forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Tree_Sort.py
88 lines (71 loc) · 2.04 KB
/
Tree_Sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
''' SORTING USING BINARY SEARCH TREE
Binary Search Tree is a special type of binary tree where
1. The value of all the nodes in the left sub-tree is less
than or equal to the value of the root.
2. The value of all the nodes in the right sub-tree is
greater than value of the root.
3. This rule will be recursively applied to all the left
and right sub-trees of the root.
Inorder traversal
1. Traverse the left subtree
2. Visit the root.
3. Traverse the right subtree
Inorder traversal in BST gives sorted list
'''
# Declare treeNode with data , rc (right child) and lc (left child )
class treeNode:
def __init__(self, item):
self.data = item
self.lc = None
self.rc = None
# to insert a node into BST
def insertIntoTree(root, data):
# If tree is empty insert as root node
if root is None:
root = treeNode(data)
else:
# insert recursively in accordance with BST properties
if root.data >= data:
root.lc = insertIntoTree(root.lc, data)
elif root.data < data:
root.rc = insertIntoTree(root.rc, data)
return root
# to sort-inorder traversal gives sorted list
def inorder(root):
# If tree is not empty
if root is not None:
# recursively visit left sub-tree,root and right sub-tree
inorder(root.lc)
print(root.data, end=" ")
inorder(root.rc)
# driver code
def main():
# Initialize tree as empty
root = None
# Accept the no. of elements and elements as user input
n = int(input("Enter the number of elements: "))
print("Enter the numbers: ")
for _ in range(0, n):
data = int(input())
root = insertIntoTree(root, data)
print("\nSorted list : ")
inorder(root)
if __name__ == "__main__":
main()
'''
Sample input:
Enter the number of elements: 7
Enter the numbers:
1
2
5
3
7
4
6
Sample output:
Sorted list:
1 2 3 4 5 6 7
Time complexity : O(n)
Space complexity : O(n)
'''