-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreateimage.py
executable file
·200 lines (155 loc) · 5.87 KB
/
createimage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python
"""
Undistort image.
(C) 2016-2022 1024jp
"""
import math
import os
import sys
import cv2
import numpy as np
from modules import argsparser
from modules.datafile import Data
from modules.undistortion import Undistorter
from modules.projection import Projector
# constants
SUFFIX = "_calib"
class ArgsParser(argsparser.Parser):
description = 'Undistort image based on a location file.'
datafile_name = 'image'
def init_arguments(self):
super(ArgsParser, self).init_arguments()
script = self.add_argument_group('script options')
script.add_argument('--save',
action='store_true',
default=False,
help="save result in a file instead displaying it"
" (default: %(default)s)"
)
script.add_argument('--perspective',
action='store_true',
default=False,
help="also remove perspective"
" (default: %(default)s)"
)
script.add_argument('--stats',
action='store_true',
default=False,
help="display stats"
" (default: %(default)s)"
)
def add_suffix_to_path(path, suffix):
"""Append suffix to file name before file extension.
Arguments:
path (str) -- File path.
suffix (str) -- Suffix string to append.
"""
root, extension = os.path.splitext(path)
return root + suffix + extension
def show_image(image, scale=1.0, window_title='Image'):
"""Display given image in a window.
Arguments:
image () -- Image to display.
scale (float) -- Magnification of image.
window_title (str) -- Title of window.
"""
scaled_image = scale_image(image, scale)
cv2.imshow(window_title, scaled_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def scale_image(image, scale=1.0):
"""Scale up/down given image.
Arguments:
image () -- Image to process.
scale (float) -- Magnification of image.
"""
height, width = [int(scale * length) for length in image.shape[:2]]
return cv2.resize(image, (width, height))
def plot_points(image, points, color=(0, 0, 255)):
"""Draw circles at given locations on image.
Arguments:
image -- Image to draw on.
points -- x,y pairs of points to plot.
"""
# find best radius for image
image_width = image.shape[1]
radius = int(image_width / 400)
# draw
for point in points:
point = tuple(map(int, point))
cv2.circle(image, point, color=color, radius=radius,
thickness=radius/2)
def estimate_clipping_rect(projector, size):
"""
Return:
rect -- NSRect style 2d-tuple.
flipped (bool) -- Whether y-axis is flipped.
"""
# lt -> rt -> lb -> rb
image_corners = [(0, 0), (size[0], 0), (0, size[1]), size]
x_points = []
y_points = []
for corner in image_corners:
x, y = map(int, projector.project_point(*corner))
x_points.append(x)
y_points.append(y)
min_x = min(x_points)
min_y = min(y_points)
max_x = max(x_points)
max_y = max(y_points)
rect = ((min_x, min_y), (max_x - min_x, max_y - min_y))
flipped = y_points[3] < 0
return rect, flipped
def main(data, saves_file=False, removes_perspective=True, shows_stats=False):
imgpath = data.datafile.name
image = cv2.imread(imgpath)
size = image.shape[::-1][1:3]
undistorter = Undistorter.init(data.image_points, data.dest_points, size)
image = undistorter.undistort_image(image)
undistorted_points = undistorter.calibrate_points(data.image_points)
plot_points(image, undistorted_points)
if shows_stats:
print('[stats]')
print('number of points: {}'.format(len(undistorted_points)))
if removes_perspective:
projector = Projector(undistorted_points, data.dest_points)
# show stats if needed
if shows_stats:
diffs = []
for point, (dest_x, dest_y, dest_z) in zip(undistorted_points,
data.dest_points):
x, y = projector.project_point(*point)
diffs.append([x - dest_x, y - dest_y])
abs_diffs = [(abs(x), abs(y)) for x, y in diffs]
print('mean: {:.2f}, {:.2f}'.format(*np.mean(abs_diffs, axis=0)))
print(' std: {:.2f}, {:.2f}'.format(*np.std(abs_diffs, axis=0)))
print(' max: {:.2f}, {:.2f}'.format(*np.max(abs_diffs, axis=0)))
print('diff:')
for x, y in diffs:
print(' {:6.1f},{:6.1f}'.format(x, y))
# transform image by removing perspective
rect, is_flipped = estimate_clipping_rect(projector, size)
image = projector.project_image(image, rect[1], rect[0])
scale = float(size[0]) / image.shape[1]
image = scale_image(image, scale)
for point in data.dest_points:
point = point[0:2]
point = [scale * (l - origin) for l, origin in zip(point, rect[0])]
plot_points(image, [point], color=(255, 128, 0))
# flip image if needed
if is_flipped:
image = cv2.flip(image, 0)
if saves_file:
outpath = add_suffix_to_path(imgpath, SUFFIX)
cv2.imwrite(outpath, image)
else:
show_image(image, scale=1.0/2, window_title='Undistorted Image')
if __name__ == "__main__":
parser = ArgsParser()
args = parser.parse_args()
if args.test:
print("This script doesn't have test.")
sys.exit()
data = Data(args.file, in_cols=args.in_cols)
main(data, saves_file=args.save,
removes_perspective=args.perspective, shows_stats=args.stats)