-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_ml-1m_enriched.yml
196 lines (188 loc) · 4.77 KB
/
run_ml-1m_enriched.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
experiment:
dataset:
name: ml-1m
item: # infos related to item dataset (mandatory, at least item_id)
path: datasets/ml-1m/processed/item.csv
extra_features: [movie_year, movie_title] # features(columns) beside item_id to be used
user: # mandatory (at least user_id)
path: datasets/ml-1m/processed/user.csv
extra_features: [gender, occupation] # features beside user_id
ratings: # mandatory (at least [user_id, item_id, rating])
path: datasets/ml-1m/processed/rating.csv
timestamp: True
enrich:
map_path: datasets/ml-1m/processed/map.csv
enrich_path: datasets/ml-1m/processed/enriched.csv
remove_unmatched: False
properties: [subject, director, abstract]
preprocess:
# - method: filter_by_rating
# parameters:
# threshold: 20
# - method: binarize
# parameters:
# threshold: 4
- method: filter_kcore
parameters:
k: 20
iterations: 1
target: user # user or rating
split:
seed: 42
# test:
# method: random_by_ratio
# level: global
# p: 0.2
# validation:
# method: random_by_ratio
# level: global
# p: 0.2
# test:
# method: timestamp_by_ratio
# level: user
# p: 0.1
# validation:
# level: user
# method: timestamp_by_ratio
# p: 0.2
# test:
# method: fixed_timestamp
# # type: global_level
# timestamp: 890000000
# validation:
# method: fixed_timestamp
# timestamp: 880000000
test:
method: k_fold
k: 5
level: "user"
models:
- name: deepwalk_based
config:
save_weights: True
parameters:
walk_len: 10
p: 1.0
q: 1.0
n_walks: 50
embedding_size: 64
epochs: 1
- name: deepwalk_based
config:
parameters:
walk_len: 10
p: 0.8
q: 0.6
n_walks: 50
embedding_size: 64
epochs: 1
- name: transE
config:
save_weights: True
parameters:
embedding_dim: 150
scoring_fct_norm: 1
epochs: 25
seed: 42
triples: ratings # only (ratings) or (all) triples for training
- name: transH
config:
save_weights: True
parameters:
embedding_dim: 150
scoring_fct_norm: 2
epochs: 25
seed: 42
triples: ratings # only (ratings) or (all) triples for training
- name: transR
config:
save_weights: True
parameters:
embedding_dim: 150
relation_dim: 90
scoring_fct_norm: 2
epochs: 25
seed: 42
triples: all # only (ratings) or (all) triples for training
- name: transD
config:
save_weights: True
parameters:
embedding_dim: 150
epochs: 25
seed: 42
triples: ratings # only (ratings) or (all) triples for training
- name: tuckER
config:
save_weights: True
parameters:
embedding_dim: 200
epochs: 25
seed: 42
triples: ratings # only (ratings) or (all) triples for training
- name: rESCAL
config:
save_weights: True
parameters:
embedding_dim: 50
epochs: 25
seed: 42
triples: ratings # only (ratings) or (all) triples for training
- name: distMult
config:
save_weights: True
parameters:
embedding_dim: 50
epochs: 25
seed: 42
triples: all # only (ratings) or (all) triples for training
- name: complEx
config:
save_weights: True
parameters:
embedding_dim: 100
epochs: 25
seed: 42
triples: ratings # only (ratings) or (all) triples for training
- name: rotatE
config:
save_weights: True
parameters:
embedding_dim: 200
epochs: 25
seed: 42
triples: all # only (ratings) or (all) triples for training
- name: ePHEN
config:
save_weights: True
parameters:
embedding_model: "sentence-transformers/all-roberta-large-v1"
embed_with: abstract
iterations: 30
mi: 0.5
- name: ePHEN
config:
save_weights: True
parameters:
embedding_model: deepwalk_based
embedding_model_kwargs:
config:
save_weights: True
parameters:
walk_len: 10
p: 1.0
q: 1.0
n_walks: 50
embedding_size: 64
epochs: 1
embed_with: graph
iterations: 30
mi: 0.5
evaluation:
k: 5
relevance_threshold: 0
metrics: [MAP, nDCG]
report:
file: "experiment_results/ml-1m_enriched.csv"
execution_times:
file: "experiment_results/ml-1m_enriched_times.csv"