkM?N1D7E)olj?R1b5ocv^l zZT?|o9#51yhIjhro@TI~HlS;HWFOG`L)L3%SGzZt2{zsaJtu^r96`B>@*3sHI{h-y z<K8zYU<`IPTs5W7<^SIvAC|p*dxqE^+*hvs_@6#vAA}U`h4| z{?PlvYsbye%ttpp?IR+A3fLB>2}~+nIYWuNOQf%`7m;q_+^Qwu6NqF6zw~C}T>?k)pezLTP4v zvmu|$#*S&gYwwA0UbOTK?_`H^Hi>xaz+%O}Qp8I_I5Rz+4$3TWe5@&AN+qX7Zm?;j zqt-){GtN_=64!n%*Tww$*?c?coN-a6&hLB>?_p_w-i+hXSnT7LY?sI?J3feq76(oTvszw> zrcYWoaBV4=^ro*md{8B@0233wz7Rf24(kACDcKoyFAEn|qii`Hn$I^WGAr>nR8aUvP>l5Vq0MGspwX-(W zZk!B)GW$4zl!6Mx+knIK-)g!nk(LaUq^Bpu!}hHNaulhbdo8>h@dSxlJ~5QkOdp0W zG6{mWNpOD1X@2ParZTg;{8}#!`vFVR<{1L66_h5{W4$rOrxdjxHfHwQhkLy`ovfpf_@6E)? zw`U)$nVDZ(&e4FNmj~|sntkfHvyt8s%)n{S4)!yJ#N;o>{&0ID!$+Gob)cigM%OgY zMfpRJ=?Jl`VOgTqY17vhhLV#Ee!u|iuy&K^k%Flnc#YV*WvTc2Nc>1)yIB)}Jc?ag z2SZ<1leE1IYTf#)^UR%>fw`CHARmTd0--EKP%tBN&M?33jSEBcD@?ZV39Cv<_3|b8teRFO{@& z-=yb)9}bs(3@f7%>Qk=yRn&__8BvagwrM1zN)G$VKp(bCfB8}b{-w9S-wkBjL%UND zfTTX4#*miLAeKNCEw(=`X`jFN7?i2J{qBa|o`Cm*Gz3{Evh9{tY?)H<8c+;77BF!7 zD-NBV(>dPH{z&{fJ;J-NwsTwxkgZ)&rL*&CgTs^dfxx)OX}=SkYA1UF6*g&G2Ce_0 z>fjABy~h3qZXJ>}63>~LX)+R*FOhVp94`6g-@jT$1C$!jvN)@9CSt)D_D?k8Kj{{( z@q&mzr!fRS1^?w-BQAC4Ap+YnEi{5ZrE-5Xlw0r0V zuA=S>KoxL?va6wTiz7~1#9>zA)gmAZ=$GUEEjef{pr=9=x zeoBY_>f1d@6JaD#|rc1f$ zWr1@2dwUhJL|y9z4*KV;TmP-|b64upa_i=LGAh~J=AlL79F3eDMHemfqpOhpx`?$|GWi9aU^f85zU5$q9uuSqqrr9XqNAVlqW>(2EF z?5tMqL0AvAnhcana~A>aObDhoPb~W4qzd>;UFo4@ zz?)<_e5bwfyGoLJ`e>p2H|vit&H!UH&y+P_Ls^#p<+;+>XlJT`QIhUM?_knlfo_hC z%sGPwKpY~Aa)-Pt-B)VUUyDDXfyRNU3889FG%>gxBsH~A_PgNcm(uDA-~q4Wi(XQL zp!AVMl9}o0pc7RyBv9p<%bZQMBD(Qclf_oN2*CDW0YHU#S)44*g}02{a&MTkSHKPy z7=}3MiIr3|i}oV>OA^V9P@h?BbVJ4`%2qxO0pEKZ3O-g!pw(AUeZzRRI>gz4_XBWACvd zaBe}Afc>i6*|C-|MT&6wBP>)5^;cygQpXbh6*GHG@cshhiN0o5+jubu3G}V6w~OCN zqdti2cR<2n8;A_C(6`k{I~pO5cb-0SfN5{5pjx}cYXH#SH_FjzwrPdO@Ywg+x#E)Ul?ZsB~YRE<4Dc)OVuaTis)d)u$e1lMg7h0P+qUCaGNR^{}#R6O-w*z z{0cuRW0Lw(qm(u_oLV0(F_cgg*1ZP2l*-5~G~K~K-gMwNYn${2kYB_2HgpW=4+OC+ zZl?V8!SWgMdC5VS0M|_55(ZfqL=o2(Mi7&*+&i~2rc4WHOtx|XsL{C7e>`Z95>6kR2W|=3UhPE!U%Q}0R4JUFo^%DQIpFP z&I$T}MnG^1FdI&K%P8a6BO!Y-uw&e;*BP}~ zE$-8=p3gs|qEmYTNeKid!l9ODdm9?FR*4_QUcsd$JsVmDfpB)Gd8=k3tiJ>?hK4u; zC*4rna&NPmH|Xv)5(PIo0w;4#?^#@wYj;Zr5Y5aPAjm%2qD`Kt~pVPTird zYS%PLw!YMimJFsiRLb=FT?>eDl2ljKQ>Pi&WfB( z9b{41MepZ4>GSWv4M3FBKm>gttipy!YX9ty&b?M&;yf+!!wW6<2<8~3fDt^k?Mrl^ ze)mJQNJmHD_^=qbB*6dy9=+ByeH^f2dCU>)guO3@LtL6v_9+ey61o)uXihg;rFwn9r*R#_?Ry^HOzcb`hs{qxjO zF_2RcQsi@n+L6?UUyYF)Sy*x93G7D+=oA#-){)tbi4cqFi?&!6puGbC-&}TRr|H)n!B&og zF0gdii|9N+>&otefsQ^s91=?ap>m-L!QZ>P++Ke>q0Xb~7e4*>T{oI7WL2|qVQ*+^ zVsy{FVS5P*)$V1?_FbG*?Y`LUjoatzsNzaPBh;iE{W|ozF_{f`9xXgbrJVqj4DRp6 z>$!c2_RAB*5N?F;{^p9W;Nzlye=FN6uaT;ZTC&_al$$ad5?;-%n6M)$*nP?)Tnu zM3bAd>h@}U-FCaiJ4|8eW9_a%5lvgCwao2Bh0kkRq;d(lQ-#L#B)2ctf%0S7N zESy+Wmh%EQcR<4wQ!L=C$AMx&<%f>xBM(3*Gag-f+-$n7y-V2SyC>@yNFnQK;6@;m zDW*+CGq})Zfye|FVXUf*IJ1;TRqFxK71@{6gn;}(50^03|O)~LQpI~AP{WH^i1w-u520v zMXnkX195{@Af{_CzVN(@Sw=A5@*PP`Cc%I?uizKt4C2F_$9}&E12ng5oI0~x9?Bgy zP64ZO_q+lucX72WHVjGz7Db3MmZ>`vo6L(Y=q|_w&7~Q&*^4zI`MX(3_(~+~&TO1T zE0x*{)UMj~?u>C4-#N~c8UNL`_uk|T*w7djC>=sI>md;y#EDb>AO8CG!@hq|8+W#R zPK(<)B^rxU!0yC*wq=#}s zE{WNuQrDq5(+hZKfH=OZwI1vL5|avM&x`$R22Rko3ZCp+VSf%^iI=Bus(llw1HlDR zJNNx0liSYyNk}JAB0fF4%E`hplDJPU#Sm{mz{}sL&HD%)+;qZ zf}g2PbWST`hi}5_;Nc!*CC$Vem-8b6aCl)E)p~0-})LI5peG zqa9S_Na86D?q9+<5YRemG(JZ>(w#u5f4p^X3C8ZqPx+QZzGcdnpASh>%Mg zfvdBwLwQSs?_R+lv{Ah&mB_*jYSd>1Sc!Q(W;+i9@MH42YvPK6IyykoD!qjf{0k6F zP;RzCtAEJr(8mUiKk_?O36$&z6u9y|!l6D)UMf5tB&bVAk>Yo&7#=9VE<&Q7PgUUh88#f|+lV83~rqHWVN#{*<5ikZ)O z3F1uk|7pmvh&fU#dhERf`4EPv+!;AV>cZk%|3(j}Om>hS^lcqv)gfZ~2}_dowUP#J z^HTBJ1G?;ZRRg_jCF5r{lYScGNlR-#NQ!1h?{Fk&8h<{|wT=@gv{w#n%tq!%4ZF3; zY>5^IfrAumn!>8<+QMoiG@f48Vp#C4IGGKQpNDr*#*X4L2%^LWn_I&`nMxYebSW{z zkh3iQm0EeNQhHh;!!jfzVA+?9Y!a=$ z|H7j`EruG%(h%w~9|&q=Jbhw)Go6^sCdOQ(o%%fI&8&j#V`JXE;w|0p9NAVlehWp< zQ?1}5y)E!P&-*D|Q#2%kLbNW_X(BkLs;47&v6YLVtWAI@phBf>$+@69;}|y0=;Qqv ztkV`-?*WUzJ%4;z6_>zx4NUFbl8Ci;6%YUVzV?cq0}rl!A`tnd9$n-SwVu<_Q2A4J zKK`#rVTN)VbG!)j4}(F<@t|f+`77XWrRnE1+O@_Onza4ydHzGA8o#8K^&X$H*mTxq z{2eNzYah1w=D)lZB8=Xw=73i7Je&@9Tfv9;NI*sch;n4g4|u4D*o<(hlUQ2hw0XO) z%-@L5lpORmv?5O}j^X1t`gt=Ml?p$)3CjbE&ENlsnUTKpSbBT>R?Wl#nrhsNMp<7*WUeU+6PJ;uFdGwOz*lCHqCUZZ&^%cLS zo=f|KGto65_yRmETIs5rdQTROogJ7lzlG<{gbm_D_9&hM8YebLD`0I|4RZ1={wQ!q z=h-mqj%6ec4#fh=Qy2hG-rWzz?(%Gx_prOYbT5^eqdcs{+S*oQHbeAb+2Az^_+RkL zS7KP8Lnvwul8%9A6TBw!Tl$niGimBCr&U*V&g5>$fKA%e75{A4ttNi?)p4_h+yU9= zY`N&ER5M~svDse9(cY(&KSbCWXmNUbC_UafnTKxC=7g3|2ADz6hkK}XB{d8PbT$!k zi>gjlF{4*(x`V7oRcBAFB455@CW;x; zNk1Pq%12eY^1445fc2}?{c z%amr*ixdAQzS0lL;o!8v=5ye=)U=H12=otMLAQS>sEfGpozi2}F4wfEfxQ zwceYL$xj)zhgB%25KDH%QXcY7lH$lAR~HA$%0`ul8XjMCkySK50|H2Fg*htJO-i@i z$BR+aY5?y#M_&HvV%pAc7&eI;*|!c%NO}~YRS1$?aVMQ40$FPq)n|Qib9d>1;6wLB RCGa0e>9Lx8xvY8U{{a9e&UXL+ literal 0 HcmV?d00001 diff --git a/documentation/gfx/logo_template.svg b/documentation/gfx/logo_template.svg new file mode 100644 index 0000000000..eb41200e30 --- /dev/null +++ b/documentation/gfx/logo_template.svg @@ -0,0 +1,344 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +AMICI + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + AMICI + + diff --git a/documentation/gfx/logo_text.png b/documentation/gfx/logo_text.png new file mode 100644 index 0000000000000000000000000000000000000000..22354e62b19531d2a70857385557b5a431e0336b GIT binary patch literal 97163 zcmY&=byQVb_x1)v6eI-+X%Lh~=@jV@ltxe*Nl{W747!mnK@jN@ltuyR?v@S->4tBD z_x+9W{c*j6bM{^_*NkUAbFSm}NKqOalME9<5Nuf)31tMibO%8$(_TS^Pm>G%%8}YfFRGlMKTg*X&8*_eRUR1EjJnzXnd6S= zPJF@kq3lPU>t-Xh`PhnBcNFy)_`LL9^3{7M|Bfj8fOdJbara=$)ikSV;d{Nv8bQsz z>%_X_)bz9g3PK&9I;CeRQa*2uhmA3_h0EPK$;_4;E*BZeY)&skRhHrOyPUj1smb5E zDtnD7Sv;J(6+sp|n}yLmRdd@2!U{e2A0*;rhZXEQJ6m>D@~Wx3c1*AL`ex+a+ORjv z)pezbWXdMMN06HalW3kn_5F)0RUcnhG4qlem~)Zg-xt5rAZvaILP zmud|?MnQ5O>>_#;278CYGBOjC3~#`{Tlx^GO=_Y<6r?U) zE3}~LL3bf!xMkos#DQON%ZLCe;3>jD-V($U(HgdSzn%WBs`IqM;HEk)f$tFGo!p)4 zGDz)Rcze^@xGjc~!iWm(Nh<1u${?+xm6N$P7cL4yLNSbXKTopmM|#?;_0pks4tx18 zv+5_cB9DWr!b{)h4KM_h@>WLp$;CvfmoD7Z2&?*Dm4=US;1^+duE@~`Ep>}w^|>-m z*Y^-7HOA6(J2_<1SurJh4kjFhnU2I`TSz6+cRJ18(-|hUbl!f|!PzIq_n329-8H?$ zz1$MT6D3R-S(Hr+XwuYEm%xdjN+f9LYE3rHHfo4Io>^%zifqEoF5e^bh+yoFlGEfL z6W5G=rtTe8->M`*7^bxOJ&g8QKt`Tq-Uyq4-#iWCnLz7;G|6z0CsYv!dRqsuD?G(Y zqBogb0@wJ%;cpK4SSBlG%H7ETjw?5qtl3%=wK5sIfPjSC{vzCEPJ zRY}OxCo|NSPBxN8GqU4v7dDhn{lti^Fgl#?3xkFgG1ZBrDgIT7dV*IAwguX>auP}NmiZp7ns>U{bF{e zSfbLEC5>t%7@8+U{4z@4v*II7aHO97_1@lmQpR4mbIkD%3;py3Xrp`;XdUE*N>~jH z>F?fXQl<_gnp7st+;K72ZlXax(!ooO4cEd7YquAvlRNZX{kCkFeQ+62{T9h`20fZ* z@sKY3VYGtGNO2wl$=c&aWJ``~=%HnZ@1v^YtH+-w8U(}s1JOW0;LYwLFL4oFDI536-*2&%Zw83j@a zZTe8zUXQ>lA^3DMKreuk-z@U*io|$R&93-B6-|8D;;1|h3Ia!=>9wz)+jNsWvqf-2 z>>j6d{?~z;P14+zgNhWjI}hT?!_(gH`0hUXqjQ`@Qk0_gjFk-M*8)`@`Sy$SE@p!y zwv>QFJfu|P{w~rM#2Q>FbM5DKs_E;=-4ShR+6R~Y%9bY2Yz{Gq_&zf?$*v61(*_O2 z;skoQ+Z7ZN^r|c*M^@c6GH8`ZFiFd{6$ep( zL!Kpt&n?4MvsAfCT}~*JGYR5Dil|U)?V2d>yZidhz;PBfpirw#3r*P&PCdGT+yh%G zyRPwRucqP#DfZae8re<@a+i@Q4s=*fUV1Lrp`{mvgnSsSNdTXp!P-r1iqCTeU%2Q) z6b`2r6><&aWfVYmHQ)hGyabLEIqGF_vfNhe97T8+P9w3Qe^KJ&bJ{M81ASYA7v33p z>0bxd^ENZX{&qcoPEv?L;xjne%yR`1hjknl)cwek7z)iUZS_}TQUleFKC(kkouZc9 z^5pch!ppCTFvmljq<4|K2CGde*f+s?cb{>PRkJGl%ugbEI?p_wKODunb`>R5+6b5W zVZ^s6TAv*O^=AK0l~G#e(d$8iW}WDoemVQ~JXhA4Jjdu0(DH~*KP;cb`HE(Ucz6SkuWHtpu$MYPAWCYCCd%5+zPQusS=5d)MH!_H zDt~nQuSvgS4pv3sp)q;O!rQ#Kb0~Nl3nf&|2v-k{)<*Mlg80QrrI(zl;7)2uxCkT*vl_x;oKeSxlU zbla(xYZaZ^)$3lAQn_eDc%#&aoy0Ce8Q}dkaFmQ za(G={5SjY%Y|Ft`&L)jXOf^(#qFjm}!}BXYeVL84p!fqM4K(@auDxWVw{+GerY004 zwDS*rR!{^9s2bb9chg)x^J5K;{PT)iK$wS5_=d0d+g`)B(}rH?S?UN$ta$jh5(?#G z3R!nlRD?N9SdT6>BVvgMrT&Ib(@o~HH%hZX^(;6(^o{*r_A};3k^7~OLU8mVnkWm< zxd|v&|J>E^D!EWui*I~z>J2%scDWD|OpL+{dknZYzQLrm;dDYVqBRpS>BcE6@O}Bc zOuC$<2-EI;uF0#&rsrEtB%Io%Hm*J45CV z+ytNBkbCMoog~`TqZVKeqp5@Hr+CSqt<;$M=OXz0Opad}oo5s$%1evh8P3s-w|cy{ za1=#q3&0#et--3cZlIjI8P9az)L_t>4c)%1rm&%DO>Sc$&hO$(YAhUkc%D|W>2l-M zbj%(dsOPw#0F^U)bU)KjZ5D6q^s6?x0gqEd@bjp9vYuX^NRHTtH+^5L@1vqv2CSgi z##7!T2Z`*HrbUK{bNx!J+6?yvfDVXVeV%XVuI0syYoMSH`EPe)dwcbsX9LccGu$!8>mf_5w1C=g0Yb0jb$k@yU zHwNYUk|Qf^Dx=EZ*00!JMTrLyDg-77q$xLy_S|_g0#$j#`Dsjlam* z;8Iv*7CAK66^wNWF}iy75(jq?#^#+oDRH#uwe3XShKhosgtwSBNE01Qu55%m`|!)z zbYk|?UuXMlkxYJm8sJ^uAF@9d!$G8|BbgpzC~{nvz8sLN=c^I&yh7(<*b+@!ciV7}Q}j{&cCIu-j{=G$OA`nRuwMcXZ>fY`-kUM6PwH zjP`WBQc!oTeC!z(CLAjGNu%O)*rU53c}8+FE3T9{p<(l6J*q>!n~4}{YxuLCGwLY8 zr1p9eF{E{&CbknYx^*hmy;m7!8mZkqM2U@YhZX}V&YpDq`gsSPGw!Nq3JBvV82I)u z=~EmnH7+*p82{|YRd1wIeG`IkkOC4PdTR?o)o*)OtXcGK8{rzAAB}i&V)IK}u?z3U z$(?05{(f-sj(^keB7$IjB4XF$g6AaXM=5Y*cMk=b$&&p7(YLb*@NZH)^T-enpE0-l z9iiLHN~}f8Eb_c?C3M!5k0d^X;Dwh^D*g>UawFVD_PSM^$8K=;SFv?^nChksD$a%PFi?4r zU-(uzbJ}W2L6zK}b6IMw1ida?jwn<0l}wTLhF@Tq3eOC3ii*^7#WS1op4d= z2qdXLq@X#0p}k0*`rWQ1Dr0|7%&rtXe7z5Ul>6DDqG}GFfu7{IdRSLmYoH#UawhZOMih*dtWk)W5jE+Jb-9*{d2mx|`Gq&A> znUlLRbtASu`BdO@aO8qBtU&sxeBX>~fZpc)KlmKU6dx-W)pXNN5=|jU>)rilp~4^E zPPIPgsY!p-{hg3s-GQQ;nKDPH_2xxLkLpjw$y7}-sJDY<7EMRU0b*as+q60zYkwP^>ba`G$DE1$DfuKw*G&D@>qIhOf^< zw$Zzine`;lb*b*puIWAxm3R@smIcME)C}uB?GKzFBPZolXCCw8`A{2WscxE zTNQup4WejuR=2R0rA+MZH>3ru!FnjeQoHx1Ubr8M(LV5f^K>KSWz~A@L56_VhF@P8 z$Vtg6pr?nX)MDD)E^UuIlP*Le%sa=DxPnyn6s=W9u0bBj@nO@vuO23>V7>NZzioW# z%^TFY<`XG*)>z^X`IdT->9Q0Cjh{cSzOT>Fu3`w%+p1r>qx4k%m04s(OLQw89)wKZ zaz(SK-1}*Z*t#-u-NC!B3JUyx?Rp0rUZcHaC%wy&93vojPvn?-NYvKxHPaAPe7u^& z>K>K*=$*2lgC}<<%}<{FyEXwGaK^y0CJu zgD)=zBp`L05J9nNqU7QzGr@WHtBk6ifZ6>Rgte07pRY{a*X%799qh zIT96zU|YWtcf59kekz5QL=w*PnR?MAz3#G#vXyvMP( z$uJ&Z9Ut~&SvuC&Cy53olaSE@d@aXa*Di@Jk~OC%$Jx$vwoJ{p7{PC?l=v!R&BYf= zoSG!@AyFX&hd?IO4^(GILso+~_l*m%^! zMz|*r(J>^@##EJ*Z)x;87aaU%57hb{wv6LBIH~nyAtdlJ1FEp!yN`woI+>~vDkT&y z_v!Tcpz{b5WMtI0iR^NDs)1+j(a&}HmLZKHc?%eZ0&X9AUOV#9g6CH~Bbz7%@Hpwh zcl|bk5 zTL}vj)ab;u_xR91nVMGK?6JQZp8GJ4`G6Q3qvmupv;7!dr+a8^$B~a->)ImT5ha9O z{Kft`@yf+#YTwpnO3$`=2OWH3h8dYhjT;(EFMrIJAk^2mq(F0tCjl7;H`txTnp#bn`whpOxVs=jsTQ*rTBn=s3&E56(eU$ zalcfe?#Hmpk0w*S-Dja9Pj&%<4DU>9t9l~MVZuGUwvPK-qQ`e#CMWmNTEW4XMPU(0 zPCWDQ$=R3K%3dlIdtR7hZ6OaNOS~dotip5M2AXDpQ&&|>Q#>9-96v&e))1w;I)t}T z#MBEN66&z(lp2o@=`*~F(Jr0Y8G%k6=0qEV=C2F(P8|ow)I`8V0vfLO`3<^yHeLew z-7RDN)~>RR?RTC$DIXERdrp7i=H*&|Y;xMRIZwGH`z&7uVsgBPOlMKqPsWo8KmH^7 zjnGTObZ%M#FO6rt=HdylF&I&+AW?EVi)x>f@&QT_yrLJIblTmklm_o~%@UK_v1?bN z#G9!3>op;oz+F5i7qFdVoL@%lpYtw#wpL#RKVZDjZY;&5g{CI?o8FH zj811-0CjhdkGvpD0;k*fInm|W9Y-EJ@|n(;dbf(CK zHx+`r`Ljzol~=cm*+gm9vsbHjQvIo2)Lp#Tk_;k}fw{D|lBT+AY64wI@=q1A$nOk= zPgT126@X>psq<~Y=HW#wz4<=e+7Mepy*_&meN3lu7Fy~o3{iYJLB ztEf+EPASRo1Ck&B+rlNM62>W4DE$h4*oh)$@|NB}E{r&PB>dbb5xX+VOzn~;8;z!s zSG1hrvCFK&)$_D>d*~crX|7v~<=3cuFwY^o^kR0(am30W+pmd+AvVX^l8d~L4fVcv zyL}h13epBXJo-xEmf~a_RnI z@?_zGa($b9rM@a^gl0$+@he&j+Aevg@+Cfcr@;X0LQ)(TT9-71f2&%UIMyt-#IbN! zAWnQ)b*gypltnt|UCnW?VB8!Pp4%5DvgD1v(!X0w$gdQspMd-y-!KpWBt<3=Jbc1d z>z+`#kcl~28GgXaxr7(O?c)lZMjB3g-9y8wWHNu6>7==<)8rpf^%Pn~5BXJl9b`Vd z_r0!Fsqu?=xrR@e=lh?AZ$l4!azllc@7X$PM$6$+C}~4HJX_9RXH^S1-qwf>qBNHgyEKA6*%B`c*T&Vqa`1gr_97;dbnexy}PH8**#Yq85~LJ zn3qJg#D6nBzFiEZIVev>p8F=Hv9sMHv!yR%-7jK4NvGa!&|?3w^uh1YI%u=SKcp4{X+1Dz#7rZ z?Y{R|IMTkHvNQeY(r+MZ-&>sT_Qi<>LC|U6y*p&@P92OP4{tkQ)=Zk=tvSG6-((m+ zO;)-)R_YL`_Kn(AlT#)y7`3)df|k zMU5s)ca=Hzbd38ut50d(Qz4!T1=t3cuqhhNM{v&7`M8NPKHSMC+cncncyaJkHamhC z+%%%?GCUFtqY4!DflQj`bF0h`p&pAkn*Y8NSIMdTc*52eyi&*+LHS+oW%*cV^=?Y3 zB?S!cTUtrV<0X-GfiD2aIINMk`ND%+@Zjyt7tXsSQ2#*?Be|e=kOO^@?&NF{)l+WU z8>$81J$kk!yV*!G2@0VvCRUc;zQTS9(c@B-%`>&kpEz+1E7lBpH?u__s`L8g(OLZe zbV2j1|L23Dy&=zGT%Fvn3;imAw}C8(yp5hhr~U%UO5g)z)BP!)vE+EI6rx~}|66j^ zf%Lfmi>#b2Ir==zHV3%Z>`M9Ro%UK8Gevx~LWRT2YIt;uohY4cYp6R* zB1j!UI`#H!yVqwl#>!L0)*1y(WZ2LOU^N=C;)2a(rw%SE*H7;2kN;G$A)cJT{_%Ak zb)E(getHg}A_a1S8}42Omx~(BIqe<3t{*!JKj+rSnHe4wWf>kZnj*e}aKwEl!^YO3 z^)gbEG<4b8Vk8l{LPzIvT&wz$`sLJDV@#m|73J~sjS{*ehz(1g)VhbG)z|!hvUiYh zSC6wN)4SIeG*N~$^bM!1P5N9ehY2#>C%fmVYV;$Bv0wtf`?y!><-dsd0Ob(%?sB=$ z>FLqXSkAn^F#x}0(5+Gt1aXo;Z6+{Dt}9qc5}v0F#9%vKP%Y54ZD?8Eqp(^OQv8b` zBq%V9sXIDak^L^o62HsBvQveX<34Up`#Ukjvpe*D(T_jtmI5z-I_G1}8~3j0Pu(d0 zb0_mf)(c@7$EOG|9{24QF5>H_L-Nb|6)X5E&!bBP4?8UKG$VY;TOy9YR(PD65u}*T zYcXJ6g9FFK7&rcF7tx2OM}W33hoK>Q%Jg^?&Hp=Q<7fB^Eo{SdpF1wICE!d}rj{9K zbygj`QhzJGAI}VlLEOOGIPeXNkYR3g^s_M#m;_H$aG*l9<7R0W>;F{r5U=?C(y06~Uw`GyLA&EqknI~O&Df87Y&Ol9!*$-Qb`gvF zdrEf0AHIV@$#f2@IjZeFBtnqw2c*s;|K}(oL_A`A%Zh!hv={TFhfB_ul1)Yqd72q| zAP7YsJvsLpBn_}XQ(a=?MKjYyKJ{LQCOf5@^9IvTY)4DG9;OP++?kOzHv!GKN{JwE zAyB*y{`%-rxcA)8lTogk2kNmllZI+F8dqYee94yhkDhjFwQm}3_oE{*zPC~JZ|G+M zn^N)2HDKA+$nT&C9C+2~LPTlecvyXK#|(C2<6uov8{~TVr-#qNE8?1YF%W9qKAG3R z00!%&OQ^fHcP4*4Bp=o*S`qszL%Ztc2QdznSdo#xN=g@$J@es2IS)Y3pm$C;d7EjP zVX9V@Q3LefC1Qb z2pr%u*c7@99qY_5-BwzgJQkM8l-GRtN9+v-QfmPCFgeqz>>@J_+j9`V?v(@y$%R9r zww0RPyMk?p!Im(S2Co2|IJsQM_o*F>cR&mxhm323vLjXdV z$&S@`QbQ?~o=4(?Jm7E*v_-o+a-uhH~QtXTT@&n4`eH4i{R)0wue zMR*Uygf2J>#|g+IX^Uq4I@6Sg<8e4KLg1)oBpgIt;bFKasS*iJv-ZKj@{62Cz@3S z$-%jnEg* zXgDq17~314SAFZka^Q{cLuL4D^(LErzbvGJ`DYIPTV_LP$LlU_V-(e(%7LuBs2W;3 zw$|>Jdld-cdHE)FbF+W`!NGL}%6jk3%5|~793ST2S`VGvK#+nPg(%A1L)E{yk1h7z zUfmdaB(evq@qPfRjPOWc<3)E*ghfLrsl*ZI*TW8Jl#OU8qz86Jns?RQ~`7!rHmE56_5h@j~u2VZV&5muMD?S#=5q2nh$DB`+OO%_MNxRiIfzel@CD=$UvvU#lw>YY>I$FcDyB4k4yGu zIO=qVQssvi_*5!0j1cn9p$?-aXPytLymyq=I(vAdTe2hvY$C1F>&cL0RWyRZg-1uUyQQE<0^$hgKa>5Y{O!nhhzZ?W!2msSQxr-6P;Ov1NO4Cx*D$8fx zfCb40xnwaeMbWtn>bn2UgrCB=dZ2Rb zAbgpj{Rtc2(>3Azq|`Y=1SthfKcF#@YbIDf%H|;IEh2aw8-rUzPb}61m*TC@(3`HD zxd+eOC&QONKi56t&}An@kXa4!#zKe?d>*$jH-MVDGwnlR^g&q4xnr3`D9WW~eqkj- zaN&sZBGM$KcC#Xg!~Blpn)?C$LcTB6ZrJ19F5cI(VJb|`bJmLTfS0HNNCPxxCL1lI zqIIwD|1yu6LwB;mNkq=kqJo^n)03l*c3Nl6Ye%Vc zN`gR*(cUFw#d(9ZMHH(48+AW>+Q0+`?qcKt{IMzUngK_5p4UJn(Q^m*50%p}U#d7` zO|iIPx(|sDLt-oH;!1QL6(~VS~@@ynXA2` zzEn{k6n9Bh1@pCfrT6C}$0lcC;=(em_97fpGjs&$VfgHUC;H%on7frD`$O@0qURBj z`;KEzPiXHJ)y(jnxQz3$nnH8-llV`o+p|0WSwB}RM>;$XL$a(ATp1o!)#|mWV@v!q zZ+1TFHXJiV%I!nJRaa?1j5O|=;w{65+vX0%Vx}Jjqlp$ixh?DjDXT`IA&48)VZgNG zHIi|4MeYgne9`i5PKy$b>W~O}exlGP1IXrydVSxpV7b(tb15_tJa&7rP~o!Gi<>(2 z(S+0_{K+m!Rb1pic{ZT`44a<6=4lH#!SR$|ze0nd*4&O`Y4v8FRd(l$`SzchL|XTl zC+5R+@^t7WpyG{vEb5UgM0u{ZbHVN6>#u>+W+D0h7TKn;O*V`kX@oR#^ws0%GgOHtBy4r>3=82pG zWn{1aZR-*|0nwcAylxdUk9p0i_=u8!Vp|5Fh{x#$`%czL3?_~aB%V*7*!O>>ywHLs zc0t}6Xy!0l^jRWgV`F&&Dw)triPsazJRc|`$|ot^dH5yP)=Frx$Z>oakZ93?fRT{-QVk)^hkE{ z^68y>0ZaL^20fipVB4!&Uaa%gqotb@c07^7)rWsvrs6fYS`Qv8k3*UEOOeHycLbNo z8cqnVozG>qC1v$zHS4D03$K1T!T^T;-fwwDPwof3TireN{iRz<;bOpc^EnVZqesd4 zrcqn@Y2}$?gA9>YtivOfo6SO3cG)$4;V#k;iP;N2<)S?-qi?cv$`5|ujO~ks*=ED7W}wr@Y_!Pb`Y@l%?6(%75C=QT{87gb z;@}Nx?Y!BO3-xiofGe^T+^T2ciCIsXX})#+&R)p@?pZ~4&d3XPas<(QJA_i8eN0mA zD#fH`>SAnkvu%%r>U)}2@m;_xkN^Ow^X(EYco1`_zW1#Qnt$8tO6uQb2w!Q7)X#1! z{;^~;xc+q6$hayRBA+GjfA?Gu0&|}UTjd9`3|ITSI$So12f+bNB?CYSxnWp`xnj!4 zw;fwG9py)#y+=}&RY&;pEg)rcI0_PF90bXc`=A@LomAX8`vcAspl1K7aBA5bA#L7s zJe5RBHNc{Mespl~HG>Wd)Znznq2L28thtwyCzk}-HLUVYEeCbPL~>o`&A)cG#8YzT zVw|Ua7dyGmlk*7#Dm_Qv*0GAPQ?zpBvgw7IkDQn21EAR2kJE@n2PIQ3JmU~a{n5xF5{q8!3cnhemIz&vsjV&T`cpzwB zcipCZ?p zTfu#=aR*WI@Z+|Py-dN*{QjeJ^^XyLeY;{;bZ@>9(y8+-4Uru(-xI&Y+J4u@+#NvBKsd`93F3rI`-sk&c=mTw&&itPftqO5jm2xJE#tS<_kj>S^}TgXie z^A)gZH-tPoYk;%jYHbRmGQy2`;p|H@2NQ8?z(fU{@I9b`FJT2Hq-B5KuHfI*-UUi( zWNY~jK=3=O@J!P?w`pmepo!ycw4-Z|ydTz!8&zNGt^N3}mGlixT4ethC{Pm(ghS-% z5TiSQY(e!{CVjTa=OG(j@+MC61~N`36Q9oc1w#d1B8Xyz=sZ^K<#nck;4HqM_uHFoo9br z6UHYaQ)mnQ9?x4`*9CAD#tE|r)-r6&fQ1W}u*MlLTHiTGzXRzNY$>p`S_7!DLKBC! z3$-_3HV9+Tm#y)!_@}h(y>q6uVcsOdRrdiLkf#;+Qy9;3;tGtXLHPRFpEmL32oPqgUGA9f|6?PJ3y%%TDv}Ld5b`|HAvnI zJksj^kLK(Z=stw0xCer%{&m2#-?f8QQc%topzg37(-JG~S)qtp9H;=D(12)zVVTgv zqGmk~{XYXq^GU=;;B}C+ObE8wze2u~QB=1zGbjFgxEj1#jzEYtGy#2xswjuvXPAqw zLRZABfB#j+x+_#QSm+*J3}6I3pYX+YXazf&a5g`~EhH^;tBsBFQzm{m*v-(Q#h{WTRj3#A{;{6B1r`909l z3c@M%O`*C`QI$|Bck|yf^voiE?8i@@pGk5P46s02d@dBDXei{?tbd7oVWSg-qdPyV z)^f3urtMuZ=eAfCk@^1_ZtqpEb>&#LOsMqm1l|UyMEM!&{Xj1V;&ekzoZi4E% z?;-8~j(rd;K`V1r?aP_L`B4}`+ZQ~&`4NCXpkbKM*$fkJBg zUCIl+rS61wfdYl`gTKc99fQyW46;4d`n;wCO`S&265B)lzX{__d^Dc(>EQGS~)|UG1 zB{G%SbJ(g6ctW4LjJtNaH}`-oLj~;h4Z+O*|~1{z;g~c%f8!j|Sk~$rsSH z2Gd41F2qF=owE z+fgk!%cFh$tz6uTJt%wvj^c9?eBfSjv4|LNbWBmHqjJm9|AxB+|UL z{&czd+?Q~qLk%Oprnho^+%$Q$^q+&_$Obn7YTLsoioaMm`bF&D04*!5j;p2r&EW^# z$(5{*(3D|S^4~{gvE_4XGVA>9amE)8M9+ENs_f=@L0dS^*y2L#YPZvr(?LIFb>F*X z{hO=+HNU1fwQxL;T>^Gi^xs<%y(k5gI(hhtLNM;-YOEwHaj4hNuUBY5G9Z!spdc zQr%#R|CU_v;jl`&jc;WP=YP-mi-*TUGs_Hf(eZ$fN--)@@GbMG-il@8 z4(QTxd8v^wP+f zS3nXmY6^*oq*TvN4NM#k0wPI)@M=4@=w<5f)DvBoCrdaJ=v7;@V7-0&wzlG(X$xeR z%emx_;-r&pm0hOlL3iimAd5B%sJe|bp{nnbfXv^BAW50(X+Alvx#AEb%8DU`!1%RU zC|aH$MktX1@7oytm#y6Nx8|zVGjm4N)E~-T)sr<5ax(6}(A7oiFs?of#|C1~hs1Yc z-td(`Izk_5MWh=lg`*VKmhsc+s#G6%nZtuJ=yG17=d5%B)K zpDr6AAuHjCGgqz*^;)_Ik4h6x%sF2UW#D<|ikxrfisM-VJvlI#WDfwT>Ul$(J7Kq@ zsx@^qPp=;z1%~OD%Vdb zw6IOAEE+oBnWtMrpB6q36ejqSGNv?j}IPFIzHe zA2Hu}Af02{`YDyQRk}3iU*M;0mFFLwz+1aq zHlbWPl$|r4g$d;3;j zPkZa}Cp!%1GeB|+oe_qq6{me+5kQW$7af3nH2;;K!>R@p=4j%mmM!ndSYtf9aZr z)^JbbD=jt~fn0pn@Y|cJEGPLoT4yvCMTo;saxF8bk;oK;(SF#i7XxxyY#X|}%LnY3IgN+uL5u)*A zkM8N8Hf_F3uLHA&RvqM&3rATMWr^6=O-w0`iM4{roBb})D!z=p9SYFbMprvFU(Lxz z6z(-u1wLCX?{%DD`PO?;a(qy1c^AB)NqE!Ea;i)MPVw2GwxdU7LX?jeSpC>p+;q&h zHc9xyuVZ|pota6ktp6=t3UzWQ^jdl&<@=jT>oKNdjUn!*)v9ru!>Z@^SU3b8bGxs{ zGnZSx;v+T$?dY~yZZf+4x^VOj@$J75ByNMr9 zqo%Z`;jo%<_mWIV*)KN;R8PL``I-zXfK$09r$9;tDcd)H@fB-6Vybkv7&)#&`^ZTC zs1U{B+y{nRm;vdjJ^r-mBNAbBeloYe5SH(l8Bj`SKlV#v)HH(1CmB&F+b| zGMf{FXY$bK1iSxr7wpvaqxPhVn%|b{(yBH6&tFka7A}mCJOGv5d-1IM)eUL=AJb9qrGwL1 zgEh%^ZnA}B46RN~I|Q^~x7+9Fn|=C}HS&0k`w71^j>P(;$A128gHW_5AKoMJ=N< zE**rtZ7a6t(REXHuW3p%&|2&Dtj_BX=J#~E-^o1*CQsdA<#Fq!kW9jqR(qHtKcG{5 zC+zND`WY}QtS1H zo-ii-dqZO~@rk?wJl5`IucB^icdkeIUZLsFWiPmnY8v}xu`;#L4TxW}sCKxlM(qgB zXa+5M+n-!A083t*{Em81KqZZn5L-xN$90~&s;Vh`EmiN=lvQf{$F!GcD-y&vUAO|` z@bn%sFbVKl7e9r2fH}S2TwM=T`;To__f3@4pg(cuC0~}gKNF$F*Sr>Xx>-E@2f(z$ z6(GI5)UCME^9mDJD+8n@p{xem`=+|lY+;5=s{PYFnOP5S1V`|0t7)?Emktm`#=Cru z)b}I5Yk%ZGPpJId#O934tQ+f!$sGYlnaz8Rla4a;*+l?6yR$@i-2QYYTQ{$rGl0|LPsbAexQV|6-c%JNl+a|@xkY@UZW=trg6M(~`& zu&$usIr2M_IMIzWOw2B+sc$$v4xcbB4?Stz$P)6Os1db4+EwL_QL<(AETs4fT}g?xih-B<#W2@qXk60W*Fra>1%gA*nbsex034=x@U|Hk$P~ zqT^|xX{_8$nlAvof>XZx05YR2;7?d?lEEd}!v|>NVgL5<$ zDT1@eoaf16zg&yOylksQN_%L)3Eh=ADuxs7r9>_$^$r0Of9tLd{QT%z~xkzVu1+!+&cJ2dzq0=&oglA!f*v_-ke zIqtmEW&BAz5S7r)hMTxXW7e)*D2b7YdCnhGQOy`PvktZ1FQ<8~J#?%x4jhyHA2GQe zeXIY%`Mx|5yMVX4SZ+eSa-eowZEp52Trp1y%5)j)iq5hOn7(9kk`K%j!m7+^JD60 zrt}A- zH4652&hAP!@WbU>_NV02YMW zo7I!Z<_Ihf+;CFHM2)!XUh}kAH6cP65p1da@~J?tkWVDph(*tDP#)c>ny^ebIM*Ir zf=jh)+QWo~7IQHfCKO&Z&cgM+`{CQWu&ZU{T+OZ{5^HhS1nQ8eAlauW-d9{_yuV*l2?nL4wY zXA1@jFo2dc+mpGd7o)$1vno@9h_-KBeZPi{ZEXGEO2Z-t@k|IA7wnvk)eDH_f4>U= z!&JjC(1W2M*Bn4RpT0j9*O=`;zSd(kx~LtgD@oMSL&Gd57>W)TU-pA;b|38(Z=Bqb z^6~pGysT{5|1Z3-!1dswyViPYngzET`lr8V2|sI)@)08}H(DsY3`3y7%j*;0!_rCL z)8oaw*^tIwbKb~>Y^uG;3jhk1e`YZhG|s!=9MH1qB`GZJNZ!{?4L$kBRf5)(lB53C z_fqQ0h>{=+$-rWNo}k+T_R%)<7dTe!N0|)YZ=&=}H%by957?Og{-mR2rSrXBB0chRgd` zckbTkx&m~gcx-a)Rb1>KkCT$Moke;)lBgfwL?DNU+Zo)gQUIV8*j+Nk$@AgRxX&(c zdMT=N6u3;f3p$*XuVEC*P;-0)h6r*JZwl_kOsn%^YJ1UR*zEOIA^V)cTK^d}sbVg+ zg6c4M@jDAeJ*`)*DJ0)@(VZl_R_EzRv>dj;BBc5;%2CSF0A;6l&X0G43GEeMg8f4X zi4~I=F^$J(HF5&IH$v^P|3E}j?8r@Yb zkNky*I?5T$TlA$s&o*xI+Oeb4c-2xfSU;_RYW6QzUZaLV(6=~aaR8|%;Zq-Kca)`v zcUKARNgnDK&gNL8ekQ*W8l;Rza3%1!)L;w-=Nh}!baZLoTxWO zYs0mKl&$Xo)@{+7Xz8rofNIan+2?9?I=|U{`*R15{h0_?SK@@Nw(T>F%(^a96Z9ke z)q?GZ)Pe#bz5c}fCLs9#h471)Zq?0~1vh+WJ`L^DXX7e}T7-DC@bL7u!Z_P76}&o_<4^%=~O$j9p&Yr<>wnf{BLaIDZ%X@ES)ljWzf<;={Tyv(-9CvLPEM)|YRWZ= zGJRMiTq%KOnsluW#v+W+=jXxDx#P3ONMV9N9~hA4-;=X2S&GlU!TeO!aqf%nU4p9U z`IU{^sAB4*4u9%Q-$DX>f5J#}B*iL8ewpKaI$L=)Bi7TRaqCN=AF8j`pBG?+N1(&r z7QM?y|C%0-wPl-8 z@Z3On-wVLgGHA=i{iFu&)>8*6`jp@QCND)g5VEp;pT_;hA|#jdT_`ClQBanG;rC0H z#Nw>1!Xr0CIb&Vo0klj&f8!5&yv2?JZ7T09KF0GK@D~-ji6z10U+cH!1k?6)3>xM( zK3Gk5SlX!EwrlPM18HLu)UF=`M%?fu7|M0iLQc?`rPN)mwbQXz{fb$;NBNeK!5w~=bgp1K1&=0 z9Ve-IQCfCr9$;uEqK*a1>gLmoa3N~;BmtWqmC^7$h%hu~a`spmBnsQYI4Rn@Htp2UHZGIxG&u zd~m=TPi;WgIG%!BYdU&v^xM6Xx*YOg)*z+FzfnkZT-~1$dKv9=4I^S%*S_xni+|pU z6S}#}3;0q-i(!<4*`j4B*~0uio0I&E3gK(SBt?Vj8PEODa4#iy3TzB)`*U{sBC_$r z58)_BG&?k2-}qun!yurg#?5Qn1Zal^LqRT@PSes;Z|lD>wd@T)T?6}7E>56>UqL9o zJG}Oiwf{q>U;dJju>;@-<-drYqO<)E1GG!=+jGei@IxHp+dsz?Vu-n&H69Q15eZoSQ6ch=$@5oiwnt8hPAHz#2JCivyf zH_r#rE0(W|UScib7vyZ@*HBit3rCRIWweeT&*=7jrR>u|!JIbV4k%tH`F}KhcOcc@ z|NliH)KzBUDzmc7N-j!~tn9s&y|P_1N#+gNN@cHW@0pQ|YmaM_&9%8UzjNQ8@9*#X zdcDqhp7R`!=e*YItVZ}{n;1;juv&he4i7Pf^V|M~9y+{+Qt(T5EeM%9;79k3>AkS_(&9EnC-qipXM zPtAQz2b#|Sro7wUa6@~uyX_VL0lp+RSnS}e6yNy>-N?-Q%cpnQeRc|664DthUxK7r(q8mkIKL{*d|_>vs@; zXliY}oKHqhyQri%#1Bd?^PZ-1pRTIbrbjw=OoPV@lq@IDy5d{v&0H=()@xwKxo%If&Q(fQngvjkFH zd$ijB*Ur>q^z+A$Sv=s%EL z_B;lqub{C6{l21Ti{R<&)09|hErXq4Q*}=uFB427bB?w<8xLLL$Im4ouO9AQr|dBT zC5D9;bAGp%g%^%6G?Ilu8wyuRE_Q1D>ptouFnA!IUXijpz>IT%xr1J197KR&3yA<>mC}Y0W zZ>8^f|Gb8wMQQ0k*m5N6d-Ut$FV^>1JgVN0n^5}a#Cp_gL_`3eUKYxnxg#d(cQr@7 z`t-o>&Z;o=k}U%V_z0akO@ls?qezwb#M_0PI^qQ0OYV%9|H3KWu6BTPy zwP90d`klI96Z?0yG&g-$Gu|5|4UU1X2P06c3(E7B$hdpfx4L(vb{04Y>*Wg9KY2m5 zL7e4$>C)Td)K5b0K&a*)H1)Hji|Dt`7-e9!)51{0l;V&TS(n+^*RMhR$_iABeumc^ zqG=9(SC!Z_F0teTHhA1qoG05)@?UQJWS)wK+h%FgkwH@7bxP@bPw|QIaeQb%+W0*n zQ0Gm#^YS2H{a4%!11PNOmArVXplBBc%gj95@W6&*32eyxoEJ}0m3zXo+&&9C_2hb= z;?}ZK-Cjp8-Q$1q0mP;r@IDwjACMoebgycEq1W7%1yXSDC%nHk?5S?a|TsR@#u0 zJ$YYJo6wj!F{Sa=BD2C}kvKqm%d>czH61}8Mn)<$Lv>a~yXfcz_gbjrLQ3o+pmsrp zW4REJnR+=F58e?5?|@-+4A*Sp4#4z?)vLTIFaT{cv{cHfW_<i8Q4MZP#|#w}r% zSUn(r`J66Zk5xaewV5s%BAJrb ziz0uKwW(;d+#zcsb#rkMbaP2}zgSb6IR-VdutjFgx7ne4w(;Iy;KrH&Nl9L|@Tu`^ zJGLz^VDcB@^4z!H+5afVJHRy@0JlJ7RLh;SE;%KmUcVmjP?}4Ycg_P`ZG&ne16UP| z3n}%&pO)IKG$OSVR&8pJS3A|fW_cZMf+))#rM7HT7SLTy{tKO*Q+)O6n|m2ML+}28 zRgdD;Q}sZD3kb~cr-Fb`ZWKl`C0m0=oHRho3u;o29-In*o@i_DO{Rqxi z2h|$4bN_)XIbD*_6d>Rc0AHYMDr-LlxN9o2D(Cxy-|Z#@M@=6554BvqLE^v#Va=N= z<=nv4f`?^QQ+|=p=UICHx!dam>I?9-1OQny3AT3cs{3KU;cxj0vQ{tJ+1UvWluHD+ zjBT_1Ch~vq_0;2fxf8rl@g^|_yN?wHt&*eM(r{;Mf`~@4QI3c(6!PU=4ChTD3N34tR zZx@h$*I5G&xc|=};u^Kbd*i~6x4rr#5PZPIh!1~fbv_Gd+ zVJ>4*?>}|V+=*VPw;}j*dmmJL_B(>|-3KKk;rD^Hd@WgbJlg$ULp{z0)sjSZ>4)3Q zsEl}Qun%v0sMS%|!NR_78YXY$WcP$jGsT|qx^NxGZAK636r%h>rzJ##*EC`hE^6@= z-t}BKoFaTthC|?yquUndQ|$dHCXu&Y(Jwo0IlSwCxhushq`0%V$gaaZvUn+-_OmXX zt;D>``)E?|n+6PWCfi>&tXKJIUBUu~f>v4g2RjNsG=)}$S$(}2y%fRx87Ym@+zK6> z^LiNbvs7G)`lVuNCy~Fy^(mi*%cE(Wh@UAA<<72kIUD_wc|M^`9!o%19OpqHD6eHT z)Z-rKVB5O195gYfw^lwQphD;0nDHp_V4^a3MM5%l==sr{Vkpe1;}_D2Ta**$uSabp zd52|Nw9DfK@1PD$uyfdEuGO}$kkB9UnU5DW(@@ZE8YrP*gX5hGmaWdhcH*usx56BQ z?h!%@3?u5f^p#r2z-tzP1t>%E6AcI@eU$n8`7pju^u8M69=OJfnaki|W<$Z#D7{V; z8K2#Eu-$-;QbJ@voX3h#3xiepb_Zv885uRP9s%i(pTR~NN>GgWipt*l<=Q6_rD-DH z$F1YLUGF?=aJbG+GS&h@S(PEbUyY1XlsYYipGYP1(SaYCzt2ar2MVRxZlxQTLKOyn z*mM=>)aceHb(+6J8PVAX_ZqyujL(rD8YLh_fuq+H79sID(L8dB_Tio+JPhs5I5(DNz}q8c}#*6)Eok|sS2h8`R~jc?J>q@I3>dEc~L zZ7VDxe2x%m6Sqlu?zUZ1da*miA}Ir*e~a7vk%th_;eAkB;y%DzOu}K@*CcH<^l!Kh zl|z2#PWQm|yC+=)KO%$>@!Ksk-a2kCu>@J?=e2w!*TsKrg?b4#-$MGUQXiabt?