-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
executable file
·231 lines (189 loc) · 8.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import sys
import os
import argparse
import logging
import logging.config
import shutil
import yaml
import pathlib
import builtins
import socket
import random
import time
import json
import numpy as np
import torch
import torchio as tio
import torch.distributed as dist
import torch.utils.data as data
from hashlib import shake_256
from munch import Munch, munchify, unmunchify
from torch import nn
from os import path
from torch.backends import cudnn
from torch.utils.data import DistributedSampler
import wandb
from experiments.ExperimentFactory import ExperimentFactory
from dataloader.AugFactory import AugFactory
# used to generate random names that will be appended to the
# experiment name
def timehash():
t = time.time()
t = str(t).encode()
h = shake_256(t)
h = h.hexdigest(5) # output len: 2*5=10
return h.upper()
def setup(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
logger = logging.getLogger()
logger.setLevel(logging.INFO)
# Parse arguments
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("-c", "--config", default="./configs/gen-training-unet-trans_train_1.yaml", help="the config file to be used to run the experiment")
arg_parser.add_argument("--verbose", action='store_true', help="Log also to stdout")
arg_parser.add_argument("--debug", action='store_true', help="debug, no wandb")
args = arg_parser.parse_args()
# check if the config files exists
if not os.path.exists(args.config):
logging.info("Config file does not exist: {}".format(args.config))
raise SystemExit
# Munchify the dict to access entries with both dot notation and ['name']
logging.info(f'Loading the config file...')
config = yaml.load(open(args.config, "r"), yaml.FullLoader)
config = munchify(config)
# Setup to be deterministic
logging.info(f'setup to be deterministic')
setup(config.seed)
if args.debug:
os.environ['WANDB_DISABLED'] = 'true'
# start wandb
wandb.init(
project="alveolar_canal",
name=f"TFF_{config.model.name}_{config.seed}_M{config.model.mem_len}", # f"TFF_{config.model.name}_L{config.model.n_layers}H{config.model.n_head}_{config.seed}", # f"TFF_{config.model.name}_{config.seed}"
entity="maxillo",
config=unmunchify(config),
mode=config.wandb.mode,
)
# Check if project_dir exists
if not os.path.exists(config.project_dir):
logging.error("Project_dir does not exist: {}".format(config.project_dir))
raise SystemExit
# check if preprocessing is set and file exists
logging.info(f'loading preprocessing')
if config.data_loader.preprocessing is None:
preproc = []
elif not os.path.exists(config.data_loader.preprocessing):
logging.error("Preprocessing file does not exist: {}".format(config.data_loader.preprocessing))
preproc = []
else:
with open(config.data_loader.preprocessing, 'r') as preproc_file:
preproc = yaml.load(preproc_file, yaml.FullLoader)
config.data_loader.preprocessing = AugFactory(preproc).get_transform()
# check if augmentations is set and file exists
logging.info(f'loading augmentations')
if config.data_loader.augmentations is None:
aug = []
elif not os.path.exists(config.data_loader.augmentations):
logging.warning(f'Augmentations file does not exist: {config.augmentations}')
aug = []
else:
with open(config.data_loader.augmentations) as aug_file:
aug = yaml.load(aug_file, yaml.FullLoader)
config.data_loader.augmentations = AugFactory(aug).get_transform()
# make title unique to avoid overriding
config.title = f'{config.title}_{timehash()}'
logging.info(f'Instantiation of the experiment')
experiment = ExperimentFactory(config, args.debug).get()
logging.info(f'experiment title: {experiment.config.title}')
project_dir_title = os.path.join(experiment.config.project_dir, experiment.config.title)
os.makedirs(project_dir_title, exist_ok=True)
logging.info(f'project directory: {project_dir_title}')
# Setup logger's handlers
file_handler = logging.FileHandler(os.path.join(project_dir_title, 'output.log'))
log_format = logging.Formatter('%(asctime)s:%(levelname)s:%(message)s')
file_handler.setFormatter(log_format)
logger.addHandler(file_handler)
if args.verbose:
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(log_format)
logger.addHandler(stdout_handler)
# Copy config file to project_dir, to be able to reproduce the experiment
copy_config_path = os.path.join(project_dir_title, 'config.yaml')
shutil.copy(args.config, copy_config_path)
if not os.path.exists(experiment.config.data_loader.dataset):
logging.error("Dataset path does not exist: {}".format(experiment.config.data_loader.dataset))
raise SystemExit
# pre-calculate the checkpoints path
checkpoints_path = path.join(project_dir_title, 'checkpoints')
if not os.path.exists(checkpoints_path):
os.makedirs(checkpoints_path)
if experiment.config.trainer.reload and not os.path.exists(experiment.config.trainer.checkpoint):
logging.error(f'Checkpoint file does not exist: {experiment.config.trainer.checkpoint}')
raise SystemExit
best_val = float('-inf')
best_test = {
'value': float('-inf'),
'epoch': -1
}
# Train the model
if config.trainer.do_train:
logging.info('Training...')
assert experiment.epoch < config.trainer.epochs
for epoch in range(experiment.epoch, config.trainer.epochs+1):
experiment.train()
val_iou, val_dice = experiment.test(phase="Validation")
logging.info(f'Epoch {epoch} Val IoU: {val_iou}')
logging.info(f'Epoch {epoch} Val Dice: {val_dice}')
if val_iou < 1e-05 and experiment.epoch > 15:
logging.warning('WARNING: drop in performances detected.')
optim_name = experiment.optimizer.name
sched_name = experiment.scheduler.name
if experiment.scheduler is not None:
if optim_name == 'SGD' and sched_name == 'Plateau':
experiment.scheduler.step(val_iou)
else:
experiment.scheduler.step(epoch)
if epoch % 5 == 0:
test_iou, test_dice = experiment.test(phase="Test")
logging.info(f'Epoch {epoch} Test IoU: {test_iou}')
logging.info(f'Epoch {epoch} Test Dice: {test_dice}')
if test_iou > best_test['value']:
best_test['value'] = test_iou
best_test['epoch'] = epoch
experiment.save('last.pth')
if val_iou > best_val:
best_val = val_iou
wandb.run.summary["Highest_Validation_IOU/Epoch"] = experiment.epoch
wandb.run.summary["Highest_Validation_IOU/Valdiation_IOU"] = val_iou
wandb.run.summary["Highest_Validation_IOU/Valdiation_Dice"] = val_dice
experiment.save('best.pth')
experiment.epoch += 1
logging.info(f'''
Best test IoU found: {best_test['value']} at epoch: {best_test['epoch']}
''')
logging.info('Testing the model...')
experiment.load(name="best", set_epoch=True)
test_iou, test_dice = experiment.test(phase="Test")
logging.info(f'Test results IoU: {test_iou}\nDice: {test_dice}')
wandb.run.summary["Highest_Validation_IOU/Test_IOU"] = test_iou
wandb.run.summary["Highest_Validation_IOU/Test_Dice"] = test_dice
# Test the model
if config.trainer.do_test:
logging.info('Testing the model...')
experiment.load()
test_iou, test_dice = experiment.test(phase="Test")
logging.info(f'Test results IoU: {test_iou}\nDice: {test_dice}')
wandb.run.summary["Highest_Validation_IOU/Test_IOU"] = test_iou
wandb.run.summary["Highest_Validation_IOU/Test_Dice"] = test_dice
# Do the inference
if config.trainer.do_inference:
logging.info('Doing inference...')
experiment.load()
experiment.inference(os.path.join(config.data_loader.dataset, 'Dataset'))
# experiment.inference('/homes/llumetti/out')
# TODO: add a Final test metric