forked from HarshCasper/NeoAlgo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Parallel_MergeSort.py
73 lines (68 loc) · 3.28 KB
/
Parallel_MergeSort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3
""" Merge Sort Algorithm for Sort an array of random integers with parallel and sequential apporach is used."""
import random
import math
import multiprocessing as mp
""" helper method to merge two sorted subarrays
array[l..m] and array[m+1..r] into array """
def merge(array, left, mid, right):
# copy data to temp subarrays to be merged
left_temp_arr = array[left:mid+1].copy()
right_temp_arr = array[mid+1:right+1].copy()
# initial indexes for left, right and merged subarrays
left_temp_index = 0
right_temp_index = 0
merge_index = left
# merge temp arrays into original
while (left_temp_index < (mid - left + 1) or right_temp_index < (right - mid)):
if (left_temp_index < (mid - left + 1) and right_temp_index < (right - mid)):
if (left_temp_arr[left_temp_index] <= right_temp_arr[right_temp_index]):
array[merge_index] = left_temp_arr[left_temp_index]
left_temp_index += 1
else:
array[merge_index] = right_temp_arr[right_temp_index]
right_temp_index += 1
elif (left_temp_index < (mid - left + 1)): # copy any remaining on left side
array[merge_index] = left_temp_arr[left_temp_index]
left_temp_index += 1
elif (right_temp_index < (right - mid)): # copy any remaining on right side
array[merge_index] = right_temp_arr[right_temp_index]
right_temp_index += 1
merge_index += 1
""" parallel implementation of merge sort """
def parallel_mergesort(array, *args):
if not args: # first call
shared_array = mp.RawArray('i', array)
parallel_mergesort(shared_array, 0, len(array)-1, 0)
array[:] = shared_array # insert result into original array
return array
else:
left, right, depth = args
if (left < right):
mid = left + ((right - left) // 2)
left_proc = mp.Process(target=parallel_mergesort, args=(array, left, mid, depth+1))
left_proc.start()
parallel_mergesort(array, mid+1, right, depth+1)
left_proc.join()
merge(array, left, mid, right)
if __name__ == '__main__':
NUM_EVAL_RUNS = 1
userRange = int(input("Enter your range for generating random array: "))
print('Generating Random Array...')
array = [random.randint(0,10_000) for i in range(userRange)]
strRandomArray = ','.join([str(i) for i in array])
print('Random Array to Sort is : ' + strRandomArray)
print('Evaluating Parallel Implementation...')
parallel_result = parallel_mergesort(array.copy())
for i in range(NUM_EVAL_RUNS):
parallel_mergesort(array.copy())
strfinalSortResult =','.join([str(i) for i in parallel_result])
print('final Parallel approach sorted array is : '+ strfinalSortResult)
# input/output sample
# Enter your range for generating random array: 10
# Generating Random Array...
# Random Array to Sort is : 1807,7508,7166,7673,2000,1356,7665,4670,9395,6002
# Evaluating Parallel Implementation...
# final sorted array is : 1356,1807,2000,4670,6002,7166,7508,7665,7673,9395
# Time Complexity: O(nLog(n)) in worst case
#Space Complexity: O(n) in worst case