-ff z3xjh#$8FrRCLom*H{Th&9J~${ZnT)dQ!HwInk)&w+>}4w^2oX9Arq$+7EZ{xqkskP z*^^3o_X_baS169NEB4&-xDpqwYwq_1vTs~)arbPS3ob#ID6f3h zaXTnQ+4rwzXgSuRN^=;$>|{aJ!F!obdrmp>T`7J_lpC* zW`W5zIMZ_T82@MZ?8j$B$ffc36(q#*zw}R5=6@JnfqY4`)Lq)^4aSHc{rf#iBxKU; z2~Or=U0K#*Acn|H#B$c8fJd2|=cdP%v5bAcpN)(V;zyJJ_MQbRH=B5Q_go)DMW#*+ z?moi?>@cuw7mdXAqEKWaEcd_WjcT)k!GC}Nc9C=mYnkelF0ytaR$LSPbtaFZ3h}=^ z6-GA>L)9lRK8V-sk#!M;rzTrS7B;Di33QUj|e0EPApJYAmOGaX7g!! zM2))aXO2Aa+_%f#c99g5{4wooVm(2wzakF&vtzJ;ib-NWkuzS4MxZ|do$E8;e6$g$`7^xpQR)8-!otBeMkmX+JZEp_`Bwo;q8p*?_qRq3_RGQOuC=J9EKMwm1icGr6yk;E+_V z!04|^yAm`BNCz{wjrM*tQ}74$knzb{1B#knDU~3viSw5^n#TRCfy}1QH6w#B=NoVO zRt4M{M|U8MO+yP);m1h7__Iy4Q_X+eM5@EpU3ebJMF6>Rhvkf)3+z|q&HgKMUicWv z^F|Vmw4;-;mdl-)?$>flwUwJY2}*1qCvLv52p|FbFup}9S=V)4o>(>!h)sYA1-R*U zBHG*nh;hj$a>DhpvDt1>Py!RkuH#8e}GF{x8NY;(5>gg^y+rz?w~C9~}sx;UBEIAdabv z$s)^-5(8i(QWN#Yd?IDu6yHt&J8&PPGto_~!jj6f0h;Q11pZF}mkPZ&+Bw{6ppF!9 z3kA(qW5fL@M~)y2k*eX@_5o#ptaa0j>9z=DjLpBdTF3Fykz?#Q zDZf+X7QFtDu7jLLK>iABMM~vs#w{9!$FM z=q^qQf4d9hVtmPO%k5>N{uA z#X(J>`=%R|Sf^mkcyx(op>@BdwVh(s%>dd+j;}+eKyyMo0)APoS2{qceYLrIxw1%_ zdFWY@nSk5-Vy(V@_dbyAVETY=GBYt_&ChM#AQi+DCY`@6jci+BF41`aSVyvCzeR4x zW(FQ#C?; zX>V79&2Dv3*&pA>+L2rMP$FhO#9+-jY;(r>dx?+=@A^!h;+eD4@+ zyhzNcy^(NkIl#jlhy?fDL;^1E`&oNqmp)~NN?6^~rv zYFA*z&Dj+Cae;HKf*1zOUGs+2XIf{-cHTX=8%w^&7pq2>EQ~F}A&YlHB|6x37t?+V zQ`|yGxfR9Ic-)U*$P@3o!?OgL)sn_Cdhg8I{4tCe{-`Hmcw+>pzMC$)fd!f9O3m3~ za0_eulxd}ME-u)i}wSIwakRZEvnkW>y!VN;-)Q z9+2sE6EqzX8=RO#)c@M@R^W&|EV8b*mht?7=d9nZ!k9J5bYi_#p|sl`{3>+tZ28Mp zuzS)E>Ku>XEN9X9lC~E;1F9-24*Bk{z?-!|3~LqJX;-oin6H`4C{}Ji>df(qlT^1$>grC#O$z!o@f}v z|L$#c)iR}ypStjepw|Fv>Sel zHRyALRa=jN=T?3(1(B-c1J;g~We`|1_P|RIy0V=j8 z8q4QE46{I++t^T4Ja>3)9ff~X8z7C(#ahh*GPe{Jv5HLrG6pvhSGoofesQaO$OQHb z74o3xAkImgJO6?b7>ol3NlyrA$+LDt8tC`ptx3ZWn;7oeXl202SN?`Er_+WR3U^sg zl@aTq^&5F7Z|FN#^!>Ld53c0ooi+kZar{d=Ar;AYf>InuZWqhG0iYD&Rd{)a0<8hl z6%?zjc?e!>ee?{{Bxx>jsSmUQAIWKto#2?;p7q=-(e-c)DgJCNs8D_Pl9E2#Q2KyYZ|91PQbP~vquxF<|sne(A5zJ|W^HfLf)lUqx9-ZCAZI>QSh+ouiQPtVT z6@=96$4h_r+HlwBfk=r2;=V~9uOS6}!!1iTmZH;8pW$a%Y@t)55aSUrxL<_#*zTx~>Q&btNd?NP0vDD5OuF)nV5xwW>0ROrbN;R(pMG8ujnA znM)fPcUSg7qoB}A!`>v{%;1s0uaL52y|-HI)~F8(nP>oJd6Spfy#N`wc6pz zkdOF|zcZvIuGA3O8kQnL?S@CYA(ftY36T3t>8SS?^C?T?q$gWqda@6WB=hM#rM} zUQK_HKNZub>JoRp$N`o+LWeOoY=YP98p?_FbZoAy@&$|Ih3eV$@uOnkKV8ftng!Ao z*bYp5)J&004;p-d={E9`Twm3FnWt5NEX>a@lA+vv1saY&IkSI*Sn>wj zV8?H4@cSuLt48J)|(CdQUARu{AND*e|C$keZ_%g zV~KW;89|Hy*NMzJywDe45n}k|T0~<9qo)Sv*7W&NsvqwR9+BVL-hmju2o(0U_1oi=*}TztJQOVSu2KfAA+^tx z`_v#$KezGeWde9SQVCq8L7c<%SBJCg6xhB`AdOv$vd`DZ63wQVnNyvr9YRxR?>ZRb zTHYw0pPTb+B#dxb4$0-Le+}Z#Lp*g9b(*1U@?>0e#@_I8r{-E3pDEPg{~o6%%NQ9^ zH=x_Ry8nCt3{xrmpNL&Xhfgy7eenmY%fsx`j=hEO(A(lR*Yoo3X4?QQ(3X(I-f0`A?=4Zw$&!lt!n8FP+_7HNs?q5ClFc=wXeo z(}!TPvgJ-&+hVUo%q4cZ(629@lS7S9ak?cHuQT9csOAW-g{k1E+QE<)fVwKWK4ya@ z(2I1(a)Gz2hrKO+l=GkfZ)i{bF)aw7FO0-jG`8pkru*#y?qXC2by?mg)*bRH45NNqoC{V&3(p{?oNkOv__0Ej`6# zx^eMa^74ZrA07Fm$O3@Cv!K!kce{FW>elR3(@pi2jtB_`4^Jn)DYo@G?>`Es}&2up0O5QgR!@QcZ;6GA49e{^z{s*YbQHIla{ z0Hww?{s5r7$`tUmaym(G1M!u~XY3XD?kEh^EaaRpNKTPjuy*p_OeM!Lwro?{iQ z`uHR&M3wI1{*Q?T(f@6BGk-9U7Z@8G3U$wN;Djrru`!Y)<-TO}J<*&_8}b>VDGo-! z&)1E*UoSU4x3hz(>;0yktG>$125Ev57u0!qZS^)g{dl=#P9^JBybFUfNPdRvKLkLd z+DI(x2H)^Z`F}+A2c?DN$cxe4g3LYylx|2ixPzz(SgK_%_+Z0J-S8%&Dhgou=~MZ3 z5?cEqzGS-Ra=8V@VWs6jV5@q6#A-F`{CFb1))^`W1ShjSyXv!!wcQ?R(DTx~Jas)2 zb(cgU$mHw(GT5j6-{By0`Kyo0Xx){u7zD}h8znzxRsp*#McX__Q-<1PsVtCe2Y;DqB2|Fh?m0K|M zDQEOy0jG(EBH&f`E5w=U+F%U2qtJ*CMf-75-thBt4X6x?tIorDYpihgucm<@tkl%Jz_|2lF+-^@a zukke-VB%(`fPntDHz3;|0ey?|XuOGEm*5WFTzMKUb8((9wWc>0M_C+PD_(!N97zt} zPjbq+Ky5ezty0CxA6^>!0Rr*(-MN&xkd~hUtHTaR-4X2nnzpf|Io%Q}^`aGKui|}f zd$|MO`F%e^S1-AJEPp+ghKGS>lbj+P&mh6Abacy)Zg;ew)}7AwNv%%#n>^h+|Cncw z-|^%xy|8L+yNtD(vuu(dmD@CAC>*4ZhW zmmF@)`SM8@=mMH$3eC*O;3~8fla#0BDI~WrlP#=9xY`KN1+SI#5#d-s=d*{(!ll3TZ|*k*V`A2E*MuE`o3VycJbQKH0)SC+iA?US0hLxmev{b8P7CGhU``G+2kI? z3qmu~mrt40fcH+N`2@aF)pk~*b3tDt<6$ zj#cS-+uM$HV{mV9~KIC%Yi|RF-6TQ#KTdP{u z_47@(uIMfMd$@$`4TlRh-&4TYcXDmmX|t%V%{4TA$;@O`i_e}Rf_O|wDK0-#^2zQ& z32y~p%uL1NU~59s1=V;#wh+dn4A z1lP1Urt#hwF0V)!G`)ckFaT-?8fC8PJ9s?isFLPWWl1S2{!S!X_hwJeO@x9>dv#5` z%?4NZm}#Wbk6ALvEaz@=5AeGAo}%dv;K8TxPTAW1q}o^DIUpAAG&M2ct16CHA=^|h z2k~a#`#GQQkyt_wv~4U7`VvWrsA?N*tk@dGYT5~XdxZ}#n;ElFgRX1ucP3`QNjLu< z1HexGp~W2L^4Ei9Rpv~UP29$3c#2!JPs-`yX@$dh@p$KJFH(!9SNE$3Ax8si1$xoS zHh^uNrjc7u>i(r|1ag={vqE^5bnC&h4}~Rr^$jqQAGm|A!%;dmgn>)o<-UhBXuXIGP_cz&12Y%?W7Ptf$7b$1x}7Feg&k)w_V;#9vmx3655N!~JS!FV@NJk3IUn9#P?VPY9fGclYTf)DEp}j!a}dQ1rVjt|Sxr@XoIhOp6Am6AM zu(6!Cx`*2m_~*zVl$1FN9MKA$;-j6b&m5bPtwPJYFimu9)p!cV4BMJ63qH+F)k^=M zQ(ds`2b~`sd6h)AbPjo-ketvD?p&UbzUvB+Hd!hr0a@+CL3rP4q$1t z?#usbC~>4Kiu-xATN9)FdRWXQ@fIRH9@COO8V)qxD=*{x1i*Zx496&_DszR6QkAuh z2q%udu!5`^#>=}2>)Z0>!1ad{u+ezj9u(6aXvr

!{ri9M2OIKZV1LK9KTQ6 zy`tRc{idT7b~tqqIR*HlDzm*bRzL=vZn=q@jR1%*M}glJ*invPvJydhn`yd)?vuC^ z{=By@YZcJ3&SGrv8e0KqUamPGH9un#o`RQaW-Oi6w&uJ(!nT!OCVy@fw^x<1!)xpW zDx+a08Z?mvh@u`w2&FmxQ`P^{SWS_|mhxT-K@3y6-Ev;WlXxRTS`~{{d^u>2BFKT> z(Ru6^aTY`aw3^vHHu%G-r8ThWD!lxWioP5Kv3qk=z?K@b66&akL%+O$jty62q&F~s zu5XYw?|yHUfP^0?0RJGQB*(!VaVrc*6$6`UxGDz?pU}x783cp{$gZ{AQp^Y{6;RzL z^+fJi%X?*CSIg6S>MN@;Y5_7Lkpxfi%lQWl1=CQFTFk5VyiLmyEN=Jc;Dl>)kdl0) z!V5Pg%R#?+M1!l;go^=raqu_%5x@PAi)zQqf73e(FjC-0$dIh_+1JPUg7WC2qWMTn zixQvTQEGva-8hzVL+2l`f47Yv0%U?KCCM2sZjxe|vC= z2G#-bup@qrmvuu?ocPOH@!wfeSQF^r{raOhX;Y;#948gb1EvO^{%5xd9>+-W&0cq*hGsG8dZ~K-q;;5)Y)HCd9S@0)c^rR~~V$ z5{TRdx>`zvoY`-3G0yEm-Ur0UNiEF!E5=&Drvic3|1gULT_`<3WG@B&Uc}$NOj|+X z0H0@KlnyPInKJ)_s@EkljfOd1+Xa?xzsP&<-QgX+ZKJi8;y9>HBgr|;O{_yAPQmNN zI}30MxACX2qWIq@7D|VL&DO8Bm2jCNRpdC}&wuuHcZNC=hqn!tIdjPa89wqA)BT0<2D;+*R{%bJGiMfRe2z?)we>X|cAcZAC&%B(3Rkqk>yeg9p+hf& zq2B_v{pvMBr@&@LkGwr)gU{kC&LDTC8`kF+p_gi+fz+l@L|KIQX4F22#lP}u5>QKm zsZygvz+4HSqBGQ(FRd8Z=P)rW4}zzu3d)X6QljV`d6=9<#)Uh0npuF`L~a}xH+5;M+^qO zXSOdhB97KhMYHhfGJ$jumPn4>t4ki|AFdhOSZ|Gw`}o*6ym?TCmk)H_v(-wBuWi(K zbzs2l2;`3R*TBW#>IO&<6m4&!R{`UHo1}na5t`ZI{U?CW6nTvWM=!H3@!K&?X@F?+ z_eU^RgE+%-y!p?kZccE5G)9tCk@cL#-Yo&``kim*yVeUhTVX98V*{)GtgAOQHNdsf zqrtUOJS&;6vuh*tvgxV*wPfuPI~WKys+S70A1dE8Sc)1OE6ODUJ5V&>0R7>{#=6|X zAZX$}0@S+%eZ@K^n@hgj(cDK0D^N6oegr3k%B-8R`~`@MKSliuP<<$22S7ai;1U10 z=fj~sYne)ABwGxY>f_#Lz%KMXcM-&^qVdBc+JNc=KsB&mna?BaQd`zb4{)bYFzBymyS=ZiO@GAsF zm_tdH)rN;Y-L@a9_2K;nOCV)H15X+JkHh>K+i7;S6T$9hIC0;&)==6Y2<1nO=>T4< z&55gQTPobJ#xysx7YB?G0hj?-U-e>OUt(l!a|Jk z+hkQ0RP@4Z`jJ_zNDWI2y`@C_wLYKE7_Q}juRLl`?*mS{KMz~*MpEo8qQaAsaWs1E zIQp3>RHuOHrEbBxE)v9-`fCzCKZua@026NRHdN8ealCEl35Yj?a(1CQtMd;Cii5w# zVCUaGjnXW9q)W&90!S^S_LZAYpA&DIYbGuDIdJ4d9=Nq!l)Oxb|AzJ^Sk&PExJF>h zE#;~3JCWCg$5Ohr-LW!?Rzo#DZrC-AISR+n$--94Mm9cGtud68uBLhYvvvcD$EJet>8f$S=n zD1!mgdQv;D-_J{Kfy<+f%rCUMUdMu4Npp=q&N!)s87#5E`Q`A6+gQZUJw-Mpx7zyp z`_J%`FOzS<&2xkSFa@#YoN?M*HL0EdW4K4K;Cnt@<6NZz-~#F;8jKLDxRXAgf{`XG zmgNK4qr})~*Wl^e?gv%PA0LoOf_V_OoMTRgPvD{*610&9=#HrmimkAE#&g!y-@MLM zjA3Bl9DVRJv7UM{Tlaj0w8@jj5O_^)3T(mm2@-zdlBnhw6oPjOjJ;KX9x!?e0304c z1fo*9bhUmIRVrfpL~Z-9sICvn{N^{^k0&3$4Z_6*yvvvW|ol(Gc- zhQ~+^Wo#(~J-_uKVR1 z$6@CJlG^S$Vs0T2!kDB@r}F`UZK_Bo3EOx~T40)yE~mch)+1#Oo%Mi_l5s_l^;6US%TJcG6r>li;v`>RS*y}grwZ7U1@n5;|BCl z^O&|EiSv`NREelbH;DOtrnR0F^%${}~Kg>SEdHExtPPSi92TpyU z8qrP7a#Qw7q0zsIXkx;vrCIupIuPyjWI6lXEeB`1a}%L|SI3biIhC%*|C&h-kYptl zLB*2wz>++WOqQ?&i<1d`tW62Kg=iAW%>339M+oqf)|rOeV)zoFYfXma7w#%mR|61M zGiyRv4_hA}iBglrB9S&*)8*e?sEzc?A`dLp!`gI}ArR8fT&rcjtjeuNt+HwJu-2QY zmwAq1wfDW!alY#_+N&YeEgM^arZ3+dUuKc$vob3FmHcX5tSuqI+vw>`Yo(qSbnY|9 z>*I1p{c@0{BOMlIRjlo8axYrpVfgt~$kDj1*tdzX)l&+j?~WAqrea3Hf#1BD9ZeY} zBE^QMN|ix~3^fZ4IzMmz{mjH~CRF6lPD(z1X5af??WXZDa$Gm=2@pcIQ@Oaf9u>=i zY%7!Q)Uy4%18Kt`%)GwMZw+MZ2WtJ_8e+nTuSg{M=_zMzEz=R-6!9l3>Alqj4)wR*PE^VZtP}8!JXE{B ze72>KZ9q-slnY(J2q1Mm%5SxlSa75vSGC}pWU7u=D|2YWNF>h}D!!z#f|W4iVwiCj zQUb7mLnrFisC{_tOd3tGEb!OXlJzO*$)Z~huM-EQMM@N;Xhp{Bk zcY~{W%zoWQ0w6~5D$d~BJ7y|`V6h(mP|X?pWHwhslH=(UG8Df~rU~N)w(e|VX1CCA zSn)A6nb31JiK9e7>10pO$hW5x?psQ^lK2RJ2k&k3-^XLv#I6yN1$Yl3wDi4U`Sag2 zlR447shgXcyT=u>TFI(s`&3-mEr+eG^CT3YO9hMBKwP0_dg>#3ai zLq`|yFm3+q9;E3TTb9AMvNBo{{XR1!h&F;m-ugT&Kvr7=A5@^Hk3Y-P%HlKBR%DtQ zYHoN~we~l+xh7gEOGHFRkrd*1r^CHHl*EEhG|PhaquvMh#zW^m8A+MYyJ-{0?4UoDS91jhTtc6j%8iZtk5P%K1Ye`p<>8cDfET=l&ehGHnV$ zU9kP*Z&4$_yn_lEdq5_mxTh%tv6ilky~T3BmQfUh08#}i38D*Wh$fssY5|QTVnQ&U zKNK>E|G*WFw4yJB!Nta=78#)Fng#YV^|hz71lK4bO|2m3U=Dk}ZWt`}fZ5068`TOX z%@u8qyr-p5)tmt2&Is=H!o9ukMny%%)-(?@Gh%;-2y*u9{kX>L1X?;E60Yla2CwNZ zw^aWRJrA#j(FIRTq*0VUYI&9#W!L5am=Gq{tqJtJ0?;A60;JRVUjgpE*8cm}BxZj9 zd8zDZItdz9WH2QNt*p!`Es-zKJ>R%EpCW;t?YMxL8{3%EW={zh=LDK4<#6 zBIXQYe~|(AG~_elFHijjX9YMcfE$N7fqIkQYZ9DbD7dJVCb(p6(Y?lZ@^X}B zNKn}Tq|%DceyAm)#xeejkby}4qZaBkmhA-UW{`G@0Up!40sF=MCc79ns!@AV3t^kc z0Wwpp)5FAl;~HKWnOOmykIWDVXa8=$med{$jf~xlSQ1o+{274wi~h2s zf2JmWjfc|0Tp0jLa;^H^wBKn2OVeeoyZKnHbbZLP&e_MIldW^qd14h>DDAhThFy6W zhN(gTK7I3IdJc!Hq9eV9pjZRCgpV_3--!V7=QRheXdD>=C;Tb2_0#1+)vivOCs3Um zJ5I;w0r z1FQ8CYN+~4VH)Kc^3km7d4aCa$wuWJBk!M<43ak?O`;&MOrw~mkyqbXk*6y`4QEM- zkT2>K9{25joyIZAz7Y5hI>;aC=H|vME;=?<&b4iMdIGFlEffY6dieZ0LaSW;SJv2K zxT(|W=F|@(;EsvPxu=l49gqEGVDHPA|34o6z~%E!Ms)8}jn(%CkDaxCR*PvbJ{YV4 zScGYDzaGJ?cYf856r&HAnI-*ZyZ{yxeWg5py|XND$@F*Au)aY8Y9eE{v(^&{EM@X? z?>FTa3r6)1VXz+k#_!s?x9lmtq-8005PH6}x8Q6jYQk`VFZ^AGPY&+RB|sM8<4N!u zp(I4{Sekv3?9-<}>|?w(^hD4iy{XLNp0_Y`Gi@!>d92KaJAg6H{z4%0l)%YgAP=lw zWR)tGMU=`;aiU=(yS5_xB3l0`->cgPDOU6j-zDiH=iHPV&nq1G?m{5aKNi!HA#Jb% zH0*VnFpV{-`!!G0Sem!DcTu^}rpB$^{O`d(>M141$9~SYg@H3W{2ln;nbCXXElLmn zky!4$zmN|lOgdZ}bj@GtsL)x{oK zZd_%K0laF5hRyL72L~s?LxY3uVawL+=HAS{+JS8!%{)3B4!6`iuR@CA&AViG4%Ftl zmp|M>lo7+=pY%Q1SLb${T1@ z?tgOu)a~d;538iNmF1=NUFK z@N~e`?4|<(%1nHI3(P-dO+F!2t@XTXiX3P&*Q~@y12p@%GCO&xU(G?;Wbe0H(U9U} za5s(=lJ~J&r-c%f5dH_iVNTp)%#K6)FTllTEH{xlsA1I(k_mqB`R?I^;`(5yl^6*G z(=5%y94hf=c*)BfbzFRD1|nYNn*Bj{T<3W2#go7?O^z~kSir}#@?s}r_E&J6w^<*B zwgsm8{(DFWk;$@5f`uKNKeDGUy`vc6RPI@1imZ53qL)^kOpZEJzw+;ZcLP8@UO6vH zM0oG-5!xJ}n0YLZE$1&W(r$S_^!C6C;MV3aEr465ePqHb$v)_ozg`3Rv9PZ9Jj}nx z_*X75^9!b@k-A%FndLTnum5rcw9%fyb)*ENZT{3oGt-e)6Z-%kBmMgaixNagoIdVp;Il5esx9v zWPCty#%#Gj`30A+v;#1ea0e2IRH(ulE9nH9s!QaI8BumMYRVKkN~<4xb_YQXh1Lt@ zj0F7#DZYCtzlF=KV-3Ln6!ptxN+@~PFQx%kl=(;;cfaF$^?Qr7YAgB%oh#E(l_g@l z-eps!R+u26W&G3j^tN_X+o`$-1qUhKFhtqQFHc@x2({&u7E?Z zR1|m9w7IccBlL?FU=m##XKd@od2c$10zW?3$I#YMENB`$U2?J(bQMild zDkS`a+a8BxJM8frw9Ri! zs)2~&Vejs**@v^?rcsh0%&GDU6mMnuPMfAwEghc2+HeH5Ox7s<2}=+x0BMzu#oI9V z#uf9%VCfZ65=i)Sw^~n#u7vlr&GbnslMV2=>3U}G$6I(zPDTyvAO-)-eT>7eZC;U_ zs*k1Hj)~rKCx2~^OZc7$cK@5J#X@#@H;F6MPHKz>V(e0q1D#PEAD(yKnz4~6bl$PU z_K)OK-EfVB^H!IPvA!t|PHy*1{4}@3+^P=#i)ZvxeuHX@}j~Wldb*|2_%e=LWS8VyY87_GC{(e&S1>z3T&e zR5ck_s3WaDRfwFWU~qO(qcXmPCK4o7gx3D&lVdeBlV#QJTBGVjjonp)WTqdDB(zd- zX=c_e?DKOt%+$>d5JEmtZL4U3qR?kK)oY^0ql?n0GRv>z96kvOh;}D6WBPU&zj@xCK)V>&`&01&g^c zFTpA9;Z~0Rb)N^OXHtdyoBQdA6_HQ%Wzf_Z7xK= zLeVn@h%sG#gVUAI-wai-E6V8JhVZNi$Cq;YU!67)ztB_wk5^;xT&K$R#%6aJzM>p(qy=1o<`g z-A1i{N=T>Sl3*M;WTt>Xyns^jnLxK~zD0&+4p=x$lM(yQ~EMMoyW!!?eN5;j1k)7(n2_Rks46Wcb~f|H8ssY!=o*(_>}V41xKd<*dW zl01>zwUC!o(tW@BBY%F_IAe-&2}cQN;;n#mjID^fN4NdzeXf)-Iprfk9A!&uBspbW z34A^uYwb2t$h6#l>^ax10ymA0_d88?#HzN!dh&33XnX!N zJDkE>fvR%#Zd+A)%*AEsnH?CaD27}4Dc(w7yE+b*j9uUl!C(L-TAiib#O1gw(NsP;*(T#>HZO^$4tXttLRO|Bij;`YPvuasiuT_-|B%|=NKdLEA!BJ3CJ|10p% zsbENrWSs&Nf8FJjRNhxtq=zN(2<{@M)m1G<_}F6eK~$tvkp>0T88MXN4E>hJOw=kR9S$N)uh~NPv~GJ zj99sr`Um#whLG0aU~|3rgZx~O@!w3XN$xbStNJ<>wrJ7{azh?L-4i8-NO%(U#``_9 z%T`#!?EvmA?z5u>Dv`#LL(5qw+VY2?j!SM#oZws_bRY$?^epjHa2F~mLleCSljuc! zmO~!OG4~cO+r)I5>x&+Do;#^H4C((Q=^ds76=yQlE^Q3+e^jEGqahe; z|IK+ZwOZO#_n|0X8)%9fr3z`;*r-_zWryktt{p7x7Ln}1@{b(D7m_s~5SRJf%HrH0 z*12wB&34Zizg^fTN`%Y8RNIGoP&hE^dx;P^d!oe6&mYAZ%1`zPERv{zTZ?ZgVQ!6V_m^DWW z-802LtF3;F7o;D28hftTd$$m1pS?J52NR8N)xPkCsuig#rZ1Ux+Fo9=f6cUb2h6J@ z)_O?)38-56uq{XcG0U*jEzsRKX99(mmvW-}p(8t*iWi>s_e+Pw-z4391-$L%Jgwnq z^pmF=qx16epc>i_BvFU#eEbqsM=}ONaCg zwKdH4_KJ^>f$J|Op1-iiN_;ODB^%wba#lB5+i|+PqD@$ClB5=}KL7r|`f0NiPlx(< zUxP|jgyIopJFaMrv}w10$r(#P8LDvU@?TGj?rr3X&CQ55SL`2KmSKqpsnQqChxcS- zv}6s2Z8AZ|PX?beuIMu>e%@FJ@@z<_ZBJ~!)2f;15Dd}uT0f=W?6iHPvBpZX%i{Ou z?-))dzTRfe)GO)AGJ@Y;d7u^p-S(VfQt*HB=kVM6aTn()oGtJ(trt#Ari2+p^I6g|D&hIqFy=+HT&l!l z;CxZb6}X&P`}QC{Z(R^u$WUSbb;Lm{yu+`9#EHKFwPMWiYo-|!cS)`(70iS^B7I1I zPQQ{Spn{KmKd!5^^g99{!r(m!=3#-Ifi^zJEdPapv>fsYw9hRBD4qZKm?Be8HQS!} zMA3zZVS_fd`gRUd;NBKcsflOPz4IQ=0fZU(Lfe**W~HXWnMfllC& z!IARBw9}p8@b}KOo-xX%(9!{kum_CRNO+wnHx2L2daq$;NitmttSkFB+Xq=qgzuw|K|8Gbi)N{qy(h7fOL0rrKAK&0g(pj2I(#l0qJfoNOw1U z+xPeX)^aU$sr#I>&z_lQo_S`@1M{>ecH|6aZS~Ny5@uj%r2HIZIU*eqg7G1|Ns6`R z5daa!7;tTYnD~lR?KdJL844PZdP~>VVeS-apgr=D0oyW8uV;An_f4LRtJ%o|WodCxu2zy|90BG~a3rs;qTbk`Qd>J0(C-?0&y@ zifi3cMvpk2!bpvC=pc0b(owKtmk^cTQbAoGMM7aI#r_g)LFzmeRev+BGq|l3W@x&` zqeRd40>G#GJT*>?h@HaRv~SjYKEd$nr;G(-hz1);Z(K8mniYKDP2&WEb2q+1vEF6yuA9a-kz+dV$gpQBR zDW$rh;+B8)oxy1rnIW-z@DKs%JkZzzhMxIqv1xNy2FO#rp@wtYT?hs=Br5laE` zF$BinBr=t&)gBFev|GD6wcF)jm7E?Y`qvflp-jWu`ubhf2n|g#>=Vqvzg8#z#ehVk z$ZrH*80hPu^8@vktmw*B&)9Q_4QX=vdG7%?X$s+ge}_FI*ryIteMKE{)Kro!)6eLh zoB%qeU%JK$l+gSsEe#9Vb1Be2?UhL7|JUx}mrp^X5fxSHGA6Kz1WtqDT8rO$J#*yd z!AQdiBBlC6T=$X8=ysLG7_;JfoZcH%Zd+65(Z__K3XT90e3_IA>l`5~X@Qm|);V$< z<%NJL3Cvrl#J75%`Nxy5=JMaUJp=8E0jd8kMf8}s#zY*5DhnqrX>6@Z{bB;ud8%vH zLak+|)eXE@r1QYD@y|Ss7{=Ps*(9j!Qw6PYzd7*(tj84@665CZxwYf;POH7PzxL5S z0R&=J_d1aAN8PO=@cN#fwPDO-@{NCjd4UeX`qrbcA4LnGt_L~{(%gYYLv-fX5|h_D zQ-Qyhb7{lBnk?k(KyH=9RCAs&>FnV@f45>H_rhe23BSEqpRq11*G6}5_$*%c-#-Kp zb1&UfYFeGIFqfjsD1izXXu<;meoN~!<&)o^DnjB<0M@feFarYq-<-@OrRoL%Y68Hp zCIg;~?|;Rd;Q{cCD&YB&fevt+YwIDq?2p2laB-#2c@5r}6`XN)$aroP3#` zo^Ei?le-16U_bmO2&V{&62KtUcyrg>R6DFTNsLp0^}bS;)6>+nt6I~QX)I$qs}@kb zu|nb`MUUt?jSJfQ^CEa`~wKS#DZD#@zAkw+yJ`Tv2p?yW`8GF8Zk zR$I9OG8*t~*K+{KxAK36NpJJia=vIje$f&Eqs)AX#Jk`k- zK>M&lUC#U)-bUATrOOMgI`Dy;`*K02C20 zbKwlJeSG$2BKJ-E?_GcGqe5=-+}(_@Cs>_g@CQ(x>4RX zt5YG1L^CvX=8Esp8a$B`Z1%Z!TU?{IzS#qQr~_30!X=+qi@==Kf!EjFiK%llj>`@? zB`N;%CVM@N$cPX=lqHp^Z~S7Oy~@JH$9q14kR`exs$Ky|fU`~+z9@iU5wPO`_ zeo1|;QQMYfX=rQ=HuS2-S8K(cu%;$Z7Xmpbw?bOPVc7>!H{+H9mX14@yizFKuK&Ra zBAk&|RJ65aVfRSsXHMG=KhRG#gP{fUBDb}^pV?S(YO7|w5Bv@rA&`A0y`4Q-mPK;M zii|&gdg(u*oVR@OAN2Vp%yqJlnRR@80vZY+6` zofT{2cD<+f?=>~a?wph7to6#d$2m`15P^Wd(Teixr)_K*cWa&qaP5g=4Ypu5g{er< zhYx=)z!!YUs--CblAu3J(tSf%sWY+s68Q^vg9j@mS1Jqe2{Xpo-(ss8()lLNcMmuG z|J^O^<4WqRKU38sG(pX~3lVD~QLrsZ4G9(3=9N5krME#`c)l@Yyu7)fm`s{?S-0{5 zY}*Fl?;{qQzwE_|)co29WmEZU5SJeRT!k7vn0O5WS#@>ARB4sl zH)MrsuD3COE-ug~IDJN#?wX?8zkH^|tv@xT)#|NlcC!Zx`r%-VP#s+ND?Midlw<$N zA_wTkQqTgI0tZdEAermKs3XV;MK70e6Q9%vgt4*uT-o1G)ZTVdwqD=dd2f{gLE;;; zzIe-IgybwKZlO;0uH={RGD-IaT)mvrga(uFps9Thyqvzz@7IWhj~m<+ZiXF2 zz)1uXPr8gcUY#lbXP+j&_Sf9p{vE>&`J;%!sc{~p4MT49IeSPiLh{|_+I>Rg53klI znm&ux(3bMaIqn`&H8krM9h4X02tyi zeW<-j#3HOGQcVOG6rHLftA2bT>BO&>gEtO0%w_GXI)l^3wfQ!vk^oHA@Bw*5&Rfyc z-#5(rxgy1a%m^xBFZt%T~ z{saNpbK>1y`L0}Z`MBM7wV;^=)bu!71dHsR_Wb=tX7D?FasK*H=HH2h z{}T`#Be^R{C4^ry+f}rDRQatPLEBuhh_>rB1|J3$vY#Vgj%nz;N}i_FYkqKa{O8l` z7gEOPtA6dX`ko~^$Txz+0A6a9FR1s+j?;t38(DD%htsSzgu$R23QR%{xHp1(y0ytk zGLg%l73sfou7uv=&8q*4$nVTH>(KtSBv7{R?VLo^AjM@RJmg5kD+YepUgX?14!AdK-;2)pcoHnR@?3HJbHdrwK9heY9!tTy z`t4$Q`GvuUCy%jj-R?zJKrmI5E?{uxD9yf?;-}Kr{VFm3)V2uo*|XAl5Cr{$;g<}6 zfv#staec4M#{Hwg((8u8V;nSnf_(TIa3yuLt;s?IB~O{ngSGMHK6ml9To@^RU!13G z6^h|&fIx^65Ma>6c*igine^wpe|>uW(4c19#3!09p)k_GN@p{VFWcXnZO5g}+~Q#wNzf7Y6xxBWruWvA6Hr}wjg6~(_P=668`R1) zI=%H_LeIgXACA}f&*GxqFvZrVD2Uvi>1LUm0jp{RXXNotJka0A*3B8$B^6CP(F8hA z$bQAsXzfu@+gLYf{=tW;vYk7_-e2(G-su2729)EA^Ot9{9d|7bD;OX&0>RbSH}Nj- zrWV<#se$CedfckpKCjzIhlSJt9{y(lh+y=zN--f~&$&=lQo%Q?III3W%wKlNvU+HG zrB!XQ58>r09dKw?@4_ereYMRrnz%*BQa8>W;z3&^yj8^c*6Z+~{N$=S;&F6!lA)4O za|2JO6>qA3i|6QNJPj`hxnP102<_)SHx=iaupYD8$f!v$RxZQo2M|q}xSuQX&eqz_ zGm=IaRZx5d9M#wiP=D=i_TfTWo^W|HxVb9wQ@ycXknnDeG5$o+7*p@^GNC#c9`8Jz z?{e1pqC&<7>D~oE^x<_6?7mIk*;9vm<}k=c-HsBC8o*f~JWdW)@i;B?@Zk6Q1V;6+ z&gBaU=Lmw{r4KiU@h&rb`~7T-O%#c#w+S}1bRdcZ`YyKIcp&MuU@i+|E31u|iziN%r@gyL{SUjzT1g!}21#qa;68G? z2N^L_9#psu&J_5yy0TK+-A(Tnuufd0X%P)@tQGi5ZF4{4E&hE12{0X!hUrtP`dQKPW0Bjo1neBn>6XsZ(Z1 z6lN~*ynkLBGnfz+6(W0Od0II94QjAO|3yLnO&(~>uKVCJzEP!R170H#&N$tY;sWms zifoC4qV~9*;5UQ&i~BUqczNZmt<9~imz_8%lG9&cJ3e8? zPSn#Y`6?IxVd3{WNN+!IN)}O(tp0Ei7QXc!bq10_K>FtUph=B_T?%7kxp8Y9+;_LW zu>)g|lIyV(b7LOT*w})?vQFzupty9pg|dn&g zqKvF8`+k)HFdZ#^Q(0NdNJHd!Q6`lD)4st#i|3s%uPAM^mn+B=_dfQFejlz(eYLOo zSVKO?s@^6gO-G;<8U>UY_@)iRBiuZJl@H{5vUyBiF5UJYt+?0jFX-LvRQ?lVQ+zf3 zyvAp`#s<02?TJKb1XyEru9T#CEd0l*E5qeY^H%8K1J}y`2`6@OdO)=oXxBC+joe(T zXRXBR{7FK%$%r-NpN+CF#P^xy7*PhFif-qEP=+i|i=~D2^Tnp71 zs#UpqCGe;81bpsl!Q_|$9jx;jb4_2ixg6&7Cc&Mz_k3uo?DbEmnp?VH7Y%VczXe;tyny!k$i7 z%Rvsf!ntl$w1wjr1=D-~!T1`XchVCCL`ZVTlC5oww9(}+qJAitKzCXx9Lzf<>7$>3 zB?WY6X~Hj|P{GR&Z{6HeAGoqhSI=l)_;Y|95X`+9tmiC=1DO`$LK%$EnaXu=pgYd7 zNvY5!rR*;PM6ka1#-YG=WiYwZYWh@G_uHI_5j(r^%+B`51E^6YC63%4C!n?uRHRRD z4!BimSBxVT^`_@skjAsuhuyI|?DZZHzX-72tl;~}FxU|rmcA7)y@z2q-V%JT!HU`0rZRmH{gWSG~L z%O{U4zAP>sM>7%bU+IyX-Z%$%&pUB8aS9p|H zyOvkybQ={YnAzDzC}1y1akg^gnwR33OIXq5S-V=tMPag@N92wGAM{ojRuJXL-(xnvXri!{m26evaWML}J~cJ;hA6_wale}u zMEFBs8V85nKSTWPPqYmA@+V|F!(eg&lW>6N`0sY@CtT)7R3>x|Ifz8NpnAT%W?Jgo z{!~9)wt6SjnS0Cr9v2IrXY2IO-8XtgR5-cy!o0Wcu(Sbsp{0F?94*vg*@JzsAQ4lX zd&7(P(!ceel=!8lT{z0nuS9OkB5*lMC!U{1?Xp&@T>)if_IHb&JV{uNwM#!=hzMkP zcx8Y}Z_e>}oIR{7)xLGU1u=Q)u8#6MHXNolUt?D~ zA-m!|`>X9960u+b{n;c#q$2`i>z;2?kY-sRmq(}eRu<=lxbT&6m8%hu-WA;T146`RFofc_V}rhvXDim@HFiN$R^ z4Zu*@&R!inj=%q^vYU+7JW1>4KG5&ObLJH?llsRRcF6)l1YcrKe#Yy!o{gAFefD~} z$VgK6H0xMn2N^#>i~yDXTCfk7)PJE?<6A(8Ez;_nj*h*=L~ws+AHhA4r-rZZO!B4# zv>z6|ZBCh0WLYHI8%Zy-Ds9Ng`SaC>aPd3|AeH7v2Aj*qjCZ;qtYjOMkH zh&3?!(iWRST-mEX`4w%;K1Y5^8jks%>Ch3<)EuqsBL}~oLequdf-^p$1j6UO#eKW@ z|5&)z>m@Nj-to(JL+Q4@ExPBmp<%cuWI{(ZEN|D&DLqTC)cG(4;>E$P-*-NbR^)F=e1VI>SM^)-G)zZJQ*}^)Q6goq-i@jOE6o zvuZ<}kKcV*K0yg@aJ|%a$`cxXQ zveMSKb7jhE%i~?Oe8by3?|vxl7pTU8^3*Kp-gpQ!y@+DOov>54lqbl|FY7D;`f6pUt7|0V*qHRqy^BiDiw2(*4OZsz4dc(Bvnv;_jxO zp4f351G+QHrs266BdB8Pxb;gf$vSU{e=p*oftoz4(zB6dUr{HySeCN~Ev1k9doBxai~*fkg_FJewoxNH$j&L_=eGsG1Wvm*C%=LYLvenzly_{amV&gOYNho& znN_!n%3Em`3y)(uxRc5xiXu7+6>3{SE z#aJD2UV6DY9xR}Tn7tXC!1RZDqaOh{lu6b9D$Aav>Y{XU#cDGB9XOt5?b7`iQR@pC4(0z|`=+no-|S+38*qK}<}`hX+h|Aa zoPS~NXLFk0#nNvAB%rW}tb$OlIMS467rmG-#B|P;4Jtuo3!RFeKZ#AKvUU|EM+=2h-M=+kD$~YDUxF zT>Bg7>gq(ZMAR0otWz#a>IF_^bLH4P9m25Vo}6`lrbyDnozDx3w2iDRnxCV>*7|*fB1PCZVmUJ8nUfkw z^7WK-3;$h6$s`SxVJR-Q5SE{zU-+6xi@>m*>#fHCJqLm@8M}&}C+S@#IZ2p$RQmSq zlkCYsF7Bivc`q!dM0%TinA*%r_S?b;d0Nt~&vizP#gNy5zOG}I(>3+OTDhZ^vF0h= zBbH?t@1{%zz-T)mJeSU~?E@_oKjZ<6(6F6KQ~05lAW2U&O5?~GlUmu3HTMffQB}6P zZ_!M$LB>sxtiJ_MSXl^dJ=l=w2_Y-)ee3Cj~jPtt}P@E!LjH@o5r znZ3!_$ow3;Yipr|1~JY&?$+eL+}*E{MC9{>r%Y^|3FCSEmz;t~_X7Vbr*TKVA%`3EZlH z&y*uC-F(XW3|KqfVD2d8*cq+6g5@p5OYbC)6;3Y%I1yu!n2IEl{C(D}G_K>qqTNa} zAw3vqft%$Oa^9Ha=H4PglKaI5X(SD|I+3BoZl)a{8Di6B&N*mJCb8)R zi5t>xv4`!ECginwf+a?^@SfeYMcv2BwqJZRWXtbh1C7xe$QchV;f*S`8mraav(m?= zJ56@qbVAKplN+O_CH7tPJ{~!DoS#Cg|C3tkBMw=?Zf(O3B_A~|M+@i3QN z+1a8id2YhN(y>T4?B4yT99F?Hx=A=ie7lL!VEm9<4jpXQpN*P#w~hHY!4zWrP>vQH z)QGNA*VvoYtE}N?&O%GBVhMdjCJVF*%>+ki5X{WcY?Yn(u(Rk17^CU-4>x6U0aPAE z^{5m4Dg42fH)r`YyOLk+j1x`*VAV3Owb|s>6AGG8ciK;meuOY6dT8!c#o}0?3YMKj z*ZcbJ90eSBktuG9ZYGbCv9Wmd^}l`qg+Vr`($<|szvJ^udrskI3=;;5Zd?RD_J)6JZ8{W}CLYNv&K`QkFO$Y;p`2eanyouWn}1Up{ET zDA_KA;w8%OGp*1e-tDVCJLL(uN~JF!Zx5@Vuote&aVKTvzAU(vAVW@*WPO1VMQ+!N z$GQ!Zok3lL4rH?0J*b6*d7J#({@yfs+7YtLWgN>18N+X9RXtvJjxVXbZbI?%iEf48 z@a9BP>8qa5d85RCvx$)Hhvr+#*?;%+aLe)fV0o6m10$f&ye-c=Q%(q9eq4NlQ%*6u zS@q_*oTn^j8b_TImezxfrV+Fe2z^c3b(YHY1H#M=M+ZL|v=bCXYe)v!U$z9F*e|16 zTiEQmNV)Ia%7t`#Bj>#2X}S+%VH+dKipq{JT~dBbe0z3S{(sx8LM)Y+ed0_Yt|_4PoiAO3ac#EM!g+K9@%XkGQw;yw~(R zhYP9Z_{))cZA0%igABjHZ1m2R?Ha#?$$#C;JMDMMaJ~0fl`(OAhzf(m@lII^eE(}f zJi2)j@m7SwYD)lzNCANQ7tZy>L(pJ|ttKRcB(xPSSuh{${+K2~_a^U&L}`O6#_98< z&lDfQ&NsvzcZdIxDla)xrf_|B1smhZ?OHogFf6*9`TV1@$WKMi2l*RD zOz}x_IZE#CQG9&(j!NAlo71|rO%g*~x!>KKjP`~2IbV07_>nf;tUi^akIa@n{#<*N z3}RL^6MmdUsi->pyQwS8H<8jW`Ofe1rk>pz>+WVQpTAyxHPR)Jw=RbsPnX}*(|dP^ z-Nd@^nl7!!uN$omX+Y!I@vwF+~_4pv;hvROVkT1-80>qHP_hmV#Mjvlg2wFj(}B(UFOR~zy^#l-d!-{y7!u!fv_RjyAE2hXLswfJ9|j&h z^LyHHW$*lMlOC`(Q}St?!c5E1Fb01%ezuzv>I@nrt_@t?HZpb`D)Huwe+!5u zx9XoVigu5Py6eMa5;ri7%y%Cuz~7BP?Wg;x@Uh&`V~FGH9JBOU(rBrF-*Mo5WTQ?~ z%FCQX$saYOC_Q*AVBU6J%%#HQ^>f71GCyCG(pA=5;z2%w{L?{UqiY|pJD~Lf*Xt#^ z$eDAblS_k{UHkl`C3BEbIoQ2#6P&=&>a1k0&XTX}eoN&mIZlXHQF(^VDC(=1RZ6`r zjs0t--DB=G#xicm3o_CVNOm_&h>3-!+^+J^$B|2U5LY$ThCEWz_vSk2fgu%bD-R%Y z4l-;)ie1k{vW6^2)X$YE;dLSKeG%Ih$qG~JEWPzXWW_(g9;j-LSdfvd>?dtno!33k z4Fs<4;vXtOJu<^t8?ivS&B8vr$W$y=G1csCQ4a?Ys5%Cycs!JOzN?)ORmpVtU4}z4 zP#3LUrlUhbGPl^sR5+8|$6;esZdG*E@#hIl+xD{4a$X1hT#&ZaW9nj7e4 zjbQkFWr9{>ub&WzD~%lo!3lh7~x&ROAW%h5$Bf1raZOtQNc zSOsLA74>JzZ$JG_O|>I{JeQo3R;77|%}4^v*h2}&jCO_$S#pS{m-F%m$ACV97fD4m zTNYx4+)w4j1!YY4D@xOe()x#T;3vxnm8whj^47C&a;6o=39{*~|B%cZqUA&#PWw@a zc+ZX)M!=l~u@D{v6V2AfZ?v8qzid8(v9Z11Q+C)jT-knnxMQ~9V`3?3aT-w^?PkPK z5UQA{A^DU6B0oFX9llp{ee^Ke+Y~%0rb|nS5PnVr7BS4kzv?j%t4L)5C;p6Y=#%qX z7aEE=3s&$V4bQOu56jS|=@smVQmA&uk0MI5rD>-hqJ#f~VF>p^zVO&_vcu=`UF-y_xV1!zIYB z<0<9lJB4|>fK@bz!kb1_tMpBTuRE$7zNRveTSCZrJ6fg;qsYamn~G@DOSh91qT`m0 z)NxfSWqf;}YK+0T+edhcK}J)aonY^jYxh4jyz6;@4r!}fA~4u0v=&0i31;@?-onSM z=mg98i5+~f-cMYheb!k0ic3$k`i%^(s;w+hy@qFHpyIttMVIgM4OgLDwVO#eo)O>s0t7-pcl`}zQ9!(4?;-F{Uy2`{(FhZjaD!-54ci#J6 zobavt4|GfSuTHdvz|+tBr^62F(+F{8A72*m^N}94QD^+SDy$^8Aeu(Wtqa3dGj`Bj z?}onUnYH$J-M?fqo^u|gF9hM!Jft4NC|K>s@Y4IHmrWb~TTnfja9NTjZUo(J8yB}; zuc7A4M```QfzbD~S8$)eDLS(YbBSrz-(Nx?qa(eyOMfdg<)jGN5hv&qy}!g2T*^`) zZKV$Nv_dxb63UL1So_a^s#!mD)%`(=$&J9~3(u5r?u_6fa|}CEo{Te^jkmc212%H~ z)`Qx&lxPq+CTDa_`uT`_=Vy;pV1yfJRn$vF7avOJ$t~n5%MeSf$L)yH!tOz-N*R;Q zW|7=&&gypweI$BKdUMm{TY=1h@2WzGX1=GeW4k#+%F)FaZTDo%MKtAH35lRE|LPwV ze%`bWsJoSqe3|Y`i(+`Ykx2YkZ)^3KzSZ%*FMO}asaG4-&>b`_@reuMhVPj1dDMyi zojg|N98TiDSdedtZdqGx6`C&ff5x__49U3RmMDJ{{fYG1rp{4jxjwbR(GA`%JFaa7 zn?%I~oH%11M_L?-7{5?3Y}DE$l5xlxEAJP5*RFgmqLhcctR1u@^x1 zFEaNGS=x&x+m28mHJSTy+RWe8&i#Tiq?i0TaYV__QFOWLTB-d(+YBq8{`rC8^AE9T zr~PvAm_I_d3lZo>FNw_uxK6NBpx9WJgr_4|S|FJ;`e)GEd8Tc9aXkejIKq9s3)1We zi=VU+A0=jp0AS=bbNFWyUw#IKi1k1dPg^U1CP8=LNGZW5^n z9?Gl{$YTOo6B;A&vi4LiJv-umTC@b{<;Z&2VJJ?jH@uhSmq%FCe)yk#`cXXOE!q)s zP53_-r1yGue5p;IpqyFyvhN{vr^6pzQAG_8Ji9X@;A=m-7d(uR{JKyC@}T~Rd}OcV zj70N)Zl|1aSFWe@NaBr$-?RjoO>;|Y1yH!4TA&0MqPTT2{@bbGINLhPxt%9W5#Y36 z85c;ulu^F>yxH*f`)7KqI;VO#=V;4LzsZ)_W{7V>^JkibdY-_!>*%5fMCCY$`Qj2l$lLmB&M?U1*FatbwyUw}k_J6zhEYicQxooq6Fy=2E zV=MUy2P$AS*S=I?MD7U$ z)hpB=d=j2Uyl*e_kjJ^}e9Uz2Qi_9r`9zhTm;TIQCxi zLSGC~*Av;d>*lJwNlzYSoB&3AS=HUVeJs*C%hzzkp;V%rpPB+7O4vL21MX&Uu&(GI z#*cG-gE@GBR`(+P|E~pjwY%5ib*8ZDh<1e*2KBoo3hXA5u3CxU0=Kkf%MWYM+txU9 z<%UarwIg$fe$Q-BDB=F0CKmX(y4!?F_u|f=qBFq(>hyhHeAf%W$Tlyyjj1Aw9&N=< zJ_(LF7FM;mSb=Kh!v=V6-)bdXY1OG?JE$RqIL-8J8cb+z1m{uj`%4Do*%Me4?`wk<;M0)^M3=2f@V&oXYMco zkrS@$19C1vS1{GjF={r`2}@3S-GcP2s_}Cw3ZC)V#48VW6ruKX(ixJH-8WvFg^1t0 z@CVgD4e(6Ph-_D5a%Rz2&8?m_WY-u!3#xPQ$}lVG+;5?D?2MPF4zcG1Nm5bz@5awM zX%A@cb;!Nj9Bs0Y_;_OxK(gsU{^RET_UXuHGVp$lE%(Jr-~^g-D*rZ z`r4?H*kxo-ktjmLmSYz;<##uS4d?8Xr5?eg-JANn@J&F#li4Sn(|-PL`V(K1U>v%k ztvLd4+4T~GOk~}X&sR8_uZarhqpxxR<($ShIA5H{poc5Ua=TR{QQs8sNfl-RUfWaESqe?z8c5Z}DK z?TuGFoJR$4{<^r=o-9kz76Qu1c++M1%GFV8v}0!GlhA50_DHRgFEM1+q2dV-o^QRZ z=Db7!