-
Notifications
You must be signed in to change notification settings - Fork 0
/
LogH+TTL.h
1035 lines (870 loc) · 26.8 KB
/
LogH+TTL.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef __LogH_TTL_H__
#define __LogH_TTL_H__
#include <sstream>
#include <vector>
#include <cassert>
#include <cstdio>
#include <cstdlib>
/* use this one if run on x86_64 */
#if 1
#define _SSE_
#endif
/* use this option to compute forces in N^2/s steps rather than N^2 steps */
#if 1
#define _N2FAST_
#endif
/* use this option to use rational functoin interpolation instead of polynomial */
#if 1
/* with this, use tolernace 1.0e-12, otherwise 1.0e-13*/
#define _RATIONAL_FUNCTIONS_
#endif
#include "particle.h"
#include "mytimer.h"
#define SQR(x) ((x)*(x))
#define SMALLM 1.0e-64
struct Force
{
typedef std::vector<Force, __gnu_cxx::malloc_allocator<Force, 64> > Vector;
vec3 acc, dW;
double iPad1, iPad2;
Force() {}
Force(const vec3 &_acc) : acc(_acc) {}
Force(const vec3 &_acc, const vec3 &_dW) : acc(_acc), dW(_dW) {}
};
#ifdef _SSE_
struct ForceSIMD
{
typedef std::vector<ForceSIMD, __gnu_cxx::malloc_allocator<ForceSIMD, 128> > Vector;
v2df accx, accy, accz;
v2df dWx, dWy, dWz;
v2df iPad1, iPad2;
ForceSIMD() {}
ForceSIMD(const real v)
{
accx = accy = accz = (v2df){v, v};
dWx = dWy = dWz = (v2df){v, v};
}
};
#endif
struct Nbody
{
unsigned long long iteration;
real time, h;
int ntry, ntry1;
Particle::Vector ptcl;
Force ::Vector force;
#ifdef _SSE_
ParticleSIMD::Vector ptclSIMD;
ForceSIMD ::Vector forceSIMD;
#endif
unsigned long long flops;
double tbeg;
double dt_force;
double dt_step, dt_multi, dt_extra, dt_err;
real dt;
real Etot0;
real B, W;
real Alpha, Beta, Gamma;
void reset_counters()
{
ntry = ntry1 = 0;
flops = 0.0;
dt_force = 0.0;
dt_step = dt_multi = dt_extra = dt_err = 0.0;
tbeg = mytimer::get_wtime();
Alpha = 1.0;
Beta = 1.0e-2;
Gamma = 0.0;
#if 0
Alpha = 0.0;
Beta = 1.0;
#endif
#if 0
Alpha = 0.5;
Beta = 0.5;
#endif
}
real get_gflops() const
{
return flops/(mytimer::get_wtime() - tbeg)/1e9;
}
real get_gflops_force() const
{
assert(dt_force > 0.0);
return flops / dt_force / 1e9;
}
Nbody(const unsigned long long i, const real tepoch, const real _h, const Particle::Vector &_ptcl) :
iteration(i), time(tepoch), h(_h), ptcl(_ptcl)
{
assert(ptcl.size() > 1);
reset_counters();
force.resize(ptcl.size());
vec3 cm_pos(0.0), cm_vel(0.0);
real Mtot = 0.0;
for (Particle::Vector::iterator it = ptcl.begin(); it != ptcl.end(); it++)
{
it->mass = std::max(it->mass, SMALLM);
Mtot += it->mass;
cm_pos += it->mass*it->pos;
cm_vel += it->momentum();
}
cm_pos *= 1.0/Mtot;
cm_vel *= 1.0/Mtot;
for (Particle::Vector::iterator it = ptcl.begin(); it != ptcl.end(); it++)
{
it->pos -= cm_pos;
it->vel -= cm_vel;
}
#ifdef _SSE_
