forked from Tianxiaomo/pytorch-YOLOv4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
445 lines (365 loc) · 16.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# -*- coding: utf-8 -*-
'''
@Time : 2020/05/06 21:09
@Author : Tianxiaomo
@File : dataset.py
@Noice :
@Modificattion :
@Author :
@Time :
@Detail :
'''
import os
import random
import sys
import cv2
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
def rand_uniform_strong(min, max):
if min > max:
swap = min
min = max
max = swap
return random.random() * (max - min) + min
def rand_scale(s):
scale = rand_uniform_strong(1, s)
if random.randint(0, 1) % 2:
return scale
return 1. / scale
def rand_precalc_random(min, max, random_part):
if max < min:
swap = min
min = max
max = swap
return (random_part * (max - min)) + min
def fill_truth_detection(bboxes, num_boxes, classes, flip, dx, dy, sx, sy, net_w, net_h):
if bboxes.shape[0] == 0:
return bboxes, 10000
np.random.shuffle(bboxes)
bboxes[:, 0] -= dx
bboxes[:, 2] -= dx
bboxes[:, 1] -= dy
bboxes[:, 3] -= dy
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, sx)
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, sx)
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, sy)
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, sy)
out_box = list(np.where(((bboxes[:, 1] == sy) & (bboxes[:, 3] == sy)) |
((bboxes[:, 0] == sx) & (bboxes[:, 2] == sx)) |
((bboxes[:, 1] == 0) & (bboxes[:, 3] == 0)) |
((bboxes[:, 0] == 0) & (bboxes[:, 2] == 0)))[0])
list_box = list(range(bboxes.shape[0]))
for i in out_box:
list_box.remove(i)
bboxes = bboxes[list_box]
if bboxes.shape[0] == 0:
return bboxes, 10000
bboxes = bboxes[np.where((bboxes[:, 4] < classes) & (bboxes[:, 4] >= 0))[0]]
if bboxes.shape[0] > num_boxes:
bboxes = bboxes[:num_boxes]
min_w_h = np.array([bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1]]).min()
bboxes[:, 0] *= (net_w / sx)
bboxes[:, 2] *= (net_w / sx)
bboxes[:, 1] *= (net_h / sy)
bboxes[:, 3] *= (net_h / sy)
if flip:
temp = net_w - bboxes[:, 0]
bboxes[:, 0] = net_w - bboxes[:, 2]
bboxes[:, 2] = temp
return bboxes, min_w_h
def rect_intersection(a, b):
minx = max(a[0], b[0])
miny = max(a[1], b[1])
maxx = min(a[2], b[2])
maxy = min(a[3], b[3])
return [minx, miny, maxx, maxy]
def image_data_augmentation(mat, w, h, pleft, ptop, swidth, sheight, flip, dhue, dsat, dexp, gaussian_noise, blur,
truth):
try:
img = mat
oh, ow, _ = img.shape
pleft, ptop, swidth, sheight = int(pleft), int(ptop), int(swidth), int(sheight)
# crop
src_rect = [pleft, ptop, swidth + pleft, sheight + ptop] # x1,y1,x2,y2
img_rect = [0, 0, ow, oh]
new_src_rect = rect_intersection(src_rect, img_rect) # 交集
dst_rect = [max(0, -pleft), max(0, -ptop), max(0, -pleft) + new_src_rect[2] - new_src_rect[0],
max(0, -ptop) + new_src_rect[3] - new_src_rect[1]]
# cv2.Mat sized
if (src_rect[0] == 0 and src_rect[1] == 0 and src_rect[2] == img.shape[0] and src_rect[3] == img.shape[1]):
sized = cv2.resize(img, (w, h), cv2.INTER_LINEAR)
else:
cropped = np.zeros([sheight, swidth, 3])
cropped[:, :, ] = np.mean(img, axis=(0, 1))
cropped[dst_rect[1]:dst_rect[3], dst_rect[0]:dst_rect[2]] = \
img[new_src_rect[1]:new_src_rect[3], new_src_rect[0]:new_src_rect[2]]
# resize
sized = cv2.resize(cropped, (w, h), cv2.INTER_LINEAR)
# flip
if flip:
# cv2.Mat cropped
sized = cv2.flip(sized, 1) # 0 - x-axis, 1 - y-axis, -1 - both axes (x & y)