(yFZ?WXd6E`OhgYJd;hibNuEy-6#Q%rh5W5#zLE7-Z5*|C1wd7$&7jgnSy}p zB`RVNsL**w^*?J`__<}Ze05sdkLcJ=ZFb#W8m8Y7^5X-1GYu5KjTeOWkiTp)4tSj$ z;U}MLI^%~fK?jAK7M4-S_+ZROZ(jJDoZpO&dxe5$dsuQP>nZE~o#L8I?7KJ+mVUpZ ze-Ctn78i{w;CW_aXxpzOLd4xxC~AN|Q<*N86Q>jWsHn(-o5BsV?k~7-%lO9;toLYj zSqZzp9E`IpZ6BA8)wUv@0s>Ul&KF-ZzPbBu3f0Yt*yGocZoglzOJ!u=t6oB3a?rHb z=l?fkK~+eP)!z5^^l&s!WAjgD-)brr;Ta#V&5&H6m7=bJkLS%vfj$x$C7m!aY43A) z=^|LdAWS5`y}d;S>3*BOC+q>~xAe=gOpg!do03CME@i%7;Dl+V)K57`1sMf!!`08y zGL$=pSC$&O*+e`J%kKHyE*=fQ#2Wa&RpCNv#OzPO6CYn}zS}9sVBFo)aH`Kab^RRq zf-<}FRh+`WLPJjT(MofE#Ow8V!D?~C?LM}W>o8Pmr973#Hc*M&e#eo`2EZBBAgvrK zLrglxcf}}6hkU1=Wwq7Mbn+#FsGPKpgR%}CajlRD(^qJ5AphqnKWD1=9I!NA@78{` z>k@N+Qqdp?4sX!esfw1IZz26xrMGNs=fn12we(6-Q`&y(x&G7~>zGN}3WB_64Teq0 zWrr%(b+9@zMY0srvxTaz>O!uc8ULJ=lLfv)6~U&cjH_U5?j^t2^{73}la z;Bgs*M5(5>w)Jl2Q5hq|A+ueho>qO~0RL}w%>zv|rOA?=R?E7hZdGq?_`^8SwEA~K zGh(K(6-ySo93_-YFRe5@(lH=HnNLLlSM_fdrIOv>C`N0F-Y4Jog*`Gf_a6il`drFq z3pNG3#Om1AYeA5OgH*dL|J^5Pls|(~9X27R(#{f_a#A;59{8H8=|aU<7Iip-rE%x9 zGGz8y%Euhb8=DpH3X-$g+IXm@C?=&g16=CKxw-LC2T>%T#82Bx@$kzfjD@*T` z^loEN=`q_|G`Riy_!W&s&gYLLCm4{mz`=EC_9;2Zl|bfr4c}LvSdYO~pUQUxGRFmr zu%?v4o~wU0_1dwyDI9Z z-gJIb$}=92{nRbif#zLt)$>9}T8HEG>TJ?rR<{aGBimbJ`7I)DKU|8bW7dvv|0}Ke z_b+=H7>*6BR&`9kTf_0jNhnJ}u>hy5{FuILGjtw6h^fo{so`{_@Z-n3q&WQRh^$^i&@0sFZeYS??@ccc;)%CJXCjnuu06kPNdAeX{fAsRh(5jsRdc0eq z&96_ZG5~mao)wE$B3M#eylxvrDZ2*n$nts!JGT4hTBAe>i(Rw1z}m$eIc0LeehqIEX$t7#yj?p5BKj^ z6x4avgxvcIZxAkUy9GrenoRnX0u8-?XhC}HbC;FKzEk~NsZxeI)}nTd7Ahio&Sb>Ie48RUA)rYpBAAm-1pD_q0qJQ*OS{k6Y6xxm+h+O&dkI;eSV+j z!UNxQO1w5M=v`PbIit_jIO--XKhDCel8N#={@N{nP&RB`)b9v=1m%E~qxD;<3%(fh zKSGo8GB(Fs0`aUBMFYGFEj=DLKlMdy|0kh8(**FYB*gVR=&;M&4Q=sZ#IWl!;25lf z#IN?|Iku$RGQ;0^WT@mXi)xEk2>23Z2`o6|SU0e8dN5Sdes$wDTCuA`-9Fd-qmT8f^i$!r5l*2aE*pQ|_=bi69NV;0?+ zdGFI5ZC_*OGW}M-tt+llye3rI8>SbMYWZ}LrLz0fkSV_5VFXT=D}v<5hSO!4fp4mg zF4dMAm^Ll`>4Qtze9c_8y;RMb=>E#4#Zh4FuBd2urmM-SAW@|BBKdi$I2U%K_= zqwGG3uJbJOd1`QF(Fn7x?H;wvqOi(_@s-XUO}`=$<3$%4f$?rDs;MRQ_zLqp+c7~jM)3%`s`zm13c3oWwmgbx zxj35@L61*-@GRDA9=Y(I=+uBl)H^Ko11>fMMH?i*D%kHuGN`U&wSrpyA7)tD+DhgqnzgzAlWXl<(DhRK z*OYr)s{D<|O@Y~?GhPdG7_~6^Czm@x>$TMax)k9MGy%O#|M*{Id@)5q=Ed=37sXby z1|)ZY7S=8)ER(4oYPt~E5GQFtRqCOzYdabx;|M$q%m7f<|oPrgxF(c%sP2!bb>XHFXguDl^2UoaVPH@qC zaV-<0kZQ1v>T{mIxpY1Y1Kc~lvi=|XU8kT_oS_lQfU$-)U;hsT>Mf6+kdJ;hCL%TSO`r%FEjAjGH_K}t+(HV40l_(FLHX&w1K|Nvjs56^&HF_x?^-ifAkZP6Ckpc(P2_ z`{rSifOS18Hu4mp9aE1(6x7##9DtRK;Fl=J-Nn}oU_h`}KhkSpVVC}DCx2b$^>jjT zIZ=r1ewT34=XAEkKDeTd^6C-TBA88g}| z7ipr-W1f((6uI`p*Ze;6I-n3o*Y_8z3WIQ?Q;d<13?gd6!Y^l#Dr2{|G$Scs<0rY0 zZKRM8Kfe$^sH4Q<;tqY{p{#P(bro~DAkwY&J_)f|C!u`r+R!+=I5h_fX1S^_b=_u& z^!JyquEw_~`{zFLP#Q#(LZVml-VQnm05iliWI?X-+rO<-{gA*_h{UP?<0^&o^vg8i zXCXpk=9Q>ZB9z@jOz`-$)SW4`)Zw)gnc~e_*~}#Q{^5{KazByR!?Y)oe$KO(mVyg& z#E*Gxgn1`l50$pk&8ES)#)*rE8!t~W{qXEOu~I_mgnz|6nZh7_nV%2Cw5mer3_;A$F3f7Ke zx}-c*@S~h>=QZ>`^#t&yHTPBSv}egw*4hb}`^7&A{L-V$De$|_5G^!kbhNL}*b~PE z!*9pudRIBQ9inUW2symVdF~OPsjx?ryN!xFtDk!M67V(UJpRy+Vc zP#?y1BS%DE^at>NRtjb6BSoK)h zO3Nf5*clkd*o2w3$Z_UFYbC>~y(MrerqMz}mIowu9!W+2+pFWzU$l$b_Yote#wh>0 zK_e>sNW%=p#gr6U=$YY5UJ&hgTB~`g%h?4)?eEtu1M&1vqQwux^G1CXui|+dQi5~3 z*C+{)r%HLFqnq5iWtvX)AgK;!63>6{0III~`n=;uus8)X(R;W&1RIp7!Hqpg+G&d*eQ8Avhc?_IS)KjOdVuFGp|;V)A7G734$`R(*5)}m0ly7f+A~*{tuLd z$MSZQxV!yXdAT12oZQ+aNObU*Cy1t`I}Z|mN;a-qj$3jLxgpA9l~C}@IXk5r1r9L- zI{eDU)zeHt0N(wZt-(nCT_XSefgCrb979#O6qL*e@*BKynEl74Nl^i99fOcN=GRcJ z2ZXz<$Nn$idTSma+dfBfu2Tr6X|wGKOBT@OqE^Z9^(3F4(cW>nO$F8J`Jb_qfcFZZ zvy*#>v@!}qTF*s?q5Rx?u6KRwA&%Rh2xx7_ZA5S6NOdFoX+VWaC|)kKWlJZsZDLy? z%U^gJmO8D*zJZT9d@m7-eudiDn{7b|0lK9c91LJuCUr#6)ZEbApK=C+OayHxRHZ-p zkEePC-!X57oi1r5;dFtjfbRwEy$Mr-z`uKYV7mLnwo#m(AcJR-0YIjf7x_tG>r!t{ z%fN|`t_v7it3xUZI5!HmYxFPd9kZrzwOM&IY3mwukbNhp_}Zq76@fbXB?uLT&JQn_ z7;4l>vi?N9aIq)(mW(<~h)^X2s5pYmHC?*A&~x8`pm1!Ro;YM03E3Tv`2YNe`Go9j zDP`AF3qmgC{&nW->zXEOP^H(%LXmH7$z+Z+#0OaZd8t82!m@J3 z_E*tf@kCI6egVbs`^LnEL5>EV8{{vwRX|T9H;nLtBnS)+8HK2` zRO-WgSaUy|{G^rVQE~>lhmq}diWwVLXLJifim~-apV096gHbLy^g$k{m`r6s=l0`A z_?Ob1yiD<$`u9cBE`N-IxB~%91{Y4eKF`FUWk(0*4gOTwdSg0B8;tt;jA!f(1YsnH z^takvHm{INqua#&xuCB5rjUMM1b?tpIa6!1o*+Ts3w1^OX~+5EpOVCi4U`!P=%R`E zs#K@ff<{*3Vlen}6y*FGohpK39MQ{Bqdk85nJ)jlp^v^kjB&-c!?mYFJxS-QKg zx1&w1I8&xR@4q`33+#}vs7d(gC94^r_tS?%xig-BgsJAo09RG17GY%0u!4RrQ(%(u zx+01Np{H7yDJZO_*t}ySH5A|{-Rk=89EgSbH$?x}4<3i0tTG3)o8LQV+%Y{)d{peB zj1b9`+ZklG2TIcQ;7Kefa(F zyvpPk>G>yRK(OZ`_p5A>T1F#)~8 zhJLiCC2V|pux54_fbw^oQh+`1EgQH(N@QjWC{}nf>IxR4=sxeOM7eB($FRB_ZvU=V zCX6S`es%1cZP2F@n>;#J-usjU?=zpWMGeKoghagmn%z0J3*aa~Ehd(bzQ3YuDS94! zMeiId@>h5?Gm~Zr>l39+fG&My%A(KV97v$I(X$s8QsSWW)tm#RDvYke@FSccbVy>` zl#fpWB+b9?gsO(Qk_0-=$ABI{NC^cAnG6C)7np`6w zCo6R*w)S(Uy88Kra%Cg`vklL}I6IC%8a*-ZUO4ZsAq%5II(gGy+h9Y0?1B$5p}71T zNF&l8%{P&=o}%KIf~R)2^t8Uw@9FN7p}CQD9z3OdxSKrwwg z7_|3m&Sdso+N!uOHbvO1$cGt9w0AU&{oi~4s~l^s9*AA0km!+6{24Sfz3(N7AWlbH zPtK5a$Pcy{Gi&`r6Fa>Me)XgAc@w!qPq3qd<@`8KwJd(SRS{~}N2d#r!eL{8wEC{5 zorjfcr-^^YZQF7h+0Ko<#jV}{zBT*uJMpF=_dg-_Lx0uE@|y45kTo-J3PkZ@%pqqv z&ROCT*_~s$nhC}ICc(DwF$5Esbj1_hk!152y^Z63s*J3{^1_A^d^pStt|po=F~8;X zlyb8@Cv`~5?=$;9lP99?jyhGZ2>C&SHKu`SOSl9AjSk|!Z6{A~mC+#;WTX}A8c(3M zIkctXV^L66w$6-jlOW6vpqkZ30)5*p#k}dCa{n2QCV0YMwyo9ZTRR~Ae6Vt!yIRho zI!xjI*5rYZuBrb)`P5Ay>q=8oa7Gf<1*lm$z?8>(acF}9S=J^&6lV|SQoQIe?0>4u z5#^GBFU4Hn?~{O$WE+|hPG17BUy4p)<%QO&06`*kN*~f+mRzZFMI|(=SZD#7kGv(- z7$Yw}1PSmA?K3(k!xn-YoRZnM64|CZbsTg+sP9CTK1j)zZ!b;wMTQ4#sk&FkP)(AoL?rHG|fZ$UYC4B~P6GyW#ZE23d?LNLxU4!vS z=`)irp0?)t-`w(0{Ps+$>^EMo@{wi?V6W4XA%gFcwL%?_>f^sUr!^&ugb3psE!N1| zvrq-l!fKoax*!A*#{oOfDzZ3p7xnJjx>_!Wv&QsxR+GZsE8qzEYF;{N9wV;(c)IpJ zy+YW}!bl1j7=`0?3kr~UaJeGn;q9)txqiIeg=h-wBO3slhy^?rg1?8&r6v?je$)OI z>t$bFcvKuPF|oe+MduT+2ARqEb=qkTvf=CGDr<{19=Z3>04+?JG+o4DXetd$HR%_1 zoS>Jj%q`nlq#l2Yai=!|OUQ}DA>vf}2sE>XemF0d9f8QA<2_VteuV$IQ?`f{re2fp zO&3!onStXtlSG2}mn9=BVHz(M>SG=;QcnkmRmH3L+8x_VVqg1za?bJ3mZJu>gw_E+ zl3KqZ1OdVe7l0ra2jzrr*3HFg@OgyGPdc&6#3JZ#tjHI6Y~Xe^rMQg~2A&AKcD~o@ zmCSLK5%&foU|ipJIC4Tc?SJCoE>xD@!VvUj?|ls4qTqI|d+%e+NZub7tWrppnTD#Y02>-4sjzc}EE_ob2v36Cta`QbzbejEC%^)%?*O z=3BM_Gcmx3D_IazA$$jk0e6gdFt7KQ0ef4G&muZ^cKM4J5E>sl)Lsa!@DcbSm=k;h zhwB40V3@F@kG1c=WL4&)EmP}3u^;-+oJ*R zPLT8b&xgB&-J4YEGn^AfW5mf`O$)em;5rzXA}6NZi9e+gy|11fcf2-5fM6=+{{;Z) z1**TT&lMxGKN(8qkhXgUam-ZxoSXNU{sz!3B3?qBZ8AZl0sYG?6hC&r0*W~2H$DjR zS*D0cu)tww%V|nVd6f!_ZTO1L-(et z^5T!AXP}z6_m-^8h63-P@s$0d_`K-{17Tfn4|GIf3&Oe5m`s~b3qc35(&eTQBQ=tV ziBb1MNl14&u!&;SIN5BVveKUSyX)D@fmn}$@!WijRLZg2zk$RN5r{WC$b11z#+RoR}v}fV{>*`Y` z&aU9_ZH3iU4<%LsKaU{Zs~S%C1Dh)mD?EKJI1GEmHE%_0UqZz?#7TI0yXsCa=rpbj zqgmm4e95W@{EQJHkN57xSX*0^L$mpg>p$IR$o`3aeeQ?Wjzu2|b?-*` zpLjibP-QMBL9Rt1tRH z+j6u^nx2*vr9KmUxVK~&-<*KHWutYM^KfJ2N*~R5Ca>blAO^q!!@Ar<6*C-mEuA;l z>D4$2mFVuS+z$AEUVxMd6!{l9ADk{yd84AOFiAQn9!LRk*|PJA2LcN1j}Pm~-V_v} zu``?6HB}A5UMOvuB*A+zkrTA#Br@z?1)CT@hA4L;whqEeibY6?U3;N+C%&++`5H0Xb9Zy!b`+a#qchIU~n9e)XAoQ#)gej!o z2sB+5=8!2ThG%ixg|0va9c5#`+gLLJr{djpuU+OP|X4kk8X+@EcqH!yy@IV3Zy zvR}RtSSYn*yA`&b2_?He;c zN3)5=$iLo`>E5TjGq#jP zBajbe&OFyH{I|l{hOXZrp#2KKcasd7qEvIy@V`?1gx`96)ffDVe{TVgFvt$P)3FM| z6g|b&=}=H3AboE1j6LgdD08xpcW=hfMD400fp7L|ecQV@ipw>X!(LVS$ouEKP#pLo zyh$eCgAU!FB*P9VF(K27Q(HQV^vlMfe6;m?P%b!?ws7zt@tfC`@p%J|Pvv?GV+@8J zmY0619fOMSG*D8v^ z=kb#aGI;OBB}rx1F$PO~e)Mfic-@Ieb=j$(LH3Oy48-AglE>@J15ek;P%XNDAk83g z;XBYQRmDj}1Ea`3Ch`u{pHLiu2Fu1q2YU;Y$xqkIxWMp6Bz3fG5K6J|T=TnVJOjag zF~8x;sH3;QvTps4^f>NM@4Zg|9;@a>dr5I`GJl1qF`l}zQrk#m+_*y#XgPtHIz;Hi z*lnihf?RpzOSeI|vt|(CgH9frP0ktuY7=S*7AtE?E%&bkN-cAVM{= z|JSGA4HoatXGE| z4?^~oK_*~T4@&{l%*%7Ss`e=)6nXidH6Dcf`G3M9;k=Ns(*a%@T&R9n>rBPLVf)qg z6>7a%TsDZ6D8dfL^1|~e+ysqYcK@lU%K`}N*pZoA1!oAmv=B0!fFjMTse&iD;vY*V z*(JD<*KtDO%a|Y7B_Z;B^|ck;y#-FDJz_otC-pwkUGGhutA~p51f zLC1v+>iD+RAEdQKgiVq)Zv1sQ$#8MVvm6-Y54Ojwt$$I@{j1udcJBVGW!gsHhB%J) zu~X!HHEm`uGFQ_95wHh4!E3LH)*zjsBg*ML_x@|+7HEaBH3WB=n@ByF=a=XhE!cd%#JPiN zUW}oBabsmHU|FVY#dI18@5m(48+=`XY}>ERk)QZPln0!^>Meq<^yb z)D6@;JQn;qD?ysg+{?CQBas*?)CK%cT{pM9Yo1xyl{d)~2ZnHL#Hk1c4uKW#zl<-v zW?u50fau*CEx?;}=i{>5uYHEUAoo zxsS)@@4z4@q(fq zOu4XWXTFLbcsCx@T$`Kpm(Q7`h0Hzp9^W`yQK#V_dhgJf0!X01ig$YG7nxp50f&W# z$GdbYQk&q>0go_JKz$fN!s+SJlKhii2`T=S=IxH&J7#2}Ky-v+h;A8$2U`zrm;z-% zQSYopHD1pP5w5x*u3TEG(sXyj!Ko50UADLjJVpM!ZPYMdXY)( zGZIwz-p5($b!^I>+#|9Rusb*t_dh4&P(Z9-b*dF19Hn2n#t#?`Q}wtzUliS@aG-&7 z;z@HssrxR=1nAbb7}X^qgrn~5#G@2IVk>_~Q4=La`uZ;*=!L~Zqzz-gZvj_JfqNs6 zC9d*G=@buNW^K`qd6v`re`au45WYTm^DiO!a>xulv-Zxy3$=?2aA>Ih^?IdjBh34k zs{TPp#JL%lIV0OH*JFGU9j2`m=+Y#lU7lDRp{F%$ZP2V|luz!lWb}{&^wH3rBXfC^ zJ-*0H82d3udi-8-Y}*Abbw?kf$tv4F+r?~skWQm^e3r!V)p}f&;v+D$emi&(m<^2n z{61dr-&+Aq7c*tPx^vSW7Y+|l;rDNh-t)M8@w;mn@Vk<`t*x4ePOK*N#`fMfi4g?+ z%N8Se*@27b6>##IB=A_!+4o>7Mh@>4lZNKNX~y4DjbSZ=H#B>=Z$Q7{MKIweWON%b$2dNbB*j;JTzU0XTpm8g6L z7Ay`I5@`IH)V8Tn%U;%#wF)=*Emzu6+^D^}KInQHs`K%EL&F{(Cyw6GD_Z`~t3(CP zMqIDQ|Dl|~nO4Wzf%;4?=icf}fq_7QNg}e~?~Bh9`#bog3P{^Hyrcr^RvDSXmMK88 z73|GMi(~+vg9hnn_X)qZ)80<|n$7R(IxWB%LOGnfTG=x+tCE}DH%5!X+IK2XT zdLEut137-~BD)W%Yy|JRoQdoBZF^JjwwAIE*`Ol6q_759x8OZhYzeO%HzzeVB2)oB zn=p>#4tLGAT^z=QENMiSaQ1`OXs&9WLLwu}AXm-31C3#1vg}^v&@!(P`qN`Eqpqrx zlf`@g(oZGDVmAtgkIsF`Oz0mC%0~>wP3M&;dMWVse1=kUdXf6PT=8@@R+^PzdkuL4 zAt03Px1h2wAUR0Vc-SjK;3nb1_$R^iQ?3@^ErxJ$2c2H>+Lj%$djnVcx>JFK4Qmo6 zBf;B3BDbu!TUB2NZR-E#3Pe}VWYTf)~zVom1=HVLdEyttnJZ1 zyg44uK3}>AOVR!5_tgk6>$1{-Oa&A|$l(L=gDbX#r>E@9OP%S(SWBL%kU=^=UZj~E zF%bp~q`%juLg^Xk$hP19MTkJ%dfzp=g#LPGJ2Sw`5FtT0sC#`JBN&zS%M)vI5xf^Tasec&TTsA#0yrF( z{a>$Z(2vHf_Y9I%zz?TBH?7sQOA}RxZWTKM$gKV{A12-Sgy%l}W^l|4`&@%fMgj+KS4$Oo^JgDI}TSuY-&G`!!?|fD=;2iw~X4s z{)=rQ1--`#778m_qt~4md-@lPh)%erHo)-0jfNgWZ2Ybl(}BLAU6wiG^7equ_X63xm_hzm2l|p*4`VJTSMB*z zH!U`Khf7mH9lM5LWJ61O7YH|lG29TqEM{PLyuTZI)a~yTk4L+%S`nmiUURSuin!@; z0pJMgsOfjAr2N}qD4vQF-eG-Eo}U*e+yS|rjopXoP~zC$hh;Na#c7#dK}Y9zAY z@efmvnjEx{=xucV|88$$!{DY59zyAEm&1)2=)zm1vzy(_bjT5xh=J(GUa%(rzTJ1R zgv;8%S4A)Es`Xw%{jrJ#zFt=!PBqf(?5*qk=_6D`{=ZOrU4i&lwUK0P`D$lC*a9Vp zaoCGiUKb#CFsJ8uHRcE?eX!quTko<|RaXz_&QIi^=UiF%;qKv&ALs6|+QE0e-vy~d zXe*9koK!9UveJ7(P>SZ%u_V;gS2}S(rrkT#H77O+lBhRDdWy<{NxwqGV5UXN%3z?d zHFjMm;#B$Dr?Kw6zQC0~&HO*m4G~gZt@!L(Mj#Q+=xZM?S&dbZXk2$AAJWc`RbTBm zkMyD_r%ct2*R6+whZ>~O?@6EqL(2tdAV$ckvEhr;%yrC@S_DUIjp!ic-ykIcqD zelMghbMx?sUThtCHh@cv$Gu7JpWUSbda;^5{L)}nKlMzgH43q`VA|ZIS}1+bo_xM; zEpuBqVEylGsX)8z&94ZIC6Onu?1l9K`Jy2&APO6Wfnm~TbM$8cj?b(y7XWu|x2c{Artxvp8f6q-C zfR}$PyHNKc=tJzqX>$)y&O z4oiTQzW%8L^Sbr0Hg2`>XM+u1m-A(I&4|pYHRkmX+c}o%<7wduv?V11KgjgFwS3OS>%y%DdC4C50&_& zPR`kd>_CAf<-3m4uMRzA4X0IU7Hj-!RB$y^pu?Vu`#onp32!(wf!Bi+n!ZF&qVyqEGpH4PE*)& zQnn6;ee3ObRiJZ|E~h+|f3<7k<@r95gN z9r2;`tG7qxzkVXM<%rEty4N?@1bv)R;fbL739V7eu+u17AyZ0B2-QCcm0;fpIc%0t z)&Mm6qt~rbB)j7q2Nkef^cbv)FCp3XGY`z#HNe;?F^h`+jy=wt)nN^9)^P02<#eJ z1CGyTXUn^ciGb1UZ0!|5v-M71PR6aHGwok`eu870onK)2b!o}jwNT~Lk%7b)yyxL0 z&RNUPzwF%9&f;y=k&9U^aQO0?6@?iI$=!6}4(TQaijEn7HiIT+U?H-qlLXlDiF=UY z#yd~wHzg3gFrQv;c%ER{z`o&;U!QnYJ%pNBBwTyGz3eX3hWz>ET6Q}S*&PsO+KJd7 zt`Fri`|a^}kKOXt+;A$~*g*r&_uj}BXo;taCkZ^Dm%#ss4BCBftbYZ1!Jq3G*O-s2 zy0~l3MXrnFDtra@rZYQk_d2~tx2(L(a30b=iSr*I1Ke+;lz(-9d+a~-)GhAFf96D`qV$H+_0}Y8Am(`kERSWQU@HI|i*>_? z(!;v?kP@*d66bxEjd1X7z(EB9>(tYHq?va1M(0heMKi=^?r&+2UGBIuMz-O!{-~w*PAf&lpICi|L5R&%%IL7r zj%yQWX*Fh+)bE=M>!1XL_po&y@P-k7zPh}q6hMt7UnASNJ;HAojsWog?3*=k*|OOM zpvZnwE5jv%DdD2WJ~7q5;{M%eo3$PI2&Q+>6LtE9IoyY`(STPRG+5cvYPTK+FNHhp9(WcvAFb{@~{0oOr|KOiXI|W zs)Ti-5O73>MdFhWfau2JQDvO$XvcOG>B>6jSB%*2kHog(mUDImgI;FBcIeQ1AAoJP zyuF1&-1{pQ+*dh0$oELY$Ulj(A%fc@DS?nG3_?F312fow!C zK6lM8aX|&@V%xq@hl5)&I>WQ@nZq1E>T1N@5OnBDT!HJsv0i>^4T@bB z;>bch2oM0MKoLpzH7-T+`L9Be`I~FNKwXXz0i@46T|AJj3u5M+_u;aS1~A>exk5;1 zpqDM&3XmNz>heE+J2$Oroq!}O3m{{55Vr`g>CBZXu*2RL8oSmb!USXc8K9pF)oUE0 zUcO~p=akg}rmr(MUGQf-sd1n`U?2O#<6mGVU$$A%zq)%O{sLi_N!<0xr>=KAeffX4 zGhF>@M!FsBT6e7Zs)(SL%wAs;{?6+ssS$H24C3MzYjtM6&R4#4%rUp@jg&`%>2XZj zNDlPCj3R+u@m@>8Ar-Cit7(_NJy_Atg=5OvzXuyILbnY50HQ#j!*o(8wdd+8#dcy8 zOLXjqaQbUD47^~HOjs9JToONdBGgQtn2#2aC0-iJAu@SOj{~$CsU;C3ltbh+E1%|A za~n3E$}F;M0Piky2N<+=CIs7<6g}-yn=*z|bXek&ae@??ZzOcF{M~u0u}$Jm6U6%?)52uz)k$ib!1pq)di3Y!M?16ik$B>N0v{<^XUGL0qtId~pC z>{?HM(G2KvodQKD8Cjn@L@Hf$%Z`q^)SLkkMulnycw#kqR+?E)MjN59UwGOg3{SQ7 zs=gp0@9Qwy&ket;0=ye*iFWvZE@Gn`caN%T;~`msE}5SE`Ck{ z|IqpHw?O9*xeL->{lLh-A6D_2N6K2C`@5PCXH9%B=QV*6W+g@`6vDTr5rcAfTz~?RzACbakY{ z>gB)KZVMb&Sv7hjhTtwqfHO8&AG(PmP1%tJw6_s+x=z5cR5A99UkQn zgU_0g6`Vzi4<&gPY@7~%v~t>Vnyyc}J?ifVIHa=kS=OB6P0bx5vdmF{P~|Q)@-`Ou zL>Q>3IGgT}2%zhCUG+_$F*`Q0W)<+@Fr{dP}_0yZp*B8~5s^u$R-UYDLm(&H$s>Oc33sBbRO@0{zsL zHg0YAQ5eo3gHmRI^Jg{G&lbRA5c8&W-*J+>46Se{yA4;hUIlE+DWt;~%dx%z;4PgC zoL*Ag8~ZtM(w2k1t8pKNY{tq;@$$aDgdgtISU12}Nt~q+VW5GdU|&HPz;$3tzxORO zb#xb^$`?cZo`1iy?sq%+5WLtM;np|g>QEg|WWIf|`vi0o0k)l)#~kJlr2vidg{g-AVO?Bs+CTQEnZw0UXesyiX}aRPADN*peoL zaQR0lx2sQm`QGH#nXRlEddiW`xXdNp|j{c=Im{b@cF78ti5;z1(;np}V8X!3=w`1(Y zF+u9TeozA~i!_i|(h}+=#ppBV(Dm7kxT83RAGKI+A=XKS8flxG?8+Cn#s9Tb8PVZ` zYyY|k?&hjnnE$oec{8dhM9z432ndYG>-mxu3a>sq>U5^F#4fu3fKFv|1b`*x;)BiU zZSL*_e*~LZnsdVftAWJkJ8E=g6)`{l@@UzgI(9F}!9(=%xZ5pdJuEt<;&&!+8N{l7 zNkfR$tI*E$QV`H3DwzS21)hB2af=Xx;tyKIA*|CnjlRtZY@_<~8lW?ou|wqRFQ(m3 zk7B~(>#u!E5vp*cfy|qHY)nB|#_S>tkF1Q=%YCaIM|Mz0`I>Jt#Sj*bf_fyPa`ALhXhfJxxB&Qw1hM?sP02s*`yLZ2t zABCMxvsm|s^TRB#21Kq5Mv{p_b6jg`gzd1s?#7j#SxH1<>B~-~q7rivE zLEbz_pCVFYiwa{%bdZKyY2Y#;ubt8|}7-`^KoYVaMCo$$dNLF58_;JJC? zMmCINg{R1qRA0xOfBAH)5wVIJj2(Q=USJrREe0RTdNy$CJgo>=nu!zO#8a#qebU`=dsJPq^<-^qr8Jy}*@(%Kh( z700pu$DWOER>8Y={A7MnEsM;JYzyrwpQIeQ@`YU9U=hfcq{3!Wiw;vf(PF))+?wk`)=x`x7B_464%yC4UUw;Cs>iGexz zcQ^kB?7!oL990hZk%!+De!5kCIGfjWVF^1!9U8VOC?(kkSpKm10aY0LEVdt$xEvoW z&f~YM|E-X&X>JQO_ONdV0OyeAl|} z#Q2js=^|wM(N4M*mC>RyZw#4fKe=Qg>}$TK^5q1l5wsv4wPG(>DM3Yq1^roW)DrJg zjk?Ew0dbrVG8r}wI{7W95}0Qz1G+!nddKe^ALsswa(HMNQ}}P{=ju}(+Xl5?w>Vtt z?(*Hm$_RbH&%+5ABK=yO!c)vo)cyqWzCia3IZYmml4(>q&`JzM$vWWX*iz_7ai3EK z=D@tCc>Y(dVLRD4Zx@ui7tTR_X41T6ux6F}>lAcle1+dG*Cmy1*YDsbKFl}Yd5j(nrq~DUieHcR-(8q<_DDU7IXb09F-*d zA_V$=znRM%xWU2$(Lhb4<$?M+pQ~=bfT;&K?idQjo60MZd$OQ45qXgd{>Md#DkDWz z&=W%e>T)Ucrf>_vHP-RCUe9fV%AE$z`yA8$l+2)Z9PeQ@(<2l#r2g20Noa47hjiV} zSc1jb<1)gA!}fyIrs_sB`N+f|#31eJ#G}P#h&Y}Ug|~`I$g~`Cd(BYF1)YDuZu^UK z=c*w!v5_@u_d-6nPEb7=Q&}@M6ZDEmTvcO_gU+A+$Hr?iF6?1wjU@lxH+RBMdMt#| zb0I$T;uwh{1s_fb!k*zd4KTSWwSbQ6F8?efHr0HDcDIs{;sL3=S?i;$dgS#t7Gl!c z8{j$h&vB1BrF9cVt^LTW|=bIOBOo_+_-M+=uN}b{q{c5<&@wR3@ zgUM6o+&J3?|Dy9%xDFx-wPu?YFIg{D-+j#FG2T=h+yn3GYGiV9-C31A_6Q; zOw-K|uiLrDP8qC@^f2b9Dt#*Y<({9wGM`INT(){Of|;y)cO7h55E_}BThK%-{LE7& zZ@L`|$xSXM@{qcmo3g!N4-sPFZ%Q_|K`R~i}_n=jB?J}$y_4}h&~Jf=5vYvQA=l@$axmG!L4AH;n4yGkxuvi-(meh23FJmE&30bCW70+3!KM57;v4J$SZeF?sIkf0D=7#fAjsp@BH9- zO|s2H}>I^Jta=$J>8rVUDQVJ%3(bo5_;9cgBc(;eS6;V?U;!%aPm7 z6UC~4b#kaqM)Ha{s`%z2h^G9NPE7$t^S=lE*BK&wzFNkoMs=xdeBK3knoT9_2?|L! zCdhV4b0*)4YFK}|?fuzeYqA`Su>T@$b!xSP8_yrh-lg#V)M}sN09zk_9vf5goU1P2 zv@C)`toOO_kbd^plqZJS5av`HD6YIz-NfB z^o-jS{Amv@KGH$!gN=o;F_Cn2tZMjSx`Y-#A!`1zM9H_Pl1)|mg&)sefd8~%H`m45 z_!f2hg60O9&3U-L#aVM?BTLi_@AQ;%pVZ;DfXhiBLBVdYKinRbdE@v-_;qIKoTf5A zo`y%By$Z3lNcota&#yf@N3Hi|0wW)^Zk2hO+ZxZXVrObS&%XVpOoMK^nZhhN<=R)( zW<*dk8Wfn00(;|N>{)A_v7hEsDuflAZuTZft_LMBlPB5CPnWJq4a19kah|hXS12qE zOZf<%L9i)?llHGXkJtTs?Vy#lp8dW~>CrMeH=#ZL^K;~_TG9$>azoR7Yi|Os<6y-m zOCg$ye7-7j3b=Jri!bHnH2f&9Q)kVhhW?sci^Rdko;5XMk|eV5o|3D7`6R2zk+M!% z8Xx_=>FuUjt*3Om>Bte;{F=?ax7+rC_a{zqZ=YFb!fZ4Wn|+E-atWLy-+7GhXZy)z z#4mi;WDnHL-@F`g$0c|fzd7wfO^{E)fX=cCVOQWv)KAp)6I4;L~XcOZJaShHxvsSU1k-+HyD*~|03 zi!$QUCq(1}Y*K!8P#SM7MMWd4rQ0HzL!M1|pWRhYuG$oM>1mc7EoO%QEqbE&zCAjz z!8&|H!Ka`OQCel-^OEWb#SLL3%S%n?rI1MxxhTa}#_N+i8||2VY<>CS;AyQ~_chE{ zG$DTVW-a3Xd(i8ll)jaapf}9l^;YGCK65FjV;6|`ZnV14sUGAf(yDtT1$6}O6df%? z6rWrO1XYBuLh~H5 zGa)Bs@!X}V(+d{ym;2A&)MN;%ZVcvkubjq<6`hsM#jzpd{mWt|LYB|ciQs&m^zn1c zY++S9WBv5T_7=5A)-Pl!x>3WyOT>jznr%+Yk6lp{=wC#pkI>{Qn)RN6!^6CId90zj z=o!+9H_G@)QGq7?Vv3t3Y6yp1toJT0-RfLLKjd1VJk^O5MO?MV%Ei)A^;RIU;rpw) zxkcZr)Gdow!S^S6x>vu`ToTGQ`}4B-@f;@Mm)OC_DBx=>5lVoEu=kG7(H;nw4PQ!V zpd@+spwNJeb=L|9!65Xeku|xUMKgl!BLt3n8?0u?lr)o($$2$d8Ex;FhK2z>x$di* zC)?(v_Bdeep_sSi{2aXzI5-?KwjmH07Gy!mcUp4Tq+NN3#22tQ{|fHZ_#&Kw%;p8^jtmaFaj|R)8N6FckAmjB4!uKmM_2TaUN3DRk|E9 zUCF5WdD<*~;1gk*qYK7C#{123$4ba9Ip_Ww_f^LvE4ms3ef?87d!=W&(=FG;Mk{8S z1J{~@588C`_<}iee%mC|n10BTYUx1Em-~~H#r5mHkeZYG&9ct#U060n-~!jpYZ((| zeZxl8-6pII8%N=6QXO;8u(^fz^7|&vQX;Fw{M|qBJ=bPQL+eYQ-^JAYzJxiAB<>te z{ez{}=a*iZoFWZFL-R-D+s^a3;98rw^Xu$oZodyM?k~S-rI0{dE)nPKi@74>bioLx z%s3eQPt)mtQKt{a+hfJoRK@W4{t;6%xn>DWUZ)Fg*n-fKAbw z;k(L#_P-;3*EbFkP_|cmA~pP1Pgb$2&S4EM7chrOqqpwmAIgbWv4)kK+Lk1IqgplU zL-r8rDl}IvkAqDrabld_3=Xc)eLs+VCx07P>B&Won=H~b8Q~O^#AT#Oxa~0)c=#eQ zC`OuCovgvIav;d5E{Jq7ZqkqgyN2$xn9LB)d$zLo%=l-IH7(L@ZVp$6P@t6i5a~Qc8>aRX%$E07)|6}hu|5jJU@7ZVZ zGu>*uXGYgr#PA$L>E7!t@D1Fi+V7(%2o(t|D%sQ<^)AhN!f5A_({nGm-`QX6M9dNw4 ze1m4AG4N;zT|*Y*%UdnAkn!%M&ix(81Rr!prq~80G`EE1ZXuo`zJ5172}zcRJ0AcH zh{TQj&eqHc28*9PFz22Gmhrht&(X{fpo5c3>s8F~GgBnJppVhSEc@WV=~tVy{^-Bf z{Z1~`N&Gn25{3L?T~S@mQD^+32C~*Q!imSNFF4qf&9{|$hB?>0zbgU33E?X0O%71N z?JPDgA3yn>29i-qGzCtqYbZx~MMrk4hIR}wUd@i*JuA}=IbtOmQI6Hc_F?lo!Sf$; zjz1uZV&YKnna-25E9e`@&^hH;8b= z{8=A%B7iqk@N~_4&GE475Fu}8KHduITV(A7l+ccEvDANdN-D^Rv+}k#0np_W=Mr8F z`=`YtH=LStm@c2{K{AyJ8xT6i%+;n%FTE3WYTrntY1?l zX&ekADGs~{wibYds87*q*&{d}tx%kx>VAF)t@BK~^3?dmIV|k7z8ogT@~vRj&E!}4 zWv>M9oc$*ewX<{aNf2HLj>qP~tA`mdAuxBnR=qb;>0NOykuBO!D)i{I0OPb%dR@mD zZ~DyNj1g;i#w|$@bniWzjMDJ59e6`@$5P)D7Ev!7yoV6h&54SM5lj0oeZ_P_Qp*#! zvN}^_8|GGgl3B`SVW7G$TBP~`1!AH0(&NZYVa{;jrHjFW^gMf4{5$Axdd)9~3q)?{ zB&8=?*!tn2U6?uO^J`K^TpVV2f^(0D<=2^%0)Te0c<{;z!e_a*P`xHU!}XyGrIdB3 z;Ki^?P|hefJ4C(cWT|&<>FJM4;f(wozolE7>@J0qqxQ_Wr6)MC2?PFEs{)vtn;Vl@ zzVse(RDt;hUR15^aB$K;m~G1~kImZ#(JQ~(5iS$KrG)cbXyiWo^0V8oKl2tLPP)q$7OWrX zkqX3DHd?I&i`zVcFj>fx7hbIW$s#0bAkqih#)=EymrcE%3(b;t8EOS?;uMRIs&?(p~mV?{a3hs#OpP%e% z(HVE43YqfZ)GAmJ$EM!CO_F|Q`@PRE#9Na#J`_^GN!HGOwGD0A21$ubDV*cBT6x%l zC6H;&`QYgpvLta&M5dpY{0YKH+z}f;U@3zS7Sil=DeD<_(xzl@+^f9N2x+0uG|kLc zsLYyqrO#9XsB%h|*!Tu%i(ITMEoxdnTb~ilGkb>_sUCrUg$-ROl|aV(+y4GV_sB~Z zQD}-@TD|f;`_;nQ^lZt|cllevs*lw0T)kUCpX=d)B#?aDD^ElR*YatwZ^cK?Da`2P zs6&odF*+!h`vwsuZ~bRJw>BiL%2j7tY)jKsSG3wY^a&@kX-1(aEWM1`6y)$DNP3lb zv?ldrOkClaIf?m?k+)-`EZ&|kDWbqG8hu2l?~x0Xv)t+^G`w?YLy~8!6ZANX(UUmh zN(l`LLMjqNQwcgkbHF;LpL9=C{yXimF7V9UN#3ak}yL2h}B2Oiu1`b zB4q(8VF2xpwe{WWKDAbQU*&!_)*iEyH2=Lh_^y#UBc4DcLq%zXS<$gQA5;S;>o=2I zOqmTZ8su2c#bze<17=bY5Whz85iJ7u5URb74l)mA*UE409=4{Peh|H2BE*D&(G*qt@ zj^u@7h;V9tz&tL4=-0MPm+Fepp&Fs!IV*KzLGFu6r9+qwT?5a+uOM-}q4O1w1_xq& znwOA2Y z%vbE?fr{mH-o;b}h)~i3LDASaeH#r|Ns9hP%FnxE1uo8(f(!!^mntkB%nBVSNxg+m z(n5+14PurM7(v4Fq4D)+;wk(;?0schlwH{FAi^L5g9wsCBPk-?-Q6KA-7=)Kq#~Un zUD8Mj10pRY-3`(yB}ngu&-?Dbu)pm2@EjaGvS!_DU3H%4wbrf4NhW;a^#){c@1lf} zOX$O8m&QV_Z^c`t5Oxe5;w)Om)*!_)7Bc&Mg9A$64FL33>oCYC-tMBfY2b^HLG{jz zs#@K<>4}VT#3J*qM8_pVLLXOC!VRd$|9gb)~GKI<{ z?axadR0xt*LC1)HL9Oo{N<7Zv5{#GMTcZgJ9c&)mTj#@3>-xpET1>{cNCmUUmU`@F z2P3C7j9IE=^ONv|1cr5jhe)U6v84ER`83n-LMV!VY2Ld>;uf<5Ryd!X3gt5W{8w!I z^T`m&{*hO@qet$n(lF=N?&O9Hg=UcSF#=am)CnY{oA6&@E+QIlHkL-isQg6xaYeQj z=*yPzl?3MZ4W>+ptc0E3k;jqJ;$nwM@dRm^v`EO|4F<onVR&r%@Bs@kR1V1!b-R8bD>N>Pz0- ze7!1XcpdLLLgHA!K;K^fDHYDS_cPP}9XYieCz)m4*Rh+)AYoS+ELjk@x>S*=mX9M> z>j12JYC{mn9)#pednB$yilzsY7n#l5u&D3_@{hz-P=-PVKUuvuQGZd~vImp1Z%krr z>>kgT#{D}?YSOpArmf3)sxsi!=+_^fyZ()sVJyC!w$kbw7q|1=_o2z;k%XzeuLn1g zoq4>;`CH7Si}FbbQx1zTdEZ-VT`RG@w8>-L1an zBt1RI1-aK}p6(#KS{vboY+gLTG9%5f76^+pe? zt<*j%d~O0vPvH~6oaM@CmGZMFgZH6beQ1Cwdb<0VmW-3*U~YUuc&uBGunJn3$L7a5 zg)`?Z*Clp3)I6iCwug#ZpM^HE)x4~GIvm#XvOO`tM(0UKP3?J*Sc%BPI4k=x9#7X$ zR$A@P0QL>0DA?OqvVq`}tAG4h{NVMFVv-sBA9|I;k!Yy`a~C@L1r4PSbd@gpn~XTg z9-Md`{@G1f31hUp6kUWe4+>jQ&S!`|n0*=8)%F+L|8+ueq{j26?`(d#6&1a+Tps}d z^i#kQwdW=c3|pH913CyMgBY6H^G6S?a-f>L=g;<7Si>DzlN?^>kqAM*q9Yo2mnwaJuWzr)00ZvckCF(2@*QTS`utb+9NB~2 zLzzBAjaOV!mA2t}N+b4Aznu%%l?-wDy5%4Jc7iIw7ulu=RIcnL+vCF(b55oPq;6AS z7bpPh*6F+7L)Xk302!3}jqX0oR0Vn987DzxyrjSAJ1WMJQwP-sWg$rnT*S3L9s2~e z_6BdO0L&KeIcm@Y-78sx>!sM4h?+mx&*y!k|8Wh1R|oVVaCpdF?X-Ui3533*@($p( zeNRzFuWXX{;9d6AXIi1UQ0Ds|gjvMbLiif029I}){TSCi*0HwI^i^^+HxBIm_+}Uc zK-l{r==>@T93C7a0YE!6qcMC5B?K%eN7V}SNv4Ec{frXE4j0xiFsApDL9Ih9-gvA6 zo~}6QFe4v{lR}CA7^z_;;i{qbS+1#>GZvdu%5FpPQ;>0cdw@Y)w+;hZK-+J{L<}q= zU4}ycoSkJ3>;Luw+)U4mIS?PVQ((P3mLf>V-AD`!XLkiI!Co}By_(0k$c5{gChX9v z;`x3Sb%#K(etrrh8F8NTDza4Odj1!4WAL==)rJEIK(SU+ZK$|M1;FzF#(lRy4yl4} zivA6%v*>`?lLu2j*xvg#d_tymk_jz(m*NTXL3x5@nnDQ#ag@=e;Z@+hf^=5X|Oui zPW53gbu0P|e&NBK4>tL{-vF{wDw<#NmBj^s6_2D}oG4|8uV~s_xU4431=wq+IKuFE2A9L%TZLT>uPz zwmwCUp}sVS>T2$=?GDzYMCiI@*O2YRnx-a{87f0zsf7?IcrTZkuA2PM7qq_@2$GQJ zrusPewu3qyv^W7q0whtXW(%LUz!#M-gdj{UNa!ZU`4i%srM+Thk#4yYKkiv!wg3cv zAN#9IX7K=gI=4=foSNomPMY^!xGzt=@9ek26*uB5w{q()M_;aJj;E90*ewLl1)vutL~|E zyxa6k!RGV7&OSDBt}ux1BdO5^v#x_|9+VGcUiO273TgTJ_<}F*WgCn`4Ch~ev-aEt zjB@QMcKkUKggYS;aze|kxTvU(-Wps%BIAI;3ZKyH36I4NJXj10c!&=zz=sd1(G&{btnaUz)K@VZMCd5FsKC(Qr37rjgu0jhfq%de62W#6p)SE9&#O+m zdgbky1Gw_NKLq_FYaFGxf*`Qcdd3VO?!yYv%Ar9oPSTKy!x<^j{-?AKeft_Rp4z`e zyfZg+K+eCM!^F~Y31Om41cm*oJ4!bGXu!v>+>ZyVKzpp?;NS;G*1eXA7Vd^~^zfe} zLf1_cwf95ig{#Q8pS=0ItP)Nl7@P>F^~5h{bJ`=dGolXpYmaaYBT+}%yr2*W9E{Z$!h=r0LY_Z) zmUg{qyU%-lT~`dZA;69rEO4T2Vxfl_aE@}FV_P;75cn%9;ar>CeP zs3u$UR(6c9*1LNCO#irUq7j@mDf#u7XpiEvRaO!#d2-hIqGr=lb?)@)+li6UP!K=> zih9qxTnsqLl8mep9bOA&6X6L8!mrt-U-knnXs|*rijEZcQwAUt-LeP5HPs1{4Bs@O z1FJc5#|BU9Hl`=m1itw2z+n4>@vSF4`xb9^!&#hGCrm)f&1XknITzdtC5hfp>@bn6 zaUt^+l8yb7;peB3(f5*fUyAbaUm0NTZL%?R4zxTi0>LV>OMutr_TG+J2G=-D*?-M% z{QUs-dMF}>-<~^FgtymfY7hAyF!Kws%piSJQdB{S2#EdGc)Qtsdi^Sl$GzX4!X9(T zPivhWuw4k%h;vKl9!lK)eCeR26%^KQIa|$xY1gL`@qI+#B7Bo75ufW0iB4xU8c!{$ z5ebrUy0EyK+BpW!M*fL1Xhnw=3Yf##Dr$>nmthNz74Z7AxTqj|t>5pueme;{-}|Gp zuCWJmQ_5PBcj>X#ytv>V3O|p6y39IRSx%Kb8y2!4aD-t2TGnOL2Pu=JIkq%R?B(om zq>V&}{V$}UZ4@3_LXj6eg_zC0SM&t|xBGKER%Xs=Nn`kyYvXk*Ww}u5PvJp;UB4VF z%<#S$MQwi;TuJh|te*nw(^h)9dyvdBi(zk~{#Si1E57L^)9Pv2bS=PZ)G_PU-_1j}ZGFyp>zodwon%L9u;y*_=5^0`dO6-K1%V`Bppn7UiP z(J!(bn4Er_#8RVO;#3@PCHmZ9fK|4Vr9cd_*~WN4&dv{nlPOSaZ9QF_xROjV^Byo- z$9tjfB8BgsBw+m+h&6l2%lC;}8P&;vj>Kyc3TO~Jg>c|D41#M_(v@^B$=^i7?S!1g zT{(yn2cm^vZ)Q`3^3qj*25ylO8mQ^rt<9^TBW-mK3iFxOXV88Sp^hI`u}ZbCh^K1} zJ3|>esOf1z_?(~RV({{Y`~d~s`itYkMb>#=l^@$Mb^qTm^x+#*l7_PNuI#XdtltJ< zKNAK^;CcF-Bl2Kezy=rT2G2%1H@;}-nVjJH#(y5GY9+;U-d%)o?f{l?mQc6hl6>W% z&rYLL&H$!nz%I(?DsDIL^_5Jxpq!?Fck-AqD8?Uu8L0jA=lOS8dOR=h0-)&r*!Z|m zp|3yudTM(x(D9=UjHR&_pehZmDgx=3YOEfB1^sSSJSF;RZ7OBaupsT{gpXrrB2Zfp z>>+O23+1h2mXh66K;k)S7ZS=z zZS{23RW|#+pf}nw#hlJIior{)&%zhRy!Sd5J$k8=r+AwMP=L=Dn;6IR&hOyORvSOF zhj+l7l(NWOh5X$+ey{?h0*AeJQGFP?7#l)F~ctQRfa6S5(h=Y#V@w(&7SdJJq&l`L#!4?t^^a03HVC(<8*Y zI=i7+A=&Lx<)#zrX%tB!N&MNbuWB` zdrGfYiNCMJ;eesEx))(@wJDxt_F=nJ_BZt0!D{nf9jQb*fi=c7>d%N8e_nO{^4-Uv zMRMIZC5YTe_0`uzHA+A0HnL@(%#FH@jgsrDNBn(^$#)v?7#>WZQD2~hb?;90%6r5P5=6w;gMhj+M$HS zItF=)CKCzHF&TYB0iLN9vLN^NY68q-DAD)FN( zxeYzqmdCTAvb*hXWZNIO`LnG5YH!`_#dZoZx|04%9^4biG-~Oqtp)GuI{zOBjJC!D zOEjO$%6v^Ak!_(*%@!=44RM)UfAq<}_xL{SAKg^$o>m8_P~;ry^KTP?@ji*E0xYR~ zX>c`Js&2|t!MnAN_CG zt(mshT}1H$z(Tu*?R4Om$gNJO$~5fM;@f3?p2I!Cu1-S2odxxXHMaHK8NC!YBHw5r zyifUD)z5rALe)o|-CQR{{QlE&uH!vm@I)xDhNX*jzEN&{718(tc$H*q9L)VrFOiq8 z21Ny>0f(wMk32Mx2ocE^? zyW90`t4IoYUflrVF7onsGEbPOdpZGNRKd422y8y3Sa}!