assert((ptcl.size() & 1) == 0);
ptclSIMD.resize(ptcl.size());
forceSIMD.resize(ptclSIMD.size());
#endif
#ifdef _SSE_
const int nbody = ptcl.size();
for (int i = 0; i < nbody; i += 2)
ptclSIMD[i>>1] = ParticleSIMD(&ptcl[i]);
v2df W1, W2;
compute_force(ptclSIMD, forceSIMD, W1, W2);
W = __builtin_ia32_vec_ext_v2df(W2, 0);
#else
compute_force(ptcl, force, B, W);
#endif
Etot0 = Etot();
B = -Etot0;
}
real Ekin(const Particle::Vector &ptcl) const
{
real Ekin = 0.0;
vec3 cmom(0.0);
for (Particle::Vector::const_iterator it = ptcl.begin(); it != ptcl.end(); it++)
{
Ekin += it->Ekin();
cmom += it->momentum();
}
return Ekin;
}
real Epot() const { return Epot(ptcl); }
real Ekin() const { return Ekin(ptcl); }
real Epot(const Particle::Vector &ptcl) const
{
const int nbody = ptcl.size();
real gpot = 0.0;
for (int i = 0; i < nbody-1; i++)
for (int j = i+1; j < nbody; j++)
{
const real ds2 = (ptcl[i].pos - ptcl[j].pos).norm2();
assert(ds2 > 0.0);
gpot -= ptcl[i].mass*ptcl[j].mass/std::sqrt(ds2);
}
return gpot;
}
real Etot() const {return Ekin(ptcl) + Epot(ptcl);}
real E0 () const {return Etot0;}
std::string print_orbit(const int i) const
{
const Particle &p0 = ptcl[0];
const Particle &p1 = ptcl[i];
const vec3 R = p1.pos - p0.pos;
const vec3 V = p1.vel - p0.vel;
const real Mtot = p0.mass + p1.mass;
const vec3 L = R%V;
const real h2 = L.norm2();
const real h = std::sqrt(h2);
const real inc = std::acos(L.z/h);
const real fac = std::sqrt(L.x*L.x + L.y*L.y)/h;
const real LSMALL = 1.0e-10;
double capom, u;
if (fac < LSMALL)
{
capom = 0.0;
u = std::atan2(R.y, R.x);
if (std::abs(inc - M_PI) < 10*LSMALL)
u = -u;
}
else
{
capom = std::atan2(L.x, -L.y);
u = std::atan2( R.z/std::sin(inc) , R.x*std::cos(capom) + R.y*std::sin(capom));
}
if (capom < 0.0) capom += 2.0*M_PI;
if (u < 0.0) u += 2.0*M_PI;
const double r = R.abs();
const double v2 = V.norm2();
const double vdotr = R*V;
const double energy = 0.5*v2 - Mtot/r;
#if 0
if (energy >= 0.0)
{
std::stringstream oss;
oss << "#" << -1;
return oss.str();
}
#endif
assert(energy < 0.0);
double e, f, a, omega, capm;
{
a = -0.5*Mtot/energy;
const double fac = 1.0 - h2/(Mtot*a);
assert(a > 0.0);
double cape;
if (fac > LSMALL)
{
e = std::sqrt(fac);
const double face = (a-r)/(a*e);
cape = face > 0.9999999 ? 0.0 : (face > -0.9999999 ? std::acos(face) : M_PI);
if (vdotr < 0.0) cape = 2.0*M_PI - cape;
const double cf = (cos(cape) - e)/(1.0 - e*cos(cape));
const double sf = std::sqrt(1-e*e)*std::sin(cape)/(1.0 - e*std::cos(cape));
f = std::atan2(sf, cf);
if (f < 0.0) f += 2.0*M_PI;
}
else
{
e = 0.0;
f = u;
cape = u;
}
capm = cape - e*std::sin(cape);
omega = u - f;
if (omega < 0) omega += 2.0*M_PI;
omega = omega - int(omega/(2.0*M_PI))*2.0*M_PI; /* longitude of pericentre */