# HSV augmentation
# cv2.COLOR_BGR2HSV, cv2.COLOR_RGB2HSV, cv2.COLOR_HSV2BGR, cv2.COLOR_HSV2RGB
if dsat != 1 or dexp != 1 or dhue != 0:
if img.shape[2] >= 3:
hsv_src = cv2.cvtColor(sized.astype(np.float32), cv2.COLOR_RGB2HSV) # RGB to HSV
hsv = cv2.split(hsv_src)
hsv[1] *= dsat
hsv[2] *= dexp
hsv[0] += 179 * dhue
hsv_src = cv2.merge(hsv)
sized = np.clip(cv2.cvtColor(hsv_src, cv2.COLOR_HSV2RGB), 0, 255) # HSV to RGB (the same as previous)
else:
sized *= dexp
if blur:
if blur == 1:
dst = cv2.GaussianBlur(sized, (17, 17), 0)
# cv2.bilateralFilter(sized, dst, 17, 75, 75)
else:
ksize = (blur / 2) * 2 + 1
dst = cv2.GaussianBlur(sized, (ksize, ksize), 0)
if blur == 1:
img_rect = [0, 0, sized.cols, sized.rows]
for b in truth:
left = (b.x - b.w / 2.) * sized.shape[1]
width = b.w * sized.shape[1]
top = (b.y - b.h / 2.) * sized.shape[0]
height = b.h * sized.shape[0]
roi(left, top, width, height)
roi = roi & img_rect
dst[roi[0]:roi[0] + roi[2], roi[1]:roi[1] + roi[3]] = sized[roi[0]:roi[0] + roi[2],
roi[1]:roi[1] + roi[3]]
sized = dst
if gaussian_noise:
noise = np.array(sized.shape)
gaussian_noise = min(gaussian_noise, 127)
gaussian_noise = max(gaussian_noise, 0)
cv2.randn(noise, 0, gaussian_noise) # mean and variance
sized = sized + noise
except:
print("OpenCV can't augment image: " + str(w) + " x " + str(h))
sized = mat
return sized
def filter_truth(bboxes, dx, dy, sx, sy, xd, yd):
bboxes[:, 0] -= dx
bboxes[:, 2] -= dx
bboxes[:, 1] -= dy
bboxes[:, 3] -= dy
bboxes[:, 0] = np.clip(bboxes[:, 0], 0, sx)
bboxes[:, 2] = np.clip(bboxes[:, 2], 0, sx)
bboxes[:, 1] = np.clip(bboxes[:, 1], 0, sy)
bboxes[:, 3] = np.clip(bboxes[:, 3], 0, sy)
out_box = list(np.where(((bboxes[:, 1] == sy) & (bboxes[:, 3] == sy)) |
((bboxes[:, 0] == sx) & (bboxes[:, 2] == sx)) |
((bboxes[:, 1] == 0) & (bboxes[:, 3] == 0)) |
((bboxes[:, 0] == 0) & (bboxes[:, 2] == 0)))[0])
list_box = list(range(bboxes.shape[0]))
for i in out_box:
list_box.remove(i)
bboxes = bboxes[list_box]
bboxes[:, 0] += xd
bboxes[:, 2] += xd
bboxes[:, 1] += yd
bboxes[:, 3] += yd
return bboxes
def blend_truth_mosaic(out_img, img, bboxes, w, h, cut_x, cut_y, i_mixup,
left_shift, right_shift, top_shift, bot_shift):
left_shift = min(left_shift, w - cut_x)
top_shift = min(top_shift, h - cut_y)
right_shift = min(right_shift, cut_x)
bot_shift = min(bot_shift, cut_y)
if i_mixup == 0:
bboxes = filter_truth(bboxes, left_shift, top_shift, cut_x, cut_y, 0, 0)
out_img[:cut_y, :cut_x] = img[top_shift:top_shift + cut_y, left_shift:left_shift + cut_x]
if i_mixup == 1:
bboxes = filter_truth(bboxes, cut_x - right_shift, top_shift, w - cut_x, cut_y, cut_x, 0)
out_img[:cut_y, cut_x:] = img[top_shift:top_shift + cut_y, cut_x - right_shift:w - right_shift]
if i_mixup == 2:
bboxes = filter_truth(bboxes, left_shift, cut_y - bot_shift, cut_x, h - cut_y, 0, cut_y)
out_img[cut_y:, :cut_x] = img[cut_y - bot_shift:h - bot_shift, left_shift:left_shift + cut_x]
if i_mixup == 3:
bboxes = filter_truth(bboxes, cut_x - right_shift, cut_y - bot_shift, w - cut_x, h - cut_y, cut_x, cut_y)
out_img[cut_y:, cut_x:] = img[cut_y - bot_shift:h - bot_shift, cut_x - right_shift:w - right_shift]
return out_img, bboxes
def draw_box(img, bboxes):
for b in bboxes:
img = cv2.rectangle(img, (b[0], b[1]), (b[2], b[3]), (0, 255, 0), 2)
return img
class Yolo_dataset(Dataset):
def __init__(self, lable_path, cfg, train=True):