|$UKbdVE!@D>9zT}BWoeZ zWLuy)M(Dn%cQ?6-Vcrds(AgJP?q|Q{T2S8c?H>EElPF2$vX?t(aPIMWjqRPSl(wJz zQcwU@q_+PP+flDy!Om9by}~H*hE{a;%=BGw^R)6!HEvT6=wKxPtS|2RV|0eKaqfgz z?K;=rO(FWXDbor)cDF6}jX0(^&RwZn>F|J4v{$VaUl|%bml}<9eIudO$n@l&d)bM2+N;I8p74cAs67eegwZfw_22iey>F?cA{Ve8r?QXLx?@{pcOnBOvzxqzfo7gBcr4 zFuKVh#`>uZaO9uSALg1y*917CkWz^Sbv}h`>lq3xl9L+MQ)ijwg%%KpeFoDW19NH1 ze+#-`c+N3BJn)(L_c#4-itFrDPZ%KS;-`?mp{_pHFkmFtYmC!>ba){s6*y!831*vG zvQ^OnywH9=0{~T%L^n^)7K^v*gA@n)5v3x$pJpPK>QR3JEk7$bq|#$T_`2DA(%AI= zlK{7FBMvL=(3|~aWm?c1VnOCXHbs)5`V)vPGk@UX9#GN`Y~KSKg+wvSyPHBvdY$J` z)4Q#c!Mbbo{A=2wu6xHnNgs{rpBUgM)dP%JyY|bvM}48vyQqpU6h~A&;Ae))HT-inFR@TA(qsfyeQllBUGO7Fmk@{i{gU5|_ zc1O~iPsly~DyKgLtWvKtw2t&cNS8(>#uiOMT13o?`)z{EKL|Imn(Bo-`~lpmb@Bw7 z#wH^)9z_4bne}#my>I7cv+A7Or3iU;8@)>5 zr_+amaqheT*arCu2n$`je0~lXP~n!UW6M3h+w{aqqjop@`P@9!b$t-0Cy0$m&_%-6 zh)dGj308$@(OKQxjl~s3XwBpmaMB|OA+qSXt1~Y0fUNruTdHI+>(*%2MFTn*@Tl%o#_7YY5;yPRNZp{8(JvW zgd?gNh-P9T*p>hI0V}x*J>E-rs4Axtby(jHSHI}N%kWZQbSey?PFckymQtTL0pG$~ z(;e=31TcnNX>bp1$$oXRsyUkWoy$Sp_#k2ro_}5;Lj0Dn zcMk;_fe>a(8ZeOUpbhns%p1Ye%UkUglz07>c6@$wLuTfXtSHYY8k<$hRHd#JbK9f{ z9+fC9!~TA3oUqZo&(<@g$$Y18gumA$=o%8t)AVFCz1ZWeS~U4`T7O3;jQ2!$(=rRU zC++M5aU3*05dLtAnTQ(5CR8&=O9C>Rs>=HiXzbaoP;-;P%505>=Fa=a<*);U=R?ly{?hjsTP?Q9>YLK=K5{NT1yv14~to!F~n@as_8NSKh?zt}X-A z{tv>eG_2_*Druf`Q2h4pIs&-xAH$nfi^>8N6wya1>Ej`1w-UBD$1{t(pF|-Lro#N% zAjPU*WUT7u<9E#|Hv&2?VVi25!4o(@;p912PmPU}0>v)hlZGXGTVtYT5ElU*dN(2t z7*Q-0c4N9mam$pdJaMBF!}rbl9ts5afQ-=CAfbsZqfR5OT`IiPpdXI9VVuY=&eKX6O4#!tJ1eX^gmm(hEOe9K?mfa21DV zw=4cLH@A-CYtP-@H1&5y)4YWQY~??G|M%A`Lz3QnLcIsrYl#{%YIZ$E zg+lEKxh$c$E*RTxZ@3y~{ZjX*<3Yh?3`GtEBCTn*&0x=vY-FCeHU;bhNGD+J~@T8v}S>&3bPWjvSfcVe!I;_@Gun1Cpw?R)2_G`&^&hmKoim)8azd-tyxN z5=@|hFEl`Q%ge%P?Rl*~8*Eb&Xp3)e3VT1$7l6=$!eEHJ?$Go6)L&Wf#<%H)PL>j4 zqRRC->Kfg9#@T#ufnjch&-J^MgCCW_iUCc2vjbE}-$m@I$r%1QeaDkL>zD zapT4=V)osrA{H0Isk!*UwAI6h{RT6v#5hTL#h{_Ez2K2T7l)I&f^C?DA)m8U;q_edRYS1cA84|Ep&N=?lW1%`SEGZnlBf5GK6P9zK`? zTn6`(qBQ=f5Z0OuPj`o-C+g6E5nx{t!B}lCNiV;6_w@7MR5N~Zqka1;mwW4de}H}`5}Kf!M(zN{iVOnE>G{M{4qca;{SJ;28`so&OrGddg2 zwMIjMypJ2++~2l+npk}LppU|pm&5&~&kz-zn>nAm!}b%sRy9+5*7?e7`1A5`9C^O_oLO=Tu4knnpm6Tg$U`)sYK$levzsOF?u&wX;(~cjn~(NH4&Hc! z=i4vv*tsds#(fAmeUmZ2kfdhhW@0y0%@ckWOUTdZ1}LT;aKZ9ERl_YKq8_vwPCRvT zZmj(JxP5g~0&Ke~0T|B4LFn(^Ou^(%BP_T=1D_AQRgwjwu*~P^;l@QAsV&gNM98;0 zAmp99nejzV4i1VQJmygX>adEBpdAzpxaKFoJHvO96J#j~yAQzz8~1T;J;-18x*+p- zwom?Bs-k}C>~E|83eBQ!eYx*ePOC0Oxs}$$Z(=1hpv0+tdq0@+aM)Xli7xp-QC zQ0E9VOTR*&U;Pl;Rk!gJkc0vf&vS}UML}yXgoU>9zyu_iqVqvg`*5G-T+;h3WU?|c zwNUs74IosH)A=WT*Ad7uv6nrMnMV_$x_}`De}6>$Lj<4r%7K?M^H7E4_0_21>!KQiGW42ed2~!LCYu{l=0K zJP+4ho+&`!ry<_$vqU100ITm4@f)+>8KRxvE0ALln|HfhMG?d47NZ0QC7%9es1(?c zI~Z2MnV}#>;X`!2+iX>rjL+0T{cH==iFaSYGd`hhK}u#$YVx&}s-c=?M1EhuEh%USMnB~V%YU*BKTf=B}ggLERwDB~#{u6Dlc?j|9+C^4uY#o$y!k#)lS z41Z0!gppQa%lMp_x(xD&iM^>9u}$f_>Jv(L-T~+*DoJ2@Y~)~K40aCNr|YX>MM&>( z@}MkcxF{7KP1oD9w{;sNUFYbJ`)G&sNbDf4w5 z)F+5W7YD}_K&IF@)N0gz z_q)f&S(UufGoj5N%RtB%{Kx+YUF*G;@FtkztI-wEhTj&2l+VDy}+szn{NZ2=G{m7Ahjyn1Qa701--TUXipzr6t2aCqf`r>j>f zLIz4~2w0h%19HjibSM zAaGk+Y4zg&g=5HeYMX<9yGsPXfoHp2B z*q%*_aezMRI_8hM51a;-R{aG6Emk2(R-lrAA)(vQ}=8z z_?Gsdm&HQ2%5}4Af2hL()@2_;lV$TBKX9Jp-6GV<@y~ttdklGMHQT-0wOgo>Jvfv##{}WU2UcYb03*O569ta+ zlU6Q^5%y3dZq9`%Mo}Lg0^?#VJF2@9J^8ko*D0nQ+``s;vAbBPD8D+Dk%}ALOD9KD zOT6rE2Bc=<#ltJ^=z?6t@Bj)#3lxWtNP_fWj4-MwRHKl@kXNi>e<$6LB(eL>L}au!o9?&_d{X)@EkQU0~jEX2*>kt3fiWTX@h)R~v&=s=Y{d zBNUfglXs4iA-Rzbw-}f2U+EQ)s%zMWx3DO zF9OcB{Z#L$MU}Y$b~cqTkfV#pzu0~!F+C7Tok*|!pnwbnSrAF2Jg5+m0Dh28MJL^< zHCAb9;l|IeJTUn>Dl@elUO7Dykm4f_#kY>trS`%gGGaBWuuobUIrI#*=%gnl3B_(3 z9bUx4NSy5x^WpmWJ*ch{69 zewkj6MyP+eHpWV0g_BwARMFQe0TgB=Rd*QGIUM#93Dq6e2TjLVeSn53W4>>lyYqmdm zBD35iZ9-lIsT8=pkkAy8iW!XvLT_B}A_>6}`b9b0B}Ws+i-_qbU3G`{t8%u}y#i<- z+W$8Q>8$mR?0>%E{Zy{NVfUD_c^nHCBV(q-=^qy+^><|NL06=U_hPJ^IaTBmsI-%# zp8zdGB$Xi365}L=6Jw-v_~s`vsU>D}pkPXuww4&^#wt&)2!N~u7&-BUZWVbG^~&zk zIY~R?@?y{|_f9JSk_C=^LfA;zOL)jrSo9LK3R~S{`lv3EL5~_8jOn2?QiVR1Nw^AR zZBEbhzDp^y$^PtKw^GbsIW)+WPH~C&a%&PKv{)=gkf2t?d8o}F$MXqQfdP4`S!UqW&wHA(lx|Uw%t|&RfN8^Q%x1mzB67 z^b#Otl*6E+O~dGVs^Y{cEBQ!V%CsCe2W|Qh>xD%A8bV4!!taeSsvdFq47CWc>_ZtB zN+6gq>8K}CcnI|Wpq|@*Dn}9`fdHjalVR%>#=H_}+d4(_jG}wgIZsY0LsnRP50VZP zZAb|&LKb26Roqbf5rR9ej~01bm6vRI!eE9QrTWf5Pp3%EAd+j+E4G+^xF5-=9#Zf) zPg4Gbp~qk0h9L-F=|S^^*1RU4`T$QiKh8*VrI1JFmG(#7&cFB0bBa!V*2bwBOMxtC z%Rx=%3|hP7Y6&0#es{J?09wL}{!FL)e0UdO6~Mnlii4=^NP^KDUz2P{*J-SBwp-e< zY5!mtixZi)#t8;Z4+KZ(vHj7R;h|l3r|0CfSe-n5aW)>^*(W6_YR?uliWeff0sIVt zAjOI&0rWy|;F&pxZTO<-W5yBPjAw2dZq^#@ias{mcm z%hNA8?}nts!|O8^^0%}lLt@M@kG@tLKkK5Dqd9w6Hfb?NxQ2-TNOkynW$2sQQR}J^ zqT_8G6NHTn7+rw;$l;&WAEkI|d1PI!li2%G{rjguzZN_Q#1%~aaAPnF+ZM?=1+UA7 z2buG74IBrDQ4sZjdNa<}_=Zay(b$;QM=E}cUQ~c*^iVUlXrdyTRkp!!KX|P76?DBqd&O$_6dH`_2hMr_62AKs2 zMB^^@7d}W?=vxc3E^=YJw+#frm<;TT5@Xq0J2`9uQhh}SY0T74Vq;N;&v-9+tH=~A zbzgiBm?adwMTdMO0y#-k=+GdXvoxMFPK3Uw=nZ@gxCi&%hjzb3XZ&P~ z6MW=A8a9~CBpD}xjK{8;SJ7o20Ef@c(Q$YnkUI;g5xXacFngM+yeIkjXiXo%9VyC} zN0=u0P^R@upWwH+E9FC?M&w7`4Az;$4adQBogt%4Hq_+VNHygjVjTZeVZax*g*FNW z3}8blc<-i?Z$GFM^KhZ`VTRp8;PqHHc#C}*Hfv&482G+0543Gg@`N4;dk=>_=DA$-s>BL)>4kpLjxDsKDU zL*CSx9%-Cm<9iTDB5+~I=DVQ|MWerQub$29xbQ}geUziclfi$JfB{p-&||G`+_JYN zylLh?e{?g_SJ;_e>(Tj4}#<6tgaalHh^O7MpC++7bnJkBrp%|X>n7;=E zqKJOCI=_S8lr}P(9^s`NqRHCeBGFY?f0o23o&+dX&~4=uF*DTYO17^c>EBx7^^F2l zh@3Y-^zAxg(y4{SQ7Ls~6u)T6HvyU^sKY*m$wDBi_rcU#(t=0vmdyid_%Z4*&OyD#<%ZTn!5Bfe zDkXv}iIN>fvq`~Sur*D@Pa%_%&zSPDz~B4xVy`QA+1W$*+3WYZwjAR8=E2rtH}C2$ zZD8oLF;#W8v< zN@Y$(W&nW@;Q&{JbW^33bcY^5ASPU(roH=Qp$lYK{QF7u4tU*t3PJzkzaPf#YU#U= z?Ol4f`*7WDHuwaP+|2-dM6v(xICqW#KB|B;{rAKFALjq*+NgRa-EAK2%zMT66tc)U zaC|i<6-D%?4q>aQlV>d^bq^#J3Wu(Usw6l;~_kZSmXLn z(G8z~G?m(zo0%ij=7hphxV*Fkp#Y8vVQWh7*5v;_&^al$Q265ISoiqcvhDuC>d3oB zK3s81ln?)z%;R53kb1evQxqM4KAp50J#@Qnj(+wwrXY9Gw`Os4IGUQ3jm{iaNQ->Y zczzItIT?18ScO`?p1U9Ax5%;adQXNA=+8pm;(Kpt*OBJz#%8J>c_UeLY-3~?pv6=1 zuONvG|95h4SNcTn<=X5vnKYjVANG0LtCOF1#-9J;@^_e($jD3*eU~$z6DH~l(544< ze9<30M2G2#Rib1pD5nX89k&0hyeDHoeu|Ex5cQPG<^kujW&m~svV6_Ok39fsgCr7C3TUlY~DO)Hb^` z6e!08E-=djx1iv7Gw3u75%JWAC4T_z$V;96VT7e_vH$g}&fIA3^LZly3HNP5UF^Re z!R>-5aUhzHF8cRnNzrgn-0qFcpGopeK3+rkU#{6P6c?fKr2sUayI0Wg^yQJx$*f8` zM{B{5vibIh#jB7JkqqVk>A18U0!)QZJ6H*D;BRMxFWX>$bn)^LtIik$-1zp2P-Luq zO;n7lYTdynY+A4yg9k0_6BC~_tN;iqqb_2!ntya6;Y_z zblJ^)QS!n3?|=J^H&2mEqm1+G)YtktO~@-%By97G|4*0C4iCm9`M(Pv9}c?yg^ey- znV?n5c=Rq7z3UINy^TZ%osE~r##aZejZVcPwC(kOU2OrG2Tm?t?K=6ffxgOZB)fy} zcG4!dMbRx94p7xiX#Vu`XJW@0WEwUU*zXkRZ57NEtL}#YvHiO$cliO-KY#Gcuk`MO zP40B+S6iTZhMR& z@tojx3SC3T$U^5{iezxqdmcS8Z-ta#e|%2a98ZR#7Bu*j9Z%ZwR+j$k*g2r>g}uDi z$ioRSsd~JL32xcwBwu(j6y4#+om0b9GX}PCMX&QXGy=OIKnRU{i!IQ*Xz?5yH^*{T5-m zp-1L01rSrQJ&GPYqgW4$wt1Fx*no}2ATo8`h18qv_U@JFC%BtRKC$xOmVT`@_7TxQ+mrxo z!S}JyTJd4l5~eHqbbABBclHO%ZbL0x5Bw%-aZ9DAy zB|-^?DJsA%4WMNc%I26VBt%kv;rppXmifY*-T@2X!kpynz7FS0L8IuEoIr zAFU~Tg?xLyv?+lpsF3A?LC!B`)=jVp3yFS@mh!pS55yvHJrC%>ZAsd1ngl^sIFMkK z#B6ByKELJXrQtXVJa9WDlVWjxsz8T^9mrSvCArxovnJdP0I|6V@ zA1xPT5kfp=3Rh;3hz}|oKX?Gw*VR=)M&=ce0lE-pLcUQ@#C#r}dTC5S2NsZ<=$GU=)xYyccXKZsyV9U?Ce4qrQ;ZrLq3w zrzgoUK-5e0Oi>=*Pij#$jgWI(#gi3e&u`nJ!x6d@fLOZB%@oz#ErbPP<;biOtAU{! zu4kzTCSUyG5#g3R0N@Su4($-}f4Qj)*sx|@jiJy7w#!Yipyqh-@V_xiEgZJL_B;{H z-tA3D`aMqudbz;S#r!+-vID(%uHTVqX$aTMrqX!AHE`+Ic?KVSa7=@aD(A0j?RU{DnZ5oJ;qzEEeHQM;F7PqTb6p{Uo+0k3taSi-25%j>U_Yn9V7My zT;3#JTb%bK65Z~jy%lv#luMfRqdt#B{*xAb~0W4;C=VG9+rbqx%e)+4QXVqhGeT>iL3%6@4+saBOJn-w}iHWjt5T-1+xTfdLO{ja~x9uR7mcF;$iS1~oIe zL>HG53*Hy9LPY+d+h{adCfFpd3Og@CUIwOlTkBeePnef6oH0%Of^Y1E?>){la0G{; zumH_EqvJR^@T)Zl1R`HhVo4Q{0d?zbXK5D5jOzt6JKQ=hP~^lf+x?;KmdTFG$8H06 zB4P64c3TyELoivryb7%qb#++c17C`5NYnhUQ`pf@aDm53M4L?4+!#weli)rWx=hKY zB7uK0u`mAsRqiqHJ;oF96xTHUif|L9N(mUyV|`DnHn{^NK$ZLF^``TMw}`l2Y(S0w zKNcvoAeTY}MQr2szA3`?i2)a3MBPY56q$w2OSO|A$Nngnwa=0m1ql$X;dY&0pi}yV zsP@nCxnVpa@dF6B7Kn{c>PzYqMzZsQ@lY}Q;Gvit3!Nuqv=xt2)c1!*FjH}}_D|Rr zdcmoJL1MCL6e6Oku#`3Q`$b&-O?0?S-{!=J_j^aX65|bYzWl@rXP6PsvW%HPU2FL1 zz)kv6O$?n2Hlje?kCnfV0%;dLW#iyFGpxzH$o$|mTpmxLfL@#PdOA_w&h|uf_~Flt zD8HJVKrDrqnM}FOWG&$OlAntG$xFW;F1$?l-dz5bX2JN<9Yjt*rAqRo#^+?V&ok(~ z-Co-!=Q1=0(y#JW5IO`4I^AA#x3+wm$vN{c#}jgQCK!}pR zPP#HAdoP7l*?mK45seX2ROruqyk^vE&AW#wL-B9vVxx{h&<=M`$+bl*P84w)L)19l z-2lgI05OpS``_VGTpq|eSyyb0rfl&EW>(1pfDOLydy|kT7pZucuAvV(vk;tYhsW?W zgc%$=z=qQMWBjMq+@l;wS+C2#FjfkVf=M74WVoxUc#Nppgl`N zMzr%oM!~8TC=q;7)AC~ss$zb~xWLC!Q4UiM6?>*Lq^;+qp_#GHZ>KeC|#=imWiiXWHLu7>wQX~L@p zWVM^NH0!gcOVQjgJyKSNP>Yjx(nrgem^=_s5-^C1*eM%nqQA0i55dbML(^8IG{a1p zbr+Ix<0B*gj|7CxS0^Zz((I@inHS_EtSW4}@Z45kzLg+bYnmWanaa;P->?Vf`%;8B6UxBnaF;N!mnU@Q5VI&>?5VfCdS7m(TD>`LZiN zto+PC1pN)CJ*P|}WdI|U_s8(wc-(w?OozVm(uxQAnfQAbYw~~!^kPaLc_>`u|`;+-ho^V zwPPvwT0QZ;D&`s=YsoDsiqBiTIu{-4!{7bcD(l@N*BR>Xu`z>-CuJRf7V8D7J0uOc z_fYnh*W{c;xwv#huQg(ld##c?jZVXpckZSp^$y(b}ko!RnZz%=NA~7DwtVc)2&{#zouI*mdp=>^~3Ex1v z@O2t3BR>h;^;)N*;3UrtIp$Lq-$(fgQWNc~XwCF|SVQ z*(aY*D*y|om9wcE_(uGexaAu#81epRPk=}@eaxR&-ckes4*Uz8WX@T89A4h33R)rL zr&(R_`-2Qf966mH1cU4uAP1}__|x-JJ3j2m*RJo+wTFq{ff(b%Z!s5j>_!(9|2v_o z2=?;_Z4-LA6FBXT~$-g*zS8Hf87u!qc;@CoGGEgP-Zi6Uo2xbx_c zb#UFFCzDfop%9<7?p^$`EU94seb6N>3X;4rlEx`~rZD;X33M{@x=nug?HG*oQLLQ>(gLD4oM+ zF{AcW$_Gi-f=V{eNgIAf0Thq_ha2!-#vew-IL+fTGTNe zU9<&$nH8!k3HK*d(0mf6R&+k1_dbyM&QHmFt-C;q29i2KS)NQX-&n{Elp7M@3^qa? zVWvII$0wE0C||Z0CwApC9s{1;PTmnaS!sAhewRJWORYMq4ws}KydZeGJw{RWwG=Rm z5ctN7`nQ#Cu(Oy?msu<+Hqo|gJm<>!#XhAnXZlZts@B!eu;RZOV(FS$ zrqfyo!}0f~svXqu4S)%ypis9=BufJ};E1EazFTU{4=Zk$GL3%S#S|FeGLHqx&jY@m z*-kaw59ma%;9XN%PzfD}RDr59T)Tp-8Mn8bMPWJ!+`Ym1WQJYK*%+k%yUKeAUW zHKWB6GV*no37Oqb{fv^rOX|b7$CEFltMn;P)ku9<&(IRHXl68!ImwgFi zi-e4wv768Je*Y8SAHF}nUXOFnecf}<@;v8tUialOvrwA_irV}@C+)r-?3r~Q%e^QM zSeb+Anf9gMChM^>Lbg9$K8Ac8zc8-=NE<**V^3T}0)TOBb`I?;DnF-Y(k2~nQvkk8Wc1PfuG`kh`VWAxOgsw~t|7Rm)0yoY7;!U`pFL zjx*c7J)6^qR3`C)StLl#LCNP79KmvNf)AC z6t*;K>Dz{X2yH$GldW!7sk7{-}{=&@qOJ5s>VxV^I4Z^mQHa zG(jRu6L3A-X64oQ$ovdwSC50|U$F9Y&{}1_2*3yat|Xz)A#mF)+cn~IONbPTKJ2%A zB_)7v4<2$3)Lh(Wvg+KgHn?3ZXT9y0XrB_)HlNIwEi?z!XXJy=D}=FQh0+OFY|kYc zFD*(z>hC0c63@RPk1}x7MBG{tb44vYET&k`57$N&mB`YFPPYnEMs2W^%EwIz3VjUN z=6eK5i@&erF|`i#YF&p<`)=73^H^PL)*rB+KJ3HfC z!zo3d6fNWh#OHN`gnyrO7*+^2al8oj3meVlXXmHk;}*+!#MSS>kuGHUl%`OdQt)AurJ$0wm$vB`hrLkWuRY4K%IXlT z|8AffY5i7y(~+=rVkKb z3NR?5BU`_tX>f@6Ct}~7u=BV57#g8~vffvNvR#lW?DbUP7fTGY;`owh^BeDe>pw^} zn~)im+#i<^m);=NL?>E>{XmyDga58)vCRcM#WT~p9#H!}w*7Ue6MorSOf8JSR??#sj zPNlqRaT?2aLY+wO9Gwmw+3oq2;D+b8kC~WJ!Tnk8tF7>!D>|YK`QMv}7;jd19js{; z2bVsp{?7ySr}l$Ljivl}_-6E5n4xfT<*Ct3h?&|w47T@ydQDfXtoPTxzuUt#AY@I3ZB;_#JBafst~{mZhHNF+*H(iHdffz?u zhVReYQd%UU;x7l*ajV~#XqqiY<>?~MaVi3q66$uL833Qvtu{u@eC{O1&Pc(dYzla+ z>I@oYQXNdCpVC~?qVx=q77LcSRDQx3#n{+@f;j7aC#$9sr;;+}0Tw>0nBT zo*hTZ`0#7qje}qI;)C7<2e{QgYT1oLrwU*X@AsZi>W3pRfu71f?EjLuOUsvUQd1V7gk7%OJu5C7#gyTtik zy<8tJ#CgIVA_O*4Xi+%nB5*|8*E!m8KvM79cIeq-1HGnZ&}CXJG&k5sw6x2kd3*a7 z6=Ek?QA3J9y@CPOK)voh{AtS}#ORh&4Yeeg+Y&GmKvHjG;XVZf6uUfMA2)I(?70!l zJJZ*0bgJ^Cycuf9*mlnhQ(jx7$mwhkVOYY7Bbh`WmzsVf6CS*Xd)#Ct5V)FL+tWbT z@(*;$l$LS1o?Nw;wzo6keg+XTe-?f5Lx;MOSxwQ)3a7$xlYT3&@zou6;E+#mb^5)C z|JkyQ+L)iSCq$3NOa|>8@~s@MZfWQ9)JbuOgsK064(YE1k#iKX8rIeTN33s7#-LP! zfZJ3e%rNR74JBpc6s#}T&Cp!ctrpoO$HOo@B4}p3TW7^?++<^oh#|R4Ga-Ni0;K?q ze$W`3JtvE~qf4ZoWT&s`6;dk&-Y1)zj&46iH&HM9Zf7*s6`N^oYrT>kjxufkt)JBp zvIGpYq63R*j1kAm$?SOZ6TS2L#@bwls4GL2s#rM@bW7O1Y&nm<=ixe{=x`9Ig?BaUV}C_l9FNWjowlv>OR(;6 zOkQ|Dj3@02rl--RRY70{1pz4fdcy!{|jO_Ff^ zdppi;_$!YJn?z#i+~wucR7B9B9o-ypnK~_km7!emC?t)t3Z3AIh5rVR-p61XA^8`? zm1bjC(kF5|H)Y^iy0mG!J%+Bac77mznr}s{u9*-qivDT4yz}=@U9gGfT`+Vfd)}T6 z$9-=gYv%`HJYR9Xo!f>7xpm%-iTPY(Q(jp*L=+==q>rEX45S+^L-hYDV|BiI%c*jF=N=bloo=OQ?xYEJO{9-S!TsDN*nE!+3kRY$-VK_VZ48)dg+k@Ur zAFg-weWb;M&8g*VJW9jgl8x}Jj@uq0R=@qZO;9YSe4yX`iX@@v<*f2{sAOI?*Q%gf zUKQ(RWrhS~xmom?k7Z}czJE1!I>zwLnKQ!(WKiwDqpzrHMFZb#15nw<-WiVLqt+<&c-LM-C}2=AodbYw zHJ?5@Zz5j?g}=)LO&Yay1%VvAeV}(tdA-)oizW9i?x8PA>~@xEl`x=LOOC|ZmaH@TCSst8zIoTW^?CQR18~~#VyR%vEvB5aDp+}OHga|VPZi(9AQHxr*s`C? z@rj*q*%%;(!;nhaqlXU26Ru0xr zl1zm52i&hT9HvxE{|=UJ6S1my#{bSyXaS6{eUB=|bw=xrm33%@uG~V-qr=HZ+3% zY%q-q_eg_ub4p(9B<{DfT9KvH488blU8$5wVY15AIrfTt8B?GCa3rjJ!;<0%j#|8fa zo;rM1Yx0tfBHuo2mxAENo4Cbv8Xi&rl30(beF3&Di-5VTH)Oj;NB2ABQ<2d=Z*s~7 zZ;T|~L$>q&!a)G(%jCwkc-qoy%`s}Wr{u%#(k%7! zJk^=P%V02-)5nLOctCrjZ+>%Z*r6AHZA!;JrfzY`_nbECRaEL1?G`U1=cb*y5br#& ztA#sjqhxiGC2cp4bV!sz_nL`7BFvzA_h^nD0>aRxfcj#gVT*11NP@MmW#>zut%{ML z`Q&Kimp}B+_jD?*e`yiBqpGD7wVr-Aki5QCrm>^vB}eA>9=rc^p*uw#D%fxu%)Oaetc(F%~oBF zu>dV87S8BVRwzyJxKxoZl5On5w)gi%dcY8`-`ZbnVY~0CTyn|CZYu+%TJt?6zR#Og zBUBS-7QFZZFKa`*NvA4~NjgAh+9qd|RTNvf4%tT*>!&4;bqm| zMRzOAnn050KNk7mQ{()=*y_#?L&!3U z&#?m5pyc`*s?YZ0mj;&kDIdVz3v!v_UQM|m|2M;_=oV`ufMk4JmfKzsC^dIaJ#Jce z?7UCu3H0+tqJ~JeG!=zJqj7VrM$7wF)KEvjC%3}UqxLtXmZn^ij57m47pgyr8miU@8{77gu6ZEE$qOKIMkYK2xyN8y4^d{|6B_VF+ za|?Ae6A%j}HH_%@y2H$Lp@$9>bgp)s-6R2IAI1wohnt zEx7kC%x0FIrQ94}e2===6*w<}v^r?9l!FkZjx3S)nqlB?@Q1))I<)ZBtM#gdF>Ok~ zt%BsPriO9{r?OCX)=@p7Vu>Lp7P?!gZ;zlK}-9ofaB|yf2dZN%fpiw zK01X{W!7wCj)rzsHxpe)Y<#Ki75_FKS_&j>Q?fj zN59G!3OkhDV4sFIi)?8%&S@Z{FU?F#2>9L^rQlS{qshTXgpVHb|X9O1qaq Date: Sat, 8 Feb 2020 17:27:38 +0100 Subject: [PATCH 15/23] Deploy AMICI python package source distribution to github (Closes #809) (#940) --- .github/workflows/deploy_sdist.yml | 31 ++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) create mode 100644 .github/workflows/deploy_sdist.yml diff --git a/.github/workflows/deploy_sdist.yml b/.github/workflows/deploy_sdist.yml new file mode 100644 index 0000000000..dbe4b7331e --- /dev/null +++ b/.github/workflows/deploy_sdist.yml @@ -0,0 +1,31 @@ +name: Deploy Python source distribution +on: push + +jobs: + build: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v1 + with: + fetch-depth: 20 + + - name: apt + run: | + sudo apt-get install -y swig3.0 \ + && sudo ln -s /usr/bin/swig3.0 /usr/bin/swig + - name: pip + run: | + pip3 install --upgrade --user wheel \ + && pip3 install --upgrade --user setuptools + + - name: Create AMICI sdist + run: | + cd python/sdist && /usr/bin/python3 setup.py sdist + + - name: Archive sdist + uses: actions/upload-artifact@v1 + with: + name: sdist + path: python/sdist/dist From a5f8c35d768055a8c4e31762be6065fbb799cd5b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabian=20Fr=C3=B6hlich?= Date: Sat, 8 Feb 2020 16:13:01 -0500 Subject: [PATCH 16/23] enable multithreading in swig (#938) --- swig/amici.i | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/swig/amici.i b/swig/amici.i index 359520677c..b76868f3af 100644 --- a/swig/amici.i +++ b/swig/amici.i @@ -1,4 +1,4 @@ -%module amici +%module("threads=1") amici %include %exception { From 69d8d2348e6e490ea0ffae739da27d643ef512b4 Mon Sep 17 00:00:00 2001 From: "Thomas S. Ligon" Date: Sun, 9 Feb 2020 01:41:05 +0100 Subject: [PATCH 17/23] Enable MSVC compilation of Python extensions (#847) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * Enable building AMICI Python package with MSVC (Closes #424) * Implement setting compiler-specific build options (Closes #812) * Add Windows OpenBLAS download script * Set up basic Travis-CI Windows workflow (#424) Co-authored-by: Fabian Fröhlich Co-authored-by: Daniel Weindl Co-authored-by: Thomas S. Ligon --- .travis.yml | 29 ++++++ CMakeLists.txt | 2 +- include/amici/defines.h | 1 + include/amici/misc.h | 12 --- models/model_calvetti/CMakeLists.txt | 2 +- models/model_dirac/CMakeLists.txt | 2 +- models/model_events/CMakeLists.txt | 2 +- models/model_jakstat_adjoint/CMakeLists.txt | 2 +- .../model_jakstat_adjoint_o2/CMakeLists.txt | 2 +- models/model_nested_events/CMakeLists.txt | 2 +- models/model_neuron/CMakeLists.txt | 2 +- models/model_neuron_o2/CMakeLists.txt | 2 +- models/model_robertson/CMakeLists.txt | 2 +- models/model_steadystate/CMakeLists.txt | 2 +- python/sdist/custom_commands.py | 98 ++++++++++++++++--- python/sdist/setup.py | 31 +++--- python/sdist/setup_clibs.py | 15 ++- scripts/installOpenBLAS.ps1 | 17 ++++ src/CMakeLists.template.cmake | 2 +- src/solver.cpp | 1 + 20 files changed, 173 insertions(+), 55 deletions(-) create mode 100644 scripts/installOpenBLAS.ps1 diff --git a/.travis.yml b/.travis.yml index a49e266a39..60b4c0b66f 100644 --- a/.travis.yml +++ b/.travis.yml @@ -131,6 +131,33 @@ matrix: on: branch: master + - os: windows + # language python currently not supported on Windows + language: cpp + compiler: msvc + git: + # clone after enabled symlinks below + clone: false + env: PATH=/c/Python37:/c/Python37/Scripts:$PATH + before_install: + - export -f travis_fold travis_nanoseconds travis_time_start travis_time_finish + # allow PowerShell to run scripts + - powershell -Command Set-ExecutionPolicy Unrestricted -Force + # Enable Windows developer mode to support symlinks + - powershell -Command New-ItemProperty -Path "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\AppModelUnlock" -Name AllowDevelopmentWithoutDevLicense -Value 1 -PropertyType DWord + # stick to python 3.7 until there is a 3.8 wheel for windows + # as installation from sdist fails because of reasons... + - choco install python --version 3.7.5 + - choco install swig + - python -m pip install --upgrade pip + - pip install --user -U numpy + - git clone -c core.symlinks=true https://github.com/ICB-DCM/AMICI.git && cd AMICI + - if [[ "$TRAVIS_PULL_REQUEST" == "false" ]]; then git checkout -qf $TRAVIS_COMMIT; elif [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then git fetch origin pull/$TRAVIS_PULL_REQUEST/head:$TRAVIS_BRANCH && git checkout $TRAVIS_BRANCH; fi + # run BLAS installation script + - if [[ "$TRAVIS_OS_NAME" == "windows" ]]; then powershell -File 'C:\Users\travis\build\AMICI\scripts\installOpenBLAS.ps1';export BLAS_LIBS BLAS_CFLAGS; fi + # define Windows environment variables in BLAS because PowerShell definition didn't do the trick + - if [[ "$TRAVIS_OS_NAME" == "windows" ]]; then export BLAS_LIBS='/LIBPATH:C:\\BLAS\\OpenBLAS-0.3.6-x64\\lib libopenblas.lib' BLAS_CFLAGS='/IC:\\BLAS\\OpenBLAS-0.3.6-x64\\include'; fi + install: - export BASE_DIR=`pwd` # Build swig4.0 (not yet available with apt) to include pydoc in source distribution for pypi @@ -146,6 +173,8 @@ install: - if [[ "$CI_BUILD" == "TRUE" ]]; then ./scripts/buildAmici.sh; fi - if [[ "$CI_ARCHIVE" == "TRUE" ]]; then ./scripts/installAmiciArchive.sh; fi - if [[ "$CI_PYTHON" == "TRUE" ]]; then ./scripts/installAmiciSource.sh; fi + - if [[ "$TRAVIS_OS_NAME" == "windows" ]]; then cd python/sdist && python setup.py sdist; fi + - if [[ "$TRAVIS_OS_NAME" == "windows" ]]; then pip install $(ls -t dist/amici-*.tar.gz | head -1); fi script: - export -f travis_fold travis_nanoseconds travis_time_start travis_time_finish diff --git a/CMakeLists.txt b/CMakeLists.txt index cf40b33264..a427873fef 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -18,7 +18,7 @@ project(amici) set(CMAKE_MODULE_PATH ${CMAKE_SOURCE_DIR}/cmake) set(CMAKE_POSITION_INDEPENDENT_CODE ON) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "GNU") # require at least gcc 4.9, otherwise regex wont work properly if (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 4.9) diff --git a/include/amici/defines.h b/include/amici/defines.h index 1c90baa92c..780b4a62dc 100644 --- a/include/amici/defines.h +++ b/include/amici/defines.h @@ -3,6 +3,7 @@ #include #include +#include namespace amici { diff --git a/include/amici/misc.h b/include/amici/misc.h index 6284a1d8f9..b13534ad47 100644 --- a/include/amici/misc.h +++ b/include/amici/misc.h @@ -95,16 +95,4 @@ std::string printfToString(const char *fmt, va_list ap); } // namespace amici -#ifndef __cpp_lib_make_unique -// custom make_unique while we are still using c++11 -namespace std { -template -std::unique_ptr make_unique(Args&&... args) -{ - return std::unique_ptr(new T(std::forward(args)...)); -} -} -#endif - #endif // AMICI_MISC_H - diff --git a/models/model_calvetti/CMakeLists.txt b/models/model_calvetti/CMakeLists.txt index 26b63a33a9..20718b82e1 100644 --- a/models/model_calvetti/CMakeLists.txt +++ b/models/model_calvetti/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_calvetti) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_dirac/CMakeLists.txt b/models/model_dirac/CMakeLists.txt index f73a171551..d0b6d8781d 100644 --- a/models/model_dirac/CMakeLists.txt +++ b/models/model_dirac/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_dirac) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_events/CMakeLists.txt b/models/model_events/CMakeLists.txt index 150dd43b02..d28423efe1 100644 --- a/models/model_events/CMakeLists.txt +++ b/models/model_events/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_events) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_jakstat_adjoint/CMakeLists.txt b/models/model_jakstat_adjoint/CMakeLists.txt index 76484be708..b7a43019fb 100644 --- a/models/model_jakstat_adjoint/CMakeLists.txt +++ b/models/model_jakstat_adjoint/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_jakstat_adjoint) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_jakstat_adjoint_o2/CMakeLists.txt b/models/model_jakstat_adjoint_o2/CMakeLists.txt index 92516553d0..199af7804c 100644 --- a/models/model_jakstat_adjoint_o2/CMakeLists.txt +++ b/models/model_jakstat_adjoint_o2/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_jakstat_adjoint_o2) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_nested_events/CMakeLists.txt b/models/model_nested_events/CMakeLists.txt index 120e5a08ed..3c6dcc0a35 100644 --- a/models/model_nested_events/CMakeLists.txt +++ b/models/model_nested_events/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_nested_events) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_neuron/CMakeLists.txt b/models/model_neuron/CMakeLists.txt index 0c63349ca8..eb41751c03 100644 --- a/models/model_neuron/CMakeLists.txt +++ b/models/model_neuron/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_neuron) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_neuron_o2/CMakeLists.txt b/models/model_neuron_o2/CMakeLists.txt index 7c2121cb0f..110b901d92 100644 --- a/models/model_neuron_o2/CMakeLists.txt +++ b/models/model_neuron_o2/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_neuron_o2) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_robertson/CMakeLists.txt b/models/model_robertson/CMakeLists.txt index 7af14aba5b..6e5ddf1a7a 100644 --- a/models/model_robertson/CMakeLists.txt +++ b/models/model_robertson/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_robertson) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/models/model_steadystate/CMakeLists.txt b/models/model_steadystate/CMakeLists.txt index 0b14584260..d91835a801 100644 --- a/models/model_steadystate/CMakeLists.txt +++ b/models/model_steadystate/CMakeLists.txt @@ -9,7 +9,7 @@ endif(POLICY CMP0065) project(model_steadystate) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/python/sdist/custom_commands.py b/python/sdist/custom_commands.py index 6564da8d7b..65042677e1 100644 --- a/python/sdist/custom_commands.py +++ b/python/sdist/custom_commands.py @@ -2,18 +2,22 @@ import glob import os -import sys import subprocess +import sys from shutil import copyfile +from typing import Dict, List, Tuple +from amici.setuptools import generateSwigInterfaceFiles +from setuptools.command.build_clib import build_clib from setuptools.command.build_ext import build_ext -from setuptools.command.sdist import sdist -from setuptools.command.install_lib import install_lib from setuptools.command.develop import develop from setuptools.command.install import install -from setuptools.command.build_clib import build_clib +from setuptools.command.install_lib import install_lib +from setuptools.command.sdist import sdist +from distutils import log -from amici.setuptools import generateSwigInterfaceFiles +# typehints +Library = Tuple[str, Dict[str, List[str]]] class my_install(install): @@ -39,8 +43,8 @@ def run(self): def compile_parallel(self, sources, output_dir=None, macros=None, - include_dirs=None, debug=0, extra_preargs=None, - extra_postargs=None, depends=None): + include_dirs=None, debug=0, extra_preargs=None, + extra_postargs=None, depends=None): """Parallelized version of distutils.ccompiler.compile""" macros, objects, extra_postargs, pp_opts, build = \ self._setup_compile(output_dir, macros, include_dirs, sources, @@ -84,8 +88,7 @@ def run(self): build_clib.run(self) - - def build_libraries(self, libraries): + def build_libraries(self, libraries: List[Library]): no_clibs = self.get_finalized_command('develop').no_clibs no_clibs |= self.get_finalized_command('install').no_clibs @@ -96,6 +99,10 @@ def build_libraries(self, libraries): import distutils.ccompiler distutils.ccompiler.CCompiler.compile = compile_parallel + # Work-around for compiler-specific build options + set_compiler_specific_library_options( + libraries, self.compiler.compiler_type) + build_clib.build_libraries(self, libraries) @@ -141,7 +148,6 @@ def run(self): subprocess.run(['dsymutil',os.path.join(search_dir,file), '-o',os.path.join(search_dir,file + '.dSYM')]) - # Continue with the actual installation install_lib.run(self) @@ -149,8 +155,15 @@ def run(self): class my_build_ext(build_ext): """Custom build_ext to allow keeping otherwise temporary static libs""" + def build_extension(self, ext): + # Work-around for compiler-specific build options + set_compiler_specific_extension_options(ext, self.compiler.compiler_type) + + build_ext.build_extension(self, ext) + def run(self): - """Copy the generated clibs to the extensions folder to be included in the wheel + """Copy the generated clibs to the extensions folder to be included in + the wheel Returns: @@ -168,7 +181,6 @@ def run(self): # get the previously built static libraries build_clib = self.get_finalized_command('build_clib') libraries = build_clib.get_library_names() or [] - library_dirs = build_clib.build_clib # Module build directory where we want to copy the generated libs # to @@ -189,7 +201,8 @@ def run(self): "Found unexpected number of files: " % libfilenames copyfile(libfilenames[0], - os.path.join(target_dir, os.path.basename(libfilenames[0]))) + os.path.join(target_dir, + os.path.basename(libfilenames[0]))) # Always force recompilation. The way setuptools/distutils check for # whether sources require recompilation is not reliable and may lead @@ -243,3 +256,62 @@ def saveGitVersion(self): '--always', '--tags'], stdout=f) assert(sp.returncode == 0) + + +def set_compiler_specific_library_options( + libraries: List[Library], + compiler_type: str) -> None: + """Set compiler-specific library options. + + C/C++-libraries for setuptools/distutils are provided as dict containing + entries for 'sources', 'macros', 'cflags', etc. + As we don't know the compiler type at the stage of calling + ``setuptools.setup`` and as there is no other apparent way to set + compiler-specific options, we elsewhere extend the dict with additional + fields ${original_field}_${compiler_class}, and add the additional + compiler-specific options here, at a stage when the compiler has been + determined by distutils. + + Arguments: + libraries: + List of libraries as passed as ``libraries`` argument to + ``setuptools.setup`` and ``setuptools.build_ext.build_extension``. + This is modified in place. + compiler_type: + Compiler type, as defined in + ``distutils.ccompiler.compiler.compiler_class``, (e.g. 'unix', + 'msvc', 'mingw32'). + """ + + for lib in libraries: + for field in ['cflags', 'sources', 'macros']: + try: + lib[1][field] += lib[1][f'{field}_{compiler_type}'] + log.info(f"Changed {field} for {lib[0]} with {compiler_type} " + f"to {lib[1][field]}") + except KeyError: + # No compiler-specific options set + pass + + +def set_compiler_specific_extension_options( + ext: 'setuptools.Extension', + compiler_type: str) -> None: + """Set compiler-specific extension build options. + + Same game as in ``set_compiler_specific_library_options``, except that + here we look for compiler-specific class attributes. + + Arguments: + ext: setuptools/distutils extension object + compiler_type: Compiler type + """ + for attr in ['extra_compile_args', 'extra_link_args']: + try: + new_value = getattr(ext, attr) + \ + getattr(ext, f'{attr}_{compiler_type}') + setattr(ext, attr, new_value) + log.info(f"Changed {attr} for {compiler_type} to {new_value}") + except AttributeError: + # No compiler-specific options set + pass diff --git a/python/sdist/setup.py b/python/sdist/setup.py index 735dacfc1b..67dfec52ce 100755 --- a/python/sdist/setup.py +++ b/python/sdist/setup.py @@ -113,6 +113,18 @@ def main(): extra_compiler_flags=cxx_flags + ['-DDLONG'] ) + # Readme as long package description to go on PyPi + # (https://pypi.org/project/amici/) + with open("README.md", "r", encoding="utf-8") as fh: + long_description = fh.read() + + # Remove the "-Wstrict-prototypes" compiler option, which isn't valid for + # C++ to fix warnings. + cfg_vars = sysconfig.get_config_vars() + for key, value in cfg_vars.items(): + if type(value) == str: + cfg_vars[key] = value.replace("-Wstrict-prototypes", "") + # Build shared object amici_module = Extension( name='amici._amici', @@ -135,21 +147,14 @@ def main(): *blaspkgcfg['library_dirs'], 'amici/libs', # clib target directory ], - extra_compile_args=['-std=c++11', *cxx_flags], + extra_compile_args=cxx_flags, extra_link_args=amici_module_linker_flags ) - - # Readme as long package description to go on PyPi - # (https://pypi.org/project/amici/) - with open("README.md", "r", encoding="utf-8") as fh: - long_description = fh.read() - - # Remove the "-Wstrict-prototypes" compiler option, which isn't valid for - # C++ to fix warnings. - cfg_vars = sysconfig.get_config_vars() - for key, value in cfg_vars.items(): - if type(value) == str: - cfg_vars[key] = value.replace("-Wstrict-prototypes", "") + # Monkey-patch extension (see + # `custom_commands.set_compiler_specific_extension_options`) + amici_module.extra_compile_args_mingw32 = ['-std=c++14'] + amici_module.extra_compile_args_unix = ['-std=c++14'] + amici_module.extra_compile_args_msvc = ['/std:c++14'] # Install setup( diff --git a/python/sdist/setup_clibs.py b/python/sdist/setup_clibs.py index ea33f37b69..7e8a99f031 100644 --- a/python/sdist/setup_clibs.py +++ b/python/sdist/setup_clibs.py @@ -8,7 +8,6 @@ import glob import re - def getSundialsSources(): """Get list of Sundials source files""" srcs = [ @@ -160,7 +159,9 @@ def getLibSundials(extra_compiler_flags=None): 'amici/ThirdParty/SuiteSparse/BTF/Include/', 'amici/ThirdParty/SuiteSparse/SuiteSparse_config', 'amici/ThirdParty/SuiteSparse/include'], - 'cflags': ['-Wno-misleading-indentation', *extra_compiler_flags] + 'cflags': [*extra_compiler_flags], + 'cflags_mingw32': ['-Wno-misleading-indentation'], + 'cflags_unix': ['-Wno-misleading-indentation'] }) return libsundials @@ -183,8 +184,9 @@ def getLibSuiteSparse(extra_compiler_flags=None): 'amici/ThirdParty/SuiteSparse/SuiteSparse_config', 'amici/ThirdParty/SuiteSparse/include' ], - 'cflags': ['-Wno-unused-but-set-variable', *extra_compiler_flags] - + 'cflags': [*extra_compiler_flags], + 'cflags_mingw32': ['-Wno-unused-but-set-variable'], + 'cflags_unix': ['-Wno-unused-but-set-variable'] }) return libsuitesparse @@ -218,7 +220,10 @@ def getLibAmici(extra_compiler_flags=None, h5pkgcfg=None, blaspkgcfg=None): 'amici/ThirdParty/sundials/src', 'amici/ThirdParty/gsl/', ], - 'cflags': ['-std=c++11', *extra_compiler_flags], + 'cflags': [*extra_compiler_flags], + 'cflags_mingw32': ['-std=c++14'], + 'cflags_unix': ['-std=c++14'], + 'cflags_msvc': ['/std:c++14'], 'macros': [], }) diff --git a/scripts/installOpenBLAS.ps1 b/scripts/installOpenBLAS.ps1 new file mode 100644 index 0000000000..4b5ceb6421 --- /dev/null +++ b/scripts/installOpenBLAS.ps1 @@ -0,0 +1,17 @@ +Write-Host 'script installOpenBLAS.ps1 started' +$VerbosePreference = "Continue" # display verbose messages +New-Item -Path 'C:\BLAS' -ItemType Directory -Force # create directory +# Enforce stronger cryptography +[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.SecurityProtocolType]::Tls12 +$uri = 'https://sourceforge.net/projects/openblas/files/v0.3.6/OpenBLAS-0.3.6-x64.zip/download' +$output = 'C:\BLAS\OpenBLAS-0.3.6-x64.zip' +# Invoke-WebRequest $uri -OutFile $output +$webclient = New-Object System.Net.WebClient +$webclient.DownloadFile($uri,"$output") +Expand-Archive -Path 'C:\BLAS\OpenBLAS-0.3.6-x64.zip' -DestinationPath 'C:\BLAS\OpenBLAS-0.3.6-x64' -Force # expand zip file +New-Item -Path Env:BLAS_LIBS -Value "/LIBPATH:C:\BLAS\OpenBLAS-0.3.6-x64\lib libopenblas.lib" -Force # create environment variable +New-Item -Path Env:BLAS_CFLAGS -Value "/IC:\BLAS\OpenBLAS-0.3.6-x64\include" -Force # create environment variable +Get-ChildItem 'C:\BLAS\OpenBLAS-0.3.6-x64' -Recurse # check for files +Get-Item -Path Env:BLAS_* # check environment variables +$VerbosePreference = "SilentlyContinue" # don't display verbose messages +Write-Host 'script installOpenBLAS.ps1 completed' diff --git a/src/CMakeLists.template.cmake b/src/CMakeLists.template.cmake index f6995c174a..05b99ae6b2 100644 --- a/src/CMakeLists.template.cmake +++ b/src/CMakeLists.template.cmake @@ -13,7 +13,7 @@ endif(POLICY CMP0074) project(TPL_MODELNAME) -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 14) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON) diff --git a/src/solver.cpp b/src/solver.cpp index f86a896fa9..3a462b1211 100644 --- a/src/solver.cpp +++ b/src/solver.cpp @@ -9,6 +9,7 @@ #include #include #include +#include namespace amici { From 1abfab9d211986c3a2d987512dc7742968395db0 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Sun, 9 Feb 2020 21:40:30 +0100 Subject: [PATCH 18/23] Extend PEtab support (#921) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Closes #890 * Update PEtab model import (now using YAML files and observable table) * Add `simulate_petab(...)` to compute cost function / simulate model based on PEtab data * Add tests for PEtab models based on benchmark collection to run as github action Co-authored-by: Yannik Schälte <31767307+yannikschaelte@users.noreply.github.com> Co-authored-by: Fabian Fröhlich --- .../test-benchmark-collection-models.yml | 54 ++ .gitignore | 4 + python/amici/ode_export.py | 2 +- python/amici/petab_import.py | 330 ++++---- python/amici/petab_objective.py | 723 ++++++++++++++---- python/amici/sbml_import.py | 78 +- python/sdist/setup.py | 2 +- tests/benchmark-models/benchmark_models.yaml | 83 ++ .../test_benchmark_collection.sh | 109 +++ tests/benchmark-models/test_petab_model.py | 139 ++++ 10 files changed, 1216 insertions(+), 308 deletions(-) create mode 100644 .github/workflows/test-benchmark-collection-models.yml create mode 100644 tests/benchmark-models/benchmark_models.yaml create mode 100755 tests/benchmark-models/test_benchmark_collection.sh create mode 100755 tests/benchmark-models/test_petab_model.py diff --git a/.github/workflows/test-benchmark-collection-models.yml b/.github/workflows/test-benchmark-collection-models.yml new file mode 100644 index 0000000000..9b141dd251 --- /dev/null +++ b/.github/workflows/test-benchmark-collection-models.yml @@ -0,0 +1,54 @@ +name: Benchmark collection +on: + push: + branches: + - develop + - master + - dw_misc + + pull_request: + branches: + - master + +jobs: + build: + + runs-on: ubuntu-latest + + steps: + - uses: actions/checkout@v1 + with: + fetch-depth: 20 + + # install dependencies + - name: apt + run: | + sudo apt-get install -y swig3.0 libatlas-base-dev \ + && sudo ln -s /usr/bin/swig3.0 /usr/bin/swig + - name: pip + run: | + pip3 install --upgrade --user wheel \ + && pip3 install --upgrade --user setuptools + - run: pip3 install shyaml petab>=0.1.1 + - run: | + echo ::add-path::${HOME}/.local/bin/ + echo ::add-path::${GITHUB_WORKSPACE}/tests/performance/ + # install AMICI + - name: Create AMICI sdist + run: | + cd python/sdist \ + && check_time.sh create_sdist /usr/bin/python3 setup.py sdist + - name: Install AMICI sdist + run: | + AMICI_PARALLEL_COMPILE=2 check_time.sh \ + install_sdist pip3 install -v --user \ + $(ls -t python/sdist/dist/amici-*.tar.gz | head -1) + + # retrieve test models + - name: Download and test benchmark collection + # TODO do something more efficient than cloning this big repo + run: | + git clone --depth 1 https://github.com/LeonardSchmiester/Benchmark-Models.git \ + && cd Benchmark-Models && git checkout hackathon && cd .. \ + && export BENCHMARK_COLLECTION="$(pwd)/Benchmark-Models/hackathon_contributions_new_data_format/" \ + && tests/benchmark-models/test_benchmark_collection.sh diff --git a/.gitignore b/.gitignore index 772a153645..f8c19ef397 100644 --- a/.gitignore +++ b/.gitignore @@ -131,6 +131,7 @@ tests/sbml-test-suite/ tests/sedml-test-suite/ */sbml-semantic-test-cases/* tests/SBMLTestModels/ +tests/benchmark-models/test_bmc /python/test/amici-SBMLTest*/ python/examples/example_steadystate/model_steadystate_scaled/* @@ -154,6 +155,7 @@ AMICI_guide.pdf ThirdParty/bionetgen.tar.gz ThirdParty/BioNetGen-* ThirdParty/cpputest-master* +ThirdParty/doxygen/* ThirdParty/mtocpp-master* ThirdParty/sundials/build/* ThirdParty/SuiteSparse/lib/* @@ -161,3 +163,5 @@ ThirdParty/SuiteSparse/share/* ThirdParty/SuperLU_MT_3.1/ ThirdParty/superlu_mt_3.1.tar.gz ThirdParty/swig-* + +_untracked/ diff --git a/python/amici/ode_export.py b/python/amici/ode_export.py index 7ca251de1f..0fdc0b7deb 100644 --- a/python/amici/ode_export.py +++ b/python/amici/ode_export.py @@ -635,7 +635,7 @@ def __init__(self, identifier, name, value): class ODEModel: - """An ODEModel defines an Ordinay Differential Equation as set of + """An ODEModel defines an Ordinary Differential Equation as set of ModelQuantities. This class provides general purpose interfaces to compute arbitrary symbolic derivatives that are necessary for model simulation or sensitivity computation diff --git a/python/amici/petab_import.py b/python/amici/petab_import.py index f5e8dff22a..24111d8b65 100644 --- a/python/amici/petab_import.py +++ b/python/amici/petab_import.py @@ -1,24 +1,24 @@ """ Import a model in the PEtab (https://github.com/ICB-DCM/PEtab/) format into -AMICI +AMICI. """ import argparse import logging import math import os -import time -from typing import List, Dict, Union, Optional +from typing import List, Dict, Union, Optional, Tuple import amici import libsbml import pandas as pd import petab -from colorama import Fore -from colorama import init as init_colorama +import sympy as sp +from amici.logging import get_logger, log_execution_time +from petab.C import * -logger = logging.getLogger(__name__) +logger = get_logger(__name__, logging.WARNING) def get_fixed_parameters( @@ -27,7 +27,7 @@ def get_fixed_parameters( const_species_to_parameters: bool = False) -> List[str]: """Determine, set and return fixed model parameters - Parameters specified in `condition_file_name` are turned into constants. + Parameters specified in `condition_df` are turned into constants. Only global SBML parameters are considered. Local parameters are ignored. Arguments: @@ -45,19 +45,27 @@ def get_fixed_parameters( List of IDs of parameters which are to be considered constant. """ - # column names are model parameter names that should be made constant - # except for any overridden parameters + # Column names are model parameter IDs, compartment IDs or species IDs. + # Thereof, all parameters except for any overridden ones should be made + # constant. # (Could potentially still be made constant, but leaving them might # increase model reusability) + + # handle parameters in condition table if condition_df is not None: fixed_parameters = list(condition_df.columns) + # get rid of conditionName column try: - fixed_parameters.remove('conditionName') + fixed_parameters.remove(CONDITION_NAME) except ValueError: pass - # remove overridden parameters + + logger.debug(f'Condition table: {condition_df.shape}') + + # remove overridden parameters (`object`-type columns) fixed_parameters = [p for p in fixed_parameters - if condition_df[p].dtype != 'O'] + if condition_df[p].dtype != 'O' + and sbml_model.getParameter(p) is not None] # must be unique if len(fixed_parameters) != len(set(fixed_parameters)): raise AssertionError( @@ -65,23 +73,16 @@ def get_fixed_parameters( else: fixed_parameters = [] - # States occurring as column names of the condition table need to be - # converted to parameters - # TODO https://github.com/ICB-DCM/PEtab/issues/181 - species_to_convert = [x for x in fixed_parameters - if sbml_model.getSpecies(x)] - species_to_parameters(species_to_convert, sbml_model) - # Others are optional if const_species_to_parameters: # Turn species which are marked constant in the SBML model into # parameters constant_species = constant_species_to_parameters(sbml_model) - logger.log(logging.INFO, "Constant species converted to parameters " - + str(len(constant_species))) - logger.log(logging.INFO, "Non-constant species " - + str(len(sbml_model.getListOfSpecies()))) + logger.debug("Constant species converted to parameters: " + + str(len(constant_species))) + logger.info("Non-constant species " + + str(len(sbml_model.getListOfSpecies()))) # ... and append them to the list of fixed_parameters for species in constant_species: @@ -94,12 +95,36 @@ def get_fixed_parameters( # check global parameters if not sbml_model.getParameter(fixed_parameter) \ and not sbml_model.getSpecies(fixed_parameter): - logger.log(logging.WARN, - f"{Fore.YELLOW}Parameter or species '{fixed_parameter}'" - " provided in condition table but not present in" - " model.") + logger.warning(f"Parameter or species '{fixed_parameter}'" + " provided in condition table but not present in" + " model. Ignoring.") fixed_parameters.remove(fixed_parameter) + if condition_df is None: + return fixed_parameters + + # initial concentrations for species or initial compartment sizes in + # condition table will need to be turned into fixed parameters + + # if there is no initial assignment for that species, we'd need + # to create one. to avoid any naming collision right away, we don't allow + # that for now + + # we can't handle them yet + compartments = [col for col in condition_df + if sbml_model.getCompartment(col) is not None] + if compartments: + raise NotImplementedError("Can't handle initial compartment sizes " + "at the moment. Consider creating an " + f"initial assignment for {compartments}") + + species = [col for col in condition_df + if sbml_model.getSpecies(col) is not None] + if species: + raise NotImplementedError("Can't handle species in condition table." + "Consider creating an initial assignment for" + f" {species}") + return fixed_parameters @@ -185,13 +210,14 @@ def constant_species_to_parameters(sbml_model: 'libsbml.Model') -> List[str]: return species_to_parameters(transformables, sbml_model) +@log_execution_time('Importing PEtab model', logger) def import_model(sbml_model: Union[str, 'libsbml.Model'], condition_table: Optional[Union[str, pd.DataFrame]] = None, - measurement_table: Optional[Union[str, pd.DataFrame]] = None, + observable_table: Optional[Union[str, pd.DataFrame]] = None, model_name: Optional[str] = None, - model_output_dir: str = None, + model_output_dir: Optional[str] = None, verbose: bool = True, - allow_reinit_fixpar_initcond: bool = False, + allow_reinit_fixpar_initcond: bool = True, **kwargs) -> None: """Create AMICI model from PEtab problem @@ -202,8 +228,8 @@ def import_model(sbml_model: Union[str, 'libsbml.Model'], PEtab condition table. If provided, parameters from there will be turned into AMICI constant parameters (i.e. parameters w.r.t. which no sensitivities will be computed). - measurement_table: - PEtab measurement table. + observable_table: + PEtab observable table. model_name: Name of the generated model. If model file name was provided, this defaults to the file name without extension, otherwise @@ -214,24 +240,27 @@ def import_model(sbml_model: Union[str, 'libsbml.Model'], verbose: Print/log extra information. allow_reinit_fixpar_initcond: - See amici.ode_export.ODEExporter + See amici.ode_export.ODEExporter. Must be enabled if initial + states are to be reset after preequilibration. **kwargs: Additional keyword arguments to be passed to ``amici.sbml_importer.sbml2amici``. """ - - # Color output - init_colorama(autoreset=True) - if verbose: - logger.log(logging.INFO, f"{Fore.GREEN}Importing model ...") + logger.setLevel(verbose) - # Create a copy, because it will be modified by SbmlImporter - sbml_doc = sbml_model.getSBMLDocument().clone() - sbml_model = sbml_doc.getModel() + logger.info(f"Importing model ...") - sbml_importer = amici.SbmlImporter(sbml_model) + # Get PEtab tables + observable_df = petab.get_observable_df(observable_table) + # to determine fixed parameters + condition_df = petab.get_condition_df(condition_table) + + if observable_df