}
double wp = capom + omega;
double lambda = capm + wp;
lambda = lambda - int(lambda/(2.0*M_PI))*2.0*M_PI;
std::stringstream oss;
oss << "#" << i << ": I= " << inc << " a= " << a << " e= " << e <<
" o= " << wp << " l= " << lambda;
return oss.str();
}
#ifndef _SSE_
void compute_force(const Particle::Vector &ptcl, Force::Vector &force, real &U, real &Omega)
{
const int PP_FLOP = 38;
const int n = ptcl.size();
const double t0 = mytimer::get_wtime();
U = Omega = 0.0;
for (int i = 0; i < n; i++)
{
const Particle &pi = ptcl[i];
Force iforce(0.0, 0.0);
for (int j = 0; j < n; j++)
{
const Particle &pj = ptcl[j];
if (i == j) continue;
const vec3 dr = pj.pos - pi.pos;
const real r2 = dr*dr;
const real rinv1 = 1.0/std::sqrt(r2);
const real rinv2 = rinv1*rinv1;
const real rinv3 = rinv1*rinv2;
const vec3 aij = rinv3*dr;
iforce.acc += pj.mass*aij;
U += 0.5*pi.mass*pj.mass*rinv1;
iforce.dW += aij;
Omega += 0.5*rinv1;
}
force[i] = iforce;
}
dt_force += mytimer::get_wtime() - t0;
flops += PP_FLOP*n*n;
}
#else /* _SSE_ */
void compute_force(const ParticleSIMD::Vector &ptcl, ForceSIMD::Vector &force, v2df &U, v2df &Omega)
{
const int PP_FLOP = 38;
asm("#SSE-checkpoint1");
const double t0 = mytimer::get_wtime();
const int n = this->ptcl.size();
assert((n&1) == 0);
const int nh = n >> 1;
U = Omega = (v2df){0.0, 0.0};
for (int i = 0; i < nh; i++)
{
asm("#SSE-checkpoint2");
const ParticleSIMD pi = ptcl[i];
v2df accx = {0.0, 0.0};
v2df accy = {0.0, 0.0};
v2df accz = {0.0, 0.0};
v2df dWx = {0.0, 0.0};
v2df dWy = {0.0, 0.0};
v2df dWz = {0.0, 0.0};
for (int j = 0; j < nh; j++)
{
asm("#SSE-checkpoint3a");
const ParticleSIMD p1(ptcl[j], true);
const ParticleSIMD p2(ptcl[j], false);
const v2df dx_1 = p1.posx - pi.posx;
const v2df dy_1 = p1.posy - pi.posy;
const v2df dz_1 = p1.posz - pi.posz;
const v2df r2_1 = dx_1*dx_1 + dy_1*dy_1 + dz_1*dz_1;
const v2df dx_2 = p2.posx - pi.posx;
const v2df dy_2 = p2.posy - pi.posy;
const v2df dz_2 = p2.posz - pi.posz;
const v2df r2_2 = dx_2*dx_2 + dy_2*dy_2 + dz_2*dz_2;
v2df rinv1_1 = r2_1;
v2df rinv1_2 = r2_2;
__rsqrtpd(rinv1_1, rinv1_2);
const v2df rinv2_1 = rinv1_1 * rinv1_1;
const v2df rinv3_1 = rinv1_1 * rinv2_1;
const v2df rinv2_2 = rinv1_2 * rinv1_2;
const v2df rinv3_2 = rinv1_2 * rinv2_2;
const v2df ax1 = rinv3_1*dx_1;
const v2df ay1 = rinv3_1*dy_1;
const v2df az1 = rinv3_1*dz_1;
const v2df ax2 = rinv3_2*dx_2;
const v2df ay2 = rinv3_2*dy_2;
const v2df az2 = rinv3_2*dz_2;
const v2df mrinv1_1 = p1.mass*rinv1_1;
const v2df mrinv3_1 = mrinv1_1 * rinv2_1;
const v2df mrinv1_2 = p2.mass*rinv1_2;
const v2df mrinv3_2 = mrinv1_2 * rinv2_2;
const v2df max1 = mrinv3_1*dx_1;
const v2df may1 = mrinv3_1*dy_1;
const v2df maz1 = mrinv3_1*dz_1;
const v2df max2 = mrinv3_2*dx_2;