super(Yolo_dataset, self).__init__()
if cfg.mixup == 2:
print("cutmix=1 - isn't supported for Detector")
raise
elif cfg.mixup == 2 and cfg.letter_box:
print("Combination: letter_box=1 & mosaic=1 - isn't supported, use only 1 of these parameters")
raise
self.cfg = cfg
self.train = train
truth = {}
f = open(lable_path, 'r', encoding='utf-8')
for line in f.readlines():
data = line.split(" ")
truth[data[0]] = []
for i in data[1:]:
truth[data[0]].append([int(float(j)) for j in i.split(',')])
self.truth = truth
self.imgs = list(self.truth.keys())
def __len__(self):
return len(self.truth.keys())
def __getitem__(self, index):
if not self.train:
return self._get_val_item(index)
img_path = self.imgs[index]
bboxes = np.array(self.truth.get(img_path), dtype=np.float)
img_path = os.path.join(self.cfg.dataset_dir, img_path)
use_mixup = self.cfg.mixup
if random.randint(0, 1):
use_mixup = 0
if use_mixup == 3:
min_offset = 0.2
cut_x = random.randint(int(self.cfg.w * min_offset), int(self.cfg.w * (1 - min_offset)))
cut_y = random.randint(int(self.cfg.h * min_offset), int(self.cfg.h * (1 - min_offset)))
r1, r2, r3, r4, r_scale = 0, 0, 0, 0, 0
dhue, dsat, dexp, flip, blur = 0, 0, 0, 0, 0
gaussian_noise = 0
out_img = np.zeros([self.cfg.h, self.cfg.w, 3])
out_bboxes = []
for i in range(use_mixup + 1):
if i != 0:
img_path = random.choice(list(self.truth.keys()))
bboxes = np.array(self.truth.get(img_path), dtype=np.float)
img_path = os.path.join(self.cfg.dataset_dir, img_path)
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if img is None:
continue
oh, ow, oc = img.shape
dh, dw, dc = np.array(np.array([oh, ow, oc]) * self.cfg.jitter, dtype=np.int)
dhue = rand_uniform_strong(-self.cfg.hue, self.cfg.hue)
dsat = rand_scale(self.cfg.saturation)
dexp = rand_scale(self.cfg.exposure)
pleft = random.randint(-dw, dw)
pright = random.randint(-dw, dw)
ptop = random.randint(-dh, dh)
pbot = random.randint(-dh, dh)
flip = random.randint(0, 1) if self.cfg.flip else 0
if (self.cfg.blur):
tmp_blur = random.randint(0, 2) # 0 - disable, 1 - blur background, 2 - blur the whole image
if tmp_blur == 0:
blur = 0
elif tmp_blur == 1:
blur = 1
else:
blur = self.cfg.blur
if self.cfg.gaussian and random.randint(0, 1):
gaussian_noise = self.cfg.gaussian
else:
gaussian_noise = 0
if self.cfg.letter_box:
img_ar = ow / oh
net_ar = self.cfg.w / self.cfg.h
result_ar = img_ar / net_ar
# print(" ow = %d, oh = %d, w = %d, h = %d, img_ar = %f, net_ar = %f, result_ar = %f \n", ow, oh, w, h, img_ar, net_ar, result_ar);
if result_ar > 1: # sheight - should be increased
oh_tmp = ow / net_ar
delta_h = (oh_tmp - oh) / 2
ptop = ptop - delta_h
pbot = pbot - delta_h
# print(" result_ar = %f, oh_tmp = %f, delta_h = %d, ptop = %f, pbot = %f \n", result_ar, oh_tmp, delta_h, ptop, pbot);
else: # swidth - should be increased
ow_tmp = oh * net_ar
delta_w = (ow_tmp - ow) / 2
pleft = pleft - delta_w
pright = pright - delta_w
# printf(" result_ar = %f, ow_tmp = %f, delta_w = %d, pleft = %f, pright = %f \n", result_ar, ow_tmp, delta_w, pleft, pright);
swidth = ow - pleft - pright
sheight = oh - ptop - pbot
truth, min_w_h = fill_truth_detection(bboxes, self.cfg.boxes, self.cfg.classes, flip, pleft, ptop, swidth,
sheight, self.cfg.w, self.cfg.h)
if (min_w_h / 8) < blur and blur > 1: # disable blur if one of the objects is too small
blur = min_w_h / 8