is None: + raise NotImplementedError("PEtab import without observables table " + "is currently not supported.") + # Model name from SBML ID or filename if model_name is None: if isinstance(sbml_model, libsbml.Model): model_name = sbml_model.getId() @@ -241,68 +270,64 @@ def import_model(sbml_model: Union[str, 'libsbml.Model'], if model_output_dir is None: model_output_dir = os.path.join(os.getcwd(), model_name) - sbml_model = sbml_importer.sbml - - if verbose: - logger.log(logging.INFO, - f"{Fore.GREEN}Model name is '{model_name}' " - f"Writing model code to '{model_output_dir}'") - show_model_info(sbml_model) - - # Read PEtab observables and sigmas - observables = petab.get_observables(sbml_importer.sbml, remove=True) - sigmas = petab.get_sigmas(sbml_importer.sbml, remove=True) - - # Read PEtab error model - if measurement_table is not None: - if isinstance(measurement_table, str): - measurement_df = petab.get_measurement_df(measurement_table) - else: - measurement_df = measurement_table + logger.info(f"Model name is '{model_name}'. " + f"Writing model code to '{model_output_dir}'.") - noise_distrs = petab_noise_distributions_to_amici( - petab.get_noise_distributions(measurement_df)) + # Load model + if isinstance(sbml_model, str): + # from file + sbml_reader = libsbml.SBMLReader() + sbml_doc = sbml_reader.readSBMLFromFile(sbml_model) + sbml_model = sbml_doc.getModel() else: - noise_distrs = {} # use default + # Create a copy, because it will be modified by SbmlImporter + sbml_doc = sbml_model.getSBMLDocument().clone() + sbml_model = sbml_doc.getModel() - # Replace observableIds occurring in error model definition - import sympy as sp - for observable_id, formula in sigmas.items(): - repl = sp.sympify(formula).subs( - observable_id, observables[observable_id]['formula']) - sigmas[observable_id] = str(repl) + show_model_info(sbml_model) - if verbose: - logger.log(logging.INFO, f'Observables {len(observables)}') - logger.log(logging.INFO, f'Sigmas {len(sigmas)}') + sbml_importer = amici.SbmlImporter(sbml_model) + sbml_model = sbml_importer.sbml + + if observable_df is not None: + observables, noise_distrs, sigmas = \ + get_observation_model(observable_df) + + logger.info(f'Observables: {len(observables)}') + logger.info(f'Sigmas: {len(sigmas)}') if not len(sigmas) == len(observables): raise AssertionError( f'Number of provided observables ({len(observables)}) and sigmas ' f'({len(sigmas)}) do not match.') - if condition_table is not None: - # get the condition dataframe before parsing fixed parameters - if isinstance(condition_table, str): - condition_df = petab.get_condition_df(condition_table) - else: - condition_df = condition_table - logger.log(logging.INFO, f'Condition table: {condition_df.shape}') - else: - condition_df = None + # TODO: adding extra output parameters is currently not supported, + # so we add any output parameters to the SBML model. + # this should be changed to something more elegant + # + formulas = {val['formula'] for val in observables.values()} + formulas |= set(sigmas.values()) + output_parameters = set() + for formula in formulas: + for free_sym in sp.sympify(formula).free_symbols: + sym = str(free_sym) + if sbml_model.getElementBySId(sym) is None: + output_parameters.add(sym) + logger.debug(f"Adding output parameters to model: {output_parameters}") + for par in output_parameters: + petab.add_global_parameter(sbml_model, par) + # fixed_parameters = get_fixed_parameters(sbml_model=sbml_model, condition_df=condition_df) - if verbose: - logger.log(logging.INFO, - f"Overall fixed parameters {len(fixed_parameters)}") - logger.log(logging.INFO, "Non-constant global parameters " - + str(len(sbml_model.getListOfParameters()) - - len(fixed_parameters))) + logger.debug(f"Fixed parameters are {fixed_parameters}") + logger.info(f"Overall fixed parameters: {len(fixed_parameters)}") + logger.info("Variable parameters: " + + str(len(sbml_model.getListOfParameters()) + - len(fixed_parameters))) # Create Python module from SBML model - start = time.time() sbml_importer.sbml2amici( modelName=model_name, output_dir=model_output_dir, @@ -311,48 +336,101 @@ def import_model(sbml_model: Union[str, 'libsbml.Model'], sigmas=sigmas, allow_reinit_fixpar_initcond=allow_reinit_fixpar_initcond, noise_distributions=noise_distrs, + verbose=verbose, **kwargs) - end = time. time() - if verbose: - logger.log(logging.INFO, f"{Fore.GREEN}Model imported successfully in " - f"{round(end - start, 2)}s") +def get_observation_model(observable_df: pd.DataFrame + ) -> Tuple[Dict[str, Dict[str, str]], + Dict[str, str], + Dict[str, Union[str, float]]]: + """ + Get observables, sigmas, and noise distributions from PEtab observation + table in a format suitable for `sbml2amici`. -def petab_noise_distributions_to_amici(noise_distributions: Dict) -> Dict: + Arguments: + observable_df: PEtab observables table + + Returns: + Tuple of dicts with observables, noise distributions, and sigmas. + """ + + if observable_df is None: + return {}, {}, {} + + observables = {} + sigmas = {} + + for _, observable in observable_df.iterrows(): + oid = observable.name + name = observable.get(OBSERVABLE_NAME, "") + formula_obs = observable[OBSERVABLE_FORMULA] + formula_noise = observable[NOISE_FORMULA] + observables[oid] = {'name': name, 'formula': formula_obs} + sigmas[oid] = formula_noise + + # Replace observableIds occurring in error model definition + for observable_id, formula in sigmas.items(): + repl = sp.sympify(formula).subs( + observable_id, observables[observable_id]['formula']) + sigmas[observable_id] = str(repl) + + noise_distrs = petab_noise_distributions_to_amici(observable_df) + + return observables, noise_distrs, sigmas + + +def petab_noise_distributions_to_amici(observable_df: pd.DataFrame) -> Dict: """ Map from the petab to the amici format of noise distribution identifiers. Arguments: - noise_distributions: as obtained from `petab.get_noise_distributions` + observable_df: PEtab observable table Returns: - Dictionary of obserable_id => AMICI noise-distributions + Dictionary of observable_id => AMICI noise-distributions """ amici_distrs = {} - for id_, val in noise_distributions.items(): + for _, observable in observable_df.iterrows(): amici_val = '' - if val['observableTransformation']: - amici_val += val['observableTransformation'] + '-' + if OBSERVABLE_TRANSFORMATION in observable \ + and isinstance(observable[OBSERVABLE_TRANSFORMATION], str) \ + and observable[OBSERVABLE_TRANSFORMATION]: + amici_val += observable[OBSERVABLE_TRANSFORMATION] + '-' - if val['noiseDistribution']: - amici_val += val['noiseDistribution'] - - amici_distrs[id_] = amici_val + if NOISE_DISTRIBUTION in observable \ + and isinstance(observable[NOISE_DISTRIBUTION], str) \ + and observable[NOISE_DISTRIBUTION]: + amici_val += observable[NOISE_DISTRIBUTION] + else: + amici_val += 'normal' + amici_distrs[observable.name] = amici_val return amici_distrs +def petab_scale_to_amici_scale(scale_str: str) -> int: + """Convert PEtab parameter scaling string to AMICI scaling integer""" + + if scale_str == petab.LIN: + return amici.ParameterScaling_none + if scale_str == petab.LOG: + return amici.ParameterScaling_ln + if scale_str == petab.LOG10: + return amici.ParameterScaling_log10 + + raise ValueError(f"Invalid parameter scale {scale_str}") + + def show_model_info(sbml_model: 'libsbml.Model'): """Log some model quantities""" - logger.log(logging.INFO, f'Species: {len(sbml_model.getListOfSpecies())}') - logger.log(logging.INFO, 'Global parameters: ' - + str(len(sbml_model.getListOfParameters()))) - logger.log(logging.INFO, - f'Reactions: {len(sbml_model.getListOfReactions())}') + logger.info(f'Species: {len(sbml_model.getListOfSpecies())}') + logger.info('Global parameters: ' + + str(len(sbml_model.getListOfParameters()))) + logger.info(f'Reactions: {len(sbml_model.getListOfReactions())}') def parse_cli_args(): @@ -383,38 +461,23 @@ def parse_cli_args(): help='Conditions table') parser.add_argument('-p', '--parameters', dest='parameter_file_name', help='Parameter table') + parser.add_argument('-b', '--observables', dest='observable_file_name', + help='Observable table') - group = parser.add_mutually_exclusive_group() - group.add_argument('-y', '--yaml', dest='yaml_file_name', + parser.add_argument('-y', '--yaml', dest='yaml_file_name', help='PEtab YAML problem filename') - # or with model name, following default naming - group.add_argument('-n', '--model-name', dest='model_name', - help='Model name where all files are in the working ' - 'directory and follow PEtab naming convention. ' - 'Specifying -[smcp] will override defaults') + parser.add_argument('-n', '--model-name', dest='model_name', + help='Name of the python module generated for the ' + 'model') args = parser.parse_args() - if args.model_name: - if not args.sbml_file_name: - args.sbml_file_name = petab.get_default_sbml_file_name( - args.model_name) - if not args.measurement_file_name: - args.measurement_file_name = \ - petab.get_default_measurement_file_name(args.model_name) - if not args.condition_file_name: - args.condition_file_name = petab.get_default_condition_file_name( - args.model_name) - if not args.parameter_file_name: - args.parameter_file_name = petab.get_default_parameter_file_name( - args.model_name) - - if not args.model_name and not args.yaml_file_name \ + if not args.yaml_file_name \ and not all((args.sbml_file_name, args.condition_file_name, - args.measurement_file_name)): + args.observable_file_name)): parser.error('When not specifying a model name or YAML file, then ' - 'SBML, condition and measurement file must be specified') + 'SBML, condition and observable file must be specified') return args @@ -433,7 +496,8 @@ def main(): sbml_file=args.sbml_file_name, condition_file=args.condition_file_name, measurement_file=args.measurement_file_name, - parameter_file=args.parameter_file_name) + parameter_file=args.parameter_file_name, + observable_files=args.observable_file_name) # First check for valid PEtab petab.lint_problem(pp) @@ -441,7 +505,7 @@ def main(): import_model(model_name=args.model_name, sbml_model=pp.sbml_model, condition_table=pp.condition_df, - measurement_table=pp.measurement_df, + observable_table=pp.observable_df, model_output_dir=args.model_output_dir, compile=args.compile, verbose=args.verbose) diff --git a/python/amici/petab_objective.py b/python/amici/petab_objective.py index 8fc9cd4402..a96659c8c1 100644 --- a/python/amici/petab_objective.py +++ b/python/amici/petab_objective.py @@ -1,173 +1,588 @@ -"""Functionality related to evaluating the objective function for a PEtab -problem""" +"""Functionality related to running simulations or evaluating the objective +function as defined by a PEtab problem""" -import numbers -import numpy as np -import pandas as pd import copy +import logging +import numbers +from typing import (List, Sequence, Optional, Dict, Tuple, Union, Any, + Collection, Iterator) -from typing import List, Sequence import amici +import numpy as np +import pandas as pd import petab +from amici.logging import get_logger, log_execution_time +from petab.C import * + + +LLH = 'llh' +SLLH = 'sllh' +FIM = 'fim' +S2LLH = 's2llh' +RES = 'res' +SRES = 'sres' +RDATAS = 'rdatas' + +logger = get_logger(__name__) + + +@log_execution_time('Simulating PEtab model', logger) +def simulate_petab( + petab_problem: petab.Problem, + amici_model: amici.Model, + solver: Optional[amici.Solver] = None, + problem_parameters: Optional[Dict[str, float]] = None, + simulation_conditions: Union[pd.DataFrame, Dict] = None, + parameter_mapping: List[petab.ParMappingDictTuple] = None, + parameter_scale_mapping: List[petab.ScaleMappingDictTuple] = None, + scaled_parameters: Optional[bool] = False, + log_level: int = logging.WARNING +) -> Dict[str, Any]: + """Simulate PEtab model + + Arguments: + petab_problem: + PEtab problem to work on. + amici_model: + AMICI Model assumed to be compatible with ``petab_problem``. + solver: + An AMICI solver. Will use default options if None. + problem_parameters: + Run simulation with these parameters. If None, + PEtab `nominalValues` will be used). To be provided as dict, + mapping PEtab problem parameters to SBML IDs. + simulation_conditions: + Result of petab.get_simulation_conditions. Can be provided to save + time if this has be obtained before. + parameter_mapping: + Optional precomputed PEtab parameter mapping for efficiency. + parameter_scale_mapping: + Optional precomputed PEtab parameter scale mapping for efficiency. + scaled_parameters: + If True, problem_parameters are assumed to be on the scale provided + in the PEtab parameter table and will be unscaled. If False, they + are assumed to be in linear scale. + log_level: + Log level, see `logging` module. + Returns: + Dictionary of + + * cost function value (LLH), + * const function sensitivity w.r.t. parameters (SLLH), + (**NOTE**: Sensitivities are computed for the non-scaled parameters) + * list of `ReturnData`s (RDATAS), + + corresponding to the different simulation conditions. + For ordering of simulation conditions, see + `petab.Problem.get_simulation_conditions_from_measurement_df`. + """ + logger.setLevel(log_level) + + if solver is None: + solver = amici_model.getSolver() + + # Get parameters + if problem_parameters is None: + # Use PEtab nominal values as default + problem_parameters = {t.Index: getattr(t, NOMINAL_VALUE) for t in + petab_problem.parameter_df.itertuples()} + + # Get parameter mapping + if parameter_mapping is None: + parameter_mapping = \ + petab_problem.get_optimization_to_simulation_parameter_mapping( + warn_unmapped=False) + + # Generate ExpData with all condition-specific information + edatas = edatas_from_petab( + model=amici_model, + petab_problem=petab_problem, + problem_parameters=problem_parameters, + simulation_conditions=simulation_conditions, + parameter_mapping=parameter_mapping, + parameter_scale_mapping=parameter_scale_mapping, + scaled_parameters=scaled_parameters) + + # Simulate + rdatas = amici.runAmiciSimulations(amici_model, solver, edata_list=edatas) + + # Compute total llh + llh = sum(rdata['llh'] for rdata in rdatas) + # Compute total sllh + sllh = aggregate_sllh(amici_model=amici_model, rdatas=rdatas, + parameter_mapping=parameter_mapping) + + # TODO: implement me + # # Compute total fim + # fim = None + # # Compute total s2llh + # s2llh = None + # # Compute total res + # res = None + # # Compute total sres + # sres = None + + # log results + sim_cond = petab_problem.get_simulation_conditions_from_measurement_df() + + for i, rdata in enumerate(rdatas): + logger.debug(f"Condition: {sim_cond.iloc[i, :].values}, status: " + f"{rdata['status']}, llh: {rdata['llh']}") + + return { + LLH: llh, + SLLH: sllh, + # FIM: fim, + # S2LLH: s2llh, + # RES: res, + # SRES: sres, + RDATAS: rdatas + } def edatas_from_petab( - model: amici.Model, measurement_df: pd.DataFrame, - condition_df: pd.DataFrame, - simulation_conditions=None) -> List[amici.ExpData]: + model: amici.Model, + petab_problem: petab.Problem, + problem_parameters: Dict[str, numbers.Number], + simulation_conditions: Union[pd.DataFrame, Dict] = None, + parameter_mapping: List[petab.ParMappingDictTuple] = None, + parameter_scale_mapping: List[petab.ScaleMappingDictTuple] = None, + scaled_parameters: Optional[bool] = False +) -> List[amici.ExpData]: """ - Create list of amici.ExpData objects for PEtab problem. + Create list of ``amici.ExpData`` objects for PEtab problem. + + Sets timepoints, fixed parameters (including preequilibration), + non-fixed parameters, and observed data and sigmas. Arguments: model: AMICI model. - measurement_df: - PEtab measurement table. - condition_df: - PEtab condition table. + petab_problem: + PEtab problem + problem_parameters: + Dictionary mapping parameter names of the PEtab problem to + parameter values simulation_conditions: Result of petab.get_simulation_conditions. Can be provided to save time if this has be obtained before. + parameter_mapping: + Optional precomputed PEtab parameter mapping for efficiency. + parameter_scale_mapping: + Optional precomputed PEtab parameter scale mapping for efficiency. + scaled_parameters: + If True, problem_parameters are assumed to be on the scale provided + in the PEtab parameter table and will be unscaled. If False, they + are assumed to be in linear scale. Returns: - List with one ExpData per simulation condition. + List with one ``ExpData`` per simulation condition. """ - condition_df = condition_df.reset_index() - # number of amici simulations will be number of unique # (preequilibrationConditionId, simulationConditionId) pairs. - # Can be improved by checking for identical condition vectors. + # Can be optimized by checking for identical condition vectors. if simulation_conditions is None: - simulation_conditions = petab.get_simulation_conditions( - measurement_df) + simulation_conditions = \ + petab_problem.get_simulation_conditions_from_measurement_df() - observable_ids = model.getObservableIds() + # Get parameter mapping if not user-provided + if parameter_mapping is None: + parameter_mapping = \ + petab_problem.get_optimization_to_simulation_parameter_mapping( + warn_unmapped=False) - fixed_parameter_ids = model.getFixedParameterIds() + if parameter_scale_mapping is None: + parameter_scale_mapping = \ + petab_problem.get_optimization_to_simulation_scale_mapping( + mapping_par_opt_to_par_sim=parameter_mapping) - edatas = [] - for _, condition in simulation_conditions.iterrows(): - # amici.ExpData for each simulation + observable_ids = model.getObservableIds() - # extract rows for condition - df_for_condition = petab.get_rows_for_condition( - measurement_df, condition) + logger.debug(f"Problem parameters: {problem_parameters}") - # make list of all timepoints for which measurements exist - timepoints = sorted( - df_for_condition.time.unique().astype(float)) - - # init edata object - edata = amici.ExpData(model) - - # find replicate numbers of time points - timepoints_w_reps = [] - for time in timepoints: - # subselect for time - df_for_time = df_for_condition[df_for_condition.time == time] - # rep number is maximum over rep numbers for observables - n_reps = max(df_for_time.groupby( - ['observableId', 'time']).size()) - # append time point n_rep times - timepoints_w_reps.extend([time] * n_reps) - - # set time points in edata - edata.setTimepoints(timepoints_w_reps) - - # handle fixed parameters - _fixed_parameters_to_edata(edata, condition_df, - fixed_parameter_ids, condition) - - # prepare measurement matrix - y = np.full(shape=(edata.nt(), edata.nytrue()), fill_value=np.nan) - # prepare sigma matrix - sigma_y = y.copy() - - # add measurements and sigmas - # iterate over time points - for time in timepoints: - # subselect for time - df_for_time = df_for_condition[df_for_condition.time == time] - time_ix_0 = timepoints_w_reps.index(time) - - # remember used time indices for each observable - time_ix_for_obs_ix = {} - - # iterate over measurements - for _, measurement in df_for_time.iterrows(): - # extract observable index - observable_ix = observable_ids.index( - f'observable_{measurement.observableId}') - - # update time index for observable - if observable_ix in time_ix_for_obs_ix: - time_ix_for_obs_ix[observable_ix] += 1 - else: - time_ix_for_obs_ix[observable_ix] = time_ix_0 - - # fill observable and possibly noise parameter - y[time_ix_for_obs_ix[observable_ix], - observable_ix] = measurement.measurement - if isinstance(measurement.noiseParameters, numbers.Number): - sigma_y[time_ix_for_obs_ix[observable_ix], - observable_ix] = measurement.noiseParameters - - # fill measurements and sigmas into edata - edata.setObservedData(y.flatten()) - edata.setObservedDataStdDev(sigma_y.flatten()) - - # append edata to edatas list + edatas = [] + for (_, condition), cur_parameter_mapping, cur_parameter_scale_mapping \ + in zip(simulation_conditions.iterrows(), + parameter_mapping, parameter_scale_mapping): + # Create amici.ExpData for each simulation + edata = get_edata_for_condition( + condition=condition, amici_model=model, petab_problem=petab_problem, + problem_parameters=problem_parameters, + observable_ids=observable_ids, + parameter_mapping=cur_parameter_mapping, + parameter_scale_mapping=cur_parameter_scale_mapping, + scaled_parameters=scaled_parameters + ) edatas.append(edata) return edatas -def _fixed_parameters_to_edata( - edata: amici.ExpData, condition_df: pd.DataFrame, - fixed_parameter_ids: Sequence[str], condition) -> None: +def subset_dict(full: Dict[Any, Any], + *args: Collection[Any]) -> Iterator[Dict[Any, Any]]: + """Get subset of dictionary based on provides keys + + Arguments: + full: Dictionary to subset + *args: Collections of keys to be contained in the different subsets """ - Apply fixed parameters for a given simulation condition to the - corresponding ExpData. - Parameters: - edata: - ExpData to set fixed parameters on. - condition_df: - The conditions table. - fixed_parameter_ids: - Ids of parameters that are to be considered constant (in correct - AMICI order). + for keys in args: + yield {key: val for (key, val) in full.items() if key in keys} + + +def get_edata_for_condition( + condition: Union[Dict, pd.Series], + problem_parameters: Dict[str, numbers.Number], + amici_model: amici.Model, + petab_problem: petab.Problem, + observable_ids: List[str], + parameter_mapping: Optional[petab.ParMappingDictTuple] = None, + parameter_scale_mapping: Optional[petab.ScaleMappingDictTuple] = None, + scaled_parameters: Optional[bool] = False +) -> amici.ExpData: + """Get ``amici.ExpData`` for the given PEtab condition + + Sets timepoints, fixed parameters (including preequilibration), + variable parameters, and observed data and sigmas. + + Arguments: condition: - The current condition, as created by - petab.get_simulation_conditions. + pandas.DataFrame row with preequilibrationConditionId and + simulationConditionId. + problem_parameters: + PEtab problem parameters as parameterId=>value dict. Only + parameters included here will be set. Remaining parameters will + be used currently set in `amici_model`. + amici_model: + AMICI model + petab_problem: + Underlying PEtab problem + observable_ids: + List of observable IDs + parameter_mapping: + PEtab parameter mapping for current condition + parameter_scale_mapping: + PEtab parameter scale mapping for current condition + scaled_parameters: + If True, problem_parameters are assumed to be on the scale provided + in the PEtab parameter table and will be unscaled. If False, they + are assumed to be in linear scale. + + Returns: + ExpData instance """ - if len(fixed_parameter_ids) == 0: - # nothing to be done - return - - # find fixed parameter values - fixed_parameter_vals = condition_df.loc[ - condition_df.conditionId == condition.simulationConditionId, - fixed_parameter_ids].values - # fill into edata - edata.fixedParameters = fixed_parameter_vals.astype( - float).flatten() - - # same for preequilibration if necessary - if ('preequilibrationConditionId' in condition - and condition.preequilibrationConditionId): - fixed_preequilibration_parameter_vals = condition_df.loc[ - condition_df.conditionId == condition.preequilibrationConditionId, - fixed_parameter_ids].values - edata.fixedParametersPreequilibration = \ - fixed_preequilibration_parameter_vals.astype(float) \ - .flatten() + # extract measurement table rows for condition + measurement_df = petab.get_rows_for_condition( + measurement_df=petab_problem.measurement_df, condition=condition) + + if amici_model.nytrue != len(observable_ids): + raise AssertionError("Number of AMICI model observables does not" + "match number of PEtab observables.") + + edata = amici.ExpData(amici_model) + + ########################################################################## + # parameter mapping + + # get mapping if required + if parameter_mapping is None: + # TODO petab.get_parameter_mapping_for_condition + raise NotImplementedError() + + if parameter_scale_mapping is None: + # TODO petab.get_parameter_scale_mapping_for_condition + raise NotImplementedError() + + condition_map_preeq, condition_map_sim = parameter_mapping + condition_scale_map_preeq, condition_scale_map_sim = \ + parameter_scale_mapping + + logger.debug(f"PEtab mapping: {parameter_mapping}") + + if len(condition_map_preeq) != len(condition_scale_map_preeq) \ + or len(condition_map_sim) != len(condition_scale_map_sim): + raise AssertionError("Number of parameters and number of parameter " + "scales do not match.") + if len(condition_map_preeq) \ + and len(condition_map_preeq) != len(condition_map_sim): + logger.debug(f"Preequilibration parameter map: {condition_map_preeq}") + logger.debug(f"Simulation parameter map: {condition_map_sim}") + raise AssertionError("Number of parameters for preequilbration " + "and simulation do not match.") + + # PEtab parameter mapping may contain parameter_ids as values, these *must* + # be replaced + + def _get_par(model_par, value): + """Replace parameter IDs in mapping dicts by values from + problem_parameters where necessary""" + if isinstance(value, str): + # estimated parameter + # (condition table overrides have been handled by PEtab + # parameter mapping) + return problem_parameters[value] + if model_par in problem_parameters: + # user-provided + return problem_parameters[model_par] + # constant value + return value + + condition_map_sim = {key: _get_par(key, val) + for key, val in condition_map_sim.items()} + condition_map_preeq = {key: _get_par(key, val) + for key, val in condition_map_preeq.items()} + + # separate fixed and variable AMICI parameters, because we may have + # different fixed parameters for preeq and sim condition, but we cannot + # have different variable parameters. without splitting, + # merge_preeq_and_sim_pars_condition below may fail. + variable_par_ids = amici_model.getParameterIds() + fixed_par_ids = amici_model.getFixedParameterIds() + + condition_map_preeq_var, condition_map_preeq_fix = \ + subset_dict(condition_map_preeq, variable_par_ids, fixed_par_ids) + + condition_scale_map_preeq_var, condition_scale_map_preeq_fix = \ + subset_dict(condition_scale_map_preeq, variable_par_ids, fixed_par_ids) + + condition_map_sim_var, condition_map_sim_fix = \ + subset_dict(condition_map_sim, variable_par_ids, fixed_par_ids) + + condition_scale_map_sim_var, condition_scale_map_sim_fix = \ + subset_dict(condition_scale_map_sim, variable_par_ids, fixed_par_ids) + + logger.debug("Fixed parameters preequilibration: " + f"{condition_map_preeq_fix}") + logger.debug("Fixed parameters simulation: " + f"{condition_map_sim_fix}") + logger.debug("Variable parameters preequilibration: " + f"{condition_map_preeq_var}") + logger.debug("Variable parameters simulation: " + f"{condition_map_sim_var}") + + petab.merge_preeq_and_sim_pars_condition( + condition_map_preeq_var, condition_map_sim_var, + condition_scale_map_preeq_var, condition_scale_map_sim_var, + condition) + + logger.debug(f"Merged: {condition_map_sim_var}") + + # If necessary, bring parameters to linear scale + if scaled_parameters: + # For dynamic parameters we could also change ExpData.pscale, but since + # we need to do it for fixed parameters anyways, we just do it for all + # and set pscale to linear. we can skip preequilibration parameters, + # because they are identical with simulation parameters, and only the + # latter are used from here on + unscale_parameters_dict(condition_map_preeq_fix, + condition_scale_map_preeq_fix) + unscale_parameters_dict(condition_map_sim_fix, + condition_scale_map_sim_fix) + unscale_parameters_dict(condition_map_sim_var, + condition_scale_map_sim_var) + + ########################################################################## + # variable parameters and parameter scale + + # parameter list from mapping dict + parameters = [condition_map_sim_var[par_id] + for par_id in amici_model.getParameterIds()] + + edata.parameters = parameters + + edata.pscale = amici.parameterScalingFromIntVector( + [amici.ParameterScaling_none] * len(parameters)) + + ########################################################################## + # timepoints + + # find replicate numbers of time points + timepoints_w_reps = _get_timepoints_with_replicates( + df_for_condition=measurement_df) + + edata.setTimepoints(timepoints_w_reps) + + ########################################################################## + # initial states + # initial states have been set during model import. if they were + # overwritten in the PEtab condition table, they would be handled as fixed + # model parameters below + + ########################################################################## + # fixed parameters preequilibration + if condition_map_preeq: + fixed_pars_preeq = [condition_map_preeq_fix[par_id] + for par_id in amici_model.getFixedParameterIds()] + edata.fixedParametersPreequilibration = fixed_pars_preeq + + ########################################################################## + # fixed parameters simulation + fixed_pars_sim = [condition_map_sim_fix[par_id] + for par_id in amici_model.getFixedParameterIds()] + edata.fixedParameters = fixed_pars_sim + + ########################################################################## + # measurements and sigmas + y, sigma_y = _get_measurements_and_sigmas( + df_for_condition=measurement_df, timepoints_w_reps=timepoints_w_reps, + observable_ids=observable_ids) + edata.setObservedData(y.flatten()) + edata.setObservedDataStdDev(sigma_y.flatten()) + + return edata + + +def unscale_parameter(value: numbers.Number, + petab_scale: str) -> numbers.Number: + """Parameter to linear scale + + Arguments: + value: + Value to unscale + petab_scale: + Current scale of ``value`` + + Returns: + ``value`` on linear scale + """ + if petab_scale == LIN: + return value + if petab_scale == LOG10: + return np.power(10, value) + if petab_scale == LOG: + return np.exp(value) + raise ValueError(f"Unknown parameter scale {petab_scale}. " + f"Must be from {(LIN, LOG, LOG10)}") + + +def unscale_parameters(values: Sequence[numbers.Number], + petab_scales: Sequence[str]) -> List[numbers.Number]: + """Parameters to linear scale + + Arguments: + values: + Values to unscale + petab_scales: + Current scales of ``values`` + + Returns: + List of ``values`` on linear scale + """ + return [unscale_parameter(value, scale) + for value, scale in zip(values, petab_scales)] + + +def unscale_parameters_dict( + value_dict: Dict[Any, numbers.Number], + petab_scale_dict: Dict[Any, str]) -> None: + """Parameters to linear scale + + Bring values in ``value_dict`` from current scale provided in + ``petab_scale_dict`` to linear scale (in-place). + Both arguments are expected to have the same length and matching keys. + + Arguments: + value_dict: + Values to unscale + petab_scale_dict: + Current scales of ``values`` + """ + if not value_dict.keys() == petab_scale_dict.keys(): + raise AssertionError("Keys don't match.") + + for key, value in value_dict.items(): + value_dict[key] = unscale_parameter(value, petab_scale_dict[key]) + + +def _get_timepoints_with_replicates( + df_for_condition: pd.DataFrame) -> List[numbers.Number]: + """ + Get list of timepoints including replicate measurements + + Arguments: + df_for_condition: + PEtab measurement table subset for a single condition. + + Returns: + Sorted list of timepoints, including multiple timepoints accounting + for replicate measurements. + """ + # create sorted list of all timepoints for which measurements exist + timepoints = sorted(df_for_condition[TIME].unique().astype(float)) + + # find replicate numbers of time points + timepoints_w_reps = [] + for time in timepoints: + # subselect for time + df_for_time = df_for_condition[df_for_condition.time == time] + # rep number is maximum over rep numbers for observables + n_reps = max(df_for_time.groupby( + [OBSERVABLE_ID, TIME]).size()) + # append time point n_rep times + timepoints_w_reps.extend([time] * n_reps) + + return timepoints_w_reps + + +def _get_measurements_and_sigmas( + df_for_condition: pd.DataFrame, + timepoints_w_reps: Sequence[numbers.Number], + observable_ids: Sequence[str]) -> Tuple[np.array, np.array]: + """Get measurements and sigmas + + Generate arrays with measurements and sigmas in AMICI format from a + PEtab measurement table subset for a single condition. + + Arguments: + df_for_condition: + Subset of PEtab measurement table for one condition + timepoints_w_reps: + Timepoints for which there exist measurements, including replicates + observable_ids: + List of observable IDs for mapping IDs to indices. + """ + # prepare measurement matrix + y = np.full(shape=(len(timepoints_w_reps), len(observable_ids)), + fill_value=np.nan) + # prepare sigma matrix + sigma_y = y.copy() + + timepoints = sorted(df_for_condition[TIME].unique().astype(float)) + + for time in timepoints: + # subselect for time + df_for_time = df_for_condition[df_for_condition[TIME] == time] + time_ix_0 = timepoints_w_reps.index(time) + + # remember used time indices for each observable + time_ix_for_obs_ix = {} + + # iterate over measurements + for _, measurement in df_for_time.iterrows(): + # extract observable index + observable_ix = observable_ids.index(measurement[OBSERVABLE_ID]) + + # update time index for observable + if observable_ix in time_ix_for_obs_ix: + time_ix_for_obs_ix[observable_ix] += 1 + else: + time_ix_for_obs_ix[observable_ix] = time_ix_0 + + # fill observable and possibly noise parameter + y[time_ix_for_obs_ix[observable_ix], + observable_ix] = measurement[MEASUREMENT] + if isinstance(measurement[NOISE_PARAMETERS], numbers.Number): + sigma_y[time_ix_for_obs_ix[observable_ix], + observable_ix] = measurement[NOISE_PARAMETERS] + return y, sigma_y def rdatas_to_measurement_df( - rdatas: List[amici.ReturnData], model: amici.Model, + rdatas: Sequence[amici.ReturnData], + model: amici.Model, measurement_df: pd.DataFrame) -> pd.DataFrame: """ Create a measurement dataframe in the PEtab format from the passed @@ -175,7 +590,7 @@ def rdatas_to_measurement_df( Parameters: rdatas: - A list of rdatas with the ordering of + A sequence of rdatas with the ordering of `petab.get_simulation_conditions`. model: AMICI model used to generate `rdatas`. @@ -186,20 +601,15 @@ def rdatas_to_measurement_df( A dataframe built from the rdatas in the format of `measurement_df`. """ - # initialize dataframe df = pd.DataFrame(columns=list(measurement_df.columns)) - # get simulation conditions simulation_conditions = petab.get_simulation_conditions( measurement_df) - # get observable ids observable_ids = model.getObservableIds() # iterate over conditions - for data_idx, condition in simulation_conditions.iterrows(): - # current rdata - rdata = rdatas[data_idx] + for (_, condition), rdata in zip(simulation_conditions.iterrows(), rdatas): # current simulation matrix y = rdata['y'] # time array used in rdata @@ -219,9 +629,8 @@ def rdatas_to_measurement_df( row_sim = copy.deepcopy(row) # extract simulated measurement value - timepoint_idx = t.index(row.time) - observable_idx = observable_ids.index( - "observable_" + row.observableId) + timepoint_idx = t.index(row[TIME]) + observable_idx = observable_ids.index(row[OBSERVABLE_ID]) measurement_sim = y[timepoint_idx, observable_idx] # change measurement entry @@ -231,3 +640,39 @@ def rdatas_to_measurement_df( df = df.append(row_sim, ignore_index=True) return df + + +def aggregate_sllh( + amici_model: amici.Model, + rdatas: Sequence[amici.ReturnDataView], + parameter_mapping: Optional[List[petab.ParMappingDictTuple]], +) -> Union[None, Dict[str, float]]: + """Aggregate likelihood gradient for all conditions, according to PEtab + parameter mapping. + + Arguments: + amici_model: + AMICI model from which ``rdatas`` were obtained. + rdatas: + Simulation results. + parameter_mapping: + PEtab parameter mapping to condition-specific + simulation parameters. + """ + sllh = {} + model_par_ids = amici_model.getParameterIds() + for (_, par_map_sim), rdata in zip(parameter_mapping, rdatas): + if rdata['status'] != amici.AMICI_SUCCESS \ + or 'sllh' not in rdata\ + or rdata['sllh'] is None: + return None + + for model_par_id, problem_par_id in par_map_sim.items(): + if isinstance(problem_par_id, str): + model_par_idx = model_par_ids.index(model_par_id) + cur_par_sllh = rdata['sllh'][model_par_idx] + try: + sllh[problem_par_id] += cur_par_sllh + except KeyError: + sllh[problem_par_id] = cur_par_sllh + return sllh diff --git a/python/amici/sbml_import.py b/python/amici/sbml_import.py index bf0f931b6a..82d063bbcd 100644 --- a/python/amici/sbml_import.py +++ b/python/amici/sbml_import.py @@ -315,7 +315,7 @@ def checkSupport(self): 'are currently not supported!') if hasattr(self.sbml, 'all_elements_from_plugins') \ - and len(self.sbml.all_elements_from_plugins) > 0: + and self.sbml.all_elements_from_plugins.getSize() > 0: raise SBMLException('SBML extensions are currently not supported!') if len(self.sbml.getListOfEvents()) > 0: @@ -796,7 +796,7 @@ def processRules(self): # rules for variable in assignments.keys(): self.replaceInAllExpressions( - sp.sympify(variable, locals=self.local_symbols), + sp.Symbol(variable, real=True), assignments[variable] ) for comp, vol in zip(self.compartmentSymbols, self.compartmentVolume): @@ -910,9 +910,19 @@ def processObservables(self, observables: Dict[str, Dict[str, str]], ) observables[observable]['formula'] = repl + def replace_assignments(formula): + """Replace assignment rules in observables""" + formula = sp.sympify(formula, locals=self.local_symbols) + for s in formula.free_symbols: + r = self.sbml.getAssignmentRuleByVariable(str(s)) + if r is not None: + formula = formula.replace(s, sp.sympify( + sbml.formulaToL3String(r.getMath()), + locals=self.local_symbols)) + return formula + observableValues = sp.Matrix([ - sp.sympify(observables[observable]['formula'], - locals=self.local_symbols) + replace_assignments(observables[observable]['formula']) for observable in observables ]) observableNames = [ @@ -1351,54 +1361,54 @@ def assignmentRules2observables(sbml_model, def noise_distribution_to_cost_function( noise_distribution: str) -> Callable[[str], str]: - """ - Parse cost string to a cost function definition amici can work with. + """Parse noise distribution string to a cost function definition amici can + work with. Arguments: noise_distribution: A code specifying a noise model. Can be any of [normal, log-normal, log10-normal, laplace, log-laplace, log10-laplace]. - @type str Returns: A function that takes a strSymbol and then creates a cost function string - from it, which can be sympified. + (negative log-likelihood) from it, which can be sympified. Raises: + ValueError: in case of invalid ``noise_distribution`` """ if noise_distribution in ['normal', 'lin-normal']: - llhYString = lambda strSymbol: \ - f'0.5*log(2*pi*sigma{strSymbol}**2) ' \ - f'+ 0.5*(({strSymbol} - m{strSymbol}) ' \ - f'/ sigma{strSymbol})**2' + nllh_y_string = lambda str_symbol: \ + f'0.5*log(2*pi*sigma{str_symbol}**2) ' \ + f'+ 0.5*(({str_symbol} - m{str_symbol}) ' \ + f'/ sigma{str_symbol})**2' elif noise_distribution == 'log-normal': - llhYString = lambda strSymbol: \ - f'0.5*log(2*pi*sigma{strSymbol}**2*m{strSymbol}**2) ' \ - f'+ 0.5*((log({strSymbol}) - log(m{strSymbol})) ' \ - f'/ sigma{strSymbol})**2' + nllh_y_string = lambda str_symbol: \ + f'0.5*log(2*pi*sigma{str_symbol}**2*m{str_symbol}**2) ' \ + f'+ 0.5*((log({str_symbol}) - log(m{str_symbol})) ' \ + f'/ sigma{str_symbol})**2' elif noise_distribution == 'log10-normal': - llhYString = lambda strSymbol: \ - f'0.5*log(2*pi*sigma{strSymbol}**2*m{strSymbol}**2) ' \ - f'+ 0.5*((log({strSymbol}, 10) - log(m{strSymbol}, 10)) ' \ - f'/ sigma{strSymbol})**2' + nllh_y_string = lambda str_symbol: \ + f'0.5*log(2*pi*sigma{str_symbol}**2*m{str_symbol}**2) ' \ + f'+ 0.5*((log({str_symbol}, 10) - log(m{str_symbol}, 10)) ' \ + f'/ sigma{str_symbol})**2' elif noise_distribution in ['laplace', 'lin-laplace']: - llhYString = lambda strSymbol: \ - f'log(2*sigma{strSymbol}) ' \ - f'+ Abs({strSymbol} - m{strSymbol}) ' \ - f'/ sigma{strSymbol}' + nllh_y_string = lambda str_symbol: \ + f'log(2*sigma{str_symbol}) ' \ + f'+ Abs({str_symbol} - m{str_symbol}) ' \ + f'/ sigma{str_symbol}' elif noise_distribution == 'log-laplace': - llhYString = lambda strSymbol: \ - f'log(2*sigma{strSymbol}*m{strSymbol}) ' \ - f'+ Abs(log({strSymbol}) - log(m{strSymbol})) ' \ - f'/ sigma{strSymbol}' + nllh_y_string = lambda str_symbol: \ + f'log(2*sigma{str_symbol}*m{str_symbol}) ' \ + f'+ Abs(log({str_symbol}) - log(m{str_symbol})) ' \ + f'/ sigma{str_symbol}' elif noise_distribution == 'log10-laplace': - llhYString = lambda strSymbol: \ - f'log(2*sigma{strSymbol}*m{strSymbol}) ' \ - f'+ Abs(log({strSymbol}, 10) - log(m{strSymbol}, 10)) ' \ - f'/ sigma{strSymbol}' + nllh_y_string = lambda str_symbol: \ + f'log(2*sigma{str_symbol}*m{str_symbol}) ' \ + f'+ Abs(log({str_symbol}, 10) - log(m{str_symbol}, 10)) ' \ + f'/ sigma{str_symbol}' else: raise ValueError( - f"Cost type {cost_code} not reconized.") + f"Cost type {noise_distribution} not recognized.") - return llhYString + return nllh_y_string diff --git a/python/sdist/setup.py b/python/sdist/setup.py index 67dfec52ce..b634c47895 100755 --- a/python/sdist/setup.py +++ b/python/sdist/setup.py @@ -198,7 +198,7 @@ def main(): setup_requires=['setuptools>=40.6.3'], python_requires='>=3.6', extras_require={ - 'petab': ['petab>=0.0.1', 'colorama'] + 'petab': ['petab>=0.1.1'] }, package_data={ 'amici': ['amici/include/amici/*', diff --git a/tests/benchmark-models/benchmark_models.yaml b/tests/benchmark-models/benchmark_models.yaml new file mode 100644 index 0000000000..94e2affbaa --- /dev/null +++ b/tests/benchmark-models/benchmark_models.yaml @@ -0,0 +1,83 @@ +Bachmann_MSB2011: + llh: -478.459689232875 + note: unchecked + +Becker_Science2010: + llh: -364.118614198023 + +#Beer_MolBioSystems2014 None + +Boehm_JProteomeRes2014: + llh: -138.22199693517703 + note: benchmark collection reference ignores factor 1/2 + +Borghans_BiophysChem1997: + llh: -3471.740659965799 + note: benchmark collection reference value does not match, but model outputs do. maybe due to D2D data normalization + +Brannmark_JBC2010: + llh: 283.778227541074 + note: unchecked + +#Bruno_JExpBio2016: None + +Chen_MSB2009: + llh: -115700.1192629893 + note: benchmark collection reference ignores factor 1/2 + +#Crauste_CellSystems2017: None + +Elowitz_Nature2000: + llh: -4249.322017350108 + note: benchmark collection reference value does not match, but model outputs do. maybe due to D2D data normalization + +Fiedler_BMC2016: + llh: -117.16780323362 + note: unchecked + +Fujita_SciSignal2010: + llh: -3975.060953726485 + note: benchmark collection reference value does not include condition data7..data12 + +# Hass_PONE2017 None + +Isensee_JCB2018: + llh: 7950.84181339651 + note: unchecked + +Lucarelli_CellSystems2018: + llh: 91.8885069265334 + note: unchecked + +Merkle_PCB2016: + llh: -1388.59682706751 + note: unchecked + +Raia_CancerResearch2011: + llh: 690.619495552297 + note: unchecked + +Schwen_PONE2014: + llh: -705.4660173266402 + note: benchmark collection reference value does not match, but model outputs do. maybe due to D2D data normalization + +Sneyd_PNAS2002: + llh: 319.79177818768756 + note: benchmark collection reference ignores factor 1/2 + +Sobotta_Frontiers2017: + llh: -1346.75391686389 + note: unchecked + +Swameye_PNAS2003: + llh: -142.118024712038 + note: unchecked + +Weber_BMC2015: + llh: 592.403584529373 + note: unchecked + +Zheng_PNAS2012: + llh: 278.33353271001477 + note: benchmark collection reference ignores factor 1/2 + diff --git a/tests/benchmark-models/test_benchmark_collection.sh b/tests/benchmark-models/test_benchmark_collection.sh new file mode 100755 index 0000000000..aecb6e9121 --- /dev/null +++ b/tests/benchmark-models/test_benchmark_collection.sh @@ -0,0 +1,109 @@ +#!