const v2df may2 = mrinv3_2*dy_2;
const v2df maz2 = mrinv3_2*dz_2;
U += (v2df){0.5, 0.5}*pi.mass*(mrinv1_1 + mrinv1_2);
accx += max1 + max2;
accy += may1 + may2;
accz += maz1 + maz2;
Omega += (v2df){0.5, 0.5}*(rinv1_1 + rinv1_2);
dWx += ax1 + ax2;
dWy += ay1 + ay2;
dWz += az1 + az2;
asm("#SSE-checkpoint3b");
}
force[i].accx = accx;
force[i].accy = accy;
force[i].accz = accz;
force[i].dWx = dWx;
force[i].dWy = dWy;
force[i].dWz = dWz;
}
asm("#SSE-checkpoint4");
U = reduce(U);
Omega = reduce(Omega);
#if 0
U = __builtin_ia32_haddpd (U, U );
U = __builtin_ia32_unpcklpd(U, U );
Omega = __builtin_ia32_haddpd (Omega, Omega);
Omega = __builtin_ia32_unpcklpd(Omega, Omega);
#endif
dt_force += mytimer::get_wtime() - t0;
flops += PP_FLOP*n*n;
}
#endif /* _SSE_ */
void iterate(const real rtol = 1.0e-13, const real atol = 1.0e-32, const bool dense = false)
{
assert(rtol >= 1.0e-15);
const double t0 = mytimer::get_wtime();
const int KMAXX = 7;
const int IMAXX = KMAXX + 1;
static int nseq [IMAXX];
static int cost [IMAXX];
static real coeff[IMAXX][IMAXX];
static real errfac[2*IMAXX+2];
static int ipoint[IMAXX+1];
static Particle::Vector table[KMAXX];
static real hnext = -1;
static int k_targ = -1;
if (k_targ == -1)
{
if (dense)
for (int i = 0; i < IMAXX; i++)
nseq[i] = 4*i + 2;
else
{
#if 0 /* sequences suggested by Numerical Recipes, 3rd edition */
for (int i = 0; i < IMAXX; i++)
nseq[i] = 2*(i+1);
#endif
#if 0 /* Harmonic sequence */
for (int i = 0; i < IMAXX; i++)
nseq[i] = i + 1;
#endif
#if 1 /* Bulirsch sequence works the best, especially with Rational function extrapolation */
nseq[0] = 2;
nseq[1] = 3;
for (int i = 2; i < IMAXX; i++)
nseq[i] = nseq[i-2] << 1;
#endif
}
cost[0] = nseq[0] + 1;
for (int k = 0; k < KMAXX; k++)
cost[k+1] = cost[k] + nseq[k+1];
const real logfact = -log(std::max(1.0e-16, rtol))/log(10.0)*0.6 + 0.5;
k_targ = std::max(1, std::min(KMAXX-1, (int)logfact));
for (int k = 0; k < IMAXX; k++)
for (int l = 0; l < k; l++)
{
const real ratio = real(nseq[k])/(real)nseq[l];
#ifndef _RATIONAL_FUNCTIONS_
coeff[k][l] = 1.0/(ratio*ratio - 1.0);
#else
coeff[k][l] = ratio*ratio;
#endif
}
for (int i = 0; i < 2*IMAXX + 1; i++)
{
const int ip5 = i + 5;
errfac[i] = 1.0/(ip5*ip5);
const real e = 0.5*std::sqrt(real(i+1.0)/ip5);
for (int j = 0; j <= i; j++)
errfac[i] *= e/(j+1);
}
ipoint[0] = 0;
for (int i = 1; i <= IMAXX; i++)
{
int njadd = 4*i - 2;
if (nseq[i-1] > njadd)
njadd++;
ipoint[i] = ipoint[i-1] + njadd;
}
}
const real STEPFAC1 = 0.65;
const real STEPFAC2 = 0.94;
const real STEPFAC3 = 0.02;
const real STEPFAC4 = 4.0;
const real KFAC1 = 0.8;
const real KFAC2 = 0.9;
static real hopt[IMAXX], work[IMAXX];
static bool first_step = true, last_step = false;
