diff --git a/subjects/ai/time-series/README.md b/subjects/ai/time-series/README.md index b3040078ad..99f56aa34d 100644 --- a/subjects/ai/time-series/README.md +++ b/subjects/ai/time-series/README.md @@ -118,15 +118,19 @@ market_data = pd.DataFrame(index=index, 1. **Without using a for loop**, compute the daily returns (return(d) = (price(d)-price(d-1))/price(d-1)) for all the companies and returns a DataFrame as: -| Date | ('Price', 'AAPL') | ('Price', 'AMZN') | ('Price', 'DAI') | ('Price', 'FB') | ('Price', 'GE') | -| :------------------ | ----------------: | ----------------: | ---------------: | --------------: | --------------: | -| 2021-01-01 00:00:00 | nan | nan | nan | nan | nan | -| 2021-01-04 00:00:00 | 1.01793 | 0.0512955 | 3.84709 | -0.503488 | 0.33529 | -| 2021-01-05 00:00:00 | -0.222884 | -1.64623 | -0.71817 | -5.5036 | -4.15882 | +```console +Ticker AAPL AMZN DAI FB GE +Date +2021-01-01 NaN NaN NaN NaN NaN +2021-01-04 -2.668008 -4.716002 -1.885721 0.496173 1.862998 +2021-01-05 -2.194111 -2.747143 -0.165338 0.318410 0.085519 +2021-01-06 -1.164307 -1.194895 -2.595224 -0.219974 -0.805512 +2021-01-07 3.428472 3.778445 -0.956788 -1.538637 0.108276 +``` -Note: The data is generated randomly, the values you may have a different results. But, this shows the expected DataFrame structure. +Note: The data is generated randomly, the values you may have lead to a different result. The above example shows the expected DataFrame structure. -`Hint use groupby` +`Hint use pivot_table` --- diff --git a/subjects/ai/time-series/audit/README.md b/subjects/ai/time-series/audit/README.md index 8961f9e931..d68c355ac9 100644 --- a/subjects/ai/time-series/audit/README.md +++ b/subjects/ai/time-series/audit/README.md @@ -114,7 +114,7 @@ The first way to do it is to compute the return without for loop is to use `pct_ ###### Is the outputted DataFrame's shape `(261, 5)` without having used a for loop and the is the output the same as the one returned with this line of code? The DataFrame contains random data. Make sure the output and the one returned by this code is based on the same DataFrame. ```python - market_data.loc[market_data.index.get_level_values('Ticker')=='AAPL'].sort_index().pct_change() + market_data.pivot_table(values="Price", index="Date", columns="Ticker").pct_change() ``` ---