/bin/bash +# Import and run selected benchmark models with nominal parameters and check +# agreement with reference values +# +# Expects environment variable BENCHMARK_COLLECTION to provide path to +# benchmark collection model directory + +# Confirmed to be working +models=" +Boehm_JProteomeRes2014 +Borghans_BiophysChem1997 +Elowitz_Nature2000 +Schwen_PONE2014 +Chen_MSB2009 +Fujita_SciSignal2010 +Sneyd_PNAS2002 +Zheng_PNAS2012" + +# Not matching reference for unclear reasons +# Lucarelli_CellSystems2018 +# Weber_BMC2015 +# +# PEtab needs fixing: Bachmann_MSB2011 +# +# Unsupported: +# +# Becker_Science2010: multiple models +# +# no reference value: +# Alkan_SciSignal2018 +# Beer_MolBioSystems2014 +# Blasi_CellSystems2016 +# Crauste_CellSystems2017 +# Hass_PONE2017 +# Korkut_eLIFE2015 +# Perelson_Science1996 +# Bruno_JExpBio2016 +# +# Timepoint-specific parameter overrides +# Fiedler_BMC2016 +# Brannmark_JBC2010 +# Isensee_JCB2018 +# Sobotta_Frontiers2017 +# +# yaml missing: +# Casaletto_PNAS2019 +# +# Model missing: +# Merkle_PCB2016 +# +# SBML extensions: +# Parmar_PCB2019 +# +# Events: +# Swameye_PNAS2003 +# +# state-dependent sigmas: +# Raia_CancerResearch2011 + +set -e + +[[ -n "${BENCHMARK_COLLECTION}" ]] && model_dir="${BENCHMARK_COLLECTION}" + +function show_help() { + echo "-h: this help; -n: dry run, print commands; -b path_to_models_dir" +} + +OPTIND=1 +while getopts "h?nb:" opt; do + case "$opt" in + h | \?) + show_help + exit 0 + ;; + n) + dry_run=1 + ;; + b) + model_dir=$OPTARG + ;; + esac +done + +script_path=$(dirname "$BASH_SOURCE") +script_path=$(cd "$script_path" && pwd) + +for model in $models; do + yaml="${model_dir}"/"${model}"/"${model}".yaml + amici_model_dir=test_bmc/"${model}" + mkdir -p "$amici_model_dir" + cmd_import="amici_import_petab --verbose -y ${yaml} -o ${amici_model_dir} -n ${model}" + cmd_run="$script_path/test_petab_model.py --verbose -y ${yaml} -d ${amici_model_dir} -m ${model} -c" + + printf '=%.0s' {1..40} + printf " %s " "${model}" + printf '=%.0s' {1..40} + echo + + if [[ -z "$dry_run" ]]; then + $cmd_import && $cmd_run + else + echo "$cmd_import" + echo "$cmd_run" + fi + + printf '=%.0s' {1..100} + echo + echo +done diff --git a/tests/benchmark-models/test_petab_model.py b/tests/benchmark-models/test_petab_model.py new file mode 100755 index 0000000000..41e9cfcc41 --- /dev/null +++ b/tests/benchmark-models/test_petab_model.py @@ -0,0 +1,139 @@ +#!/usr/bin/env python3 + +""" +Simulate a PEtab problem and compare results to reference values +""" + +import argparse +import importlib +import logging +import os +import sys + +import petab +import yaml +from amici.logging import get_logger +from amici.petab_objective import (simulate_petab, rdatas_to_measurement_df, + LLH, RDATAS) +from petab.visualize import plot_petab_problem + +logger = get_logger(f"amici.{__name__}", logging.WARNING) + + +def parse_cli_args(): + """Parse command line arguments + + Returns: + Parsed CLI arguments from ``argparse``. + """ + + parser = argparse.ArgumentParser( + description='Simulate PEtab-format model using AMICI.') + + # General options: + parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', + help='More verbose output') + parser.add_argument('-c', '--check', dest='check', action='store_true', + help='Compare to reference value') + parser.add_argument('-p', '--plot', dest='plot', action='store_true', + help='Plot measurement and simulation results') + + # PEtab problem + parser.add_argument('-y', '--yaml', dest='yaml_file_name', + required=True, + help='PEtab YAML problem filename') + + # Corresponding AMICI model + parser.add_argument('-m', '--model-name', dest='model_name', + help='Name of the AMICI module of the model to ' + 'simulate.', required=True) + parser.add_argument('-d', '--model-dir', dest='model_directory', + help='Directory containing the AMICI module of the ' + 'model to simulate. Required if model is not ' + 'in python path.') + + parser.add_argument('-o', '--simulation-file', dest='simulation_file', + help='File to write simulation result to, in PEtab' + 'measurement table format.') + + args = parser.parse_args() + + return args + + +def main(): + """Simulate the model specified on the command line""" + + args = parse_cli_args() + + if args.verbose: + logger.setLevel(logging.DEBUG) + + logger.info(f"Simulating '{args.model_name}' " + f"({args.model_directory}) using PEtab data from " + f"{args.yaml_file_name}") + + # load PEtab files + problem = petab.Problem.from_yaml(args.yaml_file_name) + + # load model + if args.model_directory: + sys.path.insert(0, args.model_directory) + model_module = importlib.import_module(args.model_name) + amici_model = model_module.getModel() + + res = simulate_petab( + petab_problem=problem, amici_model=amici_model, + log_level=logging.DEBUG) + rdatas = res[RDATAS] + llh = res[LLH] + + # create simulation PEtab table + sim_df = rdatas_to_measurement_df(rdatas=rdatas, model=amici_model, + measurement_df=problem.measurement_df) + sim_df.rename(columns={petab.MEASUREMENT: petab.SIMULATION}, inplace=True) + + if args.simulation_file: + sim_df.to_csv(index=False, sep="\t") + + if args.plot: + try: + # visualize fit + ax = plot_petab_problem(petab_problem=problem, sim_data=sim_df) + + # save figure + fig_path = os.path.join(args.model_directory, + args.model_name + "_vis.png") + logger.info(f"Saving figure to {fig_path}") + ax.flatten()[0].get_figure().savefig(fig_path, dpi=150) + + except NotImplementedError: + pass + + if args.check: + references_yaml = os.path.join(os.path.dirname(__file__), + "benchmark_models.yaml") + with open(references_yaml) as f: + refs = yaml.full_load(f) + + try: + ref_llh = refs[args.model_name]["llh"] + logger.info(f"Reference llh: {ref_llh}") + + if abs(ref_llh - llh) < 1e-3: + logger.info(f"Computed llh {llh} matches reference " + f"{ref_llh}. Absolute difference is " + f"{ref_llh - llh}.") + else: + logger.error(f"Computed llh {llh} does not match reference " + f"{ref_llh}. Absolute difference is " + f"{ref_llh - llh}." + f" Relative difference is {llh / ref_llh}") + sys.exit(1) + except KeyError: + logger.error("No reference likelihood found for " + f"{args.model_name} in {references_yaml}") + + +if __name__ == "__main__": + main() From 0ad439ec67dc8361781bd34c3f9ca69061b6ad5c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Fabian=20Fr=C3=B6hlich?= Date: Sun, 9 Feb 2020 17:32:33 -0500 Subject: [PATCH 19/23] Update README.md: Smaller AMICI banner (#942) MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Fabian Fröhlich Co-authored-by: Daniel Weindl --- README.md | 12 +++++++++--- 1 file changed, 9 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 5d869087e4..c2bfb1d1d1 100644 --- a/README.md +++ b/README.md @@ -1,8 +1,8 @@ -# AMICI - Advanced Multilanguage Interface for CVODES and IDAS + -![AMICI banner](https://raw.githubusercontent.com/ICB-DCM/AMICI/develop/documentation/gfx/banner.png) +## Advanced Multilanguage Interface for CVODES and IDAS -## About +## About AMICI provides a multi-language (Python, C++, Matlab) interface for the [SUNDIALS](https://computing.llnl.gov/projects/sundials/) solvers @@ -103,7 +103,13 @@ and/or Parameter estimation for dynamical systems with discrete events and logical operations. Bioinformatics, 33(7), 1049-1056. doi:[10.1093/bioinformatics/btw764](https://doi.org/10.1093/bioinformatics/btw764) + +When presenting work that employs AMICI, feel free to use one of the icons in +[documentation/gfx/](https://github.com/ICB-DCM/AMICI/tree/master/documentation/gfx), which are available under a [CC0](documentation/gfx/LICENSE.md) license: +

+ +

## Status of SBML support in Python-AMICI From 85bac087cef1697b42edae4e07374282518a2f47 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Yannik=20Sch=C3=A4lte?= <31767307+yannikschaelte@users.noreply.github.com> Date: Mon, 10 Feb 2020 07:36:35 +0100 Subject: [PATCH 20/23] add simplified petab import function (#939) * add simplified petab import function * adapt docstring format * add return types; use existing variable name * Update python/amici/petab_import.py Co-Authored-By: Daniel Weindl Co-authored-by: Daniel Weindl --- python/amici/petab_import.py | 127 +++++++++++++++++++++++++++++++++++ 1 file changed, 127 insertions(+) diff --git a/python/amici/petab_import.py b/python/amici/petab_import.py index 24111d8b65..4ef9561424 100644 --- a/python/amici/petab_import.py +++ b/python/amici/petab_import.py @@ -7,6 +7,10 @@ import logging import math import os +import time +import sys +import shutil +import importlib from typing import List, Dict, Union, Optional, Tuple import amici @@ -210,6 +214,129 @@ def constant_species_to_parameters(sbml_model: 'libsbml.Model') -> List[str]: return species_to_parameters(transformables, sbml_model) +def import_petab_problem( + petab_problem: petab.Problem, + model_output_dir: str = None, + model_name: str = None, + force_compile: bool = False, + **kwargs) -> amici.Model: + """ + Import model from petab problem. + + Arguments: + petab_problem: + A petab problem containing all relevant information on the model. + model_output_dir: + Directory to write the model code to. Will be created if doesn't + exist. Defaults to current directory. + model_name: + Name of the generated model. If model file name was provided, + this defaults to the file name without extension, otherwise + the SBML model ID will be used. + force_compile: + Whether to compile the model even if the target folder is not + empty, or the model exists already. + **kwargs: + Additional keyword arguments to be passed to + ``amici.sbml_importer.sbml2amici``. + + Returns + model: + The imported model. + """ + # generate folder and model name if necessary + if model_output_dir is None: + model_output_dir = _create_model_output_dir_name(petab_problem.sbml_model) + if model_name is None: + model_name = _create_model_name(model_output_dir) + + # create folder + if not os.path.exists(model_output_dir): + os.makedirs(model_output_dir) + + # add to path + if model_output_dir not in sys.path: + sys.path.insert(0, model_output_dir) + + # check if compilation necessary + if not _can_import_model(model_name) or force_compile: + # check if folder exists + if os.listdir(model_output_dir) and not force_compile: + raise ValueError( + f"Cannot compile to {model_output_dir}: not empty. Please assign a " + "different target or set `force_compile`.") + + # remove folder if exists + if os.path.exists(model_output_dir): + shutil.rmtree(model_output_dir) + + logger.info(f"Compiling model {model_name} to {model_output_dir}.") + + # compile the model + import_model(sbml_model=petab_problem.sbml_model, + condition_table=petab_problem.condition_df, + observable_table=petab_problem.observable_df, + model_name=model_name, + model_output_dir=model_output_dir, + **kwargs) + + # load module + model_module = importlib.import_module(model_name) + + # import model + model = model_module.getModel() + + logger.info(f"Successfully loaded model {model_name} from {model_output_dir}.") + + return model + + +def _create_model_output_dir_name(sbml_model: 'libsbml.Model') -> str: + """ + Find a folder for storing the compiled amici model. + If possible, use the sbml model id, otherwise create a random folder. + The folder will be located in the `amici_models` subfolder of the current + folder. + """ + BASE_DIR = os.path.abspath("amici_models") + + # create base directory + if not os.path.exists(BASE_DIR): + os.makedirs(BASE_DIR) + + # try sbml model id + sbml_model_id = sbml_model.getId() + if sbml_model_id: + model_output_dir = os.path.join(BASE_DIR, sbml_model_id) + else: + # create random folder name + model_output_dir = tempfile.mkdtemp(dir=BASE_DIR) + + return model_output_dir + + +def _create_model_name(folder: str) -> str: + """ + Create a name for the model. + Just re-use the last part of the folder. + """ + return os.path.split(os.path.normpath(folder))[-1] + + +def _can_import_model(model_name: str) -> bool: + """ + Check whether a module of that name can already be imported. + """ + # try to import (in particular checks version) + try: + importlib.import_module(model_name) + except ModuleNotFoundError: + return False + + # no need to (re-)compile + return True + + @log_execution_time('Importing PEtab model', logger) def import_model(sbml_model: Union[str, 'libsbml.Model'], condition_table: Optional[Union[str, pd.DataFrame]] = None, From fb1df1afcaeb153b8f5489bc4a549c679b47ab07 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Mon, 10 Feb 2020 12:27:04 +0100 Subject: [PATCH 21/23] PEtab: fix parameter mapping errors in presence of LocalParameters --- python/amici/petab_objective.py | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/python/amici/petab_objective.py b/python/amici/petab_objective.py index a96659c8c1..5e0b43329c 100644 --- a/python/amici/petab_objective.py +++ b/python/amici/petab_objective.py @@ -8,6 +8,7 @@ Collection, Iterator) import amici +import libsbml import numpy as np import pandas as pd import petab @@ -87,6 +88,18 @@ def simulate_petab( problem_parameters = {t.Index: getattr(t, NOMINAL_VALUE) for t in petab_problem.parameter_df.itertuples()} + # Because AMICI globalizes all local parameters during model import, + # we need to do that here as well to prevent parameter mapping errors + # (PEtab does currently not care about SBML LocalParameters) + if petab_problem.sbml_document: + converter_config = libsbml.SBMLLocalParameterConverter()\ + .getDefaultProperties() + petab_problem.sbml_document.convert(converter_config) + else: + logger.debug("No petab_problem.sbml_document is set. Cannot convert " + "SBML LocalParameters. If the model contains " + "LocalParameters, parameter mapping will fail.") + # Get parameter mapping if parameter_mapping is None: parameter_mapping = \ From 54e58bcb337865241251bc22a291d555accfc656 Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Mon, 10 Feb 2020 21:39:41 +0100 Subject: [PATCH 22/23] Fix PEtab import for performance test model (#946) * Fix PEtab import for performance test model * PEtab: handle initial concentrations from condition table * Performance test: * Increase reference time for model import and compilation, as now also sx0 is computed * compute forward sensitivities only for 10 parameters (unclear what has been computed there until now) --- .../test-benchmark-collection-models.yml | 1 - .github/workflows/test-large-model.yml | 10 +++--- python/amici/petab_import.py | 17 ++++----- python/amici/petab_objective.py | 35 +++++++++++++++++-- tests/performance/reference.yml | 6 ++-- tests/performance/test.py | 6 ++-- 6 files changed, 52 insertions(+), 23 deletions(-) diff --git a/.github/workflows/test-benchmark-collection-models.yml b/.github/workflows/test-benchmark-collection-models.yml index 9b141dd251..6f1963fc17 100644 --- a/.github/workflows/test-benchmark-collection-models.yml +++ b/.github/workflows/test-benchmark-collection-models.yml @@ -4,7 +4,6 @@ on: branches: - develop - master - - dw_misc pull_request: branches: diff --git a/.github/workflows/test-large-model.yml b/.github/workflows/test-large-model.yml index 0772a53a04..8409098b95 100644 --- a/.github/workflows/test-large-model.yml +++ b/.github/workflows/test-large-model.yml @@ -4,7 +4,7 @@ on: branches: - develop - master - - fix_896_perftestfiles + - fix_945 pull_request: branches: @@ -52,12 +52,10 @@ jobs: run: | cd CS_Signalling_ERBB_RAS_AKT \ && check_time.sh \ - petab_import amici_import_petab.py -v \ + petab_import amici_import_petab -v \ -n 'CS_Signalling_ERBB_RAS_AKT_petab' \ - -s 'FroehlichKes2018/PEtab/CS_Signalling_ERBB_RAS_AKT_petab.xml' \ - -c 'FroehlichKes2018/PEtab/conditions_petab.tsv' \ - -m 'FroehlichKes2018/PEtab/measurements_petab.tsv' \ - -p 'FroehlichKes2018/PEtab/parameters_petab.tsv' --no-compile + -y 'FroehlichKes2018/PEtab/FroehlichKes2018.yaml' \ + --no-compile # install model package - name: Install test model diff --git a/python/amici/petab_import.py b/python/amici/petab_import.py index 4ef9561424..54d297b29f 100644 --- a/python/amici/petab_import.py +++ b/python/amici/petab_import.py @@ -4,24 +4,24 @@ """ import argparse +import importlib import logging import math import os -import time -import sys import shutil -import importlib +import sys +import tempfile from typing import List, Dict, Union, Optional, Tuple import amici import libsbml +import numpy as np import pandas as pd import petab import sympy as sp from amici.logging import get_logger, log_execution_time from petab.C import * - logger = get_logger(__name__, logging.WARNING) @@ -123,11 +123,12 @@ def get_fixed_parameters( f"initial assignment for {compartments}") species = [col for col in condition_df - if sbml_model.getSpecies(col) is not None] + if not np.issubdtype(condition_df[col].dtype, np.number) + and sbml_model.getSpecies(col) is not None] if species: - raise NotImplementedError("Can't handle species in condition table." - "Consider creating an initial assignment for" - f" {species}") + raise NotImplementedError( + "Can't handle parameterized initial concentrations in condition " + f"table. Consider creating an initial assignment for {species}") return fixed_parameters diff --git a/python/amici/petab_objective.py b/python/amici/petab_objective.py index 5e0b43329c..8e4958473a 100644 --- a/python/amici/petab_objective.py +++ b/python/amici/petab_objective.py @@ -420,9 +420,38 @@ def _get_par(model_par, value): ########################################################################## # initial states - # initial states have been set during model import. if they were - # overwritten in the PEtab condition table, they would be handled as fixed - # model parameters below + # Initial states have been set during model import based on the SBML model. + # If initial states were overwritten in the PEtab condition table, they are + # applied here. We never change amici_model.x0 here (and assume it contains + # the original values; we only change ExpData.x0. + + species = [col for col in petab_problem.condition_df + if petab_problem.sbml_model.getSpecies(col) is not None] + if species: + x0 = amici_model.getInitialStates() + species_ids = amici_model.getStateIds() + for species_id in species: + if not np.issubdtype(petab_problem.condition_df[species_id].dtype, + np.number): + raise NotImplementedError( + "Support for parametric overrides for initial states " + "is not yet implemented.") + + species_idx = species_ids.find(species_id) + + if condition[PREEQUILIBRATION_CONDITION_ID]: + condition_id = condition[PREEQUILIBRATION_CONDITION_ID] + else: + condition_id = condition[SIMULATION_CONDITION_ID] + + x0[species_idx] = petab_problem.condition_df.loc(condition_id, + species_id) + + edata.x0 = x0 + + # TODO: depends on #924: In case of parametric overrides, they would have + # to be handled as fixed model parameters below. These cases are filtered + # out at import stage. ########################################################################## # fixed parameters preequilibration diff --git a/tests/performance/reference.yml b/tests/performance/reference.yml index 7a40daaea8..9152736bfa 100644 --- a/tests/performance/reference.yml +++ b/tests/performance/reference.yml @@ -1,10 +1,10 @@ # Reference wall times (seconds) with some buffer create_sdist: 25 install_sdist: 140 -petab_import: 1920 # ^= 32' -install_model: 420 +petab_import: 2500 +install_model: 470 forward_simulation: 2 -forward_sensitivities: 6 +forward_sensitivities: 35 adjoint_sensitivities: 4 forward_simulation_non_optimal_parameters: 2 adjoint_sensitivities_non_optimal_parameters: 5 diff --git a/tests/performance/test.py b/tests/performance/test.py index 535a18f727..1a0bc8cadd 100755 --- a/tests/performance/test.py +++ b/tests/performance/test.py @@ -15,11 +15,13 @@ def main(): edata = amici.ExpData(model) edata.setTimepoints([1e8]) edata.setObservedData([1.0]) + edata.setObservedDataStdDev([1.0]) if arg == 'forward_simulation': solver.setSensitivityMethod(amici.SensitivityMethod_none) solver.setSensitivityOrder(amici.SensitivityOrder_none) elif arg == 'forward_sensitivities': + model.setParameterList(list(range(100))) solver.setSensitivityMethod(amici.SensitivityMethod_forward) solver.setSensitivityOrder(amici.SensitivityOrder_first) elif arg == 'adjoint_sensitivities': @@ -27,12 +29,12 @@ def main(): solver.setSensitivityOrder(amici.SensitivityOrder_first) elif arg == 'forward_simulation_non_optimal_parameters': tmpPar = model.getParameters() - model.setParameters([0.1 for iPar in tmpPar]) + model.setParameters([0.1 for _ in tmpPar]) solver.setSensitivityMethod(amici.SensitivityMethod_none) solver.setSensitivityOrder(amici.SensitivityOrder_none) elif arg == 'adjoint_sensitivities_non_optimal_parameters': tmpPar = model.getParameters() - model.setParameters([0.1 for iPar in tmpPar]) + model.setParameters([0.1 for _ in tmpPar]) solver.setSensitivityMethod(amici.SensitivityMethod_adjoint) solver.setSensitivityOrder(amici.SensitivityOrder_first) else: From 1fa9433791a8adbdb39c0e2b2f5239f25eaf43ba Mon Sep 17 00:00:00 2001 From: Daniel Weindl Date: Mon, 10 Feb 2020 21:41:31 +0100 Subject: [PATCH 23/23] Bump version number (0.10.18) --- .travis.yml | 2 +- version.txt | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/.travis.yml b/.travis.yml index 60b4c0b66f..b26cf57e0f 100644 --- a/.travis.yml +++ b/.travis.yml @@ -152,7 +152,7 @@ matrix: - python -m pip install --upgrade pip - pip install --user -U numpy - git clone -c core.symlinks=true https://github.com/ICB-DCM/AMICI.git && cd AMICI - - if [[ "$TRAVIS_PULL_REQUEST" == "false" ]]; then git checkout -qf $TRAVIS_COMMIT; elif [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then git fetch origin pull/$TRAVIS_PULL_REQUEST/head:$TRAVIS_BRANCH && git checkout $TRAVIS_BRANCH; fi + - if [[ "$TRAVIS_PULL_REQUEST" == "false" ]]; then git checkout -qf $TRAVIS_COMMIT; elif [[ "$TRAVIS_PULL_REQUEST" != "false" ]]; then git fetch --update-head-ok origin pull/$TRAVIS_PULL_REQUEST/head:$TRAVIS_BRANCH && git checkout $TRAVIS_BRANCH; fi # run BLAS installation script - if [[ "$TRAVIS_OS_NAME" == "windows" ]]; then powershell -File 'C:\Users\travis\build\AMICI\scripts\installOpenBLAS.ps1';export BLAS_LIBS BLAS_CFLAGS; fi # define Windows environment variables in BLAS because PowerShell definition didn't do the trick diff --git a/version.txt b/version.txt index f00339d71c..3971e7e2d8 100644 --- a/version.txt +++ b/version.txt @@ -1 +1 @@ -0.10.17 +0.10.18