static bool forward, reject = false, prev_reject = false;
const real htry = h;
work[0] = 0;
h = htry;
forward = h > 0;
assert(!dense);
assert(forward);
Particle::Vector y;
const Particle::Vector &ysav = ptcl;
if (h != hnext && !first_step)
last_step = true;
if (reject)
{
prev_reject = true;
last_step = false;
}
reject = false;
bool firstk = true;
real hnew = std::abs(h);
int k;
ntry1++;
while (firstk || reject)
{
h = forward ? hnew : -hnew;
firstk = false;
reject = false;
// int ipt = -1;
for (k = 0; k <= k_targ + 1; k++)
{
ntry++;
if (k == 0) Multistep(nseq[k], h, ptcl, y );
else Multistep(nseq[k], h, ptcl, table[k-1]);
if (k != 0)
{
Extrapolate<KMAXX, IMAXX>(k, coeff, table, y);
const real err = Error(y, table[0], ysav, rtol, atol);
const real expo = 1.0/(2*k + 1);
const real facmin = std::pow(STEPFAC3, expo);
real fac;
if (err == 0.0)
fac = 1.0/facmin;
else
{
fac = STEPFAC2/std::pow(err/STEPFAC1, expo);
fac = std::max(facmin/STEPFAC4, std::min(1.0/facmin, fac));
}
hopt[k] = std::abs(h*fac);
work[k] = cost[k]/hopt[k];
if ((first_step || last_step) && err <= 1.0)
break;
if (k == k_targ - 1 && !prev_reject && !first_step && !last_step)
{
if (err <= 1.0)
break;
else if (err > SQR(nseq[k_targ]*nseq[k_targ+1]/SQR(nseq[0])))
{
reject = true;
k_targ = k;
if (k_targ > 1 && work[k-1] < KFAC1*work[k])
k_targ--;
hnew = hopt[k_targ];
break;
}
}
if (k == k_targ)
{
if (err <= 1.0)
break;
else if (err > SQR(nseq[k+1]/nseq[0]))
{
reject = true;
if (k_targ > 1 && work[k-1] < KFAC1*work[k])
k_targ--;
hnew = hopt[k_targ];
break;
}
}
if (k == k_targ+1)
{
if (err > 1.0)
{
reject = true;
if (k_targ > 1 && work[k_targ - 1] < KFAC1*work[k_targ])
k_targ--;
hnew = hopt[k_targ];
}
break;
}
}
}
if (reject)
prev_reject = true;
}
ptcl = y;
first_step = false;
int kopt;
if (k == 1)
kopt = 2;
else if (k <= k_targ)
{
kopt = k;
if (work[k-1] < KFAC1*work[k])
kopt = k-1;
else if (work[k] < KFAC2*work[k-1])
kopt = std::min(k+1, KMAXX-1);
}
else
{
kopt = k-1;
if (k > 2 && work[k-2] < KFAC1*work[k-1])
kopt = k-2;
if (work[k] < KFAC2*work[kopt])
kopt = std::min(k, KMAXX-1);
}
if (prev_reject)
{
k_targ = std::min(kopt, k);
hnew = std::min(std::abs(h), hopt[k_targ]);
prev_reject = false;
}
else
{
if (kopt <= k)
hnew = hopt[kopt];
else
{
if (k < k_targ && work[k] < KFAC2*work[k-1])
hnew = hopt[k] * cost[kopt+1]/cost[k];
else
hnew = hopt[k] * cost[kopt ]/cost[k];
}
k_targ = kopt;
}
if (forward)
hnext = hnew;
else
hnext = -hnew;
h = hnext;
dt = ptcl[0].time - time;
time = ptcl[0].time;
#if 0
#ifdef _SSE_
const int nbody = ptcl.size();
for (int i = 0; i < nbody; i += 2)
ptclSIMD[i>>1] = ParticleSIMD(&ptcl[i]);
v2df W1, W2;
compute_force(ptclSIMD, forceSIMD, W1, W2);
W = __builtin_ia32_vec_ext_v2df(W2, 0);
#else
real W1;