ai = image_data_augmentation(img, self.cfg.w, self.cfg.h, pleft, ptop, swidth, sheight, flip,
dhue, dsat, dexp, gaussian_noise, blur, truth)
if use_mixup == 0:
out_img = ai
out_bboxes = truth
if use_mixup == 1:
if i == 0:
old_img = ai.copy()
old_truth = truth.copy()
elif i == 1:
out_img = cv2.addWeighted(ai, 0.5, old_img, 0.5)
out_bboxes = np.concatenate([old_truth, truth], axis=0)
elif use_mixup == 3:
if flip:
tmp = pleft
pleft = pright
pright = tmp
left_shift = int(min(cut_x, max(0, (-int(pleft) * self.cfg.w / swidth))))
top_shift = int(min(cut_y, max(0, (-int(ptop) * self.cfg.h / sheight))))
right_shift = int(min((self.cfg.w - cut_x), max(0, (-int(pright) * self.cfg.w / swidth))))
bot_shift = int(min(self.cfg.h - cut_y, max(0, (-int(pbot) * self.cfg.h / sheight))))
out_img, out_bbox = blend_truth_mosaic(out_img, ai, truth.copy(), self.cfg.w, self.cfg.h, cut_x,
cut_y, i, left_shift, right_shift, top_shift, bot_shift)
out_bboxes.append(out_bbox)
# print(img_path)
if use_mixup == 3:
out_bboxes = np.concatenate(out_bboxes, axis=0)
out_bboxes1 = np.zeros([self.cfg.boxes, 5])
out_bboxes1[:min(out_bboxes.shape[0], self.cfg.boxes)] = out_bboxes[:min(out_bboxes.shape[0], self.cfg.boxes)]
return out_img, out_bboxes1
def _get_val_item(self, index):
"""
"""
img_path = self.imgs[index]
bboxes_with_cls_id = np.array(self.truth.get(img_path), dtype=np.float)
img = cv2.imread(os.path.join(self.cfg.dataset_dir, img_path))
# img_height, img_width = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# img = cv2.resize(img, (self.cfg.w, self.cfg.h))
# img = torch.from_numpy(img.transpose(2, 0, 1)).float().div(255.0).unsqueeze(0)
num_objs = len(bboxes_with_cls_id)
target = {}
# boxes to coco format
boxes = bboxes_with_cls_id[...,:4]
boxes[..., 2:] = boxes[..., 2:] - boxes[..., :2] # box width, box height
target['boxes'] = torch.as_tensor(boxes, dtype=torch.float32)
target['labels'] = torch.as_tensor(bboxes_with_cls_id[...,-1].flatten(), dtype=torch.int64)
target['image_id'] = torch.tensor([get_image_id(img_path)])
target['area'] = (target['boxes'][:,3])*(target['boxes'][:,2])
target['iscrowd'] = torch.zeros((num_objs,), dtype=torch.int64)
return img, target
def get_image_id(filename:str) -> int:
"""
Convert a string to a integer.
Make sure that the images and the `image_id`s are in one-one correspondence.
There are already `image_id`s in annotations of the COCO dataset,
in which case this function is unnecessary.
For creating one's own `get_image_id` function, one can refer to
https://github.com/google/automl/blob/master/efficientdet/dataset/create_pascal_tfrecord.py#L86
or refer to the following code (where the filenames are like 'level1_123.jpg')
>>> lv, no = os.path.splitext(os.path.basename(filename))[0].split("_")
>>> lv = lv.replace("level", "")
>>> no = f"{int(no):04d}"
>>> return int(lv+no)
"""
raise NotImplementedError("Create your own 'get_image_id' function")
lv, no = os.path.splitext(os.path.basename(filename))[0].split("_")
lv = lv.replace("level", "")
no = f"{int(no):04d}"
return int(lv+no)
if __name__ == "__main__":
from cfg import Cfg
import matplotlib.pyplot as plt
random.seed(2020)
np.random.seed(2020)
Cfg.dataset_dir = '/mnt/e/Dataset'
dataset = Yolo_dataset(Cfg.train_label, Cfg)
for i in range(100):
out_img, out_bboxes = dataset.__getitem__(i)
a = draw_box(out_img.copy(), out_bboxes.astype(np.int32))
plt.imshow(a.astype(np.int32))
plt.show()