Skip to content

Commit

Permalink
fix(time-series/ex3): update subejct and audit examples to be coherent
Browse files Browse the repository at this point in the history
with task
  • Loading branch information
nprimo committed Nov 27, 2023
1 parent 8aa262a commit 463aaa7
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 8 deletions.
18 changes: 11 additions & 7 deletions subjects/ai/time-series/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,15 +118,19 @@ market_data = pd.DataFrame(index=index,

1. **Without using a for loop**, compute the daily returns (return(d) = (price(d)-price(d-1))/price(d-1)) for all the companies and returns a DataFrame as:

| Date | ('Price', 'AAPL') | ('Price', 'AMZN') | ('Price', 'DAI') | ('Price', 'FB') | ('Price', 'GE') |
| :------------------ | ----------------: | ----------------: | ---------------: | --------------: | --------------: |
| 2021-01-01 00:00:00 | nan | nan | nan | nan | nan |
| 2021-01-04 00:00:00 | 1.01793 | 0.0512955 | 3.84709 | -0.503488 | 0.33529 |
| 2021-01-05 00:00:00 | -0.222884 | -1.64623 | -0.71817 | -5.5036 | -4.15882 |
```console
Ticker AAPL AMZN DAI FB GE
Date
2021-01-01 NaN NaN NaN NaN NaN
2021-01-04 -2.668008 -4.716002 -1.885721 0.496173 1.862998
2021-01-05 -2.194111 -2.747143 -0.165338 0.318410 0.085519
2021-01-06 -1.164307 -1.194895 -2.595224 -0.219974 -0.805512
2021-01-07 3.428472 3.778445 -0.956788 -1.538637 0.108276
```

Note: The data is generated randomly, the values you may have a different results. But, this shows the expected DataFrame structure.
Note: The data is generated randomly, the values you may have lead to a different result. The above example shows the expected DataFrame structure.

`Hint use groupby`
`Hint use pivot_table`

---

Expand Down
2 changes: 1 addition & 1 deletion subjects/ai/time-series/audit/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -114,7 +114,7 @@ The first way to do it is to compute the return without for loop is to use `pct_
###### Is the outputted DataFrame's shape `(261, 5)` without having used a for loop and the is the output the same as the one returned with this line of code? The DataFrame contains random data. Make sure the output and the one returned by this code is based on the same DataFrame.

```python
market_data.loc[market_data.index.get_level_values('Ticker')=='AAPL'].sort_index().pct_change()
market_data.pivot_table(values="Price", index="Date", columns="Ticker").pct_change()
```

---
Expand Down

0 comments on commit 463aaa7

Please sign in to comment.