compute_force(ptcl, force, W1, W);
#endif
#else
W = ptcl[1].time;
#endif
iteration++;
dt_step += mytimer::get_wtime() - t0;
}
void Multistep(const int nsteps, const real tau, const Particle::Vector &ptcl_in, Particle::Vector &ptcl)
{
const double t0 = mytimer::get_wtime();
const int nbody = ptcl_in.size();
ptcl.resize(nbody);
#ifndef _SSE_
real h = tau/(real)nsteps;
real time = this->time;
real W = this->W;
real T = Ekin(ptcl_in);
real U, Omega;
real dth = 0.5*h/(Alpha*(T + B) + Beta*W + Gamma);
for (int i = 0; i < nbody; i++)
{
ptcl[i] = ptcl_in[i];
if (ptcl[i].mass > SMALLM)
ptcl[i].update_pos(dth);
}
time += dth;
for (int k = 0; k < nsteps; k++)
{
compute_force(ptcl, force, U, Omega);
real dt = h/(Alpha*U + Beta*Omega + Gamma);
real dW = 0.0;
real T = 0.0;
for (int i = 0; i < nbody; i++)
if (ptcl[i].mass > SMALLM)
{
const vec3 v0 = ptcl[i].vel;
ptcl[i].update_vel(dt, force[i].acc);
dW += force[i].dW*(v0 + ptcl[i].vel);
T += ptcl[i].mass*ptcl[i].vel.norm2();
}
W += 0.5*dt*dW;
T *= 0.5;
dt = h/(Alpha*(T + B) + Beta*W + Gamma);
if (k == nsteps-1)
dt *= 0.5;
for (int i = 0; i < nbody; i++)
if (ptcl[i].mass > SMALLM)
ptcl[i].update_pos(dt);
time += dt;
}
ptcl[0].time = time;
ptcl[1].time = W;
#else /* _SSE_ */
for (int i = 0; i < nbody; i += 2)
ptclSIMD[i>>1] = ParticleSIMD(&ptcl_in[i]);
const int n = nbody >> 1;
const v2df h = {tau/(real)nsteps, tau/(real)nsteps};
v2df time = {this->time, this->time};
v2df W = {this->W, this->W };
const v2df Alpha = (v2df){this->Alpha, this->Alpha};
const v2df Beta = (v2df){this->Beta, this->Beta };
const v2df Gamma = (v2df){this->Gamma, this->Gamma};
const v2df B = (v2df){this->B, this->B};
const v2df zero = {0.0, 0.0};
const v2df half = {0.5, 0.5};
v2df U, Omega;
v2df T = zero;
for (int i = 0; i < n; i++)
{
const ParticleSIMD &p = ptclSIMD[i];
T += p.mass * (p.velx*p.velx + p.vely*p.vely + p.velz*p.velz);
}
T = half*reduce(T);
v2df dth = half*h/(Alpha*(T + B) + Beta*W + Gamma);
for (int i = 0; i < n; i++)
{
ParticleSIMD &p = ptclSIMD[i];
const v2df mask = __builtin_ia32_cmpgtpd(p.mass, (v2df){SMALLM, SMALLM});
const v2df dt1 = __builtin_ia32_andpd(mask, dth);
p.posx += p.velx * dt1;
p.posy += p.vely * dt1;
p.posz += p.velz * dt1;
}
time += dth;
for (int k = 0; k < nsteps; k++)
{
compute_force(ptclSIMD, forceSIMD, U, Omega);
v2df dt = h/(Alpha*U + Beta*Omega + Gamma);
v2df dW = zero;
v2df T = zero;
for (int i = 0; i < n; i++)
{
ParticleSIMD &p = ptclSIMD[i];
const v2df mask = __builtin_ia32_cmpgtpd(p.mass, (v2df){SMALLM, SMALLM});
const v2df dt1 = __builtin_ia32_andpd(mask, dt);
const v2df vx = p.velx;
const v2df vy = p.vely;
const v2df vz = p.velz;
p.velx += forceSIMD[i].accx * dt1;
p.vely += forceSIMD[i].accy * dt1;
p.velz += forceSIMD[i].accz * dt1;
