-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_rESCAL.yml
81 lines (73 loc) · 1.95 KB
/
test_rESCAL.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
experiment:
dataset:
name: ml-100k
item: # infos related to item dataset (mandatory, at least item_id)
path: datasets/ml-100k/processed/item.csv
extra_features: [movie_year, movie_title] # features(columns) beside item_id to be used
user: # mandatory (at least user_id)
path: datasets/ml-100k/processed/user.csv
extra_features: [gender, occupation] # features beside user_id
ratings: # mandatory (at least [user_id, item_id, rating])
path: datasets/ml-100k/processed/rating.csv
timestamp: True
enrich:
map_path: datasets/ml-100k/processed/map.csv
enrich_path: datasets/ml-100k/processed/enriched.csv
remove_unmatched: False
properties: [subject, director]
preprocess:
# - method: filter_by_rating
# parameters:
# threshold: 20
# - method: binarize
# parameters:
# threshold: 4
- method: filter_kcore
parameters:
k: 20
iterations: 1
target: user # user or rating
split:
seed: 42
# test:
# method: random_by_ratio
# level: global
# p: 0.2
# validation:
# method: random_by_ratio
# level: global
# p: 0.2
# test:
# method: timestamp_by_ratio
# level: user
# p: 0.1
# validation:
# level: user
# method: timestamp_by_ratio
# p: 0.2
# test:
# method: fixed_timestamp
# # type: global_level
# timestamp: 890000000
# validation:
# method: fixed_timestamp
# timestamp: 880000000
test:
method: k_fold
k: 5
level: "user"
models:
- name: rESCAL
config:
save_weights: True
parameters:
embedding_dim: 50
epochs: 5
seed: 42
triples: ratings # only (ratings) or (all) triples for training
evaluation:
k: 5
relevance_threshold: 0
metrics: [MAP, nDCG]
report:
file: "experiment_results/ml100k_enriched/rESCALratings.csv"