dW += dt1 * (
forceSIMD[i].dWx*(vx + p.velx) +
forceSIMD[i].dWy*(vy + p.vely) +
forceSIMD[i].dWz*(vz + p.velz));
T += p.mass * (p.velx*p.velx + p.vely*p.vely + p.velz*p.velz);
}
W += half*reduce(dW);
T = half*reduce(T);
dt = h/(Alpha*(T + B) + Beta*W + Gamma);
if (k == nsteps-1)
dt *= half;
for (int i = 0; i < n; i++)
{
ParticleSIMD &p = ptclSIMD[i];
const v2df mask = __builtin_ia32_cmpgtpd(p.mass, (v2df){SMALLM, SMALLM});
const v2df dt1 = __builtin_ia32_andpd(mask, dt);
p.posx += p.velx * dt1;
p.posy += p.vely * dt1;
p.posz += p.velz * dt1;
}
time += dt;
}
for (int i = 0; i < nbody; i += 2)
{
ptcl[i ] = ptclSIMD[i>>1].scalar(0);
ptcl[i+1] = ptclSIMD[i>>1].scalar(1);
}
ptcl[0].time = __builtin_ia32_vec_ext_v2df(time, 0);
ptcl[1].time = __builtin_ia32_vec_ext_v2df(W, 0);
#endif /* _SSE_ */
dt_multi += mytimer::get_wtime() - t0;
}
#ifndef _RATIONAL_FUNCTIONS_
template<int KMAXX, int IMAXX>
void Extrapolate(const int k, const real coeff[IMAXX][IMAXX], Particle::Vector table[KMAXX], Particle::Vector &last)
{
const double t0 = mytimer::get_wtime();
const int n = last.size();
for (int j = k-1; j > 0; j--)
{
for (int i = 0; i < n; i++)
{
table[j-1][i].pos = table[j][i].pos + coeff[k][j]*(table[j][i].pos - table[j-1][i].pos);
table[j-1][i].vel = table[j][i].vel + coeff[k][j]*(table[j][i].vel - table[j-1][i].vel);
}
table[j-1][0].time = table[j][0].time + coeff[k][j]*(table[j][0].time - table[j-1][0].time);
table[j-1][1].time = table[j][1].time + coeff[k][j]*(table[j][1].time - table[j-1][1].time); /* W */
}
for (int i = 0; i < n; i++)
{
last[i].pos = table[0][i].pos + coeff[k][0]*(table[0][i].pos - last[i].pos);
last[i].vel = table[0][i].vel + coeff[k][0]*(table[0][i].vel - last[i].vel);
}
last[0].time = table[0][0].time + coeff[k][0]*(table[0][0].time - last[0].time);
last[1].time = table[0][1].time + coeff[k][0]*(table[0][1].time - last[1].time); /* W */
dt_extra += mytimer::get_wtime() - t0;
}
#else
template<int KMAXX, int IMAXX>
void Extrapolate(const int k, const real coeff[IMAXX][IMAXX], Particle::Vector table[KMAXX], Particle::Vector &last)
{
const double t0 = mytimer::get_wtime();
const int n = last.size();
assert(k > 0);
const real SMALL = 1.0e-30;
static Particle::Vector tmp(n);
for (int j = k-1; j > 0; j--)
{
for (int i = 0; i < n; i++)
{
const vec3 dr0 = table[j][i].pos - table[j-1][i].pos;
const vec3 dv0 = table[j][i].vel - table[j-1][i].vel;
const vec3 dr1 = table[j][i].pos - tmp [i].pos;
const vec3 dv1 = table[j][i].vel - tmp [i].vel;
tmp[i].pos = table[j-1][i].pos;
tmp[i].vel = table[j-1][i].vel;
for (int l = 0; l < 3; l++)
{
asm("#-DIV-0");
const real dq = coeff[k][j]*(dr1[l] - dr0[l]) - dr1[l] + SMALL;
const real dp = coeff[k][j]*(dv1[l] - dv0[l]) - dv1[l] + SMALL;
#ifndef _SSE_
const real idq = 1.0/dq;
const real idp = 1.0/dp;
#else
real idq = dq, idp = dp;
__divpd(idq, idp);
#endif
table[j-1][i].pos[l] = table[j][i].pos[l] + dr0[l]*dr1[l] * idq;
table[j-1][i].vel[l] = table[j][i].vel[l] + dv0[l]*dv1[l] * idp;
asm("#-DIV-1");
}
}
const real dt0 = table[j][0].time - table[j-1][0].time;
const real dt1 = table[j][0].time - tmp [0].time;
const real dt_ = coeff[k][j]*(dt1 - dt0) - dt1 + SMALL;
table[j-1][0].time = table[j][0].time + dt0*dt1 / dt_;
const real dW0 = table[j][1].time - table[j-1][1].time;
const real dW1 = table[j][1].time - tmp [1].time;
const real dW_ = coeff[k][j]*(dW1 - dW0) - dW1 + SMALL;
table[j-1][1].time = table[j][1].time + dW0*dW1 / dW_; /* W */
}
for (int i = 0; i < n; i++)
{
const vec3 dr0 = table[0][i].pos - last[i].pos;
const vec3 dv0 = table[0][i].vel - last[i].vel;
const vec3 dr1 = table[0][i].pos - tmp [i].pos;
const vec3 dv1 = table[0][i].vel - tmp [i].vel;
tmp[i].pos = 0.0;
tmp[i].vel = 0.0;
for (int l = 0; l < 3; l++)
{
const real dq = coeff[k][0]*(dr1[l] - dr0[l]) - dr1[l] + SMALL;
const real dp = coeff[k][0]*(dv1[l] - dv0[l]) - dv1[l] + SMALL;
#ifndef _SSE_
const real idq = 1.0/dq;
const real idp = 1.0/dp;
#else
real idq = dq, idp = dp;
__divpd(idq, idp);
#endif
last[i].pos[l] = table[0][i].pos[l] + dr0[l]*dr1[l] * idq;
last[i].vel[l] = table[0][i].vel[l] + dv0[l]*dv1[l] * idp;
}
}
const real dt0 = table[0][0].time - last[0].time;
const real dt1 = table[0][0].time - tmp [0].time;
const real dt_ = coeff[k][0]*(dt1 - dt0) - dt1 + SMALL;
tmp [0].time = 0.0;
last[0].time = table[0][0].time + dt0*dt1 / dt_;
const real dW0 = table[0][1].time - last[1].time;
const real dW1 = table[0][1].time - tmp [1].time;
const real dW_ = coeff[k][0]*(dW1 - dW0) - dW1 + SMALL;
tmp [1].time = 0.0;
last[1].time = table[0][1].time + dW0*dW1 / dW_; /* W */
dt_extra += mytimer::get_wtime() - t0;
}
#endif
real Error(const Particle::Vector &y, const Particle::Vector &y1, const Particle::Vector &ysav,
const real rtol, const real atol)
{
const double t0 = mytimer::get_wtime();
assert(y.size() == ysav.size());
const int n = y.size();
float err = 0.0;
for (int i = 0; i < n; i++)
for (int k = 0; k < 3; k++)
{
const float scale_pos = atol + rtol*std::max(std::abs(ysav[i].pos[k]), std::abs(y[i].pos[k]));
const float scale_vel = atol + rtol*std::max(std::abs(ysav[i].vel[k]), std::abs(y[i].vel[k]));
err = std::max(err, std::abs(float(y[i].pos[k] - y1[i].pos[k])/scale_pos));
err = std::max(err, std::abs(float(y[i].vel[k] - y1[i].vel[k])/scale_vel));
}
#if 1
const float scale_time = atol + rtol*std::max(std::abs(ysav[0].time), std::abs(y[0].time));
err = std::max(err, std::abs(float(y[0].time - y1[0].